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Abstract

Many physical systems control or monitor important applications without the

capacity to monitor for malware using on-device resources. Thus, it becomes valuable

to explore malware detection methods for these systems utilizing external or off-device

resources. This research investigates the viability of employing electromagnetic (EM)

side-channel analysis (SCA) to determine whether a performed operation is normal

or malicious. A Raspberry Pi 3 was set up as a simulated motor controller with code

paths for a normal or malicious operation. While the normal path only calculated

the motor speed before updating the motor, the malicious path added a line of code

to modify the calculated speed. A script from a control terminal then sent a signal

to the Pi to have it conduct either the normal or malicious operation while an EM

probe was set up to collect emission traces of those operations. These traces were

split into training and testing data sets, with the training set used to train a support

vector classification (SVC) model. Afterwards, the model was run on the testing set

and achieved 96% classification accuracy for classifying the trace as either normal or

anomalous.
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MALWARE DETECTION USING ELECTROMAGNETIC SIDE-CHANNEL

ANALYSIS

I. Introduction

1.1 Background and Motivation

Across the defense and commercial sectors, control systems oversee and monitor

critical infrastructure. As technology has improved, a move has been made to inter-

connect these systems, which has increased their vulnerability profiles. Despite this

increased vulnerability, these systems lack on-device resources that could be used to

monitor for potential malware. Thus, it is beneficial to explore options of providing

malware detection using off-device resources.

More recently, malware attacks have started specifically targeting control systems.

Examples of such attacks include Stuxnet [1], Havex [2], as well as the attacks on the

Ukrainian power grid [3]. These demonstrate the need for malware detection options

for control systems.

As a response to such attacks against control systems, the US Industrial Con-

trol Systems Cyber Emergency Response Team (ICS-CERT) launched an assessment

program in 2009 to strengthen the security of control systems. As part of their op-

erations, they began publishing an annual report detailing the state of security [4],

with the first published in 2014. These show that the US is taking steps to address

control systems security.

1



1.2 Problem Statement

The inability of control systems to monitor themselves for malware presents a

weakness to their security. Thus, the questions that this research attempts to address

are:

• Can an external device, in this case an electromagnetic (EM) probe, provide

the capability of performing malware detection on a device.

• If malware can be detected, can the captured trace be decomposed to increase

the accuracy.

1.3 Research Goals/Objectives

The goals for this research are to be able to detect malware running on a device

utilizing an off-device resource such as an EM probe.

1.4 Hypothesis

This research hypothesizes that it is possible to detect anomalous activity using

unintended EM emissions from a device. Additionally, by dividing the captured traces

into intervals, it will be possible to more accurately detect anomalous activity.

1.5 Approach

To test the hypothesis, a Raspberry Pi will first be run in a bare metal environment

to emulate a motor controller. Next, an EM probe connected to an oscilloscope will

be used to capture emissions from the processing chip on the Pi. Then, a support

vector classification (SVC) machine learning algorithm [5] is used to predict the class

of a set of test data, which results in an accuracy metric for detecting malware.

2



1.6 Contributions

The research conducted contributes the demonstration of using direct unintended

EM emissions to detect anomalous code behavior in a motor controller. This research

also contributes the analysis of the captured data through time analysis, which better

distinguishes between normal and malicious operations and determining where the

malware occurs in the code. Lastly, this research contributes the documentation of a

probability prediction for detecting anomalous behavior, which would likely prove to

be more beneficial in an operational environment than direct classification.

1.7 Thesis Overview

The remainder of this document is as follows. Chapter II introduces technical

background information related to the research and discusses other research relevant

to this work. Chapter III covers the set up and design of the experiment, in addition

to the statistical methods used for modeling the captured data. Chapter IV expounds

upon the results of the experiments, laying out the captured data and the statistical

results related to that data. Chapter V analyzes the results, draws conclusions from

the research, and presents opportunities for future research to expand on this work.

3



II. Background and Literature Review

2.1 Overview

This chapter will briefly introduce topics relevant to the research conducted, as

well as cover previously researched works related to this topic.

2.2 Bare Metal Programming

A typical programmable logic controller (PLC) that oversees critical infrastructure

runs proprietary firmware. However, without access to such a PLC and the ability to

modify its code, an alternate test device needs to be used. One such device capable

of the desired functionality is a Raspberry Pi. The Pi normally runs with a Linux op-

erating system, which contains a cooperative scheduler. Because the scheduler could

impact the motor controller timing by preventing operations from running immedi-

ately when needed, the best method is to avoid it by running the Pi in a bare metal

environment. With this environment, the Pi can avoid the scheduler, but will need

to have each desired register to be used specified in the code. The Pi processor chip

runs on an Advanced RISC Machines (ARM) architecture, but many Broadcom pe-

ripherals for the chip, such as timers, general-purpose input/output (GPIO), universal

asynchronous receiver-transmitter (UART), and pulse-width modulation (PWM), are

accessible through their memory addresses. Information about these peripherals and

how to interact with them is accessible in the ARM peripherals documentation for

the specific chip [6]. An additional web page provides a mapping of the peripheral

registers to their memory addresses [7] allowing for mapping the registers in code.

2.3 Side Channel Analysis

Side-channel analysis (SCA) is the process of analyzing information about a de-

4



vice by observing a side channel off of that device. Some side channels are power

leakage, electromagnetic (EM) emissions, and timing and they are events that are

not considered as strongly when securing a device. More often, SCA is used as a

means of performing an attack, where an attacker takes advantage of designers not

considering power consumption or chip emissions in order to determine how a device

is operating. Traditional exploitation of a device typically involves gaining control of

the device through means such as hacking. A side channel attack attempts to use

the side channel, such as power leakage, to gain information about the operation of

the device. For instance, if a device draws different amounts of power each time it

encrypts data, an attacker could potentially use known data to recover information

about the encryption. Though SCA can be used for an attack, it can also be used

for defensive purposes. While attackers may take steps to hide themselves from the

network and host perspectives, they are significantly less likely take into consideration

power consumption and chip emissions.

2.4 Support Vector Machines

Support vector machines (SVMs) are statistical learning methods for performing

classification, regression analysis, and outlier detection. For this research, the classi-

fication capabilities were used. This allowed the data to be classed which can then

used to train a model to recognize the features of each class. After training the model,

the model can then be used to predict the class of test data. Alternatively, the model

can be used to perform a probability prediction of the classes, where it will return the

probability that a trace matches each of the trained classes rather than just returning

the predicted class.

5



2.5 Related Work

Early research into SCA theorized the possibility for exploitation, observing that

current flows through transistors used in semiconductor logic gates. By setting up a

small resistor in the circuit, researchers could determine and observe the power drawn

by the circuit, which could be used to demonstrate power SCA. Later researchers

extended the idea that a device could exploited via power leakage, altering it to see

if the same capability was possible through processor emissions. Kocher et al. [8]

and Messerges et al. [9] showed how differential power analysis (DPA) could be used

to recover parts of the Data Encryption Standard (DES) key used in smart cards.

These early researchers demonstrated the success that such attack methods could

have and paved the way for future SCA research. Following that success, Brier et

al. [10] examined correlation power analysis (CPA) as an alternative side-channel

attack method to DPA. The research addressed some problems with DPA that the

CPA method seems to address.

Spawning from these works, Hanley et al. began looking at template attacks in

order to recover the encryption keys [11]. Expanding on that, Lerman et al. looked

at utilizing machine learning to help relax some assumptions needed for a template

attack [12]. Along that same thread, Maghrebi et al. and Bartkewitz have looked

into using Deep Learning models and other machine learning techniques to perform

key recovery attacks or improve the success of those attacks [13] [14]. Others have

researched methods of improving SCA attacks, with Socha et al. [15] focusing on AES

implementations possible on a specific board, Xu and Heys [16] comparing static and

dynamic side-channel attacks against a masked S-box circuit, Vosoughi and Köse

[17] examining how distinguishers, described as classifiers that divide possible keys

into correct and incorrect, could be combined to enhance the success of attacks, and

Moos et al. [18] looking at various factors that could have an effect on information

6



extraction with static power analysis.

While there are numerous research efforts around side-channel attacks, there are

also efforts regarding how to protect against such attacks. Chevallier-Mames et al.

[19] introduced simple ways of altering an algorithm in a manner that could help it

be resistant to simple side-channel attacks. Fournaris et al. [20] examines several

real-time embedded system device attacks and discusses some countermeasures to

help prevent them.

Additionally, efforts are also being followed to see the effectiveness of SCA in de-

tecting malware running on a system. Clark et al. [21] presents a power analysis

method to monitor for malware in embedded medical devices, which would help en-

sure the security of crucial life-saving devices. This research focused on a need in the

medical community due to many necessary devices not being able to support updates

or antivirus software because of the manufacturer’s policy. Clark and the others set

up to measure system wide power consumption by measuring from the power outlet,

which they deemed possible due to medical devices having specific applications per

machine. For the research, the team used two devices, a pharmaceutical compounder

and a supervisory control and data acquisition (SCADA) device. To perform the

detection, the group used a supervised learning approach, using the mean, variance,

skewness, kurtosis, root mean square, global minimum and maximum, and interquar-

tile range as their features for training. The research successfully identified malware

it was trained on with 94% accuracy for the compounder and 99% accuracy for the

SCADA device, and identified malware it was not trained on with 88% accuracy for

the compounder and 85% accuracy for the SCADA device.

Shende and Ambawade [22] also uses power analysis as a means of detecting hard-

ware Trojans in a device. These two researchers fed numerous input vectors to a

circuit with and without a hardware Trojan. They then used mean, variance, root

7



mean square, median, and histogram as their features which they used with Principle

Component Analysis to reduce the number of variables in the data. Linear discrimi-

nant analysis (LDA) was used to differentiate between the non-Trojan variables and

the Trojan variables. After performing the reduction, LDA was able to completely

differentiate between the circuit with the Trojan and without the Trojan, due to the

circuit with the Trojan dissipating much more power than the other circuit.

Ding et al. [23] presents a Deep Learning model that observes power side-channels

of Internet of things (IoT) devices to determine any malicious activity. The group

focuses on Linux-based IoT devices, aiming to detect IoT malware attacks. They

evaluate several common attacks to determine any common operations and commands

used in infection and exploitation. To perform detection, they focus on the infection

activities, and split the process into four phases:

• Detection of suspicious signals.

• Preprocessing of suspicious signals.

• Inferring activities from suspicious signals.

• Infection process modeling and correlation analysis.

The first and second phases identify signals and attempt to remove any noise before

transforming the signal into a spectrogram for the later phases. The third and fourth

phases apply a Seq2Seq architecture with Long Short-Term Memory networks to

infer activity and then attempts to correlate the inferred activities with the infection

process earlier identified. Across five IoT malware tested, they achieved around 90%

accuracy on average.

Furthermore, more recently several efforts have been made in utilizing EM SCA

as a means of detecting malware. Han et al. [24] focused their efforts on control flow

integrity of PLC code execution. The group used frequency representations of EM
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signal sections to analyze their collected traces. With the representations, they train

a model to learn control flow transitions. By comparing later collected signals with

the learned transitions, the group attempts to alert on illegitimate control flows that

do not match. Evaluating the model on Allen Bradley PLCs, they achieved 98.9%

accurate detection of malicious code executions.

Sehatbakhsh et al. [25] propose a framework for detecting malware from EM emis-

sions. For their framework, the group transforms signals into a sequence of spectral

samples using short-time Fourier transform. They also devise a metric to determine

distance between samples, which corresponds to how likely the samples are to have

been produced by execution of the same code. After collecting and transforming sig-

nals, the framework is trained to separate the samples into an appropriate region of

code. Then, during monitoring, it compares the new sample to the current region

or a valid next region based on the training. It uses the distance measurement as

a means of classifying a sample into an unknown category, representing anomalous

behavior. Measuring across several devices and scenarios, the group achieved greater

than 98% accuracy with their framework in all cases.

Chawla et al. [26] propose a framework utilizing a fast Fourier transform (FFT)

and SVM and Random Forest based machine learning models. They apply the FFT

to their EM traces to perform feature extraction. After performing a dimension

reduction, the group trains a Random Forest model to learn non-linear complexities

of the feature space and a SVM model to divide the feature space. They selected a

Open-Q 820 Development Kit as the test device, running both malware detection and

malware classification tests. The detection phase used benign and malware data sets

and achieved 99% accuracy in detection. For the malware classification phase, the

group selected eight malware families, achieving 88% accuracy in classifying between

the different malware families.
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Khan et al. [27] propose a framework to compare EM emanations with a reference

dictionary using euclidean distance. After first capturing a trace, the group demodu-

lates, low-pass filters, and samples the trace before passing it on for signal processing.

They fill out the reference dictionary by collecting known safe EM signals and break-

ing down the signal into short-duration windows which serve as the dictionary entries.

When monitoring, the signal is likewise broken down into a short-duration window,

which is then compared to the entries in the dictionary using euclidean distance. The

group then reconstructs the signal using the best matching dictionary entry, and the

reconstructed signal is compared against the monitored signal for anomaly detection.

If a moving average of the squared difference of the two signals surpasses a threshold,

then it is determined that an anomalous behavior has been detected. Testing specific

attacks on a few different systems, their implementation achieved greater than 98%

accuracy in all cases.

In addition to the work examining embedded device processors, Ibrahim et al.

[28] have proposed a framework for verifying the authenticity of a USB flash drive

through its unintended magnetic emissions. In the research, the group was able to

uniquely identify certain brands and models of USB flash drive based on the magnetic

emissions during the boot procedure.

2.6 Summary

This chapter presents brief backgrounds on bare metal programming, side-channel

analysis, and Support Vector Machines to aid the reader in understanding topics

relevant to this research. Additionally, it discusses several related works relevant to

the research which may provide further information regarding SCA. It covers the early

implementation of side-channel attacks and how they were theorized, as well several

attack efforts that were spawned from that early research. It also touches on some
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attempts at preventing such attacks from being able to take place. It further touches

several efforts of using SCA from a defensive standpoint, similar to the goals of the

research presented in this paper.
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III. Methodology

3.1 Objective

The goal of this research is to determine whether electromagnetic (EM) side-

channel analysis (SCA) can be used to successfully distinguish between normal oper-

ations and anomalous activity on a simulated motor controller. To accomplish this,

a simple motor controller needed to first be developed to run normal and malicious

operations. The research then aims to test the sensitivity of the support vector ma-

chine (SVM) model created based on the location of the EM probe in relation to

the chip. Furthermore, the research examines the sensitivity of time alignment by

splitting the collected traces into three intervals. Building on the goal of splitting the

traces into thirds, the traces were set up as a sliding window to see if a specific section

could be identified as being the best at distinguishing between the two operations.

Finally, the collected operations were put together in a manner to attempt to create

an operational environment in order to see if the process could successfully identify

a single malicious operation in the midst of normal operations.

In order to accomplish these goals, the research was split into three parts. The

first part covers the process of setting up the environment and getting the simulated

motor controller running. The second part covers running the experiment to collect

the EM trace data. The third part covers training a SVM model with the captured

trace data and then using that model to perform analysis on a test group of data.

3.2 Assumptions

This research is conducted with three primary assumptions. First, the motor is

run at a fixed revolutions per minute (RPM) that does not vary except when it is

specifically changed. A varying RPM could affect the RPM calculations of future
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trials that is not accounted for in the code. Second, the motor load is constant. A

non-constant load could alter the RPM between trials, which would affect the RPM

calculations. Third, there is not any malware already present on the Raspberry Pi that

actively interferes with the research in some manner. If malware were present, but it

operated consistently between the designed normal and malicious operations, then it

should not affect the capture process and the end results. However, if malware were

present and operated differently for either of the designed operations, then that would

produce some undesired effect that would be captured and affect the end results.

Thus, it is assumed that the second situation is not the case.

3.3 Variables

Throughout the overall process the different parts need a way to identify the dif-

ference between a normal and a malicious operation, with the only difference between

the two being whether or not the malicious code segment executes. Where needed,

the value of 0 was assigned to normal operations, and the value of 1 was assigned

to malicious operations or anomalous activity, depending on whether the malicious

intent is already known. These values were then used in place of the operation type

when communicating across platforms. Additionally, when conducting the statistical

analysis, 0 and 1 were used as the classification for the two different operations when

training and testing the algorithm.

3.4 Experimental Setup

The process for collecting traces consisted of three main platforms. First, a Rasp-

berry Pi 3 simulated as a motor controller which ran either the normal or malicious

operation. Next, an oscilloscope and EM probe captured a trace from the processing

chip on the Pi. Lastly, a connected computer was set up to control which operation
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the Pi ran as well as collecting the captured trace from the oscilloscope and resetting

it for the next capture. The platforms were functionally laid out and connected as

shown in Figure 1.

The Raspberry Pi was connected to the control computer via USB to serial, con-

necting to universal asynchronous receiver-transmitter (UART) on the Pi. The Pi also

output a general-purpose input/output (GPIO) signal to serve as a trigger, which was

read by an oscilloscope probe. The oscilloscope was connected to the control com-

puter via Ethernet cable. The oscilloscope also connected via a coax cable to an EM

probe, which was positioned over the processing chip on the Pi.

3.4.1 Simulated Motor Controller

A Raspberry Pi 3 was set up to run with no operating system as a simulated

motor controller. The basic control loop that the Pi simulates is shown in Figure 2.

The C code for the main function can be found in Appendix B. With this setup, the

Raspberry Pi simulates the logic controller, and the motor simulates the plant. The

code base for the Pi begins with the uart1 program implemented by Zoldan Baldaszti

Figure 1: Functional layout of the experiment showing how each of the platforms
were connected
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and published on GitHub [29]. This provided the basic bare metal environment and

communication between the Pi and the control computer. Additional functionality to

alter the code for the purposes of this research was added. Several threads from the

Raspberry Pi forums provided assistance in understanding how certain components

were manipulated [30], [31], [32]. First, the Pi would set up a pulse-width modulation

(PWM) signal which is output to a motor driver that drives a low-power (LP) 6V

motor. The output from the connected motor encoder is then used as input to the Pi.

Using rising edge detection on that input to generate a event that can be monitored,

the Pi checks a system counter to determine the time between rising edges. This

time between rising edges is used to calculate the period of the motor and then the

RPM speed. Based on the calculated RPM, a check is made to see if the motor is

spinning either too fast or too slow, passing the check if it does not meet either of

those conditions. If the motor RPM fails the check, the PWM signal is updated to

either speed up or slow down. The C code for the basic control loop can be found in

Appendix C under the normOp function.

To add in a malicious path, code was added to subtract from the calculated RPM.

The rest of the code path remains the same, however the subtracted value replaces the

Figure 2: Diagram of base control loop of simulated motor controller
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correctly calculated value for motor speed. The updated control loop highlighting the

addition of a malicious effect is shown in Figure 3. As seen in the figure, the malicious

path adds in its components after the normal RPM calculations but before the PWM

updates. The C code for the malicious effect can be found in appendix C under the

malOp function.

The program running on the Raspberry Pi begins by setting up the UART connec-

tion to the control computer, using Baldaszti’s UART code. It then sets up and starts

the motor. After the motor has had time to reach its designated starting speed, the

program waits for an input from the control computer to determine which operation

type should be run, which also uses Baldaszti’s UART code. The program will then

enter the code segment for the provided operation. Inside that operation, the Pi will

set a GPIO output high, after it has detected rising edges from the motor, to signal

the oscilloscope trigger for collection. Before exiting the operation, the Pi will set

the GPIO output low, signalling the end of that capture. Thus, the motor controller

code allows the EM trace collection to target the segment inside of the two operation

types. The overall code flow on the Raspberry Pi is shown in Figure 4.

Figure 3: Diagram of control loop of simulated motor controller adding malicious
code path
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Figure 4: Diagram of the overall code flow on the Raspberry Pi

3.4.2 Oscilloscope

An oscilloscope was set up with an EM probe that was positioned above the

processing chip on the Pi in order to capture traces when the Pi performs the des-

ignated operations. The various locations for the probe positioning are discussed in

Section 3.6.1 below and shown in Figure 6. An oscilloscope probe is connected to

a GPIO output from the Pi which serves as a trigger signal for the scope. When

the trigger signal goes high, the scope will begin capturing and keeping the collected

trace from the EM probe. The oscilloscope can then pass the trace to the control

computer before a new trace is started, so that an individual trace can be obtained

for every operation that is run.

3.4.3 Control Computer

A desktop computer was set up as the controller of the overall environment in

order to tell the Pi which operation to run and also pull back captured traces from

the oscilloscope. It was connected to the Raspberry Pi via a USB to serial connection,

which allowed for bytes to be sent to and from the Pi. Using this connection, the

computer would send the byte of the desired operation to be run to the Pi. The

computer was connected to the oscilloscope via Ethernet. This connection allowed

the computer to control the oscilloscope, which was used to reset the oscilloscope to
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single capture mode and to retrieve the individual traces.

3.5 Collection

With the environment set up, the control computer ran the experiment to collect

traces. The computer did this through a Python script executed from the command

line. The Python code can be found in Appendix D, with the code flow for the script

shown in Figure 5. The script begins by setting up a connection to the oscilloscope,

and then slightly later a connection to the Raspberry Pi. It then generates an array

of 25,000 zeros and an array of 25,000 ones. After combining the two, it randomizes

the order of them to provide variation in the operation being run. Next, it loops

through the combined array. In the loop, it begins by rearming the oscilloscope for

the trigger to successfully allow for the capture of relevant signal data. It then sends

either a binary zero or one to the Pi over the serial connection to have the Pi run the

appropriate operation. The code next collects the captured trace information as well

as the trace for the trigger signal. Using the trigger signal, it tracks the minimums

and maximums of the region of interest between the earliest time the trigger goes high

until the latest time the trigger goes low. The loop ends by storing each retrieved

trace into an array for either normal traces or malicious traces depending on the

operation. After the loop, the code trims the the arrays down to just within the

region of interest, resulting in the same number of samples across the arrays which

is necessary for the machine learning. The collection experiment can then save the

arrays of traces for further analysis.

From a simple examination of several traces, it appeared that every trace had an

initial response to the trigger signal being set high. It also appeared that this trigger

response lasted for about 100 samples, with the duration being consistent across

traces. Thus, the first 100 samples were removed from the traces prior to actually
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Figure 5: Diagram of the overall code flow for the Python collection script to generate
and retrieve traces

running the machine learning parts of the analysis, since the trace during that time

does not contain any capture related to the code execution of the motor controller.

As a simple means of testing for a difference between the normal and malicious

operations, the average traces for each operation are plot against each other. If

there is a difference between the operations, it would be expected that the average

traces diverge at some point. In order to verify that any divergence is due to the

identification of a difference in code, the collection experiment is repeated with no

difference between the operations. The average traces for the operations when they

are the same are then plotted against each other. It would be expected that the

average traces for the operations when they are the same are either exactly identical

or have very minimal differences.

3.6 Statistical Analysis

The statistical analysis is first followed to determine if it is possible to detect

anomalous activity. Later statistical analysis was then divided into four additional

main efforts:

• Varying probe location in order to test the sensitivity of the SVM model to the

location.

• Splitting into intervals to test the sensitivity of the SVM model to time align-

ment.
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• Further time dividing and sliding across the trace to identify specific sections

that produce the most sensitive SVM model.

• Creating a scenario to mimic an operational environment in order to test the

capability of probability prediction.

These efforts contained several steps that were common across the initial analysis

and each effort. Since the trace data pulled from the oscilloscope included additional

data not needed for analysis, the traces were reformatted to only include the amplitude

data. As mentioned in Section 3.5, the first 100 samples of the traces were removed.

Then, the traces were divided into five sets of 10,000 traces each, which were evenly

split between normal and malicious operations. These sets were then further split

into training and testing groups for use with a machine learning model to produce

statistical results, with 5,000 traces put in the training group and 5,000 traces put

in the test group. The support vector classification (SVC) implementation from the

Scikit-learn library [5], which performs the classification functionality of a SVM, to

first train a model on the training data, with the classes being either normal or

anomalous, represented by a 0 and 1. After training the model, the model was

used with the test data to generate predictions on the class of the each trace in

the test group. Comparing the predicted class of each trace with the original class

allows for a calculation of the number of true and false positives as well as true

and false negatives. Using these results, the overall accuracy of the predictions can

be determined, along with precision and recall of the predictions, for each set. If

the initial analysis determines that anomalous activity can be detected, then the

additional efforts can be investigated.

Equation (1) shows accuracy is defined as the number of correctly identified traces,

true positives (TP) and true negatives (TN), over the total number of traces, TP and

TN as well as false positives (FP) and false negatives (FN). The total number of
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traces will be the number of traces in the test group, which is 5,000.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Equation (2) shows precision is defined as the number of traces correctly identified as

anomalous, TP, over the total number of traces identified as anomalous, TP and FP.

Precision =
TP

TP + FP
(2)

Equation (3) shows recall is defined as the number of traces correctly identified as

anomalous, TP, over the total number of traces that actually were anomalous, TP

and FN.

Recall =
TP

TP + FN
(3)

Precision and recall provide an alternate means of assessing prediction performance.

Low precision indicates too many FP, which creates extra work for a defender. Low

recall indicates too many FN, which means the most threatening malware could go

unnoticed. In the event that both precision and recall are around the same value as

accuracy, then accuracy successfully accounts for those situations.

3.6.1 Varying Probe Location

The code for this effort is found in Appendix E. The entire collection process was

completed four times for various locations of the probe in relation to the processing

chip on the Pi. The locations were empirically determined to test the sensitivity of

the SVM model to the location of the probe. First, the probe was centered over the

chip, which was performed as the initial phase of analysis. It is expected that this

location would have the best results from statistical analysis due to being directly

over the primary emission source, where it is expected that the most electrons are
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flowing to create the strongest EM field. Second, the probe was set up over one of

the edges of the chip. This location is still partly over the primary emission source,

so there should still be some ability to pick up the EM field and distinguish between

the two operations, but it is expected that there is some drop from the accuracy of

the centered location. Third, the probe was set up over a different part of the board

that primarily performed an unused function. At this location, there is definitely an

expectation that the accuracy would drop when compared to the centered location

because there is no known electron flow directly beneath the probe, however it is still

expected to have some ability to predict between the two operations due to emissions

from the chip and other components on the board. Last, the probe was set up without

the Pi underneath it in order to do a baseline test of capturing air. This test checks

to confirm that there is no external means of a signal leaking into the trace, and it

is expected to have an accuracy of around 50%. The first probe location was used

initially as the means of testing the hypothesis, then the other locations were tested

to account for other factors that may have impacted the results. Prior to running

any experiments at each probe location, the shielding around the probe was reset so

that the bottom of the shield was even with the bottom of the probe. Once each

location has been evaluated, confidence intervals for the accuracy at each location

are calculated. Then, a Student’s two-sided t-test is conducted between the location

with the highest accuracy and the other locations. The t-test produces a p-value. If

the p-value produced is less than 0.05, then the null hypothesis that the two accuracy

arrays are the same can be rejected. Thus, a p-value less than 0.05 indicates the

accuracy of each location is statistically different. Figure 6 shows the probe locations

relative to the Pi chip.

22



(a) Centered on chip (b) Side of chip (c) Off chip (d) Capturing air

Figure 6: Location of EM probe relative to the Raspberry Pi chip

3.6.2 Split into Thirds

After completing the analysis for the various probe locations, the location with

the highest accuracy was selected for future efforts. The sets were then divided into

three intervals, and the procedure for calculating accuracy was repeated for each of

the thirds. To accomplish this, the training and testing section was split into three

parts, covering the first, middle, and last thirds, with each third training a model

and testing it on the appropriate data from that third. Due to requirements that the

training and test data have the same number of samples in the trace, the originally

trained model from the previous effort could not be used. It is expected that the last

third will have the lowest accuracy since it contains the segments where the Pi reverts

to a busy waiting after finishing the operation. The accuracy of the first and middle

thirds is heavily dependent on where the divergence in the code appears in the trace.

If the code divergence is captured in the middle third of the trace, then it is expected

that the accuracy of the middle third would be the highest. If the code divergence is

captured in the first third, then the first third would be expected to have the highest

accuracy, although carry-through effects could still result in the middle third having

a high accuracy as well. There are a few traces where the end of the operation, and

thus the end of the relevant trace, falls near the end of the middle third, which would

skew the accuracy of the middle third slightly lower than the accuracy of the first
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third for the same reason that the accuracy of the last third is expected to be lower.

Once each third has been evaluated, confidence intervals for the accuracy at each

location are calculated. Then, a t-test is conducted between the accuracy of each

third to determine if each accuracy is statistically different from the others.

3.6.3 Sliding Window

After having split the trace into three intervals, it is possible to further examine

the trace by creating a window that steps through the traces. For this method, a

window size and step size need to be defined. The window size is the number of

samples that will be included in each slice. The step size is the number of samples

that the slice is increased by for each trial. Since the end of operations occurs in the

last third of the capture traces, the sliding window is set up to run through the first

two thirds of the traces. Additionally, the first 100 samples of the traces are included

for this test in order to get the full picture. This test is first run with a window size

of 100 samples and a step size of 50 samples, so the first trial would run the test

on trace samples 0-100, the second trial would run the test on trace samples 50-150,

and so forth. The test is then repeated with a window size of 50 samples and a step

size of 25 samples, so the first trial would run the test on trace samples 0-50, the

second trial would run the test on trace samples 25-75, and so forth. To accomplish

this functionality, an additional loop is used for the training and testing section to go

through the total number of steps needed to get though the section of the trace used.

The accuracy of just the section that the sliding window includes is then calculated.

While previous efforts predicted the class to determine the statistical results, this

effort only calculates the resulting accuracy, since that is the only statistic of interest

for this effort. This further narrows down the window to best identify the location of

the traces that results in the highest accuracy. After determining the region for the

24



highest accuracy, statistical analysis is conducted on that region as was done in the

previous efforts. The statistical results for the region can then be compared to the

previous statistical results.

3.6.4 Mimicking Operational Environment

After completing the previous efforts, it should be visible that there is some de-

tectable difference between a normal and a malicious operation. However, these tests

are performed outside of an operational environment and might not necessarily be

indicative of how well it could perform in real world. Thus, a test was created to

attempt to mimic an operational environment. The previous efforts fully predicted

the class. This effort utilizes the probability prediction capability, which returns the

probability that a test trace is in the normal or malicious class. Since this scenario is a

two class problem, only the probability that a trace is normal is considered to simplify

the analysis. To set up this test, a single malicious operation is put in the middle

of several normal operations. This scenario is then compared against the previously

trained model and the probability that each operation is normal is determined. Using

those probabilities provides a glimpse at how a similar setup might be used in an op-

erational environment, since it would be more realistic to use classification probability

rather than direct classification.

3.7 Summary

This chapter discusses the methodology to collect traces from a Raspberry Pi 3.

Additionally, it discusses the tests used to examine the captured traces in order to

achieve an accuracy of predictions on the classification of those traces. These tests

look at the overall accuracy for several EM probe locations, accuracy of a probe

location when that data was split into thirds, accuracy of the data when further
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time divided into smaller slices, and usefulness of a probe collect in an operational

environment.
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IV. Results and Analysis

4.1 Overview

This chapter presents the results from the methodology efforts outlined in Chap-

ter III. The average of both the normal and malicious traces is presented for the

collection efforts. For the statistical analysis efforts, the results are presented for

the four tests that were described: varying the electromagnetic (EM) probe loca-

tion, splitting the captured traces into three intervals, creating a sliding window that

steps through the captured traces, and creating a scenario to attempt to mimic an

operational environment.

4.2 Collection

After having collected traces for all 50,000 operations run, the normal and mali-

cious operations were averaged together and then plotted to provide an initial look

at how two operations might differ. As seen in Figure 7, there do appear to be some

identifiable differences between a normal and a malicious operation. These differences

appear to begin, on average, at sample 500. Based on the code that was used for the

operations, this time in the trace corresponds with where it would be expected for

the differences to begin occurring.

For comparison, the averages of the traces when the code segments were the same

can be seen in Figure 8. As seen in the plot, the average traces in this scenario are

essentially identical, demonstrating that the differences detected in Figure 7 are due

to a branch in the code paths.
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Figure 7: Plot of the average of all 25,000 normal and all 25,000 malicious traces

Figure 8: Plot of the average of all 25,000 normal and all 25,000 malicious traces
when the code segments were the same

28



4.3 Statistical Analysis

With the traces collected, statistical analysis can now be applied to distinguish

between the normal and malicious classes. In each of the statistical analysis efforts,

the support vector classification (SVC) method was used to predict between classes,

which could then be compared against the actual class to generate statistical results.

In early testing, the linear discriminant analysis (LDA), quadratic discriminant analy-

sis (QDA), and nu-support vector classification (NuSVC) classification methods from

the Scikit-learn library were also tried, but the SVC method provided the best clas-

sification results. The statistical values for the initial phase of the experiment to

determine whether anomalous activity can be detected are shown in Table 1. As

seen in the table, the overall accuracy across all of the sets is 95.98%. Additionally,

precision and recall also fall near that value, indicating that accuracy captures all

relevant results. From this, we can determine that there is some detectable difference

between the normal and malicious operations, allowing the additional efforts to move

forward.

Table 1: Statistical Results for Centered Probe Location

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 95.54 96.54 95.94 95.88 95.98 95.98%± 0.024
Precision 94.41 96.54 96.44 95.05 94.74 95.43%± 0.066
Recall 96.74 96.50 95.39 96.67 97.24 96.51%± 0.045

4.3.1 Varying Location

For the first location where the EM probe was centered over the Pi chip, the

results from the initial phase. The statistical values for that experiment were shown

in Table 1.

The statistical values for the experiment with the EM probe located over the side
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of the chip are shown in Table 2. As seen in the table, the overall accuracy across all of

the sets is 82.33%, which indicates that there is still a detectable difference between

the normal and malicious operations. Again, the precision and recall fall near the

accuracy. Compared to the experiment with the probe centered over the chip, there

is a drop-off in all of the statistical results. The results match the expectation that

the centered location would have higher accuracy than the side location.

Table 2: Statistical Results for Side Probe Location

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 82.86 81.94 81.76 82.76 82.32 82.33%± 0.032
Precision 82.19 82.61 80.25 82.18 82.64 81.98%± 0.066
Recall 83.80 81.20 83.14 83.05 81.65 82.57%± 0.073

The statistical values for the experiment with the EM probe off chip are shown in

Table 3. As seen in the table, the overall accuracy across all of the sets for the off chip

location is 81.00%, which still indicates there is a detectable difference between the

operations. As before, precision and recall results are close to the accuracy, although

the spread is larger for this experiment. Compared with the previous experiments,

there is another drop-off in the statistical results, which matches the expectations for

this location.

Table 3: Statistical Results for Off Probe Location

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 80.38 81.00 81.76 81.08 80.78 81.00%± 0.034
Precision 77.04 81.47 82.62 81.74 79.30 80.43%± 0.150
Recall 85.10 80.83 81.12 79.77 83.15 81.99%± 0.142

The statistical values for the experiment with the EM probe just capturing air

are shown in Table 4. As seen in the table, the overall accuracy across all of the sets

is 50.74%. This indicates for this experiment that accuracy was as good as a coin
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flip to determine the difference between a normal and malicious operation. Since this

experiment was not capturing any intended operations, this result is exactly what is

expected.

Table 4: Statistical Results for Air Probe Location

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 50.94 51.22 49.86 50.90 50.80 50.74%± 0.035
Precision 51.81 51.61 49.83 51.60 51.25 51.22%± 0.054
Recall 44.63 50.24 46.22 45.37 48.89 47.07%± 0.160

Each of the confidence intervals covering the accuracy for each of the four probe

locations are plotted out in Figure 9. The confidence intervals fall within the bound-

aries of the markers in the image, with each interval plotted separately in Figure 10

to highlight each interval.

From the results and plot, it appears that the centered location provides the

best distinction between normal and malicious operations, and should be the data

Figure 9: Means with confidence intervals for the accuracy of each of the four probe
locations
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(a) Centered on chip (b) Over side of chip

(c) Off of the chip (d) Capturing air

Figure 10: Expanded means with confidence intervals for the accuracy of each of the
four probe locations

set used for future experiments. In order to validate this, a t-test should first be

conducted to verify that the accuracy results are statistically different. The t-test

between the accuracy of the centered on chip location and the side of chip locations

was p = 2.6× 10−11, showing that these two accuracy results are statistically different.

Conducting the t-test between the accuracy of the centered on chip and off of chip

locations resulted in p = 1.5× 10−11, also showing that the two accuracy results are

statistically different. Thus, future experiments can continue using the centered on

chip data set.
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4.3.2 Splitting into Thirds

With the centered on chip data set, each of the traces are now split into three

intervals, and the statistical values for each third are calculated. Due to the SVC

method needing the same number of samples in the training group and test group,

the previously trained models are not able to be used, so new models for each third are

trained. The statistical values for the first third of the samples are shown in Table 5.

As seen in the table, the overall accuracy of the first third is 97.23%. Of note, this

is more accurate than the accuracy of all the samples in the trace, suggesting that

performance of malware detection could potentially work better by just looking at

the first third of the trace samples. This also indicates that the divergence of the

code paths for the two operations occurs in the first third of the trace samples for

this scenario.

Table 5: Statistical Results for First Third of Samples

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 96.40 97.42 97.38 97.80 97.14 97.23%± 0.035
Precision 95.31 97.18 96.41 97.36 96.85 96.62%± 0.055
Recall 97.71 97.69 98.45 98.29 97.50 97.93%± 0.028

The statistical values for the middle third of the samples are shown in Table 6.

As seen in the table, the overall accuracy of the middle third is 94.50%. Since it

appears that the divergence of the code paths occurs in the first third, this accuracy

matches the expectation that it is less than the accuracy of the first third. Also, since

predictions are still fairly accurate, it indicates a carry-through effect after the code

path divergence in the rest of the trace.

The statistical values for the last third of the samples are shown in Table 7. As

seen in the table, the overall accuracy of the last third is 86.19%. This matches the

expectation that the last third would be the least accurate. Although, there does still
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Table 6: Statistical Results for Middle Third of Samples

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 93.76 94.74 94.88 94.78 94.32 94.50%± 0.031
Precision 94.77 96.32 96.34 95.11 95.93 95.70%± 0.048
Recall 92.82 93.06 93.35 94.47 92.66 93.27%± 0.048

seems to be a detectable difference between normal and malicious operations, again

indicating the carry-through effect.

Table 7: Statistical Results for Last Third of Samples

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 85.32 86.46 87.12 86.02 86.04 86.19%± 0.044
Precision 86.30 87.46 88.82 86.11 88.70 87.48%± 0.086
Recall 84.46 85.20 85.07 86.07 82.86 84.73%± 0.080

Each of the confidence intervals covering the accuracy of the thirds are plotted out

in Figure 11. Additionally, the confidence intervals for the overall accuracy of the data

set is included for comparison. The confidence intervals fall within the boundaries

of the markers in the image, with each interval plotted separately in Figure 12 to

highlight the intervals.

From the results and plots, the different thirds appear to be different. To verify

this, a t-test is conducted between each accuracy, like was done for the probe locations.

The t-test between the accuracy of the first and middle thirds was p = 2.2× 10−5.

The t-test between the accuracy of the first and last thirds was p = 2.0× 10−9. The

t-test between the accuracy of the middle and last thirds was p = 1.4× 10−8. Thus,

the accuracy for each of the thirds are statistically different of the other thirds.
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Figure 11: Means with confidence intervals for the accuracy of each of the thirds

4.3.3 Sliding Window

Having examined the accuracy when the traces are split into three intervals, a

window that steps across the traces can be created to attempt to further narrow the

location where the code divergence occurs. While previous experiments cut out the

first 100 samples of a trace, this experiment includes those beginning samples. The

accuracy for a 100 sample window with a 50 sample step size are shown in Figure 13.

The accuracy for the window covering the first 100 samples are close to 50%,

again justifying the decision to exclude those samples when running the previous

experiments. Further examining the plot, it appears that the accuracy remains close

to 50% for the first 400 samples, and the accuracy begins to rise after around 10

steps. Figure 14 shows the most accurate region from the previous figure. With the

expanded plot, it is easier to see that the most accurate windows occur at samples

500-600, or after 10 steps, at samples 550-650, or after 11 steps, and at samples 600-

700, or after 12 steps. This gives an overall range of samples 500-700 for the most
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(a) Overall accuracy (b) First third

(c) Middle third (d) Last third

Figure 12: Expanded means with confidence intervals for the accuracy of each of the
thirds

accurate region.

The window and sample size can be further reduced to 50 sample windows with a

25 sample step size to produce Figure 15. This plot with the smaller window shows

a larger drop between the first higher accuracy region and the later high accuracy

regions. It also shows that the areas between these higher accuracy regions trend

closer towards 50%, which is not visible in the plot with the larger window size. It

appears that the most accurate region begins after around 20 steps, which is shown

in Figure 16. From the expanded plot, the region spans from samples 525-575 after

21 steps until samples 625-675 after 25 steps. This gives an overall range of samples

525-675 for the most accurate region.
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Figure 13: Accuracy of sliding window with a 100 sample window and a 50 sample
step size

Figure 14: Most accurate windows from Figure 13 of 100 sample window and 50
sample step size
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Figure 15: Accuracy of sliding window with 50 sample window and 25 sample step
size

Figure 16: Most accurate windows from Figure 15 of 50 sample window and 25 sample
step size
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The determined range for the most accurate region from the sliding windows is

now applied to the graph of the trace averages from Figure 7. Focusing on just the

region around samples 500-700, shown in Figure 17, the traces show a noticeable

difference from each other in this region. Beginning around sample 500-525, the two

traces appear to fully separate from each other in a distinct manner that continues

to around sample 700, where the difference between the traces significantly subdues,

although it is still not as close of a match as before reaching this region.

From the sliding window and comparison back to the trace averages, it seems that

the overall experiment could be repeated just around the sample 500-700 region and

the statistical results should be the around the same. Thus, that was done, and the

statistical results are shown in Table 8.

The 95.82% accuracy from just the most accurate sample region is only slightly

off of the 95.98% accuracy from the overall accuracy. However this is less accurate

than the 97.23% accuracy from the first third of samples, so the region could still be

Figure 17: Trace averages around most accurate region from the sliding windows
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Table 8: Statistical Results for Region of Samples 500-700

Description Set 1 Set 2 Set 3 Set 4 Set 5 Mean of Sets
Accuracy 95.64 96.22 95.52 96.10 95.60 95.82%± 0.021
Precision 95.75 96.03 95.41 96.16 94.50 95.57%± 0.044
Recall 95.68 96.45 95.64 96.04 96.72 96.11%± 0.032

tuned to improve accuracy results.

4.3.4 Mimicking Operational Environment

Although previous experiments show that normal and malicious operations can

be distinguished from each other, they are not necessarily representative of an oper-

ational environment where there might only be a single malicious operation in the

midst of countless normal operations. In order to attempt to emulate an operational

environment, the probability predictions from the SVC method would be more bene-

ficial than the normal prediction. An example of the predicted probabilities that the

test traces in the first set represents normal is shown in Figure 18. As seen in the

figure, most of the probabilities fall close to zero or one, which indicates that it would

work as an emulated operational environment.

For the operational environment, 20 normal operations are run, then a single

malicious operation, then 10 additional normal operations, which is repeated in five

sets. The probability that each operation is normal is shown in Figure 19. Since the

trials start at zero, the malicious operation corresponds with trial 20. From the figure,

it appears that all of the malicious operations were correctly identified as malicious

for all of the sets because none of the points at trial 20 are above 0.5.

Further focusing on just the trials that are identified as malicious as shown in

Figure 20, where the probability is less than 0.5, false positives can also be examined

to expand on the usability of this method. From the plot, there are five false positives

across all of the sets, with one set having two false positives, and another set not
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Figure 18: Probabilities that test data is a normal operation

Figure 19: Probabilities that simulated operational event is a normal operation

having any false positives. Additionally, each of the false positives have a higher

probability than the true positives, meaning there is less certainty that they are not
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normal. Thus in an operational environment, the probability levels could potentially

be used as a factor in what type of check needs to occur in response to an event.

Figure 20: Probabilities less than 0.5 for simulated operational events
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4.4 Summary

This chapter covers the results for the tests presented in Chapter III. For the

varying EM probe locations, the location where the probe was centered over the chip

performed the best, with a 95.98% classification prediction accuracy. When splitting

the trace into three intervals, the first third achieved a best 97.23% classification

prediction accuracy. By creating a window to step through the trace, the region for the

best accuracy was found to be between samples 500-700 of the trace. When simulating

an operational environment, all malicious operations were successfully predicted as

malicious, although there were five false positives. However, this still shows that this

type of malware detection scheme could work in an operational environment.
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V. Conclusions

5.1 Overview

This chapter summarizes the results. Additionally, it discusses the significance of

those results. Finally, the chapter will provide potential future areas of research that

could be followed and investigated.

5.2 Research Conclusions

From testing the various probe locations relative to the Raspberry Pi chip, the

location that was directly over the chip had the highest classification accuracy of

95.98%. Likewise, when splitting the traces into three intervals, the first third had

the highest classification accuracy of 97.23%, while the middle third wasn’t too far

behind, with a classification accuracy of 94.50%. In conducting a sliding window

test through the traces, the region contained between samples 500-700 was found to

yield the highest classification accuracy, and by reducing the tests down to just this

region, the classification accuracy was 95.82%. While this accuracy is comparable to

the accuracy of the overall trace, it falls short of the accuracy of just the first third,

showing that other trace information can help contribute to a higher accuracy. Lastly,

utilizing the probability prediction results in a probability that an individual trace is

either a normal operation or a malicious operation, which could be used and tuned

in an operational environment to determine whether an operation needs to be looked

into.

5.3 Significance

The results of the tests show that it is possible to detect malware using electromag-

netic (EM) side-channel analysis (SCA). Furthermore, the tests show that splitting
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up the trace can produce a higher classification accuracy than using just the overall

trace. The most accurate results would likely come from identifying where the split

between normal and malicious might occur and utilizing the trace from that point on

for classification. The location where the split might occur could be determined by

understanding how an attacker could target the system and create an effect. Addi-

tionally, the tests using the probability prediction show that these methods could be

viable in an operational environment as a means of malware detection.

5.4 Future Work

There are several paths that future research could follow. These possible directions

are presented below.

• Increase the distance between the probe and the chip. The current setup has

the probe close to the chip, which likely would not be possible in an opera-

tional environment. Thus, future research could look at extending the distance

between the probe and the chip while still maintaining an accuracy above 90%.

• Expand the number of malicious operations being tested for. In this research,

the only operations were normal and a single operation that was classified as

malware. However, in the real world, there may be multiple different families

of malware that could potentially target the same device. Thus, future research

could examine adding another malware operation and look into classification

results that distinguish between each operation.

• Focus on detecting a specific malware. While malware operation used in this

research may have been inspired by a real world malware, it was not in fact a

real malware. Thus, future research could look at setting up the experiment to

use an actual malware sample for the malware operation.
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• Expand on the use of the probability prediction. The probability prediction

capability seems like it would be more useful operationally than direct classifi-

cation, since it provides a score on anomalous activity. Thus, future research

could focus specifically on the probability prediction for classification to fully

explore it capabilities.

• Attempt to determine some sort of trace signature that could be pulled from the

research. This research performed a sort of anomaly based malware detection,

which requires being able to test a device that is free of malware in order to

build the normal profile. However, in order to actually implement this setup, it

would be beneficial to have a trace signature for malware. With that, the setup

could be placed with a device that is already in use, and it would still be able

to function without conducting a baseline to build the normal profile. In this

case, malware could potentially be detected even if it were already on a device

prior to the setup being installed.
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Appendix A. Additional Results

While going through the initial testing, it seemed that the average of the traces

provided a good indication of whether the two operations would be distinguishable

as well as where in the trace those differences began. Comparing the averages from

Figure 7, where the code segments are different, and Figure 8, where the code segments

are the same, it can be seen how the averages show the operations separating in the

traces. Thus, the code for the malicious operation was altered and the average traces

recomputed in order to see how the new code might affect the averages.

First, the subtraction for the revolutions per minute (RPM) calculation was moved

from being on its own line to be on the same line as where it was initially calculated.

The average traces plot for this situation is shown in Figure 21. As can be seen in

the plot, there is a split in the averages. Additionally, this split still occurs around

sample 500 like previously, suggesting the compiler has created the machine code in

basically the same manner.

Next, the subtraction for the RPM calculation was moved to be in the section that

checks if the value is too fast or too slow. The average traces plot for this situation

is shown in Figure 22. As can be seen in the plot, there is a split in the averages that

also appears to occur around sample 500.

After these tests, the RPM subtraction location was reset, but the value being

subtracted was changed to be much smaller to see if that would affect the outcome.

The average traces plot for this situation is shown in Figure 23. As can be seen in the

plot, the split between the averages is still present. This indicates that the presence

of an additional machine code instruction is being picked up on.

Lastly, the RPM subtraction for the malicious operation was kept, but the code

for it was also added into the normal operation. So the only difference between the

two code segments was the size of the value being subtracted, which for the normal
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Figure 21: Plot of the average of all 25,000 normal and all 25,000 malicious traces
when the RPM subtraction is done on the same line as the initial calculation

Figure 22: Plot of the average of all 25,000 normal and all 25,000 malicious traces
when the RPM subtraction is done in the check to update the motor speed
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Figure 23: Plot of the average of all 25,000 normal and all 25,000 malicious traces
when the RPM subtraction is of a smaller value

operation was 1 and for the malicious operation was 3. The average traces plot for

this situation is shown in Figure 24. As can be seen in the plot, there is still a split

between the two averages. However, there is much more overlap at later points than

in the other plots.
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Figure 24: Plot of the average of all 25,000 normal and all 25,000 malicious traces
when the RPM subtraction is done in both the normal and malicious operations
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Appendix B. Main C Code

1 #include "uart.h"

2 #include "simOp.h"

3 #include "gpio.h"

4

5 /* PWM registers */

6 #define PWM_CTL (( volatile unsigned int*)(MMIO_BASE +0

x0020C000))

7 #define PWM_RNG1 (( volatile unsigned int*)(MMIO_BASE +0

x0020C010))

8 #define PWM_DAT1 (( volatile unsigned int*)(MMIO_BASE +0

x0020C014))

9

10 #define CM_PWMCTL (( volatile unsigned int*)(MMIO_BASE +0

x001010A0))

11 #define CM_PWMDIV (( volatile unsigned int*)(MMIO_BASE +0

x001010A4))

12

13 void main()

14 {

15 // initiallize character for operation

16 char op;

17

18 // initialize serial console

19 uart_init ();

20

21 uart_puts("Beginning program\n");

22

23 // start motor before running programs

24 register unsigned int r;

25 volatile unsigned int* p;
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26 volatile unsigned int* q;

27 // set up clock for pwm

28 *PWM_CTL = 0;

29 p = CM_PWMCTL;

30 q = CM_PWMDIV;

31 *p |= (0x5A << 24)|(0 << 4);

32 while(*p & (1 << 7)); // wait for clock to have stopped

33 *q = (0x5A << 24) |(32 << 12)|(0 << 0); // 19.2 MHz divided by 32 (

val shifted 12) . 0 (val shifted 0)

34 *p = (0x5A << 24)|(1 << 0)|(1 << 4); // the |(1<<4) needs to be on

this line to work

35 // *p |= (1 << 4);

36 while (!(*p & (1 << 7))); // wait for clock to have started

37 // start generating pwm using gpio 12

38 *PWM_RNG1 = 96; // further divide the 19.2 MHz/(val shifted 12) by

this to get frequency of pwm signal

39 *PWM_DAT1 = 60; //58-67 gives 60 -70% duty cycle , 25% - 24, 50% -

48, 75% - 72, 80% - 77

40 r = *GPFSEL1; // taken from gpio pin int divide by 10

41 r &= ~(7 << 6); // taken from (gpio % 10) * 3, clears those bits

42 r |= (4 << 6); // sets mode to altfunc0 for pin (which is pwm0 on

gpio 12)

43 *GPFSEL1 = r;

44 *PWM_CTL = (1 << 7)|(1 << 0);

45 // set up gpio 16 for input and to look for rising edge

46 r = *GPFSEL1; // taken from gpio pin int divide by 10

47 r &= ~(7 << 18); // taken from (gpio % 10) * 3, clears those bits

48 r |= (0 << 18); // sets mode to input for pin

49 *GPFSEL1 = r;

50 *GPREN0 |= (1 << 16); // sets gpio 16 to modify GPEDS on rising

edge

51
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52 // wait 20 cycles to try to give the motor time to reach the set

speed

53 for(int k = 0; k < 20; k++)

54 {

55 while (!(* GPEDS0 & (1 << 16)));

56 *GPEDS0 |= (1 << 16);

57 }

58

59 // read input characters

60 while (1)

61 {

62 // get input off uart

63 op = uart_getc ();

64 // if 1, run malware operation , if 0, run normal operation

65 if(op == ’1’) //not sure if I need to do character comparison

66 {

67 uart_puts("\n");

68 uart_puts("Running malware operation\n");

69 malOp ();

70 uart_puts("Malware op complete\n");

71 }

72 else if(op == ’0’) // might want to have as else if to account

for potential error inputs that aren’t 1 or 0

73 {

74 uart_puts("\n");

75 uart_puts("Running normal operation\n");

76 normOp ();

77 uart_puts("Normal op complete\n");

78 }

79 else if(op == ’q’) // allow user choice of exiting

80 {

81 uart_puts("\n");
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82 uart_puts("Quitting program\n");

83 break;

84 }

85 else if(op == ’r’) // provide option to reset motor speed

86 {

87 uart_puts("\n");

88 uart_puts("Resetting motor speed\n");

89 *PWM_DAT1 = 60;

90 }

91 // in case want to account for possible input errors on device

side

92 else

93 {

94 uart_puts("Input error. Value not a 0 or 1, or q to stop.\n");

95 }

96 // reset the starting motor speed

97 //*PWM_DAT1 = 60; // use if running multiple rounds in one test

98 }

99 // turn off motor

100 *PWM_CTL &= ~((1 << 0)|(1 << 8));

101 uart_puts("Program complete\n");

102 while (1);

103 }
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Appendix C. Simulated Operation Code

1 #include "uart.h" // for debugging

2 #include "gpio.h" // needed for the trigger

3

4 /* PWM registers */

5 #define PWM_CTL (( volatile unsigned int*)(MMIO_BASE +0

x0020C000))

6 #define PWM_STA (( volatile unsigned int*)(MMIO_BASE +0

x0020C004))

7 #define PWM_DMAC (( volatile unsigned int*)(MMIO_BASE +0

x0020C008))

8 #define PWM_RNG1 (( volatile unsigned int*)(MMIO_BASE +0

x0020C010))

9 #define PWM_DAT1 (( volatile unsigned int*)(MMIO_BASE +0

x0020C014))

10 #define PWM_FIF1 (( volatile unsigned int*)(MMIO_BASE +0

x0020C018))

11 #define PWM_RNG2 (( volatile unsigned int*)(MMIO_BASE +0

x0020C020))

12 #define PWM_DAT2 (( volatile unsigned int*)(MMIO_BASE +0

x0020C024))

13

14 #define CM_PWMCTL (( volatile unsigned int*)(MMIO_BASE +0

x001010A0))

15 #define CM_PWMDIV (( volatile unsigned int*)(MMIO_BASE +0

x001010A4))

16 #define SYS_TIME_CLO (( volatile unsigned int*)(MMIO_BASE +0

x00003004))

17 volatile int rpm = 0;

18

19 void normOp ()
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20 {

21 volatile int timer_first = 0;

22 volatile int timer_next = 0;

23 volatile int period = 0;

24

25 register unsigned int r;

26 volatile unsigned int* p;

27

28 // trigger for scope capture , using gpio 26

29 r = *GPFSEL2; // 2 taken from gpio pin int divide by 10

30 r &= ~(7 << 18); // 18 taken from (gpio % 10) * 3, clears those

bits

31 r |= (1 << 18); // sets mode to output for pin

32 *GPFSEL2 = r;

33

34 // wait for rising edge

35 while (!(* GPEDS0 & (1 << 16)));

36 // get system time

37 timer_first = *SYS_TIME_CLO;

38 *GPEDS0 |= (1 << 16);

39 r=5; while(r--) { asm volatile("nop"); }

40

41 // wait for next rising edge

42 while (!(* GPEDS0 & (1 << 16)));

43 // get next system time

44 timer_next = *SYS_TIME_CLO;

45 *GPEDS0 |= (1 << 16);

46

47 // set trigger on gpio 26 high

48 p = GPSET0;

49 *p = (1 << 26);

50
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51 // calculate difference between two times , which should give

period of 1 cycle

52 period = timer_next - timer_first;

53

54 // motor cycles 12 times for a full rotation

55 period = 12 * period;

56 // timer , and thus period , is in microseconds , so need to convert

to minutes

57 // because of int math , do conversion when calculating rpm

58 // rpm is effectively 1 / period , account for conversion to

minutes in numerator

59 rpm = 1000000 * 60 / period; // -1 for double

60

61 // check if the rpms are within a set value

62 if(rpm < 2500) // period of 2000 us

63 {

64 // adjust rpm to be faster

65 if(* PWM_DAT1 < 85) // avoid duty cycle >90%

66 {

67 *PWM_DAT1 += 2;

68 }

69 }

70 else if(rpm >= 10000)

71 {

72 // situation where rpm calculation definitely wrong , so don’t

change anything

73 }

74 else if(rpm > 5000) // period of 1000 us

75 {

76 // adjust rpm to be slower

77 if(* PWM_DAT1 > 25) // avoid duty cycle <25%

78 {
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79 *PWM_DAT1 -= 2;

80 }

81 }

82

83 // set trigger low and turn off pwm

84 p = GPCLR0;

85 *p = (1 << 26); // sets gpio 26 low

86 }

87

88 void malOp()

89 {

90 volatile int timer_first = 0;

91 volatile int timer_next = 0;

92 volatile int period = 0;

93

94 // trigger for scope capture , using gpio 26

95 register unsigned int r;

96 volatile unsigned int* p;

97 r = *GPFSEL2; // 2 taken from gpio pin int divide by 10

98 r &= ~(7 << 18); // 18 taken from (gpio % 10) * 3, clears those

bits

99 r |= (1 << 18); // sets mode to output for pin

100 *GPFSEL2 = r;

101

102 // wait for rising edge

103 while (!(* GPEDS0 & (1 << 16)));

104 // get system time

105 timer_first = *SYS_TIME_CLO;

106 *GPEDS0 |= (1 << 16);

107 r=5; while(r--) { asm volatile("nop"); }

108

109 // wait for next rising edge
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110 while (!(* GPEDS0 & (1 << 16)));

111 // get next system time

112 timer_next = *SYS_TIME_CLO;

113 *GPEDS0 |= (1 << 16);

114

115 p = GPSET0;

116 *p = (1 << 26);

117

118 // calculate difference between two times , which should give

period of 1 cycle

119 period = timer_next - timer_first;

120

121 // motor cycles 12 times for a full rotation

122 period = 12 * period;

123 // timer , and thus period , is in microseconds , so need to convert

to minutes

124 // because of int math , do conversion when calculating rpm

125 // rpm is effectively 1 / period , account for conversion to

minutes in numerator

126 rpm = 1000000 * 60 / period; // -500 here for one line; -3 for

double

127

128 // report that rpm is slower than calculated

129 rpm = rpm - 500;

130 //rpm = rpm - 2; // for smaller sub

131

132 // check if the rpms are within a set value

133 if(rpm < 2500) // period of 2000 us; sub 500 from rpm here for

other check

134 {

135 // adjust rpm to be faster

136 if(* PWM_DAT1 < 85) // avoid duty cycle >90%
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137 {

138 *PWM_DAT1 += 2;

139 }

140 }

141 else if(rpm >= 10000)

142 {

143 // situation where rpm calculation definitely wrong , so don’t

change anything

144 }

145 else if(rpm > 5000) // period of 1000 us; sub 500 from rpm here

for other check

146 {

147 // adjust rpm to be slower

148 if(* PWM_DAT1 > 25) // avoid duty cycle <25%

149 {

150 *PWM_DAT1 -= 2;

151 }

152 }

153 // set trigger low

154 p = GPCLR0;

155 *p = (1 << 26); // sets gpio 26 low

156 }
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Appendix D. Experiment Collection Code

1 import ivi

2 import numpy as np

3 #import re

4 import pylab

5 import time

6 import serial

7 import scipy.io as sio

8

9 t = time.localtime ()

10 current_time = time.strftime("%H:%M:%S", t)

11 print(current_time)

12

13 # create variable for number of each type of trial

14 num_trial = 25000

15 # set up scope to be able to communicate with it

16 scope = ivi.lecroy.lecroyWR104XIA("TCPIP0 ::192.168.1.11:: inst0 ::

INSTR")

17 # create array of random 1’s and 0’s to send to device

18 #opType = np.random.randint(2,size =(15000)) # increase to above

10000

19 # create array of 1’s and 0’s, then randomize order to send to

device

20 ops = np.zeros(num_trial , dtype=int)

21 ops = np.append(ops , np.ones(num_trial , dtype=int), axis =0)

22 opType = []

23 randperm = np.random.permutation(num_trial *2)

24 for i in randperm:

25 opType.append(ops[i])

26 opType = np.array(opType)

27 # initialize arrays to hold trace data for the normal and malware
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operations

28 normOp = []

29 malOp = []

30 # initialize variables to hold the minimum rising and maximum

falling edge indices of the trigger

31 rise_min = 0

32 fall_max = 0

33 # initialize serial connection

34 ser = serial.Serial(’/dev/ttyUSB0 ’, 115200) # verify device to use

as port , based on what usb -to -serial cable connects as

35

36 for op in opType:

37 # rearm the scope for a new trace capture before each

transmission to the device

38 scope.measurement.initiate ()

39

40 # initialize variables for rising and falling edges of each

trial

41 rise = 0

42 fall = 0

43

44 # send the operation type to the device to run either the normal

or malicious operation

45 # tests with variable weren ’t successful , so using if statements

46 if op == 0:

47 ser.write(b’0’)

48 elif op == 1:

49 ser.write(b’1’)

50 else:

51 print("Error with sending operation type")

52 time.sleep (1)

53 exit()
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54

55 # capture the trace data points from the scope

56 waveform = scope.channels [0]. measurement.fetch_waveform ()

57 # capture the trigger data points to narrow the window of

interest

58 trigger = scope.channels [2]. measurement.fetch_waveform ()

59 # calculate the rough indices where the trigger rises and falls

60 for i,volt in enumerate(trigger [1]): # find min rise and max

fall to give each event same number

61 if volt > 1.5 and rise == 0:

62 rise = i - 1

63 elif volt < 1 and rise != 0 and fall == 0:

64 fall = i + 1

65 # determine if need to update minimum rising edge and maximum

falling edge

66 if rise < rise_min or rise_min == 0:

67 rise_min = rise

68 if fall > fall_max:

69 fall_max = fall

70 # based on the value that was sent , add the points that were

just captured to the appropriate array

71 if op == 0:

72 # normOp.append(points)

73 normOp.append(waveform)

74 elif op == 1:

75 # malOp.append(points)

76 malOp.append(waveform)

77 else:

78 # if there was some issue with the value that was sent ,

print an error message and exit

79 print("Error with sending operation type")

80 time.sleep (1)
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81 exit()

82 # restrict the captures to just between the edges from the trigger

83 for i,op in enumerate(normOp):

84 op = [op[j][ rise_min:fall_max] for j in range (2)]

85 normOp[i] = op

86 for i,op in enumerate(malOp):

87 op = [op[j][ rise_min:fall_max] for j in range (2)]

88 malOp[i] = op

89 # convert the arrays to numpy arrays

90 normOp = np.array(normOp)

91 malOp = np.array(malOp)

92

93 # calculate and print out number of normal and malicious operations

94 numNorm = int(np.size(normOp)/np.size(normOp [0]))

95 numMal = int(np.size(malOp)/np.size(malOp [0]))

96 print(numNorm , "normal operations ,", numMal , "malicious operations")

97

98 # save the numpy arrays for use elsewhere

99 #np.save(’normOp.npy ’, normOp)

100 #np.save(’malOp.npy ’, malOp)

101

102 # set up dictionary to export as mat file for use in matlab

103 #norm = np.delete(normOp , 0, 1)

104 #mal = np.delete(malOp , 0, 1)

105 #norm = np.reshape(norm , (num_trial , int(np.size(norm [0]))))

106 #mal = np.reshape(mal , (num_trial , int(np.size(mal [0]))))

107 #mdic = {}

108 #mdic[’norm_same ’] = norm

109 #mdic[’mal_same ’] = mal

110 #sio.savemat(’same_sub.mat ’, mdic)

111

112 print("Experiment complete")
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113 t = time.localtime ()

114 current_time = time.strftime("%H:%M:%S", t)

115 print(current_time)
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Appendix E. Machine Learning Code

1 import numpy as np

2 import scipy.stats as stat

3 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

as LDA

4 from sklearn.discriminant_analysis import

QuadraticDiscriminantAnalysis as QDA

5 from sklearn.model_selection import train_test_split

6 from sklearn.svm import SVC

7 from sklearn.svm import NuSVC

8 import sys

9 import scipy.io as sio

10

11 sample_size = 100 # num samples per division for the fingerprinting

12 exp_size = 0 # will hold the minimum between number of malicious

and normal operations

13 num_tests = 5 # number of trials to split the two sets into

14 test_size = 0 # will hold the exp_size divided by the num_tests

15

16 sklearn_svc = SVC()

17

18 if len(sys.argv) == 3:

19 # load the saved data from the input operations

20 normArg = sys.argv [1]

21 malArg = sys.argv [2]

22 normOp = np.load(normArg)

23 malOp = np.load(malArg)

24 else:

25 # load the saved data from the pre -selected operations

26 normOp = np.load(’normOp.centered.npy’) # centered , side , or off

, or air
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27 malOp = np.load(’malOp.centered.npy’) # centered , side , or off ,

or air

28

29 # determine the minimum between the two number of operations and

resize each array to that min

30 exp_size = int(min(np.size(normOp)/np.size(normOp [0]),np.size(malOp)

/np.size(malOp [0])))

31 normOp = normOp [: exp_size]

32 malOp = malOp [: exp_size]

33 test_size = int(exp_size / num_tests)

34

35 # extract just the voltage data from each trial of the operation for

checking accuracy with just values

36 norm = np.delete(normOp , 0, 1)

37 mal = np.delete(malOp , 0, 1)

38 norm = np.reshape(norm , (exp_size , int(np.size(norm [0]))))

39 mal = np.reshape(mal , (exp_size , int(np.size(mal [0]))))

40 # remove first 100 samples since not really distinguishable

41 norm = np.array(norm [: ,100:])

42 mal = np.array(mal [: ,100:])

43

44 # split arrays into the number of tests

45 test = []

46 for i in range(num_tests):

47 test.append(norm[i*test_size :(i+1)*test_size ])

48 test.append(mal[i*test_size :(i+1)*test_size ])

49 test = np.array(test) # numpy array of numpy arrays , can be

confusing to understand

50 # create X and y from the test array

51 X = test [0]

52 y = []

53 for i in range(test_size):
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54 y.append (0)

55 for i in range(1, num_tests *2):

56 X = np.append(X, test[i], axis =0)

57 if (i%2) ==0:

58 for i in range(int(np.size(test[i])/np.size(test[i][0]))):

59 y.append (0)

60 else:

61 for i in range(int(np.size(test[i])/np.size(test[i][0]))):

62 y.append (1)

63 y = np.array(y)

64

65 # create array of predictions for the number of tests

66 y_pred = []

67 y_actual = []

68 for i in range(num_tests):

69 X_train , X_test , y_train , y_test = train_test_split(X[i*

test_size *2:(i+1)*test_size *2 ,400:600] , y[i*test_size *2:(i+1)*

test_size *2], test_size =0.5)

70 y_pred.append(sklearn_svc.fit(X_train , y_train).predict(X_test))

71 y_actual.append(y_test)

72

73 # determine values for true and false positives and negatives

74 true_pos = [] # malicious predicted as malicious

75 true_neg = [] # normal predicted as normal

76 false_pos = [] # normal predicted as malicious

77 false_neg = [] # malicious predicted as normal

78 for j,pred in enumerate(y_pred):

79 tpos = 0

80 tneg = 0

81 fpos = 0

82 fneg = 0

83 for i,cls in enumerate(pred):
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84 if y_actual[j][i] == cls:

85 if cls:

86 # case where true positive (malicious predicted as

malicious)

87 tpos = tpos + 1

88 else:

89 # case where true negative (normal predicted as

normal)

90 tneg = tneg + 1

91 else:

92 if cls:

93 # case where false positive (normal predicted as

malicious)

94 fpos = fpos + 1

95 else:

96 # case where false negative (malicious predicted as

normal)

97 fneg = fneg + 1

98 true_pos.append(tpos)

99 true_neg.append(tneg)

100 false_pos.append(fpos)

101 false_neg.append(fneg)

102 # normal accuracy is true_neg / (true_neg + false_pos)

103 norm_acc = []

104 for tneg ,fpos in zip(true_neg ,false_pos):

105 norm_acc.append(tneg / (tneg + fpos))

106 # malicious accuracy is true_pos / (true_pos + false_neg)

107 mal_acc = []

108 for i in range(num_tests):

109 mal_acc.append(true_pos[i] / (true_pos[i] + false_neg[i]))

110 # precision is true_pos / (true_pos + false_pos)

111 precision = []
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112 for tpos ,fpos in zip(true_pos ,false_pos):

113 precision.append(tpos / (tpos + fpos))

114

115 # mean accuracy from the predictions output

116 calc_mean_acc = []

117 for i in range(num_tests):

118 calc_mean_acc.append (( true_pos[i] + true_neg[i]) / (np.size(

y_pred[i])))

119 print("SVC mean accuracies:")

120 for acc in calc_mean_acc:

121 print("%.2f%%" % (acc *100) , end=" ")

122 print("\nAccuracy mean:", np.mean(calc_mean_acc))

123 print("Accuracy variance:", np.var(calc_mean_acc))

124

125 # print precision as well as normal and malicious accuracies

126 print("\nPrecision:")

127 for prec in precision:

128 print("%.2f%%" % (prec *100) , end=" ")

129 print("\nPrecision mean:", np.mean(precision))

130 print("Normal operation accuracies:")

131 for nacc in norm_acc:

132 print("%.2f%%" % (nacc *100) , end=" ")

133 print("\nNormal mean:", np.mean(norm_acc))

134 print("Malicious operation accuracies:")

135 for macc in mal_acc:

136 print("%.2f%%" % (macc *100) , end=" ")

137 print("\nMalicious mean:", np.mean(mal_acc))

138 # save statistical results as matlab dictionary

139 #mdic = {}

140 #mdic[’airAcc ’] = calc_mean_acc

141 #mdic[’air_precision ’] = precision

142 #mdic[’air_norm_acc ’] = norm_acc
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143 #mdic[’air_mal_acc ’] = mal_acc

144 #sio.savemat(’air.mat ’, mdic)

145 # save trace as numpy array

146 #calc_mean_acc = np.array(calc_mean_acc)

147 #np.save(’mean_acc.npy ’,calc_mean_acc)

71



Bibliography

1. Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.stuxnet dossier. Technical

report, Symantec Security Response, 2011.

2. Julian Rrushi, Hassan Farhangi, Clay Howey, Kelly Carmichael, and Joey Dabell.

A quantitative evaluation of the target selection of havex ics malware plugin. In

Industrial Control System Security (ICSS) Workshop, 2015.

3. F-Secure Labs. Blackenergy & quedagh: The convergence of crimeware and apt

attacks. Technical report, F-Secure Labs, 2014.

4. NCCIC and ICS-CERT. Ics-cert annual assessment report fy2016. Technical

report, NCCIC, 2016.
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15. Petr Socha, Jan Brejńık, and Matěj Bart́ık. Attacking aes implementations using

correlation power analysis on zybo zynq-7000 soc board. 2018 7th Mediterranean

73



Conference on Embedded Computing, MECO 2018 - Including ECYPS 2018, Pro-

ceedings, pages 1–4, 2018.

16. Jiming Xu and Howard M. Heys. Template attacks of a masked s-box circuit:

A comparison between static and dynamic power analyses. 2018 16th IEEE

International New Circuits and Systems Conference, NEWCAS 2018, pages 277–

281, 2018.
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