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24. What were the major goals and objectives of this project?

The major goals of this project were to use deep learning with convolution neural
networks (CNN) for improving the spatial resolution of multispectral imagery (MSI) using
a corresponding high-resolution panchromatic image and then fusing the downscaled
high-resolution MSI image with a synthetic aperture radar (SAR) image to make a new
GEOINT product to assist in the analyzing of agricultural row crops. These goals were
achieved by accomplishing the following objectives: (1) To adapt UAH’s deep learning
CNN image super-resolution method to enhance the spatial resolution of high-resolution
(2.0 m/pixel) MSI imagery using a corresponding fine-resolution (0.5 m/pixe)
panchromatic image,(2) fuse downscaled fine-resolution MSI images from Objective 1
with fine-resolution (< 10.0 m/pixel) SAR data), and (3) evaluate how agricultural crop
analysis can be enhanced using the new GEOINT product.

25. What was accomplished under these goals?

Literature Review:

We conducted a detailed literature review to examine the latest technologies in deep
learning for conducting pan sharpening and radar data fusion. Research has shown that
Convolutional Neural Networks (CNNs) can be an effective method for improving the
spatial resolution of multispectral imagery (MSI) using a corresponding high-resolution
panchromatic image [1-7]. In fact, several studies have demonstrated the ability to
combine MSI data with panchromatic [1], microwave [3], and SAR data [4] with good
success. Many different algorithms and techniques have been tested including
Intensity-Hue-Saturation (IHS) [5,8], Principal Component Analysis (PCA) [4,6,9],
Discrete Wavelet Transformation (DWT) [7], Support Vector Regression (SVR) [10,11],
and various combinations of these methods [12]. Several of these methods use a
higher-spatial resolution panchromatic image to improve the spatial resolution of the
lower-spatial resolution MSI data. Although successful, these techniques often display
high spectral distortions because the panchromatic and MSI bands of data do not
overlap entirely in the electromagnetic spectrum. Recent studies have successfully used
deep learning to address this issue [13,14,15,16]. One of the most promising directions
of deep learning is data fusion of SAR and optical data as these data modalities are
completely different from each other both in terms of geometric and radiometric
appearance [17].

Deep learning has gained popularity over the past decade due to its capacity to learn
data representations using both supervised and unsupervised classifiers. Because of



this ability, many researchers are now exploring the use of deep learning technologies
to perform image super-resolution and data fusion with varying degrees of success [19].
Deep learning develops computational models consisting of multiple processing layers
that learn hierarchical features at multiple levels of abstraction [20]. There are two major
types of deep learning neural networks, CNNs, and recurrent neural networks (RNN).
Both approaches have consistently outperformed traditional machine learning methods
when evaluated with benchmark datasets [18,19,20].

Principal Investigator (PI) Beck demonstrated that deep learning CNNs can be
successfully trained to downscale (increase) the resolution of low-resolution
satellite-based imagery by learning a mapping of features to corresponding
higher-resolution imagery [21]. A trained CNN architecture can then be used to increase
the resolution of low-resolution satellite imagery when no corresponding high-resolution
imagery is available. Results indicated that the CNN automatically adjusted the dynamic
range of the low-resolution image to match the range of the target high-resolution image
and the CNN approach outperformed other standard image interpolation techniques
(Table 1). Images produced by this study were notably more detailed than those
produced by common interpolation methods (Figure 1).

Table 1.  Comparison of Image Quality Produced by CNN and Other Standard Methods.

Enhancement Method
Peak Signal to Noise Ratio Structural Similarity

Index

CNN 46.99 0.9862

Nearest Neighbor 32.39 0.9550

Bilinear 32.43 0.9576

Cubic 32.45 0.9593



Figure 1. Comparison of a low-resolution satellite image (left) and CNN super-resolution image
(right) for a region where no corresponding high-resolution image is available.

In Beck’s study, the initial architecture for the panchromatic sharpening task was similar
to that used for standard image super-resolution [16, 18-22]. In contrast to CNNs
developed for classification tasks where the output is a single class, this CNN was used
for super-resolution where learned hierarchical features are used to produce an
improved resolution dataset. For super-resolution of MSI data, the network maintained
the spatial dimensions of the panchromatic image. The task of generating each grid
point in the output was a regression task rather than a classification task. The network
learned a set of features that made use of information embedded in neighboring data
points to generate an interpolated value for each grid point simultaneously. Unlike
classification networks, super-resolution networks are purely convolutional and contain
no pooling or fully connected layers. For standard image super-resolution, the output
values are integers, but for image super-resolution problems in which SAR data will be
fused, outputs are real-valued grid points.

For this project, we conducted several experiments with alternative network parameters,
architectures, and data handling options. Recent CNN literature reports improved
performance with more complex architectures such as deep residual networks,
generative adversarial networks (GANs), and capsule networks [23-28]. Many of these
new techniques were initially designed for image classification and needed to be
truncated or modified for the purpose of the regression problem central to a resolution
improvement using a panchromatic image and SAR data fusion task. PI Beck
conducted initial experiments with generative adversarial networks for super-resolution
and radar fusion of satellite-based precipitation data that showed great promise [22].



Generative Adversarial Networks (GANs) are an emerging deep learning architecture
that can include other forms of deep learning including CNNs and autoencoders, a type
of neural network which compresses an input into smaller feature information. The
GAN’s purpose is to generate a target image indistinguishable from the real image.
GANs accomplish this by employing a two-branch architecture consisting of a generator
branch and a discriminator branch. The generator branch generates new data derived
from sample data and the discriminator branch acts as the adversary calculating the
probability of the generated image being real or fake. This training process repeats until
the discriminator believes the generated MSI is a high-quality pan-sharpened image.
Accurate hierarchical features are learned and preserved using this deep learning
method while they would be lost or inaccurate if a traditional pan-sharpening algorithm
was applied.

We also investigated using a super-resolution generative adversarial network (SRGAN)
which consisted of three blocks of layers, each with a specific function: generation,
feature extraction, and discrimination [23, 24]. The generation block ingested the input
MSI samples and generated a synthetic sample in the same feature space as the target
domain. The synthetic sample was then passed to both the feature extraction block and
the discriminator block. The feature extraction block compared the loss between the
features of the synthetic sample and the features of the target sample. The
discrimination block attempts to classify the generated synthetic sample as real or
synthetic/fake; the goal was to generate samples such that it is difficult to discriminate
between real target samples and generated samples. The discrimination and feature
extraction blocks back-propagate the loss to train the generation block. During testing
and inference, only the generation block was used to generate enhanced MSI samples
and fuse the SAR data.

We also explored and expanded our testing of the GAN by fine-tuning the CNN
parameters according to the following research [25-35]. Finally, we explored the
development and use of an unsupervised deep-learning CNN architecture using
advanced loss functions.

Convolutional Neural Network (CNN) Architectures:

For this investigation, we developed four different CNN architectures or models for
pan-sharpening multispectral data with panchromatic data: a traditional supervised
CNN, an unsupervised CNN using a specialized loss function, a super-resolution
generative adversarial network (SRGAN) [24,25], and a novel idea using a
PanColorGAN [36]. All four of our models were implemented using TensorFlow. The
following is a detailed account of each model and the data we used throughout the
project.



Study Area:

The study area for this project consisted of approximately 15,000 hectares of
Tennessee River Valley land, just west of Huntsville, Alabama. This area was chosen
because of its close proximity to UAH and its vast amount of row crop agriculture
(cotton, corn, and soybeans). Recent trends in cropping practices have shifted away
from traditional cotton farming towards planting more corn and soybeans.

Data Used:

For this project, we acquired imagery from the Airbus DS Pleiades 1B satellite which
consisted of a fine-resolution panchromatic image with a 0.5 meters/pixel spatial
resolution and a four-band multispectral image with a spatial resolution of 2.0
meters/pixel. This scale factor of 4 between the panchromatic and multispectral bands
is frequently encountered in super-resolution and pansharpening research. Our
Pleiades product was delivered as a 16-bit GeoTIFF and was collected on May 18,
2019. This time period was chosen because most of the agricultural row crops had
already been planted and were in their early stages of growth.

Data Pre-processing:

Supervised machine learning models require a ground truth image against which to
compare the model output. Our supervised models did not have natural truth or target
images because coincident multispectral imagery with the same spatial resolution of the
panchromatic imagery was unavailable. To circumvent this, we used a process called
the Wald protocol to create input and truth pairs. The Wald Protocol uses the patches
from the original multispectral imagery as truth samples [37].

A set of degraded panchromatic and multispectral patches are generated to serve as
the input samples. The original scale factor is retained for the input and target patches.
This way the models can be applied to the native resolution multispectral and
panchromatic samples during testing. The original scale factor is retained for the input
and target patches so the models can be applied to the native resolution of the
multispectral and panchromatic samples during testing.

For all models, the imagery was divided into smaller patches. Patches were 256 x 256
pixels at the resolution of the panchromatic imagery and 64 x 64 pixels at the resolution
of the multispectral imagery. The output of our models had “banding” around the edges
of the image. This is an artifact of convolution and padding operations. Since our
patches overlapped spatially, we were able to remove the banding effect during image
reconstruction after model inference. The pixel dimensions of the necessary overlap
correlated to the dimensions of the convolutional filters used by our model layers.



1.) Traditional Supervised CNN

At the beginning of this project we decided to try a very simple supervised CNN
architecture consisting of three convolution layers, the first two being followed by a
Rectified Linear Unit (ReLU) (Figure 2.) Since the dimensions of the image must be
maintained throughout the model, pixel padding was applied to the output of each
convolution layer. The parameters for the CNN consisted of the numbers of filters in the
first and second convolution layers (the third layer’s size was determined by the number
of bands in the output image) as well as the convolution kernel sizes for the first,
second, and third layers. A learning rate was also specified throughout the model.

Figure 2. Traditional Supervised CNN Architecture for this project.

This CNN did not contain pooling layers since the purpose was not to recognize objects
in images but to perform pansharpening. Pooling layers described here for
completeness, subsample the input from the previous layer using an aggregation
function such as mean or maximum. Using even a small pooling kernel of 2x2 and a
stride of 2, data will be reduced by 75 percent from the previous layer, with only the
mean or maximum of each kernel making it to the next layer. With the goal of
pansharpening, keeping all of the information from the previous layer is necessary, and
reducing the data by aggregating would be counterproductive. Figure 3 represents the
basic CNN data workflow.



Figure 3. Example workflow from our traditional supervised CNN.

Panchromatic input patches were 256 x 256 pixels, and multispectral input patches
were 64x64 pixels. All data were normalized by the dynamic range prior to training. The
number of filters used was 256, 64, 4, and filter dimensions of 13, 9, 9 respectively. The
Adam optimizer with a learning rate of 0.0001 was used with this model. We found that
the Adam optimizer improved learning performance (as opposed to Stochastic Gradient
Descent) and that the Adam optimizer provided convergence much more quickly than
the standard stochastic gradient descent with a momentum approach. The training set
was generated using the Wald protocol and the multispectral and panchromatic image
patches are stacked into 5-band images which are used as model input.

For the Wald protocol processing, we separated each individual multispectral band data
into separate arrays, instead of combining them into a multichannel image. We also
calculated the average and standard deviation of the values in each channel and saved
them to a file stored in the output model directory so the prediction script could read it
and adjust the output levels to have the same average. This helped the problem
somewhat, but often, the result was an unsaturated image. Considerable difficulty was
encountered in getting the color of the output channels in predicted images to match the
color in the input images. We discovered that if we passed the input tile through the
network multiple times it would increase the quality of the output with respect to the
color matching. We also noticed that the error statistic greatly decreased the first few
passes, with diminishing returns later on. We found that eight epochs were sufficient to
produce good results.



Utilizing the MSI of the Tennessee Valley and its corresponding panchromatic image we
were able to generate a high-quality pan-sharpened image. Although our results from
this basic supervised CNN were promising we are having an issue with our model
where a small grid-like pattern is produced where the patches were mosaicked together
for the scene. To avoid this artifact, input patches were generated such that there was a
128 pixel (or 50%) overlap. See Figure4 for an example of the output.

Figure 4. Example output from our traditional supervised CNN.

2.) Unsupervised CNN

For our second experiment, we developed an unsupervised CNN model based on
recent work by Zhou and others where they used a specialized loss function to improve
the pan-sharpening results by developing a function in which the relationships between
the input multispectral and panchromatic images and the fused multispectral image
were used to design the spatial constraints and spectral consistency, respectively [38].
This CNN did not require the use of the Wald protocol to construct a surrogate training
set. Instead, this model only used the panchromatic and multispectral images at their
original resolutions as the base training set. A compound loss function was then used
which evaluated the pan-sharpened image output against the original imagery and
intermediate imagery derived from the original data. The following steps and equations
were implemented based on the journal article by Zhou [37].



A few preprocessing steps were performed prior to training:

● We resampled the original multispectral imagery to the same spatial resolution as
the panchromatic imagery. We also resampled the panchromatic imagery to the
spatial resolution of the multispectral imagery. These sets will be referred to as
high resolution multispectral and low resolution panchromatic respectively.

● All four sets were normalized by the dynamic range of the sensor, 12 bits.
● An operation during the loss function requires a learned hyperparameter vector

named α. α is used to approximate the panchromatic image as a linear
combination of the multispectral bands. This was formally defined as

where M is the multispectral image, C is the number of bands in M, and e1 is
additive random noise. To solve for α, we first resampled the panchromatic image
to the spatial resolution of the multispectral image. We then used TensorFlow to
solve the least-squares estimation. While α is solved for the relationship between
the low resolution panchromatic and native multispectral imagery, it can also be
applied to native panchromatic and high-resolution multispectral imagery.

Our unsupervised model used a novel loss function consisting of three main
components: spatial loss, spectral loss, and quality with no reference (QNR).

● Spatial loss: The spatial loss calculation used three inputs: an original
panchromatic patch P, a patch generated by the model , and the vector α.

● First an approximation of P is calculated using the combination of bands from

● Then two metrics were computed.

where MSE was the mean-squared error and SSIM is a structural similarity
index.



● The final spatial loss was then defined as

● Spectral loss: Spectral loss calculation uses high-resolution multispectral patches
and model output . A Gaussian blur K is applied to . can then be

considered an approximation of resampled multispectral image . Spectral loss
calculation is otherwise similar to that of spatial loss:

● QNR: QNR calculation uses an original panchromatic patch P, a low-resolution
panchromatic patch p, an original multispectral patch m, and a patch generated
by the model . QNR consists of a spectral distortion index and a spatial
distortion index , both of which use the universal image quality index Q. The Q
index is defined as follows:

The spectral distortion is the loss between the Q index of band pairs in and
the corresponding band pairs in m.

The spectral distortion is the loss between the Q index each band in and P
and the corresponding band pairs in m and p.

QNR was then defined as



where i and j are used as weights for each component. In our case, we then set

i = j = 1

The final loss returned by this component was calculated using

.

● The final compound loss was defined as

In this architecture, the model takes two main inputs: the high-resolution multispectral
imagery and the original panchromatic imagery. Additionally, the original multispectral
imagery and low-resolution panchromatic imagery are used in the model’s loss function
as described above. Features are extracted from the panchromatic imagery using a
convolution layer and a leaky ReLU. The HRMS is passed through a series of layer
blocks referred to as fusion units. Each fusion unit consists of two convolution layers, a
leaky ReLU, an elementwise addition layer that adds the HRMS to the ReLU output,
and a concatenation of the panchromatic features. Our implementation used three
fusion units. The output of the fusion unit is passed through a final convolution layer and
leaky ReLU. The HRMS is added to this output to form the pan-sharpened multispectral
output.

We used TensorFlow to implement this model and used the following hyperparameters:

● Convolution filter dimension: 3x3
● Convolution filters: 64 interior, 4 terminal layers
● 1-pixel padding after convolution layers
● Adam optimizer with weight decay: 1e-3 learning rate, 1e-4 decay
● Batch size: 16

The unsupervised model was trained for 1000 epochs with checkpoints save every 100
epochs. The model converged such that spectral loss was favored, resulting in output
nearly identical to the resampled high-resolution multispectral input. The spatial loss
was lowest at the 200 and 300 epoch checkpoints while still maintaining a low spectral
loss. Results from the 200 epoch checkpoint were selected as the preferred output.
Unfortunately, we encountered many difficulties with this model due to mode collapse.



3.) Generative Adversarial Network (GAN)

Generative Adversarial Networks (GAN) are an emerging deep learning architecture
that can include other forms of deep learning including CNNs. The GAN’s purpose is to
generate data indistinguishable from the real data from a target distribution. GANs
accomplish this by employing a two-branch architecture consisting of a generator
branch and a discriminator branch. The generator branch generates new data derived
from sample data and the discriminator branch acts as the adversary calculating the
probability of the generated image being real or fake. This adversarial game trains both
the process of identifying generated items as well as the generating of said items very
effectively. Accurate hierarchical features are learned and preserved using this deep
learning method while they would be lost or inaccurate if a traditional algorithm was
applied. See Figure 5 for an example of the GAN two-branch architecture.

Figure 5. Example of a two-branch architecture for a GAN.

Utilizing the same imagery from the Tennessee Valley and a GAN deep learning
architecture approach we generated high-quality pan-sharpened imagery. The
panchromatic and multispectral imagery was used as a training set where one image
was the test image and the rest of the imagery was used by the GAN model to train the
CNN. The GAN model’s architecture consisted of pixel and patch discriminator
branches fed from the output of the two-stream generator branches. The generator
branch attempted to generate a higher quality image than the low-resolution MSI using
the high-resolution pixel details of the panchromatic imagery, each attempt was passed
through the discriminator which determined if parameters needed to be adjusted to
generate a suitable image. The discriminator and generator were made up of



convolution layers, batch normalization, and LeakyReLU activations. On a high level,
these branches have layers that are extracting the features of the imagery in the training
dataset. Considering our “noisy” problem set, we use an Adam optimizer to handle
gradients.

For the training process, we utilized the deep learning computation power of a GPU to
train the model for 80 epochs. We then applied the trained model to every patch in the
test imagery dataset, (this is the imagery the model has not trained on). The
post-processing processes include reconstructing these high-resolution MSI patches
into a final image that can be used for observation and analysis. Considerable difficulty
was encountered in getting the color of the output channels in predicted images to
match the color in the input images.  See Figure 6 for an example of the output.

Figure 6. Output example from the pan-sharpening generative adversarial network (PSGAN).

4.) PanColorGAN

Our fourth CNN was based on a totally different strategy in which the high-level idea
was to use the bands of the multispectral image to colorize corresponding features in
the panchromatic image. This CNN was based on the work of F. Ozcelik and others in a
paper titled “Rethinking CNN-Based Pansharpening: Guided Colorization of
Panchromatic Images via GANs” [36].  Since this model is also a GAN, there are two
constituent models: a generator and a discriminator. The training set was constructed by
downsampling and then upsampling the multispectral image. This degraded
multispectral image was then used as input to the generator network, and the original



MS was used as ground truth for training the discriminator. This resampling process
traditionally uses the same scale factor, but the PanColorGAN authors opted to
randomize the scale factor to have a more diverse training set. This in theory improves
the general quality of the generator output during testing.

The generator takes the degraded four-band multispectral image and a single-band
grayscale image as input. The latter is the degraded multispectral image converted to
grayscale during training, but the panchromatic image is used instead during testing.
The generator extracts spatial features from the grayscale image while mapping the
color from the multispectral image to the learned spatial features. The output is a
high-quality pan-sharpened image.

The discriminator is trained on alternative batches of the degraded multispectral image,
the degraded multispectral image converted to grayscale, and generator output (the
"fake" batch) and the degraded multispectral image, the degraded multispectral image
converted to grayscale, and the original multispectral image (the "real" batch). Visual
and statistical results indicated this method overall was superior to our other three deep
learning architectures.

Synthetic Aperture Radar (SAR) Fusion

SAR Data

We acquired Sentinel-1A Level 1 SAR product over the same area of the Tennessee
River Valley just west of Huntsville, Alabama just a few days after the multispectral
image was acquired (May 25, 2019). The product was delivered with single-polarization
(VV or HH) for Wave mode and dual-polarization (VV+VH or HH+HV) or single
polarization (HH or VV) for SM, IW, and EW modes. The spatial resolution of the image
we used was approximately 10 x 10 meters.

SAR Data Processing

The SAR data were preprocessed using the Sentinel Application Platform (SNAP), a
common architecture for all Sentinel Toolboxes is being jointly developed by Brockmann
Consult, SkyWatch, and C-S. These were the steps we used for pre-processing within
the SNAP software:

● Radar/Apply Orbit File
● Radar/Radiometric/S-1 Thermal Noise Removal
● Radar/Radiometric/Calibrate (Sigma0)
● Radar/Sentinel-1 TOPS/S-1 TOPS Deburst
● Radar/Geometric/Terrain Correction/Range-Doppler Terrain Correction
● Open panchromatic imagery in SNAP



● Raster/Geometric/Collocation
○ Master: panchromatic imagery
○ Slave: SAR data
○ Cubic resampling

1.) Traditional Fusion Method

A well-known process for combining low-resolution features from one image with
high-resolution features from another image is to convert the data to the frequency
domain and combine the two using a crossover frequency then convert back to the
spatial domain. The SAR data is of a very low resolution compared to the multispectral
imagery so a natural approach is to upsample it to the resolution of the multispectral
image then use a frequency-based transform (Fourier or Wavelet) and produce a new
transform array with the low frequencies of the SAR combined with the higher
frequencies of the multispectral channel, then do an inverse transform to produce the
fused image. An important manipulation of the input images before attempting the
fusion is to make both images have the same mean and standard deviation before
performing the Fourier or wavelet transforms. Otherwise, one image or the other will
likely dominate the blended result in an undesirable way.

After we preprocessed the Sentinel SAR image, tested a wavelet transform-based
fusion technique to combine the SAR data, multispectral imagery, and panchromatic
imagery based on current literature [41]. We first tested a fusion method using
intensity-hue-saturation (IHS) transforms and à trous wavelet transforms (ATWT). This
method used the panchromatic, multispectral, and SAR images to generate a four-band
fused product. The multispectral and SAR data were resampled to the spatial resolution
of the panchromatic imagery before applying this method. First, an IHS transform was
applied to the multispectral image.

The generalized intensity from this transform was used in the two following steps. An
ATWT was applied to the generalized intensity. Additionally, the generalized intensity
was histogram matched with the panchromatic image. An ATWT was then applied to the
matched data (result). Separately, texture information was extracted from the SAR data.
We used homogeneity via a gray level co-occurrence matrix as per the source paper
[41]. The high pass details of the transformed histogram were then modulated by the
SAR texture. An inverse ATWT was then applied to the modulated result and then to the
low pass details of the transformed general intensity of the multispectral data. Finally, an
inverse IHS transform was applied to the preceding output, and the spectral bands
obtained from the IHS transform were used to produce the final fusion product.

We also developed and tested a modified version of the above method which produced
a one-band fused product from the panchromatic and SAR data. An ATWT was applied



to the panchromatic image, and the homogeneity matrix was then obtained from the
SAR data. The SAR texture was then used to modulate the high-pass details as in the
previous method. The final product was then produced by applying an inverse ATWT to
the modulated high-pass details and original low-pass details. As a third test, we also
tried this same method; however, we bypassed the SAR texture extraction step and
simply used the original SAR data. Results from this method were acceptable.

2.) Modified Unsupervised Deep Learning CNN for Fusion

As one of the objectives of this study, we wanted to evaluate using deep learning and
CNNs to automatically fuse all of the panchromatic, multispectral, and SAR data
together. To test this theory, we modified the traditional supervised CNN by adding the
SAR data into the input and adding an extra band into the final product. We were hoping
by adding the SAR as an extra input to the supervised CNN model we would be able to
perform both pan-sharpening and data fusion simultaneously. However, when we
introduced the SAR image to the model it destroyed the network's ability to pan-sharpen
the multispectral image. To have a "reference" for the Wald protocol, we needed to
downsample the SAR by the resolution factor difference in the multispectral and
pansharpening, which was 4 in each direction. The multispectral and panchromatic
channels are similar enough with respect to the spatial resolution to accomplish this
task. However, the order of magnitude of the SAR vs. the panchromatic data would
require such downsampling that extremely little resolution would remain for the Wald
protocol. Unfortunately, the large-scale difference (1/20) between the SAR data and
panchromatic data was too great for the deep learning model to overcome and the
results were poor.

3.) Modified Supervised Deep Learning CNN for Fusion

Since the supervised learning deep learning method was unsuccessful, we then
developed a deep learning-based fusion method by modifying the unsupervised CNN.
The multispectral imagery was replaced by the SAR data and the loss function was
adjusted to accommodate single-band output.

The SAR data were resampled to the spatial resolution of panchromatic imagery and
this new high-resolution SAR was used as input, while the original SAR data was used
in the loss function. The panchromatic imagery was resampled to the spatial resolution
of the SAR for use in the loss function. A scalar value β was learned via least squares to
satisfy the equation:

where S was the SAR data and p was the low-resolution panchromatic image.



○ The loss function was modified as follows.:
■ Spatial loss:

where is the model output.

■ Spectral loss:

■ :

Because applying to the SAR data does not make sense,  only

the component of QNR was used.

■ The final loss is defined as

Because of the large disparity in spatial resolutions between the SAR and panchromatic
data, this model had difficulty converging and did not yield acceptable results.

Agricultural Row Crop Evaluation

Our next step in the project was to conduct four experiments to examine crop type
classification performances. The four experiments included 1) using the multispectral
band image only, 2) using multispectral band + vegetation index derived from the
multispectral image, 3) using spectral band + vegetation index +  Gray-Level
Co-Occurance Matrix (GLCM) textures, and 4) using spectral band + vegetation index +
GLCM textures and features from SAR image.

For each experiment, we evaluated classification cases by using the original
multispectral band images and by using our pan-sharpened image. Results were
compared to analyze how much the pansharpening improved crop type classification.



Feature Generation

Multispectral features:

Four spectral bands from our Pleiades satellite image are used in the study: 1) Blue
band, 2) Green band, 3) Red band, and 4) Near-infrared band. As a result, we extract
four spectral features from these bands of images.

Vegetation index features:

Vegetation index plays an important role in crop type classification. In the reviewed
paper [42], a number of vegetation indexes derived from the optical images were found
in the literature for crop type classification, including the well-known Normalized
Difference Vegetation Index (NDVI). Considering the four spectral bands available,
these 6 vegetation related indexes are selected for our experiments [43][1]: 1) NDVI, 2)
the Atmospherically Resistant Vegetation Index (ARVI), 3) the Soil Adjusted Vegetation
Index (SAVI), 4) the Green Chlorophyll Index (GCI), 5) the Structure Insensitive Pigment
Index (SIPI), and 6) the Simple Ratio.

Texture features from Gray-Level Co-occurrence Matrix (GLCM):

The Gray-Level Co-occurrence Matrix (GLCM) texture features developed by Haralick
et al [44] is a well-known texture feature set used in image analysis and remote sensing
applications. In this study, we generate the GLCM texture features using the SeNtinel
Application Platform (SNAP) software [45]. Ten texture features from the GLCM are
calculated from the SNAP: 1) Contrast, 2) Dissimilarity, 3) Homogeneity, 4) Angular
Second Moment (ASM), 5) Energy, 6) Maximum Probability, 7) Entropy, 8) GLCM Mean,
9) GLCM Variance, and 10) GLCM Correlation. The GLCM is calculated using a 5x5
window size with a displacement of 1 and all angles (0, 45, 90, 135).

Features from SAR Data:

The SAR data in this study is from the Sentinel-1 SAR imagery. The SAR images are
preprocessed by using SNAP, including thermal noise removal, application of orbital file,
radiometric calibration, and terrain correction. The SAR images are then collocated with
the optical MSI images so that features are ready to be extracted in alignment with the
MSI images. There are two SAR bands, VH and VV. Each band contains the values of
Sigma0, the calibrated backscatter coefficients. We constructed a total of 22 features for
each pixel of interest, including 4 MSI spectral features, 6 vegetation indexes from MSI



images, 10 GLCM texture features from MSI, and backscatter coefficients from the 2
SAR polarizations.

Crop type ground truth data and crop regions of interest:

Our study was focused on the classification of four agricultural row crops and on
grassland grown in the Tennessee River Valley in 2019: Corn, Cotton, Soybean, Double
Crops (Winter Wheat/Soybean), and Grassland. The ground truth data come from the
map of crop types from USDA’s National Agricultural Classification Survey.

To reduce the number of pixels in the learning process, selected regions of interest were
manually extracted from the crop map, with each region representing a unique surface
type. A total of 33 regions were covered by the MSI images. Of the 33 regions, 7 of
them were classified as corn, 6 cotton, 11 soybeans, 6 double-crop, and 3 of them were
grassland fields. In the MSI image, there was a total of 861,820 corn pixels, 501,681
cotton pixels, 717,501 soybean pixels, 328,658 double-crop pixels, and 41,874
grassland pixels. The percentages of the five crop types were 35.15%, 20.46%,
29.27%, 13.41%, and 1.71% for corn, cotton, soybean, double-crops, and grassland,
respectively. The grassland pixels were significantly less than the four-row crops. The
total number of MSI pixels in the regions of interest was 2,451,534.

26. What opportunities for training and professional development has the project
provided?

This project provided the foundation for UAH staff and student professional
development in the areas of remote sensing and artificial intelligence. During this
project’s period of performance, UAH established an Intelligence Community Center of
Academic Excellence (IC CAE) in critical technologies. With this program, UAH selected
a number of outstanding students to become IC CAE Scholars. Each scholar was
assigned a mentor to develop specialized and focus short research projects. Two of Dr.
Beck’s students were able to conduct deep learning and remote sensing research
based on techniques from this project. One of the student's research was entered into
the 7th annual Research Horizons Day at UAH, a showcase of collaborative research
projects under the mentorship of faculty and staff. The scholar was awarded one of the
top awards for the College of Science in the Research Horizons Virtual Poster
Sessions. In his acceptance letter, he noted that his research project provided him with
a valuable learning experience in using open-source deep learning software,
state-of-the-art computer hardware systems, and advanced mathematical techniques. In
addition, Dr. Beck developed a short deep learning and remote sensing training
program that he gave each year to the IC CAE scholars. This grant provided Dr. Beck



and his team with invaluable insight into new deep learning technologies that would not
have happened if it were not for this grant opportunity.

29. Publications, conference papers, and presentations.

Conference presentations:

Beck, J.M., Spatial Dynamics and Analysis of Crops using Super Multispectral Image
Resolution and Radar Fusion. 7th Annual Intelligence Community-Academic Research
Symposium (ICARS). Virtual Presentation. 22 September 2021.

Beck, J.M., Spatial Dynamics and Analysis of Crops using Super Multispectral Image
Resolution and Radar Fusion. 7th Annual Intelligence Community-Academic Research
Symposium (ICARS). Virtual Presentation. 30 September 2020.

Daigle, M. and J. Beck. Use of Autoendcoders in a Convolutional Neural Network for
Image Fusion. The University of Alabama in Huntsville Intelligence Community Center
of Academic Excellence (IC CAE) Summer Colloquium. July 2020.

Pagani, S. and J. Beck. Applications of Deep Learning: Pan Sharpening and Radar
Fusion. The University of Alabama in Huntsville Intelligence Community Center of
Academic Excellence (IC CAE) Summer Colloquium. July 2020.

45. Changes in approach and reasons for change.

The main challenge of the radar data fusion aspect of this project is the large-scale
factor between the SAR data and the pan-sharpened image. The SAR is about 5 times
the size of the MSI in pixel resolution and 20 times larger than the panchromatic. This
large variation in scale factors was unreasonable for an all-in-one super-resolution deep
learning model solution. From the initial results of the study from year 1, we have
learned that we will need to fuse the SAR with the MSI imagery first, and then use the
pan-sharpening CNN model to further enhance the fused product.

50. What were the outcomes of the award?

Other outcomes (results) of the award are as follows:

As with all neural networks, a primary challenge is the tweaking of hyper-parameters in
order to produce quality results consistently. Starting with the unsupervised CNN, the
PSGAN, and the PSColorGAN, we have a reliable baseline method in terms of
performing pan sharpening. A major challenge in designing a neural network for fusing
the three images will be the second step of incorporating the SAR. While PSGAN may
serve as a good starting platform for this step, it is unlikely that the same



hyper-parameters would produce a good result with different types of imagery.
Additionally, it is possible that the pan-sharpening step must be tweaked to improve the
end result after SAR fusion. SAR is a fundamentally different dataset than MSI, heavy
modification of parameters was required to achieve reliable results. In the end, the best
method of fusion of the SAR data with the multispectral data was through the use of
traditional mathematical algorithms such as IHS transforms and ATWT transformations.

Pan-sharpen Image Results / Metrics

To evaluate our results we conducted a series of five statistical tests comparing our
unsupervised CNN, the basic GAN, and the PanColorGAN pan-sharpening model with
18 traditional pan-sharpening algorithms based on examples from recent publications
[39, 40] for a total of 21 methods. We did not use the results from our supervised CNN
with the loss function because visual inspection showed deficiencies with our results
due to mode collapse. In this document, we denote the pan-sharpened image as the
multispectral image sharpened through the panchromatic image using a pansharpening
method, it is also referred to as a fused image.

In [39], traditional pansharpening methods are classified as one of two approaches:
component substitution (CS) and multiresolution analysis (MRA). The CS-based
methods are based on the substitution of components obtained through a spectral
transformation with a high-resolution panchromatic image. The MRA-based methods
are based on the injection into upsampled MS bands of spatial details obtained from
multiple resolution decomposition of the panchromatic image [39]. In [39], intensity hue
saturation (IHS), Brovey Transform (BT), principal component analysis (PCA),
gram-schmidt (GS), GSA, BDSD, and PRACS are considered as CS-based methods,
while high-pass filter (HPF), SFIM, Indusion, MTF-GLP, MTF-GLP-CBd, additive A
Trous wavelet transform (ATWT), ATWT-M2, MTf-GLP-HPM, MTF-GLP-HPM-PP, and
AWLP are considered as MRA-based methods. In this study, the EXP method does not
involve any sharpening process using the panchromatic image. Instead, multispectral
image bands are generated by upsampling multispectral bands through bi-cubic
extrapolation. The three deep learning methods are referred to as PanColorGAN,
Unsupervised, and a basic GAN.

The full resolution assessment approach as described in [39] was taken. For the full
resolution approach, a comparison is made among the original panchromatic image, the
multispectral image that was upsampled to the panchromatic image resolution (and
used for pansharpening), and our three pan-sharpened images (result images). The
qualities of the pan-sharpening methods were evaluated by both visual and quantitative
analyses with respect to spatial and spectral fidelity. The five metrics were Spectral



Angle Mapper (SAM), Spatial Correlation Coefficient (SCC), D-lambda, D-S, and Quality
with No Reference (QNR) [39].

The 21 pan-sharpen methods were assessed for 16 sub-areas using a full resolution
validation approach and metrics were calculated on the five indices: SAM, SCC, QNR,
D-lamda, and D-s. The Tennesse River Valley image was divided into 16 sub-areas so
that the image size of each sub-area would fit into the memory of our computers to pan
sharpen the image and evaluate the performance efficiently. The QNR metric is the
combination of the two metrics, D-lamda and D-s. For this assessment, both of them
contribute to the QNR index equally (i.e. coefficients are set as 0.5 for both of them).
For each of the 16 sub-areas, the five indices were calculated based on the 512 x 512
image blocks. Each of the 16 sub-areas consists of more than 120 such blocks. As a
result, the mean and standard deviation of each index was obtained for each sub-areas.
The 21 methods were ranked for each of the five indices and for each of the 16
sub-areas. Therefore for the full TN valley image, we have 16 ranking lists for each
index, with each one influenced by the image content in the sub-area. By comparing the
16 ranking lists for each index, we can to some extent understand how much each
index is affected by the image content. The following are the results of our evaluation:

SAM Index:

For the SAM index, we observed that the best method was EXP, as it ranks first for 14
of 16 sub-areas. This was expected as the EXP method in our assessment uses images
upsampled from original multispectral images by interpolation. No panchromatic image
information is incorporated into the fused (pan-sharpened) image. It is then
downsampled to the original multispectral size and compared with the original
multispectral image for the SAM index. As a result, we expect the minimum spectral
distortion for the EXP method. It is interesting that for a couple of sub-areas, the
Indusion and Brovey methods are on top of the ranking list. The Brovey method is
almost consistently the second-best on the SAM index.

The SAM index calculation in this assessment is different from that used in [39]. In [39],
SAM is calculated using a reduced resolution approach. In this approach, the
panchromatic image and original multispectral image are downsampled (reducing
resolution) so that downsampled panchromatic image has the same
resolution/dimension as that of the original multispectral image. The downsampled
multispectral image is then ‘pan-sharpened’ by the downsampled panchromatic image
to the resolution of the original multispectral image. As a result, the fused multispectral
image has the same spatial resolution as that of the original multispectral image. The
original multispectral image then serves as a reference image to assess the
pan-sharpened image and pansharpening method.

In general, the SAM index ranking calculated using the full resolution approach showed
similar characteristics as those in [39] which uses a reduced resolution approach. In



[39], the CS-based approach often shows a higher spectral distortion (i.e. poor SAM
index) but a better visual appearance of fused images. From the SAM ranking
spreadsheet, the CS-based methods such as PCA, GS, GSA, IHS are generally in
lower ranking as compared to MRA-based methods such as Indusion, HPF, SFIM. The
exception is the Brovey method which is consistently on top of the ranking. Our three
DL-based methods are among the CS-based methods in spectral distortion using the
SAM index. The PanColorGAN ranked higher than other methods in this study (see
attachment ).

SCC Index:

The SCC index is a measure for spatial enhancement of pan-sharpened images as it
calculates the correlation between a sharpened image and a pan-sharpened image that
contains spatial details with higher spatial resolution. As observed in [39], the
pan-sharpened images using CS-based methods are often superior in visual
appearance. This was consistent with the SCC index ranking (see attachment ). In
most of the sub-areas, the EXP method ranks last in the SCC index. The CS-based
methods such as IHS, Brovey, GS, and GSA ranks on top and the MRA-based methods
are generally ranked lower. The EXP method ranks the last for most of the sub-areas,
as expected (no information in the panchromatic image is included in upsampled MS
bands). Of our three DL-based methods the PanColorGAN method ranks the highest
and ranks in the middle of the 21 methods while other our other models rank
consistently lower.

D-Lambda Index:

Results from the D-lambda ranking (see attachment ) indicated the best method was
EXP, as expected as little spectral distortion is expected without pansharpening
involvement. The second best was the BDSD method, consistent with the results found
in [39]. The Brovey transform method ranks in the lower part of the list, contrary to that
of the SAM index ranking. Our three DL methods rank higher (5, 6, and 8) as compared
to those in SAM ranking results. Of the three methods, the ranking order was
Unsupervised, PanColorGAN, and GAN on average.

D-S Index:

Results from the D-S ranking (see attachment ) indicated the Unsupervised and GAN
methods ranked at the top of the list. Compared to the SCC index where component
substitution (CS) methods generally perform better (i.e. IHS, Brovey, GS, GSA), these
methods rank on the lower part of the list. So spatial distortion from these two indices,
i.e. SCC and D-S, seems not to agree well in general. Our PanColorGAN method ranks
in the middle of the list.



QNR Index:

Finally we assess these methods based on the QNR index. As the name suggests, the
QNR (quality w/no reference) index does not require a reference image to estimate the
quality of a pan-sharpened image. The QNR is the combination of the two indices:
D-lambda and D-S. The former measures the spectral distortion while the latter
measures the spatial distortion. For any two multi-spectral bands of the pan-sharpened
image, the Universal Image Quality Index (UIQI) or Q-index is calculated which
measures the similarity of the two images through correlation and the differences in
luminance and contrast. The Q-index for the two fused bands is then compared with the
Q-index for the two corresponding original multispectral image bands. The smaller the
difference between the two Q-index, the more consistent the fused image bands are
corresponding to the original MS bands, the less the spectral distortion, and the better
the fused image quality is considered.

The D-lambda is the average of the Q-index difference from all pairs of multispectral
bands. On the other hand, the D-S is calculated based on the Q-index between the
fused image bands and the panchromatic image. For each multispectral band, two
Q-index values are calculated. The first Q-index is calculated using the fused image
band and panchromatic image. The second Q-index is calculated using the original
multispectral band and the downsampled panchromatic image. The difference of the
two Q-index is a measure of the spatial consistency of the fused multispectral image
corresponding to that of the original multispectral image band. The smaller the
difference, the better the quality of the fused image. D-S is the average value from all
the multispectral bands. In this method, the downsampled panchromatic image is an
approximation of the one that is supposed to be observed at a lower resolution from the
panchromatic sensor.

Results from the QNR ranking (see attachment ) indicated that the EXP, BDSD, and
our Unsupervised and GAN methods were among the best. Our PanColorGAN method
ranks relatively in the middle of the list (9 out of 21 methods). In this current QNR
calculation, the D-Lambda and D-S contribute equally. Changing the ratio of the
combination is expected to change the ranking order of these methods. Figure 7 shows
the images using the 19 methods along with the panchromatic image. It is from subset 1
of the Tennesse River Valley image. The 512 x 512 block is on row 2 and column 14 of
the subset 1 image.



Figure 7. First row, left to right: 1) panchromatic image, 2) upsampled MSI images, 3) PCA, 4) IHS, 5)
Brovey, Second row, left to right: 6) BDSD, 7) GS, 8) GSA, 9) PRACS, 10) HPF, Third row, left to right: 11)
SFIM, 12) Indusion, 13) ATWT, 14) AWLP, 15) ATWTM2, Fourth row, left to right: 16) PanColorGAN, 17)
MTF_GLP, 18) MTF_GLP_HPM_PP, 19) MTF_GLP_HPM, 20) MTF_GLP_CBD.

Example of Pan-sharpening Results

Figure 8. Results from our PanColorGAN pan-sharpening results.



Figure 9. Comparison of the supervised CNN and the PanColorGAN pan-sharpening models.

Synthetic Aperture Radar (SAR) Fusion Results

One of the biggest challenges encountered was the large gap in spatial resolution
between the available SAR data and our imagery. This made it particularly difficult to
extract useful features from the SAR and fuse them with the pan-sharpened image. We
initially attempted introducing SAR data as an additional input to our deep learning
pan-sharpening models with the goal of improving the quality of model output. We
observed no qualitative or quantitative improvements in spatial details with this
approach. Therefore, we decided to use IHS and  Wavelet Transform fusion techniques
which produced good results. The resulting GEOINT product was a five-band
pan-sharpened image consisting of a blue band, green band, red band, near-infrared
band, and SAR band.

Lessons Learned

Edge Effects:

Just as in signal processing in general, running image tiles through a convolutional
neural network for "prediction" will usually result in edge effects around the borders of
the output tiles. The easiest way around the problem is to have redundancy in the tiling
of the image, with the standard approach being to use half the tile width as the tile
offset. If tiles are 256x256, then use a stride of 128 within the image, creating roughly
twice the tiles horizontally and vertically. Since the 256x256 output tiles will usually have
edge effects, a few pixels can be removed from each edge and still have plenty of
redundancy to not have gaps in the resulting image except for a few pixels around the



edge. Removing eight pixels from the edges of tiles when building the output image
suffices when convolution operators of sizes 9x9 and 5x5 were used in layers. Larger
operators may require a larger number of pixels to be removed.

Sufficient Network Training:

A convolutional neural network that has not been trained sufficiently can produce output
that can mislead the developer into thinking that problems exist in other parts of the
implementation, such as the data preparation and image synthesis portions of the code.
Completely wrong relative color levels can result despite individual channels viewed as
monochrome can look fine in isolation. Passing the training tile set through the CNN
several epochs until diminishing returns are gained can greatly improve the output
quality and made problems disappear. Just eight epochs of training made relative color
levels improve from completely wrong to very closely matching the data.

Separation of Functionality and Reuse of Intermediate Steps:

When working with large images that require amounts of RAM, instead of tiling the
image and keeping the whole tile set in RAM during the network training, separating the
Wald protocol and tiling process into a separate program and writing the tiles to a
directory allows their reuse in training a previously created CNN multiple epochs, or
even multiple CNNs with different parameters without having to regenerate the tiles
each time. The process for creating the tiles for the prediction can be separated in the
same manner as the prediction script to greatly reduce the memory requirements
required in creating network output tiles. Making an image from the final output tiles into
a separate process is a good idea as well. During development, these separations of
duties into different programs make debugging significantly easier.

Crop type classification and performance evaluation

Crop type classification using MSI spectral bands only

Generating feature set for model learning

For the sake of model learning with balanced samples (i.e. model learning is not
overwhelmed by a huge number of samples and each class type contributes a relatively
equal number of samples in model learning), we decided to choose roughly 50000
samples from the total number of over 2 million samples for model learning, with each
class contributing 10000 samples.

Two strategies were taken to select these samples from the sample pool to form a
feature set. For the first one, we randomly selected five regions of interest, with each



one representing a crop type. And we extracted 10000 samples from each of the five
regions of interest. We called this scheme the select-region method.

For the second approach, the total number of selected samples for each crop type was
set as 10,000 for balanced learning. But the samples were extracted from all the regions
of interest and there were no left-out regions. For each crop type, the number of pixels
selected from a region was proportional to the region size of a given crop type. This
way, the number of samples for crop types is balanced, and pixels from all the regions
are involved in the model learning process. We call this approach the all-region method.
We expect better performance from the all-region method as samples from all regions
are involved in the model learning. We expect the worse classification performance for
the select-region method but would like to know how much worse it is as compared to
the all-region method. If the classification performance using the select-region method is
not significantly worse than that of the all-region method, the crop type signatures seem
well separated and intro-class dissimilarity would not be significant.

Two strategies for the all-region method are also evaluated. For the first strategy, the
number of pixels selected from a region into the learning feature set for a crop type was
proportional to the size of the region with the crop type. The larger the region, the more
samples were selected into the feature set for learning. For the second strategy, the
number of pixels selected from a region into the learning feature set for a crop type was
equal for all the regions with the crop type. This way, samples in the learning feature set
are not only balanced among crop types but also balanced with regard to the regions for
a crop type. We call the first strategy the all-region ratio-sample method, and the
second one the all-region equal-sample method.

Model performance evaluation metrics

The confusion matrix brings fundamental information about classifier performance.
From the confusion matrix, we estimate the accuracy of model prediction for each class
and how capable each class can be accurately identified. Besides the confusion matrix,
other metrics such as overall accuracy, precision, recall, F1 score are often used to
evaluate a classifier's performance.

In this study, we use all relevant metrics to evaluate the random forest (RF) model
performance for crop type classification. The first metric evaluated was overall accuracy,
which is the fraction of correct predictions over all samples. A classification report
summarizes the precision, recall, and F1 score metrics for each class. The precision is
the ratio of correct prediction to the overall prediction for a class. It shows the quality of
a model’s prediction for a class. The higher the value, the fewer the non-class instances
were assigned to the class. The recall is the ratio of correct prediction to all the
instances for a class. It shows the capability of a model in identifying the occurrences



for a class. The higher the recall value, the fewer the class instances are assigned to
other classes (i.e. not identified by the model).  The F1 score is a harmonic mean of
precision and recall metrics, which is a balanced score considering both false positive
and false negative occurrences for a class. Through these metrics, we can assess how
the RF model performs on each crop type. The macro average and weighted average of
these metrics are also available, with the former the average of all classes for each
metric and the latter the weighted average of these metrics by the percentage of the
samples of each class. The weighted average of the F1 score is a good measure of a
multi-class classifier performance generally.

The third metric was Cohen’s kappa statistics. Cohen’s kappa measures how much
better a classifier is performing over the performance of a classifier that simply guesses
at random according to the frequency of each class and is considered good for
multi-class and imbalanced class problems [6]. The maximum value of Cohen’s kappa is
1 when a classifier predicts perfectly. A value of 0 suggests a classifier is no better than
a random guess according to the sample distribution.

The fourth metric was Matthew’s correlation coefficient (MCC) which is used as a
measure of the quality of binary (two-class) classifications. It takes into account true and
false positives and negatives and is generally regarded as a balanced measure that can
be used even if the classes are of very different sizes. The MCC is in essence a
correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect
prediction, 0 is an average random prediction, and -1 is an inverse prediction. The
statistic is also known as the phi coefficient.” The MCC ranges between -1 and 1, with 1
indicating the best agreement between predictions and actual class labels.

The fifth metric was the Area Under the ROC (AUROC) where ROC stands for Receiver
Operating Characteristics and is a graphical plot that illustrates the performance of a
binary classifier system as its discrimination threshold is varied. It is created by plotting
the fraction of true positives out of the positives (TPR = true positive rate) vs. the
fraction of false positives out of the negatives (FPR = false positive rate), at various
threshold settings. TPR is also known as sensitivity, and FPR is one minus the
specificity or true negative rate.” The AUROC is the area under the ROC curve. The
maximum AUROC is 1. The larger the value, the excellent the model performance.

The sixth metric we used was the Log-loss score. A good interpretation of the log-loss
metrics is given in [47]. The lower the log-loss score, the better a prediction model
performs.

Classification performance of Random Forest (RF) model using default parameters

Confusion matrix for testing set and independent set



Testing set accuracy: 0.97368

Classification report for independent set

Other metrics for independent set

Accuracy 0.470681755625984
BalancedAccuracy 0.4714305720273916
AUROC 0.7820539978424056
Kappa 0.3439492443357288
Matthew Coef 0.3695712432333883
Logloss 8.906852477296693

Results using training feature set from the all-region ratio-sample method

Confusion matrix for testing set and independent set

Testing set accuracy: 0.95559



Classification report for independent set

Other metrics for independent set

Accuracy 0.8037900336829885
BalancedAccuracy 0.8300230383035071
AUROC 0.9459264596140856
Kappa 0.7342767302674598
Matthew Coef 0.7380914488476223
Logloss 1.5798480599850815

Results using training feature set from the all-region equal-sample method

Confusion matrix for testing set and independent set

Testing set accuracy: 0.9468672481395535

Classification report for independent set

Other metrics for independent set



Accuracy 0.7688840955983852
BalancedAccuracy 0.8077851987937287
AUROC 0.9454816098495885
Kappa 0.6914018676234226
MatthewCoef 0.6969904202666065
Logloss 1.346309664914619

Comparing results from using the two feature sampling methods

The overall accuracy of RF model on testing data for the select-region method is over
97.3%. This result suggests that the 5 regions of distinct crops are highly
distinguishable using the RF model. The high accuracy for the testing set also implies
that within-field pixels share high similarity in spectral features. However, the accuracy
of the RF model drops significantly to 47.1% when applied to other crop field samples in
the independent set. This result is most likely caused by the dis-similarity of spectral
features among samples of different fields sharing the same crop type. The RF model
cannot perform well with samples from only selected crop fields for learning. The results
from the all-region method further confirm this conclusion.

For the RF model using the all-region ratio-sample method, the overall accuracy for the
testing set and independent set were 95.5% and 80.3%, respectively. The accuracy of
the testing set using all-region ratio-sample samples is about 2% less than that using
select-region samples. For the all-region method, the RF model is trained using
samples from all regions which are expected to present more diverse spectral
signatures. As a result, the model performance on the test set slightly decreases.
However, the over accuracy for the independent sample set reaches 80%, significantly
higher than using the select-region method.

For the two all-region methods, the ratio-sample method performs slightly better than of
the equal-sample method. The overall accuracy for the equal-sample method is 76.9%,
about 3.4% lower than that of the ratio-sample method. This result also implies a
somewhat disparity of spectral signatures of individual regions within a crop type. The
ratio-sample method allows more training samples in the feature set for larger regions,
therefore the RF model is learned to favor larger regions. As a result, large regions
perform better which contributes more to the overall model performance.

These results above seem to confirm our speculation earlier that a classifier needs to be
learned with a well-sampled feature set (i.e. samples extracted from all regions to be
representative). In this case, the samples need to be from all crop fields as spectral
signatures from individual fields of a crop type may present a wide dynamic range.
Spectral signatures from individual fields may not be representative.

Comparing other metrics, including AUROC, Kappa, MatthewCoefficient, and Logloss,
the overall RF model performance is significantly better using the all-region method than
that using the select-region method.



Feature importance ranking

The RF model was ranked by the importance of features in the classification process.
This feature importance is available as a class attribute. For spectral only RF learning,
we have 4 features, i.e. the 4 spectral bands. The following table shows the model
feature importance outputs from feature sets using select-region, all-region
ratio-sample, and all-region equal-sample methods.

From the table, the feature importance rankings are the same for all three methods,
though the contributing factors are different for each method. The Blue band is the most
important feature and the green band is the least important feature. For the
select-region method, the Blue, NIR, and Red bands are key features for the RF model
while for all-region methods, all the features are important and needed for good
classifier performance.

Parameter optimization for RF models

For the above-mentioned experiments, the RF models are trained with default model
parameters. An effort is made for optimal parameter selection for RF models. We use
the grid-search method for optimal parameter selection. In the grid-search method, each
parameter is given a list of parameters to search for. The optimal parameter set is the
one on the “multi-dimensional” parameter grids that the RF model delivers the best
performance, in our case overall accuracy.

For both the select-region method and all-region methods, the setting for model
parameter grid search is the same. Four model parameter sets are searched for optimal
values. The search options for a number of tree estimators are set as [25, 50, 75, 100,
200, 500]. The max_features are set as ['auto', 'sqrt', 'log2']. The max_depth are set as
[4, 7, 10, 20, 50, 100, 200]. The criterion parameter are from options of ['gini', 'entropy'].
The cross-validation (CV) fold is set as 5.

The optimal parameter set of RF models for each sample generation method is shown
in the following table.



From the table above, the entropy method with which tree splitting is determined by
information gain is selected.  The “auto” method, which set max_features as the square
root of a number of features when looking for the best feature split is selected. The
optimal max_depth ranges from 10 to 50 and the number of trees in the forest range
from 200 to 500. Following are the model performances for each of the three methods.

RF model performance using the select-region method:

Training+testing set accuracy:  0.99876

Classification report for independent set

Other metrics for independent set

Accuracy 0.46823619159930224
BalancedAccuracy 0.4716269855381919
AUROC 0.7856715404853365
Kappa 0.34088462227677996
MatthewCoef 0.36665017228982394
Logloss 8.72056788263012



The RF model performance using optimal parameter set is slightly worse than that using
default parameter setting. The overall accuracies are 46.82% and 47.07%, respectively
from models with optimal parameters and from default parameters. Keep in mind that
the result from the optimal parameter search is the average of 5 cross-validation results.

RF model performance using all-region ratio-sample method

Training+testing set accuracy:  0.9535432755792085

Classification report for independent set

Other metrics for independent set

Accuracy 0.8026882264442898
BalancedAccuracy 0.8296401634319486
AUROC 0.9507652624266579
Kappa 0.7327991634385813
MatthewCoef 0.7357285895510765
Logloss 0.6142519898828813

Again the performance from optimal parameter set and from default set is trivial. The
overall accuracies are 80.27% and 80.38%, respectively from models with optimal
parameters and from default parameters.



RF model performance using all-region equal-sample method

Training+testing set accuracy:  0.9999599887968631

Classification report for independent set

Other metrics for independent set

Accuracy 0.7667912413257519
BalancedAccuracy 0.8056699246372823
AUROC 0.9469168705218404
Kappa 0.6887441239914291
MatthewCoef 0.6945978663964455
Logloss 1.14857048980024

The performance from optimal parameter set and from default set is trivial. The overall
accuracies are 76.68% and 76.89%, respectively from models with optimal parameters
and from default parameters.

The default parameters of the RF model are as follows. The n_estimators (number of
trees in the forest) is 100, the criteria were the gini method, the max_depth (max depth
of the tree) is no limit, that is, the tree nodes are expanded until all leaves are pure or
until all leaves contain less than the minimum sample splitting requirement. The
max_features is auto. Comparing the results from RF models with grid-search optimal
parameters with those using default parameters, it seems that parameter selection for
the RF model has little impact on the classification performance. That means that
improving crop type classification may most likely be achieved by selecting more
impactful features than the model setting. We are going to include the vegetation
indexes and texture features to seek better performances.



These spectral-only feature experiments give us the bottom-line accuracy that the RF
model can deliver for the five crop type classification, around 75% to 80% using the four
spectral bands of worldview-2 MSI images. Next, we followed the same procedure to
examine the spectral-only classification performances using the pan-sharpened MSI
images from our three deep-learning methods.

Crop type classification using Pan-sharpened MSI spectral bands only

Results from PanColor GAN deep learning method

Results using training feature set from the select-region method

Testing set accuracy:  0.948105

Classification report for independent set

Other metrics for independent set

Accuracy 0.5561761011733811
BalancedAccuracy 0.5331813771849921
AUROC 0.7960605384771109
Kappa 0.4089401890016554
MatthewCoef 0.42494359840217977
Logloss 7.805613264560757



Results using training feature set from the all-region ratio-sample method

Testing set accuracy:  0.9499742496137442

Classification report for independent set

Other metrics for independent set

Accuracy 0.7763973076923077
BalancedAccuracy 0.8031939431651584
AUROC 0.9399522649133555
Kappa 0.6997863299203768
MatthewCoef 0.7039118419894466
Logloss 1.5061117058961349

Results using training feature set from the all-region equal-sample method

Testing set accuracy:  0.9311389670845063



Classification report for independent set

Other metrics for independent set

Accuracy 0.6860432773823696
BalancedAccuracy 0.7227653047790219
AUROC 0.899346650661117
Kappa 0.5890949654764603
MatthewCoef 0.6006834180962203
Logloss 3.537414087289885

Performance comparison between using original MSI images and using
PanColorGAN images

Using select-region method

Above are the classification reports from using original MSI images on the left and from
using PanColorGAN images on the right.

This classification report presents the main classification metrics on individual classes
(crop types) and overall performance, including precision, recall, and f1-score metrics
and the number of samples that support these metrics for each class. It also provides
overall model accuracy, unweighted average of precision, recall, and f1-score from
individual classes (macro avg), and weighted average of precision, recall, and f1-score
values. Through the classification report, we not only get an understanding of how the
model performs overall but also of individual classes.

Comparing the two classification reports from the select-region method, model crop type
classification performances improve using the pan-sharpened MSI images over than
using original MSI images. The weighted average of the F1 score increases by 3%,
from 0.50 to 0.53. Individually, F1 scores for 4 of the 5 crop types improves except



Soybean. The weighted average of precision decreases by 10% while the recall
increases by 9%. The metrics improvements are shown for all of the five crop types as
well as the overall performances.

B. Using the all-region ratio-sample method

Again, above are the classification reports from using original MSI images on the left
and from using PanColorGAN images on the right.

As expected, overall classifier performance using the all-region ratio-sample method is
significantly better than that using the select-region method. The weighted F1 score
increases from 0.53 to 0.78. However, as compared with the performance of using
original MSI images, the weighted average F1 score decreases from 0.81 to 0.78. The
overall accuracy also decreases from 0.8 to 0.78.

C. Using the all-region equal-sample method

Again, above are the classification reports from using original MSI images on the left
and from using PanColorGAN images on the right.

The weighted average F1 score is 0.69 using the all-region equal-sample method using
pan-sharpened images while the F1 score is 0.77 using original MSI images. Also, the
F1 score using the all-region equal-sample method decreases from 0.78 to 0.69, about



a 9% decrease in absolute percentage as compared with that using the all-region
ratio-sample method.

From the results above, the classifier performs the best using the all-region ratio-sample
method. The overall accuracy is 78%.  The classification performance using
pan-sharpened images is close to but not as good as that using the original low spatial
resolution MSI images. The overall accuracies are 80% and 78%, respectively, from
original MSI images and from pan-sharpened images.

Results from supervised deep learning method

In this section, we would like to compare side-by-side the results from using supervised
images with that from using PanColorGAN images as we already compared results
using PanColorGAN images to that using original MSI images.

A. Using the select-region method

The classification report on the left side above is from using PanColorGAN images and
on the right side is from using supervised images.

Looking at the F1 scores for individual classes, supervised images perform better for
the Grassland type but worse on the other four crop types. The overall weighted
average of the F1 score from supervised images is 0.49, less than that from
PanColorGAN images, which is 0.53. From these metrics, it seems CPanColorGAN
images deliver a little better performance in distinguishing among the 5 crop types.

B. Using the all-region ratio-sample method



The classification report on the left side above is from using PanColorGAN images and
on the right side is from using supervised images.

The weighted average F1 score from using PanColorGAN images is 0.78 while it is 0.68
from using supervised images. For all individual scores except the recall score for
Grassland, the model performs better using PanColorGAN images than using
supervised images.

C. Using all-region equal-sample method

The classification report on the left side above is from using PanColorGAN images and
on the right side is from using supervised images.

The weighted average F1 score from using PanColorGAN images is 0.71 while it is 0.65
from using supervised images. For all individual scores except precision score for
double crops fields, the model performs better from using PanColorGAN images than
from those using supervised images.

Based on these results, we can get the conclusion that using spectral bands only,
PanColorGAN images perform better in crop type classification than that using
supervised pan-sharpened images. But the performance using pan-sharpened images
is not as good as that of using original MSI images.

Results from GAN deep learning method

In this section, we would like to compare side-by-side the results from using GAN
images with that from using PanColorGAN images.

A. Using the select-region method



The classification report on the left side above is from using PanColorGAN images and
on the right side is from using GAN images.

Looking at the F1 scores for individual classes, GAN images perform better for
Grassland and Soybean types but worse on the other three crop types. The overall
weighted average of the F1 score from GAN images is 0.49, the same as that from
supervised images, and is less than that from PanColorGAN images, which is 0.53.

B. Using the all-region ratio-sample method

The classification report on the left side above is from using PanColorGAN images and
on the right side is from using GAN images.

The weighted F1 score from using GAN images is 0.77, 0.01 less than that from using
the PanColorGAN images, significantly better than that using supervised images, which
is 0.68.

C. Using all-region equal-sample method

The classification report on the left side above is from using PanColorGAN images and
on the right side is from using GAN images.

The weighted F1 score from using GAN images is 0.75, better than that from using the
PanColorGAN images, which is 0.71, and significantly better than that using supervised
images, which is 0.65.

So based on the classification results from the pan-sharpened images using
three deep learning methods, the performances from using PanColorGAN images
are comparable to those from using GAN images. They are both better than that
using supervised images. The classifier performances are somewhat worse than
that of using original MSI images, i.e. pan-sharpened images have not improved
classifier performances for crop type classification. These are the classifier results



using spectral band data only. We then added the vegetation index information to see if
classification performance was improved.

Crop type RF classification using a combination of features from original MSI
images

The experiments in this section is to test model performance improvement when
vegetation index features are included. There is a total of 6 vegetation index features,
so the total number of features increases to 10. This section is about the experiment
using features derived from original MSI images. Since we come to the conclusion from
experiments in previous sections that the model performs best using the all-region
ratio-sample method, in the following sections, we focus our experiments on this
learning strategy.

Results from using MSI spectral + vegetation index features, all-region
ratio-sample method

Testing set accuracy:  0.9550256081946222

Independent set metrics

Accuracy 0.8052832614826761
BalancedAccuracy 0.8300653745734792
AUROC 0.9470398859118007
Kappa 0.7361600371764991
MatthewCoef 0.7395028625501928
Logloss 1.4830595518599834

The overall accuracy of RF model using spectral features only is 0.8037900336829885,
which is about the same as that from using spectral and vegetation index features,



which is 0.8052832614826761.  The vegetation index features do not show
improvement in the RF classifier performance using the original MSI images.

The feature importance ranking from the RF model is as follows.

feature importance
sipi 0.21622587492690096
blue 0.16672065657137938
gci 0.11619976404608513
savi 0.08463612407093617
sr 0.07903142731516716
red 0.07573081794186802
green 0.07524434362257881
ndvi 0.0702170520157898
nir 0.060910383482836276
arvi 0.05508355600645836

Several vegetation indexes are on top of the list such as sipi and gci while the rest of
the features show relatively the same impact on the RF classifier.

Results from using MSI vegetation index features, all-region ratio-sample method

Testing set accuracy:  0.8967669654289373

Independent set metrics

Accuracy 0.7804043207833075
BalancedAccuracy 0.8005618711717097
AUROC 0.9325982403224766
Kappa 0.7031057561194036
MatthewCoef 0.7062655602826173
Logloss 1.7226970773933241



Feature importance

sipi 0.320545582925083
gci 0.20457297053049986
ndvi 0.15675880583840524
savi 0.12773286044818036
sr 0.10771856179977221
arvi 0.08267121845805935

The overall accuracy of RF model using the vegetation features only is a couple of
percents lower than that from using spectral band features only, which is 0.804. SIPI
and GCI are still the top two features of importance, consistent with the results from
using the spectral band + vegetation index feature scheme. The NDVI feature ranks
higher though.

Results from using MSI all features (spectral + vegetation index + texture),
all-region ratio-sample method

Testing set accuracy:  0.9871158770806658

Independent set metrics

Accuracy 0.8298315767294647
BalancedAccuracy 0.8533280229218636
AUROC 0.9650328979910802
Kappa 0.7698827474169325
MatthewCoef 0.7724930063092298
Logloss 0.6246185565591569



feature importance

sipi 0.17153523376840848
blue 0.12592461972475263
gci 0.08260824610322996
ndvi 0.07036808914627055
savi 0.06872145158232129
green 0.060774958805092046
sr 0.05970585747263723
GLCM_Variance 0.05622869448432492
GLCM_Mean 0.056213628257675015
arvi 0.05337219856627159
red 0.05136384949399235
nir 0.046690003509700484
GLCM_Correlation 0.028114749351384652
GLCM_contrast 0.018152182878802856
GLCM_dissimilarity 0.012873237763203125
GLCM_homogeneity 0.01140896544327458
GLCM_entropy 0.01009662840006263
GLCM_ASM 0.006880370058932887
GLCM_energy 0.005619758322849141
GLCM_MAX 0.0033472768668133977

Using all features (spectra l+ vegetation index + textures) scheme, the RF model overall
accuracy is 0.83, about 2.5% higher than that using spectral + vegetation index scheme,
which is 0.805. So texture does contribute to the improvement of the RF classifier.

Results from using MSI texture features, all-region ratio-sample method

Testing set accuracy:  0.678377080665813



Independent set metrics

Accuracy 0.47752475630947044
BalancedAccuracy 0.522233567767892
AUROC 0.7925183875364817
Kappa 0.333642448917542
MatthewCoef 0.34392312403647307
Logloss 3.3436229880335193

Feature importance

GLCM_Mean 0.25070542750680685
GLCM_Variance 0.24079295650766627
GLCM_Correlation 0.12105231587381532
GLCM_contrast 0.06987984319606184
GLCM_entropy 0.06620396737608636
GLCM_homogeneity 0.05863947442767483
GLCM_dissimilarity 0.05159693959832221
GLCM_ASM 0.051000274051327815
GLCM_energy 0.05056395018383
GLCM_MAX 0.039564851278408406

The overall accuracy for the testing set and independent set are 0.678 and 0.478,
respectively, significantly worse than those using spectral and/or vegetation index
features. This result suggests that texture features alone are not good to distinguish
different crop types. However, adding texture features to spectral and vegetation index
features does improve classifier performance, while adding vegetation index features to
spectral features does not show improvement. This may be because texture features
add some information for the classifier to use while vegetation index features are highly
correlated to spectral features so not much classifier improvement is observed.

3.3.5 Comparing results with different feature sample volumes from using MSI
texture features, all-region ratio-sample method

Experiments in this section intend to examine the impact of feature volume size on
classifier learning and performance. Three volume sizes are tested: 25000 samples,
100000 samples, and 200000 samples. Only the classification reports are shown which
provide insight into the RF classifier performance on an independent set. All features
(spectral + vegetation index + texture) are included in the model training.

A feature set with 25000 samples for learning



Feature set with 100000 samples for learning

Feature set with 200000 samples for learning

From these classification reports, we see that RF overall accuracy increases from 0.82
to 0.85 when the training sample size increases from 25000 to 100000, and from 0.85 to
0.86 when sampling size increases to 200000. Increasing sample size seems to
improve performance as more representative samples might be available for the
classifier. Further doubling the sample size to 200000 does not improve overall
accuracy a lot. So 100000 samples might be a good size for RF classifier training. The
overall accuracy of 0.86 is the highest.

Performances of other supervised learning algorithms from using MSI all
features, all-region ratio-sample method

KNN method with all features

KNN classifier is examined with k from 1 to 20. The overall accuracies for these k
values are within 75% - 77%. The highest score is 0.7705 when k = 2. All features are
used in the classifier. Here is the classification report for k = 2



Experiments were also run on KNN classifiers with spectral only features and spectral +
vegetation index features.

An experiment was also done by forcing training samples taken proportional to the
number of samples in a region for a crop type instead of randomly splitting samples into
training and test sample sets. We have a little concern that the random splitting train
sample set may leave some regions less representative by selecting few if no samples
in the training set for model learning. Here is the classification report.

The classifier with k=2 delivers the best overall accuracy, which is 0.766, slightly more
than that of the random splitting scheme as shown above. So approach to split sample
set might not be a concern at all.

In the experiments above, features are not normalized. For KNN classifiers, features are
expected to be normalized. We also examine the impact of the normalization process
on the KNN classifiers. The classification report is shown below.



The classifier with k=2 delivers the best overall accuracy, which is 0.788, an
improvement of about 2% as compared with the results without feature normalization.

KNN with spectral features only

The best overall accuracy is achieved when k = 9, the score is 0.81

KNN with spectral + vegetation index features

The best overall accuracy is achieved when k = 10, the score is 0.8.

So based on the experiment runs on three different feature sets, the one using spectral
features and the one using both spectral and vegetation index features performs about
the same with an overall accuracy of 0.81. However, the overall accuracy drops to 0.77
when all features (i.e. including texture features) are used.

Crop type classification using a combination of features using pan-sharpened
MSI images

Results from using PanColorGAN images

RF classifier using spectral + vegetation index features



With spectral + vegetation index features used, the overall accuracy from PanColorGAN
data is 0.81, about the same as that from the original MSI images, which is also 0.81
(precision to two digits).

RF classifier using all features (spectral + vegetation index + texture) features

Classification report



With all features being used, the overall accuracy from PanColorGAN data is 0.83,
about the same as that from original MSI images, which is also 0.83 (precision to two
digits).

KNN classifier using spectral features only

The optimal KNN classifier is when k = 9 (k is tested from 1 to 9), which is 0.818, about
the same as that from using spectral features from original MSI images, which is 0.81.

KNN classifier using spectral + vegetation index features

The optimal KNN classifier is when k = 9 (k is tested from 1 to 9), which is 0.818, the
same as that from using spectral only features of PanColorGAN images.

Results from using supervised pan-sharpened MSI images

RF classifier using spectral + vegetation index features



The overall accuracy of RF classifier using spectral + vegetation features from the
supervised method is 0.77, less than that from using PanColorGAN images, which is
0.81.

RF classifier using all features

The overall accuracy of the RF classifier using all features from supervised images is
0.81, increased by 0.04 as compared with that without using texture features. The
overall accuracy of using all features derived from original MSI images is 0.83.

Based on the overall accuracy measure using the RF classifier, the images using
PanColorGAN images deliver a little better result.

KNN classifier using spectral features only



The overall accuracy of the KNN classifier from the supervised spectral feature method
is 0.78, less than that from using PanColorGAN images, which is 0.81.

Results from using GAN pan-sharpened MSI images

RF classifier using spectral + vegetation index features

The overall accuracy of RF classifier using spectral + vegetation features from GAN
method is 0.76, less than that from using PanColorGAN images, which is 0.81, and from
using the supervised method, which is 0.77.

RF classifier using all features

The overall accuracy of the RF classifier using all features from GAN images is 0.82,
increased by 0.06 as compared with that without using texture features. The overall
accuracy of using all features derived from original MSI images is 0.83. Using GAN all
features, RF models deliver slightly better overall accuracy than that from using the
supervised method, which is 0.81.

Based on the overall accuracy measure using the RF classifier, the images using
PanColorGAN images deliver the best result, as compared to that using supervised or
basic GAN models.



KNN classifier using spectral features only

The overall accuracy of the KNN classifier from the GAN spectral feature method is
0.78, the same as that using the supervised method, less than that from using
PanColorGAN images, which is 0.81.

Summary of experiments on multispectral imagery

Generally two groups of experiments have been done. The first group focused on the
investigation of crop type classification using original multispectral images (MSI
images). These results let us know what we can expect from classification performance
using ‘low resolution’ MSI images. The second group focused on comparisons of
classifier performances using original MSI images and pan-sharpened images from
using PanColorGAN, supervised, and GAN methods. This tells us if pan-sharpened
images can enhance crop type classification performances.

Comparison of experiment results from using original MSI images

Results of various experiments on crop type classification using MSI images

This figure shows the classifier performance for the experiments on MSI images. For
each experiment, the first value is the overall accuracy, and the second one is the



weighted F1 score. Though the sample distribution is somewhat imbalanced (the
grassland type counts significantly less than the other four crop types), the overall
accuracy and F1 score are very consistent.

To summarize, three classifiers are examined in these experiments: Random Forest
(RF), K nearest neighbor (KNN), and Support Vector Machine (SVM). The RF classifier
is the major classifier in the experiments.

There are 20 features extracted from the optical images. Four features are directly from
the four spectral bands. There are also six vegetation index features and 10 GLCM
texture features calculated. In the spreadsheet, spectral only indicates that 4 spectral
features are used for classification. Index only corresponds to 6 vegetation index
features. Texture only corresponds to 10 texture features. Spectral+index indicates that
a combination of 4 spectral features and 6 vegetation index features was used. All
feature indicates that all the 20 features are used in the experiment.

There are a number of experiments conducted using different combinations of
classifiers with training sample generation strategies. For the select region method, the
training samples come from 5 manually selected crop regions, with each one
representing one crop type. For all region equal sample methods, training samples
come from all the crop regions identified over the Tennessee Valley, with each region
contributing an equal number of samples to the dataset. For all region ratio sample
methods, training samples come from all the crop regions, with samples from each
region proportional to the region size. For all these three methods, the total number of
samples in the training set is 50000. For most of the experiments, the classifiers (RF
and SVM) are used with default parameter settings.

To test the impact of a number of training samples on classifier performance, three
additional experiments were done for the RF classifier with a number of samples of 25K,
100K, and 200K, as shown in the spreadsheet. An experiment was done for the KNN
classifier with a number of samples of 25K. For the SVM classifier, two experiments
were done using two kernels: linear kernel and Radial Basis Function (RBF), with
default model parameters.

Results of RF experiments using the three training set sample selection strategies show
that the select region method delivers the worst performance with an overall accuracy of
only 0.47. All region methods show significantly superior performances with an overall
accuracy of 0.77 and 0.80, respectively for ratio-sample and equal-sample methods.
These results suggest that in order to obtain high crop type classification results,
samples from every crop field should be selected.

As for features used in the classifier, the RF classifier with texture features only has the
worst performance with an accuracy of 0.48. The overall accuracy improves to 0.78 for
using vegetation index features only. Using spectral features only and combinations of
spectral, index, and texture features, overall accuracies range from 0.80 to 0.83 with the
highest accuracy from using all features.



RF classifier accuracy increases from 0.82 to 0.86 when the number of training samples
increases from 25K to 200K. It seems that the improvement in accuracy might be
saturated with increasing training samples.

RF classifier optimization using grid-search with 5 fold cross-validation did not show
improvement over using default model parameters.

The overall accuracy of the KNN classifier using spectral features only is the same as
that of the RF classifier, which is 0.81. A combination of spectral and index features (a
total of 10) delivers the same performance. However, KNN accuracy drops to 0.77 when
all features are used. Is this due to the curse of dimensionality? KNN accuracy
decreases slightly from 0.81 to 0.80 when the number of training samples decreases
from 50K to 25K.

For the KNN classifier, two additional experiments were done to check the impact of
alternative feature preparation processes. The first one, called ‘all-region ratio sample
ratio contribution’, differs from the ‘all-region ratio sample’ in that in the former case
training sample set is forced to include the number of samples for a region that is
proportional to its size in the training set while in the latter case the feature set is
randomly split into training sample set and testing sample set. The former guarantees
the number of samples being used to train the classifier for a region. From the
spreadsheet, the two strategies made no difference, most probably suggesting that the
random splitting strategy did a good job in selecting the training sample set.

The second one, ‘all-region ratio sample ratio contribution normalization’, goes one
further step in normalizing the features using the z-score method so that all features
have zero means and 1 standard deviation (i.e. all features have the same dynamic
range in value). For the RF classifier, this feature normalization may not be a big issue.
For KNN and SVM classifiers, feature normalization is expected to have an impact.
From the spreadsheet, with normalization, KNN accuracy using all features increases
from 0.77 to 0.79.

For the SVM classifier, the overall accuracies are 0.80 and 0.83, respectively for linear
kernel and RBF kernel. The performance of the SVM RBF model is the same as that of
the RF classifier.

Through these experiments, we got the knowledge of what we can get for crop type
classification using the original MSI images.



Comparison of classifier performance from using original MSI images and
pan-sharpened images

RF classifier performances from using original MSI images and pan-sharpened images
using PanColorGAN (Charles), supervised (Evans1) and basic GAN (Evans2) methods

RF classifier results from using original MSI images and pan-sharpened images using
PanColorGAN, supervised and GAN methods are shown in Figure 4.2.1. Four
performance metrics are shown for RF classifiers using each of the four image sets.
They are overall accuracy, weighted F1 score, Kappa coefficient, and Matthew
correlation coefficient.

Using the spectral features only, the best metrics are obtained from using original MSI
images, and the second-best is from using PanColorGAN images. The metrics from
using Evans methods are the lowest among these classifiers.

When vegetation index features are used, the metrics from using PanColorGAN images
slightly outperform those from using original MSI images, while metrics from using
supervised images improve the most. When using all features, the metrics from all four
image sources are close to each other. And the models perform the best using all
features. There is no advantage of classification from using the pan-sharpened images
as compared to that using original MSI images though.

Classification performance as shown by regions

In this section, we show the results from classifier performance based on crop region
using RF classifier.



The figure above shows the classifier results by region using the three training set
strategies. The first one constructs a training set from samples of selected regions. The
selected regions are #1, #37, #128, #215 and #249. These regions are shown in the
row of gray shades with region ID highlighted in yellow. The second and the third ones
are the ‘all-region ratio sample’ method and the ‘all-region equal sample’ method. For
each method, two columns of results are shown, one corresponding to the default RF
model, and the other one as ‘opt’, referring to RF model parameter optimization. The
number of samples in each region is given in column 3. The number shown in the
results are recall values for each region, that is, the ratio of the pixels correctly predicted
by the RF classifier for a region to the total pixels in the region.

From the figure above, it is seen that recall values with the select region method are
higher than that using the all-region method, as expected as these regions are well
represented in the RF classifier through the selected samples. And for the rest of the
regions, on the contrary, the recall values are lower using the select region method than
those using all region methods. Using all-region methods, the recall values are
significantly improved for the regions that show poor performance in the select region
method. For region 134 (Soybean crop type), the recall values improve from 0 to more
than 50%. This figure justifies the superior performance using the training samples from
all regions.



For all of the experiment results shown at this point, the samples used to train the
classifier to count a very small percentage of the total samples in these regions (a total
of 33 regions). The total number of samples in these regions from original MSI images
is over 2.45 million. Our default sample size for model training is 50K, about 2% of the
total samples. For the experiment with 200K samples, it is still a little over 8%. The main
consideration of using a small percentage of samples is for speeding up the model
training process, especially for experiments using pan-sharpened images. A huge
training set could require significant model training time. Besides, 50000 samples are
not a small number for the model to learn, as long as they are representative. However,
experiments do show improved classifier performance with enlarging the training
sample set.

As extended efforts, experiments were conducted with all pixels from the crop regions
taken into a training set for model learning using original MSI images. Again a number
of experiments were done using a combination of feature selection schemes (spectral
only, vegetation index only, texture only, and combinations) to examine the RF model
performance with a full sample set. For these experiments, the training sample set is
randomly split into two 50%-50% sections, one for model learning, the other for model
testing. The following figure shows the results.



It is surprising that with full sample set learning, the RF model using spectral features
only delivers more than 90% of overall accuracy. Including index, features do not
improve the accuracy. However, the accuracy rises up to 97% when texture features are
included. For index only and texture only schemes, the overall accuracies are 86% and
64%, respectively. High accuracy of 97% is pretty satisfactory using the original MSI
images, which leaves little room to improve with pan-sharpened images. This suggests
that with the current pixel-based learning strategy, the MSI images with a spatial
resolution of several meters perform well enough for crop type classification. Further
thoughts may be taken for argument validity.

Classification performances with SAR data included

A number of experiments have been conducted for crop type classification performance
with SAR data included. The SAR data was from the European Sentinel satellite. Both
VV and VH polarization bands were used. Since the MSI data was the observation on
May 18, 2019. Two days of SAR images over Tennessee Valley were obtained and
used in the experiments: May 13, 2019, and May 25, 2019.

Comparison of RF classifier performance on a combination of MSI and SAR
features

The Figure above shows the results for RF classifier performance using a number of
combinations of SAR and MSI images. The performance is shown in 4 metrics: overall
accuracy, weighted F1 score, Kappa index, and Matthew Correlation Coefficients.

The first five rows in the figure show the RF results using a combination of optical
features from MSI images and they have been discussed early and will not be
discussed here.

The next two rows show the RF performances using two SAR polarization bands (VH +
VV) only. These results are viewed as the baseline RF classifier performance that SAR
data can deliver. From the figure, the overall accuracies are 53% to 55.5%, respectively
for the two days. Compared with RF performance using MSI spectral features only,
which is 91.2%, the performance of using SAR data only is significantly worse. Using



two days of SAR data together increases overall accuracy to 69.3%, a significant
improvement, but still significantly worse than using MSI bands only. Using two days
combination of SAR data can be considered a time series of SAR data, and published
literature already indicates the effectiveness of time series of SAR data in improving
classifier performance. This experiment also confirms this conclusion. Extending the
time series of SAR data (i.e. adding more days of SAR data) is expected to further
improve classifier performance.

Experiments were also done for SAR-only data, including the GLCM texture features
calculated from both VH and VV bands, for a total of 22 features. Results are shown for
both days. For 05/13/19, the overall accuracy increases from 55.5% to 83% with the
addition of GLCM texture features. Similarly, on 05/25/19, the overall accuracy
increases from 53% to 82.2%. From the two cases, SAR texture features supplement
significant information for crop type classification.

We also tested the SAR-only data for crop type classification using VV and VH bands
features and GLCM features calculated from the two bands for two days. The overall
accuracy increases from 69.3% to 91.5% when texture features were added, about the
same as that using MSI spectral bands features.

Further, we tested the classifier performance using combined MSI and SAR features.
Using the 4 spectral MSI band and the SAR VH + VV bands features, the overall
accuracy is about 94% for the two days test. And with consideration of two daytime
series, the overall accuracy increases to 96%. These results show that a combination of
MSI and SAR features slightly improves classifier performance.

RF classifier performance on training sample size using all MSI and SAR features

For this group of experiments, the focus aims on the dependency of RF classifier
performance on the training sample size using all available features. A total of 64
features are available, including 4 MSI spectral bands, 2 SAR bands (VV+VH) for each
day (total of 4 for two days), 6 vegetation indexes, 10 MSI texture features, 20 VV+VH
SAR texture features for each day(total of 40). The following figure shows the results.

From the figure above, the RF performance has little improvement when the training
sample size reaches 10% of the total samples.



The learned RF models show great performances for the samples in the region of
interest. Then experiments were done to apply these learned models to all the 5 crop
samples in the image but not in the regions of interest. This will show how the learned
RF models perform on the unseen samples. Four RF models were tested. The four
models were learned using training samples of 5%, 20%, 50%, and 70% from the
regions of interest. The overall accuracies for the unseen samples from these 4 models
are basically the same, 50.7%, a huge decrease compared to over 97% for the samples
in the regions of interest. These results are consistent with those from model learning
using select-region methods in earlier experiments and indicate that the learned models
cannot perform well for the unseen samples.

Experiments were also conducted to check the impact of feature reduction through the
principal component analysis (PCA) on the RF classifier performance. The PCA was run
on the 64 MSI and SAR features and first, we selected the top 20 components were
selected as the features for RF classifier learning. The training sample size is still set as
70%. The overall accuracy is 0.993, just slightly less than that using all 64 original
features. Then the trained RF model was used to classify all the unseen samples in the
Tennessee valley image that are not included in the selected regions and are one of the
5 crop types of interest (Corn, Cotton, Soybean, double-crop, and Grassland), with the
same strategy as in the previous paragraph. The accuracy drops significantly, to 0.478.
This accuracy value is close to the performance of the RF model that used training
samples from the selected regions, though for that experiment only 4 spectral bands of
MSI features were used. This result further confirms that the RF model using MSI and
SAR features can perform very well on the crop regions that it learned but cannot be
generally applied to other regions that it does not see and learn. This suggests that the
features extracted from different crop fields with the same crop type are quite diverse.
The following is the confusion matrix for the experiment using 20 PCA components.

Overall accuracy: 0.993                                                    Overall accuracy: 0.478

Next we selected the top 5 PCA components for the RF model learning. Following are
the confusion matrices.



Overall accuracy: 0.832                                                    Overall accuracy: 0.430

From this experiment, reducing the number of PCA components from 20 to 5
significantly decreases the overall accuracy from 0.993 to 0.832. Overall accuracy for
independent samples decreases from 0.478 to 0.430. So it seems the optimal number
of principal components for RF model learning is somewhere between 5 and 20.

Further notice that the overall accuracy of the RF model using 5 PCA components is
worse than that trained using only 4 MSI spectral band features, which has the overall
accuracy of 0.912. That seems to suggest that applying PCA for feature reduction may
not deliver better model classification performance than using original features.

Classifier performance with training samples from an entire image using all MSI
and SAR features

For all the experiments above, the feature set for model training are collected from the
selected regions of interest representing the 5 crop types of interest. Since we manually
identify and crop the regions out of the image, pixels are expected to be more
homogeneous in spectral, index, and texture features within a region than without the
region. And learned models are as a result to have higher overall accuracy for these
pixels.

At last, experiments were conducted to test the model performance using training
samples directly and randomly extracted from the image instead of from manually
carefully selected regions.

The classification report shown above was from the model run with all learning samples
randomly selected from the MSI image for the 5 crop types. Since the pixel volume is
too large, only 5% of the samples were selected for model learning and only 4 MSI
spectral bands were used as features so the laptop computer can handle the learning



process. From the report, the overall accuracy is 62%, as compared to over 90% using
the selected regions of interest. The total number of samples supporting this result is
over 20 million. We further extended this experiment to evaluate the model performance
for all surface scene types in the MSI image instead of the 5 crop types of interest using
the same training sample selection strategy.

This time, 2% of all the samples from the image were randomly extracted for model
learning. From the classification report, the overall accuracy is 52% with only 4 MSI
spectral band features used. A total of 29 surface scene types are included. Some
scene types have a very limited number of samples in the images. The five crop types
that we are interested in are type 1 for Corn, type 2 for Cotton, type 5 for Soybean, type
26 for DoubleCrop and type 176 for Grassland.

The F1 score for Corn drops from 0.63 to 0.57 when all surface types are classified. For
Cotton, the F1 score drops from 0.67 to 0.65. For soybeans, the F1 score drops from
0.6` to 0.56. For double crops, the F1 score drops from 0.64 to 0.59. And for Grassland,
it drops from 0.49 to 0.27. So grassland type is a difficult surface type to be
distinguished so as the number of surface types increases the performance of
grassland type deteriorates significantly.



Overall Summary

Four convolution neural networks were developed, tested, and evaluated (a traditional
supervised CNN, a generative adversarial network (GAN), a PanColorGAN, and an
unsupervised CNN with an advanced specialized loss function against well-known and
published pan-sharpening methods. Results were evaluated for usefulness in the
identification of agricultural crops. Our results indicated that the PanColorGAN was the
most successful followed by the basic GAN, and then the supervised CNN. Our attempt
to use an unsupervised CNN with a specialized loss function was unsuccessful. The
biggest issue we encountered was the large-scale difference between the panchromatic
image, the multispectral image, and SAR data. Deep learning attempts to fuse the data
together into a single product were problematic. We found that traditional mathematical
algorithms such as IHS and various forms of wavelet transformations were very
successful. With this knowledge, we were able to pan-sharpen and fuse together a new
GEOINT product consisting of pan-sharpened blue, green, red, nir, and polarization
bands.

We used this new product to identify and classify agricultural row crops (corn, wheat,
cotton, and soybeans) in the Tennessee River Valley. To evaluate we conducted a
variety of experiments for crop type classification using a machine learning approach,
mainly the Random Forest classifier. The experiments include the performance
comparison between using pan-sharpened images and using original MSI images.
According to our results, there are no obvious benefits to using the pan-sharpened
images for crop type classification, at least with our new dataset.

From these experiments, we have seen that using training samples from carefully
selected regions of interest, the RF (and other models) can perform very well in
distinguishing among the 5 crop types if the models are learned with representative
samples. Even using MSI spectral band features, the overall accuracy can reach over
90%. The accuracy improves with including texture features, and with including SAR
polarization band features and their texture features. The overall accuracy can be as
high as 99%. However, applying these well-trained models to other ‘unseen’ pixels
(pixels in other areas with the same surface types) the performance decreases
significantly. If we randomly select the sample for model learning, the overall accuracy is
only over 60% for the 5 crop types and drops further to 50% for all surface type
classification. This suggests the broad spectrum of feature characteristics even for the
same crop type over the Tennessee River Valley, making the high-quality classification a
challenge. However, model high performance over the ‘selected regions’ with high
homogeneity/uniformity of feature characteristics is encouraging.

The most encouraging results from our new product were when we included the GLCM
texture features calculated from both VH and VV bands. The overall accuracy increased
from 53% to 83% with the addition of GLCM texture features. Supplementing SAR
texture features information for crop type classification was significant. We are
encouraged to continue research in this field and hope to acquire higher-resolution SAR
data to improve our results.
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