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Abstract

This thesis explores the ability to use cell phone devices for Unmanned Aerial

Vehicle (UAV) acoustic payload detection. Past researchers demonstrated the ability

to use UAV acoustic signatures to determine whether a UAV carries a payload and

the weight of that payload. The experiments in past research were conducted at close

range with high-quality microphones. This research expands the field of study by

testing acoustic payload detection using cell phone devices and at far range. The

Department of Defense (DoD) is particularly interested in acoustic payload detection

due to rising security threats from UAVs. Although these detection systems increase

security, the ever on-going arms race leads to counter techniques which make these

detection systems ineffective. Therefore, there is a need for new drone detection

systems which use new technology. Acoustic emissions are a unique property all

drones expel, and these emissions provide new stimulus for drone detection systems.

An acoustic drone detection system does not require line-of-sight and is difficult to

spoof, so an acoustic drone detection system which identifies payload weight using

cell phones would prove useful.

Cell phones are commonplace worldwide. Due to this fact, there is a growing

desire to use cell phones for hazard detection. The ability to use a common cell

phone to detect a far off hazardous UAV would improve security in many contested

environments.

This research develops the prototype HurtzHunter to demonstrate acoustic pay-

load detection with cell phone devices to collect UAV acoustic emissions, then uses

the emissions to train an AI capable of UAV payload classification. The HurtzHunter

system tests acoustic payload detection with 7 different recording devices at 7 m, 10

iv



m, 20 m, 30 m, 40 m, 50 m, 75 m, and 100 m ground distance from the drone. At

each distance, the experiment runs 6 flights each with a unique payload attached to

the drone. 80% of the acoustic emissions train a Support Vector Machine (SVM),

and 20% tests the SVM.

The methodology in this research shows the HurtzHunter design achieves an 82.81

- 99.93% payload prediction accuracy based on the configuration. In short, this

research provides novel insight into the maximum range for UAV payload detection

using acoustic emissions, and provides insight into the ability to use cell phone devices

for payload detection.
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UAV Payload Identification With Acoustic Emissions And Cell Phone Devices

I. Introduction

1.1 Overview and Background

On November 4, 1780 Joseph-Michel and Jacques-Etienne flew the first unmanned

aircraft in history. The aircraft was a hot air balloon which rose to 1,000 meters in

altitude before landing about a mile away from the take-off point [1]. This event

sparked a technological fire focused on unmanned aircraft development, and this fire

burned its way into nearly every sector of society. Today, there are over 1.25 million

UAVs in operation [2]. The price of a UAV, or drone, ranges from $30 to over $35,000,

and the public can buy these remotely with the click of a button or at their local store

[3]. Today, people use them for recreation and industry. For example, Amazon uses

drones to deliver packages with their new system Prime Air [4]. This technology

brings much excitement, but as with any new technology, drones bring new security

threats to civilian and military settings.

Due to the increasing affordability of these drones, US adversaries are using them

for military tactics. In 2017, Syrian forces found an ISIS drone Improvised Explosive

Device (IED) plant. The terrorist organization used captured US drones to develop

their own Unmanned Aerial Vehicle (UAV) and turn them into IEDs [5]. This example

is just the tip of the iceburg, many more adversaries are developing drone technology

and using them in military tactics. Beyond the military, illegal drug traders use small

UAVs to ship drugs across the US southern boarder [6]. In response to these threats,

there is an increasing need for drone detection systems. Currently, there are drone
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detection systems using RADAR, visual recognition, and radio frequency. Another

promising solution for droned detection uses acoustic emissions. Small drones emit

unique sounds while they fly, and this sound directly corresponds to features of the

drone such as model and attached payloads.

1.2 Problem Statement

Current drone detection platforms focus on RADAR, image recognition, LiDAR,

or Radio Frequency. Although these platforms are useful, they can be spoofed, and

some are limited to direct line of sight. Therefore, the need for a new zero-touch,

zero line-of-sight detection system would be useful in drone methods. A solution to

this problem is an acoustic UAV detection system. Acoustics are a unique quality

all drones emit. They are difficult to spoof in comparison to other methods, and

acoustics do not require line of sight. An effective payload detection system would

allow the identification of a hazardous drone when other methods do not. Such a

capability would play an integral role in an drone detection system. Therefore, this

research focuses on the ability to detect drone payloads using acoustic emissions.

Previous work demonstrates the ability to detect the presence of a drone, as well as

the payload carried by a drone using acoustic emissions. Payloads were identified at

close range using high-quality microphones and a laptop [7][8]. This research expands

the field by testing acoustic detection at far range with cell phone devices. The Air

Force Research Lab (AFRL) is interested in the ability to use Internet of Things (IoT)

devices for acoustic drone detection. This research proposes a prototype which uses

cell phone devices to detect payload weight from 7 m to 100 m from the drone. Cell

phones use microphones commonly found on many IoT devices, so the prototype in

this research can be deployed on many IoT device for payload detection.
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1.3 Research Goals

The goal of this research is to demonstrate an acoustic payload detection method

using cell phone devices and determine the maximum range of acoustic payload de-

tection. Previous research successfully characterized payload weight with acoustic

emissions at 7 m ground distance from the drone. Past research used the RodeV-

ideoMicPro (RVMP) and a MacBook Pro to record these acoustic emissions [7][8].

This research expands the field of study by using acoustic emissions to characterize

payload weight and with cell phone devices at a range of 7 - 100 m from the drone.

The work in this research is relevant because it develops a prototype which tests

acoustic detection at long range using cell phones. Cell phones are commonplace

world wide, so they are present in most contested environments. By using recording

devices already found in an environment, new recording devices would not need to

be deployed, allowing for drone detection in previously unreachable environments. In

other words, if the US military cannot deploy microphones in an adverse environment,

they would be able to use cell phones already in that environment for drone detection.

This research seeks to answer the following questions:

• Can cell phones detect UAV payload weight with sound?

• What is the maximum range of acoustic UAV payload detection?

• Does the cell phone model affect detection accuracy?

• Does a high-quality microphone perform better than a cell phone for acoustic

payload detection?

• Does the manufacturing process for a specific recording device affect detection

accuracy?
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1.4 Hypothesis

This research hypothesizes that cell phones are able to determine the weight of

a payload carried by a UAV from acoustic emissions at up to 100 m away ground

distance from the UAV. This research develops the drone detection system called

HurtzHunter. HurtzHunter aims to provide a UAV acoustic detection method using

cell phone devices. This research uses HurtzHunter to determine the maximum detec-

tion range for acoustic emissions and compare prediction quality between recording

devices. Seven recording devices collect acoustic emissions from a hovering drone at

increasing distances with different payloads attached. The collected acoustic data

trains and tests a Machine Learning (ML) algorithm and the results are used to

support this hypothesis.

1.5 Approach

This research develops HurtzHunter, a drone payload detection system using

acoustic emissions. This prototype uses 7 recording devices, 1 quad-copter drone,

and a ML algorithm. The recording devices are the three Samasung Galaxy S8

(GS8), one Samsung Galaxy S20 (GS20), one Google Pixel 4 (GP4), one iPhone 11

Pro (iP11P), and one RVMP. The drone is the Mavic Air 2. The ML algorithm is

the Support Vector Machine (SVM). The microphones record acoustic sound while

the drone hovers for 1 min. The microphones collect acoustics for 48 flights in total.

Flights are conducted at 7 m, 10 m, 20 m, 30 m, 40 m, 50 m, 75 m, and 100 m away

from the microphones, and at each distance the drone performs 6 flights, each with a

different payload weight. The payload weights are 56 g, 112 g, 168 g, 224 g, and 280

g. HurtzHunter uses the sound data from the microphones to train and test an SVM.

This research uses the test results to answer the five questions Section 1.3 Research

Goals lists.
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The experimental data was taken in August at the Air Force Bombing range in

Avon Park, FL. A pilot from AFRL/RYAR flew the Mavik Air 2 for all 48 flights

over the course of three days.

1.6 Assumptions and Limitations

This research is bounded by the following assumptions and limitations:

1. The experiment in this research is conducted on the flight line at the Air Force

Bombing Range in Avon Park, FL. The setting is an open area with no struc-

tures nearby, so there is minimal sound interference from structures. However,

the setting has the following uncontrollable ambient sounds: cars, aircraft, birds,

wind, and insects such as cicadas. The weather during experimentation is very

hot with temperatures greater than 90 degrees F and humidity near 100%. The

hot weather may cause the drone to need additional thrust for lift affecting the

acoustic emissions for each payload. This research does not include experiments

run in different weather conditions to evaluate this effect.

2. This research is limited to one drone for testing. Different drones may render

different acoustic signatures, and this research does not explore the effect of

different UAV platforms on payload prediction performance.

3. This research is limited to one repetition for the experiment Chapter 4 describes.

There was limited flight time on the Air Force Bombing range, and only one rep-

etition was accomplished One repetition limits the statistical analysis capable

in this research.
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1.7 Contributions

Previous work accomplished UAV payload weight identification at close range (∼7

m) using a high-quality microphone and MacBook pro as recording devices [7][8]. This

research expands the body of knowledge by performing acoustic payload detection

from 7 - 100 m ground distance from the UAV with cell phone devices. This research

provides evidence to indicate an optimal range for acoustic payload detection and the

difference in accuracy between a high-quality microphone and 4 different cell phone

devices. The cell phone devices use small microphones commonly found on many

IoT devices, and the results provide evidence for the detection capability of many

IoT devices using similar recording utilities. Lastly, this research assesses the impact

of manufacturing on payload prediction. The experiment uses seven total recording

devices for acoustic payload detection. Three of these devices are the same model cell

phone. Therefore, this research compares the prediction results between devices of

the same make and model to assess the impact of manufacturing on acoustic payload

prediction.

1.8 Thesis Overview

There are six chapters in this thesis. Chapter 2 gives an overview of UAVs, then

goes into digital signal processing and the acoustic features from the UAV which

are used for payload detection, then discusses the ML this research uses for payload

detection, and finally discusses prior research in this field of study. Chapter 3 de-

scribes the design of the HurtzHunter prototype created in this research for acoustic

payload detection. Chapter 4 details the experiment in this research which tests the

HurtzHunter prototype. Chapter 5 discusses the results of the experiment. Finally,

Chapter 6 summarizes the research, discusses future work for this field of study and

proposes an optimal design choice for acoustic payload prediction.

6



II. Background and Literature Review

2.1 Overview

This chapter provides background knowledge of UAVs, Mel-Frequency Cepstrum

Coefficients (MFCCs), SVMs, and previous research done for acoustic UAV detection

and classification. Section 2.2 describes what a UAV is, what they are used for, and

why drone detection systems are needed. Section 2.3 introduces and explains the

MFCC feature extraction technique and what it is used for. Section 2.4 describes

SVMs. Section 2.5 discusses the related research to this field of study, and Section

2.6 discusses the contribution this research makes to that field of study.

2.2 Unmanned Aircraft Systems

In 2019, the FAA estimated there were 1.25 million UAVs in operation and ex-

pected the amount to triple by 2023 [2]. A UAV, also known as an UAV or drone, is

defined as an unmanned aircraft which is controlled remotely. Drones range in price

from $30 to $35,000 and are becoming common use for many industries [3]. For exam-

ple, Amazon is conducting done delivery in their new Prime Air Program [9]. Drone

diffusion into society has brought fun and excitement, but it has also brought new

threats. The malicious use of drones poses significant privacy and security threats to

civilian and military settings [4].

In 2011, the Iran military claimed a US drone flew into restricted airspace and used

drone techniques to take over the US RQ-170 Sentinel drone and land it on Iran soil.

Drones have also been used in the illegal drug trade and in terrorist activity [4]. For

this reason, drone detection systems are needed to mitigate risks. Researchers have

accomplished drone detection and classification using RADAR, visual recognition,

radio frequency, and acoustic emissions, but more capabilities need to be developed
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[7]. The particular area of study, which the research in this thesis focuses on, is the

use of drone acoustic emissions for payload identification.

2.2.1 Lift and Weight Relationship

There are many different types of drones such as fixed and non-fixed wings. The

experiments in this research focuses on non-fixed copter models. A copter model

generally has 4 to 8 circular propellers on top of the drone which spin to create lift

[10]. Figure 1 displays the Mavic Air 2 quad copter UAV model.

Figure 1: Mavic Air 2 Quad Copter [11]

Based on the weight of the UAV and the payload carried, the motors and pro-

pellers have to generate different levels of thrust to fly [7]. For heavier loads, the

motors and propellers rotate at faster rates than lighter loads. The rate of rotation is

often measured in Revolutions Per Minute (RPM). The propeller’s RPM is the main

contributor to sound emitted by a drone. Since the RPM is correlated to lift, the

sound can be used to identify features of the drone [7].

The fundamental sound a drone emits is referred to as the pitch. The pitch fluc-

tuates during flight as the work needed to maintain flight changes. Wind conditions,

payload weight, flight pattern and other factors contribute to the change in pitch [7].

There are many techniques to digitally extract drone features from the sound a drone
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emits for classification. One of the most common feature extraction processes are the

MFCCs [12].

2.3 Mel-Frequency Cepstrum Coefficients

MFCCs are the most broadly used audio recognition technique [12]. MFCCs con-

vey different frequency components of an acoustic signal [7]. In 1980, Davis and

Mermelstein designed MFCCs to digitally describe how the human phonetic system

perceives an audio signal [13]. Today, systems use MFCCs for wireless audio sensor

networks, multi-media retrieval, detecting biodiversity metrics in natural environ-

ments, terrorist threat detection, home invasion, and much more [12].

MFCCs are a series of coefficients whose values give specific information of what is

present in a sound. For example, Artificial Intelligence (AI) uses MFCCs to digitally

perceive what a person is saying [12]. Figure 2 shows the process for creating MFCCs.

Figure 2: MFCC Generation Process [7]

The rest of this section describes the process seen in Figure 2 in great detail. To

help understand, here is a general description of the process. First, acoustic emissions

are collected by a recording device, this audio is converted to a digital form. Figure

2 calls this step Pre-emphasis because different microphones prepare the acoustic
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emissions in different ways. Once in digital form, the acoustic data is divided into

sound constant frames. The frequencies in a sound constant frame do not change.

To explain, think of an audio recording of someone saying the phrase ”The Matrix”.

Each letter in this phrase is a different sound. So, dividing the audio recording of this

phrase into sound constant frames creates 9 short audio recordings each containing

the sound of a letter: ’t’, ’h’, ’e’, ’m’, ’a’, ’t’, ’r’, ’i’, and ’x’. Then a Fourier Transform

(in this case the Fast Fourier Transform (FFT)) places each frame on a spectrum in

the frequency domain. After, the spectrums are then mel-scaled to reflect perceptual

changes in frequency rather than just any change in frequency. Next, the logarithm

of the amplitude is taken to convert the loudness of each frequency in a perceptually

relevant way. Lastly, the Discrete Cosine Transform (DCT) extracts MFCCs from

each frame.

2.3.1 Digital Signal Processing

MFCC extraction is a type of Digital Signal Processing (DSP) DSP is the tech-

nique of digitally representing a signal. DSP has countless uses such as removing

interference or noise from a signal, providing methods for long distance communica-

tion, creating music and more. [14].

2.3.2 Convolution

A signal is any variable that carries or contains information which can be conveyed,

displayed, or manipulated [14]. The sounds we hear are a type of signal. Signals carry

many attributes, one of which is frequency. Frequency is a rate of oscillation mea-

sured in Hz. Each signal is comprised of one or more frequencies that give the signal

its distinct sound. The process of frequencies combining to form a signal is called

convolution [14]. In DSP, signal are manipulated through convolution to generate
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specific sound. Reverse convolution, called deconvolution, is the opposite process of

convolution. It breaks down a signal into its different components. MFCC extrac-

tion is essentially a deconvolution process to extract signal components correlated to

human speech.

The first step in performing DSP operations such as deconvolution is to record a

signal and convert it to a digital format.

2.3.3 Analog to Digital Conversion

Analog to Digital Conversion (ADC) is the process of converting a recorded signal

to a digital format. All sounds in nature are found in their analog form. Sound

capturing devices, such as a microphone, first capture the analog form of a signal

[14], then an ADC converts it to a digital format. An analog signal is continuous

while the digital signal is discrete. In some cases such as live music, the analog signal

is sufficient for use, but other cases such as ML need the digital form. [14]. This need

is because only the discrete form of a signal can be represented in bits. Thus, the

first step in DSP is converting the signal from analog to digital.

Typically, a system uses a microphone and ADC to create the digital signal.

Sometimes, systems consider the microphone and ADC as different devices, but most

microphones include the ADC in them. As shown in Figure 3, when a sound reaches

a microphone, the physics of the microphone gather the sound in analog form. The

quality of the microphone determines the accuracy of the recorded analog signal.

Once recorded, the ADC samples the analog signal at some rate, quantizing each

sample into a binary number for digital representation [14]. Then, DSP uses the

binary representation for processes such as deconvolution.
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Figure 3: Analog To Digital Conversion

Microphone and ADC features such as filters, sample rate, and bit size affect the

quality of the digital signal. Higher quality systems are always better for feature

extraction algorithms such as MFCCs. However, higher quality systems are larger in

size and cost more money. Determining the proper microphone and ADC combination

is an optimization problem that changes for each situation. After generating the

digital signal, DSP uses the frequency domain to extract features such as MFCCs.

2.3.4 The Frequency and Time Domain

The frequency and time domain are essential for DSP. The time domain shows

the strength of a signal over time. The strength is referred to as the pressure of the

signal and is often measured in volts. The pressure of the signal fluctuates over time

according to the signal behavior. Figure 4 displays a signal recording displayed in the

time domain of someone saying the letter “s”.

Figure 4: Time Domain Representation Of A Signal [10]

While the time domain shows how a signal behaves as time passes, it does not
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convey the relevant frequencies found in the signal. It is here that the frequency

domain comes into play. When a signal is represented in the frequency domain, the

actual frequencies found in the signal are on the x-axis, and the power/magnitude,

often expressed in decibels (dB), of each frequency is on the y–axis [14].

To convert the digital signal from the time domain to the frequency domain, a

transformation is needed. The most common way to convert a signal to the frequency

domain is the through the Discrete Fourier Transform (DFT) [14]. After taking the

DFT of a signal, the graphical representation of the signal is called the spectrum

because it displays the spectrum of frequencies present in the signal [14]. Figures 5

and 6 show an audio recording of middle ”C” on the piano in the time domain and

frequency domain.

Figure 5: Middle C Time Domain Graph
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Figure 6: Middle C Frequency Domain Graph

In Figure 5, the ”C” note on the piano is struck at ∼ 1.75 s. The sound is loud

at first and then fades. In Figure 6, the spectrum shows this note is just above 250

Hz which makes sense because a perfect middle ”C” is 256 Hz [15].

There are many ways to transform a signal into the frequency domain such as the

FFT, DCT, and DFT. Therefore, creating the spectrum of a signal is often referred

to as a Fourier Transform.

After the spectrum is taken, the next step to represent a signal is by its spec-

trogram. The spectrogram is a graphical combination of the frequency and time

domain.
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2.3.5 Spectrogram

A spectrogram represents how the frequencies of a model change over time [16].

Figure 7 shows a spectrogram of drone acoustic emissions when no payload is carried.

In a spectrogram, time is the independent variable and frequency is the dependent.

Figure 7: Spectrogram Of Drone Acoustic Emissions [7]

A spectrogram uses small samples or frames from a signal. A frame is a small

duration of time in a signal where the frequencies are assumed constant. Each frame

undergoes a Fourier Transform, and the spectrogram is a graph which shows each

spectrogram over time. The frequencies in the spectrogram of each frame are color
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coded in the spectogram. In Figure 7 the loudest frequencies are bright yellow and

the softest are dark blue. The color scale allows the spectrogram to convey which

frequencies are most prevalent over time.

A spectrogram uses a linear scale for frequency [16]. It is a good model, and

relevant information can be extracted for DSP and ML practices. However, MFCCs

use a log-scale because humans perceive sound logarithmically, not linearly. So, the

spectrogram needs to be scaled logarithmically. The MFCC generation process uses

mel-scaling and the log-spectrum to achieve a perceptually relevant representation

[10][13].

2.3.6 Mel-Scaling and Mel-Spectrogram

Humans perceive changes in sound logarithmically. As a result, some changes in

frequency sound the same to humans. Therefore, a better representation of changes

in sounds humans can perceive is pitch. A change in pitch indicates a change in sound

that humans can detect. The unit for frequency is in Hz while the unit for pitch is

in mel (derived from the word melody) [16]. For perceptual relevance, a spectrum

needs to be converted from frequency (Hz) to pitch (mel). This conversion is called

mel-scaling [16]. Figure 8 shows the relationship between frequency and pitch.
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Figure 8: Frequency to Pitch Relationship [16]

In figure 8, frequency (Hz) is on the x-axis and pitch (mel) is on the y - axis. Th

relationship between Hz to Mel on the graph is logarithmic and follows the equation

[16]:

pitch in mels = 1127 loge(1 + Frequency/700) (1)

The conversion shows the logarithmic relationship between frequency and mels

and that humans do no perceive every change in frequency the same. Therefore, a

conversion to the mel-scale is needed to portray the signal in a perceptually relevant

way. The researchers in [13] used a mel-scale conversion to invent MFCCs.
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Their research shows that the mel-scale along with other logarithmic scaling al-

lows for digital representation of perceptually relevant sound. Their research invents

MFCCs to portray every phonetic sound in the alphabet. The initial step to generate

MFCCs is converting the frequencies to the mel-scale using mel filter banks.

Mel filter banks are a series of triangular filters used on the spectrum of the signal.

Each mel filter bank represents a range of frequencies that sound the same to humans.

Figure 9 shows the mel filter banks.

Figure 9: Mel Filter Banks [16]

This graph is a spectrum with frequency is on the x-axis and amplitude is on

the y-axis. The over lapping triangles are the mel filter banks, and each triangle

represents a unit in mels. The base of each mel filter bank spans the frequencies

which sound the same to humans. The filters at higher frequencies have a wider

base because because humans cannot perceive changes in higher frequencies as well

as they can for lower frequencies. These triangular filters put all frequencies which

are perceptually the same into the same mel unit. After applying these filters to a

signal, the x-axis becomes pitch, and a change in the x-axis represents a perceptual

change in sound.
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After mel-scaling, the next step in MFCC generation involves the concept of cep-

strums. A baseline understanding of human speech generation is needed to describe

cepstrums. Therefore, the next section discusses human speech generation.

2.3.7 Human Speech

In the most basic form, human speech is the convolution of a glottal pulse and

a vocal tract frequency response. The glottal pulse is the sound breathe and vocal

chords create, and the vocal tract shapes this sound to create perceptually relevant

sounds called phonemes. Phonemes are the distinct part of languages we hear such

as a vowel or consonant. In American English, the phonemes are made up of vowels,

diphthongs, semivowels, and consonants. Figure 10 shows the human vocal path

which creates the signals that carry phonemes.

Figure 10: Human Vocal Tract [16]

Part a of Figure 10 is a scan of the human vocal tract, and part b is a labeled

diagram of the tract. The glottis in part b creates the sound, then as the sound travels

up through the vocal tract, it is shaped by parts such as the tongue to make specific
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phonemes, and recognizable speech exits the upper and lower lip. The recognizable

speech is comprised of formant frequencies which are unique to every phoneme [16].

The formant frequencies, called formants, are the unique identifiers for every phoneme

which if collected can be used to identify the speech.

The extraction of these formants is not a simple process. MFCCs are a set of 40

coefficients which represent the formants of a sound, so speech is digitally recognized

by the value of the 40 MFCCs [13]. MFCC extraction is based on the mel-frequency

cepstrum [13][16]. The first step in creating the mel-frequency cepstrum is converting

the spectrum of a signal into a log-spectrum.

2.3.8 Log-Spectrum

Similar to the difference between frequency and pitch, the researchers in [17]

discovered that the amplitude of each frequency on a spectrum does not correlate

to the way humans perceive loudness. They found that scaling the amplitude on a

spectrum logarithmically makes it perceptually relevant. Therefore, a process similar

to mel-scaling converts the amplitude of a spectrum in a perceptually relevant way.

The log-spectrum is the result of this process. This idea may seem contradictory

since loudness is generally measured in decibels. However, the log-spectrum really is

an additional log scaling of amplitude. In the log-scale, a change in the intensity of a

frequency represents a change humans can detect.

Using the logarithm of a spectrum to convey perceptual relevance was first prac-

ticed in 1963 by Boger, Healy, and Tukey [17]. Their paper “The Quefrency Alanysis

of Time Series for Echoes” demonstrated a revolutionary method for observing the

presence of an echo in a signal [16]. Their research found that the logarithm of a

Fourier spectrum would show periodic behavior if an echo were present, and that

further analysis of the log-spectrum would provide thorough identification of the echo
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[16].

Because the log-spectrum displayed the echo in a periodic way, the identity of the

echo could be extracted by taking the Fourier Transform of the log-spectrum [16].

To explain, first think of a digital signal in the time domain. The signal is periodic

in nature, and by taking the Fourier Transform, the specific frequencies causing the

periodic behavior are separated and represented as the independent variable in the

spectrum. Since the log-spectrum is periodic, the Fourier Transform extracts the

periodic components of the log-spectrum. These periodic components are then used

to identify new attributes such as the echoes and harmonics of the signal [17]. The

researchers in [17] called this new model a cepstrum which is a spectrum of a log-

spectrum. Mel-frequency cepstrum coefficients uses the word “Cepstrum” because

the cepstrum of the signal provides the coefficients.

2.3.8.1 Cepstrum

The word “cepstrum” was derived from flipping the first four letters of “spectrum.”

The reason for this play on words is because a cepstrum is technically in the time

domain but serves the same purpose of a spectrum in frequency domain. The authors

of [17] explain this phenomenon as, “In general, we find ourselves operating on the

frequency side in ways customary on the time side and vice versa”.

To shape this new model where the time and frequency domains interchange,

Bogert et al. created many new terms by transposing letters in familiar forms such

as spectrum to cepstrum [16]. Figure 11 shows the terms developed in [17] such as

alanysis, liftering, quefrency, and rhamonic.
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Figure 11: Cepstrum Components [16]

In general, the cepstrum is a Fourier Transform of the log-spectrum. In [17], the

exact transform was the Inverse Discrete-Time Fourier Transform (IDFT). An inverse

Fourier transform is the process of transforming a signal from the frequency domain

to the time domain. The inverse transformation is the opposite operation of the

DFT or any Fourier Transform. Normally, the original time domain representation

of a signal would result from the IDFT, but in this case the IDFT is taken from

the log-spectrum rather than the spectrum, so the result is a cepstrum. In a cep-

strum, quefrency is the independent variable. High quefrencies correspond to rapidly

changing components (in frequency) of the signal, while low quefrencies correspond

to slowly varying components [16]. Bogart et al discovered that isolated peaks at

multiples of quefrency in the cepstrum correspond to echoes. Later in 1967, Michael

Noll discovered the cepstrum could be used for detecting pitch period and voicing

because speech includes the same type of repetitive time domain features as a signal

with an echo [16]. Figure 12 displays the log-spectrum and cepstrum of voiced speech.

The independent variable “Frequency [ms]” of the cepstrum is quefrency because it

is frequency measured in ms.
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Figure 12: Log-Spectrum And Cepstrum Of Voiced Speech [18]

The cepstrum separates the glottal pulse and vocal tract of human speech. The

glottal pulse is at the high quefrencies (> 10 ms), and the vocal tract components

are at the low quefrencies (< 10 ms). With the vocal tract separate from the glottal

pulse, information such as formants in the vocal tract is extractable. Many techniques

such as mel-frequency cepstrum coefficients use the quefrency values of the vocal tract

to represent all the phonemes in human speech, and these techniques make speech

recognition possible [16].
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2.3.9 Mel-Frequency Cesptrum Coefficient Generation

MFCCs are exactly what they seem. They are coefficients extracted from the

cepstrum of a signal. Except the cepstrum is derived from a mel-frequency log-

spectrum rather than a log-spectrum. In other words, the frequencies of a mel-

frequency log-spectrum are in the mel-scale to make them correspond with human

speech. By the spectrum being phonetically relevant in both the independent and

dependent variables, meaningful values can be extracted to determine the letters

present in a speech signal [16].

Following the process in Figure 2, first, a microphone records a signal and converts

it to the digital form. When collecting the signal, the microphone and ADC often

perform pre-emphasis measures to increase the quality of signal. One example of

pre-emphasis is improving the signal-to-noise ratio. Then, the signal is framed into

phoneme constant frames. The phonemes need to be constant in each frame because

each set of MFCCs correlate to only one phonetic sound. Then, the system takes the

Fourier Transform of each frame. Often, systems use the FFT because of its low-cost

computation and fast speed. Once in the frequency domain, the system converts each

frame to the mel-scale for perceptual relevant pitch evaluation. Then it converts the

spectrum to the log-spectrum for perceptually relevant loudness. At this stage, the

system has the mel-frequency log-spectrum. The last step performs the DCT of the

mel-frequency log-spectrum creating MFCCs.

The DCT performs nearly the same function as the IDFT. MFCCs use the DCT

over the IDFT for the following reasons. The DCT runs faster and requires less

computational resources. The results of the DCT are only real while the IDFT results

are both real and imaginary. And, the DCT causes dimensional reduction.

The cosine nature of the DCT allows different frequencies to be compared with

the signal for coefficient extraction. In other words, different cosine functions are used
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in the DCT, and each cosine corresponds to an MFCC. Typically, a system uses 40

different cosines, each corresponding to a specific MFCC. Of the 40, only the first 12-

13 are used for speech analysis. The reason the lower coefficients are used is because

these coefficients hold the vital information for speech recognition. In ML, different

ranges of MFCCs or even all 40 are used for practices beyond speech recognition.

For example, researchers in [7] use all 40 MFCCs to train a ML for drone payload

detection using acoustic emissions.

2.4 MFCC Example Problem

This section walks through an MFCC example problem. Lets say the Earth has

been overrun by evil robots, and we must find the chosen one who is destined to save

the planet. A prophetess has provided an audio recording on a flash drive of the name

of the chosen one, but the robots have destroyed all speakers on earth. So, we must

use digital speech recognition to discover the name of the chosen one, specifically

MFCCs. In addition to the flash drive, the computer provided has a ML algorithm

trained to print the letter on the screen that an array of 40 MFCCs correspond to.

Following the procedure in Figure 2, we divide the audio recording into phonetic

constant sounds. We assume a 40 ms frame is short enough to divide the audio into

phonetic constant sounds. Once framed, we take the FFT of each frame. With the

spectrum of each frame, we convert the frequency to the mel-scale and take the log

of the amplitude. The spectrum is now in a perceptually relevant scale. Then, we

take the DCT of each frame with all 40 cosines which correspond to each of the 40

MFCCs. We now have an array of MFCCs for each frame. We feed these arrays to

the provided ML and the letters are printed to the screen. We find that the letters

are ”NEO”. Therefore, the chosen one is Neo.
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2.5 Support Vector Machine

This research focuses on the Support Vector Machine for AI. Therefore, this section

describes what a Support Vector Machine is.

A Support Vector Machine (SVM) is a type of Machine learning algorithm which

uses hyperplanes to separate classes of data [19]. Figure 13 shows an SVM with a

linear hyperplane.

Figure 13: Basic Linear Support Vector Machine

In this figure, there is data from two different types of classes. The green circles

are data of one class (Class A), and the red triangles are data of another class (Class

B). The dotted line is the hyperplane. Each data point has a set of features which
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places it on one side of the line. In Figure 13, the features x and y place it on one

side of the hyperplane, and based on the side it falls on, the SVM knows what class

it belongs to. The rest of this section describes the process of creating an SVM.

Figure 14 shows the components an SVM uses to generate hyperplanes and learn the

difference between classes.

Figure 14: Detailed SVM Graph

The support vectors (SV) are the lines determined by the closest data points from

each class to the hyperplane (H). W is the normal vector to the hyperplane called the

weight. The distance from the support vectors to the hyperplane is -m and +m. The

total distance between the classes is the margin. The bias (b) is the distance from
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the hyperplane to the origin.

When creating an SVM, the user introduces training data to an SVM with its

class identity. In the case of Figure 14, the user introduces the green circles with the

identity Class A and introduces the red triangles with the identity Class B. Using the

features of each data point (x and y), the SVM plots the data in 2-D space. From here,

the SVM fits a linear hyperplane between the classes which maximizes the margin

between the classes. After finding the optimal hyperplane, the data points from each

class which are closest to the hyperplane create the support vectors. The support

vectors are used as the boundary between classes. The support vectors satisfy the

equations [19]:

w ∗ x + b = −1 : For Class A (2)

w ∗ x + b = 1 : For Class B (3)

In these equations, x is the set of classifiers used to plot the data point, w is the

weight, and b is the bias. In satisfying these equations, the SVM is now able to take

any new data point, plug the classifiers into x for the equation:

w ∗ x + b = output (4)

and know if the data is of Class A or B based on if the output is greater than or less

than 1.

2.5.1 The Kernel Trick

In many cases, a linear hyperplane is not sufficient for an SVM to fully classify

data. The kernel trick is a technique commonly used to solve this problem. Instead

28



of using a linear hyperplane, the kernel trick allows the SVM to use hyperplanes with

greater dimensions. Figure 15 shows a linear kernel SVM, and Figure 16 shows a 6th

degree polynomial kernal SVM

Figure 15: Linear Kernel SVM [19]
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Figure 16: Sixth Degree Polynomial Kernel SVM [19]

In the figures, the two different classes are the blue dots and the red triangles. The

linear hyperplane was not adequate to properly separate the two classes. Therefore,

the SVM needs the sixth degree polynomial hyperplane to separate the classes. The

use of the polynomial kernel is called the kernel trick. Hyperplanes with higher

dimensonality are needed because many classifiers do not follow linear behavior. SVM

kernels exist in every type of polynomial or dimensions. Although the kernel trick

fixes this problem, hyperplanes with greater dimensonality create a greater risk of

overfitting the data.
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2.5.2 Overfitting Data

Overfitting data occurs when the SVM uses details in the classifiers which it should

not. For example, if a researcher was using sound to classify data, it may be windy in

some recordings and not in others. Therefore, some classes would contain wind noise

while some did not. In using this audio data to train an SVM, the SVM may use the

difference in wind to draw hyperplanes and classify data, rather than the targeted

classifiers. In turn, the SVM may perform really well on the data used to train the

SVM, but poorly on data recorded at another time or in a different environment. The

best practice to avoid this is to increase the amount of training data used, and to

collect training data at different times and in different environments.

SVMs are commonly trained by MFCCs for audio AI use cases. Because there

are 40 MFCCs, using MFCCS to train an SVM results in a 40-dimensional space.

Therefore, the kernel trick is often necessary to build a proper SVM with MFCCs,

but the need for experiment validation is essential to avoid overfitting the data.

2.6 Related Work

Due to the diffusion of drones into modern day life, there is academic, military,

and corporate interest in drone detection [7][20]. This interest has led to many devel-

opments for drone detection using a variety of signature methods. This section shows

acoustic and non-acoustic detection. This section does not come close to covering the

full research field, but these examples show the current state of drone detection.

2.6.1 General Drone Detection

In [21], researchers were able to use image processing to detect the presence of

UAVs using Physically Based Rendering Toolkit (PBRT) and Faster R-CNN (con-

volution neural network). Their methodology achieved an 80.63% accuracy. Also,
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in [22], the authors were able to detect the presence of a drone using a computer

vision-based approach. In their approach a 2-dimensional scale and Generic Fourier

Descriptor features combined with thermal imaging were used to classify UAVs. They

achieved a drone detection accuracy of 85.3%.

In [23], researchers used Radio Frequency (RF) to detect and classify UAV’s. A

näıve Bayes approach using the Markov model was implemented, and their system

achieved an accuracy of 96.3%.

In [24], the authors were able to use RADAR for drone detection. Using Micro-

Doppler signatures, their system achieved a 92% accuracy.

Image processing, RF, and RADAR are just a few approaches for drone clas-

sification. When comparing these technologies with acoustics, drone acoustic signa-

tures propose a unique advantage. Acoustics offer advantages over other classification

methods in environments with low visibility and low altitudes [4]. The acoustic noise

produced by motors and blades of UAVs provide unique features which can clearly

distinguish drones from other elements present in an environment. In addition, many

applications such as LiDAR require direct line of site for drone detection while acous-

tics do not [7]. Furthermore, jamming and spoofing techniques for RADAR and RF,

do not work for acoustic emissions. The next section discusses the research field for

drone detection using acoustic signatures.

2.6.2 Acoustic Drone Detection

In [25], the authors designed a ML platform which uses Linear Predictive Cep-

stral Coefficients (LPCC) and MFCC techniques to detect and classify amateur drone

sounds in the presence of other environmental sounds. They achieved a 96.7% detec-

tion accuracy using MFCC only and found that MFCC outperformed LPCC.

In [26], the authors used a combination of time and frequency domain features
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to fingerprint drone sounds. Their experiments were able to detect the presence

of a drone in noisy environments which included a passing train, crowds, streets,

and traffic noise. Overall, their process reached 95% accuracy for identifying drone

acoustics.

In [27], using MFCCs, researchers were able to detect drone acoustics from 150

meters away in a quiet outdoor place. Additionally, they were able to detect drone

acoustics in noisy environments with background noises from airplanes, people chat-

ting, and cars passing. Their system achieved up to 86% accuracy.

In [28], authors were able to detect drone acoustics in environments with noisy air

conditioners, car horns, children playing, dogs barking, drilling, and motors idling.

Their system reported an 86.3% accuracy. They did not use MFCCs but used the

Plotted Image Machine Learning algorithm from FFT graphical representation.

In [29], researchers developed a drone detection and position estimation system

using a wireless acoustic sensor network with machine learning techniques. Their

model reached 95% drone detection and positioning accuracy using acoustics.

While a plethora of research exists for drone detection using acoustic signatures,

little research exists for payload identification using acoustics. The ability to identify

the payload carried by a drone has many applications. A zero-touch payload identi-

fication process would mitigate risk as the user could identify if the drone is carrying

something other than expected. For example, an acoustic payload detection system

would be advantageous for the military by having a system which realizes the weight

of the payload is incorrect, indicating the drone may have been captured or tampered

with.

At the time of this research, only two papers have been published for UAV payload

classification. Both papers use acoustic signatures to identify drone weights and are

discussed in the next two sections.
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2.6.3 Noise2Weight: On Detecting Payload Weight from Drone Acous-

tic Emissions

In spring of 2020, Ibrahim, Sciancalepore, and Pietro published a paper called

“Noise2Weight: On Detecting Payload Weight from Drones Acoustic Emissions” [7].

Their research used MFCC components to classify specific payloads carried by a

drone. Their system achieved a 98% accuracy for fingerprinting payloads from acous-

tic emissions.

Their research was the first published work for drone payload classification from

acoustic signatures. In their work, two scenarios were modeled. Scenario one was

based on a microphone deployed in a remote location such as a desert or agriculture

field. They assumed this scenario would make it unfeasible to deploy a wireless

camera to allow a remote administrator to immediately visualize a drone, so a system

which could detect drones acoustically would be useful. They assumed that this

environment would require a microphone deployed on a simple IoT device with limited

computational capacity, so scenario one focused on detecting if a drone carried a

payload or not.

In scenario two, the researchers simulated a scenario where the user would like to

identify if a specific well-known drone is carrying a specific payload. In particular,

they assumed a user is receiving a package via a drone-based delivery system and

wants to identify if the package matches what was ordered. The user would like

to identify the package without touching it, so the payload must be identified by

analyzing the sound emitted by the drone. The researchers assumed the drone hovers

in front of the house for a limited time in order to allow the acoustic signature to be

identified. In the experiment for this scenario, the researchers tested variable payload

weights from 0 to 500 grams in increments of 50 grams.

For both scenarios, the 3DR Solo drone was used to carry all payloads and emit all
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acoustic data. This drone was selected because it models a medium-sized commercial

drone similar to what is used for current drone-delivery system. To record the acoustic

emissions, the RodeVideoMicPro directional microphone was used. This is a high-

quality microphone, averaging $300 in cost. For signal analysis, a MacBook Pro

laptop was used. To control the drone and collect telemetry data, the Mission Planner

software tool was used. This tool allowed the researchers to gather information about

the rotational speed of the motors and the stability of the drone. The measurements

collected by the microphone were stored on the laptop on the Audacity audio software

tool.

All drone acoustic recordings were collected outside in an open environment. For

each experiment, the microphone was placed 7 meters away from the hovering drone

and each measurement lasted about 170 seconds. The researchers used matlab [30]

for all acoustic feature extraction and identification processes.

From scenario one, the researchers concluded the pitch of the sound emitted by

the drone was an adequate measure for determining whether the drone is carrying

a payload or not. In their experiment, they varied payload weight and the time

window each sample was gathered. The results showed that regardless of weight and

time window, the pitch of the acoustic emissions shows whether the drone is carrying

a payload or not. They found that increasing the payload weight led to an increase

in the mean value for pitch frequency. This observation was consistent with their

predictions that the higher the payload, the more thrust would be needed to carry

the payload, so the rotors and motors would need to rotate faster leading to a higher

average pitch frequency.

Furthermore, they observed that similar payloads weights overlapped in their pitch

measurements, so they concluded it would be difficult to detect specific weight by

solely looking at the pitch of sound. The researchers recommended repeating scenario
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one with a better quality high-sensitive microphone to mitigate this error. They also

observed that heavier payloads did not overlap in pitch measurements as much as

lighter weights.

By varying the time window, the researchers observed that larger window times

result in less error. The results showed that a heavier payload weight and longer time

window increased detection accuracy. For scenario one, they concluded that pitch is

sufficient to determine if a drone is carrying a payload especially if the payload is

heavy and the drone can be observed for long periods of time.

In scenario two, the MFCC coefficients of each acoustic sample were taken in

order to determine payload weight. The researchers used the process shown in Figure

2 to extract the MFCCs. 40 MFCC coefficients were created for each sample. The

payload weights and window size were varied. To show the effect of window size on

classification, two windows sizes were used: 0.25 s and 1 s. The results showed that

a longer time window led to more accurate results in the MFCC features.

The MFCC features were used to train 10 different Machine Learning classification

algorithms. Of the 10, the researchers determined the SVM algorithm performed the

best. Using the SVM, their process achieved a 98.4% classification accuracy.

2.6.4 Identification of Drone Payload Using Mel-Frequency Cepstral

Coefficients and LSTM Neural Networks

Traboulsi and Barbeau used MFCCs to train a neural network to identify drone

payload from acoustic emissions in [8]. A neural network is a trainable machine

learning structure that emulates neurons in the human brain. The network is trained

by data to detect features when similar events in the future occur. In this research,

MFCCs extracted from drone acoustics were implemented into a Long Short-Term

Memory (LSTM) recurrent neural network. Later, the network’s ability to identify
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payload weight was tested by flying the same drone with similar payload weights.

For all experiments, the Parrot Mambo mini copter was flown indoors with payload

weights from 0 to 28 grams attached. The researchers could attach a maximum weight

of 28 g to the drone and still maintain flight. For each weight, two 8 second data

collects were performed. The first data collect was conducted while the drone was

hovering at 1 meter, and the second was conducted while the drone flew around at

one meter.

Acoustic emissions were recorded using the microphone built into a late 2013

Model Macbook pro. Each sample was processed in matlab using a package with a

built in LSTM model. Throughout experimentation, white noise from the Gaussian

model was added to test different SNR ratios.

MFCCs were extracted from the 0 g, 20 g, and 28 g payload tests. These MFCCs

were used to train the LSTM neural network. Then the neural network was tested

with data gathered from experiments with 0 g, 10 g, 20 g, 24 g, and 28 g payload

weight. For each experiment, the SNR was varied from -10 dB to 35 dB. At 35 SNR

dB, the accuracy of the LSTM model converged on 87.5%.

The authors concluded that the payload weight of a drone can be identified by

acoustic signature. They recommended gathering MFCCs from different drone models

with differing payloads to train and test the LSTM neural network.

2.7 Contribution

At the time of this research, the researchers have not identified any other studies

which explore the ability of cell phone devices to classify drone payloads from acoustic

emissions. The ability to use cell phones for payload detection would be useful to

detect and classify UAVs in contested environments. This research provides evidence

for the ability to use cell phones to detect and classify drone payloads from acoustic
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emissions. Table 1 shows how this research contributes to the body of work in this

field.

Table 1: Research Field Comparison

Study Acoustics Outdoor Presence Positioning Payload Cell Phones

Anwar et al. (2019) [25] x x x

Bernardini et al. (2017) [26] x x x

Jeon et al. (2017) [27] x x

Kim (2018) [28] x x

Yue et al (2018) [29] x x x x

Ibrahim et al. (2020) [7] x x x

Traboulsi et al. (2021) [8] x x

Doster (2022) x x x x

2.8 Summary

The exponential diffusion of UAVs into every day life raises many security con-

cerns. To mitigate these concerns, drone detection systems are being developed.

Using RADAR, cameras, radio frequencies, and acoustics, researchers have been able

to detect the presence of a drone and detect its features using feature extraction al-

gorithms and machine learning processes. Specifically, the acoustic emissions from a

drone have been used to identify the location of a drone, features on the drone, and

the weight of the payload it is carrying. In these scenarios, high-quality microphones

are used to observe the acoustic emissions at close distances. Researchers recommend

using even higher equality microphones for better feature extraction. This research

seeks to determine if low-quality microphones commonly found on cell phones are

able to classify payload weight from acoustic emissions.
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III. HurtzHunter Design

3.1 Overview

This chapter presents the HurtzHunter prototype design developed in this re-

search. Section 3.2 gives a summary of the design and use process for HurtzHunter.

Section 3.3 presents the design goals of HurtzHunter. The cell phones HurtzHunter

uses to record data are discussed in Section 3.4. Section 3.5 discusses the high-

quality microphone used by HurtzHunter. Section 3.6 presents the Python scripts in

HurtzHunter. Finally, Section 3.7 gives a step-by-step process to use HurtzHunter.

3.2 System Summary

This research develops HurtzHunter, a prototype design to test UAV detection

capabilities. HurtzHunter is a UAV detection system which characterizes UAV pay-

loads. Specifically, it uses the acoustic emissions from UAVs to determine the payload

weight carried by the UAV. Past research demonstrates the ability to detect and clas-

sify payload weight using acoustic emission at short distances and with high-quality

microphones [7][8]. HurtzHunter expands the research field by conducting payload

classification at varied distances and with cell phone devices. It records acoustic

stimulus at 7 - 100 m from the source. The prototype uses the following recording

devices: three Samsung Galaxy S8s (GS8), one Samsung Galaxy S20 (GS20), one

Google Pixel 4 (GP4), one iPhone 11 Pro (iP11P), one RodeVideoMicPro (RVMP).

The researchers in [7] successfully used the RVMP to create a UAV payload prediction

system for close distances. This research implements the RVMP into the HurtzHunter

design to provide experiment validation and comparison with past research.

Figures 17 and 18 show the hardware setup for cell phones in HurtzHunter. In

Figure 17 the phones are in the recording phase. In this phase, they are placed on
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the stand as shown in the figure. In this configuration, the phones are not connected

to anything. Figure 18 shows a phone in the download phase. After recording, the

phones are individually taken off the stand and connected to the computer via USB

connection. The user manually saves the audio recordings on the computer in this

phase.

Figure 17: Phone Recording Setup
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Figure 18: Phone Downloading Setup

This research refers to the recording phase as phase one, and the download phase

as phase two for the cell phones:

1. Phase One: The cell phone recording phase. In this phase, the cell phones are

placed on the stand as Figure 17 shows. The cell phones record the acoustic

stimulus in this phase and are not connected to anything.

2. Phase Two: The cell phone download phase. In this phase, the user connects

each cell phone to the computer via USB connection and manually saves the

audio recordings to the computer. Figure 18 shows this configuration for one

cell phone.
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Unlike the cell phones, there is only one configuration for the RVMP. Figure 19

shows this configuration.

Figure 19: RodeVideoMicPro Hardware Setup

The RVMP cannot record and store audio without external audio software and

storage. So, the microphone connects to the laptop during recording, and the design

stores the audio directly onto the laptop using the Audacity [31] recording software.

To connect the microphone to the computer, the design implements an Analog to

Digital Converter (ADC). The specific ADC in this research is also an audio splitter

to separate in-bound and out-bound audio. HurtzHunter uses the TechRise USB

External Stereo Sound Adapter Splitter Converter as the ADC [32].

This research implements the HurtzHunter design using an HP Pavilion Business
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Laptop with a 10th Gen Intel Core i5 [33] shown in Figure 18. The laptop in Figure

19 is not the laptop used in this research. Figure 20 shows the full HurtzHunter

configuration.

Figure 20: HurtzHunter Full Diagram [11]

The first stage in the HurtzHunter full diagram is the recording stage. The

only device connected to the laptop during recording is the RVMP. After recording,

the prototype enters phase two where the system stores the audio recordings on the

computer. In phase two, the user manually connects each cell phone to the laptop

one-by-one and downloads the audio files to the computer. The Audacity software

stores the RVMP recordings in real time, so they do not need to be downloaded in

phase two. After recording, the user manually extracts the recordings from Audacity

to the computer’s file system. Once all the audio files from each device are in the

computer’s file system, phase 3 begins.
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In phase 3, HurtzHunter uses Python version 3.8.8 [34] scripts to build AIs for

each recording device from their audio recordings. The user manually runs the Python

scripts in JupyterNotebook [35].

In short, this research creates the HurtzHunter prototype as the platform to

demonstrate drone detection capability using sound. While a drone hovers in flight,

HurtzHunter collects the drone’s acoustic emissions for one minute. After recording,

the user manually stores the recorded audio to the computer’s file system. Once on

the file system, the system uses Python to extract MFCC audio features. Then it

uses the MFCCs to train an AI capable of recognizing certain payload weights from

sound. Last, the prototype tests the AI, printing the accuracy results to the console.

3.3 Model Design Goals

The design of HurtzHunter targets the following goals. HurtzHunter itself, would

not be the design deployed in a contested environment, but HurtzHunter demonstrates

the feasibility of an acoustic detection system using cell phone like devices.

• Low Cost: HurtzHunter uses recording devices commonly found in contested

environments. Instead of having to buy and deploy new recording devices with

processing capability, HurtzHunter shows the ability to use devices, specifically

cell phones, already found in most environments, to detect UAV payload. The

software in HurtzHunter is deployable on these type of devices at no cost.

• Portability: HurtzHunter demonstrates a portable acoustic drone detection sys-

tem. The Python scripts in HurtzHunter are installable on a large range of cell

phones and other computing devices. These devices are portable, and they are

deployable nearly anywhere for drone detection.

• Recording Device Diversity: By using four different cell phone devices, this
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research demonstrates the ability to accomplish acoustic detection on a range

of devices. In addition, many IoT devices use similar recording technology as

cell phones for recording. Demonstrating acoustic payload detection on these

cell phones not only provides robust evidence for acoustic detection using cell

phones, but on any IoT device with similar recording technology.

• Sensor Comparison: HurtzHunter demonstrates the detection accuracy for a

high-quality microphone (RVMP) and the cell phone. This research considers

the RVMP a high-quality microphone because of its specialized design and cost.

At about $300 USD, the RVMP is commonly used for high-quality audio fea-

tured on videos. It is industry standard for voice clarity [36]. Past research

successfully used the RVMP to detect drone payload weight [7]. By using the

RVMP and cell phone devices, the HurtzHunter design shows the difference in

acoustic prediction accuracy between using a high-quality microphone and cell

phone devices.

• Robust Prediction: The HurtzHunter design assesses the prediction accuracy

of 7 different devices. This diverse prediction accuracy provides robust results

to indicate the feasibility of acoustic UAV payload detection using cell phone

devices.

• ML Optimization: As Chapter 4 discusses, HurtzHunter optimizes the ML used

for payload detection allowing this research to recommend a specific design

configuration for acoustic drone payload detection.

• Wide Range Detection: Past research only demonstrated drone detection at 7

m away from the drone. HurtzHunter tests drone detection from 7 to 100 m

away from the drone.
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3.4 Phones

This section discusses the hardware and software configuration for the cell phones.

This design uses 5 Android and 1 Apple devices. The 6 phones use the same hardware

configuration in the HurtzHunter design, but the iPhone requires a slightly different

software configuration than the Androids.

3.4.1 Hardware

Cell phones use Micro Electrical-Mechanical System (MEMS) microphones. MEMS

are tiny microphones embedded into a computer chip [37]. These microphones are

small, inexpensive, and require very minimal power. Audio quality is not a priority

for cell phone provides, so the small, inexpensive, minimal power consumption nature

of the MEMS microphones make them ideal.

Typically, a cell phone has 2-3 MEMS microphones. Figures 21, 22, and 23 show

the three MEMS microphone positions on the iP11P.
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Figure 21: Bottom MEMS Microphone Location [38]
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Figure 22: Front MEMS Microphone Location [38]

Figure 23: Rear MEMS Microphone Location [38]

In this research the GS8 and GP4 have two MEMS microhpones. On these

phones, one MEMS microphone is at the front position as displayed in Figure 22,
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and the second MEMS microphon is at the bottom as displayed in Figure 21. The

iP11P and GS20 have three MEMS microphones. On these two cell phones there is

one MEMS microphone at each position shown in Figures 21, 22, and 23. For all cell

phones, the main microphone is the one at the bottom. Tables 2 and 3 show hardware

and software specifications for each cell phone in this research.

Table 2: Phone Specifications [39]

Phone Release Date OS System on Chip

Samsung Galaxy S 8 21-Apr-17 Android 9 Samsung Exynos 9 Octa 8895

Google Pixel 4 22-Oct-19 Android 11 Qualcomm Snapsdragon 855

Iphone 11 pro 13-Sep-19 iOS 14.5.1 Apple A13 Bionic APL1W85

Samsung Galaxy S20 6-Mar-20 Android 11 Qualcomm Snapsdragon 865

Table 3: Phone Specifications [39]

Number of Microphones

2

2

3

3

3.4.2 Software

Figure 24 shows the Android software process for HurtzHunter.

49



Figure 24: HurtzHunter Android Software Diagram

Each cell phone uses a recording application. The Androids use the SmartRecorder

by SmartMob [40], and the iPhone uses Voice Memos [41]. SmartRecorder is in the

GooglePlay store for download, and Voice Memos comes installed on every iPhone.

Both apps have a start and stop recording button the researcher uses to manually

start and stop the audio recordings. These apps store the recorded audio on the cell

phones. The Androids store the audio as a .wave file, and the iPhone stores the audio

as a .m4a files. These apps collect with a sampling rate of 44.1 kHz.

After moving the audio to the computer, the researcher manually runs each

Python script for data processing. Section 3.6 discusses each Python script in detail.

The computer uses jupyter notebook as the Integrated Development Environment

(IDE) to run each script.

The first Python Script is MFC Extract.py. This script divides every audio file

into frames and extracts MFCCs from each frame. The MFCCs are the audio features
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used to train and test the AI. After all MFCCs are extracted, the script stores them

in a .pkl file.

The next Python script is Train and Test Data.py. This script divides the

MFCCs into testing and training data. The system uses the training data to train

the AI and the testing data to evaluate the AI.

Next, the script AI Build.py creates and trains the AI. HurtzHunter uses an

SVM as the ML. Based on their results, the researchers in [7] concluded the SVM is

an appropriate model for acoustic payload detection. For this reason, this research

chooses to use the SVM.

The last script is the AI Test.py which uses the test data to evaluate the SVM

built by AI Build.py. This script prints the prediction results to the console.

The iPhone requires one more software step than the Androids. Figure 25 shows

this additional step.

Figure 25: HurtzHunter iPhone Special Case Software Diagram
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HurtzHunter requires iTunes [42] to download the audio files from the iPhone

to the computer. To download, the user opens iTunes and plugs the iPhone into

the computer via USB connection. iTunes syncs with the cell phone and the audio

files are placed onto the computer. Then, the researcher uses iTunes to convert the

audio files from .m4a to .wav. See Appendix A for directions on converting .m4a to

.wav in iTunes. After conversion, the audio files exist in the computer’s filing system

under the iTunes folder in the .wav format. The files must be in a .wav format to be

compatible with the Python scripts in HurtzHunter.

3.5 RodeVideoMicPro

Unlike the cellphones, the RVMP has one hardware configuration. This micro-

phone does not have any on-device software, so it needs to be connected to a computer

to gather recordings. However once recording is finished, the microphone does not

need to be connected to the computer for further data processing because the audio

files are stored on the computer during recording.

3.5.1 Hardware

Figure 26 shows the hardware configuration for the RVMP.

52



Figure 26: RodeVideoMicPro Hardware Configuration

The microphone connects to the TechRise USB External Stereo Sound Adapter

across a TRS 3.5 mm audio chord. The sound adapter plugs into the USB of the

computer. On the adapter, the sound control remains at full volume. The RVMP

collects the audio with a sampling rate of 48 kHz.

3.5.2 Software

Figure 27 displays the Software configuration for the RVMP. Once the audio files

are on the computer’s filing system as a .wav, the process is the same as the phone

process Section 3.4.2 discusses.
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Figure 27: RodeVideoMicPro Software Diagram

HurtzHunter uses the Audacity recording software to control the microphone.

The researcher manually creates audio files and presses start and stop recording for

each data collect on the Audacity GUI. See Appendix B for detailed instructions on

using Audacity. Audacity stores the audio collected by the RVMP on the computer.

After recording, the researcher extracts the audio files from Audacity to the computer

filing system as a .wav file. Once on the computer, the same Python scripts for the

cell phones use the .wav files for data processing. The researcher manually runs the

Python scripts inside Jupyter Notebook to build and test the drone detection AI.

3.6 HurtzHunter Python Scripts

This section discusses each Python script HurtzHunter uses for data processing.

HurtzHunter uses Jupyter Notebook to run each Python script, and the researcher
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manually controls the process.

3.6.1 MFCC Extract.py

MFCC Extract.py extracts the MFCCs of each audio file. These MFCCs are the

audio features HurtzHunter uses to train and test the AI. After training, this AI is able

to identify drone payload weight by the MFCCs extracted from drone acoustic emis-

sions. MFCC Extract.py Section 1 shows the Python libraries in MFCC Extract.py.

1: import wave
2: import pandas as pd
3: import librosa
4: import matplotlib.pyplot as plt
5: import librosa.display
6: import numpy as np

MFCC Extract.py Section 1 Python Libraries used in MFCC Extract.py

The command ”import” is the command in Python to add certain packages into

the project. The first Python library, wave, includes the methods needed to open the

.wav audio file into the Python script for data manipulation. pandas includes the

data frame objects needed to create data frames of the MFCCs. Data frames are a

Python object which holds information in the form of a table, similar to an excel sheet.

This script extracts the 40 MFCCs for each frame and stores them in a data frame.

librosa is the library which includes the audio processing methods essential for MFCC

extraction. matplotlib.pyplot includes the methods for graphing the audio data and

features. librosa.display includes the methods for graphing the audio spectrum. For

instance, the script uses this library to display the mel-spectrogram of the audio data.

The mel-spectrogram provides a visual representation of each audo file. The visual

representation allows the researcher to visually check if the audio properly loads into

the Python script. numpy is the package for creating arrays of the data and features.
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After including the proper libraries, MFCC Extract.py imports the audio wave

files on the computer into the project. MFCC Extract.py uses the commands in

MFCC Extract.py Section 2 shows to import these files.

1: Wave = wave.open(’/Users/Documents/GalaxyS8/07.wav’, ’rb’)
2: sampleFrequency = Wave.getframerate()
3: sampleWidth = Wave.getsamplewidth()
4: frameNumber = Wave.getnframes()

MFCC Extract.py Section 2 Importing Wave File To Python

The first command, Wave = wave.open(’/Users/Documents/GalaxyS8 /07.wav’,

’rb’) imports the audio file stored at the location /Users/Documents/GalaxyS8 /07.wav’.

The option ‘rb’ indicates the command to read the file into the object Wave. Wave

is the Python object which stores the Wave audio data. The next commands in Sec-

tion 2 use specific Wave object method to extract information from the Wave file.

Wave.getframerate() stores the sampling frequency in the variable sampleFrequency.

Wave.getsamplewidth() returns the number of bytes in each sample. Wave.getnframes()

returns the number of samples in the audio files.

MFCC Extract.py Section 3 displays the MFCC extraction settings. The script

stores each setting in a variable and uses the variables to set the frame length, mini-

mum frequency, maximum frequency, and number of MFCCs.

1: frame stride = .04
2: frame length = sample rate*frame stride
3: frame length = int(frame length)
4: win len = None
5: hop stride = frame stride/2
6: hop length = sample rate*hop stride
7: hop length = int(hop length)
8: n mfcc = 40
9: n mels = 40

MFCC Extract.py Section 3 MFCC Extraction Settings
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To extract MFCCs from each audio file, MFCC Extract.py divides the audio

file into 40 ms frames. HurtzHunter assumes 40 ms of recording equates to constant

sound. In other words, the frequencies across 40 ms should not change. So, the system

extracts MFCCs for each unit of constant sound. frame stride sets the frame length

to 40 ms. Then, the command frame length = sample rate*frame stride determines

the number of samples required to fill a 40 ms frame.

Hop stride refers to when the next audio frame begins. Hop stride is half of the

frame stride. Therefore, the command hop length = sample rate*hop stride deter-

mines the number of samples required to fill one hop. Each hop is 20 ms in time.

Using half of the frame length as the hop length is common practice for smoothing

audio results. In general, greater overlap between frames renders smoother Fourier

Transforms. However, greater overlap leads to more audio frames which requires more

computational resources. Using a 40 ms frame length and 20 ms hop stride results

in 2999 frames for each audio recording because each recording is 60 s long. So, this

script creates 2999 sets of MFCCs for each audio file. The calculation for 2999 frames

is:

number of frames =
recording time

hop length
− 1 =

60

.04
− 1 = 2999 (5)

The next variable, n mfcc determines the number of MFCCs to extract for each

frame. There are 40 MFCCs, so MFCC Extract.py collects all 40 MFCCs. The

final variable, n mels sets the number of filter banks needed for MFCC extraction.

As Chapter 2 discusses, mel filter banks place the spectrum in perceptually relevant

frequency ranges. The number of mel filter banks to use is determined by the number

of MFCCs. Since there are 40 MFCCs, this script uses 40 mel filter banks.

MFCC Extract.py Section 4 shows the portion of code which builds the mel-

spectrogram. As Chapter 2 discusses, a mel-spectrogram is a visual representation of
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the audio frequencies present in a signal across time. Mels is the unit on the y-axis,

and time is on the x-axis.

1: df final = pd.DataFrame()
2: audio path = ’/Users/Documents/GalaxyS8/07.wav’
3: audio data = librosa.load(audio path,sr =sample rate, duration = 60)
4: audio values array = np.asarray(audio data[0])
5: mel spectrogram = librosa.feature.melspectrogram(y=audio values array,

sr=sample rate, S=None, n fft=frame length, hop length=hop length,
win length=None, window=’hann’, center=False, pad mode=’reflect’,fmin
= 0, fmax = None, power=2.0, n mels = 128)

MFCC Extract.py Section 4 Mel-Spectrogram Code

The first command df final = pd.DataFrame() creates an empty data frame

where the final MFCCs are stored. The command audio path = ’/Users/Docu-

ments/GalaxyS8/07.wav’ saves the file path. The command librosa.load(audio path,

sr =sample rate, duration = 60) uses this path to extract all the audio samples into

a numpy array. The parameter duration = 60 loads only the first 60 seconds of au-

dio data from the file. As Chapter 4 discusses, only the first minute of recording

holds the important information. This array stores many characteristics of the audio

data. The zero index holds the actual audio bits. The command audio values array =

np.asarray(audio data[0]) stores just the audio bits in the variable audio values array.

Then, the command mel spectrogram = librosa.feature.melspectrogram(y=audio values

array, sr=sample rate, S=None, n fft =frame length, hop length =hop length, win length

=None, window =’hann’, center=False, pad mode =’reflect’,fmin = 0, fmax = None,

power=2.0, n mels = 128) creates a mel-spectrogram of the audio.

Lastly, MFCC Extract.py uses the mel-spectrogram to extract the MFCCs.

MFCC Extract.py Section 5 shows the commands to extract the MFCCs.
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1: phone mfccs = librosa.feature.mfcc(S= librosa.power to db(mel spectrogram),
n mfcc= n mfcc)

2: df2 = pd.DataFrame(’MFCC #1’: phone mfccs[0,:], ’MFCC #2’:
phone mfccs[1,:], ’MFCC #3’: phone mfccs[2,:], ’MFCC #4’: phone mfccs[3,:],
’MFCC #5’: phone mfccs[4,:], ’MFCC #6’: phone mfccs[5,:], ’MFCC #7’:
phone mfccs[6,:], ’MFCC #8’: phone mfccs[7,:], ’MFCC #9’: phone mfccs[8,:],
’MFCC #10’: phone mfccs[9,:], ’MFCC #11’: phone mfccs[10,:],
’MFCC #12’: phone mfccs[11,:],’MFCC #13’: phone mfccs[12,:], ’MFCC
#14’: phone mfccs[13,:], ’MFCC #14’: phone mfccs[13,:], ’MFCC
#15’: phone mfccs[14,:], ’MFCC #16’: phone mfccs[15,:], ’MFCC
#17’: phone mfccs[16,:], ’MFCC #18’: phone mfccs[17,:], ’MFCC
#19’: phone mfccs[18,:], ’MFCC #20’: phone mfccs[19,:], ’MFCC
#21’: phone mfccs[20,:], ’MFCC #22’: phone mfccs[21,:], ’MFCC
#23’: phone mfccs[22,:], ’MFCC #24’: phone mfccs[23,:], ’MFCC
#25’: phone mfccs[24,:], ’MFCC #26’: phone mfccs[25,:], ’MFCC
#27’: phone mfccs[26,:], ’MFCC #28’: phone mfccs[27,:], ’MFCC
#29’: phone mfccs[28,:], ’MFCC #30’: phone mfccs[29,:], ’MFCC
#31’: phone mfccs[30,:], ’MFCC #32’: phone mfccs[31,:], ’MFCC
#33’: phone mfccs[32,:], ’MFCC #34’: phone mfccs[33,:], ’MFCC
#35’: phone mfccs[34,:], ’MFCC #36’: phone mfccs[35,:], ’MFCC
#37’: phone mfccs[36,:], ’MFCC #38’: phone mfccs[37,:], ’MFCC #39’:
phone mfccs[38,:], ’MFCC #40’: phone mfccs[39,:])

3: df final = df2;
4: display(df2)
5: df final.to pickle(’07 GalaxyS81-1 df.pkl’)

MFCC Extract.py Section 5 MFCC Extraction

The command in line 1 creates the 40 MFCCs from the mel-spectrogram. The

reason the script uses the mel-spectrogram to extract MFCCs is because the mel-

spectrogram input does not zero pad. Zero-padding occurs when there is not enough

information inside a frame to fit certain requirements, so zeros are added to the

beginning and end of an audio sample to meet the requirements. This library does

not zero pad for the mel-spectrogram but does zero pad for other audio formats. So,

this script uses the mel-spectrogram to ensure zero-padding does not occur.

After creating MFCCs, the command in line 2 stores the 40 MFCCs in the data

frame df2. The librosa methods save the MFCCs with a zero index, while the data
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frame requires a one indexed sequence. So, the ‘MFCC #NUMBER’ is one higher

than the index location in phone mfccs[NUMBER,:]. Next, the next three lines of

code store the data frame containing the MFCCs to df final. Then, the script stores

the df final to a pickle file on the computer’s file system. The purpose of a pickle file

is to hold Python objects on the file system, so other scripts can load the object and

use it. MFCC Extract.py stores the MFCC data frame as a pickle file, so the other

Python scripts can import the data frame for their use.

3.6.2 Train and Test Data.py

Train and Test Data.py imports the MFCCs generated by MFCC Extract.py

and forms train and test arrays to build the AIs. HurtzHunter uses 80% of the data

to train the ML and 20% of the data to test the data. The reason for using these

portions to test and train the ML is to achieve 5-cross validation, which is a common

technique used to assess ML learning algorithms. The technique prevents accidentally

choosing really good or really bad testing and training data, and in so doing, provides

a robust assessment of the ML algorithm [43]. Figure 28 shows the k-cross validation

process.
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Figure 28: k-Cross Validation Diagram When K = 5 [44]

5-cross validation uses 5 different data configurations to train a ML algorithm

and averages all 5 performance results together. As Figure 28 shows, the data is

split into 5 folds. For each iteration, the validation data, also called the testing data,

is from a different fold than the previous iteration. After all k-iterations are used

to assess the ML, the performance metrics from each iteration are averaged. This

process ensures randomly good or bad data is not used to assess the performance of

an ML. By using all parts of the data for testing and training, the performance metric

is a robust measurement.

The value of k determines the number of folds and iterations. 5-cross means

80% of the data is used for training, and 20% for testing. HurtzHunter uses 5-cross

validation.

Train and Test Data.py Section 1 shows the Python libraries used in this script.
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1: import pandas as pd
2: import numpy as np
3: import pickle

Train and Test Data.py Section 1 Python Libraries Imported

The first library, pandas is the Python library needed to create and manipulate

data frames. numpy is the Python libary needed to use numpy arrays. The last

library, pickle, is the library needed to pickle the training and testing objects to a file

on the computer.

The next section of Train and Test Data.py loads the pickled MFCC data frames

into the Python project. Train and Test Data.py Section 2 shows this the portion of

this script which loads the pickled MFCC data frames created by MFCC Extract.py.

1: with open(’0100 GalaxyS81-1 df.pkl’, ’rb’) as f:
2: Gram0 df = pickle.load(f)

Train and Test Data.py Section 2 Load MFCC Pickled Files

The pickled MFCC data frame exists at the file location ‘0100 GalaxyS81-

1 df.pkl’. Line 1 of Section 2 opens this file location as f, and line 2 loads the MFCC

data frame from the pickle file into the object Gram0 df. Gram0 df holds the MFCC

data frame created in the script MFCC Extract.py.

Train and Test Data.py Section 3 separates the MFCCs into 5 data frames. The

script uses these 5 data frames as the 5 folds for 5-cross validation.
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1: MFCC = [’MFCC #’ + str(i) for i in range(1,41)]
2: section1 data 0100 = pd.DataFrame(columns=[*MFCC])
3: section2 data 0100 = pd.DataFrame(columns=[*MFCC])
4: section3 data 0100 = pd.DataFrame(columns=[*MFCC])
5: section4 data 0100 = pd.DataFrame(columns=[*MFCC])
6: section5 data 0100 = pd.DataFrame(columns=[*MFCC])
7: Gram0DataSize= Gram0 df.index.size
8: sectionDataSize = int((Gram0DataSize)/5)

Train and Test Data.py Section 3 Test and Train Data Frames

In Section 3, line 1 creates an array of MFCC labels for the columns of each

data frame. Lines 2-6 create the five data frames. Each data frame holds one fifth

of the total MFCCs. In line 7, the variable Gram0DataSize holds the total number

of MFCC arrays. In line 8, sectionDataSize holds the total number of MFCC arrays

divided by 5. The script uses sectionDataSize to put the right amount of MFCC

arrays in each data frame.

Train and Test Data.py Section 4 shows the for loop used to build each data

frame. While section 4 only shows two iterations of the for loop, there are 5 in total,

one for each fold.

1: index = 0
2: for i in range(0,Gram0DataSize): do
3: if (i < sectionDataSize): then
4: new df = pd.DataFrame(columns=[*MFCC], index = [index])
5: new df.loc[index, ’MFCC #1’:’MFCC #40’] = Gram0 df.iloc[i]
6: section1 data 0100 = pd.concat([section1 data 0100, new df])
7: index = index +1
8: else if ((i <= sectionDataSize) and (i <(sectionDataSize + sectionData-

Size))): then
9: new df = pd.DataFrame(columns=[*MFCC], index = [index])

10: new df.loc[index, ’MFCC #1’:’MFCC #40’] = Gram0 df.iloc[i]
11: section2 data 0100 = pd.concat([section2 data 0100, new df])
12: index = index +1
13: end if
14: end for

Train and Test Data.py Section 4 Test and Train Data Frames
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The variable sectionDataSize is the size each data frame fold is once all the data

is divided among the 5 data frame folds. The script uses if statements to decide which

section of the data goes in each fold. Inside each if statement, the script places an

array of MFCCs in a new data frame, and the new data frame is concatenated onto

the proper fold.

Train and Test Data.py Section 5 displays the commands used to create each

iteration of the 5-cross validation.

1: train1 data 0100 = pd.DataFrame(columns=[*MFCC])
2: train1 data 0100 = pd.concat([train1 data 0100, section2 data 0100, sec-

tion3 data 0100, section4 data 0100, section5 data 0100])
3: test1 data 0100 = pd.DataFrame(columns=[*MFCC])
4: test1 data 0100 = pd.concat([test1 data 0100, section1 data 0100])
5: train2 data 0100 = pd.DataFrame(columns=[*MFCC])
6: train2 data 0100 = pd.concat([train2 data 0100, section1 data 0100, sec-

tion3 data 0100, section4 data 0100, section5 data 0100])
7: test2 data 0100 = pd.DataFrame(columns=[*MFCC])
8: test2 data 0100 = pd.concat([test2 data 0100, section2 data 0100])

Train and Test Data.py Section 5 Test and Train Data For Cross Validation

Iterations

In Section 5, lines 1 and 2 create the train data for iteration one of the 5-cross

validation. Lines 3 and 4 create the test data for iteration one. This process repeats

in lines 4-8, but for iteration two. The folds of data used for training and testing in

each iteration follow Figure 28 where iteration one is the first row in the figure, and

iteration two is the second row. Section 5 shows the code for creating the first two

iterations. This process repeats for iterations three, four, and five.

Train and Test Data.py Section 6 shows the code for storing all the testing and

training data in a pickle file.
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1: train1 data 0100.to pickle(’GalaxyS81-1 0g 100m train1 data’)
2: test1 data 0100.to pickle(’GalaxyS81-1 0g 100m test1 data’)
3: train2 data 0100.to pickle(’GalaxyS81-1 0g 100m train2 data’)
4: test2 data 0100.to pickle(’GalaxyS81-1 0g 100m test2 data’)

Train and Test Data.py Section 6 Train and Test Pickle Files

Section 6 shows the commands for pickling the first two iterations of data. This

process repeats for each iteration. Lines 1 and 2 pickle the test and train data

for iteration one, and lines 3 and 4 pickle the data for iteration two. The script

AI Build.py uses these pickle files to build the AIs.

The process in Train and Test Data.py Sections 2-6 repeats for each audio record-

ing.

3.6.3 AI Build.py

The Python script AI Build.py creates the AI capable of UAV payload detection.

The AI is a Support Vector Machine (SVM). The reason HurtzHunter uses the SVM

is because past researchers concluded that the SVM is an appropriate ML for acoustic

payload detection [7]. AI Build.py Section 1 shows the libraries needed to create the

SVM.

1: from sklearn import svm
2: import numpy as np
3: import pandas as pd

AI Build.py Section 1 Libraries Used To Build AI

The first library, sklearn, includes the packages needed to build an SVM object

[45]. numpy includes the methods for using numpy arrays. pandas includes the

methods for using data frames.

AI Build.py Section 2 shows the commands for importing the testing and train-

ing data created by Train and Test Data.py.
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1: with open(’GalaxyS81-1 0g 7m train1 data’, ’rb’) as g:
2: Gram0 7m df train1 = pickle.load(g)

AI Build.py Section 2 Import Test and Train Pickle Files

Line 1 opens the file at GalaxyS81-1 0g 7m train1 data as the variable g with

read permissions. Line 2 loads the object in the file to the variable Gram0 7m df train1.

This process repeats for all training data.

AI Build.py Section 3 creates the class identity which correspond to each array

of MFCCs. To train the SVM, HurtzHunter submits an array of MFCCs with the

corresponding payload weight. The payload weight is the class identity. Section 3

shows the code for creating the array of corresponding payload weights for 0 grams.

1: y0 = np.array([])
2: for i in range(0,size):
3: y0= np.append(y0,[0])

AI Build.py Section 3 Create Training Values For Zero Gram

Line 1 creates an empty array which holds the 0 gram values. Lines 2 and 3

create an array of zeros to correspond with each set of 0 gram MFCCs. This process

repeats for each payload weight recorded by the microphones.

After importing all the MFCC data and creating the arrays of weight values

in Section 3, AI Build.py concatenates all training data into train1X and train1y in

Section 4. train1x holds the MFCC values and train1y holds the corresponding weight

values in grams. Then, AI Build.py builds the SVMs. AI Build.py Section 4 shows

the commands for building the SVM.

1: lsvm1 = svm.SVC(kernel = ’linear’)
2: lsvm1.fit(train1X,train1y)

AI Build.py Section 4 Support Vector Machine Creation
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Line 1 creates an untrained SVM with a linear kernel called lsvm1. Line 2 trains

this SVM with the training data for iteration one. This process repeats for each

iteration of 5-cross validation. After training, the script pickles the SVM to a file

on the computer. The script AI Test.py uses the AI in this file to evaluate the AI’s

performance.

3.6.4 AI Test.py

AI Test.py evaluates the performance of the SVM created by AI Build.py. This

script prints the prediction accuracy from 5-cross validation to the console. AI Test.py

uses the same Python libraries as shown in AI Build.py Section 1 to test the SVM.

AI Test.py loads the pickled testing data files from Train and Test Data.py with the

same commands AI Build.py Section 2 uses. This script also loads the SVMs created

by AI Build.py using the same commands AI Build.py Section 2 uses to load pickle

files.

AI Test.py uses for loops to iterate through all testing data. AI Test.py Section

1 shows the testing process.

1: for i in range(0,Gram0 7m df test1.index.size): do
2: test1 = np.array(test1 data0 7m array[i])
3: result = lsvm1.predict([test1])
4: if result == 0: then
5: correct = correct +1
6: else
7: incorrect = incorrect +1
8: df1 = pd.DataFrame([[0, result]], columns = ([’0g actual’, ’0g pred’]),
9: index = [i])

10: incorrect df = incorrect df.append(df1, ignore index = True)
11: end if
12: end for

AI Test.py Section 1 Testing Loop
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In Section 1, the for loop iterates through all testing samples in the data frame

Gram0 7m df. In each iteration, the script gives an array of MFCCs to the AI which

makes a weight prediction in grams, and the script stores the weight prediction in

result. The loop then compares the prediction to the correct payload value. If the

prediction is correct, the variable correct is incremented. If not, lines 7-10 increment

the variable incorrect and store the incorrect prediction in the data frame incorrect df.

The loop iterates until the script uses all testing data. Then, the script uses the

variables incorrect and correct to calculate prediction accuracy.

AI Test.py Section 2 shows the code for calculating the prediction accuracy.

1: accuracy 07 test1 = (correct/(correct+incorrect))
2: print(’0g 7m k-cross test1 accuracy: ’, accuracy 07 test1)

AI Test.py Section 2 Prediction Accuracy

The command in line 1 divides the number of correct predictions by the total

number of predictions. The command in line 2 prints the accuracy to the console.

AI Test.py repeats this process for all testing data.

Because HurtzHunter uses a 40 ms frame length and a 20 ms hope stride, the

number of MFCC arrays for each 60 s audio recording is 2999. Using 5-cross validation

for 2999 samples results in 599 full MFCC arrays for testing. This calculation is:

2999

5
= 599.8 (6)

The HurtzHunter design requires full sets of data, so 599.8 is floored to 599.

Therefore, the accuracy of each iteration is:

# of correct predictions

599
= AI Accuracy (7)
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After assessing all testing data, AI Test.py averages all iterations to achieve

5-cross validation. AI Test.py Section 3 shows the code for 5-cross validation.

1: totalAccuracy 07 = (accuracy 07 test1 + accuracy 07 test2 + accuracy 07 test3
+ accuracy 07 test4+ accuracy 07 test5)/5

2: print(’0g 7m total accuracy:’, totalAccuracy 07)

AI Test.py Section 3 5-Cross Validation Results

Line 1 averages all iterations from cross validation and line 2 prints the results to

the console. The commands in AI Test.py Section 1-3 repeats for all test data. Once

this script is complete, the researcher manually records the accuracy results from the

console for presentation.

3.7 HurtzHunter Execution Process

This section describes the process to use HurtzHunter.

1. Manually set up all devices for recording.

2. Open Voice Memos on the iPhone and SmartRecorder on the androids.

3. Connect the RVMP to the laptop. Connect the 3.5 mm TRS cable to the RVMP

and to the audio splitter. Then, connect the audio splitter to the laptop.

4. Open Audacity on the laptop. See Appendix B for Audacity use instructions.

5. Attach the proper payload weight to the drone. Instruct the pilot to fly the

drone to the proper distance and height.

6. Manually begin recording by pressing record on all recording software: Voice

Memos, SmartRecorder, and Audacity.
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7. Wait desired recording time. This research uses HurtzHunter for 60 s of record-

ing.

8. Manually stop recording. Press end recording on all recording software.

9. Stop the flight. Instruct the pilot to end the flight.

10. Repeat steps 5-9 until are recordings are captured.

11. Save the Audacity project

12. At this point, recording is no longer needed, so the set up may be taken down.

13. Download all recordings to the computer,

14. Extract recordings from Audacity (see Appedix B) to the computer’s file system.

15. Use iTunes to convert the .m4a files from the iPhone to .wav files. See Appendix

A for instructions.

16. Manually run all Python scripts.

17. Record the results printed to the console.

3.8 Design Summary

This chapter discusses the HurtzHunter prototype this research develops. Sec-

tion 3.2 provides a summary of the HurtzHunter design and its components. Section

3.3 describes the design goals of HurtzHunter. Section 3.4 discusses the hardware and

software components of the cell phones in the design. Section 3.5 discusses the hard-

ware and software components of the high-quality microphone used in this design.

Section 3.6 discusses the Python scripts HurtzHunter uses to process the collected

audio data. Finally, Section 3.7 provides the steps to use the prototype design.
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IV. Methodology

4.1 Overview and Objectives

This research extends the field of study by focusing on the following questions:

• Can cell phones detect UAV payload weight with sound?

• What is the maximum range of acoustic UAV payload detection?

• Does the cell phone model affect detection accuracy?

• Does a high-quality microphone perform better than a cell phone for acoustic

payload detection?

• Does the manufacturing process for a specific recording device affect detection

accuracy?

Section 4.2 explains the System Under Test (SUT). Sections 4.3, 4.4, 4.5, 4.6

discuss the factors, metrics, constant parameters and uncontrollable variables of the

system. Section 4.7 shows the experiment design. Section 4.8 discusses the case

studies in this research. Section 4.9 discusses the timer used for tracking runtime in

the experiment. Section 4.10 discusses the wind noise measuring technique. Section

4.11 discusses the statistical analysis.

4.2 System Under Test

The HurtzHunter Prototype which Chapter 3 describes is the System Under Test

(SUT) designed to answer the questions listed in Section 4.1. This system explores

acoustic payload detection capabilities. Section 3.7 describes the execution process

for using the HurtzHunter system. Figure 29 shows the SUT.
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Figure 29: System Under Test

4.3 Factors

The factors in this experiment are microphone device, payload weight, and

ground distance:

• Microphone Device: The device which collects the acoustic emissions from the

drone. HurtzHunter uses the following recording device: one Samsung Galaxy

S20 (GS20), three Samsung Galaxy S8s (GS8), one Google Pixel 4 (GP4), one

iPhone 11 Pro (iP11P), and one RodeVideoMicPro (RVMP).

• Payload Weight: The drone payload weight varies across experiments. The

different weights are 0 g, 56 g, 112 g, 168 g, 224 g, 280 g.

• Ground Distance: The ground distance between the drone and the microphones

varies throughout experimentation. The ground distances are 7 m, 10 m, 20 m,

30 m, 40 m, 50 m, 75 m, 100 m.

Past research in [7] used payload weights in 50 g increments. This research fol-

lows this methodology to provide experiment validation. The reason the weights are
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in 56 g increments rather than 50 g is because the sponsor of this research only sup-

plied weights in 1 oz increments. So, the closest weight to 50 g using 1 oz increments

is 56 g. To provide context for these types of payload weights, Table 4 shows real-life

comparable payloads which could be carried by the DJI Mavic Air 2 [46]. This re-

search uses the Mavic Air 2 for all experiments. The DoD is particular interested in

payload detection for the Mavic Air 2 because DJI is a Chinese drone company [47].

Table 4: Real Life Payload Weights

Device Weight Blast Radius

v40 Grenade [48] 136 g 5 m

Stick of Dynamite [49] 190 g 4.3 m

Go Pro Camera [50] 117 g N/A

This drone is capable of carrying all the weights listed in Table 4. The maxi-

mum payload weight for this UAV is 300 g [46]. These examples show how weight

identification provides important information to aid in detecting hazardous drones.

4.4 Metrics

Table 5 shows the metrics in the SUT. This research uses these metrics to infer

the success of the system. The last Python script in HurtzHunter, AI Test.py, creates

these metrics.

• Payload Weight Prediction: This metric represents the payload weight the AI

believes the drone is carrying based on the MFCC features fed to the algorithm.

The AI predicts one of the six payloads flown by the drown in the experiment:

0 g, 56 g, 168 g, 224 g, 280 g.
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• ML Prediction Accuracy: This metric conveys the accuracy of the system. For

each trial, the total number of predictions divides the total number of correct

predictions to produce the accuracy of the ML. Equation 8 shows this calcula-

tion.

Total Correct Predictions

Total Predictions
∗ 100 = Percent Accuracy (8)

Table 5: Metrics

Metric Unit Expected Range

Payload Weight Prediction gram (g) 0 g, 56 g, 112 g, 168 g, 224 g, 280 g

ML Prediction Accuracy percent 0-100%

4.5 Constant Parameters

The following parameters remain constant during experimentation. These pa-

rameters are constant to support the reliability of the results. This practice prevents

an impact on results from the environment or other factors not listed in the SUT.

Table 6 shows the constant parameters.

Table 6: Constant Parameters

Parameters Proposed Values Controlled By

UAV Model DJI Mavic Air 2 Experiment Design

Hovering Height 2-3 m Experiment Design

Flight Duration 60 s Experiment Design

Drone Pilot AFRL/RYAR Pilot Experiment Design

Flight Location Avon Park, FL Experiment Design
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• UAV Model: The DJI Mavic Air 2. DJI is a Chinese company, and the Depart-

ment of Defense is particularly interested in counter drone research focused on

Chinese drones. The maximum payload weight for the DJI Mavic Air 2 is 300

g.

• Hovering Height: The experiments record acoustics while the drone hovers at

2-3 m Above Ground Level (AGL).

• Flight Duration: Each experiment records in-flight acoustics for 60 seconds.

• Drone Pilot: AFRL/RYAR has pilots certified to fly Chinese drones for DoD

research. This lab supplied a pilot to fly all experiments.

• Flight Location. AFRL/RYAR is certified to fly the Mavic Air 2 at the Air Force

Bombing range in Avon Park, FL. All tests are conducted at the bombing range.

4.6 Uncontrollable Variables

Wind and time of day are the uncontrollable variables in this experiment. These

variables likely affect the results of this research, and future work is needed to fully

understand the impact of wind and time of day on acoustic payload detection.

Due to the nature of this research, there is only one repetition of the experi-

ment. There was not enough flight time in Avon Park, FL to complete more than on

repetition. Additionally, battery power limits the experiment. There was not enough

battery power to accomplish all data collects at the same time of day. Weather such

as wind varied through out the day. So, some audio recording have much greater

wind noise than others. The presence or absence of wind noise does affect the AIs

prediction accuracy. Chapter 5 discuses this impact. In short, wind and time of day

are two uncontrollable factors which have a negative impact on the experiment, and
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because only one repetition of the experiment could be accomplished, little can be

done to mitigate the effect of these uncontrollable variables.

4.7 Experiment Design

This section describes the experiments in this research. The experiments seek

to answer the research questions listed in Section 4.1:

• Can cell phones detect UAV payload weight with sound?

• What is the maximum range of acoustic UAV payload detection?

• Does the cell phone model affect detection accuracy?

• Does a high-quality microphone perform better than a cell phone for acoustic

payload detection?

• Does the manufacturing process for a specific recording device affect detection

accuracy?

This experiments use the HurtzHunter design Chapter 3 discuses to answer these

questions. Figure 30 shows the experiment diagram.
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1. The microphones are 1 m above the ground, horizontally oriented, pointing to-

wards where the drone flies. Figure 31 and 32 show this setup. This research

assumes the bottom microphone on each cell phone is the optimal MEMS mi-

crophone for recording, so this microphone points towards the acoustic source.

Figure 31: Microphone Setup
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Figure 32: Tape Used To Set 1 m Height

2. The laptop running Audacity is on the table behind the microphones. The

RVMP connects to the laptop. Figure 33 shows this step.

Figure 33: RVMP Setup
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3. The UAV has the payload attached. Figure 34 shows this configuration. Figure

35 shows the payload.

Figure 34: Drone Mounted With Payload Basket

Figure 35: Payload Weights

4. The pilot flies the drone to 7 m. The drone hovers at 2-3 m for 60 seconds of

audio recording. The researcher manually starts and stops recording. Figure
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36 and 37 show this step.

Figure 36: Drone In Flight
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Figure 37: Microphones and Flight-line

5. The pilot conducts fights at 10 m , 20 m, 30 m, 40 m, 50 m, 75 m, and 100 m

for all 6 payloads. Once all audio data is gathered, the researcher follows the

final HurtzHunter steps for audio processing Section 3.7 describes.

4.7.1 Experiment Limitations

The experiment limitations are time on the flight-line, and battery power. All

flights could not be conducted one after another because the batteries for the Mavic

Air 2 would die after ∼12 minutes of flight time. The batteries require 2 hours to

charge, and only one charger was available. Therefore, flights took place at all times

of the day over the course of three days. Only three days were allocated to run the

tests in Avon Park, FL. So, once all experiments were done. There was no time for
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replication.

4.8 Case Studies

Four case studies use the data from this experiment to test the HurtzHunter

design. Each case study targets specific aspects of the research hypothesis from

Section 1.4 which is: This research hypothesizes that cell phones are able to determine

the weight of a payload carried by a UAV from acoustic emissions at up to 100 m

away ground distance from the UAV.

4.8.1 Case Study 1

Case study 1 focuses on repeating experiments in past research with the addition

of a cell phone recording device. In past research, acoustic emissions were collected

using a RVMP at 7 m ground distance from the drone. Case Study 1 uses the acoustic

emissions collected by the RVMP and GS8 at only 7 m away. The HurtzHunter design

trains a linear, quadratic, and cubic SVM with this data, and the design tests the AI

prediction accuracy. This study uses the 5-cross validation process to train and test

the AI. The results of this study provide experiment validation as well as prediction

accuracy comparison between the RVMP and GS8.

4.8.2 Case Study 2

Case study 2 expands case study 1 by using the acoustic data from all ranges,

7-100 m. This study expands the research field by using the HurtzHunter design

to create a linear, quadratic, and cubic SVM capable of detecting payload at up to

100 m away. This study uses the GS8 and RVMP as the recording devices and uses

the HurtzHunter Python scripts to train and test the AIs through 5-cross validation.

This study provides insight into the maximum range for acoustic payload detection,
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and the difference in prediction accuracy for the GS8 and RVMP.

4.8.3 Case Study 3

Case study 3 expands case study 2 by using all the cell phones for acoustic

payload detection. This study uses the HurtzHunter design to build a cubic SVM for

the GP4, iP11P, and GS20 using data from all ranges (7-100 m). This study creates

results using 5-cross validation and compares the prediction quality of the RVMP,

GS8, GP4, iP11P, and GS20. The results provide evidence to show the effect of cell

phone model on detection accuracy.

4.8.4 Case Study 4

This cause study uses the 3 GS8s to assess the effect of manufacturing on pre-

diction accuracy. Acoustic data from two GS8s trains a cubic SVM, and data from

the third GS8 tests the cubic SVM. The results indicate if data from every recording

device is needed to properly train an AI, or if as long as the same model is used, the

accuracy remains the same.

4.9 Runtime

The experiments track the time it takes to build the AIs in each case study.

The experiment uses the Python library time [51] to track the runtimes. This model

uses an epoch for time reference to determine all runtimes. This research is done

on a Windows computer and the epoch for this library on a Windows computer is

midnight January 1, 1601 [52][53]. The following algorithms displays the commands

for capturing runtimes using the time library:
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1: start time1 = time.time()
2: ”Do some code”
3: endtime1 = time.time() - start time1
4: print(’time 1:’, endtime1)

Time Library Capturing Commands

Line 1 captures the current time relative to the epoch with the command time.time()

and stores it in the variable start time1. Then, line 2 represents some code execution

which needs to be timed. Then, line 3 shows the command to store the runtime by

subtracting the current time relative to the epoch from the starting time. The stop

time is recorded in endtime1. Then, line 4 prints the runtime to the console. The

precision of the epoch based timer on a Microsoft Windows machine is 100 ns [53].

4.10 Wind Noise

The experiments use the iOS National Institute of Occupational Safety and

Health (NIOSH) Sound Meter app to measure ambient noise [54]. The Center for

Disease Control (CDC) developed this app to measure ambient noise in dB [55].

Right before each flight, the researcher uses this app on the iP11P to measure the

ambient noise in dB. Chapter 5 discusses the impact of wind noise on the system. In

each run, the largest contributor to ambient noise is wind. When wind is not present,

the NIOSH meter reads very low ambient noise.

4.11 Statistical Analysis

This research uses the prediction accuracy of the AI for statistical analysis.

Equation 8 in Section 4.4 shows the prediction accuracy calculation. The accuracy

shows how well a recording configuration performs, and this research uses the accuracy

to determine the best drone detection configuration. Due to the limitations of this
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research, further statistical analysis is not achievable. There was only enough time

on the flight line to run one repetition of the experiment this chapter describes. With

only one repetition, there is zero degrees of freedom for statistical analysis. Statistical

analysis, such as a difference in means test, needs at least one degree of freedom for

proper analysis. Thus, conducting such a test with zero degrees of freedom would

be misleading. Chapter 5 discusses the statistical analysis techniques which would

be used, should there be more degrees of freedom. Specifically, a difference in means

t-test would be used to show statistical differences in prediction performance between

different recording devices and ranges. However, given the limitations of this research,

future work needs to accomplish such tests.

4.12 Summary

This chapter describes the SUT and experiment design. Section 4.2 describes the

SUT. Section 4.3 discusses the factors. Section 4.4 conveys the metrics. Section 4.5

discusses the constant parameters. Section 4.6 describes the uncontrollable variables.

Section 4.7 conveys the experiment design. Section 4.8 explains the case studies.

Section 4.9 discusses the timer used for tracking runtime in the experiment. Section

4.10 discusses the sound meter app used for measuring wind noise. Section 4.11

discusses the statistical analysis.
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V. Results and Analysis

5.1 Overview

This chapter discusses the results from the experiments Chapter 4 discuses. Sec-

tion 5.2 reviews the findings from case study 1. Section 5.3 reviews the results from

case study 2. Section 5.4 reviews the results from case study 3. Finally, Section 5.5

reviews the results from case study 4. Each case study uses the same data from the

experiments Chapter 4 describes. The studies differ in the way they use the data

to train and test the Support Vector Machines (SVMs). Previous research, [7] suc-

cessfully used acoustic emissions to classify UAV payload weight. These researchers

achieved 98.5 - 98.9 % accuracy at 7 meters from the acoustic source using SVMs.

The recording device used in this research is the RodeVideoMicPro (RVMP). Case

study 1 repeats this experiment in [7] as well as expanding the field of study by using

the Galaxy S8 (GS8) for an additional recording device. Case study 2 builds upon

case study 1 by expanding the recording range from 7 m to 100 m. Case study 3

further expands the research by evaluating prediction accuracy among 4 different cell

phone devices and the RVMP at 7 m to 100 m range. Finally, case study 4 evaluates

the effect of manufacturing on the prediction accuracy by using three GS8s to train

and test a cubic SVM (CSVM). These case studies answer the questions in Section

4.1 which are as follows.

• Can cell phones detect UAV payload weight with sound?

• What is the maximum range of acoustic UAV payload detection?

• Does the cell phone model affect detection accuracy?

• Does a high-quality microphone perform better than a cell phone for acoustic

payload detection?
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• Does the manufacturing process for a specific recording device affect detection

accuracy?

Each study targets specific questions, and the result aggregate provides evidence

to support the Hypothesis of this research.

5.2 Case Study 1

The purpose of this case study is to provide experiment validation by repeating

experiments in past research [7], and expand the research field by using a cell phone

as the recording device. The experiments in [7], used the RVMP as the recording

device and collected acoustic emissions from a hovering drone at 7 m ground distance

from the drone. This study repeats the experiment with the RVMP and GS8.

This case study compares the results from the RVMP, GS8, and past research.

This scenario assumes the oldest model cell phone performs the worst of the ones

listed in Chapter 4. The oldest model is the GS8. By comparing the cell phone

expected to perform the worst (the GS8) to the RVMP, this case study seeks to set

a base performance comparison between a cell phone device and the RVMP.

This case study provides evidence to answer the following questions: ”Does

a high-quality microphone perform better than a cell phone for acoustic payload

detection?” and, ”Can cell phones detect UAV payload weight with sound?”.

This case study uses three SVMs, one with a linear, a quadratic, and a cubic

kernel. The reason this study uses these SVM kernels is because the experiments in

[7] used these SVM kernels. By using the same SVM configurations, this case study

is able to compare its results with past research. In [7], the researchers achieved

prediction accuracy ranging from 98.5 - 98.9 % with their configurations.
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5.2.1 RodeVideoMicPro

Table 7 shows the prediction results from a linear SVM (LSVM) trained and

tested with the data collected by the RVMP at 7 m away.

Table 7: Case Study 1 RodeVideoMicPro linear SVM Results

RVMP LSVM Case Study 1 (7 m)

Weight (g) Prediction Accuracy by weight

0 100.00%

56 99.80%

112 100.00%

168 100.00%

224 98.66%

280 99.80%

Total Accuracy 99.71%

In Table 7, the total prediction accuracy is 99.71 %. The total accuracy is the

average prediction accuracy for each weight shown in Table 7. This result is consistent

with past research which achieved a 98.9 % prediction accuracy with the RVMP at 7

m from the drone [7]. These results indicate the weight carried by a drone affects the

acoustics emitted by the drone. And, the effect each weight has on the acoustics is

unique enough for accurate payload classification. Specifically, MFCCs can capture

the acoustic variation between payload weights, and an LSVM is able to use the

MFCCs to accurately predict payload weight. Lastly, the acoustic signal collected at

7 m from the drone is strong enough to classify payload weight.

Table 8 shows the prediction results from the quadratic SVM (QSVM) using the

RVMP at 7 m ground distance.
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Table 8: Case Study 1 RVMP Quadratic SVM Results

RVMP QSVM Case Study 1 (7 m)

Weight (g) Prediction Accuracy by weight

0 100.00%

56 99.43%

112 100.00%

168 99.97%

224 95.76%

280 98.70%

Total Accuracy 98.98%

The results in Table 8 reflect the same trends present in the results in Table

7. So, the results from the QSVM behave the same as the results from the LSVM.

The total accuracy using the QSVM is 98.98 %. This result is consistent with past

research which observed a prediction accuracy of 98.9 % using a QSVM and the

RVMP [7]. The results further show that acoustic emissions can be used to identify

payload weight carried by a drone.

Table 9 shows the prediction results form the cubic SVM (CSVM) using the

RVMP at 7 m ground distance.
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Table 9: Case Study 1 RVMP Cubic SVM Results

RVMP CSVM Case Study 1 (7 m)

Weight (g) Prediction Accuracy by weight

0 100.00%

56 99.53%

112 100.00%

168 99.97%

224 96.09%

280 98.76%

Total Accuracy 99.06%

The results in Table 9 reflect the same trend observed by the results in Table

7 and 8. The total accuracy using the CSVM is 99.06 %. This result is consistent

with past research which observed a 98.5 % prediction accuracy from the CSVM [7].

Overall, the results show the CSVM is capable of payload classification using acoustic

emissions.

The results in this case study using the RVMP are consistent with past research.

This provides experiment validation, meaning there is evidence to support this ex-

periment provides accurate results consistent with its intent.

5.2.2 Samsung Galaxy S8

This case study uses the GS8 to expand the field of research. The results from

the GS8 show the capability of using cell phones to detect UAV payload weight from

acoustic emissions. The cell phone uses microphones found on many IoT devices, so

this study provides evidence for the ability to use IoT devices in general for payload

detection. By using the GS8, this case study compares the results of the RVMP
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and the GS8. The comparison shows performance differences between a high-quality

microphone and a small cell phone microphone. The GS8 records audio at 7 m

from the UAV. A linear, quadratic, and cubic SVM use the audio data for payload

classification. Table 10 show the results from the LSVM.

Table 10: Case Study 1 Galaxy S8 Linear SVM Results

GS8 LSVM Case Study 1 (7 m)

Weight (g) Prediction Accuracy by weight

0 99.97%

56 99.70%

112 100.00%

168 99.97%

224 98.06%

280 100.00%

Total Accuracy 99.62%

In Table 10, the total prediction accuracy is 99.62 %. The total accuracy is

the average prediction accuracy of all the weights in Table 10. This result shows

the prediction scheme using the GS8 is just as accurate as the scheme using the

RVMP. In other words, the performance of a cell phone device is nearly the same as

a high-quality microphone.

Table 11 shows the prediction results from the GS8 using a QSVM.
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Table 11: Case Study 1 Galaxy S8 Quadratic SVM Results

GS8 QSVM Case Study 1 (7 m)

Weight (g) Prediction Accuracy by weight

0 99.93%

56 99.77%

112 100.00%

168 99.93%

224 98.76%

280 99.93%

Total Accuracy 99.72%

The total accuracy in Table 11 from using a QSVM is 99.72 %. These obser-

vations are consistent with the observations from the LSVM. The CSVM has similar

results. Table 12 shows summarizes the CSVM results.

Table 12: Case Study 1 Galaxy S8 Cubic SVM Results

GS8 CSVM Case Study 1 (7 m)

Weight (g) Prediction Accuracy by weight

0 99.66%

56 100.00%

112 100.00%

168 100.00%

224 100.00%

280 99.93%

Total Accuracy 99.93%
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The results show the GS8 performed just as well if not better as the RVMP in

this configuration. Thus at 7 m from the drone, the GS8 is able to classify payload

weight with the same accuracy as the RVMP.

5.2.3 Graphical Comparison

Figure 38 summarizes the prediction accuracy in this case study.

Figure 38: Case Study 1 Prediction Accuracy Comparison

Both the RVMP and GS8 consistently perform with nearly the same accuracy as

past research. These results indicate the experiment behaves consistently with past

research providing evidence for experiment validation. In addition, the results show

that the GS8 performs at the same level as the RVMP. So, there is evidence to suggest

a cell phone device achieves the same performance as a high-quality microphone for

acoustic payload detection at 7 m. Lastly, the three SVM configurations (linear,

quadratic, and cubic kernel) performs nearly the same for the GS8, RVMP, and prior

research [7].
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Table 13 shows the total runtimes for each AI

Table 13: Case Study 1 Runtimes

1 AI (s) 5 AI (s)

RVMP LSVM 0.14 0.98

QSVM 0.52 2.92

CSVM 0.4 2.43

GS8 LSVM 0.13 0.72

QSVM 0.38 2.54

CSVM 0.31 1.69

Table 13 shows the runtime of 1 AI and 5 AIs for each configuration. The reason

this study shows 5 AIs is because 5-cross validation requires 5 AIs for implementation.

As Chapter 3 discusses, HurtzHunter uses 5-cross validation for prediction results.

So, the runtime to build all 5 AIs conveys the real runtime to build the AI for the

HurtzHunter design. The runtime for the LSVM is shorter than the QSVM and

CSVM for both the GS8 and RVMP. However, the longest runtime is 2.4 s which is

very short, and does not affect the goals of this research.

5.2.4 Statistical Analysis

This research runs one repetition of the experiment. There was not enough time

on the flight line to run additional repetitions while on TDY in Florida. Therefore, the

data has zero degrees of freedom which limits the statistical analysis of this research.

If more repetitions could be accomplished, then a difference in means test would be

done on the prediction accuracy to determine statistical significance between config-

urations. Specifically, a two-sample t-test would be used to compare the accuracy

between the SVMs and recording devices. For example, the difference between the
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RVMP and GS8 is small. The two-sample t-test would show whether this difference

in accuracy is significant, and if the recording device has a statistically noticeable

impact on the system. Also, with more degrees of freedom, the two-sample t-test

would be used to compare statistical differences in accuracy between configurations

in case studies 2-4. However, conducting a test with zero degrees of freedom in any

case study would be misleading, so future work needs to provide statistical evidence.

5.3 Case Study 2

Case study 2 builds upon case study 1 by increasing the distance between the

microphone and drone from 7 m to 100 m. Previous work gathered acoustic emissions

at 7 m away from the drone. This research expands the field of study by gathering

acoustic emissions at 7 m to 100 m away. This study uses the GS8 and RVMP to

collect acoustic data at 7 m, 10 m, 20 m, 30 m, 40 m, 50 m, 75 m, and 100 m ground

distance from the UAV. Additionally this case study builds an LSVM, QSVM, and

CSVM for each recording capable of acoustic payload prediction using MFCCs. The

results in this case study provide answers to the questions ”What is the maximum

range of acoustic UAV payload detection?” and, ”Does a high-quality microphone

perform better than a cell phone for acoustic payload detection?”

5.3.1 RodeVideoMicPro

Table 14 summarizes the LSVM results from the RVMP. The data recorded by

the RVMP trains and tests the LSVM AI.
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The total accuracy in Table 14 is 91.27%. The total accuracy stands for the

average accuracy of predicting all payload weights at all distances. The results show

a loss in accuracy as distance increases. Case study 1 shows a total accuracy of

99.71% for the LSVM. When the distance expands to include 100 m, the average

accuracy decreases to 91.27%. This decrease is expected due to the loss of signal

strength as distance increases. A sound is fainter at longer distances and stronger at

shorter distances, and fainter sounds are more difficult to capture with a microphone.

Therefore, a weaker signal should lead to a decrease in prediction accuracy because

it carries less information. The results in Table 14 support this phenomenon as the

percent accuracy for each distance, in the row “Distance Avg” shows, decreases as

distance increases. Specifically, the main decrease is from 40 m to 100 m.

Another cause for the decrease in accuracy is the increase in training data.

Because the intensity of sound decreases with distance, 0 g at 7 m away sounds

different than 0 g at 100 m. The frequencies are the same, but the magnitude of

these frequencies changes. The AI may be classifying based on the change in loudness

rather a change in frequency. Therefore, the AI may think two signals of the same

loudness are the same weight when in reality they are not. In a perfect scenario,

the AI would be able to discard changes in loudness and only classify changes in

frequency, but the methodology in this research does not provide for a way to control

the difference between loudness and frequency. Even so at closer range (below 40 m),

the results indicate prediction accuracy at ∼96%.

In addition to loudness, nuisance factors such as wind and time of flight affect

the AI’s classification accuracy. During testing, the wind varied throughout the day.

Wind intensity increased as the day went on. Wind noise greatly impacts prediction

accuracy. For example, the audio recordings collected for 112 g at 100 m experienced

the a high level of winds, and Table 14 shows the prediction accuracy greatly decreased
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to 12.65% for this data point. These nuisance factors do not play a major role when

data is collected at 7 m, but when the range increases their impact becomes great.

Section 5.6 discusses these nuisance factors in greater details.

Another change in case study 2 is the AI build time. The build time in case

study 1 was negligible. But in case study 2 the runtime increases significantly. Table

15 sows the runtime for the LSVM in case study 2.

Table 15: Case Study 2 RVMP LSVM Runtime

AI Train Time (s) min hr

1 AI 3781.8 63.0 1.1

all 5 19971.6 332.9 5.5

Table 15 shows two runtimes. The first in row ‘1 AI’ is the time it takes to build

one AI. The second in row ‘all 5’ is the time it takes to build all 5 AIs needed to

accomplish 5-cross validation. The total runtime to accomplish 5-cross validation for

the LSVM is 5.5 hours. This runtime drastically increases from case study 1 to case

study 2. The reason for this change is because the AI in this study uses data from all

ranges (7 m to 100 m) which is seven times the data case study 1 uses. In addition

to the amount of data, the nature of the data in this case study is more difficult to

classify than the data in case study 1. Due to factors such as range, loudness, and

wind noise, the SVM needs more hyperplanes to fully classify the data. In short, this

case study uses more data which takes the SVM more time to classify.

Table 16 summarizes the QSVM results from the RVMP. The QSVM uses the

data from the RVMP at all ranges.
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The total prediction accuracy of the QSVM is 90.05 %. This accuracy is slightly

less than the LSVM but nearly the same. The same trends observed by the LSVM

are present in the QSVM. As distance increases, the accuracy decreases. Also, the

varying loudness and nuisance factors, such as wind, brings the accuracy down. The

results show the largest decrease in accuracy from 40 m to 100 m. Contrary to the

LSVM, the runtime for AI training is significantly less for the QSVM. Table 17 show

the runtime for the QSVM.

Table 17: Case Study 2 RVMP QSVM Runtime

AI Train Time (s) min

1 AI 224.6 3.7

all 5 1086.5 18.1

The runtime for one AI is 3.7 min, and the runtime for all 5 AIs needed for 5-cross

validation is 18.1 min. This runtime is far less than the runtime for the LSVM. The

reason for this decrease is because the quadratic nature of the hyper plane in a QSVM

allows the SVM to curve the boundary between classes. With curved boundaries, the

SVM can fully classify the data with less hyperplanes, and the less hyperplanes there

are, the less time the AI needs to train.

Although curved hyperplanes improve runtime, they increase the risk of over fit-

ting the data. Overfitting occurs when the SVM classifies the data based on nuisance

factors present in the data. For example, if one recording is very windy, the SVM

may classify that recording by the wind noise rather than the actual MFCC values

corresponding to the weight class. The reason overfitting is more common in higher

degree hyperplanes and not linear hyperplanes is because nuisance factors generally

follow non-normal trends in classification, and a linear hyper plane can only follow

normal trends. In other words, a curved hyper plane can classify non-normal data
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and a linear hyper plane cannot.

However, nuisance factors are not the only non-normal characteristics. Often,

the features needed to train an SVM are not normal, and an AI needs more complex

hyperplanes for class differentiation. Because of this need for complex planes, the

best way to prevent overfitted data is to increase the amount of repetitions, and

use test data from different environments. Ideally, the experiments in this research

would be repeated on multiple days, and in multiple environments. This repetition

would provide the diverse data needed to detect overfitting and prevent an AI from

training on nuisance factors. However, the nature of this research does not allow

enough time to perform experiment repetitions in diverse environments. As Chapter

4 discusses, this research was accomplished over three days at the Air Force Bombing

range in Avon Park, FL. Only one experiment repetition was accomplished in this

time frame. There is no way to know whether overfitting occurred in the QSVM

Table 16 summarizes. This research assumes it does not occur.

Table 18 shows the CSVM results from the RVMP.
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The total average for the CSVM is 90.05%. This average is the same as the

QSVM. The CSVM performs nearly the same as the QSVM at each distance, and the

average accuracy is the same as the QSVM. The same trends observed for the QSVM

are present for the CSVM. Factors such as distance and wind bring the accuracy

down, and the most noticeable decrease is between 40 m and 100 m. Furthermore,

a CSVM runs the risk of overfitting, but due to the limits on this research there is

no way to identify overfitting in the results. Also, the CSVM renders a much less

runtime than the LSVM. Table 19 shows the runtime for the CSVM.

Table 19: Case Study 2 RVMP CSVM Runtime

AI Train Time (s) min

1 AI 205.6 3.4

all 5 1061.6 17.7

The runtime for one AI is 3.4 min, and the runtime for all 5 AIs needed for 5-

cross validation is 17.7 min. These runtimes are less than the LSVM and QSVM. It is

significantly less than the LSVM but marginally less than the QSVM. The significant

decrease from the LSVM is due to the greater freedom a cubic hyper plane has to

divide classes than a linear hyper plane. A CSVM also has greater flexibility to

divide classes than a QSVM, and this flexibility could be the cause of the decrease in

runtime.

However other factors, such as additional processes running on the computer

could be the cause of the slight difference difference between the CSVM and QSVM

runtime. This research does not run each AI build in a contained environment where

it is the only process running. Therefore, there is no way to know if small changes

in runtime could be due to hyper plane complexity or the process load on the CPU

during runtime.
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Figure 39 shows the accuracy of all three SVMs over distance.

Figure 39: Case Study 2 RVMP Three SVMs

In each SVM, the same trends are present. From 7 m to 40 m the accuracy

slightly fluctuates, then at 40 m the accuracy declines steadily. The slight difference

from 7 m to 40 m is likely due to nuisance factors such as wind or other random

sounds present from flight to flight. More testing should be done to verify the cause

of this slight fluctuation. However, the results indicate distance does not significantly

impact the accuracy of the system until after 40 m.

5.3.2 Samsung Galaxy S8

This subsection of case study 2 shows the results for the LSVM, QSVM, and

CSVM using the GS8 data. Table 20 summarizes the results from the LSVM.
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Table 20 shows the total prediction accuracy to be 88.84%. This accuracy is

significantly less than the prediction accuracy case study 1 shows for the GS8. The

decrease in accuracy is due to the same trends this study observes for the RVMP.

The increased range lead to a decrease in accuracy bringing the average prediction

accuracy down. Additionally, the difference in signal loudness and nuisance factors

present such as wind bring the average down. Similar to the RVMP LSVM, this

LSVM requires significantly more runtime to fully classify the data. Table 21 shows

the runtime required by this LSVM.

Table 21: Case Study 2 GS8 CSVM Runtime

AI Train Time (s) min hr

1 AI 7831.9 130.5 2.2

all 5 34541.9 575.7 9.6

The runtime required for this LSVM is 2.2 hours for one AI and 9.6 hours for

all 5 AIs needed for 5-cross validation. This large runtime is similar to the runtime

for the LSVM from the RVMP. Using data from 7 m to 100 m rather than just 7 m

greatly increases the complexity of the data, so the LSVM needs more hyperplanes

to fully classify the data. Therefore, the runtime for a LSVM in this case study is

significantly greater than the runtime in case study 1. The great increase in runtime

indicates a linear hyper plane is not be sufficient to classify the data, and a hyper

plane with greater complexity such as a quadratic or cubic curve is needed. However,

runtime may not be a limitation in certain scenarios, so depending on the application

a linear hyper plane may be sufficient. This research assumes runtime is a priority,

and the shorter the runtime the better

Table 22 summarizes the results for the QSVM.
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The total prediction accuracy for the QSVM is 88.26 %. The QSVM encompasses

the same trends present in the LSVM. The QSVM accuracy is slightly less than the

LSVM, but the runtime greatly improves. The decrease in accuracy was slight and

may not be significant. Table 23 shows the time of the QSVM.

Table 23: Case Study 2 GS8 QSVM Runtime

AI Train Time (s) min

1 AI 257.6 4.3

all 5 1357.5 22.6

The total runtime for one AI is 4.2 min and the runtime for all 5 AIs needed

for 5-cross validation is 22.6 min. As the SVMs for the RVMP show, the runtime

for the GS8 QSVM is significantly less than the LSVM due to the complexity of the

quadratic hyper plane.

Table 24 summarizes the results for the CSVM.
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The total prediction accuracy is 88.30% for the CSVM. The CSVM encompasses

the same trends present in the LSVM and QSVM. The CSVM accuracy is slightly

less than the LSVM and slightly greater than the QSVM. This difference in accuracy

was slight and may not be significant. Table 25 shows the runtime for the CSVM.

Table 25: Case Study 2 GS8 CSVM Runtime

AI Train Time (s) min

1 AI 264.5 4.4

all 5 1324.1 22.1

The runtime for one AI is 4.4 min and for all 5 AIs is 22.1 min. This runtime

is significantly less than the LSVM and slightly less than the QSVM. The significant

drop in runtime between the LSVM and CSVM is due to the complex shape of the

cubic hyperplanes. The slight drop in runtime between the QSVM and CSVM may

be due to other factors such as CPU load during runtime or the increased complexity

of the cubic kernel.

Figure 40 shows the accuracy of all three SVMs over distance.
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Figure 40: Case Study 2 GS8 Three SVM Comparison

The same trends the RVMP shows across all three SVMs are present here for

the GS8. Accuracy slightly fluctuates between 7 m to 40 m. And there is a steady

decline from 40 m to 100 m.

5.3.3 Graphical Comparison

Because all three kernel configurations for the SVM follow the same results, this

research concludes the CSVM is the optimal configuration due to its high accuracy

and short runtime. Chapter 6 further discusses this choice. Because of this choice,

this section compares the CSVM for the RVMP and GS8. Also, case study 3 and

4 focus solely on the CSVM due to this optimization choice. Figure 41 shows the

CSVM for the RVMP and GS8.
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Figure 41: Case Study 2 CSVM Comparison

The graph shows that there is not an optimal device for all distances. The

RVMP and GS8 jockey for position from 7 m to 40 m, then the RVMP is optimal

from 40 m until 100 m where the GS8 is optimal. This result shows that the same

trend is among both recording devices. Also, it shows that the cell phone performs

the same as a high-quality microphone. Additionally, both devices observe a drop-off

in prediction quality after 40 m.

Figure 42 and 43 show the prediction results for the GS8 and the RVMP with

their quadratic trendlines using the CSVM.
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Figure 42: Case Study 2 RVMP CSVM With Trendline

Figure 43: Case Study 2 GS8 CSVM With Trendline
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Based on these figures, a negative second degree polynomial can model prediction

accuracy. Specifically, the trendline for the RVMP is:

y = −5 ∗ 10−5 ∗ x2 + .0025 ∗ x + 0.9345 (9)

with an R2 = 0.9702, and the trendline for the GS8 is

y = −2 ∗ 10−5 ∗ x2 − .0006 ∗ x + 0.9725 (10)

with an R2 = 0.9256 0.92. The R2 value indicates how well the trendline fits the data.

An R2 = 1 means the trendline perfectly fits the data. Therefore, trendlines with a

R2 value closest to 1 are the best fit equation for the data. The fit of the trendline is

tighter for the RVMP than the GS8 because the R2 value for the RVMP is closer to

1 than the R2 value for the GS8. But, both the RVMP and GS8 prediction results

follow the curve of the second degree polynomial. This trendline provides possible

prediction results for distances not recorded in this research. For example at 125 m,

the trendlines indicate the RVMP accuracy would be 46.48% and the GS8 accuracy

would be 58.5%. This prediction indicates that the GS8 accuracy declines at a slower

rate than the RVMP after 100 m.

5.4 Case Study 3

This case study builds upon case study 2 to include more cell phones as recording

devices. Due to the results in case study 2, this case study only uses the cubic SVM.

This study uses the CSVM because case study 2 shows that the CSVM requires the

least amount of runtime, yet achieves nearly the same accuracy as the LSVM and

QSVM. The long runtime required for the LSVM makes it non-ideal for AI training

and tuning. The runtime for the QSVM is similar to the CSVM, but the CSVM
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runtime is still less.

The additional recording devices this case study uses are the Google Pixel 4

(GP4), iPhone 11 Pro (iP11P), and Galaxy S 20 (GS20). This study uses the results

for the RVMP and GS8 from case study 2 to compare performance across all devices.

This study uses data from 7 m to 100 m from each device.

This study expands the research field by using additional cell phone devices,

varying in make and model, for acoustic payload. The results provide evidence to

answer the questions:

• ”Can cell phones detect UAV payload weight with sound?”

• ”What is the maximum range of acoustic UAV payload detection?”

• ”Does the cell phone model affect detection accuracy?”

• ”Does a high-quality microphone perform better than a cell phone for acoustic

payload detection?”

5.4.1 Google Pixel 4

Table 26 shows the results for the GP4.
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The total accuracy of the device is 85.75%. The same trends case study 2 finds

are present here. The accuracy remains relatively the same from 7 m to 40 m, then

sees a steady decline from 40 m to 100 m. The total accuracy is 3-5% less than

the RVMP and the GS8. However, some distances show nearly the same accuracy

as the GS8 and RVMP. So, the GP4 overall is not the best solution, but at certain

distances it may be no different than the RVMP and the GS8. The GP4 may have a

lower accuracy because of the phone hardware, software, design structure, or position

during the experiment. In the array of cell phones the RVMP and GS8 are on the

right side of the array and the GP4 is on the left, so the setup may have affected

accuracy. However, there is not clear observables in this research to indicate the

exact reason for the lower accuracy from the GP4. Still, the results show the GP4 is

less effective than the RVMP and GS8.

Furthermore, the results for the GP4 refute the assumption made about device

age and accuracy. It was assumed that newer cell phones would perform better than

older ones. But, the GP4, released in 2019, performed worse than the GP8, released

in 2017 [39]. It is difficult to determine the cause of this observation without deep

inspection of the GP4 design and the GP8. Possibly, the newer phones focus less on

recording qualities than in the past. Or, Google phones may configure their device in

a way less optimal for this use case than the GS8. Future work needs to determine

the exact cause. Having said, the GP4 accuracy is greater than 90% at 7 m to 40

m, performing at around the same accuracy as the GS8 and RVMP. Therefore, the

type of recording device may not matter at close range. Statistical analysis should

be used to show in which cases there is a statistical difference between devices, but

given this experiment has zero degrees of freedom, such analysis would be misleading

in this research.

Table 27 shows the runtime for the GP4.
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Table 27: Case Study 3 GP4 Runtime

AI Train Time (s) min

1 AI 216.8 3.6

all 5 1135.1 18.9

The build results in 3.6 min for 1 AI and 18.9 min for all 5 AIs needed for 5-cross

validation. This runtime is slightly less than the GS8 and RVMP but in the ball park.

This result makes sense because the cubic kernel used for the SVM should result in

about the same runtime on all devices. As in case study 2, the runtime calculation

for this study is not made in a contained environment. Other processes in the back

ground could contribute in the slight variations of runtime among the CSVMs.

Figure 44 shows the graph and trendline of the GP4 data.

Figure 44: Case Study 3 GP4 CSVM With Trendline

The trendline is:
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y = −4 ∗ 10−5 ∗ x2 + .0015x + .9049 (11)

with an R2 = 0.956. In line with the results of case study 2, the prediction results

follow a second degree polynomial curve as distance increases. Therefore, prediction

accuracy for distances not collected can be predicted. For example, the prediction for

125 m is 46.74%.

5.4.2 iPhone 11 Pro

Table 28 summarizes the results for the (iP11P).
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The total accuracy is 87.70%. The same trends and causes for the results in case

study 2 are present here. Overall, the iP11P performs better than the GP4 but worse

than the RVMP and GS8. Whether there is a statistical difference in accuracy needs

to be determined. These results also refute the assumption that prediction quality

increases with newer phones. The iP11P release date is 2019, yet it performs worse

than the GS8 (2017) [39].

Table 29 shows the runtime for the iP11P.

Table 29: Case Study 3 iP11P Runtime

AI Train Time (s) min

1 AI 248.4 4.1

all 5 1213.4 20.2

The CSVM runtime for 1 AI is 4.1 min and 20.2 min for all 5 AI’s required for

5-cross validation. The results are nearly the same as the runtime for the RVMP,

GS8, and GP4. Indicating the CSVM renders the same result regardless of device.

Figure 45 shows the graph and trendline of the iP11P data.
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Figure 45: Case Study 3 iP11P CSVM With Trendline

The trendline is:

y = −3 ∗ 10−5 ∗ x2 + .0006x + .9366 (12)

with an R2 = 0.9187. The prediction results follow a second degree polynomial curve

as distance increases. Therefore, prediction accuracy for distances not collected can

be predicted. For example, the prediction for 125 m is 54.29%.

5.4.3 Samsung Galaxy S 20

Table 30 summarizes the results for the (GS20).
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The total accuracy is 86.74%. The same trends and causes for the results in case

study 2 are present here. Overall, the GS20 performs better than the GP4 but worse

than the iP11P, RVMP and GS8. Whether there is a statistical difference in accuracy

needs to be determined. These results also refute the assumption that prediction

quality increases with newer phones. The iP11P release date is 2020, yet it performs

worse than the GS8 (2017) [39].

Table 31 shows the runtime for the GS20.

Table 31: Case Study 3 GS20 Runtime

AI Train Time (s) min

1 AI 259.5 4.3

all 5 1381.0 23.0

The CSVM runtime or 1 AI is 4.3 min and 23.0 min for all 5 AIs required for

5-cross validation. The results are nearly the same as the runtime the iP11P, RVMP,

GS8, and GP4. Indicating the CSVM renders the same result regardless of device.

Figure 46 shows the graph and trendline of the GS20 data.
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Figure 46: Case Study 3 GS20 CSVM With Trendline

The trendline is:

y = −2 ∗ 10−5 ∗ x2 − .0011x + .9551 (13)

with an R2 = 0.9482. The prediction results follow a second degree polynomial curve

as distance increases. Therefore, prediction accuracy for distances not collected can

be predicted. For example, the prediction for 125 m is 50.51%.
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5.4.4 Data Comparison

Figure 47 includes all prediction results for all 5 recording devices.

Figure 47: Case Study 3 CSVM Comparison

The graph indicates the same prediction behavior for all recording devices. From

7 m to 100 m the optimal recording device fluctuates among the five. Then, the RVMP

remains optimal from 40 m to just before 100 m. Table 32 summarizes the results for

all recording devices.
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The RVMP has the highest accuracy at 90.05%. Of the cell phones, the GS8

performs the best at 88.30%. The accuracy margin between the RVMP and GS8 is

small, and the GS8 out performs the RVMP at certain distances. So, there is little

difference between a high-quality microphone and a cell phone.

Among the cell phones, the results indicate there is a difference between cell

phone models. The older model, the GS8, performs better than the newer models.

This difference could be due to design choices for newer cell phones. Recording quality

may not be a design goal for newer phones. Or, the physical design of the phone may

be impacting the recording quality at farther ranges. More research should be done

to determine the exact reason for this trend, but it is clear the older model cell phone

(GS8) outperforms the newer models.

Additionally, the runtime for each AI is relatively the same. The differences

are most likely due back ground processes running on the CPU during the build.

Therefore, the data indicates a similar runtime for an SVM with a cubic kernel.

As distance increased, accuracy decreased for each device. The decrease in

accuracy for each device follows a second degree polynomial. Figure 48 shows the

second degree trendline for each device.
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Figure 48: Case Study 3 Trendline Comparison

The observation that each recording device follows a similar second degree poly-

nomial suggests there may be common function of prediction accuracy over distance

for all recording devices. In other words, a general second degree polynomial may be

able to describe the effect weight has on acoustic emissions of a UAV. Further work

should be done to support this claim.

5.5 Case Study 4

Case study 4 answers the question ”Does the manufacturing process for a specific

recording device affect detection accuracy?”. This study uses three GS8s to collect

acoustic emissions during the experiment in Chapter 4. The data from two of the

GS8s trains a CSVM, and data from the third GS8 tests the CSVM. In theory, the

same accuracy trends for the GS8 in case study 2 should be observed here unless

there is a manufacturing impact between GS8s. If there is a manufacturing impact,
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the AI needs data from every single recording device for adequate acoustic payload

detection, and this need would be unfortunate.

The reason for this study is because AFRL/RYAA (the sponsor of this research)

is interested in deploying a network of cell phone like recording devices for UAV

payload detection. This study indicates whether data from every recording device

is needed for a useful detection system, or if data only needs to be collected by one

device if the same model is used throughout the network. In other words, if 10

microphones are deployed for acoustic detection, does the SVM need training data

from all 10 devices or just one.

Table 33 summarizes the results for this case study.
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The total prediction average is 82.81%. This is significantly lower than the to-

tal average for the GS8 in case study 2. In case study 2, the average is 88.30%.

This results shows that the AIs performance decreases when the test data and train-

ing data are not from the same device. Therefore, there is evidence to suggest the

manufacturing process for a specific recording device does affect accuracy.

Other factors may be causing this result such as CPU activity on the cell phones.

During recording, it is likely that the CPUs on each GS8 are preforming tasks other

than recording and that these tasks are not the same for all three devices. Therefore,

these processes may be causing the decline in performance present in this case study.

However further research should be done to support this claim. Either way, there is

a decline in accuracy when training data and testing data for the AI are not from the

same device.

Although the accuracy for case study 4 is different than the accuracy in case

study 2, the behavior of the accuracy over distance is the same. Figure 49 shows the

accuracy over distance for case study 2 and 4.

133



Figure 49: Case Study 2 And Case Study 4 Comparison

The prediction accuracy follows the same pattern as the accuracy in case study 2.

Although the accuracy is less, it follows the same trend, and the difference in accuracy

for all distances remains nearly the same. Because the same trend is observed, the

model for case study 4 is reliable. Future work needs statistical analysis to determine

if the difference in accuracy is significant, and if so at which distances is it significant.

Given the accuracy exhibits the same behavior as previous case study, the accuracy

follows a second degree polynomial. Figure 50 shows the second degree polynomial.
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Figure 50: Case Study 4 GS8 Trendline

The results show the prediction results follow the curve:

y = −1 ∗ 10−5 ∗ x2 − .0022x + 0.9578 (14)

with an R2 = 0.9552. This prediction curve follows the same behavior Case Studies 2

and 3 present. Therefore, it is possible to predict accuracy for distances not recorded

even when different devices provide training and testing data. Given a second degree

polynomial provides an adequate trendline for all scenarios, there may be a second

degree polynomial which models the behavior of acoustic payload prediction across

all devices.

Table 34 shows the runtime to build the CSVM for case study 4.
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Table 34: Case Study 4 AI Runtime

AI Train Time (s) min

1 AI 959.34 15.989

The runtime to build the AI in this case study is 15.99 min. Because the entire

data set from two phones provides the training data, there is no risk of accidentally

choosing really good or bad data. Therefore, case study 4 does not need to perform

k-cross validation. Also, this study uses over double the training data than case study

2 and 3, and five times the testing data. So, it is difficult to compare the runtimes

between this case study and the others. Still the cubic SVM needs about the same

time as the other case studies. This is due to the same kernel and using the same

device for processing. The result indicates that with the hardware in this research, a

cubic SVM needs about 15 min to 20 min to build.

5.6 Nuisance Factors

This section discusses the nuisance factors present in the experiment. The three

largest factors are wind, time of day, and battery life. Wind and time of day affect the

prediction results. These factors are uncontrollable in the experiment configuration

Chapter 4 describes. Additionally, only two drone batteries were available and one

battery charger available on the flight line. Each battery provides ∼12 min of flight

time, and it takes 2 hours to charge a battery. So, the recordings were spread out

over the days. The different times of flight affect the experiment results. This is

because the winds varied throughout the day, with the highest winds present in the

early afternoon. Recordings done during high winds show lower prediction accuracy

than those during low winds. Figure 51 shows the prediction accuracy over time of

day. The figure shows results from the GS8 in case study 2. All phones show this
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same trend.

Figure 51: Prediction Accuracy Over Time Of Day

Because of limited battery life, the recordings for each weight were done at

all distances in one flight. If battery life is plentiful, the recording order should

be completely randomized, but this was not possible under the constraints for this

experiment. However, the order of weight classes was randomized by writing each

weight on its own piece of paper and picking them out of a hat. The order is as

follows: 280 g, 0 g, 168 g, 224 g, 56 g, 112 g. Therefore 280 g and 0 g were ran in the

morning, 224 g was ran around noon, 56 g was ran in the early afternoon, and 112 g

was ran in the late afternoon.

As the day went on, there was no wind in the early morning, the winds started

around mid morning, it reached its peak in the early afternoon, and started to trail

off in the mid afternoon. Figure 51 shows how accuracy changed throughout the day,

and that this changes is directly correlated to wind noise. Table 35 shows the wind

noise readings for each weight.
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Table 35: Wind Noise

Weight Wind Noise (dB)

280 44.0

0 45.0

168 49.7

224 55.4

56 62.5

112 54.7

The results shows wind noise has a clear effect on the system. When the noise

level is below 50 dB, the system remains fairly accurate, but at above 54 dB there

is a significant decrease in accuracy. The wind noise begins to drown out the drone

acoustic emissions somewhere between 50 dB and 54 dB. Further research needs to

find the exact threshold.

5.7 Summary

This section discusses the results from the experiments in Chapter 5. Overall,

the results show a decrease in prediction accuracy as distance between the drone

and microphone increases. There is a steady decline in accuracy after 40 m ground

distance, and the prediction for each device follows a second degree polynomial. The

type of recording device does affect the prediction results. This research determines

the optimal configuration is using the GS8 with a CSVM.
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VI. Conclusion

6.1 Overview

This chapter summarizes the entirety of the research. Section 6.2 reviews the

problem this research seeks to answer. Section 6.3 concludes the findings of this

research and how it relates to the problem at hand. Section 6.4 discusses the con-

tributions this research makes to the overall body of literature in this field. Section

6.5 discusses the limitations of this research. Section 6.6 recommends future work to

expand this research.

6.2 Problem Review

The growing research of UAVs brings new security threats. Whether in the

civilian world, corporate world, or the military front, drone detection systems are

imperative to handle these threats. Many platforms use technology such as RF,

RADAR, and image processing to detect drones, but few use acoustic emissions and

nearly none detect UAV payload.

Payloads are a necessary attribute to detect for a UAV due to the growing

presence of drone delivery systems and drone IEDs. The ability to detect and classify

drone payload weight would help mitigate these threats. Acoustics are a unique

attribute emitted by all drones which can not only detect payload weight, but do

not require line of sight for detection. Acoustics are also more difficult to spoof than

technologies such as RADAR or RF. Therefore, there is a need for a drone payload

detection system based on acoustic emissions.
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6.3 Research Conclusions

The goals of this research were to demonstrate an acoustic payload detection

method using cell phone devices and determine the maximum range of acoustic pay-

load detection. To fulfill these goals, an acoustic payload detection system called

HurtzHunter was built to demonstrate and test acoustic payload detection with cell

phone devices and a high-quality microphone. Past research successfully demon-

strated acoustic payload detection at close range (7 m) and with a high-quality mi-

crophone (the RVMP). To expand the field of study, this research hypothesizes that

cell phones are able to determine the weight of a payload carried by a UAV from

acoustic emissions at up to 100 m away ground distance from the UAV.

To achieve these goals, this research conducts an experiment with the HurtzHunter

design. This experiment, summarized in Chapter 4, implements the System Under

Test (Figure 29), and Figure 30 shows the experiment design. In the experiment,

the HurtzHunter prototype uses 7 recording devices and 1 quad-copter drone. The

recording devices are the three Samasung Galaxy S8 (GS8), one Samsung Galaxy

S20 (GS20), one Google Pixel 4 (GP4), one iPhone 11 Pro (iP11P), and one RodeV-

ideoMicPro (RVMP). The drone is the Mavic Air 2. The microphones collect acoustic

emissions while the drone hovers for 1 min. The microphones collect acoustics for 48

flights in total. Flights are conducted at 7 m, 10 m, 20 m, 30 m, 40 m, 50 m, 75 m,

and 100 m away from the microphones, and at each distance the drone performs 6

flights, each with a different payload weight. The payload weights are 56 g, 112 g,

168 g, 224 g, and 280 g. HurtzHunter uses the sound data from the microphones to

train and test an SVM.

Four case studies use the data from this experiment to answer the following

questions:

• Can cell phones detect UAV payload weight with sound?
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• What is the maximum range of acoustic UAV payload detection?

• Does the cell phone model affect detection accuracy?

• Does a high-quality microphone perform better than a cell phone for acoustic

payload detection?

• Does the manufacturing process for a specific recording device affect detection

accuracy?

Case study 1 conducts similar methodology in past research with the addition of

a cell phone device. Only using the acoustic emissions from 7 m, a linear, cubic, and

quadratic SVM is built and tested for both the RVMP and the GS8. All SVMs for the

RVMP and GS8 resulted in 98%−99% payload prediction accuracy. This study finds

little to no difference in payload prediction accuracy between the GS8 and RVMP for

the linear, quadratic, and cubic SVMs. This means at close range (7 m) there is no

difference between a high-quality microphone and a cell phone device. Additionally,

the results are consistent with past research which achieved ∼ 98% accuracy with the

RVMP at 7 m. This consistency with past research provides experiment validation.

Case study 2 builds on case study 1 by expanding the detection range from 7

m to 100 m. The results show little difference in prediction accuracy between the

GS8 and RVMP for all distances. The results also show a significant difference in AI

build time between the linear, quadratic, and cubic SVMs. The linear SVMs for both

recording devices needed 6-9 hrs of build time, while the quadratic and cubic SVMs

needed 16-20 min. The CSVM is the optimal choice because it has the lowest build

time and the same accuracy as the linear and quadratic SVMs. With the CSVM, the

RVMP achieves a 90.05% overall accuracy, and the GS8 achieves a 88.30% overall

accuracy. From 7 m - 40 m the prediction accuracy remains greater than 91% for
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both devices. After 40 m, there was a significant drop in accuracy observed for both

devices.

The correlation between distance and accuracy follows a quadratic curve for

both devices, and case study 2 provides a prediction trendline which can be used

for distance accuracy not measured in this research. The results of this study show

the GS8 performs the same as the RVMP from 7 m to 40 m. From 40 m to 100

m the RVMP performs better, but at 100 m the GS8 performs better. This results

means that at distances less the 40 m, a cell phone device performs the same if not

better than a high-quality microphone. Also, the results indicate adequate payload

detection is achievable at up to 40 m away ground distance with a cell phone device.

Case study 3 builds upon case study 2 by expanding the research to include 3

additional cell phone devices for recording. This study builds and tests a CSVM for

the GP4, iP11P, and GS20 using data from 7 m to 100 m. The GP4 overall accuracy

is 85.73%, the iP11P overall accuracy is 87.70%, and the GS20 overall accuracy is

86.74%. After comparing the prediction results from these devices with the GS8 from

case study 2, the GS8 has the best overall prediction results with an 88.30% overall

accuracy. This result is unexpected as the GS8 is the oldest model cell phone. The

exact reason for this phenomenon is unknown, but possible solutions could be that

new cell phone technology prioritizes performance for things other than recording

quality. Therefore, there is a difference in payload prediction accuracy across cell

phone models, and the GS8 is the optimal choice for acoustic payload detection.

Case study 4 explores the effect of manufacturing on prediction quality. In other

words, if the exact same recording device is used for payload detection, how does the

accuracy change from device to device. It is not practical to train an AI with data

from every single recording device in a real world scenario. So, if a detection system

was built using the GS8, would the user be able to take any GS8, load the system on
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the device, and use it for payload detection? In this study, acoustic emissions from

two GS8s is used to train a CSVM, and acoustic emissions from a third GS8 is used

to test the CSVM. The results from this case study show the prediction accuracy is

82.81%. This accuracy is a significant decrease from case study 2 where the accuracy

for the GS8 is 88.30%. Therefore, the manufacturing from device to device does have

an effect, and the optimal solution would need training data for the AI from every

single device. However, from 7 m - 40 m the accuracy remains roughly around 88%,

so at close range the manufacturing impact on the device may not be detrimental.

Over all, this research finds that the GS8 is the optimal cell phone device for

acoustic payload detection, and the maximum range for accurate acoustic detection

using cell phone devices is 40 m. This finding proves the hypothesis to be true at up

to 40 m rather than 100 m. To restate, cell phones are able to determine the weight

of a payload carried by a UAV from acoustic emissions at up to 40 m away ground

distance from the UAV.

There is little difference in accuracy between the GS8 and the RVMP for acoustic

payload detection from 7 m to 100 m. Additionally, the best configuration for the

HurtzHunter design is to use the GS8 with a CSVM. The CSVM has the fastest

runtime and the highest prediction accuracy across many scenarios. When using this

platform, the optimal range is 7 m to 40 m. There is a significant drop in accuracy

after 40 m which follows a quadratic curve. However, a 40 m range would prove useful

as the hazardous payloads in Table 4 have a blast radius of 4 m to 5 m, making the

accurate 40 m range for acoustic payload detection a safe distance. In other words,

the HurtzHunter design is capable of detecting a hazardous UAV before it becomes

lethal.
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6.4 Research Contributions

Past research accomplished acoustic payload detection at close range (7 m).

Their methodology used a high-quality microphone and a MacBook Pro as the record-

ing device [7][8]. This research expands the field by testing acoustic detection from 7

m to 100 m, and on many difference cell phone devices. To test these capabilities, this

research creates the HurtzHunter Prototype design. This design deploys 6 cell phone

devices and one high-quality microphone to collect acoustic emissions. The prototype

processes the acoustic data to build an AI capable of acoustic payload detection and

test the AI’s performance. The methodology in this research uses the HurtzHunter

prototype to test different scenarios, and the results show the HurtzHunter prototype

achieves 82.81 - 99.93% prediction accuracy based on the configuration. In short, this

research provides novel insight into the maximum range for UAV payload detection

using acoustic emissions and provides insight into the ability to use cell phone devices

or similar IoT devices for detection.

6.5 Limitations of This Research

The experiments in this research are conducted on the flight line at the Air Force

Bombing Range in Avon Park, FL. The limited access to this range contributes to

many limitations in this research. One limitation is that this research accomplishes

only one repetition of the experiments. The statistical analysis in this research is

limited by one repetition because there is zero degrees of freedom. Furthermore,

this research is limited to data collected in the environment of the bombing range.

Ideally, there would be acoustic data collected at different times from different envi-

ronments to prevent overfitting the data in the AI, but this is not possible under the

experimental limits of this research.

Also, this research only uses one drone for acoustic emissions. There was not
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enough time to fly multiple drones during experimentation. So, there is no away of

knowing if the AIs built in this research only work for the specific drone used in this

research or for every drone.

Wind and time of day are two major nuisance factors in this experiment. The

winds vary throughout the day in Avon Park, FL. Recordings made in the afternoon

include higher wind noise than those in the morning. Recordings with high wind noise

greatly decrease the prediction quality. In addition to wind, the data was collected

in august when the temperature and humidity are at its highest in Florida. The hot

humid climate may affect the amount of lift needed to fly a payload. If so, the acoustic

signatures may be different based on the climate, and a detection system built in one

environment may not work in another. This research is not able to assess the affect

of climate on the prediction accuracy because all the experiments were conducted in

one place.

6.6 Recommendations for Future Work

The experiment in this research needs to be conducted for multiple repetitions.

With more degrees of freedom, the researcher can determine at what distances or with

what recording devices there is a significant statistical difference between prediction

accuracy.

Future research needs to use the HurtzHunter design with multiple drones and

compare the results. Different drones may emit different acoustic signatures even

though they carry the same payload.

Acoustic emissions need to be collected in multiple different climates, at different

times of the day, and at different times of the year. Increasing the diversity of the

training and testing data for the AI in the HurtzHunter design provides evidence

for overfitting. If overfitting is present, new methodology is needed for an adequate
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acoustic detection system.

Wind noise and time of day greatly decrease the acoustic payload prediction

accuracy. Future work needs to study the exact cause for this decrease and how to

mitigate it.

This research finds the GS8 renders the best acoustic prediction accuracy. The

exact cause for this phenomenon is unknown, and this research makes the general

conclusion that older model cell phones perform better than new ones. Future work

is needed to verify this conclusion and determine the exact cause for better prediction

results from the GS8.

6.7 Summary

This research demonstrates the ability to use UAV acoustic emissions to identify

payload at up to 100 m away from the drone. This research develops the HurtzHunter

design to show the ability to use cell phone devices for payload detection. This design

is deployable on any small computing devices with recording capabilities similar to the

cell phone. Based on the configuration, the procedures demonstrated in this research

are capable of achieving a payload prediction accuracy between 82.81 - 99.93%.
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Appendix A. iTunes Conversion Instructions

To convert the .m4a to .wav file using iTunes follow these steps:

1. Open iTunes

2. Click ”edit” at the top left in the tool bar

3. Select Preferences

4. Select Import Settings...

5. In the Import Using Selection choose ”WAV Encoder”

6. Select ok

7. Select ok

8. Highlight the audio track to convert

9. Select File at top left in the tool bar

10. Select convert

11. Select Create Wave Version

12. After clicking ”Create Wave Version” a new version of the audio file is created

in the .wav format and exists in the computer’s file system where the iTunes

files are stored.
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Appendix B. Audacity Use Instructions

Use the following steps to create an audio recording and store the recording on

the computer:

1. Open Audacity

2. Create a new track: select ”Tracks”, then select ”Add New”, then select ”Mono

Track”

3 Set the Recording channel to mono, and ensure the microphone and speakers are

set the desired devices.

4. To start recording select the red circle at the top left.
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5. To stop recording press the square block at the top left of the screen to the right

of the green arrow.
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6. Select the track, then select file, Export, Export as WAV

After selecting Export as WAV, the computer’s file system will come up, save the

audio file where the user wants.
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