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Accomplishments 
  
What were the major goals and objectives of the project?  
 
This project is an extension of a previous NOPP project (N00014-15-1-2300) aimed at developed 
a coupled model interface between the Regional Ocean Modeling System (ROMS) and the NRL 
Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) using the Earth System 
Modeling Framework (ESMF) National Operational Prediction Capability (NUOPC). An 
additional component of the original NOPP project was to develop the interface between ROMS 
and the Data Assimilation Research Testbed (DART) and update existing COAMPS-DART 
capabilities. With this in mind the following is a summary of the goals of this extension project: 
 

(1) Final testing of the ROMS data ESMF-NUOPC cap files. 
(2) Implement the recent release of the NUOPC layer that formally allows nesting between 

ESM components.  
(3) Completion of a manuscript comparing the ROMS-DART and ROMS-4D-Var data 

assimilation systems. 
(4) Preparation of the COAMPS Indian Ocean configuration for coupling with ROMS. 
(5) Complete the updated DART-COAMPS interface. 
(6) Coupling of COAMPS and ROMS in the Indian Ocean. 

 
What was accomplished towards achieving these goals? 
 
While most of the primary goals of this project were accomplished, some proved to be more 
technically challenging than originally anticipated and there were insufficient resources available 
to complete goal (5). As noted above, this is a follow-on project for N00014-15-1-2300 Toward 
the Development of a Coupled COAMPS-ROMS Ensemble Kalman Filter and Adjoint with a 
focus on the Indian Ocean and the Intraseasonal Oscillation. Therefore, for convenience, 
continuity, and transparency, the major accomplishments related to the goals of both projects 
combined are described in the three appendices below.  
 
 
 
 



(a) Coupled modeling 
 
While the original focus of the project was the Indian Ocean and intraseasonal variability, it was 
important to first develop and test the ROMS-COAMPS coupling framework in a region that is 
very familiar to the ROMS and COAMPS PIs involved in this project. For that reason, we chose 
to first test the coupled model system configured for the U.S. west coast (see also 
https://www.myroms.org/wiki/Model_Coupling_WC12 ). Some of the scientific outcomes of 
this work are described in Appendix A where the ability of the coupled model to recover the 
observed relationships at the air-sea interface was explored. The scientific outcomes of the 
coupled ROMS-COAMPS system configured for the Indian Ocean are described in Appendix B 
where the influence of air-sea coupling on the path of two tropical storms was explored using the 
ensemble members generated by an EnKF. While data assimilation in the fully coupled model 
was ultimately beyond the scope of this project, the work presented in both appendices does 
address the influence of data assimilation in the ocean component alone on coupled model 
behavior. 
 

(b) The ROMS-DART EnKF 
 
The ROMS-DART EnKF data assimilation system developed during this project is documented 
in the published paper by Moore et al. (2020) which is included in this report as Appendix C. In 
this paper we quantified the relative performance of the EnKF and the existing ROMS 4D-Var 
data assimilation system in two configurations of ROMS, namely, the U.S. west coast and the 
Indian Ocean. Observing System Experiments (OSEs) using real observations and synthetic 
observations from Observing System Simulation Experiments (OSSEs) were considered. 
 
What opportunities for training and professional development did the project provide? 
 
Nothing to report. 
 
How were the results disseminated to communities of interest? 
 
A paper describing the relative performance of the ROMS-DART ensemble adjustment Kalman 
filter and the ROMS-4D-Var data assimilation systems was published in Progress in 
Oceanography: 
 
Moore, A.M., Zavala-Garay, J., Arango, H.J., Edwards, C.A., Anderson, J. and T. Hoar, 2020: 
Regional and basin scale applications of ensemble adjustment Kalman filter and 4D-Var ocean 
data assimilation systems. Progress in Oceanography, 189, 
https://doi.org/10.1016/j.pocean.2020.102450. 
 
What honors or awards were received under this project in this reporting period?  
 
Nothing to report. 
 
 
 



Technology Transfer 
 
Nothing to report. 
 
Participants 
 
 
Name    Role    Person Months 
 
Andrew Moore  PI/PD     4 
Hernan Arango  Co-Investigator   7 
James Doyle   Co-Investigator   1 
Christopher Edwards  Co-Investigator   1 
Sasa Gabersek   Co-Investigator   2 
Javier Zavala-Garay   Co-Investigator   4 
 
Students 
 
Nothing to report. 
 
Products 
 
Publications- 
 
Moore, A.M., Zavala-Garay, J., Arango, H.J., Edwards, C.A., Anderson, J. and T. Hoar, 2020: 
Regional and basin scale applications of ensemble adjustment Kalman filter and 4D-Var ocean 
data assimilation systems. Progress in Oceanography, 189, 
https://doi.org/10.1016/j.pocean.2020.102450. 
 
Keywords: Ensemble Kalman filter; 4D-Var; California Current; Indian Ocean. 
Peer-reviewed. 
Federal support is acknowledged. 
 
Other products- 
 
The ESMF-NUOPC layer is now part of the official release of the ROMS community code 
available from https://www.myroms.org. See also 
https://www.myroms.org/wiki/Model_Coupling_ESMF for technical details.  
 
The ROMS interface for DART is also available as part of the DART software package from 
https://dart.ucar.edu.  
 
  



APPENDICES: ACCOMPLISHMENTS 
 

Appendix A: Air-Sea Interactions at the Ocean Mesoscale in a Regional Coupled 
Atmosphere-Ocean Model of the California Current System 

 
1. Introduction 
 
The nature of the coupling between the atmosphere and the ocean at the ocean mesoscale has 
been a subject of relatively intense investigation during the last decade or two. One of the most 
influential studies that is particularly relevant here is that of Chelton et al. (2007; hereafter 
CSS07) who explored air-sea interactions within the California Current System (CCS). Using 
satellite-derived observations of sea surface temperature (SST) and surface wind stress, CSS07 
demonstrated conclusively how air-sea interaction induces changes in the divergence and curl of 
the surface wind stress in the vicinity of SST fronts. As shown in several earlier studies (e.g. 
Businger and Shaw, 1984), wind stress increases over warm water and decreases over cold 
water, as illustrated schematically in Fig. 1a (from CSS07). Despite the fairly complicated nature 
of the marine boundary layer response to the presence of an SST front (e.g. Samelson et al., 
2006; Spall, 2007), it is found that a linear relationship emerges between wind stress curl and the 
crosswind component of the SST gradient, and between the wind stress divergence and the 
downwind component of the SST gradient. The local control of wind stress curl induced by SST 
at the mesoscale is particularly noteworthy, since enhancements in local upwelling and 
downwelling in the CCS due to this mechanism may be significant compared to other factors 
(e.g. Pickett and Paduan, 2003; Huyer et al., 2005; Dever et al., 2006). 
 

 
Figure 1: (a) A schematic representation of the influence of an SST front on wind stress. Regions of enhanced wind 
stress curl (∇ × 𝝉) and wind stress divergence (∇ ∙ 𝝉) are indicated in relation to the orientation of the wind direction 
and the front. (b) The spatial variations in wind stress curl (colors) and the crosswind component of the SST gradient 



(contour lines) derived from spatially high-pass filtered AMSR-E and QuikSCAT observations on 18 August 2002. 
(c) A binned scatter plot of wind stress curl vs the crosswind component of SST gradient based on summertime 
(June-Sept) AMSR and QuikSCAT observations for the period 2002-2005. The error bars represent one standard 
deviation and the best fit straight line through the mean values in each binned interval is also shown. The line slope 
𝑠 = 2.13 represents the coupling coefficient between the wind stress curl and crosswind SST gradient. Note that in 
(c) the units of ∇ × 𝝉 are N m-2 per 104 km and the units of SST gradient are °C per 100 km. All figures are from 
CSS07. 
 
Figure 1b from CCS07 shows an example of the relationship between microwave observations of 
SST from AMSR-E and surface wind stress estimates derived from the QuikSCAT 
scatterometer. Both data sets have been spatially high-pass filtered using a loess smother with a 
half power cut-off of 75 km. This removes the large-scale features of the atmospheric and 
oceanic circulation which are generally coupled in the more traditional equilibrium sense of Gill 
(1980) and Lindzen and Nigam (1987) following wave adjustment. At the ocean mesoscale, 
however, inertial overshoot of the SST front by marine boundary layer winds can modify the 
downstream air-sea coupling relationships, and spatial high-pass filtering is necessary to identify 
the important correlations between the atmosphere and oceanic eddies and fronts. Specifically, 
Fig. 1b shows the wind stress curl and the crosswind component of the SST gradient of the high-
pass filtered observations on a single day (18 August 2002) and reveals the remarkable degree of 
spatial coherency between the two fields. Figure 1c (also from CSS07) shows a binned 
scatterplot of summertime (June-September) wind stress curl and the crosswind SST gradient for 
the high-pass filtered data, for the period 2002-05. The linear relation between the two is striking 
and the slope of the best-fit straight line to the bin means is routinely taken as a measure of the 
coupling strength between the atmosphere and ocean. 
 
Generally, CSS07 found that the strong SST gradients and fairly steady wind conditions that 
persist over much of the CCS during summer are favorable for strong air-sea interaction. 
Conversely, the weaker SST gradients and highly variable winds during winter do not favor such 
pronounced air-sea interactions. In addition, the orographic influences of major coastal 
promontories on wind stress curl, such as in the lee of Cape Blanco and Cape Mendocino, are 
also found to weaken its correlation with crosswind SST gradients. 
 
O’Neill et al. (2012) have also found that the linear relationship between wind stress curl and 
crosswind SST gradient, and wind stress divergence and downwind SST gradient are a 
ubiquitous feature of western boundary currents and in much of the Southern Ocean (see also 
O’Neill et al., 2005). Although, in these cases the atmosphere-ocean coupling strength is 
strongest during winter when the air-sea temperature difference is largest. 
 
There are also a growing number of modeling studies that confirm the findings from 
observations. For example, Haack et al. (2008) found comparable relationships between SST 
gradients and wind stress using a high-resolution version of COAMPS (9km) configured for the 
CCS. Similarly, Small et al., (2008) document the results of several experiments using regional 
coupled ocean-atmosphere models, including the CCS (Seo et al., 2007), which also agree 
qualitatively with the observations. However, both horizontal and vertical resolution are 
important factors that can limit a model’s ability to realistically capture important features of the 
air-sea coupling at the ocean mesoscale. 
 



In addition to the influence of SST gradients on surface wind stress, there are other air-sea 
interaction processes that can significantly influence the ocean mesoscale circulation at mid-
latitudes, particularly in relation to ocean eddies. As discussed by the detailed and inciteful study 
of Gaube et al. (2015), there are two additional air-sea interactions that have an important 
controlling influence on ocean eddies.  
 
The first involves the impact of the relative motion of the ocean and atmosphere on the surface 
wind stress. Specifically, from the bulk formula, the surface wind stress can be expressed as 𝝉 =
𝜌!𝑐"|(𝑼! − 𝒖#)|(𝑼! − 𝒖#) where 𝑼! and 𝒖# are the surface wind and ocean current velocities, 
respectively. Thus, when the wind and current are generally in the same (opposite) direction, the 
wind stress magnitude is weakened (strengthened). In the presence of eddies, the change in wind 
stress across an eddy leads to a change in the wind stress curl. The vorticity induced by the 
change in wind stress curl is opposite to that of the eddy, and the associated Ekman pumping 
velocity acts to attenuate the eddies by generating upwelling in anticyclonic eddies and 
downwelling in cyclonic eddies.  
 
A second important interaction between the atmosphere and mesoscale ocean eddies involves the 
torquing action that results from the interaction of the surface wind stress with the vorticity 
gradient of the ocean surface currents (Dewer and Flierl, 1987). This results in dipoles of Ekman 
pumping within the interiors of mesoscale eddies which act to displace the eddies depending on 
the direction of the prevailing wind. 
 
Based on observations, Gaube et al. (2015) have explored the relative size of the Ekman 
pumping velocities induced in middle-latitude eddy cores by the three air-sea interaction 
mechanisms summarized above. In general, the influence of the surface torque and the relative 
motion between the surface winds and ocean currents typically dominate, while the SST-induced 
changes in surface wind stress curl are generally the least important. The combined influence of 
all three processes is to attenuate ocean eddies on timescales ~100-1000 days. 
 
This appendix summarizes an investigation of the degree of air-sea interaction at the ocean 
mesoscale in a regional coupled model of the CCS. The coupled model is described in section 2 
and the experimental set-up in section 3. An analysis of the sensitivity of air-sea coupling 
strength on atmospheric horizontal resolution, the bulk formulation of surface wind stress, and 
weakly coupled data assimilation is presented in section 4. A summary and conclusions follows 
in section 5. 
 
2. Coupled Model Description 
 
The coupled model used in this study was developed as part of this ONR-funded project and 
comprises the Regional Ocean Modeling System (ROMS) coupled to the atmospheric 
component of the NRL Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS). 
Communication between ROMS and COAMPS was performed using the Earth System 
Modeling Framework (ESMF) National Operational Prediction Capability (NUOPC). A full 
technical description can be found at https://www.myroms.org/wiki/Model_Coupling_ESMF. 
The incorporation of ESMF-NUOPC within ROMS alone represents a significant 
accomplishment and considerably enhances the utility of the community ROMS system allowing 



ROMS to be coupled to a wide range of other Earth System Model components in addition to 
COAMPS. 
 
The ROMS and COAMPS grids used in this project are shown in Fig. 2. ROMS is configured 
with a horizontal resolution of 1/10th degree (~10 km) and with 42 terrain-following levels in the 
vertical. The ROMS grid is centered on the U.S. west coast and captures the circulation of the 
CCS. COAMPS as employed here comprises two nested grids. The outer-most grid (COAMPS-1 
in Fig. 2) has a horizontal resolution ~45 km and spans North America and much of the NE 
Pacific. The inner-most grid (COAMPS-2 in Fig. 2) has a resolution ~15 km and is centered on 
the NE Pacific and overlaps the ROMS grid. There are 60 sigma-layers in the vertical in both 
COAMPS grids. 
 

 
Figure 2: The configuration of the COAMPS-ROMS coupled model. The ROMS grid is centered on the U.S. west 
coast, and is labelled ROMS-1. Two layers of nested COAMPS grids are employed here and labelled COAMPS-1 
and COAMPS-2. COAMPS-1 has a horizontal resolution of ~45 km and COAMPS-2 a resolution of ~15 km. The 
horizontal resolution of ROMS is ~10 km. 
 
3. Experimental Set-up 
 
The period considered here is 1 Jan – 31 Dec 2017. The open boundary conditions for ROMS are 
taken from a global HYCOM data assimilation product. COAMPS was initialized every 5-days 
using an atmospheric 4D-Var analysis, and the open boundary conditions are provided by a 
NOGAPS analysis. ROMS and COAMPS are coupled every 10 minutes using the ESMF-
NUOPC interface. In the regions where the ROMS and COAMPS grids do not overlap, SST is 
taken from a global HYCOM assimilation product. The coupled COAMPS-ROMS model was 
run for 365 days sequentially in 5-day intervals, starting on 1 Jan 2017. At the end of each 5-day 
integration, COAMPS was reinitialized using the atmospheric 4D-Var analysis for that day. Two 
different initialization strategies were adopted in ROMS. In one case, ROMS was initialized 
using a 4D-Var ocean analysis on 1 Jan 2017 only, after which the ROMS solution at the end of 
each 5-day interval was used as the ocean initial condition for the next 5-day coupled integration. 
In a second set of experiments, ROMS was initialized at the start of every 5-day interval using a 
4D-Var ocean analysis. Since at least one component of the coupled model was reinitialized 
every 5-days in all experiments, the 73 coupled 5-day integrations spanning 2017 in each case 
should be considered as an ensemble of quasi-independent ocean-atmosphere states, rather than 



as one continuous uninterrupted 365-day sequence. Some of the experiments used only the 
COAMPS-1 grid, others used both COAMPS nested grids, and in some cases the bulk 
formulation of the surface wind stress was varied. Table 1 summarizes the experiments discussed 
in section 4. 
 
Experiment name COAMPS grid ROMS i.c. Wind stress 
Exp1 45 km Continuous 𝝉 ∝ |(𝑼! − 𝒖")|(𝑼! − 𝒖") 
Exp2 45 km Continuous 𝝉 ∝ |𝑼!|𝑼! 
Exp3 15 km Continuous 𝝉 ∝ |(𝑼! − 𝒖")|(𝑼! − 𝒖") 
Exp4 15 km 4D-Var 𝝉 ∝ |(𝑼! − 𝒖")|(𝑼! − 𝒖") 

 
Table 1: A summary of coupled COAMPS-ROMS experiments discussed here. The 2nd column indicates the 
resolution of the COAMPS grid that is directly coupled to ROMS. The 3rd column indicates whether ROMS was 
initialized every 5-days from the ocean state of the preceding 5-day run (“Continuous”) or from a 4D-Var analysis 
for the appropriate day (“4D-Var”). The 4th column indicates the bulk formula used to compute the surface wind 
stress using only the atmospheric wind (𝝉 ∝ |𝑼!|𝑼!) or accounting for the relative motion of the atmosphere and 
ocean (𝝉 ∝ |(𝑼! − 𝒖")|(𝑼! − 𝒖")). 
 
4. Analysis 
 
4.1 SST influences on wind stress 
 
Motivated by the findings of previous studies discussed in section 1, the relationship between 
SST and wind stress was explored in each of the coupled mode configurations summarized in 
Table 1. As in section 1, we are primarily interested in the extent to which the atmosphere and 
ocean are coupled at the ocean mesoscale. The coupled model wind stress and SST were 
therefore spatially high-pass filtered using a lowess smoother in Matlab with a span of 0.12 
which closely matches the characteristics of the loess filter used by CSS07 (cf Figs. 1b and 1c). 
 
Figure 3a shows the August averaged high-pass SST and wind stress magnitude, |𝝉|, for Exp3 
(see Table 1). The degree of coherency between the two fields is very obvious, and agrees 
qualitatively with similar comparisons based on observations (e.g. O’Neill et al., 2012). In 
general, warm surface conditions coincide with increased wind stress while cooler conditions 
coincide with reduced wind stress magnitude. The relationship between the wind stress 
divergence, ∇ ∙ 𝝉, and the downwind component of the SST gradient, (∇𝑇)", computed from the 
August averaged high-pass fields is shown in Fig. 3b. Again, the degree of coherency between 
∇ ∙ 𝝉 and (∇𝑇)" is remarkable. Generally, ∇ ∙ 𝝉 is elevated where (∇𝑇)" > 0 and vice versa. The 
exception, however, is the narrow band adjacent to the coast where (∇𝑇)" and ∇ ∙ 𝝉 are 
negatively correlated. Whether this feature represents a fundamental change in the dominant air-
sea interaction processes close to the coast, due perhaps to the influences of the coastline shape, 
bathymetry or land-sea contrast, deserves further investigation. It is also possible that the 
calculations of (∇𝑇)" and ∇ ∙ 𝝉  adjacent to the coast are adversely influenced by inconsistencies 
in the land-sea masking employed in ROMS and COAMPS which have different horizontal 
resolution, so this will be explored further also. It should be noted that CSS07 excluded wind 
stress observations within 30 km of the coast due to land contamination of QuikSCAT 
measurements, and likewise AMSR-E has a relatively low-resolution footprint, so there is no 
observational evidence for the nearshore correlations in Fig. 3b. 



 
The relationship between the wind stress curl, ∇ × 𝝉, and the crosswind component of the SST 
gradient, (∇𝑇)$, computed from the August averaged high-pass fields is shown in Fig. 3c. The 
generally positive correlation between ∇ × 𝝉 and (∇𝑇)$ is very obvious. The exception again is 
the narrow ribbon of negative correlation between ∇ × 𝝉 and (∇𝑇)$ adjacent to the coast. 
Binned scatterplots of |𝝉| vs SST, ∇ ∙ 𝝉 vs (∇𝑇)", and ∇ × 𝝉 vs (∇𝑇)$ are shown in Figs. 3d, 3e 
and 3f respectively for the high-pass August averaged fields. In each case, bins containing fewer 
than 10 pairs of data values were excluded. In addition, based on the generally negative 
correlations adjacent to the coast in Figs. 3b and 3c, data within 200 km of the coast was 
excluded, as was data within 150 km of the open boundaries. Figures 3d-f show the mean and 
standard deviation of the ordinate in each case, and the least-squares straight line fit to the bin 
mean values is also shown. In each case, the positive correlations away from the coast are very 
evident and robust. 
 

 
Figure 3: (a) Spatially high-pass filtered August averaged SST (colors) and wind stress magnitude (contours) from 
Exp3. (b) Same as (a) except for wind stress divergence (colors) and the downwind component of the SST gradient 
(contours). (c) Same as (a) except for wind stress curl (colors) and the crosswind component of the SST gradient 
(contours). In all panels red colors and black lines indicate positive values while blue colors and green lines indicate 
negative values. (d) A binned scatterplot of wind stress magnitude vs SST for the August mean high-pass filtered 
fields. The means in each bin are denoted by crosses and ± 1 standard deviation by the circles. The best fit straight 
line fit to the bin means is indicated by the dotted black line. (e) Same as (d) but for the downwind component of the 
SST gradient vs wind stress divergence. (f) Same as (d) but for the crosswind component of the SST gradient vs 
wind stress curl. 
 
 
 



4.2 Influence of wind stress formulation on coupling strength 
 
The regression analyses of Figs. 3d-f were performed for all experiments in Table 1 and for each 
calendar month. As noted in section 1, the gradient of the regression line is a measure of the 
coupling strength between the atmosphere and ocean (cf Fig. 1c) and provides a useful way to 
compare the influence of the different model configurations in Table 1 on air-sea interaction. 
With this in mind, Fig. 4 shows time series of the coupling strength based on |𝝉| vs SST, ∇ ∙ 𝝉 vs 
(∇𝑇)", and ∇ × 𝝉 vs (∇𝑇)$ for each month of 2017 for Exp1 and Exp2. The regression analyses 
in this case are based on units of N m-2 per 104 km for ∇ ∙ 𝝉 and ∇ × 𝝉, and °C per 100 km for the 
SST gradient which yields estimates of the coupling strength that are consistent with those of 
CSS07 (cf  “𝑠” in Fig. 1c). In both Exp1 and Exp2 ROMS is coupled to the low-resolution (45 
km) COAMPS-1 grid. The difference between Exp1 and Exp2 is in the formulation of the 
surface wind stress. In Exp1, the relative motion between the atmosphere and the ocean is 
included in the bulk formula for surface stress according to 𝝉 = 𝜌!𝑐"|(𝑼! − 𝒖#)|(𝑼! − 𝒖#). 
Figure 4 shows that Exp1 exhibits a very clear seasonal cycle in coupling strength between all 
fields, with maximum coupling strength in the summer in qualitive agreement with the 
observations. However, the coupling strengths between the respective fields are generally lower 
than observed. For example, Fig. 1c indicates that the coupling strength, 𝑠, between ∇ × 𝝉 vs 
(∇𝑇)$ in the CCS is 2.13 during summer, while Fig. 4c shows a maximum summertime value of 
only 1.64.  Although it should be noted that Fig. 1c is based on a 4-year average (2002-05) while 
Fig. 4c represents a single and different year (2017). 
 

 
Figure 4: Time series of the regression coefficients (aka coupling strength) between (a) SST and wind stress 
magnitude, (b) the downwind SST gradient and ∇ ∙ 𝝉, and (c) the crosswind SST gradient and ∇ × 𝝉. Regression 
coefficients are computed from the spatially high-pass filtered fields from the 45 km COAMPS-1 grid (cf  Fig.2). 
Two cases are shown: in Exp1 wind stress is computed by accounting for the relative motion of the ocean and 
atmosphere (red line), while in Exp2 the relative motion is ignored (blue line). For comparison with Fig. 1c, the 
units of the regression coefficients are based on SST in °C, SST gradients in °C per 100 km, and wind stress 
divergence/curl in N m-2 per 104 km. 
 
In Exp2, the relative motion between the atmosphere and the ocean is ignored in the calculation 
of the surface stress so that 𝝉 = 𝜌!𝑐"|𝑼!|𝑼!. In this case, Fig. 4 shows that the seasonal 
variations in coupling strength are reduced significantly compared to Exp1. The winter and 
spring coupling strengths between all fields are similar in both experiments, but the elevated air-
sea interaction during summer and fall is suppressed in Exp2. Therefore, the influence of the 
relative motion between the atmosphere and the ocean appears to be a critical component of 
atmosphere-ocean coupling during summertime in the CCS. 



4.3 Influence of COAMPS resolution on coupling strength 
 
The influence of COAMPS resolution on the coupling strength can be evaluated by comparing 
Exp3 and Exp1. In Exp3 ROMS is coupled directly to the 15 km COAMPS-2 grid while recall 
that in Exp1 the COAMPS resolution is 45 km. Figure 5 shows time series of coupling strength 
between each field computed from Exp3 and Exp1. Figure 5a indicates that increasing COAMPS 
resolution generally enhances the coupling strength between |𝝉| and SST during the period Jan 
through August.  In the case of  ∇ ∙ 𝝉 and (∇𝑇)", coupling strength is enhanced during most 
months of the year (Fig, 5b). On the other hand, increasing COAMPS resolution does not 
significantly enhance the coupling strength between ∇ × 𝝉 and (∇𝑇)$ (Fig. 5c). 
 
4.4 The impact of ocean data assimilation on coupling strength 
 
As described in section 3, in Exp3 (Exp1 and Exp2 also) COAMPS was reinitialized at the start 
of each 5-day coupled integration using a 4D-Var atmospheric analysis while ROMS was 
initialized from the coupled model solution at the end of the previous 5-day integration. In Exp4, 
however, ROMS was reinitialized using a 4D-Var ocean analysis. Thus, using the terminology of 
Zhang et al. (2020), Exp4 represents what can be considered as a quasi-weakly coupled data 
assimilation experiment in that both model components are independently initialized using data 
assimilation. Figure 5 shows time series of the coupling strength between wind stress and SST 
during Exp4. In Exp4, the coupling strength is generally diminished compared to Exp3. In 
addition, in contrast to Exp3, the coupling strength during Exp4 is generally significantly lower 
during summer and there is no obvious seasonal cycle. The COAMPS initial conditions for each 
5-day coupled integration are identical during Exp3 and Exp4. Therefore Fig. 5 indicates that the 
air-sea interaction processes are quite fragile and sensitive to the periodic disruptions of the 
ocean state as a result of data assimilation. 
 

 

 
Figure 5: Time series of the regression coefficients (aka coupling strength) between (a) SST and wind stress 
magnitude, (b) the downwind SST gradient and ∇ ∙ 𝝉, and (c) the crosswind SST gradient and ∇ × 𝝉. Regression 
coefficients are computed from the spatially high-pass filtered fields, and in all cases wind stress was computed by 
accounting for the relative motion of the ocean and atmosphere. Results are shown for Exp1 (blue line), Exp3 (red 
line), and Exp4 (black dashed line). For comparison with Fig. 1c, the units of the regression coefficients are based 
on SST in °C, SST gradients in °C per 100 km, and wind stress divergence/curl in N m-2 per 104 km. 
 
 
 



5. Summary and Conclusions 
 
Experiments with a prototype regional coupled atmosphere-ocean model of the CCS based on 
COAMPS and ROMS reveal that, in general, the coupled model is able to qualitatively 
reproduce the observed relations between SST and surface wind stress at the ocean mesoscale. 
However, the robustness of these relations is sensitive to the model configuration and model 
reinitialization procedure. In particular, the influence of the relative motion between the 
atmosphere and the ocean on surface wind stress appears to be a critical ingredient of 
atmosphere-ocean coupling for controlling the magnitude of the coupling strength and its relative 
summertime maximum. While atmospheric horizontal resolution significantly influences the 
coupling strength between |𝝉| and SST, and ∇ ∙ 𝝉 and (∇𝑇)", the correlation between ∇ × 𝝉 and 
(∇𝑇)$ is generally much less sensitive to resolution. 
 
Perhaps the most alarming and far-reaching finding here is that the relationship between SST and 
wind stress at the ocean mesoscale is destroyed when a weakly coupled data assimilation strategy 
is used. This suggests that the established relationships between SST and wind stress may be 
quite fragile at the ocean mesoscale, and that strongly coupled data assimilation may be 
necessary to preserve these important air-sea interactions.  
 
While strongly coupled data assimilation is very challenging and requires specific knowledge of 
the coupled background error covariances, the analysis of coupling strength presented here 
represent one potential approach for quantifying some of these important covariances, 
information that could subsequently be used to develop and tune coupled covariance models or 
parameterizations.  
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Appendix B: Coupled Model Simulations of the Indian Ocean 
 

1. Introduction 
 
Intra-seasonal variability in the tropical Indian Ocean is dominated by the Madden-Julian 
Oscillation (MJO). Numerical modeling studies and intensive observational field campaigns 
have shown that air-sea interactions are an important ingredient of the MJO dynamics, although 
many of the details are still not well understood. Coupled ocean-atmosphere models are an 
important tool for simulating the MJO, both in terms of understanding the dynamics of 
individual events and predicting their evolution through time. While many models struggle to 
generate MJO events spontaneously, data assimilation can be used to initialize subseasonal-to-
seasonal (so-called S2S) forecasts using coupled models. However, data assimilation in coupled 
models is a major challenge, and is a very active area of research. 
 
The work reported on here as part of this ONR funded project represents a stepping-stone toward 
developing a data assimilation capability for a regional coupled ocean-atmosphere model based 
on the Regional Ocean Modeling System (ROMS) and the Coupled Ocean-Atmosphere 
Mesoscale Prediction System (COAMPS). The ROMS-COAMPS system has been configured 
for the Indian Ocean, and this appendix will focus on two aspects of the coupled model 
simulations: (i) the ability of the coupled system to maintain MJO events and the impact of 
weakly coupled data assimilation, and (ii) ensemble prediction of tropical storms spawned by 
individual MJO events. 
 
2. Coupled Model Description 
 
The model used here comprises the atmospheric component of COAMPS coupled to ROMS, 
both configured for the Indian Ocean. COAMPS was configured with 15 km horizontal 
resolution and 60 𝜎-levels in the vertical and spans the region 35.6ºW-104.4ºW, 20.2ºS-29.2ºN. 
The ROMS grid has a variable resolution ranging from ~7 km in the equatorial waveguide to ~26 
km at the northern and southern boundaries. The ROMS grid does not extend as far east as 
COAMPS, and SST from global HYCOM was used to constrain COAMPS in the region of the 
maritime continent. Since ROMS is forced at the boundaries with global HYCOM as well, this 
avoids spurious discontinuities in the SST field passed to COAMPS. 
 
3. Experimental Set-up 
 
The time interval considered here is October 2011 to March 2012, which includes the DYNAMO 
observational field campaign (from Sept 2011 to January 2012). In all experiments described 
here, COAMPS was initialized every 5 days from a global NOGAPS 4D-Var analysis 
interpolated to the COAMPS grid. Several strategies for initializing ROMS were explored as 
indicated in Table 1. In each case, the coupled model was run for 5-days before reinitializing 
both components of the model. During Exp1, ROMS was initialized at the start of the first 5-day 
cycle using the ocean state from a multi-year spin-up integration of the ROMS alone forced with 
surface fluxes derived from ERA-interim. Thereafter, during Exp1 ROMS was initialized using 
the ocean state at the end of the previous 5-day coupled model integration. In Exp2, ROMS was 
reinitialized every 5-days using a 4D-Var ocean state estimate in which all available remote 



sensing and in situ observations from the previous 5-day period were assimilated. Exp3 was 
similar to Exp2 except that the ROMS initial condition was computed using an Ensemble 
Adjustment Kalman Filter (EAKF) from the DART system. In this case, a First Guess at 
Appropriate Time (FGAT) approach was used in which all observations over a 2.5-day interval 
were assimilated into ROMS using a 31-member ensemble. Experiments Exp2 and Exp3 
represent examples of weakly coupled data assimilation in which data were assimilated 
independently into both component models. In addition, a Control experiment was also 
performed in which COAMPS was initialized every 5-days and run uncoupled using SST from a 
HYCOM global analysis as the ocean surface boundary conditions. 
 
 

Experiment designation Ocean/ROMS initial conditions 
Control observed SST 
Exp1 ocean state at end of previous cycle 
Exp2 4D-Var ocean analysis 
Exp3 EAKF ocean analysis 

 
Table 1: A summary of the experiments performed, the experiment designation, and the approach used to initialize 
the ROMS component of the coupled model. 
 
4. Analysis 
 
4.1 MJO hindcast skill  
 
The period of study was chosen because it overlaps with an intensive observational field 
campaign (DYNAMO) targeting the MJO. During the period Oct-Dec 2011, three MJO events 
were observed and simulated by COAMPS. Figure 1 quantifies the extent to which the Control 
experiment (Table 1) is able to capture the equatorial zonal wind stress (the Indian Ocean region 
between 5ºS-5ºN). Specifically, Fig. 1 shows the results of a comparison of 𝜏% from the Control 
simulation with 𝜏% from ERA-interim, where the latter is taken as an estimate of the true state. 
Each 5-day simulation of the Control can be viewed as a hindcast, and in Fig. 1a, the correlation 
between 𝜏% from the Control and ERA-interim is shown as a function of hindcast lead-time and 
start date. Similarly, Fig. 1b shows, in the same format, the root mean square difference (rmsd) 
between the equatorial 𝜏% from the Control and ERA-interim. In general, the Control struggles to 
capture the evolution of 𝜏% during the period Oct-Dec. As noted, this period was characterized by 
three MJO events which are illustrated in Figs. 1c and 1d, which show identical Hovmoller 
diagrams of the equatorial  𝜏% versus time from ERA-interim. The MJO events are indicated by 
the colored vertical lines in Figs. 1c and 1d (and also in Figs. 1a and 1b). To more clearly 
illustrate the skill of COAMPS in hindcasting these three events in the presence of the observed 
SSTs, Figs. 1e and 1f show time series of the correlation and rms errors for 𝜏% for each 5-day 
hindcast cycle. The skill in hindcasting the Oct and Dec MJO events is consistent with the range 
associated with non-MJO periods, although the skill associated with the Nov MJO episode is 
clearly anomalously low. Animations of the surface wind fields (not shown) indicate that while 
the NOGAPS analyses (from which COAMPS is initialized) capture the observed MJO events 
quite well, they subsequently dissipate quite quickly within COAMPS, perhaps because of 
geostrophic adjustment associated with dynamic imbalances in the initial state. Conversely, 



during the period Jan-Mar 2012 when the MJO is not active, Fig. 1 indicates that COAMPS can 
hindcast quite well the ERA-interim zonal wind stress for many of the 5-day intervals. 

 
Figure 1: (a) The correlation between the equatorial (5ºS-5ºN) zonal wind stress (𝜏#) from the Control experiment 
and ERA-interim versus hindcast lead time for each 5-day coupled model integration. (b) The root mean square 
difference (rmsd) between 𝜏# from the Control experiment and ERA-interim versus hindcast lead time for each 5-
day coupled model integration. Hovmoller diagrams of the ERA-interim  𝜏# (5ºS-5ºN mean) are shown in (c) and (d) 
which are identical. The colored vertical lines (also shown in (a) and (b)) indicate the timing of three MJO events 
during the Oct 2011 to Mar 2012 period. (e) Times series of the correlation between the equatorial 𝜏# from the 
Control experiment and ERA-interim versus hindcast lead time for each 5-day coupled model integration. The 
periods spanned by the three MJO events highlighted in (c) and (d) are indicated by the colored lines. (f) Same as (e) 
except for the rms difference. 
 
The hindcast skill for 𝜏% during Exp1, Exp2 and Exp3 is shown in Fig. 2. In this case the 
difference between the correlation and rmsd of each experiment and that of the Control is 



illustrated to more clearly highlight the influence of the different ROMS initialization strategies. 
In general, Figs. 2b and 2f suggest that Exp1 yields generally lower hindcast skill for 𝜏% than the 
Control during the MJO active period Oct-Dec, while during the non-active interval Jan-Mar, the 
skill is generally a little higher. 
 

 
Figure 2: (a) The correlation between the equatorial 𝜏# from the Control experiment and ERA-interim versus 
hindcast lead time for each 5-day coupled model integration. (b) The difference between the 𝜏# correlations of Exp1 
with ERA-interim and those of the Control in (a). (c) Same as (b) but for Exp2. (d) Same as (b) but for Exp3. (e) The 
rmsd between 𝜏# from the Control experiment and ERA-interim versus hindcast lead time for each 5-day coupled 
model integration. (f) The difference between the rmsd of Exp1 and ERA-interim and the rmsd of the Control. (g) 
Same as (e) except for Exp2. (h) Same as (e) except for Exp3. 
 
During Exp2, where ROMS was initialized every 5-days using a 4D-Var analysis, Fig. 2c 
indicates that the hindcast skill in 𝜏% based on correlation is marginally higher than the Control 
during the active MJO period and worse during the non-active period. However, in the case of 
Exp3, where ROMS was initialized using analyses from the DART EAKF, Figs. 2d and 2h 
indicate that the hindcast skill is generally always lower than the Control. 
 
4.2 Tropical storm ensembles 
 
During the active MJO period Oct-Dec 2011, several tropical depressions and cyclones were 
spawned in the Indian Ocean. Because Exp3 is based on an ensemble Kalman filter, we also have 
the opportunity to explore the sensitivity of hindcasts for the storm track and intensity to the 
ocean state using the 31 individual ensemble members. To this end, two case studies were 
considered: (i) tropical depression ARB 04 (Nov 26-Dec 1, 2011), with an observed minimum 
central pressure of 998mb (peak winds 55 km hr-1), and (ii) tropical cyclone Thane (Dec 25-31, 
2011), with an observed minimum central pressure of 969mb (peak winds 140 km hr-1), which 



developed into a category 2 storm. For both cases, the 31 individual ROMS ensemble members 
from the EAKF on Nov 25 (TD ARB 4) and Dec 25, 2011 (TC Thane) were used to initialize an 
ensemble of coupled model integrations of 5-days duration. In each case, COAMPS was 
initialized with the same NOGAPS analysis for the appropriate day. 
 

 
Figure 3: An ensemble of storm tracks from the coupled model for (a) tropical depression ARB 4, and (c) tropical 
cyclone Thane. Individual ensemble members are indicated by the thin black lines and the red line shows the 
ensemble mean. In each case, the color map shows the ensemble mean SST, and the contours show the ensemble 
mean sea level pressure. (b) The SST (blue line) and minimum surface pressure (red line) versus longitude along the 
path of tropical depression ARB 4. (d) Same as (b) but for tropical cyclone Thane. The horizontal dashed line in (b) 
ad (d) indicates 28ºC, the generally accepted threshold required to maintain a tropical storm via convective 
instability. 
 
Figures 3a and 3c show the ensemble of tracks associated with each storm, along with the path of 
the ensemble mean. For reference, the ensemble mean SST and sea level pressure are also shown 
for the Nov 25 and Dec 25 start dates. In both cases, the storm track is relatively insensitive to 
the ocean state, probably because both were relatively weak storm systems. Nonetheless, Fig. 3 
illustrates that the coupled model and DART-EAKF have tremendous potential utility in the 
Indian Ocean for ensemble coupled prediction of tropical cyclones. Figures 3a and 3c indicate 
that both storms move over regions of cooler SST as they progress northwestward along their 
respective paths. Hence, they may be expected to weaken. Figures 3b and 3d illustrate how the 
central pressure of each storm along its track varies with the underlying SST. As anticipated, the 
central pressure falls as the storm moves over warmer water and rises again as it passes over 
water cooler than ~28ºC, the generally accepted threshold required to maintain convective 
instability. 
 
The relationship between tropical cyclone Thane and ocean temperature is further revealed in 
Fig. 4, showing shows vertical sections of the upper ocean temperature along the cyclone track 
on selected days. Figure 4 clearly shows that the upper ocean temperature behind the storm cools 
as the cyclone progresses northwestward. The formation of a cold wake by hurricanes and 
tropical cyclones is well documented in observations and some models. The cooling is associated 



with a combination of increased evaporative cooling and entrainment of cold water at the base of 
the ocean mixed layer as it deepens in response to an increase in wind-induced turbulent mixing.  
 

 
Figure 4: (a) The path of tropical cyclone Thane superimposed on the SST. The magenta squares show the location of the storm 
on 25, 26, 27 and 28 December. (b) A vertical section of the upper ocean temperature (0-300 m) on Dec 25 along the full length 
of the cyclone track. The location of tropical cyclone Thane on this date is indicated by the magenta line. (c) An upper-ocean 
vertical section (0-300 m) of the difference in temperature between 26 and 25 Dec along the cyclone track. The location of 
tropical cyclone Thane on this date is indicated by the magenta line. Blue (red) indicates that the ocean is cooler (warmer) on 26 
Dec than it was on the 25 Dec. (d) Same as (c) except for 27 Dec. (e) Same as (c) except for 28 Dec. 
 
5. Summary and Conclusions 
 
Preliminary investigations have been performed of coupled ocean-atmosphere simulations of the 
Indian Ocean using ROMS and COAMPS. One focus of this work was the simulation of the 



MJO. The period considered corresponds to active and break periods of the MJO and overlaps 
with the DYNAMO intensive observational field campaign. Uncoupled integrations of the 
atmospheric component of COAMPS alone subject to observed SST, and initialized with a 
global NOGAPS analysis, show that COAMPS is unable to maintain MJOs, despite these events 
being captured quite well by NOGAPS. Coupled model simulations are perhaps a little better 
during MJO active periods, but further experiments show that attempts to improve the ocean 
state using a weakly coupled data assimilation approach do not significantly improve the coupled 
model’s ability to hindcast the MJO, and can, in fact, degrade the model simulations in some 
cases. 
 
The second focus of this work was the utility of coupled model ensembles which arise, quite 
naturally, from the ensemble Kalman filter employed in one of the experiments described here. 
Specifically, we have explored the influence of the ocean state on tropical storm hindcasts using 
an ensemble of ocean state estimates. While we did not find much sensitivity in the path and 
intensity for the relatively weak storms considered here, the coupled model in tandem with the 
EAKF shows great promise as a tool for ensemble prediction of tropical cyclones. It was also 
gratifying to see that in the coupled model, a cold wake forms behind a developing tropical 
cyclone, confirming what is commonly seen in observations.  
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A B S T R A C T   

The performance of two common approaches to data assimilation, an Ensemble Adjustment Kalman Filter 
(EAKF) and a 4-dimensional variational (4D-Var) method, is quantified in a popular community ocean model, the 
Regional Ocean Modeling Systems (ROMS). Two distinct circulation environments are considered: the California 
Current System (CCS), which is an eastern boundary upwelling regime, and the Indian Ocean (IO) characterized 
by an equatorial waveguide subject to the energetic seasonal reversals of the Indian and Asian Monsoons. In the 
case of the CCS, experiments were performed using synthetic observations, so-called Observing System Simu-
lation Experiments (OSSEs). An extensive suite of CCS OSSEs were conducted to explore the performance of both 
data assimilation approaches to system configuration. For the EAKF, this includes the method for generating the 
seed ensemble, ensemble size, localization scales, and the length of the assimilation window. In the case of 4D- 
Var, the influence of assimilation window length, and the formulation of the background error covariance were 
explored. The performance of the EAKF was found to be influenced most by the size of the ensemble and by the 
method used to generate the initial seed ensemble where centering of the ensemble was found to yield 
improvement. For 4D-Var, the assimilation window length is by far the most critical factor, with an increase in 
system performance as the window length is extended. In general, the EAKF and 4D-Var systems converge to 
similar solutions over time, which are independent of the starting point. The EAKF employs a First-Guess at 
Appropriate Time (FGAT) strategy, and some experiments indicate that short FGAT windows can be problematic 
due to the introduction of frequent initialization shocks. While the EAKF generally out-performs 4D-Var in the 
OSSEs, analysis of the innovations from the two systems through time indicates that they track each other 
closely. 

Additional Observing System Experiments (OSEs) were performed in the CCS and IO configurations of ROMS 
using real ocean observations. In this case, the comparison of the EAKF and 4D-Var state estimates with inde-
pendent observations indicates that the EAKF and 4D-Var state estimates diverge over time, although the 4D-Var 
estimates are somewhat better by some measures. The relative performance of the EAKF and 4D-Var systems is 
similar across the wide-range of circulation regimes that characterize the CCS and IO, suggesting that the results 
presented here are a robust indicator of expected performance in other regions of the world ocean.   

1. Introduction 

Data assimilation in ocean models is a mainstream activity at many 
operational and academic centers, both at regional and global scales (e. 
g., Edwards et al., 2015; Martin et al., 2015; Carrassi et al., 2018; Moore 
et al., 2019). The development and maintenance of state-of-the-art data 
assimilation (DA) systems requires considerable time and resources. 

Therefore, open access DA tools represent a significant and important 
resource for the ocean modeling community-at-large. This paper com-
pares the performance of two community tools for DA that are available 
in support of the Regional Ocean Modeling System (ROMS). One is an 
Ensemble Kalman Filter (EnKF) that forms part of the Data Assimilation 
Research Testbed (DART; Anderson et al., 2009), and the other is a 4- 
dimensional variational (4D-Var) DA system (Moore et al., 2011). The 
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relative performance of each system is assessed for two very different 
circulation regimes: an eastern boundary current upwelling circulation 
and a tropical ocean basin. The upwelling regime considered is the 
California Current System (CCS), which is characterized by a pro-
nounced seasonal cycle strongly controlled by atmospheric conditions 
(e.g., Hickey, 1979, 1998; Checkley and Barth, 2009). A major charac-
teristic of the CCS is the presence of an energetic mesoscale eddy field 
associated with eastern boundary current instabilities, which is a chal-
lenging environment for most DA systems. The tropical ocean basin 
considered is the Indian Ocean, which is dominated by both the 
seasonally varying monsoon forcing and the equatorial waveguide (e.g., 
Schott and McCreary, 2001). In combination, these yield energetic local 
and remote influences on the circulation, which also present a signifi-
cant challenge to DA. 

The aim of this paper is threefold. First, it presents a review of two 
state-of-the-art community ocean DA tools. Second, it serves as a useful 
reference for users of the ROMS-DART and ROMS-4D-Var systems. And 
lastly, this work is a prelude to the development of a hybrid data 
assimilation system in the form of a marriage between the EnKF and 4D- 
Var, which will be the subject of a future study. 

An overview of the data assimilation problem in ROMS is presented 
in Section 2, with a particular emphasis on error covariances. The 
treatment of the prior error covariance matrix in the EnKF and the 
background error covariance matrix in 4D-Var is one of the primary 
factors that sets the two approaches to DA apart. The ROMS configu-
ration for the CCS is introduced in Section 3, where the EnKF and 4D-Var 
frameworks for this case are also described. The results of the CCS DA 
experiments are presented in Sections 4 and 5, which are both divided 
into several subsections. The results of an extensive suite of Observing 
System Simulation Experiments (OSSEs) designed to quantify the per-
formance of each DA system are described first using simulated obser-
vations from the actual observing network. Specifically, the influence of 
factors such as ensemble size, correlation and localization length-scales, 
assimilation window length, and boundary condition errors, on the ve-
racity of ocean circulation estimates is explored. While these experi-
ments provide us with a best-case scenario, they also highlight some of 
the limitations of the analysis methods as well as various issues that are 
likely to arise when real ocean observations are assimilated. The results 
of DA experiments using real in situ and remote sensing data from the 
CCS are presented in Section 6, so-called Observing System Experiments 
(OSEs). Section 7 focusses on the results of DA experiments in the Indian 
Ocean. This configuration of ROMS is much more computationally 
demanding than the CCS, so the simulations, in this case, are limited to 
using real data. A summary and concluding remarks are presented in 
Section 8, where the findings and lessons learned from both DA systems 
applied to the two circulation environments are discussed. 

2. Data assimilation 

We begin with a brief overview of linear approaches to the data 
assimilation. To this end, the ocean state vector comprising all grid- 
point values of temperature, salinity, sea surface height, and two com-
ponents of horizontal velocity will be denoted as x. If xb indicates the 
background state (aka the prior, first-guess or forecast), then the best, 
linear, unbiased circulation estimate xa, also referred to as the analysis, 
arising from data assimilation can be expressed as: 

xa = xb +Kd (1)  

where d = y − H(xb) is the innovation vector representing the difference 
between the vector of observations y and xb evaluated at the observation 
points via the observation operator H, and K is the Kalman gain matrix 
(Daley, 1991). The Kalman gain can be expressed as: 

K = BHT ( HBHT + R
)− 1 (2)  

where B represents the background (aka prior or forecast) error 

covariance matrix, R is the observation error covariance matrix, and H is 
the tangent linearization of the observation operator1. Different linear 
approaches to data assimilation essentially vary according to the 
different assumptions made about B and R. For a linear model M, the 
background error covariance matrix is evolved in time in the Kalman 
Filter (KF) according to: 

F = MBMT +Q (3)  

where Q is the model error covariance matrix. For nonlinear systems, 
such as the atmosphere and ocean, (3) can still be used provided that the 
evolution of errors is close to linear. This gives rise to the so-called 
Extended KF in which the nonlinear forecast model M is used to 
evolve the state and to evaluate H(xb), while M represents a linear 
approximation of the forecast model (Lorenc, 2003a). However, as is 
well documented, the large dimension of geophysical problems pre-
cludes direct use of (3), and some approximation must be made. In the 
Ensemble KF (EnKF) approach, B (and F) are estimated from an 
ensemble of model solutions, xn. Moreover, since 

B ≈ (xn − x)(xn − x)T(where an overbar denotes the expected value), the 
action of B can be conveniently represented using the ensemble mem-

bers directly. More specifically, BHT ≈ (xn − x)
(

H(xn) − H(xn)
)T 

and 

HBHT ≈
(

H(xn) − H(xn)
)(

H(xn) − H(xn)
)T

. A thorough review of the 

KF approach can be found in Houtekamer and Zhang (2016). 
In 4D-Var, the observation operator H(xb) samples the background at 

the observation locations in space and time over the time interval that 
spans the assimilation cycle, thus H includes the nonlinear forecast 
model. The background error covariance matrix B in 4D-Var is typically 
assumed to be unchanging from the start of one cycle to the next, so 
there is no explicit flow dependence of the background error covariance. 
However, flow dependence does enter implicitly via the terms HBHT 

and BHT in (2) since H includes the tangent linearization of the forecast 
model. A common approach to modeling the action of B is the solution of 
a pseudo-heat diffusion equation (Derber and Rosati, 1989; Weaver and 
Courtier, 2001; Bennett, 2002). 

Lorenc (2003b) provides an excellent review of the ensemble, vari-
ational, and hybrid approaches to data assimilation. Similarly, an 
excellent review of nonlinear approaches to data assimilation for 
geophysical problems can be found in van Leeuwen et al. (2015). 

2.1. ROMS-DART 

The model used here is the Regional Ocean Modeling System 
(ROMS), which supports both a 4D-Var (Moore et al., 2011) and an EnKF 
system. The EnKF is based on the Data Assimilation Research Testbed 
(DART) system (Anderson et al., 2009). While there are other reported 
applications of ROMS with DART (e.g., E. Curchitser, pers. comm.; Li and 
Tuomi, 2017), the system described here is a recent development in 
which a ROMS-DART interface is now available in the community ver-
sions of DART (https://www.image.ucar.edu/DAReS/DART) and ROMS 
(http://www.myroms.org). In the current configuration, the approach 
used corresponds to an Ensemble Adjustment KF (EAKF; Anderson, 
2001). In addition, a First-Guess at Appropriate Time (FGAT) approach 
is used in which all observation forward operators (i.e. H(xn)) are 
computed at the nearest model timestep but assimilated as if they were 
taken at the end time of the observation window. Since ocean obser-
vations typically arrive in a quasi-continuous stream, the FGAT 
approach circumvents the need to restart the KF continually, and is, 

1 Here and throughout, we have adopted the generally accepted compact 
notation for the operators H and R which represent appropriate block diagonal 
matrices and each block corresponds to an observation time (e.g. see Gürol 
et al., 2014). 
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therefore, more computationally efficient. The efficacy of the FGAT 
approach will depend on the rate at which the circulation evolves 
compared to the assimilation window length and the frequency of the 
observations. While the circulation time scale will be strongly influ-
enced by the model resolution, in cases where the ocean circulation 
typically varies slowly in time, FGAT is considered to be a good 
approximation. In DART, the background error covariance matrix B is 
estimated using an ensemble approach, and both covariance localization 
and covariance inflation are employed. Both steps are necessary to 
alleviate the negative impacts of sampling errors arising from a limited 
size ensemble. However, localization has the added benefit of rendering 
a full rank approximation of B. 

2.2. ROMS-4D-Var 

ROMS also supports a 4D-Var data assimilation system, both the 
primal and dual formulations (Moore et al., 2011a). Specifically, the 
incremental form of 4D-Var is used (Courtier et al., 1994) in which the 
increments δx = x − xb represent the departure of the state-vector from 
the background. The analysis xa = xb +δx is identified as that increment 
that minimizes the linearized cost function: 

J = δxT B− 1δx+(Hδx − d)T R− 1(Hδx − d) (4) 

It is assumed that the ocean state variables can be decomposed into a 
balanced and unbalanced component in which the unbalanced compo-
nents are mutually uncorrelated. Following Weaver et al. (2005), the 
background error covariance B can then be factorized as B =

KbΣCΣTKT
b , where C is the univariate correlation matrix of the unbal-

anced variables, Σ is a diagonal matrix of standard deviations of the 
errors in the unbalanced variables, and Kb is a multivariate balance 
operator (Derber and Rosati, 1989). The correlation matrix C is modeled 
using the diffusion operator approach of Weaver and Courtier (2001), 
which requires assumptions to be made about the spatiotemporal vari-
ations of the error correlations. Since this approach is computationally 
costly, C is typically assumed to be time-invariant. 

Two approaches are adopted in ROMS for specifying Σ. One 
approach uses error statistics that reflect those associated with asymp-
totic climatological errors. For this reason, B is often referred to as a 
climatological background error covariance. In the second approach, an 
error model based on the method of Mogensen et al. (2012) is used in 
which background errors are assumed to be proportional to vertical 
derivatives of the state. This choice is based on the underlying 
assumption that the difference between the background value of a state 
variable φb and the true value φt is due to a vertical displacement of the 
profile, in which case, to first-order, φt(z) ≈ φb(z+δz) + (∂φb/∂z)δz, 
where δz is the displacement. In other words, it is assumed that the 
background and true profiles have a similar shape and that the true 
value of φ lies somewhere in the background water column. The error in 
φb is, therefore, approximately given by (∂φb/∂z)δz. Following Mogen-
sen et al. (2012), we assume that the standard deviation of the error is 
given by σφ ∼ |(∂φb/∂z)δz |, with the following constraints: 

σφ =

{
max

(
σ̂φ , σml

φ

)
if z ≥ − Dml

max
(

σ̂φ , σdo
φ

)
if z < − Dml

(5)  

where: 

σ̂φ = min
(
|(∂φb/∂z)δz |, σmax

φ

)
(6) 

The prescribed parameter σmax
φ is the maximum value of σφ, while σml

φ 

and σdo
φ are the prescribed minimum values allowed in the mixed layer 

and deep ocean, respectively. In ROMS, the mixed layer depth Dml is 
computed using the method described by Kara et al. (2000). Mogensen 
et al. (2012) apply (5) and (6) only to temperature, and a different 
formulation is used for other state-variables in conjunction with a bal-
ance operator. As described below, we do not use a balance operator in 

the experiments reported here, and (5) and (6) were used for all state 
variables. 

3. The California Current System (CCS) 

3.1. Model and observations 

The ROMS-CCS system is well documented (Veneziani et al., 2009a) 
and has a history of 4D-Var data assimilation (Broquet et al., 2009a,b, 
2011; Moore et al., 2011b; Moore et al., 2013; Gürol et al., 2014; Neveu 
et al., 2016; Song et al., 2016; Mattern et al., 2017). The model domain 
spans the region 30◦N-48◦N, 134◦W-115.5◦W, and is shown in Fig. 1a. 
The horizontal resolution employed in the present study is 1/10◦ and 
with 42 terrain-following σ-levels in the vertical, which yield a vertical 
resolution of 0.3–8 m over the continental shelf, and 7–100 m in the 
deep ocean. The model was forced by surface fluxes of momentum, heat, 
and freshwater that were computed using atmospheric fields from the 
Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS; 
Doyle et al., 2009) and the bulk flux formulation of Fairall et al. (2003). 
The model was constrained at the open boundaries by fields from the 
global Simple Ocean Data Assimilation (SODA) product (Carton and 
Giese, 2008). 

The observations assimilated into the model take the form of along- 
track satellite observations of sea surface temperature from the AVHRR, 
MODIS and AMSR platforms, estimates of sea surface height (SSH) based 
on a daily gridded product from the Archiving, Validation, and Inter-
pretation of Satellite Oceanographic data (AVISO; Dibarboure et al., 
2011), and in situ observations taken from the quality-controlled EN3 
archive (v2a) maintained by the Met Office (Ingleby and Huddleston, 
2007). The in situ observations are in the form of temperature and 
salinity measurements from various platforms, including Argo profiling 
floats, XBTs, CTDs, and tagged marine mammals. While we are ulti-
mately interested in the relative performance of each assimilation sys-
tem in the case of real observations, it is also very illuminating to 
conduct experiments using simulated observations from the same 
observing system. Results from both approaches are presented in 

Fig. 1. The ROMS-CCS configuration used in the EAKF and 4D-Var experi-
ments. The SST and SSH on a date close to the start of each experiment are 
shown in (a) and (b), respectively. The locations of all in situ hydrographic 
observations collected during the Jan-April 2003 period are shown in (c), and 
time series of log10 of the number of observations of each type available during 
each 24-hour period are shown in (d). Here and throughout the paper, units are 
as follows: temperature (deg C), SSH (m), and salinity (nondimensional). 
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Sections 4, 5, and 6. 

3.2. EAKF configuration 

Observations were assimilated into ROMS using the EAKF-FGAT. The 
baseline configuration comprises a 50-member ensemble using a 1-day 
FGAT window with Gaspari-Cohn localization (Gaspari and Cohn, 
1999). Spatially- and temporally-varying adaptive inflation (Anderson, 
2009) using a constant inflation standard deviation of 0.6 and an 
inflation damping with parameter 0.9 that retains 90% of the inflation 
value each assimilation step was used. The sampling error correction 
algorithm of Anderson (2012) was applied to minimize the need for the 
fixed localization. Observation quality control was performed based on a 
comparison of the observations with the ensemble mean, and observa-
tions were rejected that depart from the ensemble mean by more than 
three standard deviations of the expected total error. An extensive set of 
sensitivity experiments was employed as detailed in Table 1 and 
compared to the baseline case. Also, different methods were explored for 
generating the initial seed population of ensemble members that are 
required to initialize the EAKF. The parameter choices and ensemble 
methods used will be discussed in more detail in the following sections. 

3.3. 4D-Var configuration 

The 4D-Var configuration is well documented elsewhere (e.g., Neveu 
et al., 2016; hereafter, N16), so only a brief description will be given 
here. The baseline 4D-Var configuration is based on that of N16 and 
comprises 8-day assimilation windows, using only the model initial 
conditions as the control variable. In all experiments, the dual 4D-Var 
formulation was used in which the cost function (4) is minimized by 
conjugate gradient searches in observation space (e.g. Courtier, 1997). 
The background error standard deviations, Σ, were based on either 
climatological standard deviations (denoted Σc) of a long run of the 
model without data assimilation, varying from month-to-month, or on 
(5) and (6) (denoted Σm). The background error correlations were 
assumed to be isotropic, homogeneous, and time-invariant, and a range 
of values was considered in the experiments reported below. In all cases, 
two outer-loops and seven inner-loops were used, which requires 
approximately 90% of the computational effort of the baseline EAKF 
experiment when running in serial over the same time interval. 
Increasing the number of outer-loops was found to have minimal in-
fluence on the results presented here. Our experience to date with the 

balance operator in ROMS has shown that its performance is somewhat 
mixed, so as in N16, the balance operator was not used, and we rely 
instead on natural dynamic adjustments via the term HBHT to provide 
cross-covariance information. Table 2 summarizes the 4D-Var experi-
ments performed as part of this study. 

A quality control check was performed on the observations based on 
the background following the approach of Andersson and Järvinen 
(1999), with a rejection criterion similar to that employed by the EAKF. 

3.4. A single profile illustration 

One of the advantages of the EAKF is that the ensemble provides 
flow-dependent covariance information about the so-called “errors of 
the day,” which is propagated from one cycle to the next. While on the 
other hand, 4D-Var relies on climatological covariance information, it 
too employs implicit flow-dependent covariances via the term HBHT. 
However, this information is replaced at the beginning of each cycle. 
Information about both the errors of the day and climatological error is 
useful, and recent work indicates that a marriage of the two is beneficial 
(Lorenc et al., 2015). Before proceeding, it is illuminating to reflect on 
the similarity and differences in covariance information resulting from 
the two approaches by considering the increments that arise from the 
assimilation of a single temperature profile since this will provide a 
useful reference point for the experiments in later sections. 

The location chosen for the simulated vertical temperature profile is 
close to San Francisco Bay, as indicated in Fig. 2a. Fig. 2a also shows the 
SSH in the vicinity of the region and reveals the nature of the mesoscale 
circulation at the observation time. A full water column profile of tem-
perature was assimilated into the model on 8 Jan 2003 using the EAKF 
and 4D-Var. In the 4D-Var example, the assimilation window spans the 
4-day interval 4–8 Jan for this case, and the end of the window corre-
sponds to the observation time. The background state xb used in 4D-Var 
and the ensemble mean prior to the EAKF update are identical, and as 
such, we are considering the first assimilation cycle of both systems. The 
parameters used in the EAKF and 4D-Var experiments correspond to 
those of CB_EAKF1b (Table 1) and M4DVAR4 (Table 2), respectively. 
Fig. 2 shows the increments in SST and sea surface salinity (SSS) on 8 Jan 
from each experiment. In the case of the EAKF, these are the increments 
that are applied at the end of the FGAT window on 8 Jan, while in the 
case of 4D-Var the increment is computed on 4 Jan and propagated 
forward in time to 8 Jan. The EAKF increments (Fig. 2e and f) are 

Table 1 
The table shows the parameters used in each EAKF experiment, and the exper-
iment designation. As described in Section 4.1.1, two different approaches were 
employed to generate the initial ensemble perturbations, which are referred to 
as methods A and B. In addition, each set of perturbations were used in two 
different ways, either once only or in ±pairs to center the resulting ensemble. In 
the text, the letters A or B are appended to the experiment name shown in col-
umn 1 to indicate the ensemble perturbations used, and a prefix C is used to 
denote a centered ensemble. For example, A_EAKF1a denotes configuration 
EAKF1a initialized using the uncentered ensemble generation method A, while 
CB_EAKF1a denotes the same experiment configuration using a centered 
ensemble generation method B. The numbers in parentheses in column 3 are the 
ensemble sizes used when centering is employed.  

Experiment 
name 

FGAT 
(days) 

Ensemble 
size N 

H localization 
(km) 

V localization 
(m) 

Baseline 1 50(51) 130 200 
EAKF1a 2 50(51) 130 200 
EAKF1b 4 50(51) 130 200 
EAKF2a 1 10(11) 130 200 
EAKF2b 1 30(31) 130 200 
EAKF3a 1 50(51) 260 200 
EAKF3b 1 50(51) 65 200 
EAKF4a 1 50(51) 130 – 
EAKF4b 1 50(51) 130 100  

Table 2 
The table shows the parameters used in each 4D-Var experiment, and the 
experiment designation. As described in Section 4.2.3, two different approaches 
were employed to model the background error standard deviations. The prefix C 
denotes experiments that use the climatological standard deviations Σc while the 
prefix M denotes experiments that use the error model Σm described by Eqs. (5) 
and (6). The data assimilation window length is indicated in column 2, and the 
scaling factor α that was applied to the standard parameter values in (5) is 
indicated in column 3, where applicable. Columns 4 and 5 show the horizontal 
and vertical decorrelation lengths assumed for the background errors in all state 
variables.  

Experiment 
name 

Window 
(days) 

Scaling 
(α) 

H decorrelation 
(km) 

V decorrelation 
(m) 

M4DVAR1 1 1 25 90 
M4DVAR2 2 1 25 90 
M4DVAR4 4 1 25 90 
M4DVAR8 8 1 25 90 
C4DVAR8h25 8 – 25 90 
C4DVAR8h50 8 – 50 90 
C4DVAR8h75 8 – 75 90 
C4DVAR8v30 8 – 25 30 
C4DVAR8v60 8 – 25 60 
C4DVAR8v90 8 – 25 90 
M4DVAR8a 8 0.25 25 90 
M4DVAR8b 8 0.5 25 90 
M4DVAR8c 8 1.5 25 90  
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primarily negative, and coherent over a distance ~100 km. The hori-
zontal extent of the increment reflects the localization radius used, 
which in this experiment was 130 km, and should not to be confused 
with any imposed correlation length. The 4D-Var increments, on the 
other hand (Fig. 2b and c), have a more complicated structure and 
comprise both positive and negative values. The horizontal scale of the 
increments is commensurate with the horizontal length scale that is used 
to model B, which is 25 km in this case. The complex structure is due to 
the time evolution of xb via the covariance HBHT and the term BHT, and 
we expect similar structures to develop in the EAKF over time as the 
filter spins-up. The vertical structure of the temperature increments on 8 
Jan along a zonal section passing through the observation point is shown 
in Fig. 2d and g for the EAKF and 4D-Var, respectively. Overall, the 
vertical structure and vertical extent are similar in both cases, although 
the horizontal length-scale of the EAKF increment is generally larger 
than that of 4D-Var at all depths. 

4. CCS twin experiments 

Three time-intervals were considered for the CCS experiments cor-
responding to (a) 4 Jan− 14 April 2003, (b) 4 Jan–31 Dec 2003 and (c) 4 
Jan 2003–31 Dec 2004. The time interval (a) was used to perform an 
extensive suite of experiments to quantify the performance of the EAKF 
and 4D-Var system to variations in the system configuration. Time in-
tervals (b) and (c) were used for longer experiments using selected 
system configurations that will be discussed in later sections. Experi-
ments spanning time interval (a) will be considered first of all, and a 
time series of the number of the different types of observations is shown 
in Fig. 1d, while the distribution of all of the in situ observations 
collected during this period is shown in Fig. 1c. Two series of experi-
ments were performed with the EAKF and 4D-Var in the CCS: in the first 
case, simulated observations taken from a nature run were assimilated. 
In contrast, in the second series, real ocean observations were 
assimilated. 

The first series of experiments that will be described are those in 
which simulated observations sampled from the actual observing array 
were assimilated into the model. This type of analysis represents a 
traditional Observing System Simulation Experiment (OSSE), and the 
simulated observations were generated by sampling a reference solu-
tion, often referred to as a nature run. In this case, the nature run was a 
13-year run of the model without data assimilation spanning the period 

1999–2012 using the COAMPS fields to compute surface forcing and the 
SODA open boundary conditions. Simulated observations were taken 
from the nature run, and unbiased random observation errors were 
added, sampled from a Gaussian distribution with covariance R. Since 
the same model, and surface and boundary inputs were used for the data 
assimilation experiments, the model can be considered as perfect, in 
which case Q = 0 in (3). The 4 Jan 2003 initial condition used for the 
data assimilation experiments will be denoted as x0, and two cases were 
considered: (i) xi

0 taken from the 1980–2010 4D-Var reanalysis product 
of N16 (referred to as WCRA31) in which all available real observations 
were assimilated, and (ii) xii

0 taken from a run of the model without data 
assimilation spanning the period 1980–2003. The ocean surface forcing 
fields in both cases were derived from a combination of ECMWF prod-
ucts and the Cross-Calibrated Multi-Platform winds (CCMP). The ocean 
state x0 on 4 Jan 2003 differs significantly in both cases from the nature 
run solution on the same day. Since xi

0 also represents our best estimate 
of the true ocean state on this date, it is also the nominal initial state used 
for the real observation experiments described in Section 6. Represen-
tative fields of SST and SSH on a date close to the start of each experi-
ment are shown in Fig. 1a and Fig. 1b, respectively. 

4.1. EAKF experiments 

4.1.1. Ensemble generation strategies 
Several different strategies were investigated for generating pertur-

bations for the initial ensemble on 4 Jan 2003. In the first approach, 
referred to as Method A, analysis increments δxj from January were 
randomly selected from the WCRA31 reanalysis of N16. An ensemble of 
initial conditions was then created according to x0 + δxj. The rationale 
for this approach is that the δxj should be representative of uncertainties 
in the initial conditions, and perturbations chosen this way also have the 
advantage that they are dynamically balanced (although this does not 
guarantee that x0 +δxj will be in balance). The second strategy used, 
Method B, was to sample the nature run at random times during January 
of different years, excluding of course Jan 2003, the starting point for 
the data assimilation experiments. The difference, Δxj, between 
randomly chosen pairs of these January solutions were then used as 
initial perturbations for the ensemble members, according to x0 + Δxj. 
Two additional variants of Methods A and B were also considered, in 
which each perturbation was used twice according to x0 ± δxj or 

Fig. 2. The background SSH in the vicinity of central California on 8 Jan 2003. The triangle indicates the position of the single vertical temperature profile 
assimilated on the same day. 4D-Var analysis increments on 8 Jan 2003 of (b) SST and (c) sea surface salinity (SSS). (d) A zonal, vertical section of the 4D-Var 
temperature increment at the same latitude as the observation point. EAKF increments on 8 Jan 2003 of (e) SST and (f) SSS. (g) A zonal, vertical section of the 
EAKF temperature increment at the same latitude as the observation point. 
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x0 ± Δxj. By including the unperturbed ensemble member, this approach 
yields an ensemble mean initial condition equal to the unperturbed 
ensemble member, x0, and the ensemble is centered about x0. Centering 
of the ensemble members in this way can be beneficial because it ensures 
that no bias is introduced as a result of the limited size ensemble, and it 
provides for a fair comparison with the 4D-Var experiments (see Section 
5) which use x0 as the prior for the first assimilation cycle. In all of the 
centered EAKF experiments, the ensemble size has one additional 
member (from the unperturbed initial condition x0) compared to the 
uncentered counterpart. It should be noted, however, that centering the 
ensemble in this way leads to linear dependence between corresponding 
pairs of ensemble perturbations. Nonetheless, as we shall see, centering 
has a positive impact on the performance of the EAKF in the case where a 
long spin-up of the filter is not possible due to the limited duration of the 
observation record. 

It should also be noted that all ensemble members are subjected to 
the same atmospheric conditions and open boundary conditions. There 
will be variations in the ocean surface fluxes across the ensemble 
members due to differences that arise in SST, but the diversity in ocean 
surface forcing fields will still be relatively low. Even though we are 
assuming that the state of the atmosphere and the ocean at the open 
boundary conditions is known perfectly in the OSSEs, it is generally 
accepted that even in this case, perturbing the forcing and boundary 
conditions of each ensemble member can be an effective strategy to 
account for sampling errors due to the limited ensemble size. A lack of 
such diversity in the surface fluxes can significantly influence the per-
formance of the EAKF, as we shall see in later sections. Previous studies 
using the same ROMS configuration by Veneziani et al. (2009b) have 
demonstrated that the circulation is relatively insensitive to variations in 
the open boundary conditions, so the lack of diversity in the conditions 
imposed at the open boundaries across the ensemble may be less of an 
issue. 

As described in Section 2.1, the FGAT approach is employed in 
ROMS-DART, and adjustments made to each ensemble member at the 

end of the assimilation window. In the case of 4D-Var, however, the 
observations were assimilated at the actual observation times. Table 1 
summarizes the various parameter combinations used in the EAKF for 
each of the ensemble generation methods. As noted earlier, the baseline 
experiment is the one to which all others will be compared. 

Fig. 3 shows a time series of the root mean square (RMS) error in the 
ensemble mean temperature (T), salinity (S), the meridional component 
of velocity (v) and SSH (ζ) for all model grid-points, where the nature 
run is taken as the truth, for a series of experiments using the baseline 
configuration. Also shown is the case where no data were assimilated, 
where the model was initialized from xi

0 and run forward in time subject 
only to the COAMPS-derived surface forcing and the SODA open 
boundary conditions. Fig. 3 indicates that the baseline experiment, 
regardless of the ensemble generation method, can slowly recover the 
nature run solution over time, with immediate improvements in T 
(Fig. 3a) and ζ (Fig. 3d) compared to the no assimilation case. The es-
timates for S (Fig. 3b) and v (Fig. 3c; and for zonal velocity also, not 
shown) are initially only marginally better than the no assimilation case, 
although method B without centering leads to an initial degradation of S 
(Fig. 3b). The small increases in RMS error in ζ at the end of each cal-
endar month (Fig. 3d) are because no SSH observations were available 
on those days. However, the system immediately recovers the following 
day when new observations become available. 

Method A typically leads to a slower reduction in error over time 
than method B, although this is due to the difference in the amplitude of 
the ensemble perturbations. The perturbations used in method A drawn 
from the WCRA31 reanalysis are typically ~5 times smaller than those 
generated by randomly sampling the model state using method B. The 
results from a repeat of the method B baseline experiment with the 
ensemble perturbations scaled by a factor of 0.2 is also shown in Fig. 3 
and has a convergence rate similar to that of method A, indicating that a 
more aggressive choice of ensemble perturbation amplitudes can 
significantly accelerate recovery of the truth. The best baseline case of 
all results from a centered version of method B, which converges 

Fig. 3. Time series of the root mean square error in ensemble mean (a) temperature, (b) salinity, (c) meridional velocity, and (d) SSH for various EAKF experiments 
using different methods to generate the initial ensemble. The baseline cases using methods A (red line) and B (bold blue line) are shown, along with a centered 
baseline case using method B (blue dashed line). A separate case using method B, where all ensemble perturbations were scaled by a factor of 0.2, is also shown (thin 
blue line). For reference, the case where no data were assimilated is included (black dashed line). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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somewhat faster than the uncentered case for T and S. 

4.1.2. Ensemble spread and covariance inflation 
Rank histograms (aka Talagrand diagrams) provide a quantitative 

assessment of the behavior of the baseline case. In a rank histogram, the 
observation values are sorted into bins that are based on the distribution 
of the values of the ensemble members sampled at the observation 
points. Rank histograms, therefore, are one measure of the reliability of 
the ensemble. In other words, if the true state of the system, as revealed 
by the observations, is a likely member of the ensemble, then there is an 
equal likelihood of finding any observation in each of the bins. There-
fore, an indicator of a reliable ensemble is a flat rank histogram. When 
producing rank histograms for observed quantities, the ensemble 
members were perturbed with independent random draws from the 
observation error distribution; since this distribution is Gaussian here, 
this is equivalent to random draws from the likelihood (Anderson, 
1996). Fig. 4 shows rank histograms based on the SST observations on 
three different dates for the method B baseline case with ensemble 
perturbations scaled by 0.2 (Fig. 4a–c) and the centered method B 
baseline case (Fig. 4d–f). The dates chosen correspond to assimilation 
cycles near the beginning (4 Jan, Fig. 4a, d), middle (25 Feb, Fig. 4b, e), 
and end (17 April, Fig. 4c, f) of the experiment period. In the case of the 
reduced amplitude method B ensemble, Fig. 4a shows that in January, 
there is insufficient spread in the ensemble, as indicated by the U-shape 
of the histogram. However, as the experiment proceeds, the adaptive 
covariance inflation scheme that is employed can adjust the ensemble 
spread so that by April (Fig. 4c), the rank histogram is essentially flat, 
indicating that the ensemble is reliable. Conversely, Fig. 4d shows that 
the centered method B baseline ensemble enjoys too much spread, as 

indicated by the inverted U-shape of the rank histogram. In this case, 
also, the adaptive inflation can effectively adjust the ensemble leading to 
a reliable ensemble by as early as February (Fig. 4e). 

The inflation factors for SST on 4 Jan and 17 April for the same two 
baseline experiments are shown in Fig. 5. In the case of the small- 
amplitude ensemble, Fig. 5a indicates that the inflation factors are 
quite large in Jan over much of the domain. However, as the ensemble 
becomes more reliable, the inflation factors decrease significantly 
(Fig. 5b). A rapid adjustment in the inflation factors and ensemble 
spread occurs over just a few days, as illustrated in Fig. 6a (black line), 
which shows a time series of the mean inflation factor for SST for the 
same experiment. After a rapid fall in early Jan, the inflation factor 
continues a slow, gradual decline toward unity. The same behavior is 
present in other fields, such as SSH, as shown in Fig. 6b. In the centered 
method B case, the presence of too much spread in the ensemble results 
in inflation factors close to unity (red line) over most of the domain 
(Fig. 5c and d). In this case, there is little change in the inflation factors 
over time, as illustrated in Fig. 6, which reveals a slight decrease for 
those of SST and SSH from a value just above one toward unity. 

The ensemble of the method A baseline exhibits similar behavior to 
the small amplitude method B case, while the full amplitude method B 
baseline is like the centered method B case (not shown). 

4.1.3. FGAT window length 
The influence of increasing the length of the FGAT time interval on 

the quality of the circulation estimates was explored in experiments 
EAKF1a and EAKF1b, where the window length was increased first to 2- 
days then to 4-days. The time series of the RMS errors in temperature for 
experiments CB_EAKF1a and CB_EAKF1b are shown in Fig. 7a and 

Fig. 4. Rank histograms based on SST observations on three different days for (a-c) the method B baseline case with ensemble perturbations scaled by 0.2, and (d-f) 
the centered method B baseline case. Note the expanded scale of the ordinate in (a). 
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indicate that increasing the length of the FGAT window leads to no 
appreciable change in the quality of the circulation estimates compared 
to the baseline case. Other fields exhibit similar behavior (not shown). 

4.1.4. Ensemble size 
The impact of the ensemble size on the veracity of the circulation 

estimates was quantified by experiments EAKF2b and EAKF2a, where 
the ensemble size was reduced from 51 to 31 and 11 members, respec-
tively. The time series of the RMS errors in T for experiments CB_EAKF2a 
and CB_EAKF2b are shown in Fig. 7b and indicate that reducing the 
ensemble size to 11 members degrades the circulation estimates signif-
icantly compared to the baseline, although 31 members is only 
marginally worse than the baseline case. Similar results were found for 
other fields (not shown). 

4.1.5. Localization radius 
The influence of the horizontal and vertical localization scale on the 

circulation estimates was explored in experiments EAKF3a, EAKF3b, 
EAKF4a, and EAKF4b. As noted in Section 3.2, a Gaspari-Cohn locali-
zation function was used in all experiments, which in the baseline 
simulation has a half-width of 130 km in the horizontal and 200 m in the 
vertical. In experiments EAKF3a and EAKF3b, the horizontal localiza-
tion half-width was increased by a factor of 2 and decreased by a factor 
of 2 respectively, while keeping the vertical localization half-width scale 
fixed. Fig. 7c shows time series of RMS errors in temperature from ex-
periments CB_EAKF3a and CB_EAKF3b and reveals that, in general, 
increasing the horizontal localization scale degrades considerably the 
quality of the circulation estimates compared to the baseline case by 
admitting spurious correlation information in B. While reducing the 
horizontal localization scales marginally improves the temperature es-
timates during Jan, the estimates are degraded during later months 
suggesting the baseline choice of 130 km is more appropriate. 

In experiment CB_EAKF4a, the vertical localization was deactivated 
altogether, and Fig. 7d indicates that this significantly degrades the 
circulation estimates by allowing spurious correlations to influence the 
entire water column. Stratification dictates that some level of vertical 
localization is necessary since errors in T and S above the thermocline 
are unlikely to be significantly correlated with errors in the deep ocean. 
Reducing the localization length scale in the vertical, as in CB_EAKF4b, 
leads to a marginal degradation of the temperature field compared to the 
baseline case, suggesting that the baseline value of 200 m is a reasonable 
choice. Other fields exhibit similar behavior (not shown). 

4.2. 4D-Var experiments 

The simulated observations were also assimilated using 4D-Var and a 
variety of system configurations that are summarized in Table 2. In the 
experiments using background error standard deviations computed 
using (5), the default parameters are listed in Table 3. The default pa-
rameters lead to peak values in the standard deviations of ~0.6 ◦C, ~0.1, 
and ~0.1 ms− 1 for temperature, salinity and velocity respectively which 
are about a factor two larger than the typical peak prior ensemble 
spreads in the EAKF experiments. 

4.2.1. Assimilation window length 
The influence of the length of the 4D-Var data assimilation window 

was explored in experiments M4DVAR1, M4DVAR2, M4DVAR4, and 
M4DVAR8 (see Table 2) which all use Σm based on the default param-
eters for (5) and (6) (Table 3). In each experiment, the ocean analysis xa 
at the end of each 4D-Var cycle was used as the background initial 
condition xb for the next assimilation cycle. The time series of the RMS 
circulation errors for each of the 4D-Var experiments are shown in Fig. 8 
and indicate that, in general, the performance of the system improves as 
the length of the assimilation window increases. Except for M4DVAR1, 

Fig. 5. SST inflation factors on 4 Jan and 17 April for (a, b) the method B baseline with ensemble perturbations scaled by 0.2, and (c, d) the centered method B 
baseline case. Note the different color bar scales used in each case. 
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Fig. 6. Time series of the root mean square inflation factors for (a) SST and (b) SSH for the method B baseline with ensemble perturbations scaled by 0.2 (black line), 
and the centered method B baseline case (red line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Time series of RMS errors in ensemble mean temperature for EAKF cases involving variations in (a) FGAT window length (2-day, red; 4-day black), (b) 
ensemble size (11 members, red; 31 members, black), (c) horizontal localization radius (260 km, red; 65 km, black), and (d) vertical localization radius (no vertical 
localization, red; 100 m, black). In each case, the RMS error for the centered 51-member method B baseline (blue dashed line) and no assimilation case (black dashed 
line) are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the RMS errors are generally lower than the case where no data are 
assimilated. The poor performance of M4DVAR1 is associated mainly 
with large errors immediately below the thermocline (not shown here). 
For SSH, the RMS errors all converge to approximately the same level 
after ~2 months, although initially shorter assimilation windows are 
better at recovering the true SSH. 

The steady improvement in the performance of the 4D-Var system 
with increasing window length has also been reported elsewhere (e.g., 
Pires et al., 1996; Swanson et al., 1998). One important factor is asso-
ciated with the implicit flow-dependence of the background error 
covariance in observation space described by HBHT and BHT in (2). 
Recall that in 4D-Var H represents the tangent linear ROMS sampled at 
the observation times and locations while HT is the adjoint of ROMS 
forced at the observation points. Both the tangent linear and adjoint 
models are linearized about the time- evolving background circulation 
xb(t). Thus, extending the length of the 4D-Var assimilation window 
allows the time-evolution of background circulation to exert an ever- 
increasing influence on the specified background error covariance ma-
trix B. The benefit of this appears to out-weigh the potentially negative 
influence of violating the tangent linear assumption as the window 
length increases (Pires et al., 1996). In addition, increasing the window 
length increases the number of observations that will be available to 
control the ocean state, which will also be an important contributing 
factor. 

4.2.2. Horizontal and vertical correlation lengths 
As discussed in Section 2.2, the background error correlation matrix 

is modeled as a diffusion operator. This approach requires that typical 
horizontal and vertical correlation lengths for the background errors 

must be chosen. While in reality these length scales will vary spatially 
and temporally, at present, ROMS supports only user-defined homoge-
neous and isotropic correlation functions, so a single length scale must 
be chosen for each state variable that is representative of conditions over 
the entire domain. This is clearly an over-simplification of the complex 
error covariances that will exist in reality. However, an alternative 
interpretation of B is that it acts as a smoothing penalty function in the 
4D-Var cost function. The cost function in (4) is an example of a penalty 
function used in optimal control theory where smoothing constraints, 
referred to as Tikhonov regularization (Bertsekas, 1982), are often 
included to penalize the smoothness of the solutions. Thus, B can be 
thought of as a means of controlling the scale and smoothness of the 
resulting 4D-Var increments. Appropriate background error decorrela-
tion length scales can be estimated using semi-variogram analyses 
(Banerjee et al., 2004; Matthews et al., 2011). 

With this in mind, Fig. 9a shows the impact on the efficacy of the 
circulation estimates for the temperature to variations in the horizontal 
correlation length while keeping the vertical correlation length fixed at 
90 m. In these experiments, the climatological standard deviations Σc 
were used in conjunction with an 8-day assimilation window. Fig. 9a 
indicates that increasing the assumed horizontal length scale of the 
background error (i.e., increasing the degree of smoothing of the in-
crements) leads to a significant degradation of the 4D-Var circulation 
estimates. Other state variables exhibit similar behavior (not shown). 

The influence of the vertical correlation on the quality of the 4D-Var 
temperature estimates is shown in Fig. 9b for the case using Σc, a fixed 
horizontal correlation length of 25 km, and an 8-day assimilation win-
dow. In this case, increasing the vertical correlation length (i.e., the 
degree of smoothing in the vertical) leads to significant improvement in 
the quality of the estimates. Similar results were found for the other state 
variables (not shown). 

4.2.3. Background error standard deviations 
The influence of the choice of parameters in the error model (5) and 

(6) for Σm on the RMS errors of the temperature is summarized in Fig. 9c. 
In each case, the default parameters in Table 3 were all rescaled by a 
factor α except for δz, where α was varied between 0.5 and 1.5 (see 
Table 2). In each case, a horizontal correlation length of 25 km, a ver-
tical correlation length of 90 m, and an 8-day assimilation window were 

Table 3 
The default parameters used in the background standard deviation Eqs. (5) and 
(6).   

σmax  σml  σdo  δz  

Temperature 0.66 ◦C 0.1 ◦C 0.04 ◦C 40 m 
Salinity 0.05 0.1 0.056 40 m 
Velocity 0.12 ms− 1 0.10 ms− 1 0.04 ms− 1 500 m 
SSH 0.05 m – – –  

Fig. 8. Time series of the RMS error in (a) temperature, (b) salinity, (c) meridional velocity and (d) SSH for experiments using 1-day (blue line), 2-day (red line), 4- 
day (green line) and 8-day (black line) data assimilation windows. Also shown is the case where no data were assimilated (black dashed line). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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used. In these experiments, the data assimilation methodology was 
modified, so that during the first 4D-Var cycle starting on 4 Jan, Σc was 
used. This procedure is based on the assumption that at the time of the 
first cycle, the errors in the background initial conditions are probably 
best described by climatology since no data have yet been assimilated. 
This inference was confirmed by computing the innovation statistics 
described by Desroziers et al. (2005). Specifically, σ2

b =
(
ya − yb

)T ( y − yb
)
/N was evaluated where the overbar denotes the ex-

pected value, y is the vector of observations, and ya and yb are respec-
tively the analysis and background evaluated at the observation 
locations and observation times, and N is the number of observations. 
Desroziers et al. (2005) show that if B and R are chosen consistently, 

then HBHT ≈
(
ya − yb

)(
y − yb

)T . Therefore, for a given subset of ob-

servations (e.g., temperature), σ2
b is the expected value for the back-

ground error variance. The statistic σ2
b is, therefore, a useful measure of 

the consistency between the expected background error based on the a 
priori choice ofB and R, and the specified values of error variance in Σc or 
Σm. Fig. 9d shows the time series of log10σ2

b and log10
(
Tr
(
Σ2

c
)
/N

)
for all 

SST observations during each 4D-Var cycle. During the first 4D-Var 
cycle, the expected background errors in SST are consistent with those 
specified from climatology. However, during subsequent cycles, the 
expected error is an order of magnitude lower than that given by Σc, 
showing that the choice of Σc is inappropriate. This adjustment occurs 
because, after the first assimilation cycle, the model SST is much closer 
to the truth than a randomly chosen ocean state. Fig. 9d shows the sit-
uation in experiment M4DVAR8 where Σc is used during the first 4D-Var 
cycle, and Σm with the default parameters is used thereafter. In this case, 
the agreement between σ2

b and Tr
(
Σ2

m
)

is greatly improved, indicating 
that Σm is a more appropriate choice of background errors after the first 
cycle. 

Fig. 9c indicates that the efficacy of the 4D-Var circulation estimates 
of temperature is relatively insensitive to the scaling that is applied to 
the parameters in (5) and (6). 

5. A comparison of CCS EAKF and 4D-Var 

In this section, we compare the performance of representative best- 
case EAKF and 4D-Var configurations during the extended period that 
spans all of 2003. The RMS errors of the CB baseline EAKF and 
M4DVAR8 experiments for the period Jan-Dec 2003 are shown in 
Fig. 10a–c for cases initialized using xi

0 and xii
0 on 4 Jan 2003. Centering 

the ensemble in the case of the EAKF ensures that the ensemble mean at 
the beginning of the first assimilation cycle is identical to the 4D-Var 
background. Fig. 10a–c show that, overall, the level of error in the cir-
culation estimates is similar for both the EAKF and 4D-Var. The errors in 
the EAKF estimates are generally less sensitive to the starting point x0 
than those in the 4D-Var cases. 4D-Var errors are typically larger for the 
case starting from xii

0, although, by the end of Dec 2003, they are similar 
to those starting from xi

0. Fig. 10a–c therefore indicate that after about 
12 months, the EAKF and 4D-Var circulation estimates display a similar 
degree of accuracy regardless of the first-guess estimate x0. The tem-
perature errors in all cases increase during the spring and summer, 
mirroring the case where no data are assimilated. 

The fact that the EAKF and 4D-Var analysis sequences converge to 
similar circulations when starting from different first-guess fields for the 
first assimilation cycle, indicates that both methods are performing as 
expected and that their respective implementations are robust. In the 
case of 4D-Var, it also suggests that there are apparently no multiple 
minima of the cost function associated with different solution trajec-
tories through time. 

Fig. 10a–c also show the envelope bounded by the maximum and 
minimum RMS error of each of the 51 members of the EAKF ensembles. 
While it is gratifying to note that the ensemble mean is more accurate 
than any single ensemble member, the broadening of the envelope 
throughout the year in both EAKF experiments is troubling and indica-
tive of an over-dispersive ensemble. This is explored further in Fig. 11, 
which shows the RMS errors in T and S averaged over different depth 
ranges for the CB EAKF baseline and M4DVAR8 starting from xii

0. Over 
the upper 100 m (Fig. 11a and b), which includes the thermocline, the 
errors in T and S are similar for both cases, and mirror the errors 
computed over the full depth. However, the temperature errors are a 

Fig. 9. Time series of RMS errors in temperature for 4DVAR cases involving variations in (a) horizontal correlation length (25 km, black; 50 km, red; 75 km, blue) 
with vertical correlation of 90 m and using Σc, (b) vertical correlation length (90 m, black; 60 m, red; 30 m, blue) with horizontal correlation of 25 km and using Σc, 
and (c) the scaling factor α for the parameters in the standard deviation Eqs. (5) and (6) for Σm and using a 25 km horizontal correlation length and a 90 m vertical 
correlation length (α = 0.25, blue; α = 0.5, red; α = 1, green; α = 1.5, black). In all cases, an 8-day assimilation window was used. The case with no data 
assimilation is also shown for comparison (black dashed). (d) Time series of log10σ2

b (solid black line) and log10
(
Tr
(
Σ2

c
)
/N

)
(black dashed line) for SST observations 

for experiment C4DVAR8h25, and of log10σ2
b (solid red line) and log10

(
Tr
(
Σ2

m
)
/N

)
(red dashed line) for experiment M4DVAR8. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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little higher in the case of 4D-Var during summertime. The spatial 
structure of the errors in T averaged over the same depth range are 
shown in Fig. 12a–c on 7 July 2003, and reveal that errors are primarily 
associated with mesoscale features. This suggests that the increase in 
errors during the spring and summer may be associated with elevated 
eddy activity downstream of Cape Mendocino (cf. Fig. 1) that accom-
panies a strengthening of the California Current during upwelling sea-
son, a feature that is also observed (Kelly et al., 1998). Immediately 
below the thermocline, 4D-Var generally performs better than the EAKF 
in the case of T (Fig. 11c), while the errors in S are similar (Fig. 11d). 
Fig. 12e–g show the spatial structure of the errors in T for this depth 
range on 7 July 2003 and indicate that the EAKF generally performs 
worst equatorward of 40◦N. The divergence in the ensemble of the EAKF 
evident in Fig. 10a–c is associated with a significant increase in errors of 
T and S at mid-water column depths and below, as revealed by Fig. 11e 
and f. Starting around spring, the errors in both T and S exhibit an up-
ward trajectory that continues for the rest of the year. The spatial 
structure of the errors in S on 14 Dec 2003 averaged over 1000–2000 m 
are shown in Fig. 12i–k, and clearly illustrate the development of sig-
nificant salinity errors in several locations during the EAKF case 
(Fig. 12k). 

The error growth in the CB baseline EAKF experiment continues 
beyond the end of 2003, and eventually, the computation becomes un-
stable, as illustrated in Fig. 10d–f, which shows RMS errors for selected 
experiments for the extended period Jan 2003–Dec 2004. By August 
2004, the errors in all field estimates of the CB_EAKF baseline have 
increased significantly before the calculation terminates. On the other 
hand, the 4D-Var errors continue to decline slowly in the case of S and v, 
while in T, they exhibit a pronounced seasonal cycle with maximum 
errors during the summer each year. 

We set forth two hypotheses to explain the divergence of the EAKF 
ensemble and eventual failure of the baseline experiment. The first is 
associated with initialization shocks that are introduced into the model 
at the start of each 1-day FGAT assimilation cycle. No attempt was made 

to dynamically balance the EAKF field estimates at the start of each 
cycle, and it is known that inertia-gravity waves that are generated in 
this system, as a result, take ~24–48 h to dissipate (Raghukumar et al., 
2015). Consequently, with a 1-day FGAT interval, insufficient time 
elapses to significantly dissipate the inertia-gravity waves generated 
during the update of the previous assimilation cycle before the circu-
lation fields are updated again. The accumulation of gravity wave en-
ergy over time could, therefore, be responsible for the divergence of the 
ensemble seen in Fig. 10a–c. Our second hypothesis relates to the 
initialization of the vertical mixing coefficients of temperature and 
salinity (AT,S) and velocity (Av) after each EAKF update. In all of the 
cases presented here, the generic length scale formulation of Umlauf and 
Burchard (2003) was used to compute time-dependent vertical mixing 
coefficients. This approach necessitates the solution of additional 
equations for turbulent kinetic energy (TKE) and the mixing length scale 
(MLS). Since TKE and MLS are prognostic variables, they should be 
considered as part of the state-vector that is updated by both the EAKF 
and 4D-Var. However, this is not done in the current formulation of 
ROMS, and as such, no attempt is made to update TKE and MLS during 
each assimilation cycle. During the CB_EAKF baseline experiment, AT,S 

and Av were found to increase with time, reaching very large values at 
the time that the calculation failed. It is possible that this behavior is 
caused by the lack of updates of TKE and MLS. On the other hand, it 
could also be a symptom of the development of an ever-increasingly 
unstable water column as the deep ocean salinities and temperatures 
are exposed to large anomalies (cf. Fig. 12k). 

Based on these two hypotheses, the EAKF experiment using a 4-day 
FGAT window, CB_EAKF1b (see Table 1), was extended to the end of 
2004. Increasing the time interval between EAKF updates in this way 
will allow sufficient time for the inertia-gravity waves excited as part of 
the initialization shock to dissipate. The resulting RMS errors for 
CB_EAKF1b are shown in Fig. 10d–f for the case using xii

0. In this case the 
EAKF is well behaved during the entire 2-year period in that the RMS 
errors generally decline over time, and there is no sign of divergence of 

Fig. 10. Time series of RMS errors in ensemble mean (a) temperature, (b) salinity, and (c) meridional velocity for the period Jan-Dec 2003 for the CB baseline EAKF 
case using xi

0 (thick red line) and xii
0 (thick blue line). Also shown are the corresponding M4DVAR8 cases (thin red line and thin blue line, respectively). The shading 

represents the envelopes bounded by the maximum and minimum RMS error of each of the 51 members of the CB EAKF baseline ensemble for the two cases. Also 
shown for comparison are the cases initialized from xi

0 (dashed red line) and xii
0 (dashed blue line) where no data were assimilated. Time series of RMS errors for the 

extended period Jan 2003–Dec 2004 are shown in (d), (e) and (f) for the ensemble mean of the CB EAKF baseline case using xi
0 (thick black line) and CB_EAKF1b 

starting from xi
0 (thick red line) and xii

0 (thick blue line). The blue shaded region is the envelope bounded by the maximum and minimum RMS error of each ensemble 
member of the latter case. The corresponding M4DVAR8 cases (thin red line for the xi

0 case and thin blue line for xii
0) are also shown. Also shown in (d) and (e) are 

time series of mean squared innovation dTd/N (cyan line) and the expected total error variance of the ensemble per observation Tr
{
(
yb − yb

)(
yb − yb

)T
+R

}/

N 

(magenta line) for all temperature and salinity observations, where N is the number of observations assimilated in each case. The scale for dTd/N and 

Tr
{
(
yb − yb

)(
yb − yb

)T
+R

}/

N is shown on the right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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the ensemble. As discussed by Houtekamer et al. (2005), an additional 
measure of the reliability of the ensemble is if 

dTd = Tr
{
(
yb − yb

)(
yb − yb

)T
+R

}

where d is the innovation vector, yb 

is a vector for each ensemble member evaluated at the observation lo-
cations and observation times, and an overbar denotes the ensemble 
mean. Fig. 10d and 10e shows time series of dTd/N and 

Tr
{
(
yb − yb

)(
yb − yb

)T
+R

}/

N for CB_EAKF1b calculated for all tem-

perature and salinity observations where N is the number of observa-
tions of each type assimilated. After a few months of filter spin-up, the 
agreement between the mean squared innovation and the total expected 
error variance per observation is very good, indicating that the ensemble 
is indeed reliable during much of the experiment. 

Fig. 11 shows how the RMS errors in T and S vary with depth during 
CB_EAKF1b and indicate that this case is typically superior to M4DVAR8 
at all depths. In agreement with 4D-Var, Fig. 10d shows that tempera-
ture errors during CB_EAKF1b undergo a seasonal cycle, being largest 
during the summer. The spatial structure of the errors on selected dates 
are also shown in Fig. 12d, h, and l and indicate that they are generally 
lower everywhere, and the problems in the deep ocean identified earlier 
have been eliminated. 

5.1. Innovation statistics 

Another useful way to compare the EAKF and 4D-Var systems is to 
examine the statistics of the innovations of each approach, which for a 

linear system, are expected to be normally distributed with zero mean 
and covariance 

(
HBHT + R

)
. With this in mind, Fig. 13a–d show the 

probability density functions (pdfs) of the innovations for SST and in situ 
salinity computed for the entire Jan 2003–Dec 2004 period from both 
systems. Also shown for comparison are normal distributions with the 
same mean and standard deviation as the innovations. The EAKF and 
4D-Var innovations are very similar to each other, and in both cases, are 
approximated very well by a normal distribution. The same is true for 
innovations of SSH and in situ temperature observations (not shown). 

The degree to which the pdfs change through time is illustrated in 
Fig. 13e–h, which show time series of the mean, standard deviation, 
skewness, and kurtosis of the innovation pdfs computed over a 15-day 
moving window for period Jan 2003–Dec 2004. The time evolution of 
the EAKF and 4D-Var mean and standard deviations are generally very 
similar to each other for the innovations associated with each observa-
tion type. The mean is close to zero throughout the 2-year window 
indicating no significant bias. After an initial period of a week or so, the 
standard deviations settle down to near-constant values in both data 
assimilation systems. The skewness of a normal distribution is zero, and 
except for the first month or so, the skewness is generally low and 
centered around zero, indicating that by-and-large the innovation pdfs 
are well approximated through time by a normal distribution. There are 
more significant variations in the skewness of the in situ observations. 
Some of these variations are due to the relatively small sample size (i.e., 
there are relatively few in situ observations available during most 15-day 
moving windows). However, in the case of in situ salinity observations, 
both the EAKF and 4D-Var innovations are significantly positively 

Fig. 11. Time series of RMS errors in the ensemble 
mean temperature and salinity for the CB baseline 
EAKF case (blue line), the M4DVAR8 case (red line) 
and CB_EAKF1b (solid black line) for the period Jan- 
Dec 2003 computed over different depth ranges: (a, 
b) 0–100 m, (c,d) 100–200 m and (e,f) 1000–2000 
m. Also shown for comparison is the case where no 
data were assimilated (black dashed line). The 
starting initial condition on 4 Jan 2003 in all cases 
was xii

0. (For interpretation of the references to color 
in this figure legend, the reader is referred to the 
web version of this article.)   
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skewed during the early months of 2003 (i.e., the distribution leans more 
toward negative innovations). The kurtosis of a normal distribution is 3 
and has been scaled by a factor of 0.1 in Fig. 13e–h for convenience of 
visualization. Both the EAKF and 4D-Var innovation pdfs have a kurtosis 
that is generally close to a value of 3 through time for all observation 
types. The exception is the first few weeks of each experiment in which 
elevated values of kurtosis indicate that at these times, the tails of the 
distribution are lower than those of the expected normal distribution (i. 
e., there are fewer extreme values than expected). 

While the statistics of the pdfs in Fig. 13 indicate that the innovations 
of both EAKF and 4D-Var are both well approximated by a normal dis-
tribution, it is of interest to know the extent to which the innovation 
values for each observation correspond to each other in both assimila-
tion systems. This relationship is quantified in Fig. 14, which shows time 
series of the correlation between innovations associated with each 
observation type computed over a 15-day moving window for the period 
Jan 2003–Dec 2004. Except for the first week or so, the correlation 
between the EAKF and 4D-Var innovations for all observation types is 
between 0.8 and 0.9 (i.e., r2 ~ 0.6–0.8), indicating that both assimilation 
systems are producing very similar values for the innovations associated 
with individual observations through time. 

5.2. Imperfect forcing and boundary conditions 

In all of the OSSEs considered so far, the state of the atmosphere and 
open boundary conditions were assumed to be known and error-free. In 
this section, these assumptions are relaxed, and the influence of errors in 
these critical boundary conditions on the ability of the EAKF and 4D-Var 
systems to recover the nature run will be considered. As noted in Section 
4, the nature run was generated by computing surface fluxes of heat, 
freshwater, and momentum from atmospheric fields derived from 
COAMPS. Open boundary conditions were derived from SODA. The 
experiments CB_EAKF1b and M4DVAR8 were repeated a second time to 
explore the influence of errors and uncertainties in the surface fluxes and 
wind stress. However, in this case, the surface forcing was computed 
using the combination of ECMWF and CCMP fields described earlier. 
The open boundary conditions used were the same as those of the nature 
run. 

Fig. 15a and b show time series of the RMS errors in T and S from 
these new experiments. The errors initially decrease in both cases during 
the first 2–3 months. However, the spring transition is followed by an 
increase in errors in T (Fig. 15a), to the extent that 4D-Var is inferior to 
the case where no data were assimilated. During the fall and winter, the 
errors decrease again. In the case of S (Fig. 15b), the errors are similar in 

Fig. 12. Maps of the RMS errors averaged over different depth ranges on various dates for cases where no data are assimilated, M4DVAR8, the CB_EAKF baseline, and 
CB_EAKF1b. (a–d) temperature errors, 0–100 m, 7 July, (e–h) temperature errors, 100–200 m, 7 July, and (i–l) salinity errors, 1000–2000 m, 4 Dec. Note that the 
range of the color bar is not the same in all like panels. 
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both cases, although during summer the EAKF errors are higher. Fig. 15a 
indicates that the temperature errors in the case without data assimi-
lation also increase during the summer. Further investigation reveals 
that this is associated with large differences in the surface heat flux 
derived from ECMWF and COAMPS fields that are mostly attributable to 
differences in solar heating due to differing distributions of marine 
stratus, a common feature during the summer. During this time, Fig. 15a 
and b also indicate that the spread of the EAKF ensemble is too small 
compared to the mean squared innovation and is not reliable. As noted 
in Section 4.1.1, the under-dispersive nature of the ensemble is probably 
associated with the fact that each ensemble is subject to the same at-
mospheric conditions and oceanic open boundary conditions. The in-
fluence of perturbing these fields also will be the subject of a future 
study. 

The ROMS 4D-Var system also includes an option whereby the sur-
face fluxes and wind stress can be included as part of the control vector 
and adjusted to better fit the model to the observations. Fig. 15a and b 
show the results of an additional 4D-Var experiment based on M4DVAR8 
in which the surface heat flux (QH), freshwater flux (Qw), and both 
components of surface wind stress (τ) were adjusted during each 8-day 
4D-Var cycle. Following Broquet et al. (2011), the background error 
covariance matrix for the additional control vector components was 
modeled using a diffusion operator with assumed horizontal decorre-
lation length scales of 100 km for QH and Qw and 300 km for τ. The 
standard deviations assumed for the background errors were chosen to 
be uniform over the model domain and specified according to 2στ for τ, 
2σw for Qw, and 

(
2+8sin2(jπ/12)

)
σH for QH, where στ, σw and σH are the 

annual, domain-averaged climatological standard deviations of τ, Qw, 
and QH, respectively, and j denotes the calendar month such that j = 1 is 
Jan, j = 2 is Feb, etc. The time dependence imposed on the standard 
deviation for QH mimics the seasonal cycle in the uncertainty associated 
with the net solar forcing with the largest uncertainty during summer-
time. Fig. 15b shows that while this configuration of 4D-Var has little 
influence on errors in S, Fig. 15a reveals that the impact on T is 
considerable. 

It should be noted that the surface forcing corrections computed by 
4D-Var are predicated on the assumption that errors in the background 
surface flux estimates are unbiased and normally distributed. However, 
more often than not, surface forcing errors take the form of a bias, which 
is the case here, so it is encouraging that the 4D-Var system can improve 
the state estimate in this situation also. A more appropriate approach 
though would be to include a variational bias correction term in the cost 
function (4) as described by Dee (2005) and Balmaseda et al. (2007). 

To explore the influence of errors and uncertainties in the open 
boundary conditions, the experiments CB_EAKF1b and M4DVAR8 were 
repeated using open boundary conditions that were offset by one year. 
Thus, for the 2003 experiments, the open boundary conditions were 
derived from the SODA product for 2004. The atmospheric conditions 
were assumed to be error- free. Time series of RMS errors for these ex-
periments are shown in Fig. 15c and d. In this case, the errors are similar 
for both the EAKF and 4D-Var, and although the EAKF performs better, 
the ensemble spread is generally a little too low compared to the mean 
squared innovation. Also shown in Fig. 15c and d are results of a 4D-Var 
experiment in which all open boundary variables were included as part 

Fig. 13. Probability density functions (pdfs) of the Jan 2003–Dec 2004 innovations in (a) 4D-Var SST, (b) 4D-Var in situ S, (c) EAKF SST and (d) EAKF in situ S. The 
red line shows the pdf for a normal distribution with the same mean and standard variation. Time series of the first four moments of the innovation pdfs computed 
over a 15-day moving window for the EAKF (thick lines) and 4D-Var (thin lines) for (e) SST, (f) SSH, (g) in situ T and (h) in situ S. The pdf mean is shown in blue, the 
standard deviation in red, the skewness in black and the kurtosis scaled by a factor of 0.1 in cyan. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 14. Time series of the correlation between the EAKF and 4D-Var in-
novations over a 15-day moving window associated with observations in SST 
(black line), SSH (red line), in situ T (cyan line) and in situ S (dark blue line). 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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of the control vector and adjusted to better fit the model to the obser-
vations. Given the lower resolution of the SODA boundary data 
compared to ROMS (0.25–0.4◦ vs. 0.1◦), the background error decor-
relation lengths were chosen to be 100 km in the horizontal and 30 m in 
the vertical for all boundary variables following N16, and the back-
ground error standard deviations were taken to be the monthly clima-
tological standard deviations of each SODA field along the ROMS open 
boundaries. Fig. 15c and d show that this approach leads to only 

marginal improvement in RMS errors. As in the case of the surface flux 
adjustments, the background boundary condition errors are typically 
systematic, while the underlying assumption in 4D-Var is that they are 
unbiased and normally distributed. Therefore, a variational bias 
approach would be more appropriate in the case also. 

Fig. 15. Time series of the RMS errors in (a) T and 
(b) S for repeat experiments CB_EAKF1b (black line) 
and M4DVAR8 (red line) using an incorrect reali-
zation of the atmospheric conditions. The gray 
shaded region represents the envelope bounded by 
the maximum and minimum RMS errors of each of 
the 51 members of the CB_EAKF1b ensemble. RMS 
errors for a 4D-Var experiment where the surface 
fluxes and wind stresses are also adjusted are also 
shown (solid blue line). For reference, the errors 
from a model where no data were assimilated are 
also shown (black dashed line). Panels (c) and (d) 
show the RMS errors in T and S for experiments 
using incorrect open boundary conditions: black line 
- CB_EAKF1b, red line - M4DVAR8. Also shown are 
the RMS errors of a 4D-Var experiment in which all 
open boundary conditions were adjusted (solid blue 
line). Each panel also shows time series of the mean 
squared innovation dTd/N (cyan line) and the ex-
pected total error variance of the ensemble 

Tr
{
(
yb − yb

)(
yb − yb

)T
+R

}/

N (magenta line) for 

all temperature and salinity observations, where N 
is the number of observations assimilated in each 
case. The scale for dTd/N and 

Tr
{
(
yb − yb

)(
yb − yb

)T
+R

}/

N is shown on the 

right. (For interpretation of the references to color 
in this figure legend, the reader is referred to the 
web version of this article.)   

Fig. 16. Time series of RMS errors of hindcasts initialized from the CB EAKF baseline, M4DVAR8, and CB_EAKF1b circulation estimates. The hindcast errors were 
computed relative to independent observations of (a) SST, (b) SSH, (c) in situ T, and (d) in situ S before these data were assimilated during the next assimilation cycle. 
The hindcast duration is eight days in each case, and hindcast errors were computed for each hindcast day. The shaded regions are bounded by the maximum and 
minimum daily hindcast errors over the 8-day window. The errors for the CB EAKF baseline are shown as blue shading, the errors for CB_EAKF1b as green shading, 
and those for the M4DVAR8 forecasts as red shading. The 8-day hindcast errors for the model run without data assimilation is also shown (black dashed line). For 
reference, the standard deviation of the random errors added to the simulated observations is also shown (thin black line). Also shown are time series of the true 
hindcast errors as compared to the nature run for CB_EAKF1b (green line) and M4DVAR8 (red line). Time series of RMS errors of hindcasts initialized from CB 
_EAKF1b (green) and M4DVAR8 (red) using imperfect atmospheric fields during the analysis and hindcast cycles are shown in (e)-(h). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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5.3. Errors relative to unassimilated observations 

In practice, of course, the true circulation will never be known, so we 
must validate the data assimilation analyses against independent ob-
servations or against model hindcasts initialized from the analyses with 
new observations before they are assimilated into the model. In the case 
of hindcasts initialized from 4D-Var analyses, the difference between the 
hindcast and the new observations corresponds to the innovations for 
the portion of the hindcast interval that overlaps the next assimilation 
cycle. For the hindcasts initialized from the EAKF analyses, the hindcast 
is sampled at the actual space-time locations of the new observations, 
and so in general the differences will not correspond to the FGAT in-
novations of the next cycle(s). Here we perform these comparisons using 
the simulated observations since this will provide a useful benchmark 
for the experiments that use real observations in Section 6. The circu-
lation estimates from the CB baseline EAKF, CB_EAKF1b, and M4DVAR8 
cases were all used as initial conditions for 8-day hindcasts, and the 
hindcasts compared to the new observations collected during the hind-
cast interval (i.e., before they were assimilated into the model during the 
next assimilation cycles). An 8-day interval was used for convenience 
because this corresponds to the 4D-Var window length. 

Fig. 16 shows time series of the RMS difference between model 
hindcasts and simulated observations during the hindcast interval. 
Specifically, Fig. 16 shows the envelope bounded by the maximum and 
minimum of the error evaluated on each hindcast day. During most 
hindcast cycles, the smallest errors are associated with the hindcasts on 
day 1 and the largest errors with hindcast day 8. For comparison, the 
standard deviation of the unbiased random error added to the simulated 
observations is also shown. Several noteworthy features emerge in 
Fig. 16. First, the errors of hindcasts initialized from both the EAKF and 
4D-Var analyses are always typically close to the observation error, 
although the EAKF takes ~3–4 months to reach this limit. Second, 
despite the divergence of the ensemble in the 1-day FGAT CB EAKF 
baseline case, there is no hint of any problem with the analyses based on 
the available observations because there are no deep temperature and 
salinity profiles. Finally, while CB_EAKF1b using a 4-day FGAT window 
is superior in terms of the true error (cf. Fig. 10d–f), Fig. 16 indicates that 
this is not reflected in the error of hindcasts initialized from the 4-day 
FGAT EAKF analyses, particularly in the case of SST (Fig. 16a). 

As an additional reference point, Fig. 16 also shows time series of the 

true hindcast errors computed by comparing the forecasts with the na-
ture run. The errors in the forecasts initialized from the EAKF and 4D- 
Var analyses are generally comparable, although the 4D-Var-based 
predictions fare better for SST. While we can only ever expect to fit 
the model to observations to within the expected combined observation 
errors and errors of representativeness, it is encouraging to see that the 
model hindcasts are generally also improving over time when compared 
to the nature run. 

Fig. 16e–h show the corresponding errors for hindcasts initialized 
from EAKF and 4D-Var state estimates in the case where the atmospheric 
fields are in error. In this case, also, the errors computed relative to 
unassimilated in situ T, S and SSH are close to the observation errors, 
despite the very significant errors compared to the nature run (cf. 
Fig. 15). The only significant departures from the observation errors 
occur in SST during the summer (Fig. 16e), which is consistent with 
Fig. 15a. 

6. CCS real observation experiments 

In the final set of CCS experiments reported here, observations from 
the real ocean observing system for the period Jan–Dec 2003 were 
assimilated into the model using the CB_EAKF1b and M4DVAR8 con-
figurations. Fig. 17a–d show the pdfs of the SST and in situ salinity in-
novations for the 4D-Var and EAKF cases for the entire 2003 period. 
While the 4D-Var pdf for SST is approximated well by a normal distri-
bution (Fig. 17a), the same cannot be said for the EAKF (Fig. 17c) or the 
in situ observations. The same is generally true for SSH and in situ tem-
perature observations (not shown). Time series of the first four moments 
of the innovation pdfs computed for a 15-day moving window are shown 
in Fig. 17e–h. The mean for the SST and SSH innovations is generally 
close to zero, although there are periods of significant bias in SST during 
the late spring and early summer. The innovations for the in situ tem-
perature observations (Fig. 17g) in the case of 4D-Var are close to zero 
throughout the year. However, for the EAKF, they reveal the presence of 
a negative bias indicating that the model is on average warmer than the 
observations. The EAKF innovation standard deviation is generally 
higher than that of 4D-Var for all observation types, particularly in the 
case of in situ temperature. Fig. 17e–h reveal significant variations in 
skewness for all observation types, and particularly for the EAKF. 
Similarly, the kurtosis undergoes large fluctuations, particularly in the 

Fig. 17. Probability density functions (pdfs) of the Jan-Dec 2003 innovations when real ocean observations are assimilated: (a) 4D-Var SST, (b) 4D-Var in situ S, (c) 
EAKF SST and (d) EAKF in situ S. The red line shows the pdf for a normal distribution with the same mean and standard variation. Time series of the first four 
moments of the innovation pdfs computed over a 15-day moving window for the EAKF (thick lines) and 4D-Var (thin lines) for (e) SST, (f) SSH, (g) in situ T and (h) in 
situ S. The pdf mean is shown in blue, the standard deviation in red, the skewness in black and the kurtosis scaled by a factor of 0.1 in cyan. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

A. Moore et al.                                                                                                                                                                                                                                  



Progress in Oceanography 189 (2020) 102450

18

case of in situ observations of T and S, which in conjunction with the 
skewness, indicate significant departures from a normal distribution at 
all times, commensurate with Fig. 17b and d. This result is in stark 
contrast to the innovation pdfs of the simulated observation experiments 
in Fig. 13. The innovation pdfs of the imperfect forcing and boundary 
condition experiments in Section 5.2 are described well by a normal 
distribution (not shown), so it seems likely that the significant de-
partures from a normal distribution in Fig. 17 are associated with model 
errors. In addition, the model possesses some significant biases in ver-
tical temperature and salinity structure associated with the presence of 
different water masses as shown by Veneziani et al. (2009a), and pre-
vious studies have shown only part of the bias can be eliminated by data 
assimilation (Broquet et al., 2009a; Neveu et al., 2016). 

The degree of correspondence between the EAKF and 4D-Var in-
novations associated with each type of observation is shown in Fig. 18. 
During the period Jan-May, the correlation between the SST and in situ 
observation innovations is ~ 0.8, indicating that for these observations, 
the two assimilation systems yield innovations that are, on the whole, 
reasonably similar. However, after May, the correlations decline quite 
rapidly, revealing that the two data assimilation systems are diverging. 

As in the simulated observation experiments, the analyses were used 
to initialize 8-day hindcasts, which were compared to the new obser-
vations before they were assimilated. Time series of RMS difference 
between the hindcasts and the observations before assimilation are 
shown in Fig. 19 for the two sequences of hindcasts. In this case, all of 
the hindcasts initialized from the EAKF analyses are, on average inferior 
to those initialized using 4D-Var. In the case of in situ T and S, they are 
often worse than the case where no data are assimilated. The reliability 
of the EAKF ensemble is shown in Fig. 19e and f for all temperature and 
salinity observations respectively and indicates that there are often pe-
riods where the ensemble would be considered unreliable. As noted in 
Section 5.2, this occurrence is most likely associated with the fact that 
each ensemble is subject to identical atmospheric conditions and 
oceanic open boundary conditions. 

Since we do not know the true ocean circulation, we will use as an 
alternative gauge the RMS difference between the EAKF and 4D-Var 
state estimates compared to that for the different cases considered in 
Section 4 where simulated observations were used. With this in mind, 
Fig. 20 shows times series of the RMS difference between the 

temperature and salinity analyses from the EAKF and 4D-Var systems 
using real observations. Fig. 20a indicates that there is a pronounced 
seasonal cycle in the temperature differences with the two estimates 
being furthest apart during summer and fall. In contrast, the salinity 
field estimates diverge continuously throughout the year. It is helpful to 
view these analysis differences in terms of those derived from simulated 
observations. Therefore Fig. 20 also shows the RMS differences between 
the CB_EAKF1b and M4DVAR8 with perfect atmospheric and boundary 
conditions for the two initial first-guess states xi

o and xii
o and the RMS 

differences between the experiments that use imperfect atmospheric and 
boundary conditions. The RMS EAKF minus 4D-Var analysis tempera-
ture differences using real observations are most similar to those that 
arise from imperfect atmospheric conditions in the OSSEs. However, in 
the case of salinity, there is no apparent analog. 

7. The Indian ocean 

In this section, we document the performance of the ROMS EAKF and 
4D-Var data assimilation systems in the Indian Ocean as a representative 
example of a tropical basin-scale circulation regime. 

7.1. Model and observations 

The ROMS Indian Ocean application (ROMS-IO) was designed to 
resolve the main modes of seasonal and mesoscale variability with 
particular emphasis on the well-observed equatorial region. The model 
domain spans the area 16◦S-27.5◦N, 38.5◦E-102.3◦E and is shown in 
Fig. 21. The spatial resolution varies from ~29 km at the northern and 
southern boundaries and increases approaching the equatorial wave-
guide to ~7 km. In the vertical, 40 terrain-following levels yield a ver-
tical resolution between 6 m and 15 m within the upper equatorial 
seasonal thermocline (i.e., ~upper 120 m). The spatial resolution chosen 
resolves the most critical processes and is also amenable to ensemble and 
variational data assimilation. 

At the open boundaries, the model was constrained by fields from the 
Global Hybrid Coordinate Ocean Model (HYCOM; Metzger et al., 2014) 
analyses. The model was gradually nudged to daily means of tempera-
ture and salinity in a nudging layer ~200 km wide, where the nudging 
timescale decreases from 2 days at the lateral boundaries to zero at the 
interior. Additionally, adaptive open boundary conditions for tracers 
and currents, as described in Marchesiello et al. (2001), were used. For 
the barotropic component, Chapman (1985) boundary conditions were 
used for the vertically averaged velocity, and Flather (1976) boundary 
conditions suitable for a staggered C-grid (Mason et al., 2010) were used 
for the free surface elevation. At the surface, the model is forced with air- 
sea momentum, heat, and freshwater fluxes computed using the bulk 
formulae parameterizations for the marine boundary layer, as described 
in Fairall et al. (2003). The atmospheric fields required by these pa-
rameterizations were obtained from the ERA-interim analysis (Dee et al., 
2011) at the highest spatial and temporal resolution available (3 h at 1/8 

degree). The river forcing includes seasonal cycles of river discharge 
from the five major rivers discharging to the IO basin (the Brahmaputra, 
Ganges, Irrawaddy, Godavari, and Indus) based on the freshwater 
discharge database of Dai and Trenberth (2002). A 10-year model 
integration (2003–2012) produced a reasonable seasonal cycle without 
significant drifts when compared with satellite estimates of SSH and SST 
and the temperature and salinity climatology of Chatterjee et al. (2012). 

The observations used to evaluate the solutions with and without 
data assimilation take the form of daily SST composites from the 
Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA; 
Donlon et al., 2011), SSH estimates from the gridded products from 
AVISO, and in-situ observations from different sources compiled in the 
World Ocean Database 2018 (WOD18; Boyer et al., 2018). The two 
primary sources of in situ temperature and salinity are daily mean pro-
files from the Research Moored Array for the African-Asian-Australian 

Fig. 18. Time series of the correlation between the EAKF and 4D-Var in-
novations over a 15-day moving window associated with observations in SST 
(black line), SSH (red line), in situ T (cyan line) and in situ S (dark blue line) 
when real observations are assimilated. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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Monsoon Analysis and Prediction (RAMA), and profiles from Argo floats. 
Also included in the in situ database are XBT and CTD profiles, as shown 
in Fig. 21b. 

Due to the computational demands of the ROMS-IO application, we 
concentrate on the 5-month window from 1-Sep-2011 to 31-Jan-2012. 
This period includes the Dynamics of the Madden-Julian Oscillation 

(DYNAMO; Chen et al., 2015; Jensen et al., 2015) field campaign 
(Oct–Dec 2011), which provides additional in situ mooring data from 
CTDs. 

7.2. EAKF configuration 

Due to the large size of the ROMS-IO grid, it was not possible to 
perform an extensive series of OSSEs and sensitivity calculations as in 
the case of the CCS application described in Sections 4 and 5. However, 
the results from the OSSEs in the CCS were a valuable guide for the 
parameter choices adopted here. The number of ensemble members 
used was 31, which seems to be a reasonable lower bound in the CCS 
application and is only marginally worse than the 51-member ensemble 
case (cf. Fig. 7b). The ensemble of initial conditions needed to initialize 
the EAKF were created from the 10-year forward run using the centered 
method B described in Section 4.1.1, where x0 was the forward model 
solution for 1-Sep-2011, and the ensemble perturbations ±δx were 
scaled by a factor of 0.5. As discussed earlier, centering the ensemble 
ensures that no bias is introduced during the EAKF initialization due to 
the relatively small number of ensemble members. A 2-day FGAT win-
dow was used in conjunction with adaptive inflation and Gaspari-Cohn 
localization. The required localization scale in the DART input file was 
chosen based on the spatial decorrelation scales of the forward model 
anomalies. While it was found that the decorrelation scales vary with 
latitude and proximity to the coast, we use a value of 250 km which is 
representative of the equatorial waveguide and open ocean. 

Fig. 22b and c compare the rank histograms during Sep and Nov of 
2011 based on all the available subsurface observations (approximately 
24,000 per month). While the rank histograms suggest insufficient 
spread of the initial ensemble (Fig. 22b), the adaptive covariance 

Fig. 19. Time series of RMS errors of hindcasts 
initialized from the EAKF and 4D-Var circulation 
estimates derived from real ocean observations in 
the CCS configuration. The hindcast errors were 
computed relative to independent observations of 
(a) SST, (b) SSH, (c) in situ T, and (d) in situ S before 
these data were assimilated during the next assimi-
lation cycle. The hindcast duration is eight days in 
each case, and hindcast errors were computed for 
each hindcast day. The shaded regions are bounded 
by the maximum and minimum daily hindcast er-
rors over the 8-day window. The errors for the 
EAKF-derived forecasts are indicated by green 
shading, and those resulting from the 4D-Var fore-
casts as red shading. The 8-day forecast errors for 
the model run without data assimilation is also 
shown (black dashed line). For reference, the stan-
dard deviation assumed for the combination of in-
strument error and the error of representativeness is 
also shown (thin black line). Panels (e) and (f) show 
time series of mean squared innovation dTd/N (cyan 
line) and the expected total error variance of the 
ensemble  

per observation Tr
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yb − yb
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yb − yb
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N 

(magenta line) for all temperature and salinity ob-
servations, where N is the number of observations 
assimilated in each case. (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the web version of this article.)   

Fig. 20. Time series of the RMS difference between the EAKF and 4D-Var an-
alyses using real observations (black lines): (a) temperature and (b) salinity. 
Also shown for comparison are the RMS differences between pairs of the EAKF 
and 4D-Var analyses using simulated observations: CB_EAKF1b (xi

o) and 
M4DVAR8 (xi

o) – solid blue line; CB_EAKF1b (xii
o) and M4DVAR8 (xii

o) – solid red 
line; CB_EAKF1b and M4DVAR8 with imperfect forcing – green line; 
CB_EAKF1b and M4DVAR8 with imperfect forcing adjusted during 4D-Var – 
dashed blue line; CB_EAKF1b and M4DVAR8 with imperfect open boundary 
conditions adjusted during 4D-Var – dashed red line. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 21. The ROMS-IO model domain and observations used in the EAKF and 4D-Var experiments. An example of the OSTIA SST and AVISO SSH on 15 October 2011 
is shown in (a) and (c) respectively. The locations of all in situ hydrographic observations collected between 1-Sep-2011 and 31-Jan-2012 are shown in (b) 
superimposed on the 15-Oct-2011 SST, and time series of log10 of the number of observations of each type available during each 24-hour window is shown in (d). 

Fig. 22. Diagnostics of 4D-Var and EAKF analyses for ROMS-IO. (a) Time series of log10

(
σ2

b

)
(solid red line) and log10(Tr(Σc)/N ) (red dashed line) for in situ 

temperature observations in the 4D-Var analysis. (b) and (c) Rank histograms in the EAKF analysis based on all the in situ temperature observations during Sep and 
Nov (d)-(g) Probability density functions (pdfs) of the Sep 2011–Jan 2012 innovations in (d) 4D-Var SST, (e) 4D-Var in situ S, (f) EAKF SST and (g) EAKF in situ S. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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inflation algorithm yields a more uniform ensemble spread by Nov 2011 
(Fig. 22c), as in the CCS case. 

7.3. 4D-Var configuration 

The 4D-Var experiment used a 4-day assimilation window, and only 
the initial conditions were used as the control variable to compare with 
the EAKF experiments. The background error covariance B is con-
structed using the seasonal standard deviations of each field (Σc), which 
were estimated by fitting the first two harmonics of the annual cycle to 
the 3-month running mean of the standard deviations of the forward 
model anomalies. As discussed in Section 4.2.3, these standard de-
viations are representative of the uncertainty in the initial conditions of 
the first 4D-Var assimilation cycle but are expected to overestimate the 
true background errors as the 4D-Var cycling procedure continues as 
demonstrated for the CCS (cf. Fig. 9d). With this in mind, the climato-
logical standard deviations were gradually rescaled during the first 4-cy-
cles (i.e., the first 16 days of Sep 2011) down to 25% of the 
climatological value. This initial damping of the standard deviations was 
found to approximate the expected background errors for all model 
variables based on the innovation statistics of Desroziers et al. (2005), as 
described in Section 4.2.3. The background correlation lengths used to 
model B were 250 km in the horizontal and 50 m in the vertical, in 
conjunction with two outer-loops and seven inner-loops. A comparison 

between the expected 
(

σ2
b

)
and the assumed (Tr(Σc)/N ) background 

error variance during each 4D-Var assimilation cycle for the in situ 

temperature is shown in Fig. 22a. The error estimates assumed are 
consistent with those expected. 

7.4. Comparison of EAKF and 4D-Var experiments for ROMS-IO 

Fig. 22d–g compare the pdfs of innovations for SST and in situ ob-
servations from the 4D-Var and EAKF experiments for the entire analysis 
period. The behavior of the innovation pdfs for ROMS-IO are generally 
consistent with those found in the CCS, with SST pdfs approximately 
exhibiting normal distributions. However, the in situ salinity pdfs depart 
significantly from a normal distribution in this case also. 

Since in this case we cannot compare the solutions to the true ocean 
state, we will consider first the fit of the 4D-Var and EAKF analyses to the 
assimilated observations which is summarized in Fig. 23. After a period 
of initial adjustment lasting around one month, the RMS errors converge 
to approximately the same level except for the in situ temperature, which 
is larger for the EAKF estimate. The RMS differences exhibit more 
variability in the EAKF, and at times they are comparable to those of the 
forward solution for some variables (e.g., SST in Nov 2011 and in situ 
temperature at the end of Sep 2011). 

Similar to the CCS experiments with real observations (cf. Fig. 19), 
Fig. 24 shows validation of the analyses in terms of the RMS difference 
between hindcasts initialized from the EAKF and 4D-Var analyses and 
the new observations before they were assimilated. For convenience, the 
hindcast period is the same as the 4D-Var window length (4 days). Both 
estimates produce similar hindcast errors, although those derived from 

Fig. 23. Time series of RMS errors for the 4D-Var (red lines) and EAKF (blue lines) analyses computed from the assimilated observations. (a) SST, (b) SSH, (c) in situ 
temperature, and (d) in situ salinity. Also shown for comparison is the case where no data were assimilated (black dashed line). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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the EAKF analyses exhibit some large fluctuations in errors especially 
when compared to the subsurface in-situ observations. As in the CCS 
experiments, the a priori observation error is an approximate lower 
bound on the hindcast error. 

8. Summary and conclusions 

This study presents a detailed comparison of the performance of two 
data assimilation systems that are available as part of the community 
ROMS. The two systems considered are an ensemble adjustment Kalman 
filter and a 4-dimensional variational approach. The performance of 
each system has been evaluated in two diverse dynamical regimes: the 
California Current system, an eastern boundary current upwelling 
regime, and the Indian Ocean comprising an energetic equatorial 
waveguide subject to the large-amplitude seasonal variations of the 
African-Asian-Australian Monsoon system. 

In the CCS, the relative performance of the EAKF and 4D-Var systems 
was assessed via an extensive suite of OSSEs using simulated observa-
tions drawn from the actual observing system. These experiments were 
designed to quantify the sensitivity of the quality of the ensuing ocean 
state estimates on the configuration of each DA system. In particular, the 
OSSEs reveal that the performance of the EAKF is most sensitive to 
ensemble size, choice of localization scales, and the strategy used to 
generate the initial ensemble. On the other hand, the performance of 4D- 
Var is most sensitive to the assimilation window length and a priori as-
sumptions about the decorrelation length scales associated with the 
background errors. Short FGAT windows were found to create signifi-
cant issues for the EAKF which are most likely associated with initiali-
zation shock or with the reinitialization of the vertical mixing 

parameterization, or both. This issue was alleviated by increasing the 
FGAT window length allowing more time for inertia-gravity waves 
excited by initialization shocks to dissipate before the next data assim-
ilation cycle, while at the same time enabling the turbulent kinetic en-
ergy and mixing length scales of the vertical mixing parameterization to 
reach an equilibrium. These issues are the subject of an ongoing 
investigation. 

An interesting finding of this study is that the sequence of EAKF and 
4D-Var analyses converge to approximately the same ocean state when 
starting from different first-guess fields for the first assimilation cycle. 
This result suggests that the 4D-Var cost function does not possess 
multiple minima which could cause the independent estimates to be 
attracted to different ocean states. 

The innovations in both the EAKF and 4D-Var are well described 
through time by unbiased normal distributions. Furthermore, the sta-
tistics of the innovation pdfs for the EAKF and 4D-Var track each other 
closely, and the correlation between the innovations associated with 
individual observations is high, indicating that the two systems remain 
close and are generating consistent analyses despite the fundamentally 
different approaches that are employed. 

The greatest impediment to the EAKF and 4D-Var, as revealed by the 
OSSEs, is associated with errors in the surface forcing. In the CCS, where 
the circulation is dominated by a pronounced seasonal cycle in up-
welling and marine stratus, errors in the state of the atmosphere lead to a 
dramatic reduction in the ability of either DA system to recover the true 
circulation. The under-dispersive nature of the ensemble during these 
experiments suggests that the EAKF may, in general, suffer from a lack of 
diversity of atmospheric (and possibly also open boundary) states in the 
systems considered here. 

Fig. 24. Time series of RMS errors of hindcasts 
initialized from the EAKF and 4D-Var circulation 
estimates in the Indian Ocean configuration. The 
hindcast errors were computed relative to indepen-
dent observations of (a) SST, (b) SSH, (c) in situ T, 
and (d) in situ S before these data were assimilated 
during the next assimilation cycle. The hindcast 
duration is four days in each case, and hindcast er-
rors were computed for each hindcast day. The 
shaded regions are bounded by the maximum and 
minimum daily hindcast errors over the 4-day win-
dow. The errors for the EAKF-derived forecasts are 
shown as green shading and those for the 4D-Var 
forecasts as red shading. The forecast errors for the 
model run without data assimilation are also shown 
(black dashed line). The solid black line indicates 
the standard deviation of the combined instrument 
and error of representativeness. (For interpretation 
of the references to color in this figure legend, the 
reader is referred to the web version of this article.)   
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While overall, the collective result of all CCS OSSEs indicate that the 
EAKF generally out-performs 4D-Var, the differences are not large. 
However, the OSSEs also revealed that evaluating the efficacy of DA 
analyses based on hindcasts compared to independent observations has 
its limitations. As anticipated, the model cannot be fit to the observa-
tions better than the observation errors allow. 

The behavior of the two data assimilation systems applied to the CCS 
is different in the case when real observations are assimilated. For 
example, the EAKF and 4D-Var innovation pdfs are generally not well 
represented by a normal distribution, particularly in the case of in situ 
observations. Furthermore, unlike the state estimates of the OSSEs, the 
EAKF and 4D-Var analyses diverge from each other over time. This 
behavior may be due to the presence of model error and persistent bias, 
which is absent in the OSSEs. It is also likely, as noted above, that per-
formance of the EAKF here is compromised by subjecting each ensemble 
member to the same atmospheric state and open boundary conditions. 
The influence of perturbing the surface forcing and boundary conditions 
on the performance of the EAKF will be the subject of a future study. 

By and large, the relative behavior and performance of the EAKF and 
4D-Var systems in the Indian Ocean is consistent with that in the CCS 
experiments. The only notable difference is that the skill of hindcasts 
initialized from the two analysis products is more comparable in the 
Indian Ocean. Thus, both DA systems can function consistently across 
different circulation environments, and the relative performance of the 
EAKF and 4D-Var systems presented here is likely to be representative of 
that in other regions of the world ocean. 

4D-Var has been available in the community release of ROMS for 
quite some time (Moore et al., 2011a), and the introduction of ROMS 
within DART increases considerably the data assimilation arsenal 
available to ROMS users. As already noted, the overall performance of 
the two data assimilation systems is comparable in the OSSEs and OSEs 
reported here. Indeed, as shown by Lorenc (1986), with all things being 
equal both data assimilation approaches would be expected to yield very 
similar and consistent analyses, which is the case. Thus, which approach 
a ROMS user might choose is likely predicated on personal choice and 
the application at hand. The DART EAKF has the significant computa-
tional advantage in that multiple ensemble members can be run 
concurrently, while the current formulations of 4D-Var supported by 
ROMS are strictly sequential in time. On the other hand, ROMS 4D-Var 
supports augmentation of the control vector to include the surface 
forcing, open boundary conditions, and corrections for model error (i.e. 
weak constraint 4D-Var), an option that is not yet available in the cur-
rent ROMS-DART release. Both DART and ROMS provide a suite of 
useful post-processing tools, such as for quantifying the impact of the 
observations on ocean analyses and subsequent forecasts. The effort 
required to set up DART and 4D-Var is comparable and, in both cases, 
requires the user to make some important and informed decisions 
relating to B. In DART, a seed ensemble must be chosen and an appro-
priate ensemble size, in conjunction with appropriate choices of locali-
zation function, localization lengths, and covariance inflation factors, all 
of which may require some experimentation. In the case of 4D-Var, 
appropriate parameters for the covariance model must be chosen in 
the form of horizontal and vertical correlation length scales, as well as 
parameters for the background error standard deviation thresholds (cf 
Eqs. (5) and (6)). Online documentation is available for DART and 
ROMS, as well as extensive data assimilation tutorials and hands-on 
exercises designed for users with all levels of expertise. Perhaps one 
obvious advantage of the EAKF over 4D-Var is that a forecast ensemble 
can be readily computed when used in a real-time or operational envi-
ronment to provide information about forecast uncertainty. However, 
comparable information can also be computed in the ROMS 4D-Var 
system with similar computational effort using a practical imple-
mentation of the Bennett (1985) array modes of the observing system. 
Another practical consideration concerns the spin-up of the EAKF in 
situations when the observation record is limited in time. As shown in 
Fig. 3, the initial seed ensemble, and ensemble generation method, can 

significantly influence the time required for the EAKF to spin-up and 
reach a statistical stable state (see also Fig. 10d and e). If the spin-up 
time is long or a significant fraction of the observation record length, 
then it may be preferable to use 4D-Var which typically has a shorter 
spin-up time. 

As noted in Section 1, this work is a stepping-stone toward the 
development of a hybrid 4D-Var data assimilation system for ROMS that 
will be a marriage of the DART system and ROMS 4D-Var. The term 
hybrid refers to the formulation of the background error covariance 
matrix B (Hamill and Snyder, 2000; Lorenc, 2003a; Buehner, 2005). 
Hybridization of B in 4D-Var consists of combining the static Bs derived 
from, say, Σc or Σm of Section 4.2 with a flow-dependent covariance Be 
computed from a localized ensemble. The resulting background error 
covariance matrix is then given by B = αBs + βBe, where the weights α 
and β can be computed from statistical considerations (Ménétrier and 
Auligné, 2015). The system envisaged for ROMS is one in which DART 
will provide a localized Be. The hybrid B will be used in 4D-Var to 
compute a new analysis which will then be used to re-center the DART 
ensemble mean, a approach that has been used successfully in numerical 
weather prediction (e.g. Zhang and Zhang, 2012; Clayton et al., 2013). 
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