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Abstract

Oxide ceramic materials are leading candidates for aerospace structural applications due to
their high strength and stiffness and their ability to maintain these properties at high temperatures
in corrosive and oxidizing environments. A class of oxide ceramics, which has shown excellent
potential for use in aerospace structural applications in extreme environments, is garnet ceramics.
Specifically, Yttrium Aluminum Garnet (YAG, Y3Als012) has demonstrated superior creep
resistance at high temperatures in air and in steam rich environments compared to other oxide
ceramics, which suggests it is an ideal material for structures that are required to operate at high
temperatures for extended periods of time.

However, investigation into its behavior is limited, and further exploration of its high-
temperature capabilities is needed to increase confidence in its widespread use. A related
material of interest within the garnet family is Lutetium Aluminum Garnet (LuAG, LuszAlsO12).
Its stable crystal structure, high density, and high melting temperature exceeding that of YAG,
make it an exciting material candidate for structural applications; however, no previous research
studies have investigated its mechanical performance at high temperatures.

This research effort examined several aspects of the material characteristics and mechanical
behavior of YAG and LuAG at elevated temperatures. The specific materials investigated in this
work include high-purity, polycrystalline YAG, high-purity, polycrystalline LuAG, and two
doped variants of YAG: 2at% Yb-doped, polycrystalline YAG and 2at% Er-doped,
polycrystalline YAG. Several billets of each material were prepared and processed by means of

spark plasma sintering (SPS). Many different sintering parameters were utilized in order to



obtain materials with various physical properties and to identify the effects of sintering
parameters on the average grain size of the resulting materials.

Basic material properties were determined following SPS processing, including density and
hardness. Additionally, the material microstructure was analyzed for each billet by means of
scanning electron microscopy in order to understand the quantity and location of porosity and to
determine the material grain size.

The compressive creep behavior of these materials was investigated at 1300°C and 1400°C in
air and in steam. Several billets of each material variant were tested in order to determine the
effects of grain size on the creep behavior. The steady-state creep strain rates were determined
from the results of each creep test, which enabled the identification of the stress exponent, grain
size exponent, and the activation energy for the steady-state creep of both YAG and LuAG.

These studies of creep performance were accompanied by a thorough investigation into the
post-creep microstructure of each material, including changes to the average grain size and grain
aspect ratio following creep. This analysis of the post creep microstructure coupled with the
creep results of each material contributed to the determination of the primary creep mechanisms
responsible for the deformation observed at high temperature.

YAG continues to demonstrate the highest creep resistance of any oxide ceramic currently
investigated, displaying steady-state creep rates on the order of 10 s™! at 1300°C for large grain
sizes. LUAG surprisingly demonstrated strain rates between one and two orders of magnitude
greater than that of YAG for similar grain sizes, despite the high density and melting temperature
of LuAG. Temperature and grain size significantly impact the creep resistance of these materials;
however, YAG remains unaffected by the presence of dopants, and both YAG and LuAG are not

affected by the presence of steam during creep.
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CREEP BEHAVIOR AND DEFORMATION MECHANISMS OF SPARK PLASMA
SINTERED OXIDE CERAMICS FOR AEROSPACE SYSTEMS AT 1300°C-1400°C

1. Introduction

1.1. Ceramics in the Aerospace Industry

The ever-growing need for high-performance structures within the aerospace industry has
enabled rapid advancements in the field of material science and engineering throughout the past
several decades. The focus of these advancements has been the development of strong and light
materials that can continually operate in extreme environments. Such materials find applications
in aerospace structures developed for use in aircraft and spacecraft, such as sharp leading edges,
nose cones, rocket nozzles, engine components, structures for hypersonic vehicles, and high-
speed thermal protection systems (TPS), among others [1]. Material properties of interest for use
in these state-of-the-art aerospace structures are high specific strength and stiffness, high thermal
stability, resistance to thermal shock, wear resistance, and chemical stability in corrosive and
oxidizing environments [1]-[3]. The need for these desirable properties in aerospace structures
has led to increased interest and rapid advancements in ceramic materials.

Ceramics make up a vast and important group of materials commonly used throughout
science and engineering and in many facets of everyday life in general. They have a wide range
of applications, including household goods, construction materials, electronics, refractory
materials, and medical devices and implants [4]. However, the most significant advancements in
engineering ceramics have been heavily driven by progress in the aerospace industry. The
extreme operating conditions often seen by aerospace structures have caused designers to move
beyond the use of metals and polymers in these applications. Although metals can often provide

high strength, stiffness, and durability, they are heavy and are not typically able to withstand
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high temperatures in corrosive environments. And although polymers are light and can often be
tailored to meet specific requirements, they typically lack the required strength and high-
temperature stability required of aerospace structures.

Ceramic materials are able to fill these requirement gaps and meet the needs of the
aerospace industry. They possess the high strength and stiffness characteristics required of
critical structural components, and they are lighter than most metals [2], [3]. Furthermore, the
most valuable and unique characteristic of ceramic materials is their ability to operate in extreme
environments. The TPS material used for previous generation re-entry vehicles has been required
to survive temperatures approaching 1600°C [5]. Similarly, in hypersonic flight, sharp leading
edges can see temperatures in excess of 2000°C [6]. The use of ceramics has increased the
efficiency of jet engines due to their use in critical engine components, such as stator vanes, rotor
blades, and combustor liners, among others [7]. The materials used in these applications must be
capable of surviving high temperatures while maintaining structural integrity, requiring strong,
durable materials with high melting points, low coefficients of thermal expansion, and resistance
to corrosion.

These applications require the use of materials that are capable of maintaining their
properties in corrosive and oxidizing environments for extended amounts of time. Although they
are typically more resistant to corrosion than other materials, many high-performing ceramics
will still degrade over time when forced to operate at high temperatures in air [8]. This
requirement has led to the increased interest in a specific class of ceramic materials: oxide
ceramics. Because of their chemical composition, oxide ceramics inherently resist oxidation,
even at high temperatures, and are therefore able to operate continually in these extreme

environments. However, research into the capabilities and ultimate potential of oxide ceramics is



still a relatively new and ongoing activity. The continued development of materials with these
unique properties is critical to the advancement of the aerospace industry; therefore, the
investigation into newly developed oxide ceramics with more advanced capabilities, higher
temperature limits, higher strength properties, and longer life spans is an important research

effort, which continues today.

1.2. Problem Statement

As more ceramic materials are developed for use in aerospace applications, a critical
requirement and common limiting factor have become readily apparent. These materials must be
capable of maintaining their properties in oxidizing environments. Although a fundamental
characteristic of ceramics is increased corrosion resistance over metals, many ceramics are not
entirely resistant to corrosion at high temperatures [8]. One form of corrosion, which many
common ceramics are still susceptible to is oxidation, which is amplified at high temperatures.
Many commonly used non-oxide ceramics, such as carbides, nitrides, and borides, among others,
have been shown to quickly oxidize in oxygen rich environments, including air, resulting in
degraded mechanical properties [9]-[13].

This problem is intensified even further in combustion environments, where the conditions
more readily promote the potential for oxidation. Ceramics in these environments will see
elevated temperatures and pressures and will also be exposed to water vapor, which can be a
typical by-product of combustion [14]-[17]. Several studies have shown that the presence of
water vapor at high temperatures will drastically increase the rate of oxidation, as water

molecules are more soluble in SiO2 than in Oz gas [14]-[20].



Although oxide ceramics inherently resist oxidation due to their chemical composition,
previous research has demonstrated that these resilient properties of oxide ceramics and oxide
ceramic composites may still be insufficient for the current needs presented by the aerospace
industry. Specifically, the creep resistance and creep-rupture times of oxide ceramic materials
have still been observed to decrease in steam environment, due to the many degradation and
failure mechanisms present in such conditions [21]-[23]. For several years the highest-
performing state-of-the-art materials in the oxide ceramic group have been commercially
available polycrystalline alumina and alumina-mullite fibers, fabricated for use in ceramic matrix
composites. Although the strength properties of these fibers have significantly surpassed those of
other oxide ceramics, they are still inferior to those observed in non-oxide ceramics in inert
environments. Additionally, in many applications the use of alumina is limited to 1100°C by the
high-temperature strengths and creep rates that have been observed in oxidizing environments
[24]. These shortcomings of currently available oxide ceramics have furthered the need for
ongoing research into these materials and their properties. Additional materials must be
fabricated and thoroughly investigated in order to provide a long-term oxidation-resistant

ceramic material solution for the aerospace industry.

1.3. Research Focus

This research is focused on determining the mechanical properties of advanced oxide
ceramics, which have not yet been thoroughly tested and analyzed for use in extreme aerospace
environments. Materials of interest in this investigation are two potentially high-performing
garnet ceramics, which may be capable of demonstrating substantial deformation resistance at

high temperatures. This deformation behavior must be studied in order to determine whether



these materials are valuable candidates for further research efforts and future aerospace
applications. The specific materials, which will be investigated in this research effort, are
Yttrium Aluminum Garnet (YAG, Y3Als0O12) and Lutetium Aluminum Garnet (LuAG,
LuszAlsO12). Each of these materials have characteristics and physical properties, which suggest
that they may possess superior time-dependent mechanical properties over currently used oxide
ceramics, specifically in extreme oxidizing environments. However, a thorough analysis of their
behavior under these conditions has yet to be performed.

This research is an exploratory effort, which aims to determine the mechanical behavior of
these materials. Specifically, the creep properties of these oxide ceramic materials will be
determined through testing and analysis in conditions that have not yet been investigated. Creep
experiments will take place in both air and steam in order to evaluate behavior in two different
oxidizing environments. YAG has a melting temperature of 1970°C, is stable in oxidizing and
reducing environments, and possesses a highly symmetric cubic crystal structure, which suggests
a particular resistance to creep [25]. Creep rates (in air or in vacuum), grain growth rates, and
corrosion resistance in combustion environments of both single-crystal YAG and polycrystalline
Y AG have been shown to be superior to those of alumina and mullite [26], [27]. Although some
research has been conducted on the creep performance of YAG at high temperatures,
investigation of YAG performance in air and steam is limited at 1300°C and has not yet been
extended to 1400°C [28]. This research will go further in air and steam, studying doped and
undoped, polycrystalline YAG materials with different grain sizes at various temperatures and
creep stresses. This research will help determine the dependence of the creep behavior of YAG

on temperature, creep stress, environment, grain size, and dopant at temperature approaching the



melting point of YAG. This work will also give insight into the creep mechanisms responsible
for the deformation of YAG at these temperatures in air and in steam.

Essentially no research has been conducted on the mechanical properties of LuAG. Up to this
point, LuAG has been fabricated primarily for laser applications due to its optical properties and
transparency. This exploratory effort will provide the first creep results of LuAG specimens, and
will examine the effects of temperature, applied stress, and environment on the deformation
behavior of LUAG. Based on the material similarities and physical properties of LuAG and
YAQG, it is expected that LuAG will demonstrate some of the most creep resistant behavior of
any known polycrystalline oxide ceramic.

The steady-state creep strain rates, controlling creep mechanisms, and creep activation
energies of these materials at high temperatures remain an ongoing area of research. The absence
of extensive microstructural examination casts doubt on what mechanisms are truly active during
creep in certain conditions. Yet this information is critical to advancing the use of oxide ceramics
and investing in their application as reliable structural materials operating in extreme
environments.

Mechanical testing in oxidizing environments at high temperatures is not a trivial matter.
Creep experiments planned in this work have been historically difficult to perform. By utilizing
lessons and techniques established throughout the past usage of specialized experimental
facilities and test procedures previously developed at AFIT [29]-[31], reliable experimental
results will be obtained to fill gaps in the current understanding of the creep behavior of these
oxide ceramics. Determination of creep mechanisms is critical to ensure models are based on
sound physics and valid assumptions. This study aims to add to the body of knowledge

pertaining to the creep characteristics and overall behavior of these emerging oxide ceramics.



1.4. Research Objectives

The research objectives laid out in this section are associated with determining the creep
behavior of the oxide ceramics of interest in this study, which will result in a valuable
contribution towards the continued development of oxidation resistant materials capable of
withstanding extreme operating conditions required of aerospace materials. These objectives
provide the basis for a detailed research plan, which is focused on initial material
characterization, experimental facility installation and setup, creep testing at high temperatures in
air and in steam, and post-creep microstructural analysis. The five primary research objectives
as well as the various tasks associated with each objective are summarized below:

1. Fabricate polycrystalline YAG and LuAG material billets by Spark Plasma Sintering

(SPS) and prepare specimens for microstructural characterization and creep testing.

a. Prepare ceramic powder for SPS, including undoped, polycrystalline YAG, 2at%
Yb-doped, polycrystalline YAG, 2at% Er-doped, polycrystalline YAG, and
undoped, polycrystalline LuAG.

b. Create fully dense material billets with a variety of grain sizes by adjusting
temperature and pressure parameters for different SPS runs for each material.

c. Machine pucks into specimens for creep testing and prepare additional samples
for material characterization in the SEM.

d. Determine dimensions and mass of each creep test specimen.

2. Characterize various physical and microstructural properties of all materials prior to

creep testing.

a. Determine the density of each creep test specimen by means of the Archimedes

density measurement technique and a Helium pycnometer.



b. Perform impurity analyses on each material variant and determine the typical pore
structure by analysis in the SEM after processing.

c. Determine the average grain size of each SPS billet by analysis in the SEM using
quantitative image analysis software.

d. Perform microhardness measurements on each material billet following SPS.

e. Determine the correlation between material grain size and SPS parameters.

3. Validate the capabilities and functionality of the 1500°C Amteco furnace in conjunction
with the 5 Kip universal material testing machine and calibrate the associated equipment
and instrumentation.

a. Ensure the furnace and testing machine interface properly, and the load train and
equipment fit together, to include the fabrication and installation of the custom
furnace-expanding insert.

b. Test the temperature capabilities of the new furnace prior to creep testing, and
perform temperature calibrations for each material, at each target temperature, in
air and in steam.

c. Ensure the steam generator is functional and interfaces properly with the new
furnace and susceptor surrounding each specimen.

d. Ensure furnace, susceptor, and load train are centered with the extensometer and
extensometer mounting system. Perform extensometer calibration to ensure
proper strain measurement.

4. Perform creep tests on each material variant.



a. Conduct five-hour long creep tests on undoped, polycrystalline YAG specimens
of various grain sizes at 1300°C and 1400°C in air and in steam with compressive
stress levels between 50 MPa and 200 MPa.

b. Conduct five-hour long creep tests on 2at% Yb-doped, polycrystalline YAG and
2at% Er-doped, polycrystalline YAG specimens of various grain sizes at 1300°C
in air with compressive stress levels between 50 MPa and 200 MPa.

c. Conduct five-hour long creep tests on undoped, polycrystalline LuAG specimens
of various grain sizes at 1300°C and 1400°C in air and in steam with compressive
stress levels between 50 MPa and 200 MPa.

5. Analyze the creep data, and perform microstructural analysis of specimens following
creep testing in order to determine the creep mechanisms and deformation characteristics
for each material variant.

a. Determine the steady-state creep strain rates for each material variant under each
test condition.

b. Determine stress exponents and grain size exponents for each material variant in
order to quantify the effects of stress and grain size on the resulting creep
behavior and to identify the active creep mechanisms.

c. Determine the activation energy of undoped, polycrystalline YAG and LuAG in
order to understand the nature of diffusion during creep.

d. Prepare post-creep specimens for microstructural analysis by cutting in the axial
loading direction through the center and polishing cut surfaces.

e. Analyze post-creep specimens in the SEM to determine post-creep grain size and

overall structure to include any changes in grain aspect ratio.



2. Background and Literature Review

In order to fully understand the context and relevance of the experimental results and analysis
presented in this research study, a thorough background and literature review is provided in this
section. An overview of ceramic materials is presented, which includes the history of traditional
ceramics, the progress made in the field of engineering ceramics, and the advantages and
properties of oxide ceramics.

Following this overview of ceramics, a thorough literature review is presented, which will
explore the physical attributes, performance properties, and previous research studies
surrounding specific types of oxide ceramics, including various garnet ceramics. Within each of
these sections, the specific materials of interest (YAG, and LuAG) will be highlighted, to include
a detailed description of their crystal structures and material properties.

In order to understand the experimental focus of this research, an explanation of creep theory
and the science behind various creep mechanisms are provided. Additionally, a literature review
of previous creep studies of various oxide ceramics is presented. This review focuses on the
creep properties of garnet ceramics, as well as some other widely-used oxide ceramics, which
possess similar performance characteristics, in order to understand the current state-of-the-art
and the ongoing need for further creep research of ceramic materials.

The next section in this literature review provides a description of potential environmental
failure modes observed in ceramic materials. This research focuses on the deformation and
potential failure of ceramics exposed to high temperatures in oxidizing and corrosive
environments. Therefore, the environmental effects on these materials must be understood. An
overview of fracture mechanics and sub-critical crack growth is provided, followed by a review

of previous experimental studies of environmentally-assisted failure of oxide ceramics.
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The final section in this literature review summarizes the implications of previous work on
this current research effort, and how this study will provide new and relevant information, which
will add to the current body of knowledge surrounding oxide ceramic materials. This background
and literature review is divided into six main sections, which are outlined below:

2.1. Introduction to Engineering Ceramics

2.2. Garnet Ceramics

2.3. Creep of Ceramics

2.4. Environmental Effects on Oxide Ceramics

2.5. Implications for Current Research
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2.1. Introduction to Engineering Ceramics

2.1.1. An Overview of Ceramic Materials

Ceramics make up one of the largest and most important groups of materials used in science
and engineering and in everyday life in general. They encompass a broad range of material
properties, enabling their applications to span across several industries from household goods to
construction to aerospace. Ceramics have a long and progressive history, and their use has been
critical to pushing technology further for thousands of years. In the early days of their use
ceramics included only simple figurines and sculptures, dating back to the late Paleolithic period.
Thousands of years later the technology eventually improved, allowing the creation of clay
pottery and weaponry made in small kilns dug into the ground [32], [33]. Throughout the years
since, ceramic technology has progressed to include strong, reliable structural material and high-
temperature resistant aircraft and spacecraft components. In the following paragraphs ceramic
materials are defined as a distinct class of materials, and their properties, advantages, and
primary uses are laid out in detail.

The word ceramic originates from the Greek, keramos (képapog), meaning “pottery” or
“potter’s clay”, and the Greek root can be traced back to the ancient Sanskrit, ¢ar, meaning
“burnt material”. It is clear that the Greek’s focused more on the process and not the actual
resulting material, as this particular term was only used for products made from a burning or
firing process, and was therefore only used to describe clay pottery or other heat treated
earthenware of the time [2], [4], [31], [34], [35]. Modern material science has allowed this
history and etymology of ceramic materials, focusing on the process of changing the chemical or
physical properties of a material with the application of heat, to encompass many different types

of materials, including “pottery, porcelain, refractories, structural clay products, abrasives,
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porcelain-enamels, cements, and glass, but also nonmetallic magnetic materials, ferroelectrics,
manufactured single crystals [and] glass ceramics™ [4], [35]. In recent years ceramics also
incorporate more modern materials, such as advanced engineering ceramics, which will be
discussed in detail in later paragraphs.

Given the variety of ceramic materials and the diversity of their use, it is not surprising that
one precise definition is difficult to come by. Several authors of material science texts offer up
perhaps the most common and concise description of ceramic materials as non-metallic,
inorganic solid materials, which easily includes all of the above examples and successfully
distinguishes ceramics from metals and carbon chain-based, organic materials, such as polymers
[2]-[4], [31], [36]. Others prefer a more restrictive definition and define ceramics by the nature
of their chemical structure, typically compounds between metallic and nonmetallic elements for
which the interatomic bonds are either totally ionic or a mix of ionic and covalent [2], [3], [31],
[37]. The most common chemical structures of ceramics are oxides, carbides, and nitrides, but
also include silicides, borides, phosphides, and sulfides, among others. Elemental Silicon and
Boron, as well as Carbon in its graphite or diamond form are also typically grouped into
ceramics [2], [36]. The diversity of ceramics extends to their crystal structures as well. Typical
ceramics are crystalline solids, which include single crystal materials, polycrystalline materials,
and partially crystalline materials. Additionally, certain amorphous materials, such as glasses, are
included as well [2], [3], [36].

Often ceramics are defined based on mechanical characteristics and properties. Due to the
varied chemical structures, elements present, and types of atomic bonding across all ceramics,
there can be a wide range of properties and levels of performance to consider. However, some

basic characteristics and properties are generally observed across all ceramics, the most

13



notorious of which is the brittle nature of ceramics. As is shown in Figure 1, brittle ceramics will
generally have a much steeper stress-strain curve than metals and polymers, and they will see
little plastic deformation before catastrophic failure. Brittle failure with little plastic deformation
means that ceramics generally have very low fracture toughness, and can fail easily due to small
cracks and defects present. This is considered one of the greatest weaknesses of ceramic

materials, and recent advancements are seeking to improve upon this weakness.

Ceramics

Metals

Stress

Polymers

A 4

Strain

Figure 1: Typical stress-strain behavior of three main classes of materials.

Other characteristics of many ceramic materials include high strength and stiffness, and due
to the nature of their processing, they can withstand relatively high temperatures compared to
other classes of materials [2], [3], [7], [38]. They typically have fewer free electrons than metals,
making them good electrical and thermal insulators, and their strong chemical bonds lead to high
melting temperatures and increased chemical stability and corrosion resistance [2], [3], [38]-
[40].

Ceramics are generally split into two main categories: traditional (or conventional) ceramics
and engineering (or advanced) ceramics. Traditional ceramics are typically made from clay,
silica, or feldspar, and include many of the earliest known examples of ceramic materials,
including clay pottery, whitewares, cements, refractories, and glasses [40]—-[43]. Table 1 below

summarizes the types and most common examples of traditional ceramics.
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Table 1: Types and examples of traditional ceramics [43]
Traditional Ceramics

Type Examples
Structural clay products Bricks

Tiles

Pipes
Whitewares Stoneware

China

Porcelain
Cements Concrete

Mortar
Refractories Silica

Aluminum Silicate

Magnesite
Glass Soda-lime Glass

Traditional ceramics can be thought of as everyday materials, and many are common in an
average household. In contrast to engineering ceramics, traditional ceramics are not meant to
perform in harsh environments under significant mechanical loads. [2], [3], [37].

Engineering ceramics are manufactured (or engineered) for advanced technological applications,
such as electronics, aerospace, and energy, among other industries, typically requiring much
more stringent quality control with regards to microstructure, porosity, reproducibility, and
fabricated dimensional tolerance [3], [37], [41]-[43]. Typically, engineering ceramics are
manufactured by a more sophisticated chemical process, which can result in a much higher
purity (>99%) and more desirable properties [37], [41]. Further, their properties can be tailored
to suit a specific need and to highlight certain desired material properties, such as improved
structural properties, corrosion or oxidation resistance, thermal, electrical, optical, or even
magnetic properties [44].

Despite their wide-spread use today, engineering ceramics are a relatively recent technology,
going back to the early 20" century, which is primarily due to their difficult and complex
processing requirements [41]-[43]. Engineering ceramics can be further subdivided into

categories based on the many applications to which they could be tailored, such as structural
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ceramics, electrical ceramics, thermal, magnetic, optical, ceramic coatings, and chemical
processing/environmental ceramics [44]-[46].

Important examples of engineering ceramics are oxides, nitrides, and carbides, based on
silicon, aluminum, titanium, and zirconium, among others [37]. Notable and advantageous
properties of engineering ceramics include exceptional strength and stiffness combined with low
density, making them a very attractive choice for aerospace applications [2], [3], [37], [47].
Table 2 summarizes the densities and some mechanical properties of several engineering
ceramics compared with stainless steel.

Table 2: Flexural strength, elastic modulus and density of engineering materials [2], [37], [47].

Density Flexural Strength Modulus of Elasticity
Material (g/cm?) (MPa) (GPA)
Zirconia (ZrO2) 6.6 800-1500 205
Alumina (Al203) 3.96 275-700 393
Silicon Carbide (SiC)* 3.1 100-820 345
Silicon Nitride (SizN4) 3.17 250-1000 304
Mullite (3A1203-2Si02) 3.12 185 145
Magnesium Oxide (MgO)**  3.58 105 225
Stainless Steel 7.8 300-1400 210

*Sintered SiC
**Sintered MgO with 5% porosity

Engineering ceramics also possess advantageous thermal properties. These include high
melting points compared to metals, low thermal expansion coefficients, and low thermal
conductivity [3], [4], [7], [37], [38]. A distinct class of ceramics, known as ultra-high
temperature ceramics (UHTCs), have melting points above 3000°C, and can be used in the
harshest environments required for aerospace applications [1]. These thermal properties lead to
improved mechanical performance at higher temperatures for longer periods of time. Figure 2,
reproduced with permission from Chawla’s book on ceramic matrix composites (CMCs), shows
how the service temperature of typical engineering ceramics compares to that of metals and

polymers.
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Figure 2: Summary of service temperature limits of commonly used ceramics, metals, and
polymers from Chawla [37]. Reproduced with permission from Springer Nature.
While engineering ceramics possess more durability and wear resistance than traditional
ceramics, the fracture toughness and propensity to catastrophically fail due to the presence of
small flaws remain a great disadvantage [29], [38], [48]—[53]. In order to combat this problem of
brittle failure, monolithic ceramics can be reinforced with a secondary phase, creating a
composite material. In cases where the material must withstand high temperatures and maintain
some amount of toughness and durability, a ceramic matrix is typically reinforced with either
ceramic fibers or particulates, forming a ceramic matrix composite (CMC) [29], [37], [49]. This
special class of ceramic materials is of particular importance to the aerospace industry and

successfully allows for high temperature performance while enabling a more graceful and

predictable failure.
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This vast group of engineering ceramic materials can also be split into two main categories
based on chemical composition: Oxides and Non-Oxides. This separation along with classic

examples is visualized by Heimann in Classic and Advanced Ceramics, shown in Figure 3.

Technical ceramics

I ]

Oxide ceramics Advanced non-oxide
] ceramics

[ | — Silicon carbide
Boron carbide
Classic oxide Advanced oxide ——Silicon nitride
ceramics ceramics — Aluminum nitride|
—Boron nitride

! Glasses Alumina S risd
! h Titanium nitride
[ Stoneware Zirconia | Graphite
Porcelain Titania — Diamond
Concrete Perovskites
Ferrites

Figure 3: Flow chart of oxide and non-oxide ceramics from Heimann [45]. Reproduced
with permission from John Wiley and Sons.

Non-Oxide ceramics are formed by the reaction of a metal with various Oxygen-free
elements, which include carbides, nitrides, sulfides and borides, among others [46]. They exhibit
some of the highest strength properties and can operate at the highest temperatures. However,
they can only achieve such high-performance properties if their use is limited to inert
environments due to their tendency to quickly oxidize at high temperatures. Once oxidation
begins, the material can quickly degrade, and the mechanical properties will suffer [49]. This
phenomenon has resulted in the increased study and use of oxide ceramics, which are chemically
stable, will not oxidize at high temperatures, and are capable of achieving maximum
performance in Oxygen-rich environments. Oxide ceramics provide a valuable solution to a

difficult problem and enable the use of ceramics in more complex applications.
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2.1.2. Introduction to Oxide Ceramics
An Overview

Oxides in the most generic sense can be defined as materials made up of chemical
compounds with one or more Oxygen atoms combined with another element [54]. These are, of
course, present in everyday life as solids, liquids, and gasses in their room-temperature state.
Oxides can be formed by the reaction of Oxygen with another substance, sometimes requiring
high temperature, and they can also be formed by the thermal decomposition of various
chemicals, which already contain Oxygen, resulting in an oxide plus some by products [54]-[56].
One mechanism of forming an oxide, termed oxidation, is often thought of as an undesirable
phenomenon, and is categorized as a form of corrosion, often called “dry corrosion” [2], [57].
This will occur when a material, such as a metal, comes into contact with an environment or
substance containing Oxygen, resulting in a reaction, which changes the chemical structure of
the material [58].

In order for oxidation to occur on the surface of a metal, there must be an adequate supply of
Oxygen in contact with the metal, and there must be enough available energy to create mobility
of the Oxygen atoms [59]. Atomic bonds are then broken, and a chemical reaction can occur.
Oxygen ions must diffuse into the metal, while metal ions diffuse away via various possible
transport mechanisms [57]-[59]. This process can create a layer of metal oxide on the surface of

the metal as is shown in Figure 4.
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Figure 4: Formation of an oxide scale from contact between O; gas and the surface of a
metal from Callister [2]. Reproduced with permission from John Wiley and Sons.

For most metal applications, especially structural applications, oxidation often has
deleterious effects on the desired performance of the underlying material [57]. Depending on the
oxidation environment, the oxide scale can be porous and weak, and in some cases a secondary
reaction can cause the scale to volatilize entirely, resulting in an overall loss of mass. This type
of oxidation can reduce structural properties, and change electrical and thermal properties as
well, ultimately causing the material to be less effective in its intended application [2].
Alternatively, oxidation may form a dense, protective oxide layer, which inhibits deeper
oxidation, and protects the underlying material from the harsh environment in which it operates
[57]-[61]. This type of oxidation can have a desirable outcome, and it is sometimes integrated
into the engineering design of a structural component.

These oxidation processes can occur in ceramic materials as well. A fundamental
characteristic of ceramics is increased corrosion resistance over metals; however, one form of
corrosion, which ceramics are still susceptible to is oxidation, especially at high temperatures.
Many commonly used non-oxide ceramics, such as carbides, nitrides, and borides, among others,
have been shown to quickly oxidize in an Oxygen-rich environment [9]-[13]. Additionally,
Carbon materials, which can be grouped into ceramic materials, such as structural Carbon fibers,

20



are susceptible to oxidation and associated degradation of properties at high temperatures [62],
[63].

In contrast to non-oxide ceramic materials, oxide ceramics are chemically stable in Oxygen-
rich environments, as their chemical structures already include Oxygen. Oxide ceramics are
oxides of various elements, which are chemically stable solids at room temperature, and possess
properties typical of ceramic materials [64]. They represent the largest category of ceramics
produced today, and include many different types used for many applications [65]. Oxides of
certain elements are of little interest as ceramics because of their inherent chemical instability,
such as CaO, SrO, and BaO [64]. Silicate ceramics are based on silica (Silicon dioxide: SiO2),
and include many of the more traditional ceramics, not typically used in load bearing
applications. More advanced oxide ceramics include oxides of metals, such as Aluminum,
Titanium, and Zirconium, among others [65]. Recent advancements in the field of oxide
ceramics have seen excellent thermal and mechanical property improvements, allowing the

widespread use of oxide ceramics in the aerospace industry.

Why Oxide Ceramics?

High performing, non-oxide ceramic materials have demonstrated low density [2],
exceptional strength and stiffness at high temperatures [4], low coefficients of thermal expansion
[37], and improved resistance to corrosion and wear over most metals [38]. These attributes have
given them widespread use in aerospace applications, where they are required to operate at high
temperatures in chemically reactive environments.

A significant problem with these materials is that they exhibit poor oxidation resistance at

high temperatures in oxidizing environments [10], [11], [29], [62], [66]. Once oxidation occurs,
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material performance can become unreliable. In certain environments mechanical properties can
quickly degrade, causing the material to fail under its normal operational load. This inherent
weakness of non-oxide ceramic materials has led to the widespread investigation of their
oxidation rates and mechanisms, and the increased use of more oxidation resistant materials.
A commonly used high-performance non-oxide ceramic material, such as Silicon carbide (SiC),
will oxidize when used in a dry Oxygen-rich environment (such as air) by one of the following
possible chemical reactions [18], [67], [68]:

SiC(s) + (3/2)02(g) = SiO2(s) + CO(g) [67] (Equ. 1)

SiC(s) + O2(g) = SiO(g) + CO(g) [67] (Equ. 2)

Equations 1 and 2 represent passive and active oxidation, respectively. The former represents
a non-aggressive type of oxidation, where solid Silicon dioxide (SiO2) forms a thin, dense film
on the surface of the substrate. Once in place, this thin oxide scale can act as a protective barrier,
slowing further oxidation, as ionic diffusion will occur at a slower rate through the outer oxide
layer [10]. Passive oxidation on the surface of a material, such as a non-oxide ceramic, can be
beneficial in preventing deeper oxidation and maintaining mechanical properties [2], [57].
Furthermore, in certain conditions the outer oxide scale can flow, sealing any pores or micro-
cracks on the surface of the brittle ceramic. This oxidation mechanism can then toughen and
even strengthen the material [9], [60].

In contrast, active oxidation is a much more aggressive form of corrosion, represented by
Equation 2. The resultant SiO is vaporized and will not form an outer oxide scale, resulting in an
overall loss of mass [9], [10]. This process ultimately results in recession and the formation of
pitting on the surface of the material. This form of oxidation can be very harmful to the original

ceramic material, drastically decreasing the mechanical properties. The environmental conditions

22



determine which type of oxidation will occur, based primarily on temperature, pressure, and the
Oxygen content in contact with the material. Figure 5 shows these two types of oxidation

reactions occurring on the surface of Silicon carbide.

CO(g) .
O4(a) 0,(a) SiO(g). CO(g)

4 \

Figure 5: A diagram illustrating two possible oxidation reactions on Silicon Carbide (SiC)
from Jacobson and Myers [67]. Reproduced with permission from Springer Nature.
Ceramic materials are also used as structural components in combustion environments due to
their increased resistance to corrosion and their ability to operate at high temperatures. Ceramics
in these environments will see elevated temperatures and pressures and will also be exposed to
water vapor during use, as it is a typical by-product of burning hydrocarbon fuels for combustion
[8], [14]-[17]. Several studies have shown that the presence of water vapor at high temperatures
will drastically increase the rate of oxidation, as water molecules are more soluble in SiO2 than
in Oz gas [8], [14]-[20]. For the case of SiC, in addition to the previously discussed chemical
reactions, oxidation in water vapor will typically occur according to the following oxidation
reaction:
SiC(s) + 3H20(g) = SiO2(s) + 3Hz2(g) + CO(g) 8], [19] (Equ. 3)

In the presence of water vapor it is more likely that the oxidation mechanism will transition
from passive to active, causing any protective oxide coating to simultaneously volatilize, forming
a gaseous species [14], [66], [69]-[71]. This mass loss from the removal of the oxide scale will
leave the material more vulnerable to further oxidation and will lead to increased surface

recessions and more rapid degradation of mechanical properties [8], [15], [17], [70], [72], [73].
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Figure 6 shows the potential differences between oxide scales formed in air and in water vapor,
reproduced with permission from More et al. [15]. The former is dense and thin, effectively
slowing further oxidation. The latter is thick due to the increased oxidation rate, but has partially

volatilized, leaving a porous, unprotective scale.

-
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Figure 6: Comparison of dense protective oxide scale after exposure in air (a) and a porous,
volatilizing oxide scale after exposure to water vapor (b), from More et al. [15].
Reproduced with permission from John Wiley and Sons.

Oxidation represents an inherent vulnerability of many commonly used ceramic materials,
and must be considered when making material selections for extreme operating conditions. Due
to this limiting factor of non-oxide ceramics operating in oxidizing environments, specifically
combustion environments containing water vapor, there has been an increased interest in the
performance of oxide ceramics in recent years. These materials inherently resist oxidation, are
thermochemically stable, and are capable of demonstrating excellent mechanical properties at
high temperatures. These properties have made oxide ceramics a highly researched topic within

the aerospace industry and the state-of-the-art in reliable, oxidation-resistant materials.

2.1.3. Common Oxide Ceramics and Their Properties
There are many different types of oxide ceramic materials, both with simple and more
complex chemical structures, and both naturally occurring and those produced by complicated
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processing methods. Each has unique properties enabling them to be used in various
applications; however, one common attribute among oxide ceramics is their high melting points
and associated chemical stability at high temperatures. Table 3 lists the melting points and
densities of several common oxide ceramics.

Table 3: Approximate melting temperatures and densities of important oxide ceramics [74].

Oxide Ceramic Melting Temperature [°C] Density [g/cm’]
AL O3 2050 2.6-4.0
710, 2700 5.6-6.1
MgO 2850 3.6
TiO, 1840 3.8-43

) 2.2 (Silica Glass
510, 1720 2.65( (B-quartz) )
Y205 2450 4.5
HfO, 2900 9.7-10
ThO; 3200 10.0

The most common and arguably the most important simple ceramic oxide is alumina
(Aluminum oxide: Al203). Although pure alumina, known as corundum, is rarely found on its
own in nature, Aluminum is one of the most common elements on earth, and alumina is found as
a chemical constituent in rock throughout the earth’s crust. This abundance and low cost has led
to extensive production and research into the properties and uses of alumina [64], [75]. Naturally
occurring single crystal alumina is a rare mineral, commonly used as a gemstone. White and blue
sapphire as well as red ruby are examples of single crystal alumina with various impurities
present, which account for the various colors. Single-crystal alumina can also be synthesized and
used in specialized applications, requiring improved strength and stiffness over polycrystalline
alumina [76]. Polycrystalline alumina can be refined and synthesized from abundant raw
materials with ease and relatively low cost, which is uncommon for most refractory, ceramic
materials used in advanced applications. Polycrystalline alumina can be synthesized by a variety

of different methods, although the most common is sintering at high temperatures. This method

25



of processing can result in high purity alumina (>99.99% Al203) with high hardness, excellent
mechanical and thermal properties, and superior wear and corrosion resistance [75]-[77].
Properties of polycrystalline alumina are summarized in Table 4 for various purity levels.

Table 4: Typically observed property values for various alumina ceramic materials [74], [75].

Property AL O3 (>99.7%) AL O3 (99%) ALO;3 (80% — 95%)
Density [g/cm’] 3.96 -3.99 3.8-3.9 2.6-3.8
Vickers Hardness [GPa] 20 15-16 1015
Fracture Toughness [MPa-m'?] 4-5 6 3-4
Young’s Modulus [GPa] 400 380-400 200-300
Poisson’s Ratio 0.23 0.23 0.23
Compressive Strength [MPa] 3000-4000 2500 2000
Bend Strength at 20°C [MPa] 400-600 350 200-300
Bend Strength at 1200°C [MPa] 100-150 - 50-100
Thermal Expansion [10° K™'] 8.5 8.0 7.0
Thermal Conductivity [W/m- K] 33 25-30 15-25

Due to its exceptional thermal and chemical stability, alumina is a common refractory
material in furnace components and insulation [75]. It is commonly used for medical and dental
implants due to its high strength and hardness [76]. Additionally, alumina is used in high-
temperature electronic devices as an electrical insulator [77]. As with all monolithic ceramics,
alumina lacks the necessary fracture toughness to be used as a structural material for many
aerospace applications. Therefore, alumina fibers have been developed as a reinforcement for
ceramic matrix composite materials since the 1970’s. Two important commercially available
ceramic oxide fibers are the Nextel 610 and the Nextel 720 fibers, developed by 3M in the
1990’s [29]. The Nextel 610 oxide ceramic fibers are made up of 99% polycrystalline a-alumina.
They have a single filament strength of nearly 3000 MPa at room temperature, and can
continuously operate up to 1000°C before losing significant ultimate strength [24].

The Nextel 720 oxide ceramic fibers are composed of a-alumina and mullite, which is a
crystalline aluminosilicate with a chemical structure of 3A1203 - 2Si02. Mullite has excellent

thermal and chemical stability, high creep resistance, and is not easily susceptible to thermal
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shock [75]. With the addition of the mullite phase, both the high temperature strength retention

and the creep resistance are increased over other oxide ceramic fibers [24]. These two structural
alumina fibers have been very significant in creating effective oxidation resistant oxide ceramic
matrix composites for many high temperature structural applications.

Another valuable and common oxide ceramic material is zirconia (Zirconium oxide: ZrOz).
Zirconia has a very high melting point, is chemically unreactive, and can be synthesized to
exhibit excellent mechanical properties, including improved fracture toughness over other
monolithic ceramic oxides [75]. It also possesses very low thermal conductivity in its cubic
phase. Zirconia changes from a monoclinic to a tetragonal and then to a cubic crystal structure at
high temperatures. Upon cooling, residual stresses can cause the material to break apart.
Therefore, in order to take advantage of the desirable properties of cubic zirconia, it must be
stabilized by the addition of other oxides, such as Magnesium, Yttrium, or Calcium oxide [74],
[78], among others. Resultant properties include improved wear resistance and fracture
toughness, improved mechanical properties at higher temperatures, and decreased thermal
conductivity [64]. The low thermal conductivity of stabilized cubic zirconia allows it to be used
as an effective thermal barrier coating in the aerospace industry [79].

Magnesia (Magnesium oxide: MgO) is commonly used as a refractory material due to its
stability at high temperatures and its very high melting point (2850°C) [64]. Fine-grained, high-
purity MgO can also exhibit excellent mechanical properties at high temperatures. MgO is
known to have high thermal conductivity and low electrical conductivity [80].

Additional oxide ceramics include those used primarily in functional applications, such as
Titania (Titanium dioxide: TiOz2), Zinc oxide (ZnO), and Yttria (Yttrium oxide, Y203). TiOz is

widely used as a dye or pigment due to its high refractive index and as the active ingredient in
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sunscreen due to its ability to absorb ultra-violet (UV) light [81]. It is also used in more
specialized applications, such as high frequency capacitors and photocatalytic devices [74]. ZnO
is a white powder used in similar industrial applications as TiO2 due to its high refractive index
and UV absorbing qualities. It is also used as a main ingredient in skincare ointments [75]. ZnO
is used in combination with other ceramic compounds to improve aesthetic appearance, such as a
ceramic glaze for decorative items. Its electrical properties, including a wide band gap and high
electron mobility, allow its use in semiconductor applications [82].

Y203 has many applications as well. It is used as a stabilizer for cubic zirconium, resulting in
a very hard and durable ceramic material used primarily in dentistry. It is also used as an optical
material for solid-state lasers and infra-red (IR) sensors. Its high melting temperature and
thermochemical stability enables its use as an oxidation resistant coating in reactive
environments [75]. Yttrium is also used to produce Yttrium Aluminum Garnet (Y3Als012: YAG),
which is another transparent ceramic used in solid-state laser applications, and its excellent high
temperature resistant structural properties are currently being investigated for potential use in the
aerospace industry. YAG will be discussed in more detail in the Garnet Ceramics section of this

literature review.
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2.2. Garnet Ceramics

2.2.1. The Garnet Structure

Another sub-group of materials, which falls under oxide ceramics and is of great interest to
the present study, is the garnet ceramic group. This is a diverse set of materials with several
different forms found in nature, and even more synthetic types fabricated in laboratory
environments. They are all linked by their unique chemical structure, but represent a diverse set
of attributes and properties. Most notably, garnet ceramics provide some of the highest structural
performance and chemical stability at high temperatures [83], [84]. This has increased overall
interest of garnet ceramics within the aerospace industry, and has made them prime candidates
for advanced material research and development.

Naturally occurring garnets are a unique group of minerals, which are commonly found
throughout the earth’s crust, and represent the foundation of this class of ceramics. Garnets are
typically classified as a sub-group of oxide ceramics, and all naturally occurring garnets are also
silicates, with Silicon and Oxygen being primary constituents within their chemical makeup.
They are hard crystalline solids, which exist in many forms, but are all similar in terms of
physical properties, crystal structure, and chemical composition [85]-[87]. Historically, naturally
occurring garnets have been used as gemstones dating back 5000 years to the ancient Egyptians.
They were also commonly used as gemstones and jewelry throughout the Roman Empire. High
quality garnet specimens are still used as valuable gemstones today [87], [88]. They have also
found popularity as a key component in abrasives for industrial applications, such as sand
blasting, water jet additives, and sand paper [86], [87].

Garnets are best defined by their chemical composition. Naturally occurring garnets all

possess the general formula: 43B2(Si104)3, with several possible elements filling in the locations
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of the 4 and B placeholders [86]. They all contain Oxygen, and, therefore, possess the attributes
and general chemical stability of other oxides. They are silicate ceramics, with the [SiO4]*
tetrahedron making up the backbone of the structure, as has been discussed in the previous
section [85]. The first position (4 in the general formula above) is typically filled by divalent
cations, Ca, Mg, Fe, or Mn. Trivalent cations occupy the B position, such as Al, Fe, or Cr [85],
[86]. Among the different types of naturally occurring garnets, varieties with Aluminum in the B
position within the chemical structure include Almandine (Fe3Alz(Si04)3), Pyrope
(Mg3Al2(Si04)3), and Spessartine (Mn3Al2(SiOa4)3). These are all considered aluminosilicates, are
typically dark red in color, and comprise the majority of the natural garnet gemstones. Another
common subgroup of garnets has Calcium in the 4 position within the chemical structure and
include Andradite (CasFe2(Si04)3), Grossular (CazAl2(Si04)3), and Uvarovite (CazCrz(SiO4)3).
This group is less common than the Aluminum garnets, and represents most of the green garnet
gemstones, commonly used as substitutes for the emerald. These naturally occurring garnets
have density values between 3.5 g/cm® and 4.3 g/cm® [85]-[87].

The garnet crystal structure is body-centered cubic, as first determined by Menzer in 1928
[89]. It belongs to the space group Ia3d with varied point symmetry depending on the specific
elements present. All garnets possess three axes of symmetry, with 96 Oxygen atoms per unit
cell, each bonded to one tetrahedron, one octahedron, and two dodecahedron sites. This crystal
structure is visualized in Figure 7, which is reproduced with permission from Smyth and

Mccormick [85].
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Figure 7: Visualization of the crystal structure of the garnet group from Smyth and
Mccormick [85]. Reproduced with permission from American Geophysical Union.

The crystal structure of garnets suggests that this group of ceramics could possess superior
structural properties. The highly symmetric cubic structure with a large unit cell and no close
packed planes suggests that dislocations must overcome significant crystal lattice friction in
order to create plastic deformation [83], [84]. This limited dislocation glide mobility should
result in improved mechanical strength and stiffness.

The chemical stability and potentially advantageous structural properties of the garnet group
are being exploited through the fabrication of synthetic garnets. Even more elements are being
experimented with as valuable constituents within the garnet chemical structure. While the
naturally occurring garnets are silicates, synthetic garnets are being created with alternative
elements occupying the third position within the chemical structure. Synthetic garnets can be
described as conforming to the chemical composition: 43B2(COa)3, with various elements
occupying the C site besides Si, including Ge, Ga, Al, V, and Fe [86]. In general there is a wider
range of potential elements filling in all three sites within the chemical structure, including rare-
earth transition metals with high melting points, yielding desirable high-temperature resistant

properties.
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Basic physical properties of synthetic garnets are often similar to naturally occurring garnets,
including the cubic crystal structure and overall hardness; however, other properties differ and
can be tailored to specific needs. Specifically, the high temperature properties of high performing
synthetic garnet ceramics tend to be significantly improved, as metals with high melting points
are becoming a primary chemical constituent. Some notable synthetic garnets with high
temperature properties include Yttrium Iron Garnet (YIG: Y3FesO12), which sees minimal plastic
deformation below 1200°C, Gadolinium-Gallium Garnet (GGG: Gd3Ga5012), which sees
minimal plastic deformation below 1450°C, and Yttrium Aluminum Garnet (YAG: Y3Al5012),
which sees minimal plastic deformation below 1600°C [65]. Another synthetic garnet with
interesting high temperature potential is Lutetium Aluminum Garnet (LuAG: Lu3AlsO12),
although there are currently no studies describing its structural deformation behavior.

There are exhaustive lists of combinations of elements used in the fabrication of synthetic
garnets found throughout the literature with various physical and structural properties. However,
this investigation will focus on two specific synthetic garnet ceramics, which are known or
projected to have excellent mechanical and thermal properties beyond their counterparts, and are

of particular interest within the aerospace industry: YAG and LuAG.

2.2.2. Yttrium Aluminum Garnet (YAG)

Yttrium Aluminum garnet is a well-known and heavily researched synthetic garnet and oxide
ceramic material with several unique properties. As with other oxides, it is stable in oxidizing
environments, and it has a high melting temperature of approximately 1950°C, making it
desirable for high temperature applications [83]. YAG can be fabricated as a single crystal or a

polycrystalline material. YAG single crystals are grown by a typical crystal growth method, such
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as the Czochralski method [90], [91] or the float zone method [92]. Polycrystalline YAG can be
fabricated by a variety of methods, but most commonly high temperature sintering, hot pressing
of YAG powders [28], [93], [94], or from sintering a combination of Yttrium and Alumina
powders [95], [96]. The crystal structure of YAG follows the general cubic nature of the garnet
group with three different Oxygen-centered polyhedra. The dodecahedral sites are occupied by
Y?** ions, while the octahedral and tetrahedral sites are occupied by AI** ions. The structure is

defined by the various radii of the ionic bonds [90]. The unit cell contains eight molecular units,

and is visualized in Figure 8, reproduced with permission from Kostic et al. [90].

Figure 8: The visual representation of the unit cell of YAG. Green spheres represent Y
atoms, white spheres represent Al atoms, and red spheres represent O atoms from Kostic et
al. [90]. Reproduced with permission from Elsevier.

YAG can be carefully fabricated to maximize density and minimize porosity, resulting in a
highly transparent ceramic with desirable optical properties. YAG specifically has been shown to

possess homogenous and isotropic optical properties [97]. These attributes along with its
chemical and thermal stability make it one of the most common oxide crystals used as the active
medium in solid-state lasers. With proper doping of various elements, such as Neodymium,

Erbium, or Cerium, the optical properties of YAG allow its use as a host material for lasers, as a
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semiconductor light source, and in cathode ray tubes [90], [97], [98]. Optical properties of YAG

include high transmittance for wavelengths between 400 nm to 1100 nm, based on various

doping schemes. It has a high thermal conductivity and a high fluorescent lifetime. It has also

been shown to have a refractive index of approximately 1.82 for the wavelength range from 800

nm to 1500 nm [99].

In addition to these optical uses, there are potential applications of YAG that take advantage

of its mechanical and thermal properties as well. Previous studies of YAG have demonstrated

that its mechanical properties and stability at high temperatures make it a perfect candidate for

ceramic structural components and reinforcements in ceramic matrix composites within

advanced aerospace applications [83], [100]. Early research on YAG and similar synthetic

garnets has suggested that garnet materials will show minimal deformation at temperatures very

near their melting points [84], [100]. This concept has driven research on YAG forward, and it

continues today. General properties of YAG are shown in Table 5, acquired from a variety of

sources.

Table 5: Important physical and structural properties of YAG [83], [94], [101], [102].

Chemical Formula

Hardness

Melting Point

Density

Thermal Conductivity*

Coefficient of Thermal Expansion*
Refractive Index*

Dielectric Constant

Flexural Strength

Young’s Modulus (single crystal)
Young’s Modulus (polycrystalline)**
Poisson’s Ratio (single crystal)
Poisson’s Ratio (polycrystalline)**
Fracture Toughness (single crystal)
Fracture Toughness (polycrystalline)**

Y3Al:012

8.0-8.5

1950°C

4.55 g/cm’

0.14 W/ecm®*-K

6.9 x10° —8.7x10° °C!
1.823

& =117 &, = 3.65
600 — 700 MPa (up to 1200°C)
279.9 GPa

283.6 GPa

0.230

0.226

1.48 — 2.2 MPa-m'?
1.5-1.61 MPa-m'?

*Measurements taken from Neodymium doped YAG specimens (concentration: 0.725% Nd**)
**Polycrystalline YAG with grain size between 1.0 — 1.5 um
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Polycrystalline and single-crystal YAG have been shown to possess excellent mechanical
properties even at high temperatures. Hoshiteru et al. conducted flexural tests on polycrystalline
YAG, and determined that the flexural strength of 600-700 MPa was maintained to
approximately 1200°C [94]. Keller et al. demonstrated that the strength of YAG can be
maintained up to 1400°C [93]. The high flexural strengths (approximately 2 GPa) of alumina-
YAG eutectic rods were shown to retain most of their strength up to 1650°C by Pastor et al. in
2005 [92]. The fracture toughness of single-crystal YAG was studied by Mah and Parthasarathy
in 1997 [103], which revealed that the fracture toughness measurements significantly increased
from room temperature up to 1600°C from 2.2 MPa-m'? to 4.5 MPa-m'? in air and to 5.5
MPa-m'? in a vacuum.

Among the measured properties of YAG, the most notable and heavily researched
characteristic is its creep resistance. Creep experiments have been carried out on various YAG
specimens over the past 30 years, both single-crystal and polycrystalline, and they have revealed
that YAG is among the most creep resistant oxide materials currently studied [25], [104]-[107].
This resistance to plastic deformation at temperatures close to its melting point make YAG a
strong candidate for structural components in aerospace vehicles. A more detailed history of
creep testing on single-crystal and polycrystalline YAG is given in the next section of this

literature review, when discussing creep of oxide ceramics.

2.2.3. Lutetium Aluminum Garnet (LuAG)
Another interesting synthetic oxide ceramic of the garnet structure, also containing a rare-
earth metal constituent, is Lutetium Aluminum Garnet (LuAG: LuszAlsO12). LuAG has a much

shorter and more recent history than YAG, and much of its capabilities and usefulness in
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potential applications still remains to be researched. In many ways LuAG is similar to YAG,
including its crystal structure and its comparable thermal properties [108], but there are some key
differences, which generate serious intrigue and potential value associated with current and
future research and development efforts.

LuAG is harder, denser, and potentially more chemically stable than YAG. Additionally, it
has a higher melting point, which has generated increased interest in LuAG for various high
temperature applications [109]. The melting point of LuAG is typically measured between
1980°C and 2050°C, which is about 100° above that of YAG. Also, its density has been
measured at approximately 6.71 g/cm?, which is significantly higher than YAG at 4.53 g/cm®
[108], [109]. Several properties of LuUAG have been tabulated in Table 6 and presented alongside
the properties of YAG. These physical, thermal, and optical properties were measured for single-
crystal specimens of LuAG and YAG, published by Kuwano et al. in 2004 [108].

Table 6: Physical, thermal, and optical properties of LuAG and YAG [108].

Property* LuAG YAG
Melting Point (°C) 2010 1930
Density (g/cm?) 6.71 4.53

Lattice Parameter (A) 11.9164 12.0075
Refractive Index** 1.811 - 1.869 1.801 - 1.859
Thermal Conductivity (W/m-K) 9.6 12.9

Heat Capacity (J/g-K) 0.411 0.603
Thermal Diffusivity (cm?/s) 0.0347 0.0473

Coefficient of Thermal Expansion (K'!)  6.13x 10°

*Measurements taken for single crystals grown using the Czochralski method.
**Refractive indices corresponding to wavelengths between 410 nm and 1970 nm.

The crystal structure of LUAG is similar to YAG and other garnet ceramics. It has a complex
cubic crystal structure, with a unit cell composed of 8 formula units. One unit cell projected onto
the [100] plane is shown in Figure 9. Each unit cell contains 24 Lutetium atoms, represented by

the black spheres in the dodecahedral positions, and 40 Aluminum atoms, represented by the
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yellow and blue spheres filling in the octahedral and tetrahedral positions, respectively. 96

Oxygen atoms are represented by the small red spheres [108]-[111].
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Figure 9: The crystal structure of LuAG represented as one unit cell projected onto the
[100] plane, reproduced with permission from John Wiley and Sons [112].

The atomic mass of Lutetium is much greater than that of Yttrium, which is much closer to
many of the desirable dopant atoms for laser material applications. This attribute combined with
similarities in atomic radii allow the addition of various dopant atoms to the LuAG chemical
structure, such as Yb, Tm, Er, Ho, and Ce without significantly altering necessary properties,
such as the thermal conductivity and the crystal structure parameters [113]. This has made LuAG
more desirable in certain laser material applications over YAG. Its high density, high thermal
conductivity even after doping, and high atomic number make LuAG a desirable scintillating
crystal. Also with proper doping it becomes an excellent and efficient host material for solid state
lasers [111], [113]. LuAG can be grown or fabricated as a colorless, transparent ceramic, but can
also be made luminescent in various colors by excitation and proper doping [114].

LuAG single crystals can be grown by the typical crystal growth methods, most commonly
the Czochralski method [108], [110]. Polycrystalline LuAG specimens of varied grain size have

been fabricated by various high temperature sintering methods, typically requiring high purity
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Lu20s3 and a-Al203 powders. Previous studies have successfully produced transparent
polycrystalline LuAG specimens by means of pressureless sintering techniques [115], [116], and
by means of reactive sintering in a vacuum, followed by hot isostatic pressing [117]-[119].
However, these methods have typically resulted in highly porous samples with large grain sizes,
likely leading to poor mechanical properties. A preferred processing method requiring lower
temperatures and shorter times is spark plasma sintering (SPS). Experiments by An et al. have
shown that finer grains and more optimal physical properties of LuAG specimens can be
obtained through SPS [110]. Additionally, Xu et al. have demonstrated benefits of SPS for
superior luminescent properties of LuAG for high-power laser lighting [120].

All processing methods, which are used to obtain LuAG specimens, have a high degree of
difficulty due to the high temperatures typically required on account of its high melting point.
Additionally, quantities of high purity Lu20O3 powder are limited and can be very expensive.
These limitations have resulted in minimal investigations into the potential applications and
advantages of LuAG. Specifically, little work has been done to investigate the benefits of LuAG
as a structural ceramic for high temperature applications.

The optical properties of LuAG are well known and have been studied by many authors due
to original interest in using transparent LuAG ceramics in solid-state lasers and as a highly
efficient scintillator material. Along with the high melting point of LuAG, it has a highly
desirable refractive index over a variety of wavelengths, reaching 1.869 (see Table 6). Based on
the refractive index, a theoretical maximum optical transmittance has been calculated for LuAG
at approximately 83.33% [119]. This value is rarely attained due to processing limitations and
imperfect specimens; however, transmittance values have been measured by Kuntz et al.

reaching 73% at 550 nm [114] and by An et al. reaching 77.8% at 2000 nm [110]. The highest
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in-line transmittance of Yb-doped LuAG was reported to have reached 83% by Ma et al. after
fabrication by vacuum sintering [112]. These optical properties along with its high density,
atomic number, and thermal stability, make LuAG a valuable scintillator crystal for positron
emission tomography (PET), imaging screens, and additional applications in energy, nuclear, and
medical fields.

In terms of mechanical performance, little is known about LuAG. Several authors have
reported its hardness in order to prove the effectiveness of various processing methods. An et al.
reported Vickers hardness numbers for polycrystalline LuAG ranging from 14.2 GPa to 17.2
GPa [110], although the hardness is typically reported on the MOHS scale from 7.5 to 8.4 [111],
[121]. Fracture toughness has been reported by Auffray et al. to be 1.1 MPa-m” [121] and by An
et al. ranging from 1.2 to 1.6 MPa-m” [110]. Beyond these cases, mechanical properties of
LuAG are rarely found in the literature and are not typically the focus of many scientific
investigations.

As was discussed earlier in this chapter, the structural properties of YAG, specifically its
resistance to creep at high temperatures, have proven to be very impressive, making YAG a very
desirably candidate material for use in aerospace components, required to operate at high
temperatures for long periods of time. Due to the similarities of LuAG and YAG, there is
increased interest in the potential benefits of LuAG for similar applications. This investigation
aims to begin an in-depth analysis into the mechanical properties of LuAG by first determining
the time-dependent deformation of LuAG at high temperatures, and to determine if LuAG could

be superior to the high creep resistance of YAG.
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2.3. Creep of Ceramics

2.3.1. An Overview

The experimentation in this study will focus on the creep of oxide ceramic materials subject
to constant a load and exposed to high temperatures, simulating the harsh operating conditions
seen by aerospace structures. In order to thoroughly review previous creep tests conducted on
oxide ceramics and to understand the results and analyses of the experiments in the present
study, a thorough review of creep and its mechanisms is provided in the following sections.

Creep is usually defined as the continuous inelastic deformation of a material under constant
load [38], [122], [123]. Furthermore, the constant load is usually far below the ultimate strength
of the material, and the deformation and eventual failure is brought on by the effects of high
temperature or some other destructive environmental factors over time [123]. Therefore, the
potential creep properties of a material must be investigated when designing structural
components for aerospace systems, which are typically forced to continually operate in extreme
environmental conditions.

Several authors attribute the first scientific study of creep to Percy Phillips in 1905, who
investigated the slow elongation of certain materials, such as rubber, glass, and metal wires,
subject to a constant load [124]. A more in-depth study into the creep behavior of metals came
shortly after this with the classic work of Andrade in 1910 [125]. Continuous work throughout
the 20™ century has resulted in a vast library of creep data for many material systems, primarily
metals. The first documented creep studies of modern engineering ceramics came in the 1950s
with creep studies of single-crystal and polycrystalline alumina by Wachtman and Maxwell
[126], Stavrolakis and Norton [127], and Kingery and Coble [128]. Cannon and Langdon report

that the slow development of creep studies of ceramic materials is due to the little interest in
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ceramics during these early years of creep investigations. Only in recent years has ceramic

processing improved enough to fabricate reliable materials with significant structural potential

[129].

Creep is a time-dependent material behavior, and thus is analyzed and interpreted much

differently than an instantaneous material property, such as ultimate strength or elastic modulus.

The primary goal or key material property when looking at the creep behavior of a material is the

creep strain rate and the associated total plastic strain. These material performance metrics are

based on a variety of factors, such as the basic material properties, including microstructural

considerations, the applied stress, temperature, and potential oxidation or corrosion, among other

things [130].

A typical creep curve is shown in Figure 10, which depicts the creep strain of a

representative material plotted versus time [30].
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Figure 10: Typical creep curve showing the creep strain plotted vs. time from DeGregoria

[30]. Reproduced with permission from the Air Force Institute of Technology.
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Figure 10 demonstrates the three creep regimes, which are typically observed for many
materials: primary, secondary, and tertiary creep. Primary creep begins with an immediate elastic
strain response to initial loading. Then the strain rate decreases as the material response to
loading transitions from nearly instantaneous elastic strain to inelastic strain. Primary creep is
often a result of grain growth, dislocation motion, or changes in the stress distribution during
initial loading [130]. In secondary creep, also known as steady-state creep, the strain rate is
nearly constant and represents the minimum strain rate observed during the creep process.
Finally, in tertiary creep, the strain rate appears to rapidly increase, often due to the formation of
cracks and voids, ending in ultimate failure, also known as creep rupture [130]. The apparent
increase in strain rate during tertiary creep can often be misleading, as typical creep experiments
observe elongation under constant load, and do not take into account the true stress applied to the
specimen or the potential change in cross-sectional area [125].

The resulting creep curve can vary significantly depending on the material and the test
conditions, and one or two of the creep regimes are sometimes not observed all together. During
tensile creep tests failure can occur rapidly during secondary creep, avoiding tertiary creep
entirely [131]. Similarly, primary creep can exist alone given the right conditions [130], and it
has also been observed to transition directly into tertiary creep skipping the steady-state regime
[123]. Additionally, the primary regime can be observed to be minimal and insignificant, and
steady-state creep is observed almost immediately after beginning the test [132]. Typically, the
focus of experimental analysis of ceramic materials is on the steady-state creep rate, which will
typically appear nearly constant, given enough time, and is predicted by most of the high-

temperature ceramic creep models [38], [132].
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The general equation for steady-state creep, summarized by Cannon and Langdon [129],

which fits most experimental data, is given below:

N0 o

This equation defines the creep strain rate as a function of applied normal stress, o, absolute

temperature, 7, and grain size, d. Additionally, D is the diffusion coefficient, defined further in
Equation 5, G is the shear modulus, b is the magnitude of the Burger’s vector, & is Boltzmann’s
constant, 4 is a dimensionless constant, which takes into account various constants related to the
active creep mechanism, m is the exponent associated with the inverse grain size, and 7 is the
stress exponent. The specific creep mechanisms can typically be identified by determining the
constant, 4, the exponents, m and n, and by the true activation energy, Q. Although the
experimental values of the constant, 4, depend on the exponents and the activation energy, and
therefore, A is not as important when determining the active creep mechanisms causing
deformation [129].

The standard definition of the diffusion coefficient is given by:

D= Doe_% (Equ. 5)
where D, is a frequency factor, Q is the activation energy associated with diffusion, and R is the
gas constant [2], [129]. The diffusion coefficient quantifies the diffusivity of the relevant species
through the crystal lattice or through a grain boundary, depending on the specific creep
mechanism [30].

According to Cannon and Langdon [129] and Hynes and Doremus [132], the activation
energy, O, can be determined from the slope of a plot of log € vs. 1/T. To obtain this plot, the
creep rate is experimentally determined from several samples with similar grain size and applied

stress, but at different temperatures. Unfortunately, this result is only an apparent activation
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energy, as the true value must take into account the term, (1/kT), and it also must account for
variation in shear modulus with temperature. However, this method of estimation is still used
when the stress exponent, n, is approximately equal to 1, when the variation in shear modulus is
small [132]. Additionally, the true activation energy can be determined from a plot of log
§G™ 1T vs. 1/T. When n is large, the true activation energy ends up significantly lower than the
apparent activation energy [129].

The shear modulus, G, can be estimated for a given temperature based on the following
equation:

G =Gy, — (AG)T (Equ. 6)
where AG is the variation in shear modulus per degree Kelvin and G represents the estimated
shear modulus corresponding to absolute zero temperature, which must be linearly extrapolated
from known data at high temperatures [133]. Porosity should also be taken into consideration
when determining the actual shear modulus. Although a material is often assumed to be perfectly
dense in order to develop creep models, it is also known that the steady state creep rate will
increase with increasing porosity, and it will have an effect on several parameters in Equation 4

[134]. Specifically, the shear modulus can be adjusted by the following equation:

_ 1+(BP)
G = G [—1_(ﬁ+1)P (Equ. 7)

where G, is the previously described shear modulus value assuming a fully dense body, P is the
porosity volume fraction, and £ is a constant [134], [135]. The applied true stress is also affected
by porosity, and can be estimated by Equation 8, known as the McClelland Approximation

[134], [136].

__ Oapplied
O-eff - 1-p2/3 (Equ 8)
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The final term affected by the presence of porosity is the dimensionless constant, A4, if pores
affect the movement of dislocations or dislocation sliding [134]. However, this relationship is
very complex, and often not worth pursuing. Therefore, 4 is assumed to be independent of
porosity, and only G and o are modified. Considering these changes to the overall creep
equation, a plot has been developed by Langdon [134] to demonstrate the effect of porosity on
creep rate. Figure 11 shows creep rate vs. porosity for n = 1 to 5, up to 10% porosity. The plot

shows the drastic increase in creep rate vs. porosity.
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Figure 11: Dependence of creep rate on porosity for n ~ 1 to 5, up to 10% porosity from
Langdon [134]. Reproduced with permission from John Wiley and Sons.

When modeling steady-state creep, most authors focus on the two exponent terms in
Equation 4, the grain size exponent, m, and the stress exponent, #, in order to fit the model to
experimental data. Values for m and » are, therefore, used to identify creep mechanisms. A brief
summary of possible creep mechanisms is provided here before the more detailed discussion in

the next section. Hynes and Doremus summarize 8 primary creep mechanisms, which are elastic
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strain, diffusion, dislocation motion, grain boundary sliding, viscous flow, solution-precipitation,
twinning, and cracking/cavitation [132]. In creep of high temperature ceramics diffusion,
dislocation motion, and grain boundary sliding are considered the most relevant and are
discussed in detail here. Additionally, a given creep mechanism could act independently or could
act in combination with another. When two or more creep mechanisms occur together, they have
been observed to act either in parallel (simultaneously) or sequentially. These possibilities are
important to identify as they affect which mechanism is the primary rate-controlling process. If
mechanisms occur independently, then the fastest creep rate dominates. Similarly, when two
creep mechanisms occur simultaneously, the two creep rates are added together, and the
mechanism with the fastest creep rate is of primary concern. However, when two mechanisms
occur sequentially, one mechanism can be dependent on the other. Therefore, the mechanism
with the slower creep rate is the rate-controlling process [132].

A summary of the various creep mechanisms associated with different values of the grain
size exponent, m, and the stress exponent, n was published by Cannon and Langdon in 1983
[129] and was reproduced by Chokshi and Langdon in 1991 [137]. Their summary divides the
primary creep mechanisms into two categories: lattice mechanisms and boundary mechanisms.
Lattice mechanisms include intragranular motion of dislocations and requires a value of m = 0
in Equation 4. Boundary mechanisms include motion along grain boundaries, resulting in
displaced grains with respect to one another, which requires a value of m > 1 in Equation 7.
Frost and Ashby [138] produced an illustration of the difference between lattice and boundary

diffusion, shown in Figure 12.
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Figure 12: Illustration of boundary diffusion and lattice diffusion from Frost and Ashby
[138]. Reproduced with permission from Elsevier Books Limited.

Table 7 summarizes the creep mechanisms associated with lattice motion and Table 8
summarizes the creep mechanisms associated with grain boundary motion. Both of these tables
have been populated based on the information presented by Cannon and Langdon [129] and
Chokshi and Langdon [137].

Table 7: Primary mechanisms for ceramic creep associated with lattice motion [137].

Creep Mechanism n m
Dislocation glide and climb controlled by climb 4-5 0
Dislocation glide and climb controlled by glide 3 0
Dislocation climb from Bardeen-Herring sources
Controlled by lattice diffusion 3 0
Controlled by pipe diffusion 5 0
Harper-Dorn creep 1 0
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Table 8: Primary mechanisms for ceramic creep associated with boundary motion [137].

Creep Mechanism n m
Lifshit; sliding
Sliding accommodated by diffusion
Nabarro-Herring creep 1 2
Coble creep 1
Sliding accommodated by flow across grains 1 1
Rachinger sliding
Without glassy phase
Sliding accommodated by formation of boundary cavities 2 1
Sliding accommodated by triple point fold formation 3-5 2
With glassy phase 1 1
1 2
1 3
Interface reaction control
Without glassy phase >1 1
>1 1
2 1
2 2
By solute drag 2 1
With glassy phase 1 1

2.3.2. Creep Mechanisms

In this section the various creep mechanisms listed in Table 7 and Table 8 are described in
detail. Although many creep mechanisms have been identified and studied throughout the past
century, there are three primary mechanisms, which are the most dominant in ceramic materials.

These three mechanisms are diffusion, dislocation motion, and grain boundary sliding.

Diffusion Creep

A primary mechanism of creep in many materials including ceramics is diffusion. Diffusion
can be defined as the mass flow process in which atoms change their positions relative to their
neighbors, usually associated with a temperature or stress gradient [139], or more simply, the

phenomenon of material transport by atomic motion [2]. Diffusion can be thought of as the
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movement of atoms in a material, or conversely, as the movement of vacancies, which remain
when atoms move away. Atoms are able to move throughout a solid material because they are
never really stationary. They will constantly execute rapid, small-amplitude vibrations about an
equilibrium position. These vibrations will increase with increasing temperature, and at a given
temperature atoms may have sufficient amplitude to move from one atomic position to an
adjacent one [139]. Other factors can help initiate diffusion in a solid material as well, such as
the presence of vacancies. The extent to which vacancy diffusion will occur is a function of the
concentration of these defects [2]. Furthermore, the rate at which atoms will diffuse through a
material is quantified by the diffusion coefficient, D, which was defined previously in Equation
5, and it also appears in the steady-state creep equation, shown in Equation 4.

The movement of vacancies has also been linked to the applied stress on a solid material.
Nabarro in 1948 first demonstrated that a material under pure shear stress would cause the
movement of vacancies [140]. In a state of pure shear stress a material can be in tension in one
direction and in compression in the other two orthogonal directions. In this scenario Nabarro
showed that vacancies will flow through the material from the face in tension to the faces in
compression. In other words, atoms will be pushed away by compression causing plastic
deformation in the direction of the compressive stress and will move into space enabled by the

tensile stress, causing elongation [140]. This phenomenon is visualized in Figure 13 [141].
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Figure 13: Stress induced diffusion causing plastic deformation from Na and Lee [141].
Reproduced with permission from the Korean Institute of Metals and Materials.

This phenomenon was investigated further by Herring in 1950. He demonstrated that matter
transport will occur by means of diffusion through the grains in a polycrystalline material [142].
This type of diffusion creep through the grains has been termed Nabarro-Herring (N-H) creep
due to the early work, which demonstrated the concept. N-H creep can be a significant source of
creep in ceramics.

As is shown in Table 8, the stress exponent from Equation 4 for N-H creep is n = 1, which
shows that the strain rate is directly proportional to the applied stress and the inverse of the shear
modulus. The grain size exponent from Equation 4 for N-H creep is m = 2. Therefore, the strain
rate is proportional to the inverse of the square of the grain size, which means that the strain rate
will significantly increase as grain size decreases.

Diffusion creep can also occur by the movement of vacancies along the grain boundaries.
This phenomenon was first introduced by Coble in 1963. He concluded that diffusion along the
grain boundaries is associated with a smaller activation energy when compared to lattice
diffusion [143]. Similar to N-H creep, the stress exponent from Equation 4 for Coble creep is

n = 1. However, the grain size exponent from Equation 4 for Coble creep is m = 3. In this case
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the strain rate will be dependent on the inverse of the grain size cubed; therefore, Coble creep is
the dominant creep mechanism when grain sizes are small [38]. Similarly, at low temperatures
Coble creep is typically the primary creep mechanism due to the lower activation energy
required for intergranular diffusion [144].

Multiple creep mechanisms often occur simultaneously. Diffusion creep mechanisms are no
exception. It is common for N-H and Coble creep to occur in parallel, which means the
associated strain rates would be additive. Also, N-H creep and Coble creep are considered
diffusional creep mechanisms that help enable grain boundary sliding, which is why diffusion
creep mechanisms are categorized as a subset of boundary mechanisms in Table 8. Once
diffusion causes individual grain elongation, sliding at the grain boundaries is a necessary result.
Therefore, these two creep mechanisms will occur together [133], [144], [145].

Additionally, both N-H and Coble creep assume that grain boundaries are prefect sources and
sinks for vacancies and use this classical theory to explain experimental results [137]. However,
small diffusion sources and sinks may be controlled by reactions at the grain boundary
interfaces. Therefore, for small grains and low stresses, the creep rate may actually be smaller
than those predicted by N-H and Coble creep models, as noted by Ashby et al. [138], [146],
[147]. The primary creep mechanism in this case is likely to fall under interface-reaction

controlled creep with a stress exponent of n > 1 and a grain size exponent of m < 3 [137].

Grain Boundary Sliding

Grain boundary sliding (GBS) is a creep mechanism that can occur in polycrystalline
materials when grains move or “slide” in relation to one another. This motion can include

rotation, elongation, or any adjacent movement along a grain boundary [133]. GBS falls into the
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category of boundary creep mechanisms, as the definition implies that creep deformation occurs
along the grain boundaries, and the various types of grain boundary sliding are listed in Table 8.
GBS is often the dominant strain mechanism in many materials, but it typically does not occur
alone. In ceramics GBS is usually accommodated by another simultaneous mechanism, primarily
diffusion, and in this case, the creep mechanism can be referred to as GBS accommodated by
diffusion or diffusion accommodated by GBS [137], [145].

When studying creep, the majority of deformation in a ceramic material is plastic
deformation prior to failure. However, the total strain is a combination of both plastic and elastic
strain [123]. Grain boundary sliding can be a primary mechanism for both types of strain. Hynes
and Doremus point out that elastic strain can occur due to grain boundary sliding, typically at
low stresses and low temperatures. If the applied external stress is perfectly matched by internal
grain boundary stresses that develop then sliding will stop entirely. However, when the boundary
stresses are exceeded by the external applied stresses, then grain boundary sliding will continue
[148].

Various phenomena can cause grain boundary sliding to occur in a material. It can simply
occur when the bonds at the grain boundaries are weaker than those within the crystal lattice
within grains. Also stress concentrations can arise directly at the grain boundaries, which can
initiate motion, causing grain boundary sliding [30]. Grain boundaries can have different
compositions, such as a glassy phase in some materials, which could soften at high temperatures.
If a glassy phase exists, viscous flow could occur at the grain boundaries at high temperatures.
This is common in ceramics when sintering aids are added to assist in the densification process
and inadvertently add a glassy phase at the grain boundaries [29]. The temperature required to

initiate flow of a glassy phase is often lower than temperatures required to initiate other creep
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mechanisms within the grains, such as diffusion. Therefore, grain boundary sliding is commonly
the first mechanism to initiate creep deformation in a material.

When a glassy phase exists at the grain boundaries, the resulting creep rate is controlled by
the viscosity. Grain boundary sliding can occur by flow of a glassy phase in a variety of different
ways. Shear stresses can cause the viscous fluid to be redistributed and to flow from boundaries
in compression to those in tension, similarly to atomic movement during diffusion [149].
Alternatively, high stresses could force grains to dissolve into the liquid at the boundary, move
throughout the material, and precipitate once a region of lower stress is reached. It is also
possible for dislocations to pile up at the glassy boundaries and then be annihilated by a similar
amount of vacancies left behind from the dislocation motion [150]. These several types of grain
boundary sliding accommodated by a glassy phase are shown in Table 8. In each case the strain
rate is directly proportional to the stress with a stress exponent of n = 1. However, the specific
type of grain boundary sliding can see a grain size exponent anywhere from m = 1 to 3.

The main types of grain boundary sliding are Lifshitz sliding and Rachinger sliding. Lifshitz
sliding refers to the elongation of grains along the longitudinal tensile axis and requires
simultaneous vacancy diffusion [151]. Diffusion across grains (N-H creep) or diffusion along the
grain boundaries (Coble creep) can accommodate Lifshitz sliding. In addition to diffusion
Lifshitz sliding may be accommodated by additional mechanisms, such as intragranular flow
across grains due to a glassy boundary phase.

Rachinger sliding occurs when grains maintain their size and shape but move relative to one
another, exchanging neighboring locations. Rachinger sliding can be accommodated with or
without a glassy phase at the grain boundary [152]. Without a glassy phase sliding is

accommodated by the nucleation and growth of cavities at the grain boundary, producing a stress
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exponent of n = 2 [153]. The larger stress exponent means that cavity nucleation and growth
rates are more sensitive to increasing applied stress. Therefore, grain boundary sliding by means
of cavity formation is usually associated with higher applied stresses [154]. Similarly, without a
glassy phase, sliding may occur due to the formation of a triple point fold, increasing the stress
exponent even further from n = 3 to 5 [155]. Rachinger sliding can also occur along with
diffusion or viscous flow at the boundaries due to a glassy phase, producing a stress exponent of
n = 1, and a range of grain size exponents of m = 1 to 3.

Several boundary mechanisms are not included in Table 8 because they are newly
investigated and require more thorough study to create reliable models. These mechanisms
include viscous or diffusive growth of intergranular cavities, the solution-precipitation process at
the glassy boundary (discussed previously), elastic creep due to cavity formation, and crack
growth [129]. Superplasticity is another phenomenon attributed largely to grain boundary
sliding. In general, superplasticity occurs when a crystalline solid material plastically deforms
beyond its typical point of fracture, often well beyond 100% in ceramics [156]-[158].
Superplasticity has been observed in several ceramic materials, such as Zirconia, Silicon nitride,
and Silicon carbide, and is facilitated by very small grain sizes, high temperatures, and very slow
strain rates [156]. In order for superplasticity to occur in ceramics, the applied stress must be low
enough that grain boundary sliding occurs alone, and additional creep mechanisms are not able

to take over, such as dislocation motion or the formation of cavities.

Dislocation Motion

Dislocation motion occurs due to the movement of dislocations, or line defects, in a

crystal lattice, which causes plastic deformation. Dislocations are linear crystallographic defects
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within a crystalline material, which can move, allowing atoms to shift positions, and ultimately
causing plastic deformation to occur [159]. Dislocation motion is considered a lattice mechanism
for creep, and is therefore listed in Table 7. Because dislocation motion does not involve the
grain boundaries, the grain size exponent, m, is zero for all types of dislocation motion. The two
main types of dislocations are edge dislocations and screw dislocations, which are illustrated in

Figure 14.

Edge dislocation Screw dislocation ——

Figure 14: Illustration of edge dislocations (left) and screw dislocations (right), reproduced
with permission from Molla [160].

Edge dislocations move parallel to an applied shear stress. The linear vacancy shown on the
left side of Figure 14 would move left or right, until it reaches the edge of the material. Screw
dislocations move perpendicular to an applied shear stress, as shown by the vertical motion on
the right side of Figure 14. The distance and direction of the movement of individual atoms due
to dislocation motion are quantified by the Burger’s vector, seen in Equation 4. In metals the
presence of dislocations dictate many important material properties, such as yield strength,
ductility, and hardness, among others [159].

The two primary modes of dislocation motion are dislocation glide and climb [133].
Dislocation glide describes the movement of a dislocation within the slip plane, in the direction

of the Burger’s vector. Dislocation climb describes the movement of a dislocation out of its slip
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plane to another adjacent plane. The crystalline order can be restored on either side of a
dislocation; however, the atoms on one side have moved by one lattice position [159]. Plastic
deformation of a material will only occur by the creation and movement of many dislocations,
and it is possible for dislocation glide and climb to occur simultaneously. However, only one
type of dislocation motion is described as the controlling mechanism.

The simultaneous glide and climb of intragranular dislocations, where the rate-controlling
mechanism is c/imb, is typically associated with a stress exponent of n = 5. In the same slip
plane dislocations can pile up, leading to plastic deformation, based on the following strain rate,
proposed by Weertman in 1957 [161] and reviewed and summarized by Cannon and Langdon
[133]:

_ BzQD10'4'5
T G35MO5p3SKT

(Equ. 9)
where M is the concentration of active dislocations sources, B, is a constant, which describes the
piled-up arrays of dislocations, and  is the atomic volume. D; is the lattice diffusivity, which
assumes that the diffusion associated with dislocation climb occurs exclusively through the
crystal lattice [133]. This assumption is true at temperatures higher than half the melting
temperature (>0.57x); however, at low temperatures, this assumption is no longer accurate.
Dislocation glide and climb, where the rate-controlling mechanism is glide, is typically
associated with a stress exponent of n = 3. An example of this behavior is in metallic solid-
solution alloys. Models for the steady-state creep rate for this behavior have been developed;
however, they are not presented here, as most ceramics contain no solute. In some cases it is

more likely that drag is controlled by impurity ion diffusion; however, these models and the

associated diffusion coefficients are not fully understood [133].

56



A second example of steady-state creep associated with a stress exponent of n = 3 is
dislocation motion controlled by climb from Bardeen-Herring Sources. In this case the creep rate
is given by:

. B3T[QD10'3
G2b2kT

(Equ. 10)
where B; is a constant with an estimated value of approximately 0.1, according to Weertman
[162]. Sources for this type of dislocation multiplication, proposed by Bardeen and Herring, are
edge components, which climb due to a concentration of defects out of equilibrium. The formed
edge dislocations either absorb or create more point defects to re-establish equilibrium [163].
Harper-Dorn creep is an additional lattice mechanism associated with dislocation motion,
which does not follow these other mechanisms with n = 3 to 5. First investigated and identified
by Harper and Dorn in 1957 [164], this mechanism has primarily been observed in metals, but
small amounts of data have been published referencing Harper-Dorn creep in single-crystal
KZnF3, NaCl, and CaO, and is assumed to occur in other ceramic systems as well [133]. Harper-
Dorn creep is linked primarily to the climb of edge dislocations when the material is saturated

with vacancies [165]. Based on the published experimental data, which cite Harper-Dorn creep,

the creep rate can be described by the following model equation:

. D.Gb
é = Byp i (g) (Equ. 11)

where By, is a constant with a value found from experimental data on the order of 10711 [133].
As with other dislocation mechanisms, Harper-Dorn creep predicts that grain size is irrelevant
with m = 0, and the stress is directly proportional with n = 1. Harper-Dorn creep is associated
with grain elongation, similar to diffusion creep, but is observed to result in faster creep rates.
Additionally, Harper-Dorn creep can occur alone without the accommodation of grain boundary

sliding [165].
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2.3.3. Creep Studies of Oxide Ceramics

Early Creep Experiments

When researching the creep performance of oxide ceramic materials, the vast majority of
experimental data is on the behavior of alumina (Al203), and for much of the 20" century
alumina represented a baseline for oxide ceramic creep performance. Most of the research on
fine-grained (1-15 pm) polycrystalline alumina demonstrates that plastic deformation over time
occurs by means of three possible mechanisms: diffusional creep, basal slip, or grain boundary
sliding [166].

In alumina diffusional creep can occur as both lattice diffusion or grain boundary diffusion.
Generally speaking, this creep mechanism is usually rate-controlled by the diffusion of the
aluminum ion since oxygen diffusion is slow through the lattice, yet very rapid along the grain
boundaries [166]. Diffusion is typically reported as the dominant creep mechanism in alumina,
but this has also been observed to transition and become interface controlled, specifically in very
fine-grained specimens, as reported by Cannon et al. [167] and Pysher et al. [168]. Under certain
conditions polycrystalline alumina has been observed to be more creep resistant than single-
crystal alumina (Sapphire), even in the most favorable directions [169]. Although single-crystal
materials are generally not isotropic, and applications are limited due to crystal growth and
fabrication limitations, their creep resistance is usually far superior to polycrystalline materials
[166]. This anomalous behavior of polycrystalline alumina has led to considerable research on
the topic.

Folweiler in 1961 was the first to investigate the creep behavior of fully dense polycrystalline
alumina based on temperature and grain size [170]. Specimens were tested over a temperature

range of 1400°C to 1800°C. A grain size exponent of m = 2 was determined, and Nabarro-
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Herring diffusional creep was concluded to be the primary mechanism at work. However, in this
work it is important to consider that creep results based on flexure tests are difficult to interpret
with confidence as multiple stress states may be occurring simultaneously [166].

Nabarro-Herring creep was also noted as the primary mechanism for polycrystalline alumina
up to 1800°C by Warshaw and Norton in 1962 [171]. They also concluded that dislocation
mechanisms and grain boundary sliding occurred during creep in compression. Additional creep
investigations of polycrystalline alumina were continued by Passmore and Vasilos in 1966 [172],
[173], Hewson and Kingery in 1967 [174], Hollenberg and Gordon in 1973 [175], and Lessing
and Gordon in 1977 [176], who additionally looked into the effects of environment and various
dopants on the creep rates of fine-grained polycrystalline alumina.

Cannon et al. continued the study of creep of fine-grained alumina up to 1800°C [167]. He
reported observing diffusional creep as the dominant mechanism. Coble creep was observed for
lower applied stresses and N-H creep was observed at higher applied stresses. For very small
grain sizes Cannon et al. reported observing a transition to interface reaction-controlled creep
with a stress exponent of n = 2, which accounts for the often-observed non-Newtonian behavior
of fine-grained polycrystalline alumina. Cannon et al. [167] and Heuer et al. [177] discovered
that basal slip and grain boundary sliding can occur simultaneously in fine-grained
polycrystalline alumina. They referenced observations of dislocation motion, grain boundary
sliding, and cavity formation, although diffusion was still concluded to be the primary
mechanism.

This wealth of reported creep mechanisms and various conclusions for polycrystalline
alumina is possibly a result of performing creep testing in flexure, making the results difficult to

interpret. As a result, many authors have chosen to focus more on creep in compression to better
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understand the deformation mechanisms at work. Beginning with Rhodes et al. in 1965 [178] and
continuing with Sugita et al. in 1970 [179], Becher in 1971 [180], Mocellin and Kingery in 1971
[181], and Hou et al. in 1979 [182], compression creep tests gave evidence of primarily diffusion
controlled creep, especially at low stresses. As stresses rise, more observations were made of
grain boundary sliding taking over as a significant source of creep. The occurrence of stress
exponents greater than one was often attributed to the presence of basal slip as a simultaneous
creep mechanism in fine-grained alumina. These authors reported various creep rates for
polycrystalline alumina based on stress, temperature, grain size, and other parameters,
establishing alumina as a viable deformation-resistant, high temperature structural material.

More recently Armani experimented with the creep of polycrystalline alumina, both SiO:-
doped and undoped at 1100°C and 1300°C in air [29]. Compressive creep tests were conducted
with applied stress ranging from 100 MPa to 250 MPa. Excellent creep resistance was reported
with strain rates at 1100°C ranging from 4.22 x 107 to 1.20 x 10 s™! depending on the applied
stress. Similarly, at 1300°C, strain rates ranged from 8.13x1077 to 5.76 x 10 s! depending on the
applied stress. Results for specimens with silica doping showed decreased strain rates by
approximately one order of magnitude, demonstrating very impressive creep resistance for
alumina [29].

Among other oxide ceramics to exhibit exceptional resistance to creep are aluminosilicates,
specifically Mullite. Penty and Hasselman investigated the creep of high-density, fine-grained,
polycrystalline mullite by four point bend at temperatures between 1430°C and 1512°C [183].
The creep tests revealed excellent resistance to plastic deformation at high temperatures. A
comparison was made to fine-grained alumina under identical test conditions at 1415°C and

8200 psi, tested by Cannon and Rhodes [184]. Under these conditions alumina exhibited a
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steady-state creep rate of approximately 10 s while mullite exhibited a superior steady-state
creep rate of 3.2 x 107 571, This low creep rate was attributed primarily to an unusually high
activation energy, which was determined to be approximately 167 Kcal, which is in agreement
with the activation energy of mullite as measured by other authors [185], [186]. A stress
exponent of n = 1.1 to n = 1.4 was determined and suggests the dominant creep mechanism is
N-H diffusional creep as with similar materials. The rise of the stress exponent with increasing
temperature above n = 1 also suggests that the creep of mullite may become interface reaction
controlled, or that there is a simultaneous addition of grain boundary sliding or dislocation glide

[183].

Creep of Garnets

A significant number of creep experiments have demonstrated that the most promising creep
resistant oxide ceramic materials come from the garnet group. Many properties of garnets help to
enable a significant resistance to plastic deformation at high temperatures. Corman explains that
the complex body-centered cubic crystal structure has a large unit cell, no close-packed Oxygen
planes, a large Burger’s vector, and large Peierl’s stresses, which all contribute to limited
dislocation glide mobility, and overall reduced plastic deformation under stress [83]. Garem et al.
explains that dislocations in garnets have to overcome high lattice friction stresses, contributing
to a high resistance to plastic deformation [84], [166]. Additionally, garnets, such as YAG,
possess high stiffness at room temperature (>300 GPa), are stable in oxidizing environments,
exhibit high melting temperatures (>1900°C), and have low coefficients of thermal expansion.
These desirable properties have led to the continued study of the deformation of garnets at

temperatures close to their melting points.
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Rabier et al. [187], [188] and Garem et al. [84] have investigated the plastic deformation of
single-crystal Gadolinium-Gallium garnet (GGG) and Yttrium-Iron garnet (YIG). It was
determined that relatively high stresses were required (>200 MPa) to induce any plastic
deformation at temperatures close to the melting point of each material, and that this behavior
should be a general trend within the garnet group of ceramics. Compression creep tests up to
1500°C in air revealed glide anisotropy in different slip planes. An extremely low dislocation
density was also observed in these single-crystal garnets [84]. It was also noted that the garnet
crystal structure naturally resists plastic deformation due to dislocation glide, and uniquely
allows dislocation climb to disassociate and occur alone [188].

Due to the superior mechanical properties and high melting temperature of YAG, there has
been significant interest in its creep performance at high temperatures, leading to many studies
over the past 30 years. Various creep tests of single-crystal and polycrystalline YAG have
determined that YAG is one of the most creep resistant materials at temperatures very close to its
melting point in both inert and oxidizing environments [25], [27], [104]-[107], [189], [190].
Early creep experiments by Corman [83], [107] and Parthasarathy et al. [27], [189], [190] in the
early 1990s demonstrated the overall creep resistance of YAG in inert environments up to
1850°C. Later the work of Armani and Ruggles-Wrenn [28], [29] further proved the high creep
resistance of YAG in air and steam-rich environments at temperatures up to 1300°C. Several
important studies on the creep of YAG are detailed in the following paragraphs.

The early investigations on the creep of single-crystal YAG was conducted by Corman in
1993 [83]. He conducted compressive creep tests at 1650°C to 1850°C in Helium at stresses

between 50 and 280 MPa. His analysis concluded that single-crystal YAG is highly creep
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resistant, with creep rates lower than that of single crystal alumina, as seen in Figure 15. Again,

this behavior was attributed to the large lattice parameters of YAG, limiting dislocation motion.
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Figure 15: Creep rates of single-crystal YAG compared to previously published creep rates
of single-crystal alumina from Corman [83]. Reproduced with permission from Springer
Nature.

The creep of single-crystal YAG was also investigated by Armani at 1300°C in a steam rich
environment [29]. A specimen was tested under these conditions at slowly increasing stress
levels in compression. The applied stress was increased slowly from 50 MPa to 200 MPa. No
measurable strain was observed from 50 MPa to 150 MPa. Only at 200 MPa for a duration of 5
hours was a small amount of strain measured (approximately 0.1%). The final steady-state creep
rate was calculated to be 1.06 x 108 57, This test verified that single-crystal YAG is the most
creep resistant material currently studied under these conditions [29].

Parthasarathy et al. investigated the creep rates of fine-grained polycrystalline YAG in

compression at temperatures from 1400°C to 1610°C in a vacuum [27], [189], [190]. It was
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concluded that the primary creep mechanism for polycrystalline YAG is likely N-H or Coble
diffusional creep with a stress exponent of n = 1.24. Although still highly creep resistant,
polycrystalline YAG had higher creep rates than single-crystal YAG, suggesting that the creep of
these two materials occurs by two different mechanisms. However, it was also determined that
they may possess the same activation energy, suggesting that creep of both single-crystal and
polycrystalline YAG are lattice diffusion controlled [27].

Significant creep testing of polycrystalline YAG was also conducted by Armani et al. at the
Air Force Institute of Technology (AFIT) [28], [29]. Compressive creep tests of high-purity
polycrystalline YAG and silica-doped YAG were conducted between 50 and 200 MPa at 1300°C
in air and in steam, in order to understand the creep rates of YAG in combustion environments.
Creep results were consistent with the Nabarro-Herring diffusional creep mechanism, with the
creep rate limited by lattice diffusion of Yttrium cations (Y>") and a stress exponent of n = 1.
Silica-doped YAG specimens had a grain size of approximately 2.41 pm and slightly lower creep
rates than undoped YAG with 0.92 um grain size. The creep rates of polycrystalline YAG in air
were found to be superior to the creep rates of both polycrystalline alumina and mullite. It was
also concluded from these experiments that the creep rates of polycrystalline YAG are only
slightly increased by the presence of steam, still maintaining superior creep performance overall.

A summary of the resulting strain rates of YAG specimens are shown in Figure 16.
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Figure 16: Normalized strain rates of YAG specimens creep tested in compression from
Armani et al. [28]. Results are compared to predicted performance presented by
Parthasarathy et al. in 1992 [27]. Reproduced with permission from the Air Force Institute
of Technology.

Jain et al. from the NEI Corporation investigated YAG as a viable matrix material for
ceramic matrix composites by testing its creep performance. This work was documented in a
Department of Energy Report by the same author [191]. Polycrystalline YAG with various
dopants was synthesized by hot pressing and conventional sintering. Specimens were tested in air
in compression from 1300°C to 1400°C and from 75 to 150 MPa. The average grain size was
statistically determined to be approximately 9 um. As in previous studies, the steady-state creep
rates of YAG were found to be far superior to alumina, mullite, and even previously tested YAG
specimens. However, when comparing creep rates across various studies, it is important to
account for the material grain size. In this case, the grain size of YAG was approximately 9 pm,
which is larger than most other YAG and alumina materials discussed in this section.

Additionally, there was significant abnormal grain growth reported by Jain et al., which made
it difficult to account for grain size variations between specimens. The test method in this study

did not allow for mounting of the extensometer on the specimens during testing. As an alternate
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deformation measurement method, the final length of the specimen was compared to the initial

length, capturing the total change in length during creep. This method successfully captures the

change in deformation, but makes it difficult to determine the steady-state creep rate.

The reduction in creep rate due to the presence of various dopant ions was attributed to the

segregation of the ions with large ionic radii at the grain boundaries, which likely reduced the

grain boundary diffusion rate. Both the stress and grain size exponents were concluded to be in

the expected range for either Nabarro-Herring or Coble diffusional creep as the primary creep

mechanism. Figure 17 shows the creep rates of doped polycrystalline YAG compared with the

creep rates of alumina, mullite, and a combined alumina-Y AG material.
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Figure 17: Creep of doped polycrystalline YAG, compared with other ceramic oxide

materials from a Department of Energy report by Jain et al. [191].
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Another garnet material expected to perform very well in creep is LuAG. As was discussed
in the previous section, LuAG is harder, denser, and potentially more chemically stable than
YAG. Additionally, it has a higher melting point (= 2050°C), which suggests that its creep
resistance may be superior to YAG at equivalent temperatures. However, the creep of LuUAG has
not yet been determined. Due to the limited availability and often-inhibitive costs of obtaining
Lutetium, the structural performance of LuAG remains unknown. Several authors have
investigated the hardness and fracture toughness of LuUAG specimens, which revealed promising
results; however, to date no studies have investigated the creep rates or active creep mechanisms

of LuAG.

2.4. Environmental Effects on the Performance of Oxide Ceramics

The history of engineering ceramic materials has demonstrated their excellent performance
at high temperatures compared to other types of structural materials. Despite their shortfalls,
such as their brittle nature and their tendency to fail due to small flaws and cracks, ceramics have
proven to be valuable structural materials at high temperatures due to their high melting points
and the stability of their mechanical properties at high temperatures. However, as with many
structural materials, high temperatures can facilitate oxidation and corrosion of ceramics in
oxidizing environments. This has limited the use of many standard engineering ceramics whose
properties are degraded due to the presence of Oxygen at high temperatures. This has given rise
to the development and use of oxide ceramics, whose chemical composition naturally resists

further oxidation, even at high temperatures.
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However, oxide ceramics are still susceptible to degradation when operating in certain
environments. Studies have shown that even the most impressive oxide ceramics, such as
alumina and YAG, are not completely resistant to all forms of chemical attack. This section
attempts to review the previous experimental work, which demonstrates the extent of the
vulnerability of oxide ceramics to the most extreme operating conditions, often encountered in
aerospace applications. In order to thoroughly understand the experimental results found in the
literature, it is necessary to review some important concepts related to the environmentally-

assisted failure of ceramic materials.

2.4.1. Environmental Failure Mechanisms in Ceramics

When trying to understand and predict failure of brittle materials, there are some important
material properties and characteristics that must be fully understood beyond the ultimate strength
of the material. Brittle materials are very susceptible to catastrophic failure due to the presence of
small flaws and cracks; therefore, understanding how a specific material reacts to these small
imperfections and how quickly cracks can grow are very important. The field of fracture
mechanics aims to determine how and why cracks propagate through a material, and must be
studied to understand the failure of brittle materials.

A key material property studied in the field of fracture mechanics is the fracture toughness of
a material. Fracture toughness can be defined as the ability of the material to resist fracture in the
presence of cracks or voids [192]. It can also be described as the critical level of the stress
intensity factor at which point a crack will become unstable and continually propagate through a
material [38]. Typically, cracks will not propagate through a material causing failure until the

applied stress causes the stress intensity factor to exceed the inherent fracture toughness. The
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critical stress intensity factor is well understood in the field of fracture mechanics and can be
defined by Equation 12 for an applied stress acting normal to the crack opening [192].

K¢ = oyVma (Equ. 12)
where a is the crack length and g,;;; is the ultimate strength of the material. This simple
expression effectively describes the state of stress at the crack tip and represents the critical point
at which the crack will continue to propagate through a material, generally causing catastrophic
failure. The fracture toughness of brittle materials is generally much lower than that of ductile
materials, which tend to inherently resist crack growth by means of various toughening
mechanisms [193]. Table 9 shows some fracture toughness values for various structural
materials, including several ceramic materials discussed in this study.

Table 9. Fracture Toughness values for several structural materials.

Material Fracture Toughness (K;.) [MPa -mt/ 2]
Aluminum 15-50

Steel 20— 100

Silicon Nitride 3-6

Alumina 4-6

Silica Glass 0.7-0.8

Polycrystalline YAG 1.3-1.5

Single-Crystal YAG 2-8

*Fracture toughness values taken from various sources: [51], [104], [194].

There is another crack growth phenomenon, caused by a variety of factors, which allows a
crack to slowly propagate through a material below the critical value defined by the stress
intensity factor. This is called subcritical crack growth. Although many factors can contribute to
subcritical crack growth, it is mainly the result of the applied stress combined with harmful
chemical interactions between the material and the environment. When this environmental attack

causes corrosion and enables crack propagation due to a reaction at the crack tip, it is known as
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stress corrosion cracking, and has been observed in many of the materials described in this study
[48], [130].

One of the most commonly studied chemical interactions, which enables subcritical crack
growth is the reaction of a material with moisture in the environment. Simple water vapor is
often enough to increase the rate of oxidation or result in the loss of volume by the formation of
volatile reaction products. These processes are often enabled further by high temperatures [38].
However, stress corrosion cracking, enabling subcritical crack growth, is a highly material-
specific process, and depends entirely on the chemical composition of the material and the
chemical species present in the environment. Therefore, experiments are usually conducted for
any material of interest while simulating the environment in which it is expected to operate. It is
typically understood that ceramics are much more resistant to stress corrosion cracking than
other materials, such as metals. However, there are still corrosive environments, which will
cause harmful reactions in ceramics, generating subcritical crack growth.

When stress corrosion cracking occurs in ceramics, the parameter which controls the crack
propagation velocity is the applied stress intensity factor. As the stress intensity factor changes
based on loading or crack length, the mechanisms controlling the rate of crack propagation will
also change. A plot of the logarithm of crack velocity vs. the stress intensity factor can typically
be divided into three regimes, shown in Figure 18. This behavior has been noted to occur in
many ceramic materials, including Silicon nitride, alumina, glasses, porcelains, and cements

[38].
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Figure 18: Three regimes found when plotting the logarithm of crack velocity vs. the stress
intensity factor for several ceramic materials undergoing subcritical crack propagation.
This behavior was first observed by Wiederhorn in 1967 when studying subcritical crack
growth in glass [195]. In region 1 the crack growth is typically controlled by the stress-enhanced

chemical reaction between the material and the environment. This region is reaction-rate
controlled, meaning the crack velocity will increase along with the concentration of the reactant.
In region 2 crack propagation becomes independent of the stress intensity factor, and the crack
growth is controlled by the rate of diffusion of chemicals into the crack. This region is controlled
by the rate of chemical transport into the crack, rather than the reaction rate. In region 3 the stress
intensity factor reaches its critical value and crack growth becomes independent of the
environment. At this point the crack velocity is primarily based on temperature and material

composition, and the crack will propagate rapidly to failure [38].

2.4.2. Environmental Degradation Studies of Oxide Ceramics
Investigations into the corrosion and degradation of ceramics has been ongoing since their
use was adopted for engineering applications operating in extreme environments. Oxide ceramics

were developed because of their inherent resistance to environmental attack, specifically
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oxidation. However, these materials have still been shown to react to harsh chemical
environments in several negative ways, such as microstructural changes, stress corrosion
cracking, reduction in fracture toughness, the formation and evaporation of hydroxides, among
others [196]-[201]. This section provides a brief overview of previous experimental studies on

the degradation and corrosion of some important oxide ceramics.

Degradation of Alumina

Alumina has been a fundamental oxide ceramic material, thoroughly used across many
industries because of its high-temperature stability and resistance to oxidation. However, it has
been shown to be susceptible to property degradation in harsh chemical environments, and is
presented here as a foundational example of oxide ceramic degradation. Blumenthal et al. in
1984 [201] and Cao in 1985 [196] observed premature cracking in polycrystalline alumina in the
presence of silica at high temperatures. It was discovered that the amorphous silica particles
entered the grain boundaries and enabled creep embrittlement, reducing the overall strength of
the material.

Several more studies investigated the stability of alumina in the presence of water vapor. Oda
et al. [197] tested polycrystalline alumina in water vapor at 300°C and a pressure of 8.6 MPa.
Small amounts of impurities within the alumina enabled the dissolution of SiO2 and Na2O at the
grain boundaries. This allowed corrosion to occur at the grain boundaries, reducing the weight,
and overall strength properties of the material. Similarly Kruzic et al. [200] studied the effect of
moisture on the fracture toughness of alumina at room temperature. It was determined that the
intrinsic toughness at the crack tip was approximately 30% lower in the presence of moist air,

likely reducing the theoretical strength of the material. It was also observed that in fatigue
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experiments, crack growth rates are significantly higher and the fatigue thresholds are lower in
moist air.

Tai et al. [202] observed the degradation of alumina in an argon and water vapor
environment at temperatures between 1300°C and 1700°C. There was a measurable decrease in
volume and flexural strength of the alumina samples after 10 hours of exposure. At the surface of
the alumina specimens, substantial grain growth was observed. Additionally, grain boundary
etching occurred due to the formation of volatile Al-hydroxide gasses, AI(OH)2 and AI(OH)s.

Kronenberg et al. [203] and Castaing et al. [204] investigated the effects of hydrogen
impurities in sapphire and polycrystalline a-alumina specimens, subject to annealing in super
critical water at temperatures between 850°C and 1025°C and pressures between 1500 MPa and
2000 MPa. Infrared absorption measurements were used to determine the amount of Hydrogen
uptake by the specimens. Both interstitial Hydrogen impurities and OH clusters were found to
rapidly diffuse into the specimens, and mainly segregate near the surfaces. It was also noted that
the amount of water uptake was 100 times greater for polycrystalline alumina compared to
sapphire. It was concluded that the grain boundaries become pathways for rapid transport of the
Hydrogen impurities. This phenomena increased the rate of intergranular fracture, significantly
reducing the strength and fracture toughness of the specimens due to grain boundary weakening
[203]. Additionally, when placed under uniaxial stress, the strength of the sapphire and large-
grain (30-50 um) polycrystalline alumina was reduced by a factor of two in the presence of
water. These results were attributed to the enhanced rate of dislocation mobility. However, the
strength of fine-grained (3-5 um) polycrystalline alumina was reduced by a factor of six due to
the presence of water at high temperatures and pressures. This result was attributed to a change

in failure mechanism from primarily dislocation glide to largely grain boundary sliding under
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hydrothermal conditions [204].

Fritsch et al. [198] and Klemm et al. [199] tested alumina along with non-oxide ceramics at
temperatures between 1200°C and 1500°C in a burner rig with a water vapor partial pressure of
0.24 atm for test times between 100 and 300 hours. Although the most significant degradation
came in the form of active oxidation of the non-oxide ceramics, corrosion was also observed on
the alumina specimens above 1300°C. Surface reaction-controlled corrosion was determined to
cause weight loss in alumina due to the formation of the volatile hydroxide AI(OH)3 on the
surface. This would allow for significant recession on the surface of alumina over the operational
life of structural components in combustion environments [198].

The effects of steam on the high temperature creep of alumina have also been thoroughly
studied at the Air Force Research Laboratory. Armani et al. [29] tested the creep of
polycrystalline alumina with and without silica doping, exposed to steam at 1100°C and 1300°C.
Similar compressive creep tests in air were reported in the previous section on creep of ceramic
oxides. The creep rates for tests conducted in air and steam are compared in Figure 19.
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Figure 19: Steady-state creep rates vs. the applied stress for doped and undoped
polycrystalline alumina at 1100°C (left) and 1300°C (right), from Armani [29] Reproduced

with permission from the Air Force Institute of Technology.
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At both temperatures there is very little effect of the presence of steam on the creep rate with
or without silica doping. These results are compatible with the previously described study
conducted by Tai et al. who showed that in the presence of water vapor, there was little effect on
polycrystalline alumina prior to increasing the temperature to 1500°C [202].

Similar experiments were conducted by Fritsch et al. [198], Klemm et al. [199], and
Schmucker et al. [205] on other important oxide ceramics, such as mullite. Mullite exhibited
higher corrosion rates than other oxides. At temperatures above 1300°C a porous layer of
alumina was formed on the surface of the mullite, due to the silica leaching out through the
surface and reacting with the water vapor, causing the formation of volatile Si-hydroxides, such
as Si(OH)4. This is also a result of the low activation energy required for this reaction when

compared to the corrosion mechanisms at work in other oxide ceramics [198], [199], [205].

Degradation of YAG

Fritsch et al. [198] and Klemm et al. [199] also observed the behavior of YAG at
temperatures between 1200°C and 1500°C in a burner rig with a water vapor partial pressure of
0.24 atm. Compared with alumina and mullite, YAG exhibited a much lower rate of corrosion,
which was primarily due to the formation of a small protective layer on the surface. It was
suggested that a small amount of weight loss occurred due to the formation of various Al-
hydroxides on the surface of the YAG specimens. However, the size of the surface layer and the
overall weight loss of YAG was much less than the other oxide ceramics tested [198], [199]. The
surface layer of YAG compared with that of alumina taken from the studies conducted by Fritsch

et al. are shown in Figure 20.
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Figure 20: Surface corrosion layers observed on alumina (left) and YAG (right) from
Fritsch et al. [198]. Reproduced with permission from Elsevier.

Harada et al. [206] conducted tensile creep tests on a ceramic matrix composite composed of
alumina fibers embedded in a YAG matrix. The fiber volume was approximately 50%. Tests
were conducted at temperatures ranging from 1773 K to 1873 K in argon, air, and water vapor
with a water vapor pressure between 0.06 MPa and 0.6 MPa. At atmospheric pressure previous
studies have shown that the flexural strength of such a composite composed of alumina and
YAG is not affected by the presence of water vapor, indicating significant corrosion resistance of
the constituent materials [207]. However, Harada et al. showed that once the water vapor
pressure increased, the creep rate increased significantly. Figure 21 shows the increase in overall

creep strain vs. time with the addition of water vapor under pressure [206].
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Figure 21: Creep strain of an alumina/YAG composite subject to tensile creep in argon, air,
and steam from Harada et al. [206]. Reproduced with permission from John Wiley and
Sons.

The increase in creep strain was attributed to a significant increase in the dislocation motion
of the alumina phase. However, only a slight increase in dislocation density was observed in the
Y AG matrix, again, pointing to its exceptional corrosion resistance in the presence of moisture.

Armani et al. [28], [29] also demonstrated the thermal and chemical stability of single-crystal
and polycrystalline YAG in creep. YAG specimens were creep tested in compression in the
presence of steam at 1300°C. As was noted in the previous section, single-crystal YAG exhibited
no measurable deformation under these conditions. Also, the presence of steam in this
temperature range was shown to have little effect on the superior creep rate of polycrystalline

YAG specimens as well, which was previously described in section 2.3.3.
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2.5. Implications for Current Research

Based on this previous research and development of engineering ceramics throughout the last
century, this unique class of materials has become well known and widely used in many
industries due to the many known advantages and strengths. Among the most unique and
important properties of engineering ceramics is their excellent resistance to high temperatures. A
more recently developed group of ceramics are oxide ceramics, which are critical for
applications requiring use at high temperatures in oxidizing environments. Because of their
chemical composition, oxide ceramics inherently resist oxidation and provide consistent and
stable properties in the most extreme environments.

The extensive development of oxide ceramics in recent years has enabled their consistent
property improvement, creating solutions to many tough material challenges. Today, several
oxide ceramics are widely used in many applications with tested behavior and proven properties.
However, the performance of certain synthetic oxide ceramics is not entirely known, especially
in extreme conditions at high temperatures. Garnet ceramics have showed the highest potential in
terms of structural stability at high temperatures and chemical resistance to harsh operating
environments, but previous testing has not proven their performance for all possible applications.

The creep performance of YAG has been studied by several researchers; however, its
performance in air and combustion environments at the highest test temperatures is not fully
known. Previous research has demonstrated its potential up to 1300°C, but has not yet proven its
capabilities beyond this, which is critical before significant investment can be made in larger
research efforts and in the eventual use of this costly material for critical structural applications.
Additionally, the basic material properties and crystal structure of LuAG suggest that its

performance may surpass all other oxide ceramics, including YAG. However, the creep
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performance of LuAG at any temperature in any environment has yet to be determined.

This study will attempt to observe and analyze the creep performance of each of these high-
potential, synthetic oxide ceramics. They will each be tested at high temperatures in potentially
degrading environments to determine how well they can each perform under these conditions.
These experiments will demonstrate the usefulness and ultimate potential of each of these
materials and will inform future investment decisions concerning continued research and the

eventual development of future high-performance aerospace structures.
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3. Research Materials and Processing Methods

3.1. Research Materials

3.1.1. Yttrium Aluminum Garnet (YAG, Y3Al5012)

Overview

High-purity, undoped polycrystalline YAG specimens were fabricated using the state-of-the-
art material processing laboratories at the Air Force Research Laboratory, Materials and
Manufacturing Directorate at Wright-Patterson Air Force Base. Undoped YAG powder was
processed by Nanocerox, Inc., located in Ann Arbor, M1, which specializes in the production of
high-purity ceramic nanopowders. The powder was developed using flame spray pyrolysis to
achieve fine nanoparticles. The YAG powder was carefully mixed into water or alcohol solution,
ball-milled for 48 hours, and dried. The resultant powder was transferred from its container to a
graphite die for sintering.

Spark plasma sintering (SPS) was selected as the ceramic sintering method due to its short
processing time, and its effectiveness in creating near theoretical-density parts. SPS is a standard
ceramic processing technique, where ceramic powder is heated below its melting point, typically
under pressure, so that bonding occurs by means of atomic diffusion. This leads to the ceramic
powder solidifying into a rigid structure. SPS was performed using various temperature and
pressure parameters, which are discussed in more detail later in this chapter. Additionally,
various heating and cooling rates were explored in order to minimize the potential cracking of
the solid parts during fabrication. Following SPS, each sintered YAG puck was removed from
the die and heat treated in order to remove any residual carbon contamination. Each heat

treatment cycle was carried out in an alumina tube furnace at 1500°C for 10 hours in flowing Ox.
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Powder Properties

According to details provided by Nanocerox, Inc., the YAG powder has an approximate
particle size of 0.1 pm and a specific surface area of 20 m?*/g. An impurity analysis also revealed
approximately 300 ppm impurities, mostly volatiles. Figure 22 shows SEM images of the high-
purity, undoped YAG powder before any additional processing occurred. Figure 23 shows an
SEM image of a solid, undoped YAG specimen following sintering, revealing an average grain
size of approximately 1 pm. Both images were provided to the Air Force Institute of Technology

by Nanocerox, Inc. in the YAG nanopowder data sheet [208].

+
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FSP149A5-A8 HP YAG -60 900-5h

Figure 22: SEM images of high-purity, undoped YAG powder prior to processing,

reproduced from the material data sheets, provided by Nanocerox, Inc. [208].
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SEM HV: 15.0 kV SEM MAG: 1.73 kx

Bl: 15.00 View field: 80.0 pm
WOD: 15.87 mm Det: SE, BSE
SP149 HP YAG

Figure 23: SEM images of a sintered high-purity, undoped YAG specimen, revealing small
grains and overall phase purity, reproduced from the material data sheets, provided by

Nanocerox, Inc. [208].

Yitrium Aluminum Garnet Doped Variants

In addition to undoped YAG, two doped YAG variants were also fabricated using the same
methods described above. One YAG variant was doped with Ytterbium and the other was doped
with Erbium. The amount of each dopant was 2 atomic percent (2at%). These elements are
common dopants in many YAG solid-state laser materials due to the significant changes that
they create in the overall optical properties of the host material. For example, Er:YAG lasers
typically emit light with a much different wavelength of 2940 nm, which is strongly absorbed by
water and other substances found in the body, allowing Er:Y AG lasers to be widely used in
medical procedures with less risk of human tissue damage [209]. Yb:YAG lasers emit light at
1030 nm and have a very high power output, low fractional heating, and high thermal
conductivity, making Yb:YAG lasers the best medium for high-power solid state lasers [210].

Both Yb*" and Er** ions possess certain properties, which make them excellent candidates for
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substituting for Y** in YAG. Specifically, they possess a similar valence electron state, and have
similar ionic radii (Yb " = 0.985 A; Er "= 1.004 A; Yb " =1.019 A) [96], [211], [212]. This
allows significant doping to occur without any distortion of the crystal lattice [213]. Due to the
common presence of these dopants in YAG materials used in many applications, it is desirable to
understand the associated mechanical properties of each doped material variant.

Both 2at% Yb-doped YAG and 2at% Er-doped YAG were fabricated using pre-doped
powder, processed by flame spray pyrolysis obtained from Nanocerox, Inc. Sintering occurred
by means of SPS using the same powder preparation techniques and sintering parameters as with
undoped YAG. The processing methods used to generate these materials are discussed in more

detail later in this section.

3.1.2. Lutetium Aluminum Garnet (LuAG, Lu3Al5012)
Overview

High-purity, undoped polycrystalline LuAG specimens were similarly fabricated using the
laboratories at the Air Force Research Laboratory, Materials and Manufacturing Directorate at
Wright-Patterson Air Force Base. Undoped LuAG powder was not readily available from a
commercial source, so the required LuAG powder was obtained from a stoichiometric mixture of
high purity (>99.99%) alumina powder and Lutetium oxide (Lu203) powder, produced by
Nanocerox, Inc. This powder was also developed using their in-house flame spray pyrolysis
method to achieve fine nanoparticles. The combination of powders was mixed into a water or
alcohol solution, ball-milled for 48 hours, and dried. The resultant powder was transferred from
its container to a graphite die for sintering.

SPS was similarly used to processing LuAG specimens, as it was for each YAG variant as
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well. SPS was performed using various temperature and pressure parameters, which are
discussed in more detail later in this chapter. Additionally, various heating and cooling rates
were explored in order to minimize the potential cracking of the solid parts during fabrication.
Following SPS, each sintered LuAG puck was removed from the die and heat treated in order to
remove any residual carbon contamination. Each heat treatment was carried out in an alumina

tube furnace at 1500°C for 10 hours in flowing Ox.

Powder Properties

According to details provided by Nanocerox, Inc., the Lutetium oxide powder has an
approximate particle size of 0.1 pm and a specific surface area of 22.1 m?/g. An impurity
analysis also revealed approximately 200 ppm impurities, mostly volatiles, similar to YAG.
Figure 24 shows SEM images of the high-purity Lutetium oxide powder before any additional

processing occurred, provided by Nanocerox, Inc. [214].

7 SEM HV: 10.0 kV View field: 10.00 pm I

Bl: 10.00 SEM MAG: 13.8 kx 5 pym
'WD: 9.58 mm Det: SE, BSE

9
2A5168A Lu203 -60 600-5h

Figure 24: SEM images of high-purity Lutetium oxide powder prior to processing,

reproduced from the material data sheets, provided by Nanocerox, Inc. [214].
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3.2.Material Processing

3.2.1. Spark Plasma Sintering: An Introduction

The Sintering Process

The sintering process represents a basic material fabrication method where powders,
particulates, or porous materials are heated to a temperature below their melting points and are
converted into a dense useful solid. Sintering often occurs unassisted in nature. Examples include
the slow compacting of rocks and minerals under pressure within the earth’s crust, ice cubes as
they heat up in a glass and join together, and individual snowflakes coming together to form a
snow ball. Sintering has been adopted by material scientists as a useful way of fabricating
various materials in a laboratory environment under high temperature and pressure, including
metals, polymers, and ceramics. Sintering is particularly valuable in fabricating metals and
ceramics with high melting points, as it can be very difficult to achieve the temperatures
necessary to bind particles together in the liquid phase.

Sintering of polycrystalline ceramic powders, such as YAG and LuAG, involves forming a
consolidated mass of particles in the desired final shape, and heating the mass to a temperature
usually in the range of 50% to 80% of the material’s melting temperature. Porosity is reduced by
atomic diffusion, where atoms from neighboring particles move across boundaries, fusing the
particles together. This diffusion occurs while remaining in the solid phase, and it results in a
solid part with a much higher density than the un-sintered powder [215]. This sintering process,

which is broken down into three stages, can be visualized by Figure 25.
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Ceramic Powder Initial Stage Intermediate Stage Final Stage

Figure 25: The three stages of sintering.

The sintering process is generally described by three stages: the initial stage, intermediate
stage, and final stage. The initial stage of sintering is also known as the neck growth stage, as
neighboring particles begin to form necks at the contact points. These contact points become
grain boundaries through atomic diffusion. Because necking occurs at contact points, there is
significant surface area loss overall; however, there is minimal densification and no shrinking of
porosity in this initial sintering stage. At this stage, surface diffusion is the primary mass-
transport mechanism, driven by the application of high temperature.

The second stage, or intermediate stage of sintering, is identified by the transformation of the
space between particles into an inter-connected network of closed porosity [216]. These pores
generally exist at the newly formed grain boundaries. In the intermediate stage, the surface
energy and grain boundary energy are reduced, and shrinkage and densification begin to occur
[217]. There is nearly a complete loss of open porosity, and closed pores begin to grow and
elongate along with grain size.

The final stage of sintering is characterized by final densification and closure or annihilation
of nearly all remaining porosity. This process is drastically aided by the application of external
pressure during sintering. Most of the densification occurs during the intermediate stage,
therefore, only the final and minimal increase in density occurs in the final stage. While this final

stage is critical for the fabrication of fully dense parts with essentially no porosity, it is also
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possible that high temperatures and extended time spent in the final stage could lead to excessive

grain growth. Excessive grain growth can also lead to an increase in porosity [218]. The

properties of the three stages of sintering are summarized in Table 10.

Table 10: Description of the stages of sintering [218]

Stage Characteristics Surface area loss Densification Grain Growth
Initial Neck growth Slgmﬁoc ant, up to Small at first Minimal
50% loss
Intermediate Pore roundl.ng and | Near total los.s of Significant I.ncrease in grain
elongation open porosity size and pore size
. Pore closure, final | Negligible further Slow and little Extensive grain
Final . : .
densification loss density change and pore growth

Sintering is also possible with no external pressure, which is known as pressureless sintering,
and is used for the fabrication of certain metals and ceramics. However, to achieve near
theoretical density of many materials, pressure must be applied to maximize displacement of the
powder, and to force the material into its final desired shape and dimensions. The general type of
sintering, which simultaneously applies high temperature and pressure to the powder is known as
hot pressing (HP). In its simplest form, HP involves placing the powder in a die or mold, usually
made of graphite or steel. The powder is pressed in the die by an upper and lower punch, which
applies the desired amount of pressure, while heat is simultaneously applied to the powder by
various methods. Common methods of heating during HP include indirect resistance heating,
where the mold is placed inside an oven, and heating occurs by convection, inductive heating,
where induction coils are wrapped around the mold creating an electromagnetic field, and
heating by pulsed electric current running directly through the material, known as Spark Plasma

Sintering (SPS).
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Spark Plasma Sintering

Spark plasma sintering is generally used to describe a rapid sintering technique, which
involves the simultaneous application of uniaxial pressure and high temperature, which is
generated by high-intensity, pulsed current [219]. SPS was the processing method used for all
materials in this study, so it will receive special attention in this section. The powder material is
placed into a rigid mold or die, which is electrically conductive, often made of graphite, similar
to other forms of hot pressing. Pressure is then applied by means of an upper and lower punch,
which press on the upper and lower surfaces of the material, which is contained by the mold. The
electric current passes through the punch and through the material as well if the material is
conductive. This process generates precisely controlled, uniform, high temperature throughout
the material.

During SPS the temperature is applied to the material in two simultaneous ways. The current
passing through the graphite punch causes the punch to act as a heat source in contact with the
material, and if the material is electrically conductive, it will heat internally from the pulsed
current as well. This allows for rapid and uniform heating of the material during SPS [219]. A

diagram of the SPS process is shown in Figure 26.
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Figure 26: Diagram of SPS process.

This type of sintering, which uses pulsed direct current to generate the required temperatures,
was first developed in the 1960’s and published in 1966 [220]. Later, this sintering technique
gained widespread popularity in Japan, where the first SPS machines for commercial use were
developed, and where the term “Spark Plasma Sintering” was first established [219]. SPS has
been described as a processing technique, which allows sintering at relatively low temperatures
and in short periods of time compared to other techniques, by means of charging powder
particles as well as the intervals between them with electrical energy. This process has also been
described as effectively applying a high-temperature spark plasma generated at initial energizing,
made possible by the continuous on-off DC pulsed high electric current with a low voltage [221].

The name “spark plasma sintering” and its precise definition have often been debated over
the years, as it is difficult to prove the presence of plasma or electrical discharges during the
process [222]-[224]. SPS has also been termed a pressure-assisted pulse energizing process or
the pulsed electric current sintering (PECS) process [221]. Similar types of sintering, which have

used other types of current, such as constant DC or AC, have been referred to as “Field-Assisted
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Sintering” or “FAST”. Therefore, this type of rapid sintering, defined by the use of electric
current for heating, is sometimes known as “SPS/FAST” [219].

The appeal of SPS lies in its ability to consistently produce high-density materials in a short
amount of time. It has been shown to be incredibly effective, especially when trying to fabricate
parts, which are known to be “difficult to sinter”, such as materials with very high melting points
or materials which will typically diffuse slowly [225]. SPS is categorized as a “pressurized
sintering” and “solid compaction technique”. Figure 27 shows a diagram of various sintering

methods, which include SPS.
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| Prl;surizul sintering }

I Gas compaction }

Figure 27: Various sintering techniques and how they relate to each other from the
Handbook of Advanced Ceramics [226]. Reproduced with permission from Elsevier.
While not considered a novel technique anymore, SPS is still considered an energy saving

and high-speed consolidation option over its sintering counterparts, requiring approximately 1/3
of the power required by conventional sintering [226]. Equipment used for SPS can usually
generate temperatures up to 2400°C and compressive stresses up to 250 kN [227]. These
capabilities of SPS lead to its ability to achieve fully dense, sintered parts in a matter of minutes,

rather than several hours as is the case with traditional sintering techniques. SPS technology also
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allows for very rapid heating and cooling rates, depending on the fragility of the material, and
also minimal hold times at high temperature and pressure [219].

Although SPS is very similar to some other sintering techniques, such as hot pressing, it has
generally resulted in more consistent, higher quality final materials. SPS has been shown to
produce parts which have nearly 100% of the theoretical material density. Also, the high speeds
and low temperatures required can reduce diffusion across grain boundaries, minimizing grain
growth, and generating consistent, isotropic properties, causing SPS to remain one of the best

ceramic processing techniques available [226], [227].

Spark Plasma Sintering of Oxide Ceramics

Oxide ceramics have been commonly sintered by SPS and reported in literature since this
processing method was first adopted by the industry. The primary reasons that SPS is considered
a valuable sintering method for oxides are the ability to produce consistently high-density
materials in short processing times, which can help keep grain size small. Additionally, the
uniform heating can be helpful in minimizing cracking of the resulting brittle ceramics.

Although SPS has been proven to be effective in fabricating oxide ceramics, it is also
accompanied by unique challenges. Oxide ceramics are not electrically conductive, and therefore
will not behave as other materials when subjected to the pulsed DC current within SPS. The
current will typically not pass through oxides or other electrical insulating materials. Rather
heating primarily occurs by contact with the upper and lower punch within the SPS mold. The
electrically conductive punches are heated via electrical current, and effectively act as heating

elements in a furnace. This allows SPS to maintain its effectiveness with oxide ceramics;
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however, heating will potentially occur at a slower rate, and temperature gradients can develop
within the material before an isothermal state is reached.

The second property of oxide ceramics, which presents a unique challenge during SPS is
their extremely brittle nature. Most ceramics demonstrate brittle characteristics; however, oxide
ceramics are among the most brittle and sensitive during fabrication. As a result, oxide ceramics
can fracture during the SPS process unless the processing parameters are carefully optimized to
allow for such delicate material. Cracking can be a result of thermal shock seen during
processing, due to rapid changes in temperature. Additionally, if sintering occurs in one part of
the specimen before another, internal pressure can be generated due to the continued volume
change, which is more common in larger parts. Cracking can also be generated from high
pressures contained in the small closed porosity that remains in the specimen after sintering. As
the material sinters, and small closed pores take their final shape, the pressure within them will
be equal and opposite to the pressure applied during sintering. Depending on the strength of the
material, the size of the remaining pores, and the pressure parameters during the SPS process, the
pressure within these pores can cause significant cracking to occur when the externally applied
pressure is removed.

There have been many studies which have shown the effectiveness of SPS to process oxide
ceramics, including MgAl204, Al203, MgO, BaTiOs, and YAG [228]. Spark plasma sintered
alumina has been well documented for years [229]-[231]. It has been shown that not only can
SPS be used to fabricate high quality, fully dense, alumina parts, but the properties, specifically
grain size and associated mechanical properties, can be easily tailored to meet the specific needs
of the application. Several authors, such as Santanach et al. [232], Necina et al. [233], Vuksic et

al. [234], and Pravarthana et al. [235], among others have done studies on the effects of SPS
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parameters on the resulting alumina material properties, which have helped establish baselines
for investigations into the SPS processing of similar oxides.

Several authors have also written about polycrystalline YAG ceramics processed by SPS.
Sokol et al. demonstrates that YAG ceramics processed by SPS have excellent mechanical
properties that exceed that of YAG single crystals [236]. Additionally, desirable optical
properties are maintained via SPS processing as well. Wagner et al. [237], [238], Paygin et al.
[239], and Chaim et al. [240]-[242], among others have shown that SPS is effective in creating
transparent YAG ceramics, which are particularly useful for laser applications. Transparent
ceramics require a processing method that is able to achieve near-theoretical density and remove
essentially all porosity from the material. These authors have studied the effects of SPS
parameters on the resultant properties of YAG ceramics, which have been useful in creating
baseline recipes for the YAG materials processed in this study. These specific SPS parameters,
which have been used to process dense YAG ceramics with excellent mechanical properties are
reviewed in more detail in Section 3.2.3.

An et al. report the fabrication of high-quality, transparent Lu2O3 by means of SPS [110].
Specifically, grain size can be easily controlled by precise adjustments of the SPS parameters,
which can impact density, transparency, and mechanical properties. Kumar et al. [243], Pejchal
et al. [244], and Babin et al. [245] reported difficulties in processing doped and undoped LuAG
transparent ceramics by means of SPS. The presence of porosity, primarily at the grain
boundaries, caused the resultant materials to be opaque. Other authors, such as Cutler et al. [246]
and Xu et al. [120] have had more success in processing LuAG transparent ceramics via SPS.
However, even these authors report a certain amount of porosity remaining after processing. The

variation in the quality of LuAG processed by SPS found in the literature suggests that LuAG
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may be particularly difficult to process, especially when the need for absolute purity and density
is required for transparency. However, the determination of optimal SPS parameters, which are
required to achieve the highest quality materials, is still an ongoing area of study. The SPS
parameters used in this study will be reported along with the associated material properties of the

resultant polycrystalline LuAG ceramics.

3.2.2. Powder Preparation Procedures

Powder preparation procedures for both YAG and LuAG involve correctly portioning out the
desired powder, mixing it into solution, ball-milling, drying, and straining. The final resultant
powder is a soft, pure powder ready to be sintered with small particle size and minimal
conglomerates. The entire process for a single material billet prepared from powder and
processed into a sintered, solid material takes approximately 4-5 days. The powder preparation
process described in this chapter was accomplished for all the material analyzed in this research
effort, and took place in the material processing laboratories at the Air Force Research
Laboratory, Materials and Manufacturing Directorate.

For all YAG variants powder preparation begins by carefully measuring out the doped or
undoped YAG powder. The amount of powder that is used is based on the desired final
dimensions of the sintered material. The available graphite molds for SPS were all cylindrical
with inner diameters of 20 mm, 25 mm, and 40 mm. Because the final theoretical density of
YAG is known, the weight of the powder can be determined. The desired volume of the resultant
cylindrical material is determined by Equation 13:

V = t(nr?) (Equ. 13)
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where the thickness, t, was chosen to be 7 mm in order to accommodate the required thickness of
the creep test specimens. Powder is measured out by weight. Therefore, in order to calculate the
amount of powder needed to fabricate a specimen of known dimensions and known density, the
following equation is used:
m = pv (Equ. 14)

And substituting volume from Equation 13, the formula becomes:

m = pt(nr?) (Equ. 15)

Y AG has a theoretical density of 4.56 g/cc. For a 40 mm diameter SPS mold, the equations

for the necessary amount of YAG becomes:
Myac = (4.566%) (0.7 cm)(2 cm)? = 40.11 g (Equ. 16)

Each variant of YAG was available and purchased as doped and undoped YAG powder, so it
was not necessary to mix Al2O3 and Y20s3. In contrast, LuAG was fabricated by sintering a
powder mixture of Lu203 and Al203. The overall weight of the LuAG powder is determined in
the same fashion as with YAG, using the same sintered material dimensions and the theoretical
density of LuAG, which is 6.73 g/cc. The equation used to determine the total amount of powder

needed to fabricate LuAG is shown in Equation 17:
Myuag = (6.732) (0.7 cm)m(2 cm)? = 59.2 g (Equ. 17)

Next it is necessary to determine the proportions of Lu20O3 and Al203 that are required to
create 59.2 g of AlsLu3O12. The molar mass of Lu203 is 397.932 g/mol and Al203 is 101.96
g/mol. From the chemical formula of LuAG, the molar ratio of Lu203 to Al2O3 is 3:5. Therefore

a ratio equation can be set up and solved for the required mass of Lu2O3 and Al2Os.
(3)(397.932-2) : (5) (101.96 L) = My, : Mynag — Munzo,  (Equ. 18)

g
mol
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The powder is measured directly from the original container using a clean plastic spatula, and
placed into a clean plastic container with a lid in order to be ball-milled. In addition to the
powder, small alumina balls were added to the container along with approximately 200 g of
either alcohol or deionized water. Different powder solutions using alcohol and water were
investigated along with the associated drying methods in order to determine their effect on the
resultant powder and processed material. Prior to ball milling the powder, the alumina balls were
thoroughly cleaned with ethanol, put into a container, and placed on the spinner with no powder.
The balls were left on the spinner for 24 hours in order to break off any small alumina shavings.
Following spinning, the balls were cleaned again using ethanol. Once the powder was combined
with the alumina balls and the liquid, the container was placed back on the spinner for 48 hours,

shown in Figure 28. The spinner was set to a slow speed, rotating at approximately 14 rpm.

Figure 28: Ball milling powder solution on spinning rollers.

After ball milling is complete, the solution of ceramic powder in alcohol or water is carefully
poured out and separated from the alumina balls. The drying method was determined based on
the previous solvent chosen. Each water solution was dried by the freeze-drying method, and
typically resulted in very soft, light powder, which was immediately ready for sintering. Each

alcohol solution was placed in an open-air oven set to 120°C and left to dry for 24 hours. After
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24 hours, the alcohol is completely evaporated, and only dry, dense powder remains. After the
powder is dried in the oven, it is necessary to crush the powder into small particles using a
mortar and pestle, and then pass the crushed particles through a fine-mesh sieve. For this
material, a sieve with mesh number 100 and an aperture length of 150 um was used. The result is
a soft, light powder ready to be sintered.

The die and punch assembly is then constructed prior to adding any powder. The lower
punch is placed into the lower opening of the graphite die, and two circular pieces of graphite
foil of the same diameter as the die with a boro-nitride coating between them are placed inside
the die in contact with the lower punch. Then a larger piece of graphite foil is cut and wrapped
into a cylindrical shape to line the inside of the die. The powder is then carefully added inside the
die, and should only be in direct contact with the graphite foil. Two more circular pieces of
graphite foil with boro-nitride coating between them are placed on top of the powder, and the

opening is sealed with the upper punch. The assembly laid on its side after loading the powder is

Graphite Punch

shown in Figure 29.

Graphite Die

Graphite Punch

Figure 29: SPS die and punch assembly after loading the powder.
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The assembly is then wrapped in a soft graphite insulation and is loaded into the SPS as is
shown in Figure 30. The final step is to set the specific SPS parameters, which are discussed in

the next section.

Figure 30: Loading the die and punch assembly into the enclosure for SPS.

3.2.3. Spark Plasma Sintering Parameters

There are many parameters that must be set during the SPS process. Specifically, maximum
temperature, maximum pressure, hold times at the selected temperature and pressure, heating and
cooling rates, and timing of pressure application and removal. For many materials, including
YAG, several research studies have determined ideal ranges for the temperature and pressure that
the powder should see during an SPS cycle [236], [240]-[242], [247]. These references can
provide a valuable baseline; however, they may not be adequate or ideal processing parameters
for all similar material types. Even when comparing different Y AG materials processed by SPS,
many factors, including the dopants, presence of impurities, the size of the SPS molds, and the

precise care taken when loading the powder into the molds, can play a critical role in the
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resulting material and its microstructure. For this reason, SPS parameters must often be
investigated for a new type or quantity of material.

For this investigation into the microstructure, material properties, and mechanical behavior of
YAG and LuAG, it was desired to determine ideal parameters for the SPS processing of these
materials and to establish a “recipe” for their fabrication. In order to generate this recipe, SPS
parameters were initially selected based on a review of published YAG and LuAG processing
details. As material processing continued, and several billets were prepared for SPS, all the
parameters were varied across the many SPS runs for each material. The two primary reasons for
varying several SPS parameters are to determine their effects on material cracking and their
effects on the resulting material grain size. These two resultant material characteristics were the
most sensitive to any change in SPS parameters, and were also very significant in terms of the
usability and effectiveness of the resultant material.

For each SPS run the following parameters were investigated:

- Maximum temperature

- Maximum pressure

- Hold time at maximum temperature and pressure

- Heating rate

- Cooling rate

- Addition of an isothermal hold time prior to sintering

- Removal of pressure prior to cooling

The temperature and pressure selected for SPS were carefully chosen. This selection will
significantly and directly affect the final density, porosity, and grain size of the resultant ceramic

material. These SPS parameters can also have a significant effect on the final material’s optical
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properties as well, which is valuable in laser applications. Additionally, the selected temperature
and pressure will determine how much sintering time is required and will, therefore, affect the
length of the SPS run time. For any material fabricated by means of SPS, there are generally a
range of temperatures and pressures, which will allow sintering to successfully occur, such that a
solid material will result. However, the quality may vary drastically, based on the possible
effects listed above.

The specific temperatures chosen for the sintering of YAG and LuAG in this study were
primarily chosen based on their effect on the resultant material’s grain size. It is recognized that
higher sintering temperatures lead to larger grain sizes in ceramics. This is the case with all types
of ceramic sintering, including SPS. As higher sintering temperatures are chosen for SPS runs,
the resultant material grain size will slowly increase until a threshold temperature is reached. At
this point grain size can increase rapidly. For the purposes of obtaining an array of creep test
specimens with various properties, it was desired to process ceramics with several different grain
sizes. Therefore, several temperatures were selected for SPS, based on the range of acceptable
temperatures from the literature and from previous in-house SPS trials. Hence different
temperatures within this range were applied to the processing of both YAG and LuAG. It was
determined that SPS temperatures should be set between 1300°C and 1550°C, and adjusting the
temperature within this range by as little as 50°C could affect the resulting grain size [240]—
[242], [247]-{250].

The pressure parameter during an SPS cycle is similarly critical in obtaining reliably
consistent, high-quality materials. The amount of compressive stress applied to the powder
during SPS will directly affect the amount of densification that will occur, which will determine

whether or not the resultant material is fully sintered. Also, the pressure setting along with the

100



temperature setting will dictate for what length of time the SPS run should last. Very high
pressures have been used for processing similar materials, up to 100 MPa. These high pressures
are used especially for the fabrication of optically transparent ceramics, where 100% density is
critical. In these cases, SPS runs only need to last a few minutes in some cases depending on the
size of the part. However, the highest pressures can also cause problems during sintering,
especially for large, brittle materials, which is the case for the oxide ceramics in this study.

The large diameter and thickness of the resultant materials combined with the very sensitive
and fragile nature of these ceramics in the presence of any flaws, suggest that lower pressure
settings for longer times could be beneficial in reducing cracking and breaking during the
sintering process. Small internal porosity if not completely removed during SPS, will remain in
the material after it solidifies. These small pores will maintain residual internal pressure equal to
the initial external applied compressive stress. Therefore, upon pressure removal, internal voids
can cause the final material to crack.

It is often necessary to obtain 100% dense materials for use in optical applications where
transparency is required. The presence of voids in not fully dense ceramic materials will prevent
transparency, and cause the resulting materials to be ineffective in their primary application.
However, for the purposes of obtaining consistent, reliable mechanical test specimens, materials
with densities of approximately 98% - 99% of the theoretical material density will exhibit near
maximum mechanical performance, and very small internal porosity should not affect the overall
mechanical results. Therefore, lower pressures and extended times were selected for the
processing of YAG and LuAG in this study. Analysis of the results of previous oxide ceramic

processing resulted in the selection of pressure settings between 20 MPa and 50 MPa as likely
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parameters to produce near theoretical density parts while attempting to reduce cracking and
maintain the structural integrity of the larger diameter parts.

At these temperature and pressure settings, it was determined that maximum compaction and
densification will occur in less than 15 minutes. Figure 31 shows an example of an SPS cycle
under the conditions mentioned above. The bulk of compaction occurs within approximately 10
minutes, while slow final densification occurs over a longer span of time during cooling.
Therefore, hold times at maximum temperature and pressure were selected between 15 and 30

minutes.
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Figure 31: Typical SPS processing cycle with parameter settings of 1350°C and 20 MPa.
The hold time at maximum temperature can directly impact grain growth. The longer the
material remains at maximum temperature, the more grain growth can occur. Therefore, it is not
typically desired to allow SPS cycles to run excessively long, as grain growth can perpetuate and
eventually the material will begin to crack and lose all strength. It was determined that by setting

the SPS hold time to 15 minutes for the majority of the processing runs, grain growth remained
expected and manageable, and the variation in grain size was caused primarily by the
temperature setting and no by varying the hold time. Therefore, the vast majority of the SPS runs

were kept to 15 minutes.

102



Heating and cooling rates were significant in maintaining homogeneous temperature
throughout the material within the die during sintering and also minimizing the potential for
cracking by reducing the possibility of thermal shock once the material was fully sintered. The
materials in this study are electrical insulators, which means that heating within SPS occurs by
contact with the upper and lower punch. An electric current is typically used to heat the material
rapidly and evenly; however, in the case of non-electrically conductive materials, the current will
not pass through the material, and heating occurs by conduction through the heated punches in
contact with the powder. This also means that even heating can become a problem under such
rapid sintering conditions, and temperature gradients can form causing a portion of the powder to
sinter first. Specifically, as heat enters the sample powder from external contact with the heated
SPS punches and die, the outside volume of powder can sinter before the center. This can
constrain the inner powder during sintering and the outer solid material can crack.

As a preventative measure to ensure even heating and to minimize cracking, a typical rapid
heating rate was slowed to 35°C/min and an isothermal segment was added during heating. It
occurred during heat up at 1000°C just prior to sintering for 5 minutes. This allows the powder to
reach a uniform temperature just prior to sintering and allow densification and sintering to occur
evenly throughout the entire volume of ceramic powder [251]. Many different types of materials
will be resilient and forgiving of these potential problems with cracking; however, the brittle and
fragile nature of YAG and LuAG requires this type of planning and modifications to typical SPS
cycles.

Similarly, the cooling rates were reduced to prevent thermal shock or rapid change in volume

of the final sintered material, which could also contribute to cracking and the formation of
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residual stresses within the material. Cooling rates began at 20°C/min, and were reduced to as
low as 2°C/min.

All these SPS parameters were varied for different billets of each material. Parameters were
adjusted in order to find the optimal settings to reduce cracking and to develop a consistent
procedure for high-quality oxide ceramics processed via SPS. However, once successful billets
were obtained and optimal settings and procedures were determined, the SPS parameters
continued to be adjusted from run to run within the determined optimal range of settings in order
to produce a wide variety of grain sizes for each material. The complete table of the SPS
parameter settings that were used for each billet is shown in Appendix A. Additionally, pictures
and properties of each SPS billet, along with profile graphs of each SPS cycle can be found in

Appendix C.

3.2.4. Post processing and Overview of Resultant Materials

After each SPS run, the pucks were carefully removed from the mold. The appearance of
both YAG and LuAG pucks is dark in color, almost black and opaque, due to the residual
Carbon content absorbed during sintering. A sintered YAG puck is shown in Figure 32, prior to

any heat treatment.
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Figure 32: Example of 40-mm diameter YAG puck following SPS before heat treatment.

Raised edges are due to the remaining graphite foil wrap, which is placed around the

powder before sintering occurs.

Following sintering each puck is quickly sand blasted in order to remove any lose flaky
material that did not fully sinter as well as the remaining graphite foil wrap, which can often
stick to the sides of the puck. Next, the pucks are heat treated in order to remove the remaining
Carbon content. Each puck is placed into an alumina boat and carefully placed into a tube
furnace with a minimum inner diameter of 2 inches so that the 40 mm pucks can fit without
contacting the sides of the tube. The steps of each heat treatment are as follows:

- Ramp from room temperature to 1500°C at 60°C/min
- Soak at 1500°C for 10 hours
- Cool slowly at 10°C/min back to room temperature

Following heat treatment, the pucks are mostly white in appearance, but vary slightly
depending on the material variant and the specific physical properties of each puck.

Pucks with a higher density, close to the theoretical material density, can appear partially
transparent; however, the optical properties were not under investigation in this study, so SPS
parameters were chosen in order to minimize transparency. Some processed materials maintained

a small carbon content, and as a result, appeared slightly gray in color. Additionally, YAG pucks,

105



which were doped with Erbium appeared light pink in color, which was the only notable and
consistent difference in appearance across each material variant. Figure 33 shows a side-by-side

comparison of each YAG variant, and Figure 34 shows a similar 40 mm puck of LuAG

following sintering and heat treatment.

Figure 33: 40-mm diameter YAG pucks following sintering and heat treatment. Small
hairline fractures are partially visible. Material variants include: a) Undoped YAG b)

2at% Yb-doped YAG c) 2at% Er-doped YAG

Figure 34: 40-mm diameter LuAG puck following sintering and heat treatment.
Each processed material was approximately 7 mm thick following SPS, but varied slightly
based on the final amount of densification that occurred during processing. Additionally,
throughout this entire SPS study, pucks were processed using SPS molds of three different
diameters: 20 mm, 25 mm, and 40 mm. Larger puck sizes are ideal for obtaining mechanical test

specimens, as more specimens can be produced for microstructural analysis and mechanical
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testing from a single processing run. This also ensures more continuity of properties across more
specimens, which come from one processed puck. However, significant cracking was observed
in several of the larger pucks, while the smaller pucks were typically undamaged. As a result,
several SPS runs were conducted with smaller mold sizes.

SPS parameters were tailored slightly, in order to determine their effects on the structural
integrity of the resultant material, and to ultimately minimize cracking in the 40 mm diameter
pucks. The varying SPS parameters certainly had significant effects on the material
microstructure and the associated material properties, as is shown in the later chapter focusing on
the material microstructure; however, adjusting specific SPS parameters proved to be less
effective at minimizing the inevitable cracking that often occurred within the 40 mm diameter

pucks. Figure 35 shows a damaged 40 mm diameter puck following processing.

R

Figure 35: A damaged 40-mm diameter LuAG puck following processing with several

distinct cracks through the thickness.

After conducting a thorough investigation into the possible causes of cracking during SPS
processing, it was concluded that varying the SPS parameters within reasonable limits does not
have a significant and consistent effect on the final cracking of the material. Rather, the most
effective way to minimize cracking was to ensure that uniform heating occurs across the cross

section of the material by careful and delicate handling of the powder and die preparation prior to
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sintering. In order to minimize temperature gradients within the specimen during heating,
excessive care must be taken while loading the powder, ensuring that the graphite foil wrap and
upper and lower covers are perfectly cut to the inner dimensions of the mold, leaving no
uncovered powder and no overlapping of graphite. The addition of a boro-nitride coating onto
the upper and lower punches during SPS was also added in order to reduce cracking by
minimizing excessive heating along the puck edges by means of electric current.

Each specimen was given an alphanumeric designation in order to keep track of processing
parameters and material properties. The format of each designation is as follows:

Material Abbreviation — Dopant Abbreviation — Overall Billet # — Puck Diameter

The first character identifying the material is the first letter of the material (either L or Y for
LuAG or YAG, respectively). Additionally, if no dopant was present then the second field is
removed. For example, the second YAG billet, which had a 40 mm diameter, would be written as
follows: Y-2-40. The first LuAG billet, which had a 20 mm diameter, would be written as
follows: L-1-20. Finally, the third 2at% Yb-doped YAG billet, which had a 40 mm diameter,
would be written as follows: Y-Yb-3-40.

In total 20 LuAG pucks were processed via SPS. Initially a single 20-mm LuAG puck was
processed to prove the processing method and results. Seven more 25-mm LuAG pucks were
processed, and 12 more 40-mm LuAG pucks were processed. These quantities are tabulated in
Table 11. 14 undoped YAG billets were processed, three of which were 25 mm in diameter and
the remaining were all 40 mm. Undoped YAG names and sizes are tabulated in Table 12. 10
billets were processed for 2at% Er-doped YAG, four of which were 25 mm in diameter and the
remaining were all 40 mm. Er-doped YAG names and sizes are tabulated in Table 13. Finally, 10

billets were processed for 2at% Yb-doped YAG, one of which was 20 mm in diameter, three
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were 25 mm in diameter, and the remaining were all 40 mm. Yb-doped YAG names and sizes
are tabulated in Table 14.

Table 11: LuAG Sample Data

Processed LuAG Pucks
Billet Billet | Diameter Billet Billet Diameter Billet Billet Diameter
Number | Name [mm] Number | Name [mm] Number | Name [mm]

1 L-1-20 20 8 L-8-25 25 15 L-15-25 25
2 L-2-25 25 9 L-9-25 25 16 L-16-25 25
3 L-3-40 40 10 L-10-40 40 17 L-17-40 40
4 L-4-40 40 11 L-11-40 40 18 L-18-40 40
5 L-5-40 40 12 L-12-40 40 19 L-19-40 40
6 L-6-40 40 13 L-13-40 40 20 L-20-25 25
7 L-7-40 40 14 L-14-25 25

Table 12: Undoped YAG Sample Data

Processed YAG Pucks
Billet Billet | Diameter | Billet Billet Diameter | Billet Billet Diameter
Number | Name [mm] Number | Name [mm] Number | Name [mm]
1 Y-1-25 25 6 Y-6-25 25 11 Y-11-40 40
2 Y-2-40 40 7 Y-7-40 40 12 Y-12-40 40
3 Y-3-40 40 8 Y-8-40 40 13 Y-13-40 40
4 Y-4-40 40 9 Y-9-40 40 14 Y-14-40 40
5 Y-5-25 25 10 Y-10-40 40

Table 13: 2at% Er-Doped YAG Sample Data

Processed 2at% Er-Doped YAG Pucks
Billet Billet Diameter | Billet Billet Diameter | Billet Billet Diameter
Number Name [mm] Number Name [mm] Number Name [mm]
1 Y-Er-1-40 40 5 Y-Er-5-25 25 9 Y-Er-9-40 40
2 Y-Er-2-40 40 6 Y-Er-6-25 25 10 Y-Er-10-40 40
3 Y-Er-3-25 25 7 Y-Er-7-40 40
4 Y-Er-4-25 25 8 Y-Er-8-40 40
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Table 14: 2at% Yb-Doped YAG Sample Data
Processed 2at% Yb-Doped YAG Pucks
e iteame [ Dot Bt T Bilt T Dtamer [ Bk T it ame | P
1 Y-Yb-1-20 20 5 Y-Yb-5-25 25 9 Y-Yb-9-40 40
2 Y-Yb-2-25 25 6 Y-Yb-6-40 40 10 Y-Yb-10-40 40
3 Y-Yb-3-40 40 7 Y-Yb-7-40 40
4 Y-Yb-4-25 25 8 Y-Yb-8-40 40

Each puck was cut into several specimens following processing. Small pieces of essentially

any shape, which were too small to be used for any mechanical test, were cut from each puck in

order to conduct a thorough microstructural investigation, primarily by means of scanning

electron microscopy. Remaining small pieces with unspecified dimensions were used to

determine the material density, the possible presence of impurities, and to analyze the material

composition. A detailed description of specimens used for microstructural evaluation is included

in Section 4.1. Larger specimens of specific dimensions and geometry were also cut from each

puck and used for creep testing. A 40-mm diameter puck with no cracks could theoretically be

used to fabricate up to six creep test specimens. However, it was more common to only produce

between two and four creep test specimens due to cracking and chipping during processing and

specimen fabrication. A detailed description of creep test specimen design and fabrication is

included in Section 5.1.
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4. Characterization and Microstructural Analysis

4.1. Scanning Electron Microscope Specimen Preparation

Once processing via SPS was complete, and each puck was heat treated to remove any
remaining Carbon content, each puck was cut into small specimens for microstructural analysis.
At least 3 small pieces were removed from each puck in order to take density measurements,
undergo impurity analysis, and to be analyzed in the scanning electron microscope (SEM). The
specific size and shape of these specimens was not critically important. However, specimens
prepared for the SEM were typically cut from each puck with one flat surface at least 10 mm in
length.

In order to obtain clear images of each specimen in the SEM, they were each mounted in
epoxy and polished so that small details and features would be visible on the surface and would
not be obstructed by imperfections in a rough, scratched finish. For a clear view of the surface
porosity and the grain structure within the SEM, a detailed sample preparation procedure was
developed and applied to each specimen prior to viewing. For standard microstructural
evaluation in the SEM, each specimen was mounted in an epoxy puck in order to easily handle

the specimen during polishing. Two examples are shown in Figure 36.

Figure 36: YAG and LuAG specimens mounted in epoxy pucks for microscopic evaluation.
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Once the specimens were mounted in epoxy, the surfaces could be thoroughly polished. All
pucks were leveled, ground, and polished using a Buehler Polimet I manual polishing wheel,

shown in Figure 37.

Figure 37: Buehler Polimet I manual polishing wheel.

Each sample must be polished using a sequential order of polishing pads, beginning with a
relatively rough low-grit abrasive pad to remove the outer layer of epoxy and level the surface of
the specimen. Then various polishing pads were used with sequentially finer diamond particle,
water-based suspensions. For YAG and LuAG specimens, each polishing step lasts for
approximately 5-10 minutes and requires a moderate amount of pressure placed evenly on the
backside of the puck while held on the polishing wheel. Several iterations of sample polishing
were required in order to develop a specific procedure, which successfully removed enough
imperfections and scratches from the sample surface, producing a mirror-like finish. Several
dissertations and published papers were reviewed in order to determine the general procedures
for polishing hard ceramic specimens [30], [31], [252], [253]; however, specific procedures with
adequate details for these materials were not found in the literature. Ultimately, the most
effective method for producing successful polishing procedures came from trial and error based
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loosely on procedures established previously for similar materials. A detailed procedure for
sample preparation, to include mounting in epoxy as well as the order and type of polishing pads

used to prepare the surface of each specimen for the SEM, can be found in Appendix D.

4.2. Density Measurements

The density of each specimen was measured prior to any creep testing or further material
characterization. Density is a critical material property when determining the porosity present in
the material and is important when comparing creep rates to similar materials. It also helps
determine the success of SPS as a processing method, as it is typically chosen because of its
ability to create near theoretical density ceramics. The measured density can then be compared to
the theoretical density of each material to determine the overall quality of the processed ceramic
and to determine expectations of mechanical performance.

Density was determined for each specimen by two methods: the Archimedes density
measurement method and by Helium pycnometry. Results were averaged together to obtain the

most accurate approximation of the true bulk density of each specimen.

Density Measurements by the Archimedes Method

To obtain the bulk density of a material one must simply divide the total mass by the volume
of the material. This becomes more difficult when the material has an irregular shape or small
imperfections, making the precise volume difficult to determine. In order to determine the
accurate volume of each specimen, the Archimedes principle is used. The Archimedes principle

states that “a body immersed in fluid is buoyed up by a force equal to the weight of the fluid
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displaced” [254]. Therefore, the buoyancy force acting on the object is equal to the volume of the
object multiplied by the density of the fluid and the force of gravity, represented by Equation 19.
Fy = (psV)g (Equ. 19)
Because the density of a common fluid, such as water, pf, is well known along with the force
due to gravity, g, the volume, ¥, can be found by determining the buoyancy force, F;,. The
buoyancy force can be determined by simply subtracting the weight of the material in water from
the weight of the material in air. Therefore, the precise volume of the material specimen can be

determined by combining these two ideas into the following equation:

_ Wair—Wwater
V= o (Equ. 20)

The final density of the material is then calculated using Equation 21 [254]:

p zgzww_# (Equ. 21)
The Archimedes density measurement was accomplished by using a laboratory balance and
an apparatus that allows the material to be immersed in water and the corresponding mass to be
measured, which includes the opposite buoyancy force. Three mass measurements are taken
during the Archimedes density measurement procedure: the dry mass of the material, the mass of
the material while fully immersed in water, and the “wet” mass of the material, which is
measured in air with all open porosity fully saturated with water. The procedures for the
Archimedes density measurements are visualized in the following Figures. Figure 38 shows the

dry sample weighed in a standard sample tray. Figure 39 shows the wire basket held above the

scale with no water. Figure 40 shows the sample held in the wire basket immersed in water.
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Figure 40: Sample immersed in water and held in wire basket.
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The Archimedes density measurement procedures were accomplished three separate times
over three different days for each specimen. The water temperature was measured during each
procedure in order to ensure the density of the distilled water was accurate. Once the dry mass,
the mass of the sample immersed in water, and the mass of the wet sample in air were recorded,

the density was calculated using Equation 21 described above.

Density Measurements by a Helium Pycnometer

In order to obtain the most accurate density measurements for each specimen and to verify
density measurements found by means of the Archimedes method, the densities of each
specimen was measured by means of a Helium pycnometer. A pycnometer measures the volume
of a small material specimen by injecting a gas, such as Helium, into a chamber of known
volume, containing the specimen. The resulting equilibrium pressure change is measured and
compared with the corresponding pressure obtained from the empty chamber with calibrated
volume [255]. If the mass of the specimen is known, the apparent density of the material can be
determined. Helium pycnometry is considered an accurate method of determining specimen
density for small samples of unknown or irregular volumes [255]. Figure 41 shows a diagram of
the Micromeritics AccuPyc 1330 Helium pycnometer, which was used to measure the density of
each specimen. Figure 42 shows a schematic of the internal layout of the pipes and chambers

within the pycnometer system, presented in the AccuPyc 1330 operator’s manual [256].
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Figure 41: AccuPyc 1330 Helium Pycnometer used for density measurements. Reproduced

with permission from the Micromeritics Instrument Corporation [256].
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Figure 42: Schematic of the internal layout of the AccuPyc 1330 Helium Pycnometer.

Reproduced with permission from the Micromeritics Instrument Corporation [256].

Summary of Density Results

For each specimen multiple density measurements were averaged and then compared to the
theoretical density of each material found in the literature. The density measurements can be
found in the tables in Appendix B, which lists all the creep specimen dimensions, mass, and

density. Appendix B also shows the densities of each creep specimen from the same SPS billet
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averaged together, which are then shown as a percentage of the theoretical density of each
material.

The theoretical density of YAG as reported in the literature is 4.6 g/cc. It should be noted that
the published theoretical density of YAG has varied between sources [27], [257], [258]. The
higher published density of 4.6 g/cc was chosen for use here to provide a conservative
comparison [257]. However, some sources report theoretical densities from 4.53 to 4.56 g/cc for
YAG [27], [258]. Similarly the higher published theoretical density of LuAG is 6.71 g/cc as
found in literature [109].

Generally, the densities of the YAG and LuAG specimens were found to be very near
theoretical density, indicating the high quality of the processing method. For YAG specimens,
doped and undoped, the measured densities were found to be between 97% and 100% of the
theoretical density, with the majority of specimens falling between 98% and 99.5%. The
densities of the LuAG specimens were found to be slightly lower on average, with a range

between 96% to 100% of the theoretical density.

4.3. Grain Size Analysis

4.3.1. Overview of Grain Size Analysis in the SEM

Grains in a crystalline material refer to individual crystals with long range atomic order and
consistent orientation [259]. Each grain contains a consistent pattern of atoms. Polycrystalline
materials possess many crystal grains in many orientations. The size of each grain may be small
(< 1 um), but they can contain thousands or millions of atoms. The regions between each grain

are called grain boundaries, which are regions of short-range disorder and inconsistent atomic
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arrangements [259]. Atoms along a grain boundary may not align with any of the adjacent
grains, and are not as densely packed. These atoms are not ordered like the adjacent crystal
structures, and typically possess a higher internal energy. A diagram of the atomic arrangement

and orientation within crystal grains is shown in Figure 43.
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Figure 43: Diagram of crystal orientations within ceramic grains.

These characteristics of grains in a polycrystalline ceramic material significantly impact the
mechanical properties. Additionally, the size and shape of grains and grain boundaries impact
diffusion in a material, which greatly affects deformation at high temperatures. Since grain
boundaries are regions of less densely-packed, disordered atoms, the rate of diffusion can be
increased at the grain boundaries, as there are generally more vacancies than are found in the
crystal lattice within a grain. Therefore, the characteristics of grains, specifically their size, are
critical when studying the creep behavior of ceramics, especially when creep primarily occurs by
atomic diffusion.

For this reason, grain size and structure are typically analyzed in order to understand the
high-temperature behavior of polycrystalline, ceramic materials. Ceramic grains are not perfect
spheres, but rather are irregular polyhedrons, and are generally closely packed together,
encompassing the entire material microstructure. Quantifying the size of the grains within a
polycrystalline ceramic can be an efficient way to understand and predict the material behavior,
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and compare performance with similar materials. Fine-grained materials are generally denser
with less porosity, and are stronger at room temperature than materials with larger grains.
However, larger grains contribute to increased creep resistance at elevated temperature. A
material with larger grains will have fewer grain boundaries, and therefore, will see less grain
boundary sliding during deformation.

The microstructural characteristics of each SPS billet was determined by analysis in a

TESCAN MIRA 3 scanning electron microscope (SEM), shown in Figure 44.

-

Figure 44: The Tescan Mira 3 Scanning electron microscope, used for all microstructural
analysis and grain size measurements.

The various SEM settings were carefully scrutinized in order to determine the parameters
that resulted in the best images of the ceramic grains. This issue is complicated further due to the
fact that these oxide ceramics are nonconductive, which means they must be carefully prepared
and coated with a conductive material, in order to obtain clear images in the SEM. In this case, it

was necessary to coat each polished SEM sample with approximately 10 nm of Carbon.
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The grains of YAG and LuAG became the most visible in the SEM when receiving a signal
from the detection of backscattered electrons. The two primary types of electrons detected in an
SEM are secondary electrons (SEs) and backscattered electrons (BSEs), which both result from a
targeted beam of primary electrons coming in contact with the surface of a sample. SEs originate
from the specimen itself. They are low-energy electrons that have been excited and ejected from
their positions within the target atoms by contact with the primary electron beam. SEs are a
result of inelastic interactions between the beam and the specimen. Because SEs are low energy
electrons, they typically originate from only a few nanometers below the sample surface. This
SEM mode is typically used for imaging very precise and detailed surface topography of a
specimen.

BSEs are electrons that originated from the primary electron beam and have been reflected
back after elastic interactions with the specimen. They typically can reach deeper below the
surface of the specimen, so features just below the surface can be observed, such as sub-surface
porosity. BSEs are highly sensitive to the specific attributes of the atoms with which they
interact, so they typically reveal significant contrast between different elements. This can be
useful for identifying various elemental phases within a specimen. BSEs can also provide similar
contrast due to interactions with different crystal orientations, and, therefore, can detect grains
and grain boundaries present at the sample surface.

Grain sizes for each billet of YAG and LuAG were widely varied due to the different SPS
parameter settings used during processing. The smallest grain sizes in fine-grained materials
were determined to be approximately 0.3 pm. The largest grain sizes were determined to be
greater than 10 um. These grain sizes, as well as several other grain sizes within this range, were

similarly found for billets of each material variant in this study, including doped YAG.
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Examples of SEM micrographs obtained from fine-grained billets of each material variant used

in this study are shown in Figure 45.

SEM HV: 15.0 kV WD: 6.46 mm SEM HV: 18.0 kV WD: 8.22 mm MIRA3 TESCAI

View field: .00 pm SEM MAG: 46.1kx 1pm View field: 4.00 pm Det: BSE 1 pm
Det: BSE Date(m/d/y): 05/19/21 SEM MAG: 69.3 kx | Date(m/d/y): 11/17/20 Performance in nanospace

SEM HV: 15.0 kV WD: 8.00 mm MIRA3 TESCAN| SEM HV: 15.0 kV WD: 5.99 mm

SEM MAG: 46.1 kx | View field: 6.00 ym 1 pm View field: 8.00ym SEM MAG: 346 kx ' 2pm
Det: BSE Date(m/dly): 05/18/21 Performance in nanospace Det: BSE Date(m/dly). 05/19/21

Figure 45: SEM micrographs of fine-grained billets of YAG and LuAG: a) Undoped YAG
from billet Y-6-40; b) Yb-doped YAG from billet Y-Yb-1-20; ¢) Er-doped YAG from billet
Y-Er-8-40, d) Undoped LuAG from billet L-7-40.

A primary observation from Figure 45 is that the microstructures of each material variant are
nearly identical. They each possess close-packed, polyhedron grains, and also reveal minimal
porosity. These characteristics suggest that each material would perform similarly in creep under
the same conditions. Two more examples of SEM micrographs obtained from large-grained

billets of YAG and LuAG are shown in Figure 46.
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SEM HV: 15.0 kV WD: 7.95 mm MIRA3 TESCAN| SEM HV: 18.0 kV WD: 9.03 mm
SEM MAG: 3.59 kx | View field: 77.0 ym 20 ym SEM MAG: 2.77 kx  View field: 100 pm 20 um
Det: BSE Date(m/dly): 06/07/21 Performance in nanospace Det: BSE Date(m/d/y): 12/17/20 Performance in nanospace

Figure 46: SEM micrographs of large-grained billets of YAG and LuAG: a) Undoped YAG
from billet Y-13-40; b) Undoped LuAG from billet L-1-40.
The grains observed in Figure 46 are significantly larger than the grains observed in Figure
45. There is also additional porosity observed in the larger-grained specimens. The vast majority
of the pores appear along the grin boundaries, which are formed during sintering. Generally,
large-grained ceramics tend to be more porous, which also contributes to their reduced strength
compared to fine-grained ceramics. However, large grains can be very advantageous in creep,

which will be investigated in later sections.

4.3.2. Grain Size Measurement Techniques

These SEM micrographs were also used to quantify the average grain size of each material
billet. Ceramic grains can be measured in a variety of ways. One such way is by determining the
grain size number, described by ASTM E112-13 [260]. This ASTM standard describes two
primary methods: the planimetric method and the intercept method. The planimetric method
involves counting the number of grains within a known area. A commonly used version of this
method typically utilizes Equation 22, where 7 is the number of grains per square inch, and G is

the ASTM grain size number.
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n=206"1 (Equ. 22)

The grain size number is inversely proportional to the actual size of the grains. In other
words, for smaller grains, the grain size number is larger. The second method for determining the
grain size number is the intercept method. This involves drawing a line over an image of the
surface of the material containing grains. Then the number of intersected grains or grain
boundaries are counted to reveal the number of grains per line of known length. From this
measurement, the grain size number can be determined.

Besides the ASTM grain size number, the most common way to quantify the average size of
grains is by determining the average grain diameter. Since grains are not circular, the average
grain diameter is actually the diameter of a circle of equivalent area. This equivalent diameter of
grains is typically referred to as the average grain size. The intercept method is commonly used
to determine the average grain size as well. As was described above, a line, or several lines are
drawn over a clear surface image of a material containing visible grains. The length of the line is
divided by the number of intersected grains to reveal the average grain size. The greater the
length of the lines and the more grains intersected, the more accurate this method will be.

In recent years, the most accurate method considered by many for determining grain size is
the use of image analysis software. If there is significant visual contrast between neighboring
grains, then the details each grain can be quantified including its diameter, area, aspect ratio,
length of grain boundaries, among others. Because this method can be automated, it can be
performed over thousands of grains, creating much more statistically significant results.

In order to analyze the grains and quantify the average grain size in polycrystalline YAG and
LuAG in this study, the average grain diameter was determined by the manual intercept method,

and also by digital image analysis of grains after thresholding. These two methods gave very

124



consistent results, and eventually became equally valuable and interchangeable when analyzing
grain size.

When determining grain size by means of the intercept method, at least five lines were
manually drawn over an SEM image with clearly visible grains using Adobe Photoshop. The five
lines were spread out over the entire image, and were drawn such that they overlapped as many
grains as possible. Figure 47 shows micrographs of two different YAG specimens and Figure 48
shows micrographs of two different LuAG specimens, whose grain sizes were quantified by the

use of the intercept method. The five lines are visible in each micrograph.

SEM HV: 15.0 kV WD: 8.07 mm i MAIA3 TESCAN SEM HV: 15.0 kV WD: .97 mm I — ——— MAIA3 TESCAN

View field: 100 um SEM MAG: 2.77 kx | 20 pm View field: 8.00 ym SEM MAG: 346 kx 2 pm
Det: BSE Date(m/d/y): 03/01/21 Det: BSE Date(m/dly): 05/19/21

Figure 47: Micrographs of two different YAG specimens with lines used to determine the
average grain size by means of the intercept method: a) Image from billet Y-2-40 and b)

Image from billet Y-4-40.
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MAIA3 TESCAN SEM HV: 15.0 kV WD: 5.91 mm { - ) MAIA3 TESCAN
View field: 10.00 ym SEM MAG: 27.7 kx 2 pm
Det: BSE Date(m/d/y): 03/04/21 Det: BSE Date(m/dly): 05/20/21

Figure 48: Micrographs of two different LuAG specimens with lines used to determine the
average grain size by means of the intercept method: a) Image from billet L-6-40 and b)
Image from billet L-8-40.

The second method used to quantify the average grain size of each billet in this study was the
measuring the area of each grain from an SEM micrograph by the use of digital image analysis
software. In order for each grain to be visually identified and separated from the adjacent grains,
the color contrast from each SEM image first had to be exaggerated, creating a more significant
threshold between each grain and the surrounding background. In order to accomplish this,
Adobe Photoshop was used to capture each grain and copy the identical shape in black onto a
white background. An example of this procedure, which was accomplished for LuAG billet L-1-
20, is shown in Figure 49. In this case 275 grains were copied from one SEM image. The scale
bar was also copied and is visible in Figure 49 in order to maintain an accurate reference to

determine the grain size.
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Figure 49: Grain thresholding procedure for digital image analysis of LuAG billet L-1-20.
The standard image analysis add-on in Adobe Photoshop is adequate for capturing the size
and shape of grains. Using the threshold image, shown in Figure 49, each grain is analyzed using
number of pixels, which can be translated into meaningful units, such as micrometers, in
Photoshop. The software outputs the area, perimeter/circumference, the height, and the width of
each grain. Using the area obtained for each grain, the diameter of an equivalent circle can be
determined. These diameters are then averaged for each grain from the original SEM image,
resulting in the average grain size for that billet.
These two measurement techniques consistently resulted in grain size agreement within
5%. Therefore, the grain size measurement process was eventually reduced to solely using the
intercept method. The measured grain size for each billet, as well as the accompanying SEM

images, can be seen in Appendix C.

4.3.3. Effects of SPS Processing Parameters on Grain Size
The grain size of each billet of YAG and LuAG was determined and correlated with the

individual processing parameters used during SPS. The primary parameters that consistently
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varied between different billets were the SPS temperature and pressure. As was discussed in
Section 3.2.3, a range of temperature and pressure parameter settings were used in order to
determine their effects on the microstructure and the overall quality and consistency of each
processed billet. These two parameters were identified for each billet and their individual effects
on the resultant grain size of each material was determined. Graphs of SPS temperature vs. grain
size for YAG billets are shown in Figure 50. Each graph demonstrates the grin size dependence
on SPS temperature for a given pressure. Each of the billets included in an individual graph were
processed at the same identified pressure and a consistent hold time of 15 minutes. Not all SPS
billets are included in these figures, as some of them were processed using inconsistent settings,

such as extended hold times, and cannot be directly compared.
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Effects of SPS Temperature on Grain Size at 40 MPa
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Figure 50: The effects of the SPS temperature setting combined with various pressure
settings during sintering on the resulting grain size of YAG.
These four graphs are overlaid in Figure 51 in order to more easily observe the overall effects

of temperature for each individual pressure setting.
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Figure 51: Summary graph of the effects of temperature on the resultant grain size of
YAG.

Figure 50 and Figure 51 reveal an increasing trend in grain size based on increasing SPS
temperature. There is very little grain size variation between 1300°C and 1400°C sintering
temperatures; however, at 1500°C and 1550°C the average grain size of the YAG billets tends to
be larger with more variation between SPS runs. Due to the limited number of specimens
processed at each temperature and pressure setting, these results only provide a potential
correlation between temperature and grain size, and more SPS runs are necessary to produce
more statistically significant results. However, the consistency of the temperature effects at each
pressure setting suggests that at 1550°C, significantly more grain growth occurs in a short
amount of time.

This is consistent with what has been determined in other investigations of grain growth in
YAG during sintering. In each case grain size slightly increases with increasing sintering
temperature until a threshold temperature is reached, after which grain growth increases rapidly.
Kochwattana et al. [261] identified this phenomenon occurring at 1700°C when sintering YAG

by means of cold isostatic pressing, then heating in a vacuum. Jia et al. [262], [263] also
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observed this occurring in YAG above 1500°C with the same sintering method. Chaim et al.

[242] observed rapid grain growth in YAG occurring at 1450°C during SPS. Similarly, Perez et

al. [228] identified only minimal grain growth due to SPS sintering temperature up to 1500°C,

but did not perform sintering runs at higher temperatures.

Any potential effects of SPS pressure on the resultant grain size in YAG were similarly

characterized. Graphs of SPS pressure vs. grain size for YAG billets are shown in Figure 52.

Each graph demonstrates the grain size dependence on SPS pressure for a given temperature

setting. Each of the billets included in an individual graph were processed at the same identified

temperature and a consistent hold time of 15 minutes.
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Figure 52: The effects of the SPS pressure setting combined with various temperature
settings during sintering on the resulting grain size of YAG.
Once again, these four graphs are overlaid in Figure 53 in order to more easily observe the

overall effects of pressure for each individual temperature setting during the processing of YAG.
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Figure 53: Summary graph of the effects of pressure on the resultant grain size of YAG.

The effects of SPS pressure on the resultant grain size are less clear and robust than the
correlation with temperature; however, two consistent trends emerged. First, at each temperature,
grain size tends to be smallest at 40 MPa. Again, more SPS runs are necessary to obtain more
conclusive results, but this was the consistent observation for the SPS runs conducted in this
study. Secondly, grain size appears to be more varied and less consistent at 20 MPa and 50 MPa.
This may have been expected at 20 MPa, as this pressure is rarely cited in the literature as a
typical SPS setting, due to the fact that with such a low pressure, densification may not fully
occur. However, 50 MPa is a common SPS pressure setting for YAG and similar ceramics. The
variation in grin size, resulting from this pressure setting is surprising, and additional SPS runs
followed by microstructural analysis may help to explain this phenomenon.

Graphs of SPS temperature vs. grain size for LuAG billets are shown in Figure 54. Each
graph demonstrates the grain size dependence on SPS temperature for a given pressure. Each of
the billets included in an individual graph were processed at the same identified pressure and a

consistent hold time of 15 minutes. Once again, not all SPS billets of LuAG are included in these
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figures, as some of them were processed using inconsistent settings, such as extended hold times,

and cannot be directly compared.
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Effects of SPS Temperature on Grain Size at 50 MPa
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Figure 54: The effects of the SPS temperature setting combined with various pressure
settings during sintering on the resulting grain size of LuAG.
The overall trend in grain size of LuAG billets based on the SPS temperature setting is more
easily visualized in Figure 55, where the results of grain size vs. temperature at each

corresponding pressure setting have been overlaid.
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Figure 55: Summary graph of the effects of temperature on the resultant grain size of
LuAG.
Very similar results were obtained by analyzing the grain sizes of LuAG billets and
correlating them with SPS temperature. In general, there is a slight increasing trend in grain size

as the SPS temperature setting is increased from 1300°C to 1400°C. At 1500°C and 1550°C the
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upward trend in grain size appears to grow significantly. Similar to YAG, these temperatures
may represent a sintering temperature threshold, above which the grain size of LuAG will
increase significantly in a short amount of time.

Trofimov et al. conducted a study of the effects of sintering temperature on the resultant grain
size of LUAG [264]. It was concluded that LuAG grain size increases as the sintering
temperature is increased. Furthermore, they observed that the rate of grain growth increases as
well from 1400°C to 1700°C, with a significant jump above 1600°C. A very similar result as
obtained by Marchewka [265]. He determined that LuAG grain sizes and grain growth rates will
increase based on sintering temperatures from 1400°C to 1700°C. LuAG materials in these
investigations were not sintered by SPS, as it is an uncommon sintering method for LuAG.
However, the relationship between grain size and sintering temperature is very similar to what
was obtained in this study.

The effects of SPS pressure on the resultant grain size in LuAG were similarly characterized
as they were for YAG previously. Graphs of SPS pressure vs. grain size for LuAG billets are
shown in Figure 56. Each graph demonstrates the grain size dependence on SPS pressure for a
given temperature setting. Each of the billets included in an individual graph were processed at

the same identified temperature with a consistent hold time of 15 minutes.
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3 Effects of SPS Pressure on Grain Size at 1400°C
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Figure 56: The effects of the SPS pressure setting combined with various temperature

settings during sintering on the resulting grain size of LuAG.

137



These four graphs are overlaid in Figure 57 in order to more easily observe the overall effects

of pressure for each individual temperature setting during the processing of LuAG.
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Figure 57: Summary graph of the effects of pressure on the resultant grain size of LuAG.

Similar observations can be made regarding grain size of LuAG as for YAG, based on the
pressure settings during SPS. The grain size does not fluctuate significantly with pressure
settings between 20 MPa and 50 MPa. However, consistently smaller grains are observed for
SPS runs at 30 MPa and 40 MPa. Again, many more SPS runs under these same conditions are
necessary in order to obtain more conclusive results; however, this result is consistent across all
the SPS runs conducted on LuAG billet in this study.

Additionally, there is once again more grain size variation at pressures of 20 MPa and 50
MPa. It is likely that this phenomenon is due to both the densification, and also the heat transfer
rates during SPS, which can both influence the resultant grain size and are both related to the

applied pressure.
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4.4. Porosity Analysis

Specimens from each puck were analyzed in the SEM in order to understand the general pore
size and distribution for each SPS billet. The density of each material was already determined,
which gives insight into the associated porosity; however, porosity was still examined in order to
ensure that there were no extremely large pores or internal cracks that could lead to premature
failure during creep.

Due to the various SPS parameters selected during processing, each resulting material billet
had a unique microstructure with various properties, including the size, shape, and location of
pores. The majority of the different billets of each material variant possessed small pores, which
were easily visible in the SEM. Typical pore size was less than 1 um in length, and were
polyhedrons in shape, similar to grains with sharp edges, which indicates that the pores were
often formed by material breaking and chipping at the grain boundaries. Figure 58 shows two
SEM micrographs of typical sample surfaces with visible pores. The SEM micrograph on the left
is from the undoped YAG billet Y-3-40, and the micrograph on the right is from the 2at% Yb-

doped YAG billet Y-Yb-3-40.

Sub-Surface Porosity

Surface Pores with
Undercut Edges

Surface Pores with
Edge Effect

SEM HV: 18.0 kV worttasmm | 0|00 MAIAZ TESCAN|
View field: 200 ym  SEM MAG: 13.8 kx | 5 pm
Det: SE Date(m/dly): 03/04/21

SEM HV: 10.0 kV ‘WD: 5.83 mm | | MIRA3 TESCAN]|

SEM MAG: 9.28 kx View field: 29.8 ym $pm
Det: SE Date(m/dly): 02/17/21 Performance in nanospace

Figure 58: SEM micrographs showing typical porosity in YAG specimens. Left: Billet Y-3-

40 with 98.9% theoretical density. Right: Billet Y-Yb-3-40 with 99.5% theoretical density.

139



When viewing porosity using the backscattered electron detector in the SEM, three variations
of pores can be observed and identified. BSEs make this possible as the shape and location of the
pores affect the resulting image characteristics. As was described in Section 4.3.1, BSEs can
originate from deeper regions of the sample below the surface. As a result, porosity below the
surface can be identified. However, due to their depth below the surface, they can appear blurry
and out of focus. Examples for sub-surface porosity are also identified in Figure 58. Surface
porosity is generally characterized by clear, dark regions, with sharp edges, often along grain
boundaries. Some surface pores simply appear as dark regions, while others appear dark with a
bright ring around the edges. This is known as the “edge effect” in SEM imaging. The edge
effect occurs when the primary electron beam hits the edges of pores, which results in
significantly more backscattered electrons being detected than a flat surface. This results in
excessive charging around the edges of the pore. If a surface pore has no edge effect, then it
could be that the pore edges are undercut and are not visible at all. In this case the majority of the

pore volume is beneath the surface. A diagram of the edge effect is shown in Figure 59.

Electron Probe Electron Probe

Secondary \'
electrons VY

N

Secondary

Secondary _
electrons

electrons
Secondary
electrons

Secondary
electrons Secondary
electrons
Interaction volume Titernctionvalune

Figure 59: Diagram of the edge effect when imaging a sample surface in the SEM from

Yoshida et al. [266]. Reproduced with permission from Elsevier.
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Significantly more porosity was observed in certain material billets, especially those with
larger grain sizes. Higher quantities and larger sizes of surface porosity was easily visible in
some SEM images; however, it was not always clear from density measurements. All SPS billets
in this study had a measured density between 96% and 100% of the theoretical density of the
material. Additionally, this small difference in specimen density did not always correlate to grain
size or differences in visible porosity. This could be due to variations in grain size and porosity
throughout a material billet. A specimen prepared for SEM imaging was much smaller than the
entire surface of an SPS billet, and an individual SEM image only captures a few micrometers of
distance on the specimen surface. Therefore, the overall porosity, density, and grain size were
difficult to correlate.

Several SEM micrographs of billets with much larger visible pores were obtained for some
billets. Figure 60 shows an SEM micrograph of the surface of the undoped YAG billet Y-2-40.
Several large surface pores with a bright edge effect are visible. The average measured density of

all specimens from Y-2-40 was 97.5% of the theoretical density of YAG.
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Figure 60: SEM micrograph of billet Y-2-40, showing surface porosity.
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Significantly larger surface pores with lengths of approximately 5-10 um are clearly visible.
Furthermore, sintering may have only been partially completed during the processing of this
billet, as individual particles are visible within the larger pores. This specimen was analyzed
further in the SEM, and the location of these pores relative to the grain boundaries can be viewed

in Figure 61.

; : e S
SEM HV: 15.0 kV WD: 8.07 mm

View field: 100 pm SEM MAG: 2.77 kx | 20 pm
Det: BSE Date(m/dly): 03/01/21

Figure 61: SEM micrograph of billet Y-2-40 with visible grain boundaries.

The majority of the pores seen in Figure appear along the grain boundaries. Perhaps sintering
and densification was not fully completed, as these pores along the grain boundaries should have
been removed during the final stage of sintering. This is likely the case based on the SPS
parameters selected for processing this billet. High temperature (1500°C) and low pressure (20
MPa) was chosen in combination with a longer hold time (20 minutes), which can enable further
grain growth. This combination of increased grain growth with minimal SPS pressure, which
decreases overall densification, can lead to increased porosity or cavity formation along the grain

boundaries. A clear example of this is seen in a separate SEM micrograph shown in Figure 62.
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Figure 62: SEM micrograph of undoped YAG billet Y-2-40, showing porosity joining

together along a grain boundary.

Despite the variation in porosity that was identified during microstructural examination of all
the different billets and all the material variants in this study, the measured densities did not
significantly vary. Furthermore, no consistent correlation could be made between specimen
density, pore size from individual SEM images, and the mechanical properties investigated later
in this study. Grain size and not porosity ultimately had the greatest impact on creep resistance.
In fact, larger grains, often associated with greater porosity, exhibited the highest creep

resistance for each material variant, which is discussed in Sections 6 and 7.
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4.5. Microhardness Evaluation

Generally speaking, hardness is a material characteristic that identifies the material’s
resistance to indentation. Using a known force, a small indenter is pressed into the flat surface of
the material, and the characteristics of the permanent indent, such as area or depth, reveal the
hardness of the material [267]. Although there are many different specific types of hardness tests,
the Vickers hardness test, also known as the microhardness test, was the most appropriate for
these materials. It is typically used for small, thin specimens, and it is also helpful in determining
the hardness of very brittle materials, which have the tendency to crack under a very small load.

The Vickers hardness test uses a very small, pyramid shape, diamond indenter, and uses very
light loads to try to create a permanent indentation on the material surface. Because the loads are
so light and the indentations are so small, the Vickers hardness test requires that the specimens
be polished prior to testing, so that the indentations can be clearly seen and measured. Therefore,
the same polishing procedures as was used for SEM specimens, which were described in Section
4.1, were also used to prepare specimens for hardness testing. The final depth of the indentation
was measured using an optical microscope.

Each hardness value presented for an individual specimen is the average of five individual
tests across the surface of each polished specimen. Hardness tests were not determined for all
specimens; however, several specimens were selected from each material variant that was
investigated in each study. Furthermore, several hardness tests were unsuccessful as the material
cracked during application of the load. Even as the load was lessened to the minimum amount,
certain samples still cracked at the point where the indenter came into contact with the surface of

the specimen. This is due to the extremely brittle nature of these oxide ceramics.
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Due to the tendency of the materials to crack during hardness testing, the load used to create
an indentation on the surface was lowered when necessary, in order to minimize cracking.
Generally, it is desired to use a larger load so that the visible indentation is larger. The larger the
indentation, the more reliable the resulting hardness value will be. The smaller the indentation,
the less reliable the hardness value will be due to the possibility of measurement error.
Therefore, each specimen was first tested using a larger applied load, typically between 100 g
and 500 g. If the specimen cracked immediately, then the load was lowered for the next test on
the same sample surface. This continued until the load reached 25 g, and in some extreme cases,
even 10 g. This is the lowest load value that could still produce a visible indentation.

Because several different loads were used to create the indentations on different specimens, it
was necessary to determine if the amount of load had an inconsistent effect on the final hardness
measurement. In other words, it must be determined if this particular material responds
differently under smaller vs. larger loads. It is already expected that the load directly impacts the

potential size of the indentation based on the following relationship:
Hy = 1854.4 (%) (Equ. 23)

where Hy is the Vickers hardness number, P is the load in kg, and d is the indentation diagonal
dimension in mm. However, some materials have been shown to deviate from this relationship
for particularly small or large loads. To determine if this is the case, the Meyer equation must be
considered as follows:
P = kd" (Equ. 24)
Once again, P is the test load, d is the diagonal length of the indentation, and k is a constant.
The exponent, n, represents the degree in which the material is affected by the test load. These

two equations can be combined, which results in the equation below:

145



H, = Cd"? (Equ. 25)
In order to determine the effects of test load on hardness, the indentation size vs. test load is
plotted on a log-log-scale. By applying a best fit line to the data, the exponent, n, can be
determined. Then by plotting hardness vs. indentation size on the same log-log scale, the effect
of test load can be visualized. A best fit line is similarly plotted over this data, and its slope
represents the degree to which the test load affects the resulting hardness. If z is found to be
equal to 2, then based on Equation 25, the slope of second line would be 0. These plots are

shown in Figure 63 and Figure 64 for the hardness of YAG and LuAG.
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Figure 63: Determination of the impact of test load on Vickers hardness results for YAG.
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Figure 64: Determination of the impact of test load on Vickers hardness results for YAG.

As Figure 63 and Figure 64 indicate, the exponent, n, was found to be 2 in both cases, and
the slope of the Meyer hardness line (shown in blue), is nearly zero. Therefore, the test load has
been adequately taken into account by using the original equation for Vickers hardness, shown in
Equation 23.

The individual results of hardness tests for each specimen are included in the tables in
Appendix A. Additionally, the results of the hardness tests for each material variant are
summarized in Table 15, which lists the number of specimens tested for each material, the
average hardness value, the range of grain sizes tested, and the maximum and minimum hardness
values determined for each material.

Table 15: Summary of hardness results for each material.

Number of | Average Range of Minimum Maximum
Material Samples Hardness Grain Size Hardness Hardness
tested [Hv] [pm] [Hv] [Hv]
LuAG 10 1625 0.32-10.78 1328 1839
Undoped YAG 8 1668 0.35-7.99 1390 1848
2at% Yb-Doped
YAG 8 1651 0.37-4.83 1442 1747
2at% Er-Doped
YAG 4 1591 0.45-2.82 1436 1742
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The hardness for each material is very high, well beyond that of most metals, and alongside
other similar ceramics, such as alumina. Table 15 indicates that there is a wide range of hardness
values obtained for the different specimen, even for the same material types. This is due to the
variation in grain size across specimens of each material. Hardness is usually correlated directly
with other material properties such as tensile strength. Increased grain size, although
advantageous for creep resistance, is typically detrimental to material strength. Therefore, it is
expected that the hardness would decrease with increasing grain size. This relationship was
originally discovered by Hall and Petch, and termed the Hall-Petch relationship [268]-[271]. It is

now defined as follows:

o, = 04 (%) (Equ. 26)

where gy, is the yield stress of the material, g, is a material property related to the stress required
to initiate dislocation motion, d is the grain size, and £ is a strengthening coefficient, which is
unique to individual materials. Although most often applied to metals, the Hall-Petch
relationship has been shown to hold true for polycrystalline ceramics as well. The hardness
values determined for YAG and LuAG were plotted vs. grain size in Figure 65 and Figure 66,

respectively.
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Figure 65: Hardness vs. grain size for three variants of YAG.
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Figure 66: Hardness vs. grain size for various LuAG specimens.

The Hall-Petch relationship appears to hold true for the hardness of YAG and LuAG, similar
to other materials. There is significant scatter in the hardness results, especially for specimens
with smaller grain size. This could be due to a variety of reasons, but most likely due to error
associated with grain size measurements and indentation size measurements during hardness

testing. In order to arrive at more concrete conclusions about the specific relationship between
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hardness and grain size for garnet ceramics, several more specimens would have to be tested at
each grain size.

Once additional specimens of each material variant are tested, then the potential difference in
hardness associated with the dopants in YAG could be determined more conclusively. Figure 65
shows three different groups of hardness results associated with undoped YAG, Yb-doped YAG,
and Er-doped YAG. The lines are nearly parallel, but stacked up, and not overlapping. This
suggests that the presence of dopants may negatively impact the hardness of YAG. However, this
is inconclusive, as the lines are not perfectly parallel, and the data appears scattered, especially at
lower grain sizes. Many more hardness tests are required in order to obtain more confident

conclusions about hardness and the presence of dopants.
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5. Creep Experimental Arrangements

5.1. Creep Specimen Design

Specimen Geometry and Dimensions

Following sintering and heat treatment, each puck was sectioned into small rectangular creep
test specimens. The initial geometry and dimensions for small compressive creep test specimens
were developed, tested, and validated by several previous students at AFIT, and this proven
specimen design was only minimally altered for this investigation. All specimen fabrication was
accomplished by the machinists at the AFIT Model Shop, and is described in detail in the
following paragraphs. Each specimen was cut according to the specifications shown in the
sample diagram in Figure 67. A more detailed fabrication drawing, which shows all the creep
specimen dimensions, including the size of the small grooves for extensometer mounting, is

shown in Appendix G.

450 650

N

19.00

Figure 67: Creep test specimen design with dimensions shown in millimeters.
Current processing limitations, excessive material costs, and the small size of the furnace
cavity, all require the use of small test specimens. Specifically, their thickness was limited by the
thickness of the SPS billets. Although thicker SPS billets can be fabricated, it was determined
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that it would be more cost effective to continue with small specimen dimensions. The creep
specimens must also fit inside a small furnace cavity. This cavity is small so that it can
effectively be heated and maintained at the desired temperature up to 1400°C. Additionally, the
small cross-sectional area of each specimen was also a result of the small surface area of the
compression push rods, which are part of the load train and are discussed in more detail later in
this section. These different factors all require that the small sides of the creep test specimens be
approximately 6.5 mm in length.

The height of each creep test specimen was determined primarily based on the extensometer
gauge length used in creep testing, which is 12.7 mm (0.5 in). Small grooves must be carefully
machined into one side of each specimen in order for the extensometer rods to remain in position
and not move or slide on the sample surface during testing. Therefore, the specimen height must
be greater than the extensometer gauge length, and the grooves must be far enough from the
upper and lower ends of each sample to ensure they do not affect the mechanical behavior of the
material and the associated test results. Additionally, the creep specimens cannot be excessively
long, as this will increase the potential for introducing bending effects during compression.

Previous creep studies at AFIT have established a baseline for the required height of each
creep specimen, based on these requirements, which was determined to be approximately 19 mm
(0.748 in). This allows for the center of each groove to be exactly 12.7 mm (0.5 in) apart, with
approximately 2.5 mm (0.098 in) in length above and below the upper and lower grooves,
respectively. This height also allows for the specimen to easily fit inside the furnace cavity [29],
[30]. The cross-section dimensions were chosen to provide each specimen with the required
stability while not laterally supported during each test. Additionally, the cross-sectional area is

not so large that the specimen could not be placed on and centered between the small
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compression push rods.

The extensometer groove shape and dimensions were determined based on the angle of the
extensometer rod tips and the desired contact points. Multiple groove shapes and associated
dimensions were attempted during this investigation. The initial grooves were rectangular and
were designed so that the chisel-shaped ends or cone-shaped ends of the extensometer rods will
contact the outer edges of the grooves and remain in place even during specimen deformation.
The groove depth was determined to ensure the extensometer rod tip would not contact the back
surface of the groove, where sliding can occur. This will ensure more consistent contact between
the specimen and extensometer, which will minimize any slipping during testing. A diagram of

the extensometer rod tip in contact with a specimen with rectangular grooves is shown in Figure

68.
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Figure 68: Diagram of extensometer rod tip and rectangular groove contact points.
During this investigation of creep behavior, it was determined that the presence of large
rectangular grooves could negatively impact the creep results. Therefore, a second extensometer
groove geometry was proposed and machined into several creep test specimens. This second

groove shape was designed to minimize the impact on the cross-sectional area. The shape was

153




changed from a rectangle to a triangular groove, and the depth was determined based on the
minimum required depth to effectively catch the tip of the extensometer and restrain movement.
Each triangular groove was approximately 0.25 mm (0.0098 in) deep and 0.25 mm (0.0098 in)
wide at the opening. A diagram of the extensometer rod tip in contact with a specimen with

triangular grooves is shown in Figure 69.
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Figure 69: Diagram of extensometer rod and triangular groove contact point.

After a preliminary and thorough investigation into the effects of these two extensometer
notch sizes, which were machined into several creep test specimens, it was determined that the
larger, yet more stable and secure, rectangular notches have too great of an impact on the
resulting mechanical tests. The rectangular notches are simply too large, and they created a
complex state of stress that resulted in inconsistent and, in some cases, unusually high creep
strain rates, which were observed during preliminary creep tests. It was determined that the small
triangular notches have a minimal impact on the mechanical behavior of each specimen, and that
this specimen design will likely produce the most consistent and reliable results. The details of
this preliminary investigation into the effectiveness of each notch size, and a comparison of the

associated creep results for specimens with both notch designs is shown in Appendix F.
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Creep Specimen Fabrication

Each creep test specimen was cut directly from the large circular pucks following SPS,
previously discussed in Section 3.2.4. In order to section each puck into creep specimens, the
following procedures were utilized. Each puck or cracked section of a puck was fixed onto a
custom mounting fixture by using a UV-curable adhesive. Specimens were rough-cut from each
puck with measurements slightly larger than the desired specimen dimensions using a diamond
slitting wheel on a surface grinder. A diamond grinding wheel was then used to slowly cut away
excess material to the exact desired dimensions. The extensometer grooves were also cut using
the same diamond slitting wheel. The rectangular grooves were cut using standard perpendicular
alignment of the wheel, and the triangular grooves were cut using the wheel positioned at a 45°
angle.

Occasionally the brittle specimens would chip or crack during fabrication, which could result
in the creep test specimen being unusable. However, creep test specimens were salvaged
whenever possible by reducing the final dimensions as necessary until a lower dimensional limit
was reached. This created the need for establishing minimum specimen dimensions and
maximum chip/flaw depth allowances. The primary requirements for cutting each specimen to
the desired dimensions and creating specific tolerances were as follows:

1. Extensometer mounting notches need to be approximately 12.7 mm (0.5 in) apart.

2. Opposite sides must be parallel

3. Adjacent sides must be perpendicular in order to maintain balance and alignment during

creep tests.

Tolerances were established that were acceptable for precision tests yet were also repeatable

with the machining equipment available. All tolerances are shown in inches, as is standard for
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the AFIT Model Shop. The long sides of the specimens were required to be cut parallel or
perpendicular to each other within +/- 0.0002 in. The top and bottom ends were also cut parallel
to each other within 0.0002 in. The grooves were cut 0.25 in from the specimen centerline within
+/- 0.0002 in. Additionally, the rectangular grooves were all cut 0.038 in tall and 0.035 in deep
within +/- 0.002 in. The triangular grooves were all cut 0.0095 in within +/- 0.002 in. Finally,
dimensions could be ground further down in order to smooth out any chips that would break off
during cutting and grinding until any visible chip was less than 0.02 in deep. Specimens could be
used until dimensions were reduced to less than 6 mm (0.24 in) in width or depth and 16 mm

(0.63 in) in height. Two views of a typical creep test specimen are shown in Figure 70.

Figure 70: Front view and side view of a typical LuAG creep test specimen. Small chips

from the fabrication process are visible along the edges of the specimen.
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Creep Specimen Quantity and Dimensions

As many creep specimens as possible were cut from each puck following SPS processing. If
no flaws or cracks were present from processing, a 20 mm diameter puck could theoretically
yield just one creep test specimen, a 25 mm diameter puck could yield 2 creep test specimens,
and a 40 mm diameter puck could yield up to 6 creep test specimens. However, the cracking that
was present in many of the 40 mm diameter sintered pucks, as well as small defects, which
would lead to chipping during specimen fabrication, often limited the number of specimens that
could be fabricated. The overall quantity of creep test specimens that were fabricated from all
billets processed via SPS is shown in Table 16. Detailed tables of creep specimen properties,
including dimensions, mass, and density for all material variants are shown in Appendix B.

Table 16: Quantity of cylindrical SPS billets and fabricated Creep Test Specimens

Material Total # of | #of .20 mm # of .25 mm | #of .40 mm | Total # pf Creep
SPS Billets Billets Billets Billets Specimens
Undoped LUAG 20 1 7 12 42
Undoped YAG 14 0 3 12 37
2at% Er:YAG 10 0 4 6 20
2at% Yb:YAG 10 1 3 6 24

5.2. Creep Test Facility

5.2.1 Test Equipment

The experimental facility for compression creep testing of small ceramic samples at high
temperature in air and in steam consisted of a universal material testing machine coupled with a
compact box furnace surrounding a specimen carefully mounted on extension rods. All creep
testing was done in compression due to the small specimen size, which made it difficult to grip
the material in tension. Additionally, the small size of the specimens required that the entire

specimen, not just a center gauge section, be placed entirely within the furnace. Therefore, in

157




order for creep tests to be conducted in tension, theoretical tensile grips would have to withstand
the high temperatures within the furnace surrounding the specimen up to 1430°C. For these
reasons, all creep tests in this study were accomplished in compression.

The experimental setup utilized a servo-hydraulic MTS 810 mechanical testing machine
equipped with an MTS 609 alignment fixture, an MTS 5.5 kip load cell, and water-cooled MTS
647.02B hydraulic wedge grips, shown in Figure 71. This testing system has a load capacity up
to 5,500 Ibs (25 kN). An MTS FlexTest 40 digital controller was used for all input signal

generation and data acquisition.

Figure 71: MTS 810 Mechanical Testing Machine.
An AMTECO Hot Rail compact two-zone resistance-heated furnace (Model #: HRFS-400-
2700-2Z) and MTS 409.83 temperature controllers were used in conjunction with the MTS

material testing machine for elevated temperature testing. The furnace is shown in
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Figure 72. This furnace is split into two sides, which slide along a rail in the back and open in
the middle. The maximum operating temperature, according to the specifications, is 1500°C with
the ability to ramp up to temperature at 100°C/min. Furnace specifications are shown below in

Table 17.

Figure 72: AMTECO Hot Rail compact two-zone resistance-heated furnace.

Table 17: AMTECO HRFS-400-2700-27Z Furnace Specifications [272].

Max/Min Control Point | Hot Zone Hot Zone Hot Zone Overall
Temperature Stability Height Depth Width Height
(W9 O (mm) (mm) (mm) (mm)
1500/100 +1 56 41 70 93

In order for the specimen and steam enclosure (susceptor) to fit inside the furnace without
contacting the heating elements and thermocouples, which are already built into the sides of the
furnace, a special furnace insert was designed and fabricated to expand the overall furnace cavity
width. The furnace insert was also split into two pieces, which each attached to the middle
sections of each side of the original furnace. The two parts of the furnace insert were mirror
images of each other, each composed of M310 alumina insulation surrounded by a two-piece
steel frame, which screwed directly into the existing furnace. The furnace along with the custom
inserts, fully integrated into the material testing machine and load train, is shown in Figure 73.
All critical elements of the creep test facility and load train, which are visible in Figure 73, are

discussed in more detail later in this section.
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Figure 73: Overview of creep test facility.

An alumina susceptor (a ceramic tube with endcaps) was placed within the furnace
surrounding the specimen. The primary purpose of the susceptor is to contain the steam and
protect the furnace heating elements during steam environment creep tests. The susceptor is a
custom enclosure, designed at AFIT, and fabricated out of alumina by Machined Ceramics, Inc,
located in Bowling Green, KY. Figure 74 shows the parts of the susceptor laid out, and Figure 75

shows the fully assembled susceptor.
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Figure 74: Alumina susceptor parts laid out.

Figure 75: Fully assembled alumina susceptor.
The cylindrical alumina susceptor consists of two separate semi-cylindrical halves, two
ceramic hoops used to secure the assembly during testing, and two circular endplates, one with
holes for the extensometer rods and the other with a hole for the steam feeding tube. The

susceptor was specifically designed to accommodate the desired specimen size and to fit snugly
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inside the furnace. The susceptor allows heat transfer from the heating elements to the specimen,
while protecting the interior of the furnace, the heating elements, and the thermocouples from the
degrading effects of steam environment. In addition to providing a contained steam environment,
the use of the susceptor should result in a more stable and repeatable temperature profile for the
specimen, as has been observed in previous experiments [29]. Therefore, the susceptor will be
used in all tests. The steam will enter the susceptor through a feeding tube inserted into the back
endcap of the susceptor. The extensometer rods will be inserted into the susceptor through the
small openings in the front endcap. The open furnace with a specimen mounted onto the single-

crystal YAG push rods surrounded by the susceptor is shown in Figure 76.
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Figure 76: Creep test facility with the furnace opened prior to testing.
Strain measurements were accomplished with an MTS 632.53E-14 high temperature, low
contact force extensometer with a 12.7 mm (0.5 in) gauge length and a range of +20% to -10%
(maximum nonlinearity of 0.15%). The extensometer was equipped with two 152.4 mm (6 in)

sapphire rods in order to reach the specimen within the furnace, which were able to withstand the
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temperature and maintain rigidity. The extensometer and attached sapphire rods are shown in

Figure 77.

Figure 77: MTS 632.53E-14 high temperature, low contact force extensometer with 6 in
high-temperature resistant sapphire rods.

To ensure that the extensometer did not slip during a test, the ends of the extensometer rods
were carefully machined into chiseled ends or pointed ends. The extensometer rods tips would
rest in the two horizontal grooves, which were machined into one side of all specimens, as was
described previously. The extensometer was held by a fixture that was attached to the front of the
testing facility. A spring-loaded mounting system was used to suspend the extensometer in the
air, creating minimal contact with anything but the sample itself within the furnace. The spring-
loaded mounting system generated a compressive force from the extensometer rods onto the
sample surface. This enabled the extensometer rod tips to remain in place on the specimen
without slipping. Finally, a custom cooling system was attached to the end of the extensometer
mounting fixture in order to cool the extensometer during testing. This mounting system is

shown in Figure 78.
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Figure 78: Extensometer mounting system.

An AMTECO HRFS-STMGEN steam generator using de-ionized water was used to generate
the steam at a rate of 35 mL/hr. Steam was supplied into the susceptor through a ceramic feeding
tube in a continuous flow with a slightly positive pressure, expelling the dry air and
creating a very high partial pressure of water inside the susceptor. The presence of steam inside
the susceptor was easily verified visually by observing condensation on various components

above the susceptor prior to and during each test.

5.2.2 Load Train and Test Setup

The test method developed for testing polycrystalline YAG and LuAG specimens in
compression employs a load train with several components, which are used to hold the specimen
in place and to transfer the compressive force from the upper and lower hydraulic wedge grips to
the specimen within the furnace. The critical elements of the load train that extended from the
grips into the furnace and contacted the specimen were single-crystal YAG push rods of 10.16
mm (0.4 in) diameter. Push rods that could withstand high temperatures were necessary to extend

the load train from the hydraulic wedge grips into the hot zone of the furnace, where the
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specimen was placed. Single-crystal YAG was chosen as an appropriate material for
compression extension rods because of their excellent deformation resistance at high
temperature. Previous tests have been conducted, which demonstrated the exceptional creep
resistance of single-crystal YAG at 1300°C in air and in steam. It was determined that at these
test conditions, there was essentially no measurable deformation. This quality of single-crystal
Y AG has made it a very effective material for transferring the compressive load to the specimen
without excessive deformation and without sustaining significant damage during each test.

The push rods were mounted on two custom-built stainless-steel fixtures, which were gripped
by the water-cooled hydraulic wedge grips. These YAG rod holders were fabricated by the AFIT
Model Shop, and were designed such that one end was machined flat in order to be gripped by
the flat wedge grips attached to the material testing machine. The hydraulic wedge grips
provided enough lateral pressure that the YAG rod holders would not slip in compression. At the
other end of the YAG rod holder was a cylindrical opening, approximately 1” in length, which
held the YAG rod. This portion of the YAG rod holder was split into two halves and held
together by four screws. The YAG rod holder could be opened at any time in order to remove a
YAG rod and clean out any debris from the opening. A small slot was machined into each YAG
rod holder just below the cylindrical opening in order to hold a small piece of thin copper foil
(0.0004” thick). Copper foil was used to cushion the ends of the YAG rods. Additionally, strips
of copper foil were wrapped around the lower portion of the YAG rods where they contact the
YAG rod holders in order to soften the contact points between the YAG rods and holders and to
also assist in the removal of the YAG rods after high temperature exposure. The custom YAG
rod holders are shown in Figure 79. The YAG rods and the custom YAG rod holders are also

visible in use in Figure 76.
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Figure 79: Custom stainless-steel YAG rod holders, developed for compressive creep tests
at AFIT.

The test specimens were compressed between the push rods. Compressive loading is
transferred through the ends of the single-crystal YAG push rods to the compression specimens.
The close fit of the circumference of the push rods and the cylindrical openings of the YAG rod
holders is designed to ensure proper alignment, and it was designed not to transfer the desired
compressive load through lateral force. The loads induced on the circumference of the push rod
due to any small misalignment would be relieved by loosening the set screws on the YAG rod
holders after the load train had been assembled, immediately prior to conducting each test. For
elevated temperature testing the furnace was positioned such that the test specimen was centered
in the hot section. A portion of the top and bottom push rods were also located inside the hot
section of the furnace in contact with the specimen. A diagram of this creep test setup and load

train is shown in Figure 80.
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Figure 80: Diagram of the compression creep test setup.

5.3. Creep Test Preparation and Procedures

The following paragraphs describe the activities that were accomplished prior to, during, and
after each creep test. Prior to executing the creep test procedures, equipment calibration was
required to ensure the resulting data was accurate. It was necessary to calibrate the furnace
temperature in order to determine the appropriate temperature controller set points, which would
result in the desired specimen temperature. Additionally, it was necessary to calibrate the
extensometer to ensure that the strain values, which were output by the testing software, were
accurate. Following equipment calibration, the creep test procedures could be followed. These
procedures are summarized in this section, and are also listed in much more detail in Appendix
E. The equipment calibration, creep test procedures, and data acquisition processes, which are
discussed in this section, were utilized for all creep tests in this study for all materials.
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5.3.1. Temperature Calibration and Determination of Thermal Strain

The temperature within the furnace is controlled by two upper and two lower Molybdenum
Disilicide (MoSi2) heating elements. These elements are controlled by a temperature controller,
which receives feedback from two thermocouples placed inside the furnace, measuring the
ambient temperature of the hot zone of the furnace. This system is able to control and maintain a
very stable and consistent temperature based on the internal temperature measurements.
However, the thermocouples, which take the internal temperature reading and influence the
temperature controller command signal are not in contact with the specimen. Because there is
constant heat loss from small gaps in the furnace insulation as well as from conduction through
the YAG rods and load train, there can be significant internal temperature gradients between
different parts of the furnace cavity and within the specimen itself. The actual temperature of the
specimen inside the hot section of the furnace during creep testing can differ substantially from
the temperature controller set points. Therefore, prior to creep testing, the required temperature
set points for the temperature controller, which would result in a precise specimen temperature,
must be determined.

This temperature calibration was accomplished by bringing the furnace up to a desired
temperature and simultaneously measuring the sample surface temperature, revealing any
disparity between the temperature controller settings and the sample temperature. This enabled
the temperature set points on the temperature controller, which produced the desired specimen
temperature, to be determined. In order to accomplish this calibration, all the equipment was first
set up as for a standard creep test. An actual specimen was placed between two single-crystal
Y AG push rods, and surrounded by the susceptor and furnace. A small load was applied to the

specimen to maintain contact between the specimen and YAG rods in order to simulate the exact
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conditions during creep testing. As the temperature was ramping up, a high-temperature Type S
thermocouple protected by a rigid alumina sheath was inserted through the front opening of the
susceptor and furnace, which was designed for the extensometer rods, and the thermocouple was
placed in contact with the front surface of the specimen. It was assumed that due to the small size
of the specimen, measuring the front surface was adequate in determining the homogeneous
temperature throughout the specimen. In actuality, there was likely a small temperature
difference from the front to the back of the specimen; however, this potential difference was
assumed to be negligible.

Initial temperature calibrations were conducted for each material and for each target creep
test temperature in air and in steam environments. With one contacting thermocouple held onto
the surface of the specimen and two non-contacting thermocouples measuring the ambient within
the furnace, the temperature was slowly increased and the offsets required to reconcile the
controller set points and the specimen temperature were noted. The temperature was increased at
a rate of 30°C/min up to the target temperature (either 1300°C or 1400°C). Once the desired
controller temperature was reached, the temperature set point was held in place. The initial
specimen temperature was noted as well as the length of time required for specimen temperature
fluctuations to stop, which took approximately 15 minutes, and typically resulted in
approximately a 25°C difference between the controller set point and the specimen surface
temperature. The controller set point was then increased again slowly in small increments of a
few degrees in order to slowly track the specimen temperature increase. Once the specimen
reached the desired temperature, the temperature increase was stopped, and the temperatures of
both the ambient and the specimen were observed for 30 minutes. If the specimen surface

reading remained at the desired temperature for 30 minutes without fluctuation, then the
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controller set point was noted, and the calibration was finished.

There was no difference in temperature calibration results for both YAG and LuAG
specimens, indicating that they have similar thermal properties. For the specimen surface to
reach 1300°C in air, the temperature controller set point must be 1328°C. For the specimen
surface to reach 1300°C in steam, the temperature controller set point must be 1351°C. Similarly,
for the specimen surface to reach 1400°C in air, the temperature controller set point must be
1435°C. Calibrations were not performed at 1400°C in steam as no creep tests were performed
under these conditions. Each calibration was assumed to be valid for creep tests indefinitely until
a furnace heating element failed. Once any heating element was replaced with a new one,
temperature calibrations were conducted again to determine if any change in the power output of
the elements had occurred. Typically, there was minimal difference, but the temperature offsets
listed above were adjusted slightly whenever necessary.

During each creep test, the strain during heat up and soak was recorded. This was useful for
several reasons. It allowed the thermal strain of the material to be quantified, it helped visualize
the temperature offset between the furnace temperature reading and the sample surface
temperature during heat up, and it allowed the thermal properties of the materials to be
quantified. Measuring the thermal strain of the material was useful in validating the similarity
and quality of each specimen used for creep testing. Every specimen tested behaved very
similarly during heat up with almost identical thermal strain, ensuring that no individual
specimen had significant defects or impurities.

Figure 81 and Figure 82 show the thermal strain measurements for three YAG and LuAG
specimens, respectively, obtained during heat up prior to creep testing. A variety of specimens

were chosen with different grain sizes. Each graph shows the accumulated thermal strain and the
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furnace set temperature vs. time during heat up.
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Figure 81: Thermal strain and furnace set temperature vs. time for three undoped YAG

specimens during heat up to 1300°C prior to creep testing.
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Figure 82: Thermal strain and furnace set temperature vs. time for three undoped LuAG
specimens during heat up to 1300°C prior to creep testing.
The thermal strain measured for each specimen is very consistent for each material. Only
minor variations are observed for specimens with different grain sizes. For both YAG and LuAG
it appears that thermal strains are lower for specimens with larger grains. This is consistent with

previous reports that certain materials have reduced coefficients of thermal expansion with
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increased grain size [273]-[276]. However, this affect seems to be very small, almost negligible,
for YAG and LuAG, at least for the grain sizes shown here. In each case the specimens
accumulate approximately 1% strain during heat up to 1300°C. There also appears to be a
significant discrepancy in the rate of strain accumulation vs. temperature. However, this could
also be related to the discrepancy between the furnace temperature and the sample surface
temperature.

The specimen surface temperature was measured during heat up for both YAG and LuAG. In
order to accomplish this, the specimens were instrumented with the extensometer rods contacting
the front surface, while a type-S thermocouple with an alumina sheath was placed in contact with
the back surface of the specimen. Figure 83 and Figure 84 show the thermal strain vs. time as

well as the furnace set temperature and the sample surface temperature rise during heat up.
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Figure 83: Thermal strain, furnace set temperature, and sample surface temperature vs.

time for one undoped YAG specimen during heat up to 1300°C prior to creep testing.

172



0.012 1600

1400 )

0.01 | g g

[
{1200 ¢ £
= 0.008 | =
E ] 1000 £ 5
E =8
£ 0006 [ ] 800 =2 t
= z g
= T &
v . . 1 600 »n =
0.004 f —— Thermal Strain Accumulation o g

8
——Furnace Set Temperature 1 400 '_-=: %_
0.002 [ Z B
——Sample Surface Temperature | { 200 @

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1000 2000 3000 4000
Time [s]

Figure 84: Thermal strain, furnace set temperature, and sample surface temperature vs.
time for one undoped LuAG specimen during heat up to 1300°C prior to creep testing.

After observing the temperature discrepancy between the furnace temperature and the sample
surface temperature, seen in Figure 83 and Figure 84 for YAG and LuAG, respectively, the slow
rise in thermal strain at low temperature is understood. As the furnace temperature increases,
there is a significant delay in the rise of the sample surface temperature. As is expected, there is a
close correlation between the heating rate of the sample and the thermal strain.

In order to more closely compare the thermal strain observed in YAG and LuAG, the
measured strain was plotted vs. the sample surface temperature for both materials, shown in
Figure 85. Plotting strain vs. sample surface temperature enables the rate of heating to be
removed, and to isolate the thermal expansion properties of both materials. Figure 85 shows that
there is a small difference in the thermal strains measured for each material. Once the sample
surface temperature increases beyond 500°C, YAG begins to achieve higher more thermal strain
than LuAG, and this trend continues for the duration of heat up. Recall that LuAG has a higher
melting temperature than YAG, which could lead to LuAG being more thermally stable and

more resistant to thermal strain than YAG.
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Figure 85: Thermal strain accumulation vs. sample surface temperature for YAG and
LuAG.
From these thermal strain measurements, rough approximations of the coefficients of thermal
expansion for both YAG and LuAG at temperatures ranging from room temperature to 1300°C

was determined. The general equation for the coefficient of thermal expansion is as follows:

_1dL
T LdT

(Equ. 27)
Using this equation, the approximate coefficients of thermal expansion can be determined for
YAG and LuAG from the relationship between strain and sample surface temperature observed
in Figure 83 and Figure 84. Individual coefficients were calculated for the strain measurements,
which were associated with approximately every 100°C increase in sample surface temperature.

The results for YAG are shown in Figure 86 along with some previously published values [277],

[278]. Results for LuAG are shown in Figure 87.
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Figure 86: Approximate values of the coefficient of thermal expansion of YAG vs.
temperature. Previously published values, shown in red, were determined by Furuse et al.

and Sokol et al. [277], [278].
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Figure 87: Approximate values of the coefficient of thermal expansion of LuAG vs.
temperature.
There is a small but notable difference in the coefficients determined for YAG and LuAG. As
was seen in Figure 85, LuAG has a greater resistance to thermal strain accumulation at a given

temperature, compared to YAG. This difference is amplified as the sample surface temperature
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increases. This comparison between the coefficients of thermal expansion of YAG and LuAG vs.

temperature is shown in Figure 88.
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Figure 88: Comparison of the approximate coefficients of thermal expansion for YAG and
LuAG vs. sample surface temperature.

Results in Figure 88 represent approximate values of the coefficients of thermal expansion
for YAG and LuAG, as this is not a standard measurement method used in the analysis of
thermal properties for these materials. There is significant noise in the thermal strain
measurements due to the limitations in the precision of the extensometer. Therefore, the potential
error associated with the noise in strain measurements not only affects the determination of total
accumulated strain, but also the strain vs. sample temperature, shown in Figure 85. In order to
plot the strain vs. sample temperature, individual strain values were taken from Figure 83 and
Figure 84. Therefore, the resultant data can be significantly affected by the noise in the raw strain
data. This source of potential error carries over into the determination of the coefficients of
thermal expansion. Therefore, these measurements are should simply be used as a check into the
quality of the processed material, and also to determine the relative thermal expansion properties

of YAG vs. LuAG.
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5.3.2. Extensometer Calibration and Measurement Limitations

Extensometers are tools used to measure the deformation of a material under stress during
any kind of mechanical test. In the case of creep tests in this study, an extensometer, shown in
Figure 77, was used to measure the total axial strain over time under a compressive stress. The
strain measurement must be used to determine the total strain accumulated during creep, and also
to determine the steady-state creep rate of each material. Extensometers typically need to be
calibrated to ensure that the voltage output from the extensometer to the testing software equates
to the correct amount of strain. The calibration also takes into account the length of the extension
rods that are used to connect the extensometer to the specimen. For all the tests in this study, the
extensometer rods were 6 inches long. The maximum voltage signal from the extensometer must
equate to the maximum positive movement of the tips of the extension rods. Similarly, the
minimum voltage signal from the extensometer must equate to the maximum negative movement
of the tips of the extension rods. Rods of different lengths will require a new calibration to
account for the associated change in the range of movement of the rod tips.

The gauge length of the extensometer is the space between the extension rod tips when the
device is set to its center location, or more specifically, it is the axial length measurement that
equates to zero strain. In this case, the gauge length of the extensometer used in these creep tests
was 0.5 in. The extensometer calibration took place by mounting the extensometer onto a
precision micrometer, which measured the distance between the tips of the extensometer rods.
By using the extensometer zero bar, provided by MTS, the precise gauge length could be
established, and the voltage output was set to zero. A detailed calibration procedure was
followed, which involved moving the extensometer rods to different distances, and adjusting the

output voltage to correspond to the correct strain. A calibration window was used within the
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MTS software, which enabled the adjustment of the strain output based on the extensometer
voltage and the micrometer reading.

The use of this specific extensometer and associated data acquisition software resulted in
strain measurement limitations. As is the case with any distance measurement device, there are
set maximum and minimum values, as well as precision limits. The maximum strain that could
be measured by this extensometer was approximately 15% strain. This value was affected each
time the rods were mounted on a specimen and the strain reading was zeroed out. If the
extensometer was in a positive strain position, then the maximum strain value would increase
beyond 15%. The minimum strain capability of this extensometer was dependent on the
sensitivity and precision of the measurements. This particular extensometer is capable of
measuring very small strains associated with strain rates of approximately 1071° s!. This
precision makes it an effective instrumentation device for creep testing. However, even after a
precise calibration of the extensometer, there was typically a fluctuation of approximately +100
mV, which equates to 0.2% strain. Therefore, when measuring the strain of the most creep
resistant specimens in this study, there could be significant noise observed in the data, and this

must be acknowledged as a potential source of error.

5.3.3. Creep Test Procedures

Compressive creep tests were performed on polycrystalline YAG and LuAG specimens at
1300°C and 1400°C in air and in steam. Creep stress levels during all creep tests ranged from 50
MPa to 200 MPa. Typically, specimens from the same sample set or different sample sets with

similar microstructure and grain size were tested at various stress levels under the same
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temperature and environmental conditions. In these cases, stress levels were adjusted from 50
MPa to 200 MPa in 50 MPa increments for each specimen.

Specimens were loaded into the furnace and placed between the YAG push rods, as was
described previously in this section. A force of 100 Ibf was applied to the specimen to ensure it
stayed in place during heat up. The susceptor was enclosed around the specimen, and the
extensometer was placed onto the mounting fixture, with rods extending through the opening in
the susceptor, with the rod tips placed in the horizontal grooves on the specimen. If the specific
test required the addition of steam, then the steam delivery tube was connected to the steam
generator and the back opening of the susceptor. The furnace was then closed around the
specimen and susceptor. Additional soft insulation pieces were placed on the top of the furnace
to help protect the upper grips, and the extensometer cooling fan was attached to the mounting
fixture and turned on.

Each creep test procedure consisted of three segments: heat up, creep, and cool down. During
heat up, the temperature within the furnace was ramped up to the desired temperature at a rate of
0.5°C/s, and the temperature was maintained for 30 minutes in order to achieve thermal
equilibrium within the specimen.

After the specimen soaked at the desired temperature for 30 minutes, the creep stress was
applied at a rate of approximately 15 MPa/min. Each specimen remained under load at the
desired temperature for 5 hours or until specimen failure occurred. In most cases, the specimen
did not fail within the 5-hour test time. After 5 hours, the load was removed and the temperature
was lowered back to room temperature. The internal furnace cavity and specimen were left to

cool unassisted, which took approximately 90 minutes.
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Creep test parameters, including temperature, stress level, and environment were adjusted
sequentially between tests in order to isolate the effects of each setting individually.
Additionally, the same test conditions were often repeated for specimens of various properties
and microstructures in order to determine their potential effects on the resulting creep behavior.
In most cases only one specimen with a given microstructure and grain size was tested under
specific conditions due to the limited number of available specimens.

Throughout all three segments of each test, stress-strain data was collected as well as the
associated furnace temperature setting. The data recorded during the heat up portion of the test
enabled observations of thermal strain and determination of certain thermal properties of each
material. Data recorded during the creep portion of each test enabled the observation and
analysis of creep strain over time. These results contributed to the determination of the steady-
state creep strain rates for each material under each test condition.

Detailed creep test procedures, which include the test setup process and the execution of a
creep test, are included in Appendix E. The specific desired goals/outcomes of creep testing can
be summarized as follows:

1. Conduct creep tests on each material variant at 1300°C in air and in steam at 50, 100,
150, and 200 MPa

2. Conduct creep tests on undoped YAG and LuAG at 1400°C in air at 50, 100, 150, and
200 MPa

3. Repeat similar test conditions for specimens of different grain sizes for each material
variant

4. Determine creep strain as a function of time for each specimen after each creep test
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Determine the maximum accumulated strain and the steady-state creep strain rate for
each specimen after each creep test

Determine the creep stress exponent at each temperature for each material variant
Determine the grain size exponent at each temperature for each material variant
Determine the activation energy for undoped YAG and LuAG

Determine active mechanisms controlling the creep of all material variants
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6. Creep Behavior of Undoped and Doped Yttrium Aluminum Garnet

(Y3Al5012) at Elevated Temperature

This chapter describes the compressive creep behavior of polycrystalline Yttrium Aluminum
Garnet (Y3Als012, YAG). Creep specimens, which are described in detail in Section 5.1, were
tested in compression at 1300°C and 1400°C at various stress levels, between 50 MPa and 200
MPa. Each creep test consisted of the following parts:

1. Heat furnace up to the desired temperature (45 mins)

2. Hold to allow the specimen to reach uniform temperature (30 mins)

3. Apply compressive creep stress and hold stress constant (5 hrs)

4. Simultaneously reduce temperature and remove compressive stress (5 mins)

5. Allow specimen to cool to room temperature (90 mins)

This investigation of the compressive creep behavior of polycrystalline YAG builds on the
work of Armani et al. [28], [29], where undoped and silica-doped, polycrystalline YAG
specimens were similarly tested in air and in steam at 1300°C. During this previous work, due to
the material limitations as well as the time and equipment required for each test, only a limited
number of creep tests were accomplished, which included testing specimens with only one grain
size for each type of material. The work of Armani et al. was very valuable to the material
science community, as it demonstrated the impressive creep performance of YAG compared to
other oxide ceramics [28], [29]. Therefore, the test results presented in this chapter will validate
as well as build on the work of Armani et al. by testing the same material in similar
environments, and will then expand on the previous work by testing several more undoped,
polycrystalline YAG specimens with several different grain sizes in air and in steam, at 1300°C

and 1400°C. Two additional doped YAG variants will be tested as well: 2at% Yb-doped YAG
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and 2at% Er-doped YAG, both of which are common, doped YAG variants, typically used in
optical material applications.

The results from each creep test consisted of the measured creep strain over time. From these
strain vs. time curves, the steady-state creep strain rates were determined and analyzed. This
minimum creep strain rate, described by Equation 4, is the primary focus of this investigation.
This chapter will demonstrate the effects of temperature, applied creep stress, grain size,
environment, and material dopant on the total accumulated strain during creep and the resultant
steady-state creep strain rate. In order to determine these effects on strain rate, a test plan was
developed where each of these variables were isolated and adjusted, while all others remained
constant, in order to understand the effects of each individually. Finally, the stress exponents and
grain size exponents, used in Equation 4, were determined from the results of these creep tests by
analyzing the steady-state creep strain rates at various stress levels and various grain sizes. These
exponents, which were determined experimentally for each sample set, can be averaged together
to obtain an approximation of the true exponents, which represent inherent material properties of
YAG, and can be used in Equation 4 to predict the steady-state creep strain rates of YAG,

including material variants and environmental conditions that were not tested in this study.

6.1. Creep of Undoped, Polycrystalline Yttrium Aluminum Garnet at 1300°C
in Air
6.1.1. Validation of Creep Test Method Based on Published Results

The original creep strain vs. time curves, obtained by Armani et al. for undoped,

polycrystalline YAG specimens at 1300°C in air with a grain size of 0.92 um, are displayed in
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Figure 89 [28], [29]. These original results were obtained with permission from the authors and
are displayed here in a format, which is consistent with the rest of the results in this chapter.
Figure 89 shows the resulting creep strain for four different compression creep tests, conducted
at 50, 100, 150, and 200 MPa, originally presented by Armani et al [28], [29]. All the creep tests
in this study have been conducted within this same compressive stress range in order to achieve

consistency with the previous results.
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Figure 89: Creep strain vs. time curves obtained by Armani et al. for undoped,
polycrystalline YAG specimens with grain size of 0.92 pm at 1300°C in air [28], [29].
For this material at these test conditions (stress, temperature, environment, test length), the

results are nearly linear. There is minimal primary creep and no apparent tertiary creep reached
in the allotted five-hour test time. Two of the four specimens were tested for 5 hours, while the
other two were removed from testing earlier. In order to validate the consistency and quality of
the materials and test methods used in this study, it was necessary to first achieve results
consistent with these previous creep results found for undoped, polycrystalline YAG. It is

necessary to mention that the two test methods are similar, but slightly different. The previous
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creep tests by Armani et al. utilized shorter creep specimens (10 mm height), without any
notches machined into the side of the specimens for extensometer mounting. Instead, similar
notches were machined into the sides of the single-crystal YAG push rods, and the extensometer
rods were mounted in these grooves, having no direct contact with the specimens. Within the test
conditions selected by Armani et al, it was determined that the single-crystal YAG push rods do
not exhibit any measurable strain; therefore, it was deemed acceptable to mount the extensometer
rods on the push rods instead of directly on the short samples, which were too small for the
available extensometer, which had a gauge length of 0.5 inches (12.7 mm). The resultant creep
strain readings were numerically adjusted in order to compensate for the fact that the gauge
length was longer than the actual material being tested.

The new specimens used in this investigation were fabricated with greater height (h =
approximately 19 mm, as was described in Section 5.1), which means that the notches for
mounting the extensometer rods could be machined directly into the side the specimen. In order
to validate this new test method for testing polycrystalline YAG specimens in creep, identical
test conditions were used, to include the same material and a similar grain size. Even when
attempting to recreate identical test conditions as was previously used by Armani et al, some
variation was unavoidable. Although both materials are undoped, polycrystalline YAG
specimens, processed from 99.999% pure YAG powder, the processing methods were different,
as this work is focusing on the effects of spark plasma sintering. Additionally, if each specimen
was processed at different times and came from different billets, then the grain size and densities
will never be identical. Therefore, there exists some inherent error when comparing the creep
results. However, these small sources of potential error proved to be insignificant after all other

test conditions were held constant.
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The specimens chosen to compare directly to the creep results obtained by Armani et al. were
from the SPS billet Y-7-40, and were determined to have an average grain size of 1.17 um. This
billet was selected due to the number of available creep test specimens and because the grain size
is very close to the value determined for specimens tested by Armani, which was 0.92 um.
Figure 90 shows an SEM image of the microstructure and grains of a specimen from Y-7-40.
The grain size was measured by multiple methods as was described in Section 4.3.2. Some
porosity was observed, but the density measurements for specimens from Y-7-40 were

determined to be within the acceptable range for creep testing.

SEM HV: 15.0 KV WD: 9.66 mm | ' MIRA3 TESCAN
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Figure 90: SEM image depicting the microstructure and grain size of a specimen from SPS
billet Y-7-40.
The creep strain vs. time curves of undoped, polycrystalline YAG specimens at 1300°C in air
with a grain size of 1.17 um, are displayed in Figure 91. Three tests were conducted in order to
compare these results with the previous work of Armani et al. The three tests were run at stress

levels of 50, 100, and 150 MPa.
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Figure 91: Creep strain vs. time curves obtained for undoped, polycrystalline YAG
specimens with grain size of 1.17 pm at 1300°C in air.

From each strain vs. time curve, the total accumulated strain was determined as well as the
minimum, steady-state creep strain rates. The strain rates were determined by measuring the
slope of the flattest portion of the curve, which was typically at the end of each strain vs. time
curve. This method has been used previously to determine the best approximation of the steady-
state creep strain rate [28], [29]. A summary of these initial results, including the creep strain
accumulated after 5 hours and the measured steady-state creep strain rate, for undoped,
polycrystalline YAG specimens at 1300°C in air with grain sizes of 0.92 um and 1.17 um, is

displayed in Table 18.
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Table 18: Summary of creep results for undoped, polycrystalline YAG with comparable grain
sizes at 1300°C in air. Results for specimens with grain size of 0.92 um from Armani et al.
(2011) are included for comparison [28], [29].

. c o as Total Steady-State

Specimen | Grain Size | Creep Stress Acc1.1mulated Creep Rate
Name [pm] [MPa] Strain after 5 [s]
hrs [%]

Armani-1* 0.92 50 Not Available** 1.09 x 107
Armani-2* 0.92 100 0.81 3.94x 107
Armani-3* 0.92 150 Not Available** 5.69x 107
Armani-4* 0.92 200 1.33 6.91 x 107
Y-7-40-1 1.17 50 0.30 9.49x 108
Y-7-40-2 1.17 100 0.92 3.21x 107
Y-7-40-3 1.17 150 0.95 3.42x 107

*Results obtained by Armani et al. and referenced in this work for comparison [28], [29].
**Creep tests ended early, and total strain accumulation after 5 hrs is unknown.

The steady state creep rates were then plotted versus the amount of compressive stress
applied during each test in order to determine how the change in creep stress affects the steady-
state creep strain rate. The exact force applied during each test varied based on the specific cross-
sectional area of each specimen. This plot is shown in Figure 92 for the Y-7-40 sample set at
1300°C in air with a grain size of 1.17 um along with the previous results from Armani et al.

which were included for comparison [28], [29].
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Figure 92: The steady-state creep strain rate vs. applied stress of undoped, polycrystalline
YAG specimens with grain sizes of 0.92 pm and 1.17 pm at 1300°C in air. Results for
specimens with grain size of 0.92 pm from Armani et al. (2011) are included for
comparison [28], [29].

The strain rate vs. stress curves were plotted using a log-log scale in Figure 92, resulting in
an apparently linear relationship as is typically found in the steady-state creep rates observed for
similar materials. The relationship observed between the strain rates and the applied stress in
Figure 92 follows a power law, which is based on a form of the Arrhenius strain rate equation,
described by Equation 4 in Section 2.3.1. In this case all equation parameters are constant across
each test except for the independent variable, which is the applied stress. This exponential
relationship, which appears linear on the graph with a log-log scale, is validated with these initial
tests using specimens from the Y-7-40 sample set for undoped, polycrystalline YAG at 1300°C
in air. Also, from Figure 92, it is observed that the previous creep results from Armani et al. are

very close, and nearly overlapping, which was expected for samples of such similar grain sizes.

189



Based on these nearly identical creep results for similar specimens of very similar grain sizes,
it was concluded that both of these test methods, which utilize different specimen geometry, are
effective in determining accurate creep strain rates of this material. The measured strain rates
determined for specimens from the Y-7-40 sample set appear to be slightly lower than the that
from the previously published results from Armani et al [28], [29]. Although this difference is
very small and could easily be assumed to be within the noise from the strain measurements
during each creep test, the difference could also be attributed to the small difference in material
grain size (0.92 um and 1.17 pm). As is observed in the next section, the material grain size is a

critical material property, which greatly affects the overall creep behavior of YAG.

6.1.2. The Effects of Grain Size on the Creep Behavior of Yttrium Aluminum Garnet at
1300°C in Air

Additional undoped YAG specimens were tested in a similar manner in order to determine
the effect of grain size on the overall creep behavior. The creep test results were compared for
specimens from sample sets: Y-7-40, Y-14-40, and Y-13-40. Details of these billets, including
the SPS processing parameters, test specimen dimensions, density, hardness, and grain size, can
be found in Appendix A and B. They were primarily selected because of the variation in their
grain sizes, which were measured to be 1.17 um, 3.19 pm, and 7.99 pm. An SEM image from Y-
7-40 is shown in Figure 90. SEM images taken from sample sets Y-14-40 and Y-13-40 are

shown in Figure 93 and Figure 94, respectively.
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Figure 93: SEM image of a specimen cut from the SPS billet Y-14-40, with a measured

average grain size of 3.19 pm.
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Figure 94: SEM image of a specimen cut from the SPS billet Y-13-40, with a measured
average grain size of 7.99 pm.

Despite the different appearances of the SEM images, which are due to the inconsistent and
sensitive nature of observing grains within these types of non-conductive oxide ceramics in an
SEM, it is still apparent that the grain structure is generally consistent for each material. All
grains have a sharp geometric shape, and do not possess smooth, curving edges. Each material

possesses a considerable number of larger and smaller grains, which are apparent even within
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such small view fields. This is due to the potentially large variation in size of neighboring grains,
and also due to the use of a 2-dimensional view of the surface of a 3-dimensional material. Each
grain is a 3-dimensional object, which has depth that cannot be seen by the SEM. Therefore, it is
possible that small grains could actually be the visible tips of large grains, similar to an iceberg
in the ocean. For these reasons, many grains must be averaged to determine a good
approximation of the overall grain size for comparison between materials. Refer to Section 4.3.2
for a more detailed description of the grain size measurement methods used in this study.

In order to determine the effects of grain size, all other material properties and all test
conditions were kept constant including the material type, processing method, test temperature,
stress range, and environment. The creep strain vs. time curves for specimens with a grain size of
3.19 um and 7.99 pum are shown in Figure 95 and Figure 96, respectively. Both sets of specimens

were tested at 50, 100, 150, and 200 MPa.
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Figure 95: Creep strain vs. time curves obtained for undoped, polycrystalline YAG

specimens with grain size of 3.19 pm at 1300°C in air.

192



0.01

| Undoped YAG
[| 1300°C, Air
0.008 H d=7.99 pm

E 0.006 |
H [
2 r 150 MP
£ 0.004 i wle
7 i 200
MPa
0.002 | 100
i MPa
50
o Ddna e en et rmac ™ nipa
0 5000 10000 15000 20000
Time [s]

Figure 96: Creep strain vs. time curves obtained for undoped, polycrystalline YAG
specimens with grain size of 7.99 pm at 1300°C in air.

Specimens with larger grain sizes exhibit significantly less creep strain under the same test
conditions. As is seen in Figure 96, the total accumulated creep strain for specimens with a grain
size of 7.99 pum only reaches 0.3%, even with 200 MPa applied during the test. This is close to
the maximum sensitivity of the extensometer used in this study, and as a result, the strain vs.
time curves exhibit significant noise during the creep tests. However, a clear trend is observed,
and can still be used to determine the steady-state creep rates. These results as well as the steady-
state creep rates and total accumulated strains for all the undoped YAG specimens tested at

1300°C in air are summarized in Table 19.
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Table 19: Summary of creep results for undoped, polycrystalline YAG specimens with different
grain sizes at 1300°C in air. Results for specimens with grain size of 0.92 um from Armani et al.
(2011) are included for comparison [28], [29].

. c o Total Steady-State
Specimen Grain Size | Creep Stress Ac.cumulated Creep Rate
Name [pm] [MPa] Strain after 5 hrs 1
(%] [s™]
Armani-1* 0.92 50 Not Available** 1.09 x 107
Armani-2* 0.92 100 0.81 3.94x 107
Armani-3* 0.92 150 Not Available** 5.69 x 107
Armani-4* 0.92 200 1.33 6.91 x 107
Y-7-40-1 1.17 50 0.30 9.49x 10°®
Y-7-40-2 1.17 100 0.92 3.21x 107
Y-7-40-3 1.17 150 0.95 3.42x 107
Y-14-40-1 3.19 50 0.363 3.17x 10
Y-14-40-2 3.19 100 0.423 1.21 x 107
Y-14-40-3 3.19 150 0.940 2.01x 107
Y-14-40-4 3.19 200 0.480 1.40x 107
Y-13-40-1 7.99 50 0.0648 1.34x 107
Y-13-40-2 7.99 100 0.152 4.16x10°
Y-13-40-3 7.99 150 0.23%x* 6.53 x 10?
Y-13-40-4 7.99 200 0.318 9.13x 107

*Results obtained by Armani et al. and referenced in this work for comparison [28], [29].
**Creep tests ended early, and strain accumulation after 5 hrs is approximated or unknown.

The results in Table 19 clearly illustrate the significant effect of grain size on the creep strain
accumulated after five hours and on the overall steady-state creep strain rates of undoped,
polycrystalline YAG. As grain size increases, the steady-state creep strain rates of YAG decrease
drastically. Specimens with grain size of 7.99 um reached minimum strain rates between 1.34 x
10° s and 9.13 x 10? 57! depending on the applied stress level. These results represent the
lowest strain rates reported for polycrystalline YAG at 1300°C. At this grain size, these
specimens achieved steady-state creep strain rates that are two orders of magnitude lower than

the previously tested Y AG material with grain size of 0.92 pum.
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Additional plots are shown below, which illustrate the significant effects of grain size on the
creep behavior of undoped, polycrystalline YAG at 1300°C in air. Figure 97 shows the strain vs.
time curves for two sample sets with grain sizes of 1.17 um and 3.19 pm. All strains shown in
Figure 97 are very small; however, a significant difference is still observed. The 50 MPa curve
for the smaller grain size is close to the 100 MPa curve for the larger grain size. Similarly, the

100 MPa curve for the smaller grain size nearly overlaps the 150 MPa curve for the larger grain

size.
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Figure 97: Comparison of the creep strain vs. time curves obtained for undoped,
polycrystalline YAG specimens with grain sizes of 1.17 pm and 3.19 pm at 1300°C in air.
Similarly in Figure 98 the significant effects of grain size are illustrated by the strain vs. time
curves for the three sample sets with grain sizes of 1.17 pm, 3.19 um, and 7.99 um. The same
trend is observed, where the smaller grain sizes correspond to the highest accumulated creep
strains. The one exception is creep results obtained at the lowest stress level. With an applied
stress of 50 MPa, some tests showed that the effects of grain size were less pronounced. In this

case the significant effect of grain size can be minimized by such a low applied stress. It appears
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that for creep stresses of 50 MPa or lower, specimens will exhibit very low strain regardless of

grain size.
In Figure 98 the strain accumulated by a specimen with a grain size of 3.19 was lower than
the strain accumulated by a specimen with a grain size of 7.99. This is attributed to the

diminished effects of grain size at 50 MPa. In other sections of this study a similar phenomenon

was observed.
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Figure 98: Comparison of creep strain vs. time curves obtained for undoped,
polycrystalline YAG specimens with different grain sizes at S0 MPa and 100 MPa at

1300°C in air.

6.1.3. Determination of the Stress Exponent and Grain Size Exponent from the Steady-

State Creep Results of Yttrium Aluminum Garnet at 1300°C in air
The creep results from each sample set described above were plotted on a log-log plot of strain

rate vs. stress, shown in Figure 99. This graph illustrates the significant difference in steady-state
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creep strain rates due to the difference in material grain size. Four different sample sets are shown

in Figure 99 with grain sizes between 0.92 um and 7.99 pm.
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Figure 99: The steady-state creep strain rate vs. applied stress and the stress exponents, n,
of undoped, polycrystalline YAG specimens with different grain sizes at 1300°C in air.
Results for specimens with grain size of 0.92 pm from Armani et al. (2011) are included for
comparison [28], [29].

It is also seen from Figure 99 that although grain size significantly affects the magnitude of
the creep strain rates of YAG, it does not significantly alter the effect of stress on the resulting
strain rate. The relationship between the applied creep stress and the resulting creep strain rate
can be determined by plotting strain rate vs. stress on a log-log scale, as is shown in Figure 99.
This plot allows the effects of stress to be isolated and measured by using linear regression to
find a best-fit line associated with each set of date. Because the data is plotted on a log-log scale,
each line corresponds to an exponential equation of the form:

& =Ao™ (Equ. 28)
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Where o is the applied stress during creep, 7 is the stress exponent, and A4 incorporates all
other parts of the steady-state creep equation from Equation 4. From these Equations, the stress
exponent can be determined. As is shown in the legend of Figure 99, and also in Table 20 below,
the stress exponents for each set of samples with similar grain sizes are almost identical, and
average to n = 1.30. This value of n is very close to that previously determined by Parthasarathy
et al. and Armani et al. in their work on the creep of YAG [27]-[29]. Therefore, it was concluded
that the grain size of undoped, polycrystalline YAG has a significant effect on the steady-state
creep strain rates, but not on the stress exponent, for the range of grain sizes studied here (0.92
pum — 7.99 um).

Table 20: The stress exponent, n, for undoped, polycrystalline YAG specimens with different

grain sizes at 1300°C in air. Results for specimens with grain size of 0.92 um from Armani et al.
(2011) are included for comparison [28], [29].

Sample Set Grain Size Stress Range Exspt;flisn ¢ Average Stress
[pm] [MPa] n ’ Exponent, n
Armani 1 - 4* 0.92 50 -200 1.35
Y-7-40 1.17 50-150 1.23 1.30
Y-14-40 3.19 50-200 1.22 )
Y-13-40 7.99 50 - 200 1.39

*Results obtained by Armani et al. and referenced in this work for comparison [28], [29].

The grain size exponent, m, from Equation 4 was also determined in a similar manner to the
stress exponent, n. The effect of grain size was isolated by grouping test results together based on
the applied stress. Steady-state creep rates were plotted versus grain size on a log-log scale in
Figure 100. Each specimen that was tested at a particular stress level was grouped with the others

at that same stress level, and they were plotted as a series on the graph.
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Figure 100: The steady-state creep strain rate vs. grain size and the grain size exponents, m,

of undoped, polycrystalline YAG specimens at different creep stress levels at 1300°C in air.

Results for specimens with grain size of 0.92 pm from Armani et al. (2011) are included for

comparison [28], [29].

For each data series plotted in Figure 100, the stress, temperature, and environment were held

constant, and the effects of grain size were isolated. To quantify this effect, a best-fit line was

determined by linear regression for each group of results. The corresponding equation for each

best-fit line on the log-log scale contains an exponent, similar to the analysis of the stress

exponent above. In this case the exponent is a negative number, which corresponds to the inverse

relationship between grain size and steady-state creep rate. This negative exponent represents the

experimentally determined value of the grain size exponent, m. As is shown in the legend of

Figure 100, and also in Table 21 below, the grain size exponents for each set of samples and

applied stress values are almost identical, and average to m = 1.99.
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Table 21: Grain size exponent, m, for undoped, polycrystalline YAG specimens at different creep
stress levels at 1300°C in air. Results for specimens with grain size of 0.92 um from Armani et
al. (2011) are included for comparison [28], [29].

Creep Stress Grain Sizes Grain Size ‘;;?E)g‘;g:::?
[MPa] [pm] Exponent, n n ’
50 0.92*,1.17,3.19, 7.99 2.03
100 0.92* 1.17,3.19, 7.99 1.94 1.99
150 0.92*,1.17,3.19, 7.99 2.04 )
200 0.92*, 3.19, 7.99 1.94

*Results obtained by Armani et al. (2011) and referenced in this work for comparison [28], [29].

6.2.Creep of Undoped, Polycrystalline Yttrium Aluminum Garnet at 1300°C

in Steam

Undoped, polycrystalline YAG specimens were tested under similar creep conditions in
steam in order to assess the effects of the environment on the overall creep behavior. Armani et
al. previously tested undoped, polycrystalline YAG specimens with a grain size of 0.92 um at
1300°C in steam and determined that the presence of steam had no significant effect on the creep
behavior for that material at this temperature. The small differences between the current creep
test method and previous work were already discussed and found to have no significant effects
on the creep results. Therefore, results of this work can be directly compared to results obtained
previously by Armani et al. For this reason, creep experiments on similar grain-sized YAG
specimens were not repeated in steam. Rather specimens with a larger grain size of 7.99 um
(from the same sample set as was previously tested in air) were tested in steam in order to
determine the effects of grain size in steam, and to determine any potential effects of

environment on specimens with two different grain sizes.
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6.2.1. The Effects of Grain Size on the Creep Behavior of Undoped Yttrium Aluminum

Garnet at 1300°C in Steam

The first published results of the creep of undoped, polycrystalline YAG at 1300°C in steam

were obtained by Armani et al [28], [29]. The creep strain vs. time curves from this earlier

research are shown in Figure 101. These results were obtained with permission from the authors

and are displayed here in a format, which is consistent with the rest of the results in this chapter.

These first specimens tested in steam had a grain size of 0.92 pm, and came from the same

sample set as the undoped YAG specimens tested in air by Armani et al.
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Figure 101: Creep strain vs. time curves obtained by Armani et al. for undoped,

polycrystalline YAG specimens with grain size of 0.92 pm at 1300°C in steam [28], [29].

Specimens with a grain size of 7.99 um, obtained from the same sample set as was tested in

air, were also tested in steam. The resulting creep strain vs. time curves are shown in Figure 102.

Due to the limited number of specimens, only three tests were performed, with creep stress levels

of 50, 100, and 200 MPa.
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Figure 102: Creep strain vs. time curves obtained for undoped, polycrystalline YAG

specimens with grain size of 7.99 pm at 1300°C in steam.

As was observed from the results of YAG specimens with grain size of 7.99 um tested in air,
creep strains are very low at all creep stress levels. The largest creep strain of 0.23% was
accumulated at 200 MPa. The creep strains observed for specimens with larger grains are
significantly less than those for specimens with smaller grains, as evidenced with results in
Figure 101 and Figure 102. Table 22 below shows the accumulated strain as well as the steady-
state creep rates for specimens with larger grains and for specimens tested previously by Armani
et al. with grain size of 0.92 pm.

The steady state creep rates of undoped, polycrystalline YAG with a grain size of 7.99 at
1300°C in steam were determined to be between 1.66 x 10 and 1.21 x 10 s, These creep rates
are very similar to those found for specimens from the same sample set, which were tested in air.
The steady-state creep rates were measured after careful examination of the creep strain vs. time
curves in Figure 102. Part of the curves level out and are completely horizontal, and small

portions of the curves actually possess a negative slope. These characteristics of the strain vs.
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time curves can make it difficult to identify the steady-state portion for analysis. However, after
careful examination, portions of the curves that most likely represent the steady-state creep
regimes were isolated, and the steady-state creep strain rates were determined.

Table 22: Summary of creep results for undoped, polycrystalline YAG with grain sizes of (.92
um and 7.99 um at 1300°C in steam. Results for specimens with grain size of 0.92 um from
Armani et al. (2011) are included for comparison [28], [29].

. N Total Steady-State

Specimen | Grain Size | Creep Stress Accuolmulated Creep Rate
Name [pm] [MPa] Strain after 5 s
hrs [%]

Armani-5* 0.92 50 0.32%* 1.29 x 10”7
Armani-6* 0.92 100 Not Available** 5.29x 107
Armani-7* 0.92 150 1.24%* 7.31x 107
Armani-8* 0.92 200 1.83 9.46 x 107
Y-13-40-1 7.99 50 0.097 1.66 x 107
Y-13-40-2 7.99 100 0.22 5.26x 107
Y-13-40-5 7.99 200 0.23 1.21x 103

*Results obtained by Armani et al. and referenced in this work for comparison [28], [29].
**Creep tests ended early, and total strain accumulation after 5 hrs is approximated or unknown.

In order to compare the results obtained for specimens with the same grain size tested in air
and in steam, the steady-state creep strain rates for all specimens with grain size of 7.99 um were
plotted on the same graph in Figure 103. There is little difference in the creep strain rates for
specimens tested in air and in steam, and any small visual difference seen in Figure 103 is well

within the potential error that could be present in these tests.
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Figure 103: The steady-state creep strain rate vs. applied stress of undoped YAG specimens
with grain size of 7.99 pm at 1300°C in air and in steam.

Therefore, the effect of steam on the creep rates of YAG at 1300°C for specimens with grain
size of 7.99 pum appears to be negligible. This observation supports the same conclusion
developed by Armani et al. who found that the presence of steam has no significant effect on the
creep strain rates of undoped, polycrystalline YAG at 1300°C with grain size of 0.92 um [28],
[29]. Now that the same conclusion has been reached for a second and much larger grain size, it
is apparent that the presence of steam has no significant effect on the creep rates of YAG, and

also the effect of grain size, which was observed in air, holds true in steam as well.

6.2.2. Determination of the Stress Exponent and Grain Size Exponent for the Steady-State
Creep Behavior of Yttrium Aluminum Garnet at 1300°C in steam
In order to determine the stress exponent for undoped YAG at 1300°C in steam, the creep
results from each sample set described above were plotted on a log-log plot of strain rate vs.
stress, shown in Figure 104. One sample set with grain size of 0.92 um was obtained from the

results presented by Armani et al. [28], [29]. The second sample set came from SPS billet Y-13-
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40 with a grain size of 7.99 um. Figure 104 illustrates the significant difference in steady-state

creep strain rates between the sample sets due to the difference in material grain size.
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Figure 104: The steady-state creep strain rate vs. applied stress and the stress exponents of
undoped, polycrystalline YAG specimens with different grain sizes at 1300°C in steam.
Results for specimens with grain size of 0.92 pm from Armani et al. (2011) are included for
comparison [28], [29].

Figure 104 reveals additional information about the creep of YAG in steam. First it
successfully demonstrates the significant effect of grain size on the steady state creep rates for all
stress levels. As in air, the difference in the steady-state creep rates is approximately 2 orders of
magnitude for specimens with these specific grain sizes. The stress exponents were determined
by finding the exponent associated with the best-fit line on a log-log scale for the data points of
each sample set of a particular grain size. The stress exponent for the specimens tested by
Armani et al. in steam with a grain size of 0.92 um was 1.43. This stress exponent was validated
by testing specimens with the larger grain size of 7.99 pm. The stress exponent for specimens

from Y-13-40 was determined to be approximately 1.44, as is shown in Figure 104 and Table 23
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below. When comparing these stress exponents to those determined for undoped, polycrystalline

YAG at 1300°C in air, it is observed that the stress exponents are very close, 1.30 in air and 1.44

1n steam.

Table 23: The stress exponent, n, for undoped, polycrystalline YAG specimens with different
grain sizes at 1300°C in steam. Results for specimens with grain size of 0.92 um from Armani et
al. (2011) are included for comparison [28], [29].

Sample Set Grain Size Stress Range ExSt(l;flisn ¢ Average Stress
P [pm] [MPa] P P Exponent, n
Armani 5 - 8* 0.92 50 -200 1.43 1.44
Y-13-40 7.99 50 -200 1.44 :

*Results obtained by Armani et al. and referenced in this work for comparison [28], [29].

The grain size exponent, m, was also determined for creep of undoped, polycrystalline YAG
at 1300°C in steam. The effect of grain size was isolated by plotting test results together as
log(strain rate) vs. log(grain size), shown in Figure 105. Each set of specimens that was tested at
a particular stress level, which is composed of specimens from each sample set and associated
grain size, was grouped as a series on the graph and a best-fit line was applied to each set of
results. The corresponding equation for each best-fit line contains an exponent, similar to the
analysis of the stress exponent above. In this case the exponent is a negative number, which

corresponds to the inverse relationship between grain size and creep rate in Equation 4.
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Figure 105: The steady-state creep strain rate vs. grain size and the grain size exponents, m,

of undoped, polycrystalline YAG specimens with different grain sizes at 1300°C in steam.

Results for specimens with grain size of 0.92 pm from Armani et al. (2011) are included for

comparison [28], [29].

As is shown in the legend of Figure 105, and also in Table 24 below, the grain size exponents

for each set of samples are very close to each other, and average to m = 2.06. When comparing

this grain size obtained in steam to that obtained in air (mair = 1.99), it is concluded that the effect

of grain size on the steady-state creep behavior of undoped, polycrystalline YAG at 1300°C in

steam is the same as in air. Once again, the presence of steam has little influence on creep

behavior of YAG at 1300°C.

Table 24: The grain size exponent, m, for undoped, polycrystalline YAG specimens at different
creep stress levels at 1300°C in steam. Results for specimens with grain size of 0.92 um from

Armani et al. (2011) are included for comparison [28], [29].

Creep Stress Grain Sizes Grain Size gi‘;zrgie 3:::;1
[MPa] [pm] Exponent, n ’f i
50 0.92*, 7.99 2.01
100 0.92*,7.99 2.13 2.06
200 0.92*,7.99 2.02

*Results obtained by Armani et al. and referenced in this work for comparison [28], [29].
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6.3. Creep of Undoped Yttrium Aluminum Garnet at 1400°C in Air

6.3.1. Determination of the Stress Exponent for Undoped Yttrium Aluminum Garnet at
1400°C in Air
Creep tests were performed on three specimens from the SPS billet Y-7-40 at 1400°C in air
in the same manner as 1300°C. The specimens were tested at compressive stress levels of 50
MPa, 100 MPa, and 150 MPa in order to be able to directly compare the results of specimens
from the same billet tested at 1300°C. All specimens from Y-7-40 have an average grain size of

1.17 um. The resulting creep strain vs. time curves are shown in Figure 106.
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Figure 106: Creep strain vs. time curves obtained for undoped, polycrystalline YAG

specimens with grain size of 1.17 pm at 1400°C in air.

Table 25 summarizes results for creep tests conducted at 1400°C, including the creep strain
accumulated after 5 hours and the steady-state creep strain rates. The accumulated strain was
between 2.64% at 50 MPa and approximately 6% at 150 MPa. Steady-state creep strain rates
were determined to be between 1.28 x 10 s™! for 50 MPa and 3.50 x 10 s! for 150 MPa. Both

the accumulated strain and the steady-state strain rates are significantly higher at 1400°C than at
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1300°C. The accumulated strains are approximately 7-8 times greater at 1400°C than at 1300°C.
The creep rates at 1400°C are about one order of magnitude higher than those at 1300°C.

Table 25: Summary of creep results for undoped, polycrystalline YAG with grain size of 1.17 um
at 1400°C in air.

. c Qs Total Accumulated | Steady-State
Specimen | Grain Size | Creep Stress .
Name [um] [MPa] Strain after 5 hrs Creep Rate
: [%] [
Y-7-40-4 1.17 50 2.64 1.28 x 10°®
Y-7-40-5 1.17 100 4.54 1.80 x 10°®
Y-7-40-6 1.17 150 6.00* 3.50x 106

*Creep test ended early, and total strain accumulation after 5 hrs is approximated.

The steady-state creep rates obtained at 1300°C and 1400°C in air were plotted on a log-log
plot in Figure 107. This graph illustrates the significant difference in steady-state creep strain
rates due to the difference in temperature. All other parameters, which could affect the creep
rates, were held constant between the two sample sets, including material type, grain size,

applied stress, and testing environment.
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Figure 107: The steady-state creep strain rate vs. applied stress and the stress exponents of

undoped, polycrystalline YAG specimens with grain size of 1.17 pm at 1300°C and 1400°C.
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The significant effect of temperature on the steady-state creep strain rates of undoped YAG is
apparent in Figure 107. The stress exponent for the creep of undoped YAG at 1400°C in air was
also determined from the strain rate vs. stress plot in the same way as it was determined
previously for specimens tested at 1300°C. The stress exponent at 1400°C was determined to be
0.87. This value is lower than the other stress exponents determined so far for undoped,
polycrystalline YAG at 1300°C, which was 1.23. It is possible that the effect of varying the
applied stress during creep tests is less significant at 1400°C than at 1300°C. However, several
more creep tests using specimens from different sample sets are necessary to determine if this is
a consistent trend for all undoped YAG specimens at 1400°C or if this stress exponent is unique

to specimens from Y-7-40.

6.3.2.  Determination of the Creep Activation Energy for Undoped Yttrium Aluminum
Garnet in Air

The apparent activation energy with respect to plastic deformation is a material characteristic
that describes the temperature dependence of the steady-state creep rate. It is represented by Q in
Equation 5, which describes the diffusivity of a material, which is also critical to the steady-state
creep rate, described by Equation 4. The diffusivity of a material is important because diffusion
has been recognized as a primary mechanism that can enable creep in YAG. In order for an atom
to move to a new location during diffusion, it must reach a certain energy level, known as the
activation energy [279].

Once the steady-state creep rates have been determined for a material at different
temperatures under the same stress, the activation energy can be determined. In order to
accomplish this task, creep tests at different temperatures must be performed using specimens of

similar grain size and subject to the same stress level and environment. To meet these
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requirements, specimens from the same SPS billet (Y-7-40) with a grain size of 1.17 um, were
tested at the same stress level at 1300°C in air and at 1400°C in air. The activation energy was
determined by plotting the results as the natural logarithm of strain rate [In(€)] vs. the reciprocal

of temperature [1/T]. Recall that the steady-state creep rate can be expressed as follows:

=2 (0 C)
e==-) (Equ. 29)

where D is the diffusion coefficient given by:

_Q
D = Dye rt (Equ. 30)
By rearranging and combining these equations, and removing any variation due to stress or grain

size, Equation 29 becomes:
: 1y -2
e=X (;) e RT (Equ. 31)

where X incorporates the portion of Equation 29 that can be held constant. By plotting the natural
logarithm of strain rate vs. the reciprocal of temperature, and using linear regression to obtain a

best fit line for each set of data, the equation for each line becomes:

In(é) = — % (%) + X (Equ. 32)

Using linear regression and Equation 32, the expression (-Q/R) can be determined by finding
the slope of each line. These data for specimens from SPS billet Y-7-40 was plotted in Figure
108 along with the best-fit lines for each set of specimens tested under similar conditions but

different temperatures.
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Figure 108: The natural log of steady-state creep strain rate vs. inverse temperature for
undoped, polycrystalline YAG at 1300°C and 1400°C in air.

The activation energy was determined for each set of strain rate results associated with a
specific stress level. The activation energies for undoped, polycrystalline YAG were determined
to be 613 kJ/mol, 434 kJ/mol, and 548 kJ/mol for creep stresses of 50, 100, and 150 MPa,
respectively. These three activation energies were averaged together to get a better
approximation of the true activation energy for the creep of YAG, which was found to be 532
kJ/mol.

The creep activation energy of YAG has been previously reported by Parthasarathy et al. to
be 584 kJ/mol [190]. They determined that activation energy was associated with Nabarro-
Herring diffusional creep, where diffusion of the Yttrium cation (Y**) was the rate limiting
factor. Similarly, additional authors have cited the activation energy associated with Y>* cation
in YAG to be between 500 and 565 kJ/mol [280], [281]. This high activation energy in YAG
above 500 kJ/mol indicates that the Y** cation must be the rate limiting diffusional species, as

the activation energy associated with the diffusion of Oxygen has been found to be much lower,
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approximately 300 — 350 kJ/mol [96]. Similarly, a lower activation energy would be associated
with the diffusion of Aluminum, approximately 440 kJ/mol [282]. An additional discussion of
the creep activation energy and its implications for the most likely creep mechanisms at work in

YAG can be found in Section 6.5.

6.4. Creep of Yb- and Er-doped Yttrium Aluminum Garnet at 1300°C in Air

This chapter presents the creep results obtained for 2at% Yb-doped YAG and 2at% Er-doped
YAG specimens, which were fabricated by means of SPS. Details of the doped YAG materials
are discussed in Section 3.1.1 and the characteristics of each SPS billet are tabulated in Appendix
A. Due to the limited number of creep test specimens that were fabricated from the doped-YAG
billets, only two sets of creep specimens were tested for each material variant. This chapter is
organized into two parts: first, the results obtained for 2at% Yb-doped YAG are presented, and
then the results obtained for 2at% Er-doped YAG. In each of these sections, the creep results are
summarized and compared to the results from corresponding tests for undoped YAG, presented
in the previous section.

In order to determine the effects of dopants on the creep behavior of polycrystalline YAG,
each test was conducted in the same manner as those for undoped YAG. Each creep test was
performed at 1300°C in air, with stress levels between 50 MPa and 200 MPa, so that direct
comparisons could be made, and the effects of dopants could be isolated. Specimens from each
billet had different grain size, which enabled the effect of grain size to be determined for doped,
polycrystalline YAG. For each material variant, the stress exponent and grain size exponent were

determined and compared to that of undoped YAG.
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This analysis of the effects of dopants on the creep behavior of polycrystalline YAG is
designed to build on the previous work of Armani et al. [28], [29], who conducted creep tests on
0.15wt% Si02-doped YAG specimens at 1300°C in air and in steam. Armani et al. concluded
that for materials with identical grain size under similar test conditions, the presence of the silica
dopant may have a small increasing effect on the diffusion rates in YAG and, therefore, on the
creep rates as well [28], [29]. Assuming that the creep of polycrystalline YAG of this grain size
is dominated by lattice diffusion, based on the Nabarro-Herring creep mechanism, then the rate-
limiting species in the lattice of YAG is the Yttrium cation (Y>"). It has been shown that the
presence of silica doping in YAG can results in Si*" cation being in solution with YAG at these
temperatures. This can lead to increased densification and grain growth, and can also contribute
to an increased rate of diffusion, due to possible increased mass transport effects from the silica
dopant [261].

However, perhaps due to the small amount of the silica dopant, this potential increase in
creep rate, was observed to be very small, almost negligible, in the work of Armani et al [28],
[29]. YAG was processed in this previous work with a silica dopant as a sintering aid. YAG is
also commonly processed with other various dopants, such as Yb and Er, primarily due to their
effects on the optical properties of doped YAG, when used as a laser material. However, very
little work has been done to determine the potential effects of these dopants on the mechanical
properties of YAG. Therefore, the effects of these dopants on the mechanical behavior of YAG

is still a topic of interest.
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6.4.1. Creep Results of 2at% Yb-Doped Yttrium Aluminum Garnet at 1300°C in Air

Two sample sets from two different SPS billets were creep tested at 1300°C in air. These
billets were Y-Yb-7-40 and Y-Yb-5-40 with grain sizes of 0.37 um and 1.38 um, respectively.
The microstructure of each billet was analyzed in the SEM, in order to determine grain size, as
well as to quantify the presence of porosity and any cracking. SEM images are shown for

specimens from Y-Yb-7-40 and Y-Yb-5-40 in Figure 109 and Figure 110, respectively.

4

SEMHV:15.0kV | WD: 8.08 mm MIRA3 TESCAN

SEM MAG: 34.6 kx View field: 8.00 pm 2 um
Det: BSE Date(m/d/y): 06/04/21 Performance in nanospace

Figure 109: SEM image of a specimen cut from the SPS billet Y-Yb-7-40, with a measured

average grain size of 0.37 pm.

SEM HV: 15.0 kV WD: 8.95 mm MIRA3 TESCAI

SEM MAG: 13.8 kx View field: 20.0 pym 5 pm
Det: BSE Date(m/dly): 06/08/21 Performance in nanospace

Figure 110: SEM image of a specimen cut from the SPS billet Y-Yb-5-40, with a measured

average grain size of 1.38 pm.
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Each SEM image shows a similar grain structure as was seen before with other specimens.
There is significant variation in grain size within the view field, and grains tend to have sharp
geometric shapes with no round edges. Figure 111 shows the creep strain vs. time curves for

three samples from the Y-Yb-7-40 sample set. They were tested at 50 MPa, 100 MPa, and 200

MPa.
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Figure 111: Creep strain vs. time curves obtained for 2at% Yb-doped, polycrystalline YAG
specimens with grain size of 0.37 pm at 1300°C in air.

It is apparent from Figure 111 that the accumulated creep strains are significantly higher
than what was previously observed for undoped YAG. Creep strain for the specimen subjected to
200 MPa at 1300°C in air reached over 12% strain in approximately 3 hrs. However, the grain
size for the Y-Yb-7-40 billet is very small (0.37 um), which likely has a significant impact on the
creep rates, and is analyzed later in this section.

Specimens from the second 2at% Yb-doped YAG billet, Y-Yb-5-40, have a grain size of
1.38 um. The creep strain vs. time curves for these specimens are shown in Figure 112. Three

specimens were tested at 50 MPa, 100 MPa, and 200 MPa.
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Figure 112: Creep strain vs. time curves obtained for 2at% Yb-doped, polycrystalline YAG

Specimens from this billet with larger grain size accumulated significantly less creep strain
than observed for the previous billet. The specimen subjected to 200 MPa reached approximately
1.3% strain after 5 hrs. The creep strain vs. time curves obtained for both Yb-doped YAG billets,
are mostly smooth and linear. They exhibit minimal primary creep, and most of the five-hour
long creep test was dominated by secondary creep. These results are summarized in Table 26.

Table 26: Summary of creep results for 2at% Yb-doped, polycrystalline YAG with grain sizes of
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specimens with grain size of 1.38 pm at 1300°C in air.

0.37 um and 1.38 um at 1300°C in air.

. Grain Total Accumulated | Steady-State
Specimen . Creep Stress .
Name Size [MPa] Strain after 5 hrs Creel?lRate
[nm] [Yo] [s”]

Y-Yb-7-40-1 0.37 50 0.49 2.18x 107
Y-Yb-7-40-2 0.37 100 4.57 2.21x 10
Y-Yb-7-40-3 0.37 200 Not Available* 5.88x 10°
Y-Yb-5-40-1 1.38 50 0.15 7.37x 1038
Y-Yb-5-40-2 1.38 100 0.41 1.21x 107
Y-Yb-5-40-3 1.38 100 0.42 1.59x 107
Y-Yb-5-40-4 1.38 200 1.34 4.73 x 107

*Creep tests ended early, and total strain accumulation after 5 hrs is unknown.
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The steady-state creep strain rates were determined by measuring the slope of the flattest
portion of each strain vs. time curve. The strain rates for each Yb-doped YAG specimen from

each SPS billet were plotted vs. stress and are shown in Figure 113.
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Figure 113: The steady-state creep strain rate vs. applied stress and the stress exponents, n,
of 2at% Yb-doped, polycrystalline YAG specimens with different grain sizes at 1300°C in
air.

The stress exponents were obtained from the strain rate vs. stress curves as they were
previously for undoped YAG specimens. The stress exponent for Yb-doped YAG specimens
from billet Y-Yb-5-40 with a grain size of 1.38 pum was found to be 1.34. This is right in line
with stress exponents obtained for undoped YAG, which was approximately 1.30. However, the
stress exponent for billet Y-Yb-7-40 with grain size of 0.37 was found to be much larger, with a
value of 2.38. This stress exponent is consistent with the apparent steep trend seen in Figure 113
for the three specimens with smaller grain size. The two stress exponents determined for Yb-

doped YAG specimens are summarized and averaged in Table 27.
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Table 27: The stress exponent, n, for 2at% Yb-doped, polycrystalline YAG specimens with
different grain sizes at 1300°C in air.

Samble Set Grain Size Stress Range ExSt;flsefn ¢ Average Stress
P [pm] [MPa] P n ’ Exponent, n

Y-Yb-7-40 0.37 50 - 200 2.38 1.86

Y-Yb-5-25 1.38 50 - 200 1.34 )

As is shown in Table 27, the two stress exponents can be averaged together, which results in
an average stress exponent of 1.86 for Yb-doped YAG at 1300°C in air. However, it is likely that
this large discrepancy in the two stress exponents is due to a change in creep mechanism for
materials with small grains. It has been shown that the creep of large grained (d > 1 um) ceramic
materials, including alumina, and likely YAG, is typically dominated by the Nabarro-Herring
diffusional creep mechanism. However, the creep mechanism for similar materials with smaller
grains can change to become interface-reaction controlled, a mechanism associated with a higher
stress exponent, as seen here.

For diffusional creep mechanisms, such as Nabarro-Herring and Coble creep, the grain
boundaries are assumed to act as perfect sources and sinks for vacancies, enabling diffusion that
controls the creep rates. However, the small grain size and the increased amount of grain
boundaries in fine-grained materials can lead to reactions at the interface. In these cases, the
typical lattice or grain boundary diffusion becomes so rapid, that creation and removal of
vacancies and defects at the grain boundaries can become the rate-controlling mechanism of
diffusion [147], [283]-[285]. This is discussed further in Section 6.5, summarizing the creep
mechanisms observed in doped and undoped YAG.

In order to determine a grain size exponent for Yb-doped YAG, the steady-state creep strain
rates of all Yb-doped YAG specimens were grouped according to the creep stress value, and

plotted vs. grain size on a log-log scale in Figure 114.
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Figure 114: The steady-state creep strain rate vs. grain size and the grain size exponents, m,
of 2at% Yb-doped, polycrystalline YAG specimens at different creep stress levels at
1300°C in air.

Creep tests were performed at three different stress values: 50 MPa, 100 MPa, and 200 MPa,
so three grain size exponents were determined for Yb-doped YAG at 1300°C in air. These three
grain size exponents were averaged together to obtain a better approximation of the grain size
exponent associated with the creep of this material, which was 1.69. These exponents are shown
in Figure 114 and Table 28.

There was a larger discrepancy between the three grain size exponents, than was seen for
undoped YAG. At 50 MPa the grain size exponent was determined to be 1.05, and at 100 MPa
the grain size exponent was determined to be 2.10. This variation in grain size exponent may be
due to a change in creep mechanisms associated with different grain sizes, which was discussed
earlier in this section. It is possible that the two creep mechanisms are associated with two
different strain regimes. Nabarro-Herring diffusional creep will typically result in a grain size

exponent of 2, while interface reaction-controlled creep will typically see a grain size exponent
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of 1. This could explain the range of grain size exponents that were obtained in this case using
these two sets of specimens.

Table 28: The grain size exponent, m, for 2at% Yb-doped, polycrystalline YAG specimens at
different creep stress levels at 1300°C in air.

Creep Stress Grain Sizes Grain Size éi‘;eeréyg(e g:::::l
[MPa] [pm] Exponent, n ’f ’
50 0.37,1.38 1.05
100 0.37,1.38 2.10 1.69
200 0.37,1.38 1.91

The steady-state creep strain rates obtained for 2at% Yb-doped YAG specimens were
compared to those obtained for undoped YAG in Figure 115. Both the doped and undoped
specimens were tested at 1300°C in air in order to remove other sources of variation and to
determine the effects of the dopant. However, the grain sizes of each SPS billet are different, for
both the doped and undoped billets. Each grain size is shown in Figure 115 along with the

steady-state creep strain rates.
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Figure 115: The steady-state creep strain rate vs. applied stress of 2at% Yb-doped and

undoped, polycrystalline YAG specimens with different grain sizes at 1300°C in air.
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In order to fully assess the effects of the dopant on the creep behavior of YAG at 1300°C in
air, it was necessary to remove any possible effect of grain size. Therefore, the steady-state creep
strain rates were normalized for a grain size equal to d = 1 pm. The creep rates were normalized
by using the average measured grain size exponent determined for undoped YAG, shown in

Table 21, and the following equation:

m
dActual)

1 um (Equ. 33)

ENorm = €Actual (

Figure 116 shows the steady-state creep strain rates for Yb-doped and undoped YAG
specimens at 1300°C in air; however, in this case, the creep rates have all been normalized to a

common grain size of d = 1 um. The original grain size of each group of specimens is also shown

in Figure 116.
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Figure 116: The normalized steady-state creep strain rate vs. applied stress of 2at% Yb-
doped and undoped, polycrystalline YAG specimens for grain sizes of d =1 pm at 1300°C

in air.
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Once the creep rates were normalized to a common grain size, the results in Figure 116 were
analyzed to identify any possible effects of the dopant on the creep behavior of YAG. The
steady-state strain rates for undoped YAG with grain size of 1.17 pum and the Yb-doped YAG
with grain size of 1.38 um are directly on top of each other, indicating that once grain size effect
was accounted for, there was essentially no significant difference between the creep behavior,
and that an effect of dopant was negligible.

Previous research has suggested that for undoped YAG with grain sizes of d > 1 um, the
dominant creep mechanism is Nabarro-Herring diffusional creep, and that the rate-limiting
species in the lattice of YAG is the Yttrium cation (Y>") [190]. When these materials are doped
with another element, the rate-limiting species during diffusion can change, thus affecting the
creep rates. However, because the creep rates of 2at% Yb-doped YAG and undoped YAG with
similar grain sizes are overlapping with no apparent difference, this indicates that the presence of
the dopant is not significantly affecting the rate of diffusion during creep.

This conclusion is consistent with several observations regarding the similarities of the rare-
earth elements, Yb and Y. Although the atomic mass of Y is 88.9 amu and the atomic mass of
Yb is 173.04 amu, it has been determined that the diffusivity of each species is minimally
affected by the atomic mass, when compared to other considerations. The diffusivity of each
element is approximately equivalent to the square root of the reciprocal of the atomic mass.
Therefore, the difference would only be approximately a factor of two, due only to the mass
effect [96]. However, the more significant attributes affecting the diffusivity of elements are the
valence state and the ionic radii of each species. The large trivalent Yttrium ions occupy
dodecahedral sites with ionic radii of 0.102 nm. Similarly, the Ytterbium ions have the same

valence as the Yttrium with ionic radii of 0.099 nm. These attributes are nearly identical.
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Therefore, the diffusivity of Yb*" is assumed to closely correspond to the diffusivity of Y** self-
diffusion in YAG, and the elements can almost fully replace one-another [96]. When considering
this phenomenon, recall that the activation energy associated with the diffusional creep for
undoped YAG was determined to be approximately 532 kJ/mol. It has also been shown that
when Yb is added to a solution with YAG, the activation energy associated with diffusion was
found to be approximately 550 kJ/mol. These activation energies are nearly identical. It is likely
that the Yb atoms replace a certain amount of Y atoms, but this exchange has no effect on the
rates of diffusion.

However, there is a significant difference in creep strain rates of Yb-doped YAG and
undoped YAG when considering the SPS billet with grain size of 0.37 um. Even though the
strain rates have been normalized to a common grain size, this normalization process assumes
identical creep mechanisms and overall similar creep behavior. Recall that the small grain size of
this doped YAG billet contributed to different stress and grain size exponents than what was
expected for YAG, based on the earlier results presented in this chapter. Therefore, the
normalization process did not fully remove the variation in the creep behavior between these
specimens. The steeper slope, which is observed for specimens from billet Y-Yb-7-40 was
expected, and was also seen in Figure 113 and Figure 115. This higher stress exponent was
attributed to the interface reaction-controlled creep mechanism. It has also been shown that for
small grain sizes and low stress values, that interface reaction-controlled creep can contribute to
surprisingly low steady-state creep rates [286], [287]. This is apparent in this case of 50 MPa in
Figure 116. This stress level can also represent an amount of stress that is below some threshold
value where very little creep will occur. This trend has also been seen in the creep of similar

materials [288], [289].
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6.4.2. Creep of 2at% Er-Doped Yttrium Aluminum Garnet at 1300°C in Air

Two sample sets from two 2at% Er-doped YAG SPS billets were creep tested at 1300°C in
air. These billets were Y-Er-9-40 and Y-Er-7-40 with grain sizes of 0.45 pm and 1.87 um,
respectively. The microstructure of each billet was analyzed in the SEM, in order to determine
grain size, and to quantify the presence of porosity and any cracking. SEM images are shown for

specimens from Y-Er-9-40 and Y-Er-7-40 in Figure 117 and Figure 118, respectively.

SEM HV: 15.0 kV WD: 8.00 mm MIRA3 TESCAN
SEM MAG: 34.6 kx View field: 8.00 ym 2 pm
Det: BSE Date(m/d/y): 06/04/21 Performance in nanospace

Figure 117: SEM image of a specimen cut from the SPS billet Y-Er-9-40, with a measured

average grain size of 0.45 pm.
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Figure 118: SEM image of a specimen cut from the SPS billet Y-Er-7-40, with a measured

average grain size of 1.87 pm.
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The grains visible in Figure 117 and Figure 118 are similar in shape as was seen before with
other specimens. There is some variation in grain size within the view field, and grains tend to
have sharp geometric shapes with no round edges. Figure 119 shows the creep strain vs. time
curves for three samples from the Y-Er-9-40 sample set. They were tested at 50 MPa, 100 MPa,

and 150 MPa.
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Figure 119: Creep strain vs. time curves obtained for 2at% Er-doped, polycrystalline YAG
specimens with grain size of 0.45 pm at 1300°C in air.

Once again, the accumulated creep strains are significantly larger than those observed for
undoped YAG specimens with larger grain sizes. These three specimens have a grain size of 0.45

um, so larger accumulated strains are expected due to the smaller grain size. The accumulated
creep strain for the specimen subjected to 150 MPa at 1300°C in air reached over 9% strain in
approximately 2.5 hrs. A test was attempted with an applied stress of 200 MPa; however, the
specimen failed early, and the results could not be used. At 150 MPa, the shape of the strain vs.
time curve is not consistent and smooth, but rather a significant slope change is apparent during

the test. This could indicate a transition from secondary to tertiary creep, but it also could
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indicate shearing within the specimen or some other phenomenon, which could impact the strain

response in creep.

Specimens from the second 2at% Er-doped YAG billet, Y-Er-7-40, have a grain size of 1.87

um. The creep strain vs. time curves for these specimens are shown in Figure 120. Three

specimens were tested at 50 MPa, 100 MPa, and 200 MPa.
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Figure 120: Creep strain vs. time curves obtained for 2at% Er-doped, polycrystalline YAG

specimens with grain size of 1.87 pm at 1300°C in air.

Specimens from this billet with larger grain size revealed significantly less accumulated

creep strain than those from the previous billet. The specimen subjected to 200 MPa only

reached approximately 1.2% strain after 5 hrs. The specimen subjected to 100 MPa only reached

approximately 0.16% strain after 4 hrs, which barely surpasses the creep strain produced at 50

MPa. However, this small amount of strain is due to a furnace malfunction. A heating element

failed at the beginning of the test resulting in a low temperature setting (approximately 75°C

below the set point). It is expected that this temperature deviation did cause the observed strain

to be lower than expected. However, the temperature deviation of 75°C is small, and the
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difference in creep strain is likely small as well. Therefore, the resultant creep strain data is still
presented here for comparison.

Each strain vs. time curve in Figure 120 is smooth and nearly linear. This indicates that there
is minimal primary creep, and most of the five-hour long creep tests were dominated by
secondary creep. The creep results for Er-doped YAG specimens are summarized in Table 29.

Table 29: Summary of creep results for 2at% Er-doped, polycrystalline YAG with grain sizes of
0.45 ym and 1.87 yum at 1300°C in air.

. C Qs Total Steady-State

Specimen | Grain Size | Creep Stress AcCl-lmulated Creep Rate
Name [pm] [MPa] Strain after 5 [s71]
hrs [0/0]

Y-Er-9-40-1 0.45 50 0.52 1.80 x 10”7
Y-Er-9-40-2 0.45 100 2.49 1.29x 10°®
Y-Er-9-40-3 0.45 200 Not Available* 5.13x10°
Y-Er-7-40-1 1.87 50 0.10 2.52x 10
Y-Er-7-40-2 1.87 100 Not Available* 4.89 x 108
Y-Er-7-40-3 1.87 200 1.21 2.87 x 107

*Creep tests ended early, and total strain accumulation after 5 hrs is estimated or unknown.

A significant difference in accumulated strain and steady-state creep rate is observed for
these two sample sets; which was expected due to the significantly different grain sizes. The two
sets of creep strain vs. time curves were plotted on the same graph in Figure 121 in order to
demonstrate the significant difference in strain accumulation due to grain size. A strain vs. time
for a specimen with grain size of 1.87 um at 200 MPa is nearly identical to the strain vs. time for

a specimen with grain size of 0.45 um at 100 MPa.
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Figure 121: Creep strain vs. time curves for specimens from billet Y-Er-9-40 and Y-Er-7-40
with grain sizes of 0.45 pm and 1.87 pm, respectively.
The steady-state creep strain rates were determined by measuring the slope of the flattest
portion of each strain vs. time curve. The strain rates for each Er-doped YAG specimen from

each SPS billet were plotted vs. stress and are shown in Figure 122.
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Figure 122: The steady-state creep strain rate vs. applied stress and stress exponents, n, of

2at% Er-doped, polycrystalline YAG specimens with different grain sizes at 1300°C in air.
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The stress exponents were obtained from the strain rate vs. stress curves as they were
previously for undoped YAG specimens. The stress exponent for Er-doped YAG specimens
from billet Y-Er-7-40 with a grain size of 1.87 um was found to be 1.75. This stress exponent is
higher than those determined for undoped YAG, which were approximately 1.30. One possible
cause of this unusually high exponent is the heater failure, which occurred during the 100 MPa
test. As was described earlier, the temperature output of the furnace was approximately 75°C
below the set point, which resulted in a low apparent creep strain rate. Due to specimen
limitations the test could not be repeated using a specimen from the same billet. Without this
equipment malfunction, the stress exponent obtained from the higher stress tests would have
likely been lower and within the range of those determined for undoped YAG.

The stress exponent for billet Y-Er-9-40 with grain size of 0.45 was found to be much larger,
with a value of 3.03. This stress exponent is consistent with the apparent steep trend seen in
Figure 122 for the three specimens with smaller grain size. This result is also consistent with the
unusually high stress exponent found for specimens with small grain size of Yb-doped YAG.
The two stress exponents determined for Er-doped YAG specimens are summarized and
averaged in Table 30.

Table 30: The stress exponent, n, for 2at% Er-doped, polycrystalline YAG specimens with
different grain sizes at 1300°C in air.

Samble Set Grain Size Stress Range ExSt;flsefn ¢ Average Stress
P [pm] [MPa] P n ’ Exponent, n

Y-Er-9-40 0.45 50-150 3.03 239

Y-Er-7-40 1.87 50 - 200 1.75 )

As is shown in Table 30, the two stress exponents can be averaged together, which results in

an average stress exponent of 2.39 for Er-doped YAG at 1300°C in air. As was seen with Yb-

doped YAG, it is likely that the high stress exponent for Y-Er-9-40 is due to the change in creep
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mechanism for certain materials with small grains. As was discussed in the previous section, it is
possible that the creep mechanism for specimens with very small grains changes from Nabarro-
Herring diffusional creep to interface reaction-controlled creep. This can be indicated by a higher
stress exponent, as seen here.

In order to determine the grain size exponent for Er-doped YAG, the same steady-state creep
strain rates of all Yb-doped YAG specimens were grouped according to the creep stress value,

and plotted vs. grain size on a log-log scale in Figure 123.
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Figure 123: The steady-state creep strain rate vs. grain size and the grain size exponents, m,
of 2at% Er-doped, polycrystalline YAG specimens at different creep stress levels at 1300°C
in air.

Creep tests included only two different stress values: 50 MPa and 100 MPa. Although three
stress levels were used to test specimens from each sample set, the third stress level did not
match (150 MPa and 200 MPa for the two billets). So only two grain size exponents were
determined for Er-doped YAG at 1300°C in air. These two grain size exponents were averaged
together to obtain a best approximation of the grain size exponent describing the creep of this

material, which was 1.84. These exponents are shown in Figure 123 and Table 31.
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As was observed for Yb-doped YAG, there is a large discrepancy between the two grain size
exponents, which correspond to 50 MPa and 100 MPa. This variation in grain size is likely due
to the two different creep mechanisms that may be occurring during creep of these two sets of
samples with two very different grain sizes, which was discussed earlier in this section. Nabarro-
Herring diffusional creep will typically result in a grain size exponent of approximately 2, while
interface reaction-controlled creep will typically see a grain size exponent of approximately 1.
This could explain the range of grain size exponents that were obtained in this case using these
two sets of specimens. The grain size exponents are presented again in Table 31.

Table 31: The grain size exponent, m, for 2at% Er-doped, polycrystalline YAG specimens at
different creep stress levels at 1300°C in air.

Creep Stress Grain Sizes Grain Size gzeeréyg(e g:::::l
[MPa] [pm] Exponent, n ’f ’
50 0.45, 1.87 1.38
100 0.45, 1.87 2.30 1.84

The steady-state creep strain rates obtained for 2at% Er-doped YAG specimens were
compared to those obtained for undoped YAG, shown in Figure 124. Both the doped and
undoped specimens were tested at 1300°C in air in order to remove other sources of variation
and to isolate the effects of the dopant. However, the grain sizes of each SPS billet are different
for both the doped and undoped billets. Each grain size is shown in Figure 124 along with the

steady-state creep strain rates.
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Figure 124: The steady-state creep strain rate vs. applied stress of 2at% Er-doped and
undoped, polycrystalline YAG specimens with different grain sizes at 1300°C in air.

In order to fully assess the effects of the dopant on the creep behavior of YAG at 1300°C in
air, it was necessary to remove any possible effect of grain size. Therefore, the steady-state creep
strain rates were normalized for a grain size equal to d = 1 um. As with Yb-doped YAG
specimens, the creep rates were normalized by using the average measured grain size exponent
determined for undoped YAG, shown in Table 21 and Equation 33. The resulting, normalized

steady-state creep strain rates are shown in Figure 125.
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Figure 125: The normalized steady-state creep strain rate vs. applied stress of 2at% Yb-
doped and undoped, polycrystalline YAG specimens for grain sizes of d =1 pm at 1300°C
in air.

Once the creep rates were normalized for grain size, the results in Figure 125 were analyzed
to determine any possible effects of the dopant on the creep behavior of YAG. The steady-state
strain rates for undoped YAG with original grain size of 1.17 pm and the Er-doped YAG with
grain size of 1.87 um are very close to each other. Recall that the 100 MPa test for Er-doped
YAG with grain size of 1.87 um was performed at a lower temperature, and would likely have
resulted in a higher strain rate with no furnace malfunction. Based on these results for specimens
with larger grain size, there is minimal difference observed in Figure 125, which may indicate
that there is no significant effect of the dopant on the steady-state creep behavior of YAG.

This same observation was made for Yb-doped YAG in the previous section, and was
attributed to the similarities of the rare-earth ions, Y>" and Yb>". Therefore, these ion
substitutions have minimal effects on the rates of diffusion during creep. These similarities

extend to the Er’" ion as well, which has an ionic radius of 0.100 nm, which falls between Y>*
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and Yb*". Therefore, the diffusivity of Er*" is expected to closely correspond to the diffusivity of
Y?* self-diffusion in YAG, and these elements can almost fully replace one-another [96], [290],
[291].

However, there is a significant difference in creep strain rates of Er-doped YAG and undoped
Y AG when considering the SPS billet with grain size of 0.45 um. Even though the strain rates
have been normalized for grain size, this normalization process assumes identical creep
mechanisms and overall similar creep behavior. Recall that the small grain size of this doped
YAG billet contributed to a different stress and grain size exponent than what was expected for
Y AG, based on the earlier results presented in this chapter. Therefore, the normalization process
described for Figure 125 did not fully remove the variation in the creep behavior between these
specimens. Just as with Yb-doped YAG, this higher stress exponent was attributed to the
interface reaction-controlled creep mechanism, which could be present in YAG materials with
smaller grain size. Also recall that interface reaction-controlled creep can contribute to
surprisingly low steady-state creep rates [29], as was observed at 50 MPa in the current work.

A comparison of the steady-state creep strain rates of Yb- and Er-doped YAG is presented in
Figure 126 and Figure 127. Figure 126 shows the results for doped YAG specimens with smaller
grain sizes compared to undoped YAG with a grain size of 1.17 um. Results are presented for
actual grain sizes in Figure 126(a) and normalized to d = 1 um in Figure 126(b). Figure 127
shows the results for doped YAG specimens with larger grain sizes compared to undoped YAG
with a grain size of 1.17 pm. Results are presented for actual grain sizes in Figure 127(a) and

normalized to d = 1 pm in Figure 127(b).
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Figure 126: Comparison of Yb- and Er-doped YAG specimens with grain sizes of 0.37 pm
and 0.45 pm, respectively and undoped YAG with grain size of 1.17 pm. Steady-state creep

strain rates vs. applied stress are presented for original grain size (a) and normalized to d =

1 pm (b).
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Figure 127: Comparison of Yb- and Er-doped YAG specimens with grain sizes of 1.38 pm
and 1.87 pm, respectively and undoped YAG with grain size of 1.17 pm. Steady-state creep
strain rates vs. applied stress are presented for original grain size (a) and normalized to d =

1 pm (b).
These results demonstrate the similarity of the creep behavior of 2at% Yb-doped YAG and
2at% Er-doped YAG. Multiple conclusions can be drawn from Figure 126 and Figure 127. First,
it appears that grain size is the most significant factor that influences the steady-state creep rates

of each material variant, including undoped YAG. Once creep rates have been normalized to one
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common grain size, Figure 127 reveals that there is essentially no effect of each dopant for grain
sizes above 1 um.

Figure 126 reveals a different phenomenon altogether. There is a significant difference in the
effects of creep stress on the resultant creep strain rates for each doped YAG material variant
with smaller grain sizes (d < 0.5 um). This was previously manifested by the higher stress
exponents obtained for specimens with smaller grain sizes. This result indicates that there may
be a different creep mechanism controlling the creep rates of YAG with very small grain sizes.
Previous research has suggested that ceramic material specimens with smaller grain sizes tested
at low creep stress levels may see a shift from Nabarro-Herring diffusional creep to interface
reaction-controlled diffusional creep as the dominant creep mechanism. Furthermore, interface
reaction-controlled creep has been associated with higher stress exponents, as was discussed
previously in Section 2.3.2. This conclusion would explain the results obtained for YAG

specimens of particularly small grain size.

6.5. Determination of the Dominant Creep Mechanisms for Yttrium

Aluminum Garnet at 1300°C and 1400°C in Air and in Steam

Undoped, Polycrystalline YAG at 1300°

Recall from Section 2.3.2 that there are several different possible creep mechanisms in
ceramic materials that lead to different behavior. Identifying these creep mechanisms can lead to
a better understanding of how a material will perform in creep and will enable performance
predictions and material design for structural applications. Previous research has established the

behavioral trends associated with different mechanisms, so they can be determined by analyzing
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the steady-state creep rates, which are described by Equation 4. Typically, by determining the
stress exponent, 7, and the grain size exponent, m, along with some other observations, the
dominant creep mechanisms can be determined. Parthasarathy et al. [26] and Armani et al. [28],
[29] found that the creep of YAG was primarily caused by grain boundary sliding accommodated
by diffusion, according to the Nabarro-Herring creep model. This creep mechanism is typically
identified by a stress exponent of 1 and a grain size exponent of 2. The average stress exponent
for all the undoped, polycrystalline YAG specimens tested in this study was 1.33 in air and 1.44
in steam. The average grain size exponent for all the undoped, polycrystalline YAG specimens
tested in this study was 1.99 in air and 2.06 in steam. Therefore, this research supports the
previous conclusion that Nabarro-Herring diffusional creep is likely the dominant creep
mechanism controlling the strain rates of undoped, polycrystalline YAG at 1300°C in air and in

steam.

Undoped, polycrystalline YAG at 1400°C

Similarly for creep of undoped, polycrystalline YAG at 1400°C, the stress exponent was
determined to be 0.87, based on the results of three specimens tested from one sample set.
Although this stress exponent is lower than what was determined at 1300°C, it still supports the
conclusion that Nabarro-Herring diffusional creep with an approximate stress exponent of 1 is
likely the dominant creep mechanism at 1400°C. Additional experimentation at 1400°C with
more specimens would be necessary to determine with certainty if the stress exponent is
consistently lower than that at 1300°C.

The investigation into the activation energy of undoped YAG at 1300°C and 1400°C

suggests Nabarro-Herring diffusional creep with diffusion of the Y>* cation as the rate limiting
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species. The activation energy for the creep of undoped, polycrystalline YAG in this study was
found to be approximately 534 kJ/mol. This is very close to 584 kJ/mol, which was the activation
energy associated with of the Y* cation in YAG, reported by Parthasarathy et al. who came to
the same conclusion about creep mechanisms in YAG, when conducting creep experiments in a

vacuum.

2at% Yb-Doped YAG at 1300°C

The investigation into the creep behavior of 2at% Yb-doped YAG not only revealed effects
of the dopant, but also provided additional information about the overall creep of YAG with
small grains. First, creep tests conducted with 2at% Yb-doped YAG specimens with a grain size
of 1.38 um, revealed that the presence of Yb had no apparent effect on the creep of YAG. Once
the steady-state creep rates were normalized to a common grain size, the resulting strain rates for
doped and undoped YAG were nearly identical. Also, the stress exponent for 2at% Yb-doped
YAG specimens with a grain size of 1.38 pum was determined to be 1.34, which is nearly
identical to that found for undoped YAG for all grain sizes tested, between 0.92 um (from the
work of Armani et al. [28], [29]) and 7.99 um. This identical behavior of Yb-doped YAG and
undoped YAG is supported by the previous conclusions about the similarities of Yb and Y.
When considering rare-earth dopants, suitable for YAG, Yb is widely considered the most
equivalent element, that can be substituted for Y with minimal effect [96].

Secondly, the creep behavior of 2at% Yb-doped YAG specimens with grain size of 0.37 um
was different than that of all the previously tested YAG specimens. The creep rates were much
higher than those obtained for YAG with larger grains, as was expected, due to the inverse

relationship between the grain size and steady-state creep rates. However, the creep rates showed
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a stronger sensitivity to the applied stress as evidenced by a higher stress exponent of 2.38.
Additionally, the grain size exponent associated with Yb-doped YAG was found to be 1.69,
slightly lower than that found for undoped YAG. These variations in the stress exponent and the
grain size exponent suggest that the creep mechanism is different for YAG with the much
smaller grain size, and that it is the grain size and not the presence of a dopant that causes the
change in creep mechanism.

The higher stress exponent and lower grain size exponent indicate that for small grain sizes,
significantly less than 1 um, the dominant creep mechanism changes from Nabarro-Herring
diffusional creep to interface reaction-controlled diffusional creep. This type of diffusional creep
no longer assumes perfect sources and sinks at the grain boundaries, but assumes that the rate of
bulk diffusion increases, and the creation and annihilations of vacancies at the grain boundaries
can become the rate-controlling mechanism of diffusion.

Reaction controlled diffusional creep typically has a stress exponent of 2 and a grain size
exponent of 1, and has been considered the dominant creep mechanism for fine-grained alumina
and alumina fibers [29], [292], [293]. Additionally, some research suggests that in fine-grained
ceramics, a larger stress exponent could be related to the presence of basal slip dislocation
motion, or the simultaneous occurrence of dislocation motion, grain boundary sliding, and cavity
formation [29], [147], [283]-[285], [287]. Only one set of YAG specimens with grain size of less
than 0.5 um was tested in this study. Additional tests of YAG specimens with similar grain size

might give more insight into the potential shift in creep mechanism.
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2at% Er-Doped YAG at 1300°C

The results obtained for 2at% Er-doped YAG specimens support those previously obtained
for Yb-doped YAG specimens. For specimens with large grain sizes (d > 1 um), there is no
significant difference in the steady-state creep strain rates for doped or undoped YAG. The small
differences observed may be within the noise associated with each test and measurement method,
and are likely negligible. Graphs were created to demonstrate the similar creep behavior of
doped and undoped YAG (see Figure 127), including one with creep rates normalized to a
common grain size (dnorm = 1 pm).

A significant difference in creep behavior was noted for both Er- and Yb-doped YAG
specimens with smaller grains sizes (d < 0.5 um). The greater dependence on creep stress was
identified based on the stress exponents obtained for billets Y-Yb-7-40 and Y-Er-9-40. Based on
these results along with the other results for doped and undoped YAG specimens, and
considering the grain sizes of all the specimens that were tested, it is likely that this different
behavior is not due to the presence of a dopant, but rather due to a change in creep mechanism
for YAG specimens with smaller grain sizes. Based on the stress exponents obtained for these
two different doped YAG billets (n = approximately 2 and 3), the creep mechanism is likely

grain boundary sliding accommodated by interface reaction-controlled diffusion.

Interface Reaction-Controlled Diffusional Creep

The creep behavior of YAG that was presented in this section has resulted in several
observations about creep mechanisms. The results indicate that the steady-state creep strain rates
for the majority of specimens tested are controlled by grain boundary sliding, accommodated by

Nabarro-Herring diffusional creep. This was indicated by the stress exponent (n = 1.30) and
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grain size exponent (m = 2.01), shown in Figure 99 and Figure 100. This is in close agreement
with previous studies, which also suggest Nabarro-Herring diffusional creep as the dominant
creep mechanism for YAG under these test conditions.

However, there are two possible exceptions to this conclusion that have been identified in
this section. First, it has been observed that the creep of YAG with small grain sizes (d < 0.5
um) may be interface reaction-controlled, which was indicated by higher stress exponents and
lower grain size exponents obtained for YAG billets Y-Yb-7-40 and Y-Er-9-40, as summarized
in Sections 6.4.1 and 6.4.2. These two billets were doped with Yb and Er; however, these were
also the only YAG billets with such small grain sizes. It was concluded that it is the grain size
and the associated creep mechanism that directly contributed to the creep behavior, and likely
not the presence of either dopant. However, further study of the creep behavior of undoped YAG
with small grain sizes is required in order to validate this conclusion.

The second exception to Nabarro-Herring creep as the dominant mechanism for the creep of
Y AG was identified by the non-linear trends observed in Figure 99 and Figure 100. These plots
show the steady state creep rate results of undoped, polycrystalline YAG at 1300°C. A more
detailed analysis of these plots indicates that the interface reaction-controlled creep mechanism
may be present for YAG specimens with low applied creep stress.

The curves used to generate the stress exponents and grain size exponents plotted as
log(strain rate) vs. log(stress) and log(strain rate) vs. log(grain size), respectively, are not
perfectly linear. Using linear regression on a log-log scale, a good linear approximation of the
trends can be obtained and exponents can be approximately determined for the entire range of
stresses. However, as is shown in Figure 128 and Figure 129, if the creep rate vs. stress curves

are separated into lower and higher stress regimes, and similarly, if the creep rate vs. grain size
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curves are separated into lower and higher grain sizes, the slopes of the curves associated with

each separate regime change drastically.
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Figure 128: Determination of the stress exponents of undoped YAG at 1300°C in air. Each
set of specimens of a particular grain size has been divided into low stress and high stress

regimes, demonstrating the consistent change in slope of each line.
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Figure 129: Determination of the grain size exponents of undoped YAG at 1300°C in air.
Each set of specimens at a particular stress level has been divided into smaller grains and

larger grains, demonstrating the consistent change in slope of each line.
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For higher stress, the stress exponent of approximately 1 is as expected for Nabarro-Herring
creep. For lower stress, the associated creep rates are lower than expected, causing the measured
stress exponent to be approximately 1.7. This same phenomenon was observed in the steady-
state creep rates of 2at% Yb-doped YAG, and was even more pronounced for specimens with
smaller grain size. This suggests that creep of YAG at 50 MPa may transition from Nabarro-
Herring diffusion creep to interface-reaction controlled creep. Previous research has suggested
that this is more likely at low stresses, and that in these cases, the resultant creep rates could be
lower than expected [147], [284], [285]. It is also possible that 50 MPa may be below some
stress threshold, where very little creep occurs at these test conditions [288], [289].

A similar effect is observed when determining grain size exponents in Figure 129. When
larger grain sizes are isolated, the grain size exponent is observed to be approximately 3.28. And
when the smaller grain sizes are isolated, the grain size exponent is observed to be approximately
1.14. This also suggests that lower grains increase the occurrence of interface reaction-controlled
creep as an active mechanism in YAG. Similar to what was discovered for 2at% Yb-doped
YAG, specimens with smaller grains are less sensitive to grain size and have a smaller grain size
exponent, as is the case with interface reaction-controlled creep. Again, this has been observed in
materials with smaller grains as the increased amount of grain boundaries in fine-grained
materials can lead to reactions at the interface. In these cases, the rate of bulk diffusion increases
such that the creation and annihilation of vacancies and defects at the grain boundaries can
become the rate-controlling mechanism of diffusion. This has also been observed in materials
subject to creep at lower stress values, and has contributed to surprisingly low creep rates, as is

seen at low stresses and for smaller grain sizes in YAG.
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7. Creep Behavior of Undoped Lutetium Aluminum Garnet (LuzAlsO12) at

Elevated Temperature

This chapter presents the experimental results of creep tests performed on undoped,
polycrystalline Lutetium Aluminum Garnet (LuAG). Creep tests were performed in the same
manner as with YAG, using the same experimental facility, identical specimen design, and the
same experimental procedures, which are written out in detail in Appendix E. Compressive creep
experiments were performed at 1300°C and 1400°C with creep stresses between 50 MPa and 200
MPa in air and in steam environments. Specimens from several different sample sets were
selected for creep tests based on specimen quantity and grain size. All specimens were processed
via SPS, which was discussed in more detail in Section 3.2.1.

This chapter first presents the creep results obtained at 1300°C in air for LuAG specimens
with various grain sizes. Specimens from six different SPS billets were selected for creep testing
at 1300°C in air, and these specimens were grouped into four different sample sets based on
average grain size. The analysis of these four sample sets will demonstrate the effect of grain
size on the creep behavior of LuAG at 1300°C in air.

Creep tests were also conducted in steam in order to demonstrate the effects of steam
environment on the creep behavior of LuAG. Specimens from three different SPS billets were
grouped into two different sample sets based on grain size. This approach enabled the
determination of the effect of grain size on the creep behavior of LuAG at 1300°C in steam.

Finally, the creep behavior of LuAG at 1400°C in air is also presented in order to assess the
effects of temperature on the overall creep behavior of LUAG and to determine the creep

activation energy.
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For each temperature and environment, the creep behavior is investigated by obtaining the
creep strain vs. time curves associated with each test, as well as by determining the steady-state
creep strain rates. From these results, the stress exponent, grain size exponent, and the activation
energy were obtained. This information was then used to determine the most likely creep
mechanisms responsible for the creep behavior of LuAG. The creep behavior of LuAG is
presented and compared to the creep behavior of YAG under similar test conditions in order to
understand similarities between materials in the garnet family and to assess the feasibility of

LuAG as a structural material.

7.1. Creep of Undoped, Polycrystalline Lutetium Aluminum Garnet at
1300°C in air
7.1.1. The Effects of Grain Size on the Creep Behavior of Lutetium Aluminum Garnet at
1300°C in Air

LuAG specimens from six different SPS billets were selected for creep testing at 1300°C in
air, and these specimens were grouped into four different sample sets based on average grain
size. Certain SPS billets possessed very similar grain sizes, and in these cases, specimens from
these billets were grouped together in order to test more specimens with one approximate grain
size. This approach enabled the effects of the applied stress to be isolated, and a better
approximation of the stress exponent could be determined. The analysis of these four sample
sets, comprised of specimens from six SPS billets, will demonstrate the effect of grain size on the

creep behavior of LUAG at 1300°C in air.
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LuAG specimens were tested at stress levels between 50 MPa and 200 MPa in the same
manner as with YAG. Specimens available for testing had a variety of grain sizes between 0.32
um and 4.90 um. Figure 130 shows an SEM image of the polished surface of a specimen from

SPS billet L-12-40, which has the smallest grain size of 0.32 um.

SEM HV: 15.0 kV g i MIRA3 TESCAN
SEM MAG: 46.1 kx View field: 6.00 pm |1 pm

Det: BSE Date(m/dly): 06/07/21 | Performance in nanospace

Figure 130: SEM image of a specimen cut from the SPS billet L-12-40, with a measured
average grain size of (.32 pm.

This SEM image demonstrates that the microstructure of LuAG is similar to that of the YAG
specimens discussed in the previous chapter. The visible grains possess a sharp geometric shape
with no smooth, round edges. There is also significant variation in the apparent grain size within
the small field of view of the image in Figure 130. Some small open porosity is also observed,
and is identified by the darkest shapes surrounded by a light ring, indicating charging in the
SEM. Three specimens from billet L-12-40 were creep tested at 1300°C in air under compressive
stresses of 50 MPa, 100 MPa, and 200 MPa. Figure 131 shows the creep strain vs. time curves

obtained for LuAG specimens from billet L-12-40 with a grain size of 0.32 um.

247



0.2

[ LuAG
0.18 E| 1300°C, Air
0.16 ff d=0.32pm 200

0.14 [ MPa

012 F

: 100
0.1 F MPa
0.08 |
0.06
0.04 [

3 50
0.02 MPa

0 3 T ry L L L L L L L L L L L L L L N
0 5000 10000 15000 20000

Strain [m/m]

Time [s]
Figure 131: Creep strain vs. time curves obtained for polycrystalline LuAG specimens with
grain size of 0.32 pm at 1300°C in air.

As is common with each ceramic material tested in this study, there is little primary creep
and no apparent tertiary creep seen in Figure 131. The majority of the five-hour creep test is
dominated by nearly linear secondary creep. It is also apparent from the creep strain vs. time
curves that there is significant strain accumulation for the higher stress tests. The specimen tested
with 200 MPa applied stress reached nearly 15% strain in 2.5 hours. The specimen tested with
100 MPa applied stress reached 10% strain in four hours. Even at 50 MPa applied stress, the
strain reached 1.2% after five hours.

To determine if grain size was the primary cause of these high accumulated strains,
specimens from several other SPS billets with several different grain sizes were tested under
similar conditions. SEM micrographs of specimens from billets L-10-40 and L-18-40 are shown

in Figure 132 and Figure 133, respectively.
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SEM HV: 15.0 kV WD: 8.99 mm MIRA3 TESCAN

SEM MAG: 34.6 kx View field: 8.01 pm | 2 pm
Det: BSE Date(m/d/y): 06/07/21 Performance in nanospace

Figure 132: SEM image of a specimen cut from the SPS billet L-10-40, with a measured

average grain size of 0.54 pm.

SEM HV: WD:5.96mm |||
View field: 6.00 pm SEM MAG: 46.1 kx 1pum
Det: BSE Date(m/d/y): 06/25/21

Figure 133: SEM image of a specimen cut from the SPS billet L-18-40, with a measured
average grain size of 0.42 pm.

Figure 134 shows the creep strain vs. time curves for LuUAG specimens from SPS billets L-
10-40 and L-18-40 with an average grain size of 0.48 pum. In this case not all of the specimens
were from the same billet, so their grain sizes were not all identical; however, they were chosen
and grouped together due to the very close similarity in grain size. Three of the specimens

presented in Figure 134 were from L-10-40 with a measured grain size of 0.54 pm. A fourth

249



specimen from L-18-40 with a very similar grain size of 0.42 um was also tested in order to

determine the strain at a fourth stress level. It was assumed that this small difference in grain size

will not cause any major effect on the creep strain beyond the noise associated with this type of

test. Therefore, Figure 134 shows results obtained for all four specimens grouped together in

order to compare the effects of applied stress on creep. The sample set in Figure 134 is identified

by the average of the two grain sizes, which is 0.48 um.
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Figure 134: Creep strain vs. time curves obtained for polycrystalline LuAG specimens with

an average grain size of 0.48 pm at 1300°C in air. Specimens with grain size of 0.54 pm

were tested at 50, 100, and 200 MPa, and a specimen with grain size of 0.42 pm was tested

at 150 MPa.

The total accumulated strain for specimens with an average grains size of 0.48 um was

between 1.5% and 15% strain, which is similar to the results for LuAG specimens with grain size

of 0.32 um. This result is expected due to the similarity in grain size between specimens

presented in Figure 132 and Figure 133. Two more sample sets were tested at 1300°C in air, each

having larger grains, in order to quantify the effect of grain size on the creep behavior of LuUAG.
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SEM micrographs from billets L-4-40 and L-19-40 are shown in Figure 135 and Figure 136,

respectively.

EM HV: 15.0 kV WD: 8.49 mm
SEM MAG: 27.7 kx | View field: 10.00 pm 2 pm
Det: BSE Date(m/d/y): 01/19/21 Performance in nanospace

Figure 135: SEM image of a specimen cut from the SPS billet L-4-40, with a measured

average grain size of 0.95 pm.

.

SEM HV: 15.0 kV WD: 8.92 mm MAIA3 TESCAN
View field: 15.0 pm SEM MAG: 185 kx 2um
Det: BSE Date(m/dly): 06/25/21

Figure 136: SEM image of a specimen cut from the SPS billet L-19-40, with a measured
average grain size of 0.84 pm.
Figure 137 shows the creep strain vs. time curves for specimens with an average grain size of
0.90 um. In this case, as with Figure 134 above, not all of the specimens were from the same
sample set, so their grain sizes are not all identical. However, they were chosen due to the very
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close similarity in grain size. Two of the specimens presented in Figure 137 were from one
sample set with a measured grain size of 0.95 um. A third specimen with a very similar grain
size of 0.84 pm was also tested in order to determine the strain at a third stress level. Figure 137
shows all three specimens grouped together. The sample set is identified by the average of the

two grain sizes, which is 0.90 pm.
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Figure 137: Creep strain vs. time curves obtained for polycrystalline LuAG specimens with
an average grain size of 0.90 pm at 1300°C in air. Specimens with grain sizes of 0.95 pm
were tested at S0 MPa and 100 MPa, and a specimen with grain size of 0.84 pm was tested
at 200 MPa.

The total accumulated strain for specimens with an average grains size of 0.90 um was
between 0.25% and 4% strain. One more sample set with a larger grain size was tested for

comparison. An SEM micrograph from billet L-3-40 is shown in Figure 138.
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SEM HV: 15.0 kV WD: 9.64 mm

SEM MAG: 369 kx  View field: 75.0 ym 20 pm

Det: BSE Date(m/dly): 03/05/21 Performance in nanospace

Figure 138: SEM image of a specimen cut from the SPS billet L-3-40, with a measured
average grain size of 4.90 pm.

Figure 139 shows the creep behavior of specimens with a grain size of 4.90 um. For
specimens with this larger grain size, the total accumulated strain is much lower, reaching less
than 1% strain at all stress levels. Table 32 lists all the LuAG specimens tested at 1300°C in air
and summarizes the associated creep results including the total accumulated strain after five

hours and the steady-state creep strain rates for each specimen at each grain size.
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Figure 139: Creep strain vs. time curves obtained for polycrystalline LuAG specimens with

grain size of 4.90 pm at 1300°C in air.
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Table 32: Summary of creep results for polycrystalline LuAG with different grain sizes at

1300°C in air.
Specimen Grain Size Creep Total.Accumulated Steady-State Creep
Name [um] Stress Strain after S hrs Rate [s]
[MPa] [Yo]
L-12-40-1 0.32 50 1.20 6.27 x 107
L-12-40-2 0.32 100 Not Available* 6.77 x 10°°
L-12-40-3 0.32 200 Not Available* 1.28 x 107
L-10-40-1 0.54 50 1.48 5.87x 107
L-10-40-2 0.54 100 3.58 1.70 x 10°°
L-18-40-1 0.42 150 7.53 3.59x10°
L-10-40-3 0.54 200 15.16 536x10°
L-4-40-1 0.95 50 0.26 1.17 x 1077
L-4-40-2 0.95 100 1.78 8.67x 107
L-19-40-1 0.84 200 4.06 2.09x10°
L-3-40-1 4.90 50 0.17 2.65x 10
L-3-40-2 4.90 100 0.65 1.45x 107
L-3-40-3 4.90 150 0.93 2.55x 107
L-3-40-4 4.90 200 0.97 2.83x 107

*Creep tests ended early, and strain accumulation after 5 hrs is unknown.

As with YAG specimens discussed in Section 6, the steady state creep strain rates shown in
Table 32 represent the minimum creep strain rates obtained during each five-hour long creep
test. The strain rates are determined by finding the slope of the shallowest portion of each strain
vs. time curve. From Table 32, there is a significant difference in the steady-state creep strain
rates for specimens with different grain sizes. The lowest steady-state creep strain rate for a
LuAG specimen with a grain size of 4.90 pm was found to be 2.65 x 10® 5!, while similar test
conditions resulted in a steady-state creep strain rate of 6.27 x 107 s™! for a specimen with a grain
size of 0.32 pm. There is also significant variation in the steady-state creep rates within the
individual sample sets, due only to the difference in applied stress. In most cases there is a single

order of magnitude difference between the steady-state creep rates at 50 MPa and 200 MPa. For

254



specimens with the smallest grain size there is nearly a two orders of magnitude difference

between the steady-state creep rates at 50 MPa and 200 MPa.

7.1.2. Determination of the Stress Exponent and the Grain Size Exponent for the Steady-

State Creep Behavior of Lutetium Aluminum Garnet at 1300°C in Air

Once the steady-state creep strain rates are obtained from the strain vs. time curves, then the
stress exponent can be determined. Recall that the stress exponent, 7, is a critical element in the
steady state creep rate equation (Equation 4), described in Section 2.3.1. The stress exponent
describes to what degree the applied creep stress effects the final steady-state creep rate. It can be
determined by plotting strain rate vs. stress on a log-log scale. Linear regression is used to
determine the best-fit line for each set of data, and the associated exponent represents the stress
exponent for a particular grain size. The steady-state creep strain rates for LuAG specimens with

four different average grain sizes and the associated stress exponents are shown in Figure 140.
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Figure 140: The steady-state creep strain rate vs. applied stress and stress exponents, n,

determined for polycrystalline LuAG specimens with different grain sizes at 1300°C in air.
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A different stress exponent was calculated for each sample set associated with each grain
size. The stress exponents were then averaged together to determine one approximate stress
exponent, which best describes the effects of stress on the steady-state creep rates of LUAG at
1300°C in air. Table 33 shows the stress exponents determined for each sample set associated
with a different grain size, as well as the final averaged stress exponent.

Table 33: The stress exponent, n, for polycrystalline LuAG specimens with different grain sizes
at 1300°C in air.

Average Grain Stress Range Stress Average Stress
Sample Set Size Exponent,
[MPa] Exponent, n
[pm] n

L-12-40 0.32 50 -200 2.18

L-10-40 0.48 50 - 200 1.60

L-18-40

L-4-40 1.91
L-19-40 0.90 50 -200 2.08

L-3-40 4.90 50 -200 1.77

The stress exponent for LUAG at 1300°C in air was determined to be 1.91. This is a higher
stress exponent than that found for YAG under the same conditions, which indicates that the
applied stress has a greater effect on the steady-state creep rate of LuAG during creep. Recall
from Section 2.3.2 that there have been several different stress exponents observed in ceramic
materials, which correspond to different creep mechanisms. While it is expected that the creep
mechanisms are similar for YAG and LuAG, this higher stress exponent suggests something
different is occurring. In this case, a stress exponent of 2 may indicate that interface reaction-
controlled diffusional creep could be the rate-controlling creep mechanism. This was observed in
YAG specimens with smaller grains, which was described in the previous chapter; however, this
creep mechanism is evident in the behavior of LuAG with a much larger range of grain sizes,

given the consistently higher stress exponents, determined from Figure 140.
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Using the same process, the grain size exponent was determined for LuAG at 1300°C in air

by plotting strain rate vs. grain size on a log-log scale, shown in Figure 141. A different grain

size exponent was calculated for each group of creep tests associated with each compressive

stress value. The grain size exponents were then averaged together to determine one approximate

grain size exponent for the steady-state creep of LuAG at 1300°C in air. Table 34 shows the

grain size exponents determined for each sample set associated with a different compressive

stress value, as well as the final averaged grain size exponent.
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Figure 141: The steady-state creep strain rate vs. grain size and grain size exponents, m, of

polycrystalline LuAG specimens at different creep stress levels at 1300°C in air.

Table 34: The grain size exponent, m, for polycrystalline LuAG specimens at different creep
stress levels at 1300°C in air.

Creep Stress Grain Sizes Grain Size gi‘;zrgyg;;(ﬁlt:?
[MPa] [pm] Exponent, n n ’
50 0.32, 0.54, 0.95, 4.90 1.19
100 0.32, 0.54, 0.95, 4.90 1.33 1.24
150 0.42,4.90 1.08 )
200 0.32, 0.54, 0.84, 4.90 1.37
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The grain size exponents determined by analyzing the creep behavior of LuAG with grain
sizes between 0.32 pm and 4.90 um, was found to be 1.24. This value is the average of four
different grain size exponents, which correspond to the four different creep stress values used in
the tests described in this chapter. The four grain size exponents were found to be between 1.08
and 1.37. Recall from Section 2.3.2 that a grain size exponent of 1 indicates that interface
reaction-controlled diffusional creep may be the rate-controlling creep mechanism, which is

consistent with the stress exponent of 2, as was determined in Figure 140.

7.2. Creep of Undoped, Polycrystalline Lutetium Aluminum Garnet at 1300°C
in Steam

7.2.1. The Effects of Grain Size on the Creep Behavior of Lutetium Aluminum Garnet at
1300°C in Steam

Two sample sets with different grain sizes were tested at 1300°C in steam to determine the
effects of steam environment on the creep behavior of undoped, polycrystalline LuAG. Testing
specimens with different grain sizes will allow the effects of grain size in steam to be determined
and compared to the effects of grain size in air. The first sample set included specimens from
billet L-13-40 and L-18-40 and had an average grain size of 0.44 um. Figure 142 shows an SEM
micrograph from billet L-13-40. A micrograph from L-18-40 was shown previously in Figure

133.
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SEM HV: 15.0 kV WD: 8.00 mm | | | MIRA3 TESCAN

SEM MAG: 346 kx  View field: 8.00 ym 2 pm
Det: BSE Date(m/dly): 08/07/21 Performance in nanospace

Figure 142: SEM image of a specimen cut from the SPS billet L-13-40, with a measured
average grain size of 0.45 pm.

This set of specimens, tested at 50 MPa, 100 MPa, and 200 MPa, consisted of one specimen
from the SPS billet L-13-40 with a measured grain size of 0.45 pm. This specimen was tested at
50 MPa. The other two specimens were taken from the SPS billet L-18-40 with a measured grain
size of 0.42 um. These two specimens were tested at 100 MPa and 200 MPa. These three
specimens were grouped together on the same graph due to the very close similarity in grain
size, and were identified by the average grain size of 0.44 um. The strain vs. time curves for

these three specimens tested in steam are shown in Figure 143.
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Figure 143: Creep strain vs. time curves obtained for polycrystalline LuAG specimens with

an average grain size of 0.44 pm at 1300°C in steam. Specimens with grain sizes of 0.42 pm

were tested at 50 MPa and 100 MPa, and a specimen with grain size of 0.45 pm was tested
at 200 MPa.

Each specimen survived the entire five-hour long test without reaching failure. Each strain
vs. time curve includes a slightly steeper section at the beginning of the test and then continues to
level out toward the end. The steady-state creep rates were obtained by measuring the slopes of
the final linear sections of the strain vs. time curves. The total accumulated strains for these
specimens with an average grain size of 0.44 pm were between 2.26% at 50 MPa applied stress
and 16.66% at 200 MPa applied stress. A second group of LuAG specimens was also tested in
steam in order to determine the effect of grain size. The specimens within the second sample set
were taken from the SPS billet L-3-40, and had a measured grain size of 4.90 pum. Due to the
larger grain size, it was expected that these specimens would have a much higher resistance to
creep under the same test conditions. The creep strain vs. time curves for these specimens are
shown in Figure 144. The total accumulated strains for these specimens with an average grain

size of 4.90 pm were between 0.35% at 50 MPa applied stress and approximately 1% at 200 MPa
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applied stress, although this test did not last the entire 5 hours due to complications with the

extensometer.
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Figure 144: Creep strain vs. time curves obtained for polycrystalline LuAG specimens with

grain size of 4.90 pm at 1300°C in steam.

The creep results for the two LuAG sample sets tested at 1300°C in steam are shown in

Table 35. The table includes the specimen grain sizes, the total strains accumulated after five

hours, and the steady-state creep strain rates.

Table 35: Summary of creep results for polycrystalline LuAG with different grain sizes at

1300°C in steam.

Specimen Grain Size Creep Total.Accumulated Steady-State Creep

Name [um] Stress Strain after S hrs Rate [s"]
[MPa] [%o]

L-13-40-1 0.45 50 2.26 1.07x 10°¢

L-18-40-2 0.42 100 7.06 3.25x 10°

L-18-40-3 0.42 200 16.66 6.72 x 10°

L-3-40-1 4.90 50 0.35 3.34x 10

L-3-40-2 4.90 100 0.66 1.94 x 107

L-3-40-5 4.90 150 Not Available* 3.50x 107

*Creep tests ended early, and strain accumulation after 5 hrs is unknown.

261




7.2.2. Determination of the Stress Exponent and the Grain Size Exponent for the Steady-
State Creep Behavior of Lutetium Aluminum Garnet at 1300°C in steam

The stress exponent and grain size exponent, describing the steady-state creep behavior of
LuAG at 1300°C in steam were determined in the same manner as they were for creep in air. As
in Section 7.1.2, the stress exponent was determined from the strain rate vs. stress curves. Linear
regression was used to determine the best-fit line for each set of data on a log-log scale; the
associated exponent represents the stress exponent for a particular grain size. The steady-state
creep strain rates for LUAG specimens with two different average grain sizes tested in steam are

shown in Figure 145.
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Figure 145: The steady-state creep strain rate vs. applied stress and stress exponents, n, of
polycrystalline LuAG specimens with different grain sizes at 1300°C in steam.

A different stress exponent was calculated for each sample set with a different grain size. The
stress exponents were then averaged together to determine an approximate stress exponent for
the steady-state creep of LuAG at 1300°C in steam. Table 36 shows the stress exponents
determined for each sample set associated with a different grain size, as well as the final

averaged stress exponent.
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Table 36: The stress exponent, n, for polycrystalline LuAG specimens with different grain sizes

at 1300°C in steam.

Average Grain Stress Range Stress Average Stress
Sample Set Size Exponent,
[MPa] Exponent, n
[pm] n
L-13-40
L-18-40 0.44 50 - 200 1.33 1.51
L-3-40 4.90 50 -200 1.69

The stress exponent for the steady-state creep of LuAG at 1300 in steam was determined to

be 1.51. This value of # falls in the middle of the two stress exponents associated with the

diffusional creep mechanisms discussed in this chapter: Nabarro-Herring creep with a stress

exponent of 1 and interface reaction-controlled creep with a stress exponent of 2. Creep in

ceramics has often been attributed to multiple mechanisms occurring simultaneously, which

could account for the value of the stress exponent of 1.51.

The same process was used to determine the grain size exponent. By plotting log(strain rate)

vs. log(grain size), the effect of grain size at each stress level could be determined for creep in

steam. This plot is shown in Figure 146. By finding a best fit line for each set of data associated

with an individual creep stress value, the grain size exponent was determined.
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Figure 146: The steady-state creep strain rate vs. grain size and grain size exponents, m, of

polycrystalline LuAG specimens at different creep stress levels at 1300°C in steam.
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A different grain size exponent was calculated for each group of creep tests associated with
each compressive stress value. The grain size exponents were then averaged together to
determine the approximate grain size exponent for the steady-state creep of LUAG at 1300°C in
steam. Table 37 shows the grain size exponents determined for each sample set associated with a
different compressive stress value, as well as the final averaged grain size exponent.

Table 37: The grain size exponent, m, for polycrystalline LuAG specimens at different creep
stress levels at 1300°C in steam.

Creep Stress Grain Sizes Grain Size éi‘;eeréyg(e g:::::l
[MPa] [pm] Exponent, n ’f ’
50 0.45,4.90 1.45
100 0.42,4.90 1.15 1.27
200 0.42,4.90 1.20

The grain size exponent for the steady-state creep of LuAG at 1300°C in steam was
determined to be 1.27. Again, this indicates that interface reaction-controlled diffusional creep is
likely the dominant creep mechanism for LuAG. Recall from Section 2.3.2, that this creep
mechanism, which is also described earlier in this chapter, is typically identified by a grain size
exponent of 1. A small difference was observed in the exponents determined for different creep
stress values, which were between 1.15 and 1.45, as shown in Table 37. This indicates that the
effect of grain size may be slightly greater at the lowest creep stress value of 50 MPa. However,
this small difference observed in the grain size exponents may also be due to various sources of

error associated with experimental results.

7.2.3. A Comparison of the Creep Behavior of LuAG at 1300°C in air and in steam

A comparison of the creep behavior of LuAG at 1300°C in air and in steam reveals very
minimal, perhaps negligible, effects of steam. Figure 147 shows the creep vs. time curves of

specimens with small, similar grain sizes tested in air and steam. It is apparent that there is a
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consistent difference in the results in air vs. steam. In each case the specimens tested in steam
creep a little more than the specimens tested in air. However, the grain sizes of specimens tested
in air and those tested in steam are not identical. Each of the three specimens tested in air had a
grain size of 0.54 um, while the specimens tested in steam had grain sizes of 0.42 um and 0.45
um. It is possible that the small and consistent difference in total accumulated creep strain is due
to the steam environment. One could conclude that the presence of steam at 1300°C causes
LuAG to creep more when subjected to a compressive stress between 50 MPa and 200 MPa.
However, grain size has already been shown to have a significant effect on the accumulated
creep strain and the associated steady-state creep rate in LuAG in both air and steam. Therefore,
it is likely that the differences observed in Figure 147 may be due to the difference in grain size

of the two sample sets.
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Figure 147: Creep strain vs. time curves for LuAG specimens at 1300°C in air and steam.
Specimens in air have an average grain size of 0.48 pm and specimens in steam have an

average grain size 0f 0.44 pm.
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In order to shed more light on the true cause of the difference in accumulated strain, observed
in Figure 147, a similar comparison was made between results obtained for specimens of larger
grain size tested in air and steam. In this case all specimens came from the same SPS billet and
should have a more consistent grain size. Figure 148 shows the creep strain vs. time curves for
specimens with a grain size of 4.90 pum tested in air and in steam. This comparison reveals a
much more negligible difference in the creep strain due to steam. Specimens subjected to 100
MPa and 200 MPa show essentially no difference in creep strain due to the environment, while
specimens tested at 50 MPa show a very small difference. Figure 148 indicates that creep
response of specimens with identical grain size is not significantly affected by the presence of

steam, creep behaviors in both environments are nearly identical.
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Figure 148: Creep strain vs. time curves for LuAG specimens at 1300°C in air and steam.
Specimens in air and in steam have a grain size of 4.90 pm from the same sample set.
In order to further assess any potential effects of steam on the creep behavior of LuAG, and
to determine if steam has a different effect on specimens with small grain size vs. large grain

size, the steady-state creep rates were compared. The creep rates associated with each sample set,
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tested in air and in steam with comparable grain sizes, are shown in Figure 149. Just as the creep
strain vs. time graph above from Figure 147 suggests, there is a small apparent difference in the
steady-state creep strain rates for smaller-grained sample sets. However, for specimens with
larger grain sizes, the steady-state creep strain rates obtained in air and in steam fall directly on

top of one another with no apparent difference.
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Figure 149: A comparison of the steady-state creep strain rates of LuAG specimens at
1300°C in air and in steam. Specimens are compared at two different grain sizes. Small
average grain sizes of 0.48 pm and 0.44 pm are compared in air and steam, respectively.
Large grain sizes of 4.90 pm are compared in air and in steam.

Recall that the smaller-grained specimens, compared in Figure 147, came from multiple
sample sets with similar, but not identical grain sizes, and it has been shown that grain size has a
significant effect on creep rate. Therefore, in order to fully assess the effect of environment, any
potential effect of grain size must be removed from this comparison. As was described earlier in
this section, small-grained specimens, tested in air were found to have grain sizes of 0.42 pm and
0.54 um, and small-grained specimens, tested in steam were found to have grain sizes of 0.42 pum

and 0.54 um. In order to remove any potential effect of grain size on the resulting creep rates
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observed in Figure 149, the steady-state creep strain rates were all normalized to a grain size of d
= 1 um. The strain rate normalization process described in the previous chapter was used in this
case as well.

The strain rates were normalized by using the average measured grain size exponent
determined for LuAG, which was m = 1.25. This grain size exponent was input into Equation 33,
described in the previous section. Figure 150 shows the steady-state creep strain rates for
specimens tested in air and steam; however, in this case, results for specimens with smaller
grains have been normalized to d = 1 um. Results for specimens with larger grain sizes were not
normalized because all specimens tested in air and in steam were taken from the same SPS billet

and had the same grain size of 4.90 um.
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Figure 150: A comparison of the steady-state creep strain rates of LuAG specimens at
1300°C in air and in steam. Specimens are compared at two different grain sizes. Strain
rates of small-grained specimens have been normalized to d =1 pm. Specimens with large

grain sizes are from the same sample set and the results were not normalized.
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There are two observed differences between Figure 149 and Figure 150 due to the
normalization process. First, the difference in strain rates associated with the sample sets with
smaller grain sizes and the sample sets with larger grain sizes is much smaller. Due to
normalizing the strain rates, the apparent difference in grain size between sample sets is smaller.
This is expected, as it has been clearly demonstrated that specimens with larger grain sizes creep
less under the same test conditions. Therefore, after normalizing strain rates from grain sizes of
0.44 pm and 0.48 um to d = 1 um, the associated strain rates will be lowered significantly after
applying Equation 33.

The second difference seen in Figure 150 after removing the effect of grain size is the small
difference in strain rate between the small-grained sample set tested in air and the small-grained
sample set tested in steam had been reduced. It appears that any potential effect of steam on the
strain rates of LuAG at 1300°C for any grain size may be negligible. It is likely that the
previously observed differences in Figure 149 between the creep of LuAG specimens tested in
air and those tested in steam, incorporated grain size effects as well as effect of environment.
These results indicate that LuAG is just as resilient as YAG against any possible environmental

degradation due to the presence of steam during creep at 1300°C.

7.3. Comparison of the Creep Behavior of Undoped YAG and LuAG at
1300°C in air
Now that the creep behaviors of YAG and LuAG have been observed and analyzed, they can

now be directly compared. The following figures demonstrate the differences in the creep

behavior of YAG and LuAG at 1300°C in air. Since the effects of steam were observed to be
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negligible on the creep behavior of both YAG and LuAG, this section focuses on YAG and
LuAG in air, and a comparison of creep in steam is not discussed.

In order to effectively compare the creep behavior of YAG and LuAG, all other possible
factors that could influence the material performance must be held constant for the two different
materials. Therefore, all test conditions are identical for all specimens selected for comparison.
Additionally, the steady-state creep rates have all been normalized to a common grain size of d =
1 um, using the grain size exponents obtained in the previous sections. Figure 151 shows the
steady-state creep strain rates of YAG and LuAG specimens, normalized to a common grain size.

The specimens selected for comparison in Figure 151 include smaller-grained sample sets for

both YAG and LuAG.
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Figure 151: A comparison of the steady-state creep strain rates of YAG and LuAG
specimens at 1300°C in air. All strain rates have been normalized to a common grain size of
d =1 pm. Results for YAG specimens with grain size of 0.92 pm from Armani et al. (2011)
are included for comparison [28], [29].

Even after accounting for grain size, a significant difference in the steady-state creep rates is

observed. At each stress level LuAG specimens creep significantly more. At low stress of 50
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MPa, a difference of approximately half an order of magnitude is observed, and at high stress of
200 MPa, a difference of almost one order of magnitude is observed. In addition to the difference
in creep rate, there is also a difference in the creep rate vs. stress trends of YAG and LuAG. The
LuAG specimens appear to be more sensitive to the compressive applied stress as evidenced by
the steeper trend associated with LuAG specimens. Recall that the average stress exponent for
LuAG at 1300°C in air was found to be 1.91 for LuAG, which is much larger than the
corresponding stress exponent of 1.30 determined for YAG.

A similar comparison between YAG and LuAG is shown in Figure 152 for specimens with
larger grain size. It is beneficial to know if the relative behavior of YAG and LuAG depends on
the grain size of each material. Figure 152 shows the steady-state creep strain rates for YAG and
LuAG at 1300°C, all normalized to a common grain size. These sample sets include YAG
specimens with an original measured grain size of 7.99 um and LuAG specimens with an
original measured grain size of 4.90 um. These are the largest grain sizes of undoped YAG and

LuAG in this study.
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Figure 152: A comparison of the steady-state creep strain rates of YAG and LuAG

specimens at 1300°C in air, normalized to a grain size of d =1 pm.
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It appears that grain size does not significantly affect the difference in creep behavior
between undoped YAG and LuAG, as the observed differences in the steady-state creep rates in
Figure 152 are nearly identical to those seen in Figure 151 for smaller-grained specimens. Once
again there is a significant difference in creep rates for YAG and LuAG specimens tested under
the same conditions; LuAG creeps significantly more than YAG. Also, as with smaller-grained
specimens, the creep of LUAG is more affected by the applied creep stress. This is once again
evidenced by the steeper trend associated with the LuAG specimens.

Simply comparing the steady-state creep rates is not enough to understand the difference in
creep behaviors of YAG and LuAG. The total accumulated strains obtained for specimens with
similar grain size are critical when comparing the two materials and understanding the
performance associated with each. Therefore, Figure 153 was created to demonstrate the
difference in accumulated creep strain after five hours of compressive creep for YAG and LuAG.

Specimens with similar grain size were selected to isolate the impact of material only.
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Figure 153: Comparison of the strain vs. time curves for YAG and LuAG specimens with
comparable grain sizes at 1300°C in air. Results for YAG specimens with grain size of 0.92

pm from Armani et al. (2011) are included for comparison [28], [29].
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In Figure 153 YAG specimens have grain sizes of 0.92 pm and 1.17 um, and LuAG
specimens have a grain size of 0.80 um and 0.95 um. These are not identical grain sizes;
however, they are close enough to illustrate the difference in accumulated strains for each
material during similar creep tests while minimizing any effect of grain size. Specimens tested
with a small applied creep stress of 50 MPa do not show any difference in accumulated strain.
However, at 100 MPa a 1% difference in creep strain is observed, and then at 200 MPa a 2.7%
difference in accumulated creep strain is observed.

Based on the results displayed in Figure 151-Figure 153, it is clear that there is a significant
difference in the creep behavior of undoped YAG and LuAG. YAG appears to be much more
creep resistant for all grain sizes than LuAG. Additionally, the effects of applied stress and grain
size appear to be different for the two materials as well. This phenomenon and the associated
conclusions about creep mechanisms is discussed further and in more detail in the following

section concerning the creep mechanisms for LuAG.

7.4. Determination of the Dominant Creep Mechanisms for Lutetium

Aluminum Garnet at 1300°C in Air and in Steam

Undoped, Polycrystalline LuAG at 1300°

Similar to the discussion in Section 2.3.2 concerning the creep mechanisms of YAG, the
determination of the dominant creep mechanisms in LuAG begins by reviewing the stress
exponents and grain size exponents that were obtained from the creep results in this chapter.
These exponents are critical inputs to Equation 4, describing the steady-state creep strain rate of

ceramics. The average stress exponent for LuAG at 1300°C in air was determined to be 1.91, and
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the average stress exponent for LuAG at 1300°C in steam was determined to be 1.51. The
average grain size exponent for LuAG at 1300°C in air was determined to be 1.24 and the
average grain size exponent for LuAG at 1300°C in steam was determined to be 1.27. Based on
these exponents, the most likely creep mechanisms controlling the steady-state creep of LuAG
are grain boundary sliding, accommodated by diffusion, similar to YAG. However, the
differences in both the stress exponent and the grain size exponent indicate that grain boundary
sliding controlling the creep of LuAG is partially or entirely accommodated by interface
reaction-controlled diffusion. Recall from Section 2.3.2 that this type of diffusion can be
identified by a stress exponent of 2 and a grain size exponent of 1. This result is in contrast to
what was observed for YAG, which indicated that diffusion occurred according to the Nabarro-
Herring creep mechanism, based on observing a stress exponent close to 1 and a grain size
exponent close to 2.

Interface reaction-controlled creep was observed only in YAG specimens with the smallest
grain size. It was suggested that this mechanism may also occur at the lowest creep stress in
YAG. Interface reaction-controlled creep has also been observed in bulk alumina and alumina
fiber materials, typically with very fine grain sizes [29]. These similar trends have been observed
in essentially all the creep behavior of LuAG for all grain sizes, indicating that grain boundary
sliding, accommodated by interface reaction-controlled diffusion. Typically, in ceramics, bulk
diffusion occurs much slower than diffusion at the grain boundaries. It has been reported that the
bulk diffusion coefficients can be as much as five orders of magnitude lower than the diffusion
coefficients at the grain boundaries [294]-[296]. During interface reaction-controlled creep, the
rate of bulk diffusion increases, which causes the creation and annihilation of vacancies and

defects at the grain boundaries to become the rate-controlling mechanism of diffusion.
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Creep Rates of LuAG vs. YAG

In addition to the different effects of stress and grain size on the steady-state creep rates
observed in YAG and LuAG, which were identified by the stress exponents and grain size
exponents, the overall creep strains in LuAG were much higher than in YAG. In other words,
YAG appears to be more creep resistant than LuAG. This could be due to various phenomena.
First, the occurrence of interface reaction-controlled creep, indicates that the rate of bulk
diffusion has increased and the rate of diffusion along the grain boundaries has decreased.
During interface reaction-controlled creep, the grain boundaries are no longer considered perfect
sources and sinks for vacancies during diffusion. This process could lead to the overall increase
in steady-state creep rate, and this conclusion supports the difference in stress exponent and grain
size exponent obtained for LuAG.

The increased creep rates observed in LuAG could also be attributed to various other
phenomena. Multiple creep mechanisms could be occurring simultaneously, which could have an
additive effect on the overall creep rate. The simultaneous occurrence of basal slip, dislocation
motion, grain boundary sliding, and cavity formation, specifically for fine-grained ceramics has
been observed. However, this is only speculation at this point, and further research is required to
validate this potential cause of increased strain rates. An additional possible cause of apparent
increased strain rates in LuAG when compared to YAG is a difference in material quality and
purity.

The analysis of each material in this study, specifically the determination of grain size and
density, as well as porosity observations, did not indicate any significant difference in the
microstructures of YAG and LuAG specimens. However, a determination of any potential

impurities by chemical analysis would be beneficial in the comparison of the two materials.
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Furthermore, analysis of each material using a transmission electron microscope (TEM), would
be able to identify any potential impurities that may be segregating to the grain boundaries,

impacting diffusion.

Creep Mechanisms at Low Creep Stress

The strain rate vs. stress curves for LuAG at 1300°C in air, which were plotted in Figure 140,
were separated into the lower and higher stress regimes. Figure 154 shows the strain rate data for

LuAG specimens, where the trends are analyzed separately for creep stresses below and above

100 MPa.
1.00E-04 ¢
LUuAG Ad=0.32nm
1300°C, Air 0d = 0.48 m
A
1.00E-05 I
— t| ¢ <100MPa 3 Od=10.90 pm
2, n=2.57 -
@ [ . —'EI- ) Xd=4.90 pm
& 1.00E-06 || ¢>100MPa
= Fl n=1.21
£ XX
7] -
1.00E-07 [
1.00E-08 L . TR S S S S L
10 100 1000

Stress [MPa]

Figure 154: The stress exponents of undoped YAG at 1300°C in air. Each set of strain rates
obtained for specimens of a particular grain size has been divided into low stress and high
stress regions, demonstrating the consistent change in slope of each line.

Once the stress exponents from the lower stress regime (below 100 MPa) were averaged
together, the approximate stress exponent was determined to be 2.57. Similarly, once the stress
exponents from the higher stress regime were averaged together, the approximate stress exponent

was determined to be 1.21. This observation is similar to what was determined for YAG in the
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previous chapter, and it calls into question the likely creep mechanisms occurring during creep of
LuAG. It is possible that interface reaction-controlled creep, which is assumed to be the rate-
controlling mechanism of the creep in LuAG, is only occurring at low stresses. As is seen in
Figure 154, the stress exponent for creep of LUAG in the low stress regime (below 100 MPa) was
determined to be 2.57, which is consistent with interface reaction-controlled creep. If two
different creep mechanisms were controlling the creep rates of LuAG in different stress regimes,
then this would indicate that Nabarro-Herring creep may be the dominant creep mechanism at
higher stresses. This same observation was made for Nextel 720 fibers by Armani et al. [23]. It
was concluded that a significantly different stress exponent was observed at lower stresses, and,
therefore, interface reaction-controlled creep must be rate-limiting.

Recall that a similar observation was made regarding the grain size exponent in undoped
YAG, described in Section 6.5. The creep rate vs grain size plot, which was used to obtain the
grain size exponent was separated into lower and higher grain size regimes. A similar conclusion
was made that creep of YAG specimens with lower grain sizes may be partially interface
reaction-controlled, and creep of YAG specimens with larger grain sizes is likely still controlled
by Nabarro-Herring diffusion. However, it was determined that a similar conclusion could not be
made for the creep of LUAG. The effects of grain size on the strain rates of LuAG are much more
consistent than they were with YAG, and a different creep mechanism was not observed for

LuAG specimens with smaller grains.
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8. Post-Creep Microstructural Analysis

8.1.Motivation and Analysis Methods

The purpose of this chapter is to determine and report any potential changes in the
microstructural characteristics of YAG and LuAG brought on by creep experiments at 1300°C
and 1400°C. The primary method of characterizing any variations to the microstructure of each
material was investigation in the SEM with emphasis on grain size and shape. It is well known
that exposure to high temperatures above a certain threshold can lead to grain growth. This
phenomenon has been observed through the effects of sintering parameters, which were
documented in this study as well as others [240], [242], [261], [262]. This phenomenon has also
been reported in the context of heat treatment after sintering for the specific purpose of grain
growth [297]-[299]. For high density, oxide ceramics, heat treatments for the purposes of grain
growth are typically performed at temperatures above the sintering temperature. As is seen
during the processing of YAG and LuAG, heat treatment at 1500°C does not significantly
increase grain size. This is evidenced by the many material billets with submicron grain size
following heat treatment in air at 1500°C for 10 hours.

Effects of high temperature on the microstructure of ceramics, specifically the grain
structure, also include grain boundary migration brought on by diffusion [300], and by mass
redistribution and possible phase evaporation at the grain boundaries, as seen in thermal etching
[250]. Typically, thermal etching involves exposure to temperatures that are 100°C — 200°C
below the sintering temperature for short durations (approximately 15 min) in order to prevent
unwanted grain growth. Because grain growth is known to occur at high temperatures, it is
necessary to assess the grain growth during high-temperature creep. Based on temperature alone,

prolonged exposure at 1300°C would not be expected to influence grain size. However, the
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application of compressive stress and forced atomic diffusion curing creep may create an
environment which accommodates grain growth.

Furthermore, the resulting shape of the grains in each material following creep is an
important attribute of each material, as it contributes to evidence of various creep mechanisms at
work. Grain boundary sliding, is a large part of the established creep mechanisms for YAG and
LuAG, as discussed in Sections 6 and 7. Significant discussion surrounded the type and location
of atomic diffusion as well as the associated rates, but this phenomenon does not occur alone,
and is not solely responsible for creep deformation. Recall that diffusion is simply the
accommodating mechanism for grain boundary sliding, where grains shift and move past one-
another due to the combination of temperature and pressure during creep. In Nabarro-Herring
diffusion creep, grain boundary sliding contributes to at least 50%-60% of deformation and is the
primary cause of material failure. In the case of compression creep, grains will begin to compress
due to the applied stress, and as grain shape is altered, cavities can form along the moving grain
boundaries. However, some materials resist cavity formation by movement of the grains, which
can slide around each other, largely maintaining their shape, and filling the voids formed at the
grain boundaries.

Recall from Section 2, the two primary methods of grain boundary sliding: Rachinger sliding
and Lifshitz sliding. In Rachinger sliding the grains retain most of their original shape, and the
internal stress is balanced out by grain movement. Lifshitz sliding, which occurs during Nabarro-
Herring and Coble creep, involves the diffusion of vacancies brought on by the applied stress,
and leads to changes in grain shape during grain boundary sliding. Diffusion within the crystal

lattice of the grains allows for grain elongation in the direction of the applied stress [301].
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Therefore, the average grain shape before and after creep is analyzed for both YAG and
LuAG in this chapter. The average grain shape is determined by digital image analysis of the
grains visible in SEM micrographs of the surfaces of various specimens. The overall grain shape
is quantified by determining the average aspect ratio, and this attribute as well as the average
grain size are compared for pre-test and post-test micrographs of specimens from the same
billets.

Multiple specimens from individual billets were chosen for analysis in the SEM in order to
compare the microstructures of similar specimens of undoped YAG and LuAG before and after
creep experiments at 1300°C and 1400°C in air. The original microstructural analysis specimens,
which were cut from each billet, but were not part of the fabricated creep test specimens, were
used in this section in order to determine the baseline characteristics of each billet prior to creep
testing. Although there is likely some amount of variation in grain size and structure throughout
a 40 mm diameter billet processed via SPS, the assumption was made at various times
throughout this study that the grain characteristics across each billet are similar, and different
specimens from the same billet can be used for comparison.

The first specimen used to elucidate the effects of creep on microstructure represented the
baseline properties of that billet and was not subject to creep testing. The surface analyzed in the
SEM was the rectangular surface adjacent to one of the creep test specimens. This selection was
necessary so that the orientation of each SEM image was identical and the average grain shape
could be directly compared for pre- and post-creep specimens. A diagram of the location of the

polished surface of each specimen, which was not subject to creep testing, is shown in Figure

155.
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Figure 155: Diagram of a location of a pre-test microstructural analysis specimen, cut

adjacent to a creep specimen.

During SEM imaging, the surface was always oriented in axial direction prior to capturing
images. This was the case for all SEM analysis on this study. Therefore, the average aspect ratio
of the grains, which are determined from various SEM images are consistent. The grain aspect
ratio discussed in this section is defined as follows:

ARGrain = W/h (Equ. 34)
where w is the width of the grain, and # is the height of the grain. In each case the measured
height is the length of the grain in the axial direction, or the direction of the applied load during
creep. The width of each grain is the perpendicular length on the 2-dimensional surface.

Each micrograph was analyzed using the digital image analysis software within Adobe
Photoshop, as described in Section 4.3.2. This software is capable of determining the average
grain size. Additionally, this software displays the precise height and width of each grain that is
selected to be analyzed. Therefore, the aspect ratio of each grain can be determined. Once
hundreds of grain aspect ratios are determined from analysis of the SEM micrographs, they are

averaged together, revealing one average grain aspect ratio for the specimen. In most cases
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between 100 and 200 grains were analyzed for each specimen in this section. In addition to the
baseline microstructure obtained from specimens that were not subject to creep testing, the
average aspect ratio and average grain size were also determined for several specimens following
creep testing in order to observe any potential changes.

In order to determine the characteristics of the post-creep microstructure, the internal surface
of each specimen with the same axial orientation must be selected for analysis in the SEM. Once
a specimen was selected for post-creep microstructural analysis, it was cut in half in the axial
direction by means of water-cooled, diamond blade, wheel saw. A diagram of the cutting plane

and exposed surface is shown in Figure 156.
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Figure 156: The cutting plane and internal surface used for SEM analysis in the axial

direction for each creep test specimen.

The cut surface was perpendicular to the specimen cross-section. Each half of the specimens
were oriented parallel with the cut surfaces facing out. They were then mounted in epoxy and
polished for analysis in the SEM. In each case the specimens selected for post-creep
microstructural analysis were those with the highest observed creep strains, which means they

were the specimens that saw 200 MPa compressive creep stress. Changes in the microstructure,
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specifically grain size and shape, can only be determined if the creep strains are high enough to
allow detection by analysis of a limited number of grains. Creep strains of less than
approximately 10% may not be detectable by this type of measurement method. And, if very
small changes in grain size or aspect ratio are observed, they may not be considered conclusive

due to the potential error associated with these measurement techniques.

8.2. Analysis of Yttrium Aluminum Garnet

Two creep specimens from billet Y-7-40 were selected for SEM analysis. Specimen Y-7-40-
5 was tested at 1400°C and 100 MPa and saw the highest strain of 4.54%. Therefore, any
microstructural effects of creep will be most apparent in this specimen. Specimen Y-7-40-3,
tested at 1300°C and 200 MPa, saw only 1% strain, but analysis of this specimen will still enable
a comparison of microstructural changes due to creep at both temperatures. Prior to analyzing
these post-creep specimens, a baseline untested microstructure was established. The SEM
micrographs of a specimen from billet Y-7-40, which was not subject to creep testing, are shown

in Figure 157.

SEM HV: 15.0 kV WD:8.00mm | MIRA3 TESCAN
SEMMAG: 13.8kx | View field: 20.0 ym |5 ym SEM MAG: 13.8 kx = View field: 20.0 ym |5 pm
 DeUBSE  Date(midi):08/0721 | Performance in nanospace Det:BSE  Date(midly): 08107121 Performance in nanospace

Figure 157: SEM micrographs of specimen from billet Y-7-40 prior to creep testing with an

average grain size of 1.17 pm.
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The microstructural characteristics of a specimen from billet Y-7-40 were briefly discussed
in Section 6.1. The SEM images reveal attributes similar to those seen in other YAG specimens
presented in this study, including grain size and shape, and presence of porosity. The grain size
for this billet immediately after processing was determined to be 1.17 um. Two SEM
micrographs of specimen Y-7-40-3 following creep testing at 1300°C are shown in Figure 158.
These images came from the internal surface after sectioning the specimen, as described in

Figure 156, and are oriented in the axial direction.

SEM HV: 15.0 kv WD: 9.66 mm | MIRA3 TESCAN SEM HV: 15.0 kV WD: 9.65 mm | MIRA3 TESCA|

SEM MAG: 18.5 kx  View field: 15.0 ym | 2 pm SEM MAG: 13.8 kx  View field: 20.0 ym | 5pum
Det: BSE Date(m/dly): 07/06/21 Performance in nanospace Det: BSE Date(m/dly): 07/06/21 Performance in nanospace

Figure 158: SEM micrographs of specimen Y-7-40-3 after creep at 1300°C in air. Average
measured grain size is 1.21 pm.

The average grain size of specimen Y-7-40-3 following creep at 1300°C was determined to
be 1.21 um. Armani et al. had previously reported that similar creep testing at 1300°C did not
lead to any apparent grain growth in YAG [29]. This conclusion is also validated here as the
grain sizes of specimens from billet Y-7-40 prior to creep and after creep at 1300°C are
essentially identical. The average grain aspect ratio determined for specimen Y-7-40-3 was 1.04.
This is identical to the measured aspect ratio for the specimen, which was not subject to creep.
This observation suggests that the small amount of accumulated creep strain of approximately

1% at 1300°C in air with an applied compressive stress of 200 MPa does not significantly alter
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the shape of the grains. Furthermore, if changes in grain shape are occurring during creep of
YAG at 1300°C, it is likely that these changes would not be detectable due to the small amount
of strain.

Two SEM micrographs of specimen Y-7-40-5 following creep testing at 1400°C are shown

in Figure 159.

o

SEMHV: 150 kV | View field: 30.0 pm

WD: 7.01 mm Date(m/d/y): 10/12/21 | 5 pm

SEM HV: 15.0 kV View field: 25.0 pm |

WD: 7.02 mm Date(m/dly): 10/112/21 5 pm

Figure 159: SEM micrographs of specimen Y-7-40-5 after creep at 1400°C in air. Average
measured grain size is 2.16 pm.

The measured average grain size for Y-7-40-5 after creep at 1400°C was determined to be
2.16 um. This is significantly larger than the grain size measured after creep at 1300°C. While a
certain amount of grain size fluctuation is expected throughout a 40 mm diameter SPS billet, the
SEM images appear consistent. Hence it is likely that creep at 1400°C in air may have induced
grain growth in this YAG specimen.

The average grain aspect ratio was determined to be 1.14, which is approximately 10%
greater than that determined for the specimen not subjected to creep. This result may indicate
that there was a small increase in the relative width of the grains during creep, which is
consistent with compression. Additionally, this small increase in aspect ratio is also consistent

with the total amount of accumulated creep strain, which was approximately 4.5%. This result
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indicates that the shape of the grain may be affected by compression during creep, which is

consistent with Lifshitz grain boundary sliding, and Nabarro-Herring creep. However, this small

change in aspect ratio also falls within the possible amount of error associated with these

measurement techniques and is not fully conclusive. Significantly higher strains were observed

in LuAG specimens; therefore, the same analysis is conducted for LuAG in the following section

in order to determine if similar observations can be made.

The average grain size and average grain aspect ratio for all specimens from billet Y-7-40,

which were analyzed in the SEM are summarized in Table 38.

Table 38: Summary of grain size and aspect ratio for specimens from billet Y-7-40).

Creep Average Average Accumulated Amount of Amount of Grain
Specimen | Temperature | Grain Size Grain Creep Strain | Grain Growth Elongation
[°C] [pm] Aspect Ratio [%o] [%o] [%]
Post-SPS
Y-7-40 N/A 1.17 1.04 N/A N/A N/A
Post-Creep
Y-7-40-3 1300 1.21 1.04 0.95 3.42 0
Post-Creep
Y-7-40-5 1400 2.16 1.14 4.54 84.62 9.62

8.3. Analysis of Lutetium Aluminum Garnet

The same process and analysis methods were used to determine the effects of creep on the

microstructure of LuAG specimens. However, LUAG specimens were only tested in creep at

1300°C; therefore, any effects of exposure to 1400°C during creep are not presented in this

study. Recall that significantly more creep strain was observed in LuAG specimens, specifically

the smaller-grained specimens. Larger accumulated strains are advantageous when comparing

the average shape of grains before and after creep, because the greater the observed difference in

aspect ratio, the more likely that difference is due to the effects of creep and not due to small

measurement errors. Three different LuAG billets were examined prior to creep and after creep
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at 1300°C in air. Each billet has a different original grain size; therefore, any potential effects of
grain size on grain growth and change in grain shape can be observed.

The three LuAG billets, which were analyzed in the SEM were L-12-40 with an average
grain size of 0.32 um, L-10-40 with an average grain size of 0.54 pm, and L-19-40 with an
average grain size of 0.84 pm. Again, a baseline untested microstructure was established by first
analyzing untested specimens. Two SEM micrographs taken from a specimen from billet L-12-

40, which was not subject to creep testing, are shown in Figure 160.

SEM HV: 1 kv WD: 8.02 mm SEM HV: 15.0 kV WD: 8.03 mm | MIRA3 TESCAN
SEM MAG: 46.1 kx  View field: 6.00 ym 1 pm SEM MAG: 46.1 kx = View field: 6.00 ym 1 pm

Det: BSE Date(m/d/y): 06/07/21 Performance in nanospace Det: BSE Date(m/d/y): 08/07/21 Performance in nanospace

Figure 160: SEM micrographs of billet L.-12-40 prior to creep testing with an average grain
size of 0.32 pm.

From analysis of these micrographs, the average grain size was determined to be 0.32 pm and
the average grain aspect ratio was determined to be 0.96. This aspect ratio of approximately 1 is
very similar to that determined for YAG. This result is also consistent with the visual appearance
of the nearly-circular grains observed in Figure 160. These micrographs were compared to
micrographs of specimen L-12-40-5 following creep at 1300°C in air, which are shown in Figure
161. Just as with the post-creep YAG specimens, these micrographs were taken from the internal

specimen surface after sectioning, with the axial direction oriented vertically.
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SEM HV: 15.0 kV View field: 4.99 um g MAIA3 TESCAN SEM HV: 15.0 kV View field: 6.00 um | MAIA3 TESCAN
WD: 6.95 mm Date(m/dly): 10/13/21 1 pm WD: 7.03 mm Date(m/d/y): 10/13/21 | 1 pm

Figure 161: SEM micrographs from specimen L-12-40-5 after creep at 1300°C in air.
Average measured grain size is 0.37 pm.

The average grain size for specimen L-12-40-5 following creep at 1300°C was determined to
be 0.37 um, indicating that there was essentially no grain growth during creep at 1300°C. This
observation is consistent with what was observed for YAG. Specimen L-12-40-5, which was
subject to a compressive creep stress of 200 MPa, saw a total accumulated creep strain of 14%,
as noted in Section 7.1.1. The average grain aspect ratio for this specimen following creep was
determined to be 1.12. Again, an increase in aspect ratio indicates a relative increase in width
and a decrease in height of the grains, which is consistent with compression. This difference in
aspect ratio represents an increase of almost 17%, which is consistent with the amount of creep
strain observed. These results, as well as the results from analysis of the other LuAG billets in
this section are presented in Table 39.

SEM micrographs were also analyzed before and after creep at 1300°C in air for specimens
from billet L-10-40, with an average pre-test grain size of 0.54 um. Micrographs of specimens,

which were not subject to creep, are shown in Figure 162.
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SEM HV: 15.0 kV WD: 8.99 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 7.51 mm MIRA3 TESCAN

SEM MAG: 34.6 kx  View fleld: 8.01 ym | 2 pm SEM MAG: 382 kx  Viewfleld: 7.24 ym 2 um
Det: BSE Date(m/dly): 06/07/21 Performance in nanospace Det: BSE Date(m/d/y): 06/07/21 Performance in nanospace

Figure 162: SEM micrographs of billet L-10-40 prior to creep testing with an average grain
size of 0.54 pm.

After analysis of these micrographs, the average grain size was determined to be 0.54 um and
the average grain aspect ratio was determined to be 1.01. Once again, this aspect ratio of
approximately 1 is very close to that determined for YAG and to that of the previously discussed
LuAG billet. These micrographs established the baseline microstructure for L-10-40 and were
compared to similar micrographs of specimen L-10-40-3 following creep at 1300°C in air, which

are shown in Figure 163.

 SEMHV:15.0kV | View field: 10.0 ym | MAIA3 TESCAN
WD: 6.93 mm Date(mid/y): 10/20/21 | 2 ym
|

e

SEM HV: 15.0 kV View field: 10.0 ym MAIAJ TESCAN

WD: 7.01 mm Date(m/dly): 10/20/21 | 2 pm

Figure 163: SEM micrographs of Specimen L-10-40-3 after creep at 1300°C in air. Average

measured grain size is 0.57 pm.
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The average grain size for specimen L-10-40-3 following creep at 1300°C was determined to
be 0.57 um, which represents a small increase in grain size of approximately 5%. However, this
small difference in grain size is well-within the potential error of the grain size measurement
methods. These numbers indicate that there was likely no significant grain growth during creep
at 1300°C. Specimen L-10-40-3, which was subject to a compressive creep stress of 200 MPa,
saw a total accumulated creep strain of 15%, as was presented in Section 7.1.1. The average
grain aspect ratio for this specimen following creep was determined to be 1.16. This difference in
aspect ratio represents an increase of almost 16%, which is very consistent with the amount of
creep strain observed. These results are also summarized in Table 39.

Similar SEM micrographs were also analyzed before and after creep at 1300°C in air for
specimens from billet L-19-40, with an average grain size of 0.84 um. Specimens not subject to

creep are shown in Figure 164.

:r:a:
SEMHV:15.0kV.  WD: 8.91 mm

View field: 26.6 ym  SEM MAG: 10.4kx | 5pm
Det: BSE Date(m/d/y): 06/25/21

SEM HV: 15.0 kV WD: 8.92 mm |

View field: 15.0 ym | SEM MAG: 18.5kx 2pum
Det: BSE Date(m/dly): 06/25/21

Figure 164: SEM micrographs of billet L-19-40 prior to creep testing with an average grain
size of 0.84 pm.
After analysis of these micrographs, the average grain size was determined to be 0.84 um and
the average grain aspect ratio was determined to be 1.04. Again, this aspect ratio of

approximately 1 is very similar to that previously determined for YAG and LuAG specimens.
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This aspect ratio is also consistent with the visual appearance of the nearly-circular grains in
Figure 164. These micrographs were compared to similar micrographs of specimen L-19-40-1

following creep at 1300°C in air, which are shown in Figure 165.

SEM HV: 15.0 kV View field: 10.6 pm SEM HV: 15.0 kV View field: 10.8 ym MAIA3 TESCAN

WD: 7.00 mm Ijate(mld!y}: 10/15/21 2 ym WD: 7.99 mm Date(m/dly): 10/15/21 2 um

Figure 165: SEM micrographs of Specimen L-19-40-1 after creep at 1300°C in air. Average
measured grain size is 0.84 pm.

Analysis of the micrographs of the post-creep specimen L-19-40-1 revealed the average grain
size to be 0.82 um and the average grain aspect ratio to be 1.10. This measured grain size is
technically smaller than that measured for a specimen not subject to creep. However, this small
difference is well within the possible amount of error associated with grain size measurements.
Hence, we conclude that there was no apparent grain growth during creep at 1300°C.

Specimen L-19-40-1, which was subject to a compressive creep stress of 200 MPa, saw a
total accumulated creep strain of 4%, as was presented in Section 7.1.1. The average grain aspect
ratio for this specimen following creep was determined to be 1.10, which represents an increase
of almost 6%. As was observed for the previously analyzed YAG and LuAG specimens, this
increase in aspect ratio is consistent with compression and is also consistent with the amount of
creep strain observed. The effects of creep on the average grain size and the average grain aspect

ratio for all three LuAG billets are summarized in Table 39.
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Table 39: Summary of the creep effects at 1300°C in air on the grain size and shape of various
LuAG specimens.

Creep Average Average Accumulated | Amount of Amount of
Specimen | Temperature Grain Grain Creep Strain Grain Grain
[°C] Size [um] | Aspect Ratio [%] Growth [%] | Elongation [%]

Post-SPS
L-12-40 N/A 0.32 0.96 N/A N/A N/A
Post-Creep
L-12-40-3 1300 0.37 1.12 14.00 15.63 16.67
Post-SPS
L-10-40 N/A 0.54 1.01 N/A N/A N/A
Post-Creep
L-10-40-3 1300 0.57 1.16 15.16 5.56 14.85
Post-SPS
L-19-40 N/A 0.84 1.04 N/A N/A N/A
Post-Creep
L-19-40-1 1300 0.82 1.1 4.06 0.00 5.77

Each LuAG billet, which was analyzed before and after creep at 1300°C, exhibited similar

grain deformation consistent with the amount of creep strain observed. This indicates that creep

of LuAG under these conditions is controlled by Lifshitz grain boundary sliding, which is

accommodated by vacancy diffusion within grains, which further results in grain shape change

due to the applied stress. This type of grain boundary sliding is associated primarily with

Nabarro-Herring creep.
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9. Conclusions and Recommendations

9.1. Spark Plasma Sintering of Oxide Ceramics

Several different oxide ceramic billets were prepared and processed via SPS. Processed
materials included undoped, polycrystalline YAG, 2at% Yb-doped YAG, 2at% Er-doped YAG,
and undoped, polycrystalline LuAG. SPS parameters were changed for the processing of
different billets of each material variant in order to assess the effects of SPS parameters on
overall material quality and grain size, and to determine the most effective combination of
processing parameters for synthesizing creep resistant oxide ceramics.

SPS has been shown to be an effective processing method for YAG in many published
material studies, which gave a baseline for the target SPS parameters that were likely to be
effective in making fully dense, fine-grained ceramics. SPS has been used to fabricate LuAG
specimens, primarily for optical applications, but consistent SPS settings, which are capable of
producing high quality LuAG specimens, have not been established. Therefore, the assumption
was made that LuAG would respond similarly to YAG during processing, and the parameters
were kept consistent between each material.

Many SPS parameters were varied in order to identify their effects on the resulting material.
These parameters include pressure, temperature, hold time, heating rate, cooling rate, powder
packing methods, powder drying methods, and the timing associated with releasing pressure and
temperature. Many of these parameters and procedural alterations did not have a significant
influence on the resulting material. However, the temperature and pressure used during SPS had
a significant effect on the resulting material grain size, which also has a significant impact on
strength and creep resistance. In general, the grain size of the material appears to increase as the

SPS temperature is increased. However, this increase in grain size is very minimal below a
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certain temperature threshold. This threshold was identified to be approximately 1500° - 1550°C
for YAG, and perhaps slightly higher, >1550°C for LuAG. The effect of pressure on the resultant
grain size were more difficult to analyze. The plots of grain size vs. pressure produce nearly flat
curves for both materials; however, 40 MPa seems to represent a point of slightly reduced grain
growth, while the results are much less consistent at 20 MPa and 50 MPa.

The majority of the materials processed via SPS were high-quality materials suitable for
mechanical testing. Most of the YAG billets had a measured density between 97% and 100% of
the published theoretical density of YAG, while most of the LuAG billets had a measured
density between 96% and 99% of the theoretical density of LuAG. The reasons for these slightly
lower densities observed for LuAG specimens are unknown. A wide range of apparent porosity
was observed within SEM micrographs during microstructural analysis. While some YAG and
LuAG billets possessed large pores on the order of 10 um in length, the majority of billets only
had small pores less than 1 pm in length.

The grain size was determined for each SPS billet following processing in the SEM. The
majority of billets possessed grains sizes between 0.3 um and 5 um. However, some very large
grains, greater than 10 pm, were observed in some materials, possibly due to abnormal grain
growth, which has been known to occur during processing of these ceramics.

In conclusion, SPS is an effective processing method for both YAG and LuAG. The
parameters can be adjusted in order to tailor the resulting material properties to the intended
material use or application. SPS consistently produced near-theoretical density oxide ceramics,
with mostly consistent grain sizes for similar parameter settings. The presence of significant, but
small, porosity did not allow for transparent materials. However, it is expected that adjusting

parameters as necessary, and specifically increasing the applied pressure during SPS, may result
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in fully transparent billets, which was not necessary for this study to assess the creep behavior of
YAG and LuAG.

The primary goal of this work was to determine the creep behavior of these materials under
various conditions. Therefore, the fabrication of additional materials did not continue once
mechanical testing began. In order to produce a more thorough and conclusive study of the
effects of SPS parameters on the resulting material characteristics of oxide ceramics, many more
SPS runs must be accomplished. By carefully adjusting each SPS parameter setting for a large
group of materials, the specific capabilities of SPS could be conclusively identified. Specific
processing recipes could be determined for specific resulting densities and grain sizes. This

represents a very valuable area of future work for the material science community.

9.2. Creep Behavior of Yttrium Aluminum Garnet

Undoped and doped, polycrystalline YAG specimens with several different grain sizes were
tested in compressive creep in air and in steam at 1300°C and 1400°C. The two doped variants of
YAG were 2at% Yb-doped YAG and 2at% Er-doped YAG, both of which are common, doped
Y AG materials, typically used in optical material applications. By individually varying and
isolating the parameters in this creep study, the impacts of temperature, compressive stress, and
steam environment, as well as the significant impact of grain size were determined for each
material variant.

The results from each creep test consisted of the measured creep strain over time. From the
strain vs. time curves, the steady-state creep strain rates were determined and analyzed. This

creep strain rate, described by the standard steady-state creep rate equation, was the primary
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focus of this investigation. By determining the effects of temperature, stress, and grain size on
the steady-state creep strain rates of each material, the stress exponents, grain size exponents,
and creep activation energy were identified.

Determination of these creep performance characteristics was accompanied by a thorough
investigation into the post-creep microstructure of each material, including changes to the
average grain size and grain aspect ratio following creep. This analysis of the post creep
microstructure coupled with the creep results obtained for each material contributed to the
determination of the creep mechanisms responsible for the deformation observed at high
temperature.

YAG demonstrated the highest creep resistance of any oxide ceramic previously investigated,
displaying steady-state creep rates on the order of 10 s at 1300°C for large grain sizes. The
impact of grain size on the steady-state creep rates of YAG was significant. Grain sizes of
undoped YAG between approximately 1 pum and 8 um caused a difference in the creep rates of
approximately 2 orders of magnitude. Increasing the temperature from 1300°C to 1400°C caused
an increase in the steady state creep rate by approximately one order of magnitude.

The average stress exponent, n, for YAG was determined to be 1.30 and the average grain
size exponent, m, for YAG was determined to be 1.99. The activation energy associated with
diffusion during creep of undoped YAG was determined to be 532 kJ/mol, which is consistent
with the known in activation energy associated with the Y** cation during self-diffusion. These
values are consistent with the creep mechanism identified as grain boundary sliding
accommodated by Nabarro-Herring diffusional creep, which suggests a stress exponent of 1 and
a grain size exponent of 2. Furthermore, the rate limiting species during diffusion is the large Y**

cation, identified by the observed activation energy. Small grain shape changes were identified
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by comparing the pre- and post-creep grain aspect ratios. These shape changes are caused by
diffusion occurring through the grains during grain boundary sliding, which is also consistent
with Nabarro-Herring diffusional creep

The presence of steam appears to have no significant impact on the creep behavior of YAG at
1300°C; however, YAG specimens were not tested in steam at 1400°C, so the effects of steam at
higher temperatures remain unknown. The presence of the two dopants appears to have no
significant impact on the creep behavior of YAG. Very fine-grained doped YAG specimens were
tested, and they demonstrated higher stress exponents and lower grains size exponents than the
larger-grained specimens, doped or undoped. However, these effects are assumed to be primarily
due to the grain size and not the presence of dopants. These changes in the determined exponents
suggest that the mechanism associated with the creep of YAG with very small grains, < 0.5 pm,
changes or partially changes to interface reaction-controlled creep, similar to what was observed
in previously tested alumina. This would indicate that the grain boundaries can no longer be
assumed to be the location of perfect sources and sinks for vacancy diffusion, but rather the
diffusion of species during creep pile up at the grain boundaries and the resulting reactions are
rate-limiting.

Recommendations for future work in the area of creep of YAG primarily include testing
more specimens under the same conditions. This would allow for more statistically relevant data
and more conclusive results. Additionally, more creep experiments at 1400°C should take place
in air and in steam. The effects of grain size should be determined at 1400°C and compared to
those at lower temperatures. Due to the observed grain size increase during creep of YAG at
1400°C, it is likely that this temperature represents a significant turning point in the abilities of

this material to continue to perform for long durations.
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Future work on the creep of YAG should also target fine-grained materials, specifically those
with grain sizes below 0.5 um. The limited amount of these tests in this study suggests that the
creep mechanisms may change for such fine-grained YAG materials. However, only fine-grained
doped YAG specimens were tested in creep. Therefore, more testing needs to accomplished on
undoped YAG specimens in order to verify these results, and determine more conclusively if the

creep mechanism changes based on grain size.

9.3. Creep Behavior of Lutetium Aluminum Garnet

The creep behavior of undoped LuAG was compared to that of YAG under the same test
conditions and similar material characteristics. Compressive creep tests took place at 1300°C in
air and in steam for a range of stress values between 50 and 200 MPa. Specimens from several
billets were tested in order to assess the effects of grain size on the resultant creep performance
of LuAG. Due to material quantity limitations, LuAG was not tested at 1400°C. This represented
the first creep study of LuAG specimens, and the first investigation into the potential use of
LuAG as an aerospace structural material.

LuAG surprisingly demonstrated strain rates between one and two orders of magnitude
greater than those of YAG for similar grain sizes, despite the higher density and melting
temperature of LUAG. The most creep resistant LuAG specimen was tested at 1300°C in air, had
a grain size of approximately 5 pm, and produced a steady-state strain rate on the order of 10 5!
at 50 MPa. While still an impressive creep rate result, this creep rate represents significantly less
creep resistance than that seen in similar YAG specimens under similar conditions. Material

grain size had a significant effect on the creep behavior of LUAG. Grain sizes in this study were
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between 0.32 pm and 4.90 um. This variation in grain size caused a difference of approximately
two orders of magnitude in the creep rates of LuAG. Very large creep strains were also observed
during creep of LuAG. Accumulated strains above 15% were observed for fine-grained LuAG
specimens. Even specimens with grain size close to 1 um reached strains of 4%, which is much
higher than that observed for YAG. The presence of steam appears to have no significant impact
on the creep behavior of LuAG at 1300°C, as was the case for YAG. Two sets of LUAG
specimens with two different gran sizes were tested in steam. In each case the resulting creep
behavior was nearly identical to the creep behavior in air for specimens with similar grain sizes.

The average stress exponent, 7, for LUAG was determined to be 1.91 and the average grain
size exponent, m, for LuAG was determined to be 1.24. This stress exponent is higher, and the
grain size exponent is lower than those observed for YAG. This difference appears to be
significant enough to suggest that the creep mechanisms operating in LuAG may be different
from those operating in YAG, despite the material similarities. A stress exponent close to 2 and a
grain size exponent close to 1 would suggest that the creep is occurring by grain boundary
sliding accommodated by interface reaction-controlled diffusional creep, similar to that observed
for very fine-grained YAG. However, these trends were observed for LuAG across all grain
sizes.

Significant grain shape changes were identified by comparing the pre- and post-creep grain
aspect ratios. Even more identifiable in LuAG specimens with significant accumulated creep
strains, these shape changes are likely caused by diffusion occurring through the grains during
grain boundary sliding, which is also consistent with Nabarro-Herring diffusional creep. It is
likely that multiple diffusion mechanisms are occurring in LuAG during creep, which would

account for all these observations.
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Future research into the creep behavior of LuAG should also involve large quantities of
materials in order to create statistically relevant and conclusive results. Specifically, more creep
experiments should focus on the creep of LUAG at 1400°C, as no tests were conducted at that
temperature during this study. It would be beneficial to test LuAG specimens with larger grains
to see if any LuAG specimen could produce the same impressive creep resistance as YAG. The
discrepancies between the creep behavior of YAG and LuAG should be investigated further. It is
possible that LuAG is inherently less creep resistant than YAG, as the results of this study
suggest.

However, it is also possible that the lower creep resistance of LuAG is due to specific
material defects, rather than intrinsic material properties. In order to reach this conclusion for
LuAG, the specimens, which were used throughout this study, must be examined further. The
potential presence of impurities must be determined by chemical analysis. Impurities and their
potential segregation at the grain boundaries must be analyzed in thin specimens by observations
in the TEM. These potential defects in LuAG specimens could account for the increased creep

strains and creep rates observed throughout this study, and should be investigated in future work.
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Appendix A: Tables of Spark Plasma Sintering Parameters and Resultant

Material Properties

Table A-1: Undoped YAG Spark Plasma Sintering Parameters and Resultant Material Properties.

Identification SPS Parameter Settings Material Results
Billet Name Di]:lr::tter Temseprsature Prisiire R:‘;:t;:ie Ho[lrc‘lﬁ’:‘li]me C;){l;ltl: ¢l Ofg::::’ta“t SS:?:;]] D[;lcs;y D?;Z i]ty Il-\lllait;;:;ls
[mm] [°C] [MPa] [°C/min] [°C/min] Specimens [Vickers]
Y-1-25 25 1500 30 70 20 20 2 0.43 4.52 99.13 1848
Y-2-40 40 1500 20 70 20 5 2 11.65 4.44 97.48 1585
Y-3-40 40 1500 20 70 15 5 4 0.88 4.51 98.90 1669
Y-4-40 40 1400 20 70 30 5 2 0.50 4.42 96.84 1814
Y-5-25 25 1500 30 35 15 2 1 0.81 4.53 99.44
Y-6-25 25 1500 30 35 15 2 2 0.34 4.56 100.00
Y-7-40 40 1500 30 35 15 2 6 1.17 4.53 99.24 1470
Y-8-40 40 1400 40 35 15 5 1 0.88 4.45 97.55 1746
Y-9-40 40 1300 30 35 15 5 0 0.35 4.56 99.94 1823
Y-10-40 40 1300 40 35 15 5 3 0.28 4.56 | 100.00
Y-12-40 40 1300 20 35 15 5 0 3.07 4.51 98.95
Y-13-40 40 1550 50 35 15 5 5 7.99 4.46 97.85 1390
Y-14-40 40 1550 20 35 15 5 4 3.19 4.54 99.62

Table A-2: 2at% Yb-Doped YAG Spark Plasma Sintering Parameters and Resultant Material

Properties.
Identification SPS Parameter Settings Material Results

Billet SPS SPS Heating . Cooling | # of Resultant . . . Material
Billet Name| Diameter |Temperature| Pressure |[Ramp Rate Hold T me Rate Creep S.Gram Del/mty De(l;snty Hardness

[mm] [°C] [MPa] [°C/min] [min] [°C/min] Specimens ize [pml | [g/cc] (%] [Vickers]
Y-Yb-1-20 20 1500 30 70 20 20 1 0.39 4.56 99.96 1651
Y-Yb-2-25 25 1500 30 70 20 20 2 0.38 4.59 |100.00 1743
Y-Yb-3-40 40 1400 20 70 20 5 4 0.48 4.54 99.48 1701
Y-Yb-4-25 25 1500 30 35 15 2 2 4.83 4.57 100.00 1442
Y-Yb-5-40 25 1550 30 35 15 5 4 1.38 4.50 98.76 1701
Y-Yb-6-40 40 1500 40 35 15 2 3 0.51 4.52 99.21 1587
Y-Yb-7-40 40 1300 30 35 15 2 3 0.37 4.47 97.97 1747
Y-Yb-8-40 40 1400 50 35 15 2 1 0.53 4.56 | 100.00
Y-Yb-9-40 40 1550 40 35 15 2 3 0.63 4.53 99.45 1634
Y-Yb-10-4( 40 1550 30 35 20 2 3 15.02 4.54 99.52
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Table A-3: 2at% Er-Doped YAG Spark Plasma Sintering Parameters and Resultant Material

Properties.
Identification SPS Parameter Settings Material Results
Billet Name Di]:lr::tter Tem::rsature Przsiire R;{;:tgfte Ho[l:‘lﬁ’fli]me C;,l(:tl: ¢l Ofg::::a“t Si(;r?:;]] D[;'/l:;;y D?:;:;ty Il-\lllait;rrl:ls
[mm] [°C] [MPa] [°C/min] [°C/min] Specimens [Vickers]
Y-Er-1-40 40 1400 10 70 20 5 2 24.30 4.47 97.93 1627
Y-Er-2-40 40 1400 30 70 20 2 2 0.50 4.55 99.72
Y-Er-3-25 25 1500 30 35 20 2 2 1.28 4.80 100.00 1520
Y-Er-4-25 25 1500 30 35 20 2 2 2.83 4.61 100.00 1476
Y-Er-5-25 25 1500 30 20 20 2 0 0.33 N/A N/A
Y-Er-6-25 25 1500 30 35 20 2 1 0.47 4.58 | 100.00
Y-Er-7-40 40 1500 50 35 15 2 3 1.87 4.53 99.34 1436
Y-Er-8-40 40 1400 40 35 15 2 4 0.37 4.55 99.84
Y-Er-9-40 40 1300 50 35 15 2 3 0.45 4.51 98.94 1742
Y-Er-10-40 40 1550 40 35 15 2 1 2.72 4.52 99.21
Table A-4: LuAG Spark Plasma Sintering Parameters and Resultant Material Properties.
Identification SPS Parameter Settings Material Results
Billet Name Di::::z:er Tem:c:'sature Pr::‘sire R:r::t:agte Hold Time c::::i:g ! Of;‘is:;ta“t Grain Size| Density | Density HM;::;:L
[mm] [°cl [MPa] [°C/min] [min] [°C/min] Specimens (wm] lg/ec] %l [Vickers]
L-1-20 20 1550 30 70 25 20 1 10.78 6.57 97.67 1459
L-2-25 25 1550 30 70 20 20 1 0.57 6.55 97.40 1630
L-3-40 40 1550 30 70 20 20 5 4.90 6.47 96.20 1574
L-4-40 40 1450 20 70 20 5 3 0.95 6.54 97.23 1745
L-5-40 40 1350 20 70 20 5 1 0.41 6.57 97.66 1681
L-6-40 40 1450 20 70 40 5 3 0.55 6.60 98.11 1672
L-7-40 40 1450 20 70 40 2 2 0.44 6.65 98.86 1328
L-8-25 25 1500 30 35 15 2 1 0.50 6.57 97.64
L-9-25 25 1300 30 35 15 2 0 0.32 6.49 96.48 1811
L-10-40 40 1500 40 35 15 2 3 0.54 6.65 98.84
L-11-40 40 1300 40 35 15 2 4 0.55 6.57 97.62
L-12-40 40 1300 50 35 15 5 3 0.32 6.50 96.55 1515
L-13-40 40 1400 50 35 15 5 2 0.45 6.58 97.78 1839
L-14-25 25 1400 30 35 20 2 0 0.34 6.66 98.99
L-15-25 25 1400 40 35 15 2 0 N/A N/A N/A
L-16-25 25 1550 40 35 15 2 1 0.48 6.57 97.64
L-17-40 40 1500 50 35 15 2 3 0.68 6.58 97.77
L-18-40 40 1400 40 35 15 2 3 0.42 6.49 96.43
L-19-40 40 1500 20 35 15 2 1 0.84 6.68 99.23
L-20-25 25 1550 50 35 15 2 1 1.06 6.66 98.99
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Appendix B: Tables of Creep Specimen Dimensions

Table B-1: Undoped YAG Cree

p Specimen Dimensions.

Material Type Specimen Height Width | Depth | X1 X2 X3 Mass
Name (mm) (mm) | (mm) | (mm) | (mm) | (mm) (g)

YAG - Undoped | Y-1-25-1 19.54 6.50 6.50 3.11 | 12.00 | 3.11 | 3.710
YAG - Undoped | Y-1-25-2 18.82 6.46 6.45 2.76 | 12.10 | 2.71 | 3.470
YAG - Undoped | Y-2-40-1 19.87 6.39 6.43 312 | 11.72 | 3.13 | 3.575
YAG - Undoped | Y-2-40-2 19.35 6.43 6.42 3.02 | 11.95| 2.86 | 3.499
YAG - Undoped | Y-3-40-1 18.59 6.25 6.25 2.59 | 11.79 | 2.61 | 3.220
YAG - Undoped |  Y-3-40-2 19.73 6.24 6.24 3.00 | 11.75 | 3.09 | 3.400
YAG - Undoped| Y-3-40-3 17.48 5.60 5.60 1.91 | 11.73 | 1.95 | 3.020
YAG - Undoped | Y-3-40-4 18.75 6.25 6.24 2.64 | 11.77 | 2.53 3.28
YAG - Undoped | Y-4-40-1 19.12 6.04 6.04 2.77 | 11.80 | 2.76 | 3.118
YAG - Undoped | Y-4-40-2 19.69 6.02 6.02 3.09 | 11.76 | 3.03 | 3.157
YAG - Undoped | Y-5-25-1 20.25 7.26 7.26 3.10 | 11.78 | 3.62 | 4.761
YAG - Undoped | Y-6-25-1 19.34 6.85 6.89 2.89 | 11.78 | 2.85 | 4.025
YAG - Undoped | Y-6-25-2 17.95 6.65 6.65 2.55 | 11.06 | 2.51 | 3.517
YAG - Undoped | Y-7-40-1 19.03 6.74 6.74 3.05 | 11.98 | 3.44 | 3.800
YAG - Undoped |  Y-7-40-2 20.62 6.11 6.11 3.16 | 11.92 | 3.65 | 4.010
YAG - Undoped| Y-7-40-3 18.99 6.73 6.73 3.52 | 11.87 | 2.98 | 3.770
YAG - Undoped | Y-7-40-4 18.46 6.54 6.54 2.75 | 11.76 | 3.33 | 3.340
YAG - Undoped | Y-7-40-5 19.22 6.02 6.02 3.12 | 11.92 | 3.54 | 3.640
YAG - Undoped | Y-7-40-6 17.65 5.88 5.88 245 | 11.76 | 2.78 | 3.210
YAG - Undoped | Y-8-40-1 18.99 6.51 6.51 2.85 | 12.27 | 3.20 | 3.620
YAG - Undoped | Y-9-40-1 [No Creep Specimens

YAG - Undoped | Y-10-40-1 19.49 6.00 6.00 2.69 | 11.79 | 3.31 | 3.030
YAG - Undoped | Y-10-40-2 19.64 6.25 6.25 342 | 11.72 | 2.78 | 3.360
YAG - Undoped | Y-10-40-3 20.03 6.50 6.50 3.57 | 11.82 | 3.11 | 3.710
YAG - Undoped | Y-12-40-1 |[No Creep Specimens

YAG - Undoped | Y-13-40-1 19.06 6.61 6.61 2.82 | 12.34 | 3.12 | 3.730
YAG - Undoped | Y-13-40-2 18.97 6.61 6.61 3.26 | 12.40 | 2.78 | 3.700
YAG - Undoped | Y-13-40-3 19.09 6.62 6.62 3.56 | 12.30 | 2.40 | 3.740
YAG - Undoped | Y-13-40-4 19.00 6.63 6.63 3,12 | 12.25 | 2.65 | 3.720
YAG - Undoped | Y-13-40-5 18.95 6.62 6.62 3.12 | 1248 | 2.76 | 3.680
YAG - Undoped | Y-14-40-1 18.98 5.54 5.55 3.14 | 12.34 | 2.77 | 2.600
YAG - Undoped | Y-14-40-2 17.97 6.40 6.40 2.85 [12.42 | 2.23 | 3.300
YAG - Undoped | Y-14-40-3 18.97 6.26 6.26 2.39 1242 | 3.61 | 3.300
YAG - Undoped | Y-14-40-4 17.87 6.41 6.41 2.14 | 1230 | 2.82 | 3.240
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Table B-2: 2at% Yb-Doped YAG Creep Specimen Dimensions.

Material Specimen Height Width | Depth | X1 X2 X3 Mass
Name (mm) (mm) | (mm) | (mm) | (mm) | (mm) (g)

YAG - Yb Doped | Y-Yb-1-20-1 18.96 6.49 6.56 2.69 | 12.08 | 2.91 | 3.610
YAG - Yb Doped | Y-Yb-2-25-1 18.98 6.47 6.56 271 | 12.11 | 2.98 | 3.630
YAG - Yb Doped |Y-Yb-2-25-2 19.06 6.49 6.49 2.92 | 12.10 | 2.74 | 3.540
YAG - Yb Doped |Y-Yb-3-40-1 16.84 6.21 6.22 1.67 | 11.71 | 1.60 | 2.903
YAG - Yb Doped | Y-Yb-3-40-2 19.63 6.38 6.37 3.02 | 11.73 | 2.94 | 3.573
YAG - Yb Doped [Y-Yb-3-40-3 18.71 6.50 6.52 2.60 | 11.74 | 2.53 | 3.535
YAG - Yb Doped | Y-Yb-3-40-4 18.15 6.48 6.49 2.30 [ 11.73 | 2.31 | 3.412
YAG - Yb Doped | Y-Yb-4-25-1 20.51 6.83 6.83 3.41 | 11.76 | 3.53 | 4.315
YAG - Yb Doped | Y-Yb-4-25-2 21.41 6.87 6.87 3.99 | 11.80 | 3.91 | 4.540
YAG - Yb Doped | Y-Yb-5-25-1 18.99 6.49 6.45 3.10 | 12.40 | 2.71 | 3.630
YAG - Yb Doped | Y-Yb-5-25-2 18.97 6.49 6.49 3.05 | 12.45| 2.75 | 3.600
YAG - Yb Doped [Y-Yb-5-25-3 18.87 6.48 6.48 2.81 | 12.46 | 3.15 | 3.550
YAG - Yb Doped |Y-Yb-5-25-4 18.97 6.44 6.44 291 | 12.44 | 3.10 | 3.590
YAG - Yb Doped |Y-Yb-6-40-1 20.04 6.14 6.14 327 | 11.74 | 3.29 | 3.372
YAG - Yb Doped | Y-Yb-6-40-2 19.59 6.14 6.16 2.95 | 11.75 ] 3.01 | 3.318
YAG - Yb Doped | Y-Yb-6-40-3 18.94 6.15 6.15 2.68 | 11.75 | 2.71 | 3.203
YAG - Yb Doped | Y-Yb-7-40-1 18.94 6.47 6.47 3.08 | 12.33 | 2.89 | 3.510
YAG - Yb Doped |Y-Yb-7-40-2 19.01 6.50 6.50 3.01 | 12.23 | 2.99 | 3.590
YAG - Yb Doped [Y-Yb-7-40-3 18.64 6.34 6.34 2.65 | 11.89 | 3.34 | 3.220
YAG - Yb Doped | Y-Yb-8-40-1 19.20 6.00 6.01 2.54 | 11.81 | 3.10 | 3.096
YAG - Yb Doped | Y-Yb-9-40-1 18.78 5.45 5.45 2.59 [ 12.59 | 3.10 | 2.530
YAG - Yb Doped | Y-Yb-9-40-2 18.57 5.47 5.47 2.43 [ 1232 | 291 | 2.510
YAG - Yb Doped [ Y-Yb-9-40-3 18.87 5.47 5.47 2.75 | 12.40 | 3.00 [ 2.540
YAG - Yb Doped | Y-Yb-10-40-1 19.19 6.48 6.48 3.03 | 12.55 | 3.20 | 3.680
YAG - Yb Doped | Y-Yb-10-40-2 18.94 6.54 6.54 2.72 | 12.56 | 3.20 | 3.620
YAG - Yb Doped | Y-Yb-10-40-3 19.05 6.48 6.48 2.96 | 3.05 | 12.44 | 3.650
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Table B-3: 2at% Er-Doped YAG Creep Specimen Dimensions.

Material Type Specimen Height Width | Depth | X1 X2 X3 Mass
Name (mm) (mm) | (mm) | (mm) | (mm) | (mm) (g)

YAG - Er Doped |Y-Er-1-40-1 18.05 6.38 6.39 2.36 | 11.82 | 2.16 | 3.232
YAG - Er Doped |Y-Er-1-40-2 16.92 6.74 6.76 2.01 | 10.76 | 2.38 | 3.383
YAG - Er Doped |Y-Er-2-40-1 19.20 6.56 6.55 276 | 11.75 | 2.84 | 3.675
YAG - Er Doped |Y-Er-2-40-2 18.95 6.54 6.54 2.69 [ 11.76 | 2.69 | 3.599
YAG - Er Doped |Y-Er-3-25-1 18.65 6.47 6.45 248 [ 11.75 | 2.44 | 3.460
YAG - Er Doped |Y-Er-3-25-2 21.83 6.49 6.49 4.14 [ 11.74 | 4.14 | 4.109
YAG - Er Doped |Y-Er-4-25-1 18.03 6.79 6.79 2.64 [ 11.17 | 2.61 | 3.728
YAG - Er Doped |Y-Er-4-25-2 20.44 6.99 6.99 3.52 | 11.76 | 3.43 | 4.478
YAG - Er Doped |Y-Er-5-25 No Creep Specimens
YAG - Er Doped |Y-Er-6-25-1 18.07 6.89 6.87 2.53 [ 11.06 | 2.60 | 3.840
YAG - Er Doped |Y-Er-7-40-1 19.12 5.98 5.98 2.78 [ 11.74 | 2.76 | 3.035
YAG - Er Doped |Y-Er-7-40-2 19.33 5.99 5.99 2.88 [ 11.86 [ 2.90 | 3.060
YAG - Er Doped |Y-Er-7-40-3 18.69 6.14 6.14 2.72 [ 11.58 | 2.73 | 3.030
YAG - Er Doped |Y-Er-8-40-1 18.87 6.06 6.06 2.67 [ 11.75 | 2.67 | 3.087
YAG - Er Doped |Y-Er-8-40-2 19.21 6.03 6.04 2.81 [11.75 | 2.76 | 3.119
YAG - Er Doped |Y-Er-8-40-3 18.29 6.04 6.04 236 [ 11.77 [ 2.31 | 2.965
YAG - Er Doped |Y-Er-8-40-4 18.20 6.00 6.06 2.34 | 11.80 | 2.39 | 2.938
YAG - Er Doped |Y-Er-9-40-1 18.07 6.89 6.87 2.53 [ 11.06 [ 2.60 | 3.840
YAG - Er Doped |Y-Er-9-40-2 18.57 6.54 6.54 2.78 [ 11.32 | 2.65 | 3.640
YAG - Er Doped |Y-Er-9-40-3 19.02 6.41 6.41 2.75 [ 12.11 | 3.10 | 3.510
YAG - Er Doped |Y-Er-10-40-1 19.14 6.33 6.33 2.79 [ 1231 | 3.12 | 3.460
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Table B-4: LuAG Creep Specimen Dimensions.

Material Specimen Height Width | Depth | X1 X2 X3 Mass
Name (mm) (mm) | (mm) | (mm) | (mm) | (mm) (2)

LuAG L-1-20-1 18.82 6.56 6.53 2.58 | 12.13 | 2.88 | 5.200
LuAG L-2-25-1 18.93 5.62 5.62 2.78 | 11.92 | 2.67 | 3.870
LuAG L-3-40-1 19.69 6.39 6.39 3.10 | 11.73 | 3.15 | 5.109
LuAG L-3-40-2 19.89 6.33 6.34 3.21 | 11.71 | 3.09 | 5.081
LuAG L-3-40-3 19.77 6.51 6.52 3.01 | 11.75] 3.12 | 5.360
LuAG L-3-40-4 19.71 6.40 6.40 3.10 | 11.75 | 3.01 | 5.140
LuAG L-3-40-5 19.66 6.43 6.43 3.13 | 11.87 | 2.02 | 5.050
LuAG L-4-40-1 19.13 6.25 6.24 2.89 | 11.93 ] 2.82 | 4.830
LuAG L-4-40-2 19.79 6.24 6.25 3.19 [ 11.97 | 3.25 | 4.990
LuAG 1-4-40-3 17.50 6.37 6.37 2.81 | 10.45 | 2.81 | 4.610
LuAG L-5-40-1 19.05 6.49 6.48 2.78 | 11.75 ] 2.78 | 5.201
LuAG L-6-40-2 20.02 6.24 6.24 326 | 11.73 | 3.24 | 5.080
LuAG L-6-40-3 16.96 6.09 6.09 2.11 |1 10.74 | 2.25 | 4.087
LuAG L-6-40-4 16.75 6.24 6.24 2.26 | 10.83 | 2.18 | 4.242
LuAG L-7-40-1 18.59 6.30 6.23 2.53 | 11.85 | 2.44 | 4.709
LuAG L-7-40-2 19.95 6.31 6.31 321 | 11.75 | 3.25 | 5.173
LuAG L-8-25 19.40 6.87 6.85 2.92 | 11.76 | 2.94 | 5.970
LuAG 1-9-40-1 No Creep Specimens
LuAG L-10-40-1 19.13 5.98 5.98 2.50 | 12.38 | 3.50 | 4.460
LuAG L-10-40-2 18.28 6.38 6.38 2.50 | 12.50 | 2.60 | 4.890
LuAG L-10-40-3 18.98 6.37 6.37 2.81 | 12.34 | 3.20 | 5.010
LuAG L-11-40-1 18.73 6.64 6.64 2.77 [ 1243 | 2.98 | 5.380
LuAG L-11-40-2 19.00 6.56 6.56 3.04 | 12.39 | 2.86 | 5.350
LuAG L-11-40-3 19.02 6.66 6.67 3.15 | 12.35| 2.79 | 5.540
LuAG L-11-40-4 18.64 6.38 6.38 2.57 | 12.24 | 2.81 | 4.990
LuAG L-12-40-2 18.91 6.47 6.47 3.06 | 12.11 | 2.75 | 5.050
LuAG L-12-40-3 19.10 6.47 6.47 3.14 | 12.61 | 2.84 | 5.320
LuAG L-12-40-5 19.01 6.41 6.47 2.77 | 12.54 | 3.04 | 5.220
LuAG L-13-40-1 17.69 6.13 6.13 2.55 [ 1242 | 2.15 | 4.590
LuAG L-13-40-2 17.67 6.13 6.13 2.52 | 1240 | 2.22 | 4.480
LuAG L-14-40-1 No Creep Specimens
LuAG L-15-40-1 No Creep Specimens
LuAG L-16-25-1 18.66 6.46 6.47 2.52 | 12.23 | 3.04 | 5.190
LuAG L-17-40-1 20.28 6.24 6.24 347 | 11.99 | 3.36 | 5.220
LuAG L-17-40-2 20.16 6.25 6.25 3.50 | 12.21 | 3.23 | 5.150
LuAG L-17-40-3 18.47 6.13 6.13 2.49 | 12.00 [ 2.61 | 4.530
LuAG L-18-40-1 19.45 6.47 6.47 3.29 | 12.38 | 3.08 | 5.360
LuAG L-18-40-2 19.41 6.48 6.48 340 | 1236 | 2.96 | 5.390
LuAG L-18-40-3 19.35 6.48 6.48 3.22 | 12.15] 2.75 | 5.030
LuAG L-19-40-1 18.90 6.46 6.46 332 | 12.41 | 2.94 | 4.760
LUAG L-20-25-1 17.78 5.84 5.84 2.21 | 12.35 | 2.49 | 4.020
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Appendix C: Summary of Materials
- Billet Pictures
- Creep Test Specimen Dimensions
- SEM Micrographs
- Material Properties (Density, Grain Size, Hardness)

- Spark Plasma Sintering Profiles
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Undoped YAG Y-1-25 25 mm puck 2 Creep Specimens

Specimen Dimensions [mm)]

Wﬁdt Depth | X1 | X2 | x5 | Masslel

Y-1-25-1 19.54 | 6.50 | 6.50 | 3.11 | 12.00 | 3.11 3.710
Y-1-25-2 18.82 | 6.46 | 6.45 | 2.76 | 12.10 | 2.71 3.470

Specimen
Name Height

SEM HV: 15.0 kV WD: 8.50 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 8.50 mm | MIRA3 TESCAN

SEM MAG: 55.4 kx View field: 5.00 ym 1 pm SEM MAG: 55.4 kx | View field: 5.00 pm 1 pm
Det: BSE Date(mid/y): 01/14/21 Performance in nanospace Det: BSE Date(midly): 01/14/21 Performance in nanospace
Material Properties
. . Grain Size Hardnes
Density [g/cc] Density [%]
[nm] S
4.52 99.13 0.43 1848
SPS Profile

5 20
E o
ERRSE:
] -

%) ] 10

5 1> ¢

E {0tz

o {1 5 5 =

- { a0t

s i 15
E Q.
4 202
3 (]

5
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (hour)
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Undoped YAG Y-2-40 40 mm puck 2 Creep Specimens

Specimen Specimen Dimensions [mm] Mass [g]
Name Height | Width | Depth | X X2 X3

Y-2-40-1 19.87 | 639 | 643 | 3.12 | 11.72 | 3.13 3.575

Y-2-40-2 1935 | 643 | 642 | 3.02 | 11.95 | 2.86 3.499

= e Mo TR A
: . S
SEM HV: 15.0 kv WD: 2.07 mm e SEnEn SEM HV: 15.0 kV WD: 8.1 mm MAIA3 TESCAN
View field: 100 pm SEM MAG: 2.77 kx | 20 ym View field: 100 pm SEM MAG: 2.77 kx 20 ym
Det: BSE Date(midly): 03/01/21 Det: BSE Date(m/dly): 03/01/21

Material Properties
Density [g/cc] Density [%] Grain Size [um] | Hardness
4.44 97.48 11.65 1585
SPS Profile
1600 30
1400 <
U 1200 20 B
— =
2 1000 - 10 o3
3 ——
T 800 £
8 600 ro £
§ 400 o
s - -10 £
200 8
8
0 T T T T T T T T T T r T T T T T T T T T T T T T T T T T T T T T T T r T T T T T T T T T T rrTrrrrTrT _20 ‘%
0 025 05 075 1 125 15 175 2 225 25 275 3 325 35 375 ©

Time (hour)
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Undoped YAG Y-3-40 40 mm puck 4 Creep Specimens

Specimen Specimen Dimensions [mm] Mass [g]
Name Height | Width | Depth | Xi X2 X3

Y-3-40-1 18.59 | 625 | 6.25 | 2.59 | 11.79 | 2.61 3.220

Y-3-40-2 19.73 | 6.24 | 6.24 | 3.00 | 11.75 | 3.09 3.400

Y-3-40-3 1748 | 5.60 | 5.60 | 1.91 | 11.73 | 1.95 3.020

Y-3-40-4 18.75 | 625 | 624 | 2.64 | 11.77 | 2.53 3.28

SEM HV: 18.0KV | 46 mm MAIA3 TESCAN SEM HV: 18.0 kV WD: 6.77 mm MAIA3 TESCAN
2 ym

View field: 20.0 pm ‘ SEM MAG: 13.8 kx | 5 um View field: 15.0 ym  SEM MAG: 18.5 kx
Det: BSE | Date(m/dly): 03/04/21 Det: BSE Date(midly): 03/04/21 |

Material Properties
Density [g/cc] Density [%] Grain Size [um] Hardness
4.51 98.90 0.88 1669
SPS Profile
2000 20 _
_ 15 §
s~ 1500 10 &
2 5 £
& 1000 0 %g
g 5 3 —
£ 500 -10%
= 15 =
0 20 &

0 025 05 075 1 125 15 175 2 225 25 275 3 325 35 375
Time (hour)
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Undoped YAG Y-4-40 40 mm puck 2 Creep Specimens

I

- @ - -
40 mm
Specimen Specimen Dimensions [mm] Mass [g]
Name Height | Width | Depth | X X2 X3
Y-4-40-1 19.12 | 6.04 | 6.04 | 2.77 | 11.80 | 2.76 3.118
Y-4-40-2 19.69 | 6.02 | 6.02 | 3.09 | 11.76 | 3.03 3.157

SEM HV: 15.0 kV : WD: 6.97 mm MAIA3 TESCAN SEM HV: 15.0 kV WD: 6.97 mm

View fleld: 8.00 pm SEM MAG: 346 kx 2pum View field: 8.00 pm SEMMAG:346kx 2pm
Det: BSE Date(m/d/y): 05/19/21

MAIA3 TESCAN

Det: BSE Date(m/d/y): 05/19/21
Material Properties
Density [g/cc] Density [%] Grain Size [um] Hardness
4.42 96.84 0.50 1814
SPS Profile

1600 30

1400 T

© 1200 1% 3

g 3
2 1000 110 ¢
® 800 2z
EEi 600 10 ¢

Q

@ 40 1 0=

200 ] a

0 o] 02

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 250 2.75 3.00 3.25 3.50 3.75
Time (hour)
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Undoped YAG Y-5-25 25 mm puck

1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass [g]
Name Height | Width | Depth | X1 | Xo | Xs £
Y-5-25-1 20.25 7.26 7.26 3.10 | 11.78 | 3.62 4.761

e
SEM HV: 15.0 kV ‘WD: 8.01 mm | MIRA3 TESCAN SEM HV: 15.0 kV WD: 8.02 mm MIRA3 TESCAN
SEM MAG: 13.8 kx View fleld: 20.0 ym 5 pm SEM MAG: 18.5 kx View field: 15.0 ym | 2 pm
Det: BSE Date(m/d/y): 05/18/21 Performance in nanospace Det: BSE Date(m/dly): 05/18/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.53 99.44 0.81 N/A
SPS Profile
2000 7 20
i 5%
i 15 |
e 3 o]
o 3
< 1500 1 10 4
@ E —_
5 > E
@ 1000 30 £
o =Z
o i -5 < =
£ 500 1 10¢
-
- ] 158
0 N N S NSNS F NS NN NN AL R, Ty e

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 250 2.75 3.00 3.25 350 3.75 a
Time (hour)
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Undoped YAG Y-6-25 25 mm puck 2 Creep Specimens

Specimen Specimen Dimensions [mm] Mass [g]
Name Height | Width [ Depth | Xi | X» | X S 18
Y-6-25-1 19.34 6.85 6.89 | 2.89 | 11.78 | 2.85 4.025

Y-6-25-2 17.95 6.65 6.65 | 2.55 | 11.06 | 2.51 3.517

SEM HV: 15.0 kV WD: 6.46 mm MAIA3 TESCAN SEMHV:150kV | WD:647mm MAIA3 TESCAN
View field: 6.00 pym SEM MAG: 46.1kx 1pum View field: 6.00 pm SEM MAG: 46.1 Kx 1 pm
Det: BSE Date(m/dly): 05/18/21 Det: BSE Date(m/dly): 05/19/21

Material Properties

Density [g/cc] Density [%] Grain Size [pm] Hardness
4.79 100.00 0.34 N/A
SPS Profile

1600 7 20

1400 j 15 8

T 1200 ] 10

o E £
g 1000 : £ _
© 800 jo =<

8 600 s £

£ @

2 400 j -10 3

200 i 15 &

3 [m]

0 I T T O T T T T T T T T T T T T T I T T T T T T T T T T T T T T T T T T T I T T T T T T ' _20

0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Time (hour)
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Undoped YAG Y-7-40 40 mm puck 6 Creep Specimen

Specimen Specimen Dimensions [mm] Specimen Mass
Name Height | Width | Depth | X, X2 X3 [g]
Y-7-40-1 19.03 6.74 6.74 | 3.05 | 11.98 | 3.44 3.800
Y-7-40-2 20.62 6.11 6.11 | 3.16 | 11.92 | 3.65 4.010
Y-7-40-3 18.99 6.73 6.73 | 3.52 | 11.87 | 2.98 3.770
Y-7-40-4 18.46 6.54 6.54 | 275 | 11.76 | 3.33 3.340
Y-7-40-5 19.22 6.02 6.02 | 3.12 | 11.92 | 3.54 3.640
Y-7-40-6 17.65 5.88 588 | 245 | 11.76 | 2.78 3.210

SEM HV: 15.0 kV WD: 8.00 mm MIRA3 TESCAl - 15.0 kV WD: 8.00 mm
SEM MAG: 13.8kx  View field: 20.0 pm 5 pm SEM MAG: 13.8 kx | View field: 20.0 ym 5 pm
Det: BSE Date(midly): 08/07/21 Performance in nanospace Det: BSE Date(m/dly): 06/07/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.53 99.24 1.17 1470
SPS Profile
2000 50
I =]
— . § 40 S
< 1500 1 30 2
< hd
5 r 122:E
& 1000 E =
g L 4 10 T ==
a o —
£ s jo ¢
A : {1 105
- E £
0 I T T T T T T T T T T T T T T T T T T T T O T [ T T T T T T T T T T T T T A B A A1 _20 é‘j
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75

Time (hour)
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Undoped YAG Y-8-40 40 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm] Specimen Mass
Name Height | Width | Depth | X; X X3 [g]
Y-8-40-1 18.99 6.51 6.51 2.85 | 12.27 | 3.20 3.620

SEM HV: 15.0 kV Wi mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 7.50 mm MIRA3 TESCAN

SEM MAG: 27.7 kx | View field: 10.00 ym 2 pym SEM MAG: 346 kx  View fleld: 8.00 pm 2 pm

Det: BSE Date(m/dly): 08/04/21 Performance in nanospace Det: BSE Date(m/dly): 06/04/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.45 97.55 0.88 1746
SPS Profile
1500 60
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Undoped YAG Y-9-40 40 mm puck 0 Creep Specimens

40 mm
Specimen Specimen Dimensions [mm] Specimen Mass
Name Height | Width [ Depth | X, | Xo | Xs [g]
No Creep Specimens

SEM 15_0‘ i(V M|RA ESCAN SEM HV: 15‘.‘0 kv ;D: 12.41 mm Z MIRA3 TESCAN
SEM MAG: 3.69 kx = View 5.0 ym | 20 pm SEM MAG: 4.46 kx = View field: 620 pm | 10 pm
Det: BSE Date(m/dly): 06/07/21 Performance In nanospace Det: BSE Date(m/dly): 06/07/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.56 99.94 6.12 1823
SPS Profile
1400 50
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Undoped YAG Y-10-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Specimen Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-10-40-1 19.49 6.00 6.00 | 2.69 | 11.79 | 331 3.030
Y-10-40-2 19.64 6.25 6.25 | 342 | 11.72 | 2.78 3.360
Y-10-40-3 20.03 6.50 6.50 | 3.57 | 11.82 | 3.11 3.710

o e - i "
SEM HV: 15.0 kV WD: 7.98 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 7.99 mm MIRA3 TESCAN
SEM MAG: 46.1 kx View field: 6.00 ym 1 um SEM MAG: 46.1 kx View field: 6.00 pm |1 pm
Det: BSE Date(m/dly): 05/17/21 Performance In nanospace Det: BSE Date(m/dly): 05/17/21 | Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.56 100.00 0.28 N/A
SPS Profile
1400 60
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Undoped YAG Y-12-40 40 mm puck 0 Creep Specimen

Specimen Specimen Dimensions [mm] Specimen Mass
Name Height | Width [ Depth | X, | X | X5 [g]
No Creep Specimens

;E.M HV: 15.0 kV 7 .08 lr;m I\;;:IAS TESCAN SEM F‘iV: 15.0 kV WD: 6.06 mm |
View field: 50.0 pm SEM MAG: 5.54 kx 10 pm View field: 50.0 pm SEM MAG: 5.54 kx 10 pm
Det: BSE Date(m/dly): 06/25/21 Det: BSE Date(m/dly): 06/25/21
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.51 98.95 3.07 N/A
SPS Profile
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Undoped YAG

Y-13-40

40 mm puck

5 Creep Specimen

Specimen Specimen Dimensions [mm] Specimen Mass
Name Height | Width | Depth | X Xa X3 [g]
Y-13-40-1 19.06 6.61 6.61 | 2.82 | 12.34 | 3.12 3.730
Y-13-40-2 18.97 6.61 6.61 | 3.26 | 1240 | 2.78 3.700
Y-13-40-3 19.09 6.62 6.62 | 3.56 | 12.30 | 2.40 3.740
Y-13-40-4 19.00 6.63 6.63 | 3.12 | 12.25 | 2.65 3.720
Y-13-40-5 18.95 6.62 6.62 | 3.12 | 1248 | 2.76 3.680

-
Tt e 5 < S e : 5 > e d
 SEM HV: 15.0 kv WD: 7.95 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 7.96 mm MIRA3 TESCAN
SEM MAG: 3.59 kx View field: 77.0 pm | 20 pm SEM MAG: 5.53 kx View field: 50.0 um | 10 pm
Det: BSE Date(m/dly): 06/07/21 Performance in nanospace Det: BSE Date(m/dly): 06/07/21 Performance In nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [um] Hardness
4.46 97.85 7.99 1390
SPS Profile
2000 80
o
1 60 g
2 1500 3
g ; 40 E
& 1000 i 20E=
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Undoped YAG Y-14-40 40 mm puck 4 Creep Specimen

Specimen Specimen Dimensions [mm] Specimen Mass
Name Height | Width | Depth | X Xz X3 [g]
Y-14-40-1 18.98 5.54 555 | 3.14 | 1234 | 2.77 2.600
Y-14-40-2 17.97 6.40 640 | 2.85 | 1242 | 2.23 3.300
Y-14-40-3 18.97 6.26 6.26 | 239 | 12.42 | 3.61 3.300
Y-14-40-4 17.87 6.41 641 | 2.14 | 1230 | 2.82 3.240

G - A
b o A o . o
SEM HV: 15.0 kV WD: 6.51 mm MAIA3 TESCAN SEM HV: 15.0 kV WD: 6.51 mm [ ‘ ' ' MAIA3 TESCAN

View field: 50.0 pm SEM MAG: 5.54 kx \ 10 pm View field: 50.0 pm SEM MAG: 5.54kx 10 pm
Det: BSE Date(m/dly): 06/25/21 ‘ Det: BSE Date(m/dly): 06/25/21

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.54 99.62 3.19 N/A

SPS Profile
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2at% Yb-Doped YAG Y-Yb-1-20 20 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm)] Mass
Name Height | Width | Depth Xi X, X3 [g]
Y-Yb-1-20-1 18.96 6.49 6.56 | 2.69 | 12.08 | 291 | 3.610

: a
SEM Hv::uv WD: 8.00 mm MIRA3 TESCAN SEM HV: 18.0 kV WD: 8.22 mm | MIRA3 TESCAN
SEM MAG: 46.1 kx View field: 6.00 pm 1 pm View field: 4.00 pm Det: BSE 1pm
Det: BSE Date(m/dly): 12/16/20 Performance in nanospace SEM MAG: 69.3 kx | Date(m/dly): 11/17/20 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.56 99.96 0.39 1651
SPS Profile
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2at% Yb-Doped YAG Y-Yb-2-25 25 mm puck 2 Creep Specimens

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X, Xs X3 [g]

Y-Yb-2-25-1 18.98 6.47 6.56 | 2.71 | 12.11 | 2.98 3.630

Y-Yb-2-25-2 | 19.06 6.49 649 | 2.92 | 12.10 | 2.74 3.540

SEM H kv WD: 8.9 mm I IR ESCaN | SEMHV:18.0 kv WD: 8.50 mm MIRA3 TESCAN

SEMMAG: 34.6kx | View field: 8.00 ym | 2 um SEM MAG: 69.2 kx  View field: .00 ym 1 pm

Det: BSE Date(m/dly): 12/17/20 Performance in nanospace Det: BSE Date(m/dly): 12/17/20 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.59 100.00 0.38 1743
SPS Profile
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2at% Yb-Doped YAG Y-Yb-3-40 40 mm puck 4 Creep Specimens

' _l_ .

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-Yb-3-40-1 16.84 6.21 622 | 1.67 | 11.71 | 1.60 2.903
Y-Yb-3-40-2 | 19.63 6.38 637 | 3.02 | 11.73 | 2.94 3.573
Y-Yb-3-40-3 18.71 6.50 6.52 | 2.60 | 11.74 | 2.53 3.535
Y-Yb-3-40-4 | 18.15 6.48 649 | 230 | 11.73 | 2.31 3.412

SEM HV: 18.0 kV WD: 7.84 mm MIRA3 TESCAN SEM HV: 18.0 kV WD: 7.94 mm MIRA3 TESCAN
SEM MAG: 27.7 kx View field: 10.00 ym 2 pm SEM MAG: 34.8 kx View field: 8.00 pm | 2 ym
Det: BSE Date(m/dly): 02/17/21 Performance In nanospace Det: BSE Date(m/dly): 02/17/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.54 99.48 0.48 1701
SPS Profile
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2at% Yb-Doped YAG Y-Yb-4-25 25 mm puck 2 Creep Specimen

25 mm
Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X; X, X3 (g]
Y-Yb-4-25-1 | 20.51 6.83 6.83 | 341 | 11.76 | 3.53 4315
Y-Yb-4-25-2 | 2141 6.87 6.87 | 399 | 11.80 | 391 4.540

5Eh;| \; 15‘?; kv b 1 ‘ MITN . 5.0 kV
View field: 477 pym SEM MAG: 580 x | 100 Hm View field: 75.0 ym SEM MA .69 kx 20 pm
Det: BSE Date(m/dly): 05/19/21 | Det: BSE | Date(m/aly): 05119121
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.57 100.00 4.83 1442
SPS Profile
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2at% Yb-Doped YAG Y-Yb-5-40 40 mm puck 4 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-Yb-5-25-1 18.99 6.49 6.45 | 3.10 | 1240 | 2.71 3.630
Y-Yb-5-25-2 | 18.97 6.49 649 | 3.05 | 12.45 | 2.75 3.600
Y-Yb-5-25-3 18.87 6.48 648 | 2.81 | 1246 | 3.15 3.550
Y-Yb-5-25-4 | 18.97 6.44 644 | 291 | 1244 | 3.10 3.590

SEM HV: 15.0 kV WD: 8.95 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 8.95 mm - MIRA3 TESCAN

SEM MAG: 13.8 kx View field: 20.0 ym 5 pm SEM MAG: 13.8 kx | View field: 200 um 5 pum

Det: BSE Date(m/d/y): 06/08/21 Performance In nanospace Det: BSE Date(m/d/y): 06/08/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.50 98.76 1.38 1701
SPS Profile
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2at% Yb-Doped YAG Y-Yb-6-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-Yb-6-40-1 | 20.04 6.14 6.14 | 327 | 11.74 | 3.29 3.372
Y-Yb-6-40-2 | 19.59 6.14 6.16 | 295 | 11.75 | 3.01 3.318
Y-Yb-6-40-3 18.94 6.15 6.15 | 2.6 11.75 | 2.71 3.203

.

SEM HV: 15.0 KV WD: 8.00 mm MIRA3 TESCAN SEMHUSTEY XD EE S8 i R LEELRY
SEM MAG: 27.7 kx View field: 10.0 ym 2 pm SEM MAG: 27.5 kx View field: 10.1 pm 2 pym
Det: BSE Date(m/diy): 05/18/21 Performance In nanospace Det: BSE Date(m/dly): 05/18/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.52 99.21 0.51 1587
SPS Profile
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2at% Yb-Doped YAG

Y-Yb-7-40 40 mm puck

3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
Y-Yb-7-40-1 18.94 6.47 647 | 3.08 | 12.33 | 2.89 3.510
Y-Yb-7-40-2 19.01 6.50 6.50 | 3.01 | 12.23 | 2.99 3.590
Y-Yb-7-40-3 18.64 6.34 634 | 2.65 | 11.89 | 3.34 3.220

SEM HV: 15.0 kV
SEM MAG: 34.6 kx
Det: BSE

WD: 8.08 mm
View field: 8.00 ym | 2 pm
Date(m/d/y): 06/04/21

Performance in nanospace

SEM HV: 15.0 kV
SEM MAG: 46.1 kx
Det: BSE

MIRA3 TESCAN WD: 7.

View fleld: .00 ym | 1 pm
Date(m/d/y): 06/04/21

Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.47 97.97 0.37 1747
SPS Profile
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2at% Yb-Doped YAG Y-Yb-8-40 40 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
Y-Yb-8-40-1 19.20 6.00 6.01 | 2.54 | 11.81 | 3.10 3.096

SEM HV: 15.0 kV WD: 8.20 mm MIRA3 TESCAN SEML.HV: IS‘U'KV WD: 8.20 mm i MI‘RA3 TESCA;‘J
SEM MAG: 27.7 kx  View fleld: 10.00 pm | 2 pm SEM MAG: 27.7 kx | View field: 10.00 ym | 2 um
Det: BSE Date(m/dly): 05/17/21 Performance in nanospace Det: BSE Date(m/d/y): 05/17/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.56 100.00 0.53 N/A
SPS Profile
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2at% Yb-Doped YAG Y-Yb-9-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-Yb-9-40-1 18.78 5.45 545 | 2.59 | 12.59 | 3.10 2.530
Y-Yb-9-40-2 | 18.57 547 547 | 243 | 1232 | 291 2.510
Y-Yb-9-40-3 18.87 5.47 547 | 275 | 12.40 | 3.00 2.540

SEM HV: 15.0 kV ‘WD: 8.06 MIRA3 TESCAN SEM HV: 15.0 kV WDZ 8.06 mm MIRA3 TESCAN
SEM MAG: 27.7 kx \ View field: 10.0 pm 2 pm SEM MAG: 27.7 kx | View field: 10.0 pym |2 ym
Det: BSE ‘ Date(m/d/y): 06/08/21 Performance in nanospace Det: BSE Date(m/diy): 06/08/21 Performance In nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.53 99.45 0.63 1634
SPS Profile
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2at% Yb-Doped YAG Y-Yb-10-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-Yb-10-40-1 | 19.19 6.48 6.48 | 3.03 | 12.55 | 3.20 3.680
Y-Yb-10-40-2 | 18.94 6.54 6.54 | 2.72 | 12.56 | 3.20 3.620
Y-Yb-10-40-3 | 19.05 6.48 648 | 296 | 3.05 |12.44 3.650

o Y W g o ¥ iy
SEM HV: 15.0 kV WD: 7.91 mm MIRA3 TESCAN SEM HV. 15.0 kV WD: 7.91 mm MIRA3 TESCAN
SEM MAG: 1.85 kx View field: 150 ym | 20 pm SEM MAG: 2.31 kx View fleld: 120 pm 20 pm
Det: BSE Date(m/dly): 07/06/21 Performance in nanospace Det: BSE Date(m/d/y): 07/06/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.54 99.52 15.02 N/A
SPS Profile
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2at% Er-Doped YAG Y-Er-1-40 40 mm puck 2 Creep Specimens

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]

Y-Er-1-40-1 18.05 6.38 639 | 236 | 11.82 | 2.16 3.232

Y-Er-1-40-2 16.92 6.74 6.76 | 2.01 | 10.76 | 2.38 3.383

: o et : SEM TR i MIRA3 Teséhﬁ
SEM HV: 15.0 kV : WD 8.02 mm L_‘_‘__‘ MIRA3 TESCAN SEM MAG: 1.38 Kx View fleld: 200 um 50 pm
SEMD':::;SZ * D:::nf::‘l:;: 2270‘;722 S e IS Det: BSE Date(m/d/y): 03/05/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.47 97.93 24.30 1627
SPS Profile
1600 1 25
1400 s I
— 1 15
© 1200 ] 3
o ] £
= 1000 15 €
E 800 ] ?é’ =
S 600 1°¢
. Q
2 400 ] 5%
200 ] a
0 I N N T N T T T T T T T T TN T T T T T T T T T O T T T T T N T T TN T N T T T T T T TN N T T N O N T T T T N T TN T T O ..t ] _25D

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 2.50 2.75 3.00 3.25 350 3.75
Time (hour)

331



2at% Er-Doped YAG

SEM HV:

Det:

Y-Er-2-40

40 mm puck

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]

Y-Er-2-40-1 19.20 6.56 6.55 | 2.76 | 11.75 | 2.84 3.675

Y-Er-2-40-2 18.95 6.54 6.54 | 2.69 | 11.76 | 2.69 3.599

2 Creep Specimen

15.0 kv WD: 8.00 mm MIRA3 TESCAN .5.D.kV : 8.00mm
SEM MAG: 18.5kx | View field: 15.0 ym | 2 um SEM MAG: 27.7 kx | View field: 10.0 ym | 2 pm
BSE Date(mi/dly): 05/18/21 Performance in nanospace Det: BSE Date(m/dly): 05/18/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.55 99.72 0.50 N/A

1600
1400

Temperature (°C)
Moy 5 E
SS8888

o

SPS Profile

0.00 0.25 0.50 0.75 1.00 1.25

1.50 1.75 2.00 2.25 250 2.75 3.00 3.25 3.50 3.75
Time (hour)
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2at% Er-Doped YAG Y-Er-3-25 25 mm puck 2 Creep Specimen

25 mm
Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X; X, X3 (g]
Y-Er-3-25-1 18.65 6.47 645 | 248 | 11.75 | 2.44 3.460
Y-Er-3-25-2 21.83 6.49 649 | 414 | 11.74 | 4.14 4.109

M HV: WD:645mm | | SEM H\;: 180KV mm
View field: 30.0 ym = SEM MAG:9.24 kx 5pm View field: 20.0 ym  SEM MAG: 13.8 kx |5pm
Det: BSE Date(m/dly): 03/02/21 Det: BSE Date(m/dly): 03/02/21
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.80 100.00 1.28 1520
SPS Profile
1600 1 20 =
] =
_ 1400 1 10 =
T 1200 ] S
@ 1000 10 =
2 ] £
© 800 ] -10 =
“é 600 1 20 g
ﬁ 400 3 %
200 ] 308
0 AT BN NI AU AN NN AN BN AU A A AN N AN AN BN PR AU AN AN BN BN AT AU AU AN N AN BN AN AR AN AN AN NN DU EE AU AN A BN AN AT AU AU AN AN A BN AU AT EEE BN A A _40 g-
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 250 2.75 3.00 3.25 3.50 3.75

Time (hour)
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2at% Er-Doped YAG Y-Er-4-25 25 mm puck 2 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]

Y-Er-4-25-1 18.03 6.79 6.79 | 2.64 | 11.17 | 2.61 3.728

Y-Er-4-25-2 20.44 6.99 6.99 | 3.52 | 11.76 | 3.43 4.478

SEM HV: 15.0 kV WD: 6.90 mm | SEM HV: 15.0 kV WD: 6.86 mm MAIA3 TESCAN
View field: 50.0 ym = SEM MAG: 5.54 kx | 10 uym View field: 50.0 ym = SEM MAG: 554 kx 10 pm
Det: BSE Date(m/dly): 05/19/21 Det: BSE Date(midly): 05/18/21

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.61 100.00 2.83 1476
SPS Profile
1600 . 20 =
] =
1400 10 =
T 1200 S
o 1000 0 =
2 300 10 E
2 E
2 600 90 E
200 30 ¢
0 40 &
a

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 250 2.75 3.00 3.25 3.50 3.75
Time (hour)
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2at% Er-Doped YAG Y-Er-5-25 25 mm puck 0 Creep Specimen

25 mm
Specimen Specimen Dimensions [mm] Mass
Name Height | Width [ Depth | X, | X | X5 [g]

No Creep Specimens

SEM HV: 15.0 kV WD: 5.99 mm MAIA3 TESCAN ~ SEM HV: 15.0 KV WD: 5.99 mm | MAIA3 TESCAN

View field: 8.00 pm SEM MAG: 346 kx |2pm View field: 6.00 pm SEMMAG: 461 kx |1 [,ll"ﬂ
Det: BSE Date(m/dly): 05/19/21 | Det: BSE Date(mi/dly): 05/18/21
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
N/A N/A 0.33 N/A
SPS Profile

1600 20 =
=
1400 ] 103
O 1200 3
T 1000 10 =
2 E
v 800 i -10 =
gEJL 600 i 2%
ﬁ 400 %
200 ] 302
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0.00 0.25 050 0.75 100 1.25 150 1.75 2.00 2.25 250 2.75 3.00 3.25 3.50 3.75
Time (hour)
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2at% Er-Doped YAG Y-Er-6-25 25 mm puck 1 Creep Specimen

[ | | ] ]
25 mm

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
Y-Er-6-25-1 18.07 6.89 6.87 | 2.53 | 11.06 | 2.60 3.840

SEM 0 kV WD: 6.01 mm MAIA3 TESCAN SEM HV: 15.0 kV WD: 6.01 mm MAIA3 TESC;M-
View field: 7.83 pm I SEM MAG: 35.3 kx |2 pm View field: 8.00 ym SEM MAG: 346 kx |2um
Det: BSE | Date(m/dly): 05/19/21 Det: BSE Date(m/dly): 05/19/21 |
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.58 100.00 0.47 N/A
SPS Profile
1600 20 =
-
1400 {103
O 1200 9
o 1000 10 =
2 £
© 800 1 -10 £
9 600 I 20c¢
£ 400 2
" 200 -30 g
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Time (hour)
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2at% Er-Doped YAG Y-Er-7-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-Er-7-40-1 19.12 5.98 598 | 2.78 | 11.74 | 2.76 3.035
Y-Er-7-40-2 19.33 5.99 599 | 2.88 | 11.86 | 2.90 3.060
Y-Er-7-40-3 18.69 6.14 6.14 | 2.72 | 11.58 | 2.73 3.030

SEM HV: 15.0 kV WD: 7.93 mm MIRA3 TESCAN WAD23T EAAIM mm ke.Y :.aw

SEM MAG: 13.8 kx View field: 20.0 ym 5 pm my2 my 0.08 :blalt walV xA 8.2 :2AM M32
Det: BSE Date(m/dly): 05/18/21 Performance in nanospace 9osqeonsn ni saonsmohed A8 M20 :(y\b\m)etsd 328 19d
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness

4.53 99.34 1.87 1436
SPS Profile

1600 80 _
1400 <
L 1200 ] 9%
2 1000 ] 40F§
@ 800 E=
a 600 ] 205 =
§ 400 g
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O P o e B e e e SRS R 1,2
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2at% Er-Doped YAG Y-Er-8-40 40 mm puck 4 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
Y-Er-8-40-1 18.87 6.06 6.06 | 2.67 | 11.75 | 2.67 3.087
Y-Er-8-40-2 19.21 6.03 6.04 | 281 | 11.75 | 2.76 3.119
Y-Er-8-40-3 18.29 6.04 6.04 | 236 | 11.77 | 2.31 2.965
Y-Er-8-40-4 18.20 6.00 6.06 | 2.34 | 11.80 | 2.39 2.938

SEM P:N: 15.0 kV WD: 8.00 m=m'~‘ M MIRA3 TEE&AN SEM HV: 15.0 kV WD é.UD |;1m - MIRA;‘"I"E;CAN
SEM MAG: 27.7 kx  View fleld: 10.00 ym 2 pm SEM MAG: 46.1 kx View field: 6.00 pym 1 um
Det: BSE Date(m/dly): 05/18/21 Performance In nanospace Det: BSE Date(m/d/y): 05/18/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.55 99.84 0.37 N/A
SPS Profile
1600 ¢ 5 60
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2at% Er-Doped YAG Y-Er-9-25 25 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
Y-Er-9-40-1 18.07 6.89 6.87 | 2.53 | 11.06 | 2.60 3.840
Y-Er-9-40-2 18.57 6.54 6.54 | 2.78 | 11.32 | 2.65 3.640
Y-Er-9-40-3 19.02 6.41 641 | 275 | 12.11 | 3.10 3.510

SEM HV: kv 0 m | Mi SCAN SEM HV: 15.0 kV WD: 8.06 mm MIRA3 TESCAN

.48 -
SEM MAG: 34.6 kx View field: 8.00 pm | 2 pm SEM MAG: 34.6 kx View field: 8.00 ym | 2 pm

Det: BSE Date(m/d/y): 06/04/21 Performance in nanospace Det: BSE Date(m/dly): 06/04/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.51 98.94 0.45 1742
SPS Profile
1400 80
=
1200 - L 60 =
& . =
. 1000 — | 20 S
S 800 A o3
= - 20 'E‘
@& 600 A £
o L o =
£ 400 - b=
2 L o0 £
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 225 250 275 3.00 3.25 3.50 3.75 g

Time (hour)
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2at% Er-Doped YAG Y-Er-10-40 40 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X, Xs X3 [g]
Y-Er-10-40-1 19.14 6.33 6.33 | 2.79 | 12.31 | 3.12 3.460

]

b — -
SEM HV: 15.0 kV 'WD: 9.02 mm MIRA3 TESCAI SEM HV: 15.0 kV WD: 9.00 mm [ [ MIRA3 TESCAN
T ———————

SEM MAG: 6.92 kx View field: 40.0 pm 10 ym SEM MAG: 11.1 kx View field: 25.0 pym 5 um
Det: BSE Date(m/d/y): 07/14i21 Performance in nanospace Det: BSE Date{m/d/y): 07/14/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
4.52 99.21 2.72 N/A
SPS Profile
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LuAG L-1-20 20 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm]
Name Height | Width | Depth | X X2 X3
L-1-20-1 18.82 6.56 6.53 | 2.58 | 12.13 | 2.88

i © g [

SEM HV:_IE.G ['\" Wi): 8.81mm : S‘EM HV: 18.0 kV : WD: 9.03 mm : MIRHAS TESCAN
SEM MAG: 1.38 kx  View field: 201 um 50 ym e e FILI L
Det: BSE Date(m/d/y): 12/17/20 Performance in nanospace Det: BSE Date(m/dly): 12/17/20 Performance In nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] | Hardness
6.57 97.70 10.78 1459
SPS Profile
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LuAG L-2-25 25 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-2-25-1 18.93 5.62 562 | 278 | 11.92 | 2.67 3.87

‘ : : .;.:f..»;,..
SEM HV: 15.0 kV WD: 801 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 8.02 mm | MIRA3 TESCAN
SEM MAG: 257 kx | View field: 10.8 pm | 2 pm SEM MAG: 346 kx _ View field: 8.00 ym 2 pm
Det: BSE Date(m/dly): 01/15/21 Performance in nanospace Det: BSE -Date(mldly): 01/15/21 Performance In nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] | Hardness
6.56 97.40 0.57 1630
SPS Profile
2000 20
I
i 15 ¢
1500 o3

O i 10 =
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s 1000 = =
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o 10 ¢

o £

Q 1 5 o

£ 500 @

A ] 10 2

3 a
0 L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L _15
0 0.25 0.5 0.75 1 1.25 1.5 1.75

Time (hour)

342



LuAG L-3-40 40 mm puck 5 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X, Xs X3 [g]
L-3-40-1 19.69 6.39 639 | 3.10 | 11.73 | 3.15 5.109

L-3-40-2 19.89 6.33 634 | 321 | 11.71 | 3.09 5.081
L-3-40-3 19.77 6.51 6.52 | 3.01 | 11.75 | 3.12 5.360
L-3-40-4 19.71 6.40 640 | 3.10 | 11.75 | 3.01 5.140
L-3-40-5 19.66 6.43 643 | 3.13 | 11.87 | 2.02 5.050

5.0 kv ‘ WD: 9.84 mm ; MIRA3 ‘;-ESCAN SEM HV: 15m WD: 8.64 mm MIRA3 TESCAN
SEM MAG: 3.69 kx ‘ View field: 75.0 ym 20 ym SEM MAG: 5.54 kx View field: §50.0 ym 10 ym
Det: BSE i Date(m/d/y): 03/05/21 Performance in nanospace Det: BSE Date(m/dly): 03/05/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] | Hardness
6.47 96.20 4.90 1574
SPS Profile
2000 60
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LuAG L-4-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-4-40-1 19.13 6.25 624 | 2.89 | 11.93 | 2.82 4.83
L-4-40-2 19.79 6.24 6.25 | 3.19 | 11.97 | 3.25 4.99
L-4-40-3 17.5 6.37 6.37 | 2.81 | 1045 | 2.81 4.61

SEM HV: 15.0 kv WD: 8.49 mm MIRA3 TESCAN SEM HV: 15.0 kv A T MIRA3 TESCAN
SEM MAG: 34.6 kx View field: 8.00 ym | 2 ym SEM MAG: 27.7 kx | View fleld: 10.00 pm 2 pm
Det: BSE Date(m/d/y): 01/19/21 Performance in nanospace Det: BSE Date(m/d/y): 01/19/21 Performance In nanespace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] | Hardness
6.54 97.23 0.95 1745
SPS Profile
2000 7 30 <
4 1]
] S
T 1500 10 =
v 110 £
2 1000 ] =Z
o 10 5+
a ] E
g 500 {1 10 &
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LuAG L-5-40 40 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-5-40-1 19.05 6.49 648 | 2.78 | 11.75 | 2.78 5.20

SEM HV: 15.0 kV WD: 8.01 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 8.02 mm | MIRA3 TESCAN
SEM MAG: 13.8 kx View field: 20.0 pm | 5 um SEM MAG: 18.5 kx View field: 15.0 ym 2 pm
Det: BSE Date(m/dly): 05/18/21 Performance in nanospace Det: BSE Date(m/dly): 05/18/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] | Hardness
6.57 97.66 0.41 1681
1600 SPS Profile 30
®
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LuAG L-6-40 40 mm puck 3 Creep Specimen

40 mm
Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-6-40-1 20.02 6.24 6.24 | 326 | 11.73 | 3.24 5.08
L-6-40-2 16.96 6.09 6.09 | 2.11 | 10.74 | 2.25 4.09
L-6-40-3 16.75 6.24 6.24 | 2.26 | 10.83 | 2.18 4.24

e =
Det: BSE : Date(mldly); D!;D‘.’M d
Material Properties
Density [g/cc] Density [%] Grain Size [pm] | Hardness
6.60 98.11 0.55 1672
SPS Profile
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LuAG L-7-40 40 mm puck 2 Creep Specimen

40 mm
Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth X Xs X3 [g]
L-7-40-1 18.59 6.3 6.23 | 253 | 11.85 | 2.44 4.71
L-7-40-2 19.95 6.31 6.31 321 | 11.75 | 3.25 5.17

X

SEM HV: 15.0 kV WD: 5.99 mm MAIA3 TESCAN SEM HV: 15.0 kV WD: 5.99 mm MAIA3 TESCAN

View field: 10.00 um = SEM MAG: 27.7 kx | 2 pm View field: 8.00 um SEMMAG: 346 kx 2pum
Det: BSE Date(m/d/y): 05/19/21 Det: BSE Date(m/d/y): 05/19/21
Material Properties
Density [g/cc] Density [%] Grain Size [pm] | Hardness
6.65 98.86 0.44 1328
SPS Profile
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LuAG

L-8-25

25 mm puck

[ | | ] | ]
25 mm

1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-8-25-1 19.40 6.87 6.85 | 292 | 11.76 | 2.94 5.97

SEM HV: 15.0 kV

View field: 10.00 pm

Det: BSE

WD: 5.90 mm

Date(m/dly): 05/20/21

Lol

SEM MAG: 27.7 kx | 2 um

MAIA3 TESCAN SEM HV: 15.0 kV

Det: BSE

WD: 5.91 mm
View field: 10.00 pm SEM MAG: 27.7 kx |2 pm
Date(m/dly): 05/20/21

Lol

MAIA3 TESCAN

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.57 97.64 0.50 N/A
SPS Profile
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LuAG L-9-25 25 mm puck 0 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width [ Depth | X, | X | X5 [g]
No Creep Specimens

‘o b

SEM HV: 15.0 kV WD: 8.26 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 8.27 mm ‘ MIRA3 TESCAN

SEM MAG: 34.6 kx | View field: 8.00 ym |2 ym SEM MAG: 34.6 kx | View field: 8.00 ym |2 pm
Det. BSE Date(m/dly): 06/04/21 Perfermance in nanospace Det: BSE Date(m/d/y): 06/04/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.49 96.48 0.32 1811
SPS Profile
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LuAG L-10-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
L-10-40-1 19.13 5.98 598 | 2.50 | 1238 | 3.50 4.460
L-10-40-2 18.28 6.38 6.38 | 2.50 | 12.50 | 2.60 4.890
L-10-40-3 18.98 6.37 637 | 2.81 | 1234 | 3.20 5.010

SE‘M HV: 15.0 kV WD: 8.99 mm MIRA3 TESCAN
SEM MAG: 34.6 kx View field: 8.01 ym | 2 pm

SEM HV: 15.0 kV ‘ *WD: 7.51 mm MIRA3 TESCAN

SEM MAG: 38.2 kx ‘ View field: 7.24 ym | 2 pm

Det: BSE Date(m/dly): 06/07/21 | Performance in nanospace Det: BSE ‘Dale(mldly]: 06/07/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.65 98.84 0.54 N/A
SPS Profile
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LuAG L-11-40 40 mm puck 4 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
L-11-40-1 18.73 6.64 6.64 | 2.77 | 1243 | 2.98 5.380
L-11-40-2 19.00 6.56 6.56 | 3.04 | 12.39 | 2.86 5.350
L-11-40-3 19.02 6.66 6.67 | 3.15 | 1235 | 2.79 5.540
L-11-40-4 18.64 6.38 638 | 2.57 | 12.24 | 2.81 4.990

SEM HV: 15.0 kV WD: 7.79 mm MIRA3 TESCAN SEM HV: 15.0 kV WD: 7.79 mm MIRA3 TESCAN

SEM MAG: 52.8 kx View field: 524 pym |1 pm SEM MAG: 554 kx  View fleld: 5.00 pm 1 pm
Det: BSE Date(m/dly): 06/04/21 Performance in nanospace Det: BSE Date({m/d/y): 06/04/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.57 97.62 0.55 N/A
SPS Profile

1400 60

1200 50 3

[5) 40 oz

s 1000 =

_E__ 30 g
E 800 20 = g
g 600 10 § —

E 400 0 g

@ 10 ©

200 20 .2

(]

W
o

0
0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Time (hour)
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LuAG

L-12-40

40 mm puck

3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth

L-12-40-1 18.91 6.47 6.47

L-12-40-2 19.10 6.47 6.47

L-12-40-3 19.01 6.41 6.47

WD: 8.02 mm

MIRA3 TESCAN

SEM MAG: 46.1 kx View field: 6.00 pm 1 pm
Det: BSE

Temperature (°C)

1400
1200
1000
800
600
400
200

Date(midly): 06/07/21

Performance In nanospace

[
SEM HV: 15.0 kV WD: 8.03 mm
SEM MAG: 46.1kx  View field: 6.00 pym 1 um
Det: BSE Date(m/d/y): 06/07/21

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.50 96.55 0.32 1515
SPS Profile
0.00 0.25 0.50 0.75 1.00 1.25

Time (hour)
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LuAG L-13-40 40 mm puck 2 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | X X2 X3 [g]
L-13-40-1 17.69 6.13 6.13 | 2.55 | 1242 | 2.15 4.590
L-13-40-2 17.67 6.13 6.13 | 2.52 | 1240 | 2.22 4.480

1 & ¢t 8
i '_; ?,\
SEM HV: 15.0 kV WD: 8.00 mm MIRA3 TESCAN

SEM MAG: 34.6 kx View field: 8.00 pm 2 pm

x = : .
SEM HV: 15.0 kV WD: 8.00 mm | MIRA3 TESCAN

SEM MAG: 34.6 kx View field: 8.00 ym 2 pm

Det: BSE Date(m/dly): 06/07/21 Performance in nanospace Det: BSE Date(m/dly): 06/07/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.58 97.78 0.45 1839
1600 SPS Profile 0
1400 i 60 =
T 1200 10 %
'@ 1000 140 4
g 000 i 10 ¢
2 400 E g
200 i 10 &
020%L
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time (hour)
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LuAG L-14-25 25 mm puck 0 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width [ Depth | X, | X | X5 [g]
No Creep Specimens

SEM HV: 5“0 kv i WD: 6.64 mm MAIA3 TESCAN SEM HV: 15.0 kV WD: 6.64 mm . MAIA3 TESCAN
View field: 8.00 ym  SEM MAG: 34.6 kx |2 pm View field: 6.00 pm SEM MAG: 46.1kx |1pm
Det: BSE Date(midiy): 06/25/21 Det: BSE Date(mi/d/y): 08/25/21
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.66 98.99 0.34 N/A
SPS Profile
1600 25
] o
1400 1 §
—_ 41 15
© 1200 ] 3
o ] £
2 1000 1°>
§ 800 | %2
S 600 17 ¢
- Q
e 40 ] 155
200 ] _%
0 I T T N T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T I I T ' ] _25D

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 2.50 2.75 3.00 3.25 350 3.75
Time (hour)
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LuAG L-15-40 40 mm puck 0 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width [ Depth | X, | X | X5 [g]
No Creep Specimens

SEM HV: 15.0 kV WD: 19.24 mm | MIRA3 TESCAN SEM HV: 150KV | WD: 19.24 mm MIRA3 TESCAN
SEM MAG: 213 x View field: 1.30 mm 200 pm SEM MAG: 213 x View field: 1.30 mm 200 ym
Det: BSE Date(m/dly): 07/08/21 Performance in nanospace Det: BSE Date(m/d/y): 07/06/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
N/A N/A N/A N/A
SPS Profile
1600 . 70

] o

1400 ] 3

< 1200 10 ]

L ] =
2 1000 130 £ _
§ 800 ] £%2

8 600 71102

£ L ] C

& 400 E i 105

200 172

0 :||||I||||I||||I||||I||||I||||I||||I||||I||||I||||I||||I||||I||||I||||I||||- _300

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Time (hour)
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LuAG L-16-25 25 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-16-25-1 18.66 6.46 647 | 2.52 | 12.23 | 3.04 5.190

SEM HV: 15.0 kV WD: 5.92 mm MAIA3 TESCAN SEM HV: 15.0 kV WD: 5.92 mm MAIA3 TESCAN

View fleld: 10.00 pm SEM MAG: 27.7 kx |2 um View field: 8.00 pm SEM MAG: 346 kx |2 um
Det: BSE Date(m/d/y): 06/25/21 Det: BSE Date(m/dly): 08/25/21

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.57 97.64 0.48 N/A
SPS Profile

Temperature (°C)

0 I T O TN T T T S T T T T T T T T T I N T T T N T T I T I T T T I T T I T T T I T T T T N T T I I A IE _25
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 250 2.75 3.00 3.25 350 3.75
Time (hour)
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LuAG

L-17-40 40 mm puck

3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth | Xy X, X3 [g]
L-17-40-1 20.28 6.24 6.24 | 347 | 11.99 | 3.36 5.220
L-17-40-2 20.16 6.25 6.25 | 3.50 | 12.21 | 3.23 5.150
L-17-40-3 18.47 6.13 6.13 | 2.49 | 12.00 | 2.61 4.530

SEM HV: 15.0 kV

SEM MAG: 23.1 kx

Det: BSE

WD: 8.56 mm
View field: 12.0 pm
Date(m/d/y): 07/06/21

.

MIRA3 TESCAN

-

SEM HV: 15.0 KV
SEM MAG: 23.1 kx
Det: BSE

MIRA3 TESCAN WD: 8.56 mm

Lol

2 ym View field: 12.0 ym | 2 pm

Performance in nanospace Date(m/d/y): 07/06/21 Performance in nanospace

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.58 97.77 0.68 N/A
SPS Profile
1600 1 80
4 =]
1400 ] 8
T 1200 1 3
0 1000 ] a0 E
S ] e
& 800 ] =2
& 600 1202
IS ] g
2 400 1o =
200 ] a
a
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Time (hour)
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LuAG L-18-40 40 mm puck 3 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-18-40-1 19.45 6.47 647 | 329 | 12.38 | 3.08 5.360
L-18-40-2 19.41 6.48 6.48 | 340 | 12.36 | 2.96 5.390
L-18-40-3 19.35 6.48 648 | 3.22 | 12.15 | 2.75 5.030

) 5.EM H .0 kV WD: 5.96 mm MAIA3 TESCAN SEMVHV 15.0 kV WD: 75 95 mm | MAIA3 TESCAN
View field: 6.00 pm SEM MAG: 46.1 kx 1pm View field: 6.00 pm SEM MAG: 46.1 kx |1 pm
Det: BSE Date(m/d/y): 06/25/21 Det. BSE Date(m/d/y): 06/25/21

Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.49 96.43 0.42 N/A
SPS Profile

1600 45 -

1400 135 S

© 1200 58

< £
5 1000 {15 £
™ 800 Tz
E J 5 g it

o 600 £

200 F ] -15 %
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Time (hour)
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LuAG L-19-40 40 mm puck 1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-19-40-1 18.90 6.46 646 | 332 | 1241 | 2.94 4.760

.

SEM HV: 15.0 kV WD: 8.92 mm | MAIA3 TESCAN SEM HV: 15.0 kV WD: 8.91 mm | MAIA3 TESCAN
View field: 15.0 ym SEM MAG: 18.5kx 2pum View field: 26.6 ym SEM MAG: 10.4kx 5pum
Det: BSE Date(m/dly): 06/25/21 Det: BSE Date(m/d/y): 06/25/21

Material Properties

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.25 250 2.75 3.00 3.25 350 3.75

Time (hour)
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Density [g/cc] Density [%] Grain Size [pm] Hardness
6.68 99.23 0.84 N/A
SPS Profile
1600 30
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LuAG

L-20-40

25 mm puck

1 Creep Specimen

Specimen Specimen Dimensions [mm] Mass
Name Height | Width | Depth Xi X, X3 [g]
L-20-25-1 17.78 5.84 5.84 | 221 | 1235 ] 249 4.020

[

L W

SEM HV: 15.I‘)“‘kv WD: 8.99 mm MIR‘J:J TESCAN SEM HV: 15_6 kV ’V\.:J: 8.99 mm MIRA3 TESCAN
SEM MAG: 12.5 kx View field: 22.1 ym 5 pm SEM MAG: 13.8 kx View field: 200 ym 5 pm
Det: BSE Date(m/dly): 07/14/21 Performance in nanospace Det: BSE Date(m/d/y): 07/14/21 Performance in nanospace
Material Properties
Density [g/cc] Density [%] Grain Size [pm] Hardness
6.66 98.99 1.06 N/A
SPS Profile
2000 80

o

4 60 8

& 1500 3

1 a0 =
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Appendix D: Specimen Preparation Procedures for Microscopy

The procedures described herein are required to prepare a material specimen for microscopic

examination. These procedures describe mounting and polishing steps, which could affect the

material dimensions and associated properties, and may not be appropriate for specimens prior to

creep testing. However, pre-creep test examination can often be accomplished using excess

material cut away from the creep test samples, such as the rounded edges of a puck following

initial fabrication. These procedures may need to be adjusted accordingly if they are applied to

test specimens prior to creep testing.

Specimen Mounting Procedures

Obtain an appropriately sized sample mounting mold and apply a quick-release coating to
the inner surface to allow the epoxy puck to be removed without sticking. Liquid Teflon
Mold Release from Allied High Tech Products was used.

Place the specimen in the center of the mold.

Prepare the epoxy mixture by mixing the appropriate ratio of epoxy and hardener in a
separate container. A standard laboratory scale was used to determine the appropriate
amounts based on the instructed ratio by weight. Buehler EpoThin 2 Epoxy Resin and
Buehler EpoThin 2 Epoxy Hardener were used with a 2:1 ratio by weight.

Both substances are thoroughly mixed by hand and are poured into the mold containing
the sample.

The mold containing the sample and resin mixture is placed in a Struers CitoVac vacuum
chamber, set at 10 psi for 10 minutes in order to remove any air bubbles from the epoxy.

The mold is left to cure in air overnight.
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Figure D-1: Struers CitoVac vacuum chamber.

Specimen Polishing Procedures

The final epoxy mounts containing the samples are removed from the molds, and polished
based on the following procedures. All abrasive and fine polishing pads as well as all diamond
particle water-based suspensions were obtained from Allied High-Tech Products. Polishing steps
were tailored differently for each specimen depending on the depth of scratches. Typical
polishing steps are listed in Table D-1. After each step, the mounted specimen was rinsed
thoroughly with water, dried with pressurized nitrogen gas, and was examined under an optical
microscope to ensure scratches were become smaller and smaller. The final polished specimen
was also placed in an ultrasonic bath of isopropanol for 30 s to remove any remaining debris, and

was dried again with nitrogen gas.
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Table D-1: Typical polishing steps

Step Abrasive/ Particle | Time | Spin | Pressure
Polishing Size (min) | Speed (Ibs)
Pad (um) (RPM)
| SiC Abrasive - 20 300 10
2 Orange Label 45 5 250 10
3 Orange Label 15 5 200 8
4 Orange Label 9 5 200 8
5 White Label 3 5 200 8
6 White Label 1 5 200 8
7 Red Final C 0.25 3-5 150 6
8 Red Final C 0.05 3-5 150 6

The polishing pads are visualized along with a brief

description in Figure D-2. The Allied Silicon Carbide abrasive

discs are designed for metallographic applications to coarse and

fine grind a wide variety of materials. They feature superior

mineral grading, a unique resin top coat, and a latex additive in the

paper. The Orange Label polishing pads are dense, uniquely

woven nylon pads and are extremely durable for use with diamond

lubricants (15-3 micron). They produce excellent flatness and

provides a very high material removal rate on a wide variety of

materials. They are designed for intermediate polishing of

refractory metals, glass, ceramics, coatings, and composites.

White Label polishing pads are very dense, woven, low-nap silk

for use with diamond lubricants (6-0.25 micron). They provide

excellent flatness and edge retention prior to final polishing on a

Silicon Carbide Abrasive Pad
Removes epoxy and flattens
surface

Orange Label Polishing Pad
Used with 45 micron
diamond suspension

Orange Label Polishing Pad
Used with 15 micron
diamond suspension

Orange Label Palishing Pad
Used with 9 micron
diamond suspension

White Label Polishing Pad
Used with 3 micron
diamond suspension

White Label Polishing Pad
Used with 1 micron
diamond suspension

Red Final C Polishing Pad
Used with 0.5 micron
diamond suspension

Red Final C Polishing Pad
Used with 0.25 micron
diamond suspension

Figure D-2: Various polishing pads

used for polishing samples for

microscopy.

wide variety of materials. Finally, the Red Final C polishing pads are dense, medium-nap

synthetic silk flock for use with diamond lubricants (3-0.25 micron) to provide an excellent final
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polish on a wide variety of materials.

After all polishing was completed, the sample was sputter coated with a Carbon coating to
approximately 10 nm thickness using an EMS150T ES sputter coater, model #Q150T (Quorum
Technologies Ltd.), to prevent surface charging during SEM and EBSD analysis. Prior to
analysis in the SEM, Carbon tape is placed in contact with one edge of the specimen and

wrapped around the epoxy puck to reduce charging effects further during analysis.
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Appendix E: Creep Test Procedures

1) Load Test Specimen into Universal Material Testing Machine

a)
b)
c)
d)
€)
f)
g)
h)
i)
)
k)

D

Ensure Furnace is aligned correctly in all directions and appears level

Ensure Furnace inserts are connected to furnace to allow room for susceptor to fit
Separately on a flat horizontal surface attach YAG rod holders to steel alignment rod
Tighten YAG rod holder screws

Load YAG rod holders attached to alignment rod into hydraulic wedge grips

Ensure alignment rod is vertical using a level

Adjust lower grip height, ensuring that both YAG rod holders are 1 inch into each grip
Close upper grip

Switch manual control mode to “Force Control” and set force to “0”

Close lower grip

Switch manual control mode to “Displacement Control”

Loosen YAG rod holder screws on both the upper and lower holders

m) Manually lower the actuator and remove the alignment rod, leaving the YAG rod holders

p)

in the grips

Insert YAG rods into YAG rod holders, ensuring copper foil is placed beneath each YAG
rod and surrounding the lower portion of each YAG rod

Gently tighten the YAG rod holder screws to grip the YAG rods (only finger tight)
Manually lower or raise the upper crosshead to the desired position (this will always
change based on the specimen height and the upper YAG rod length).

1) The upper crosshead should be high enough, along with the furnace, so that the lower

Y AG rod holder can never contact the furnace. In order to ensure this setup, with the
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q)

t)

crosshead in a high position, raise the lower grip with the YAG rod holder and YAG
rod inserted to its highest position. Position the furnace so that it sits just above the
Y AG rod holder by several millimeters. Then lower the upper crosshead to the
desired position above the furnace based on the length of the YAG rod and specimen.
Manually lower the lower grip actuator to allow approximately 1 inch gap between the
ends of each YAG rod
Loosely close furnace around YAG rods and ensure that the YAG rods are centered
inside the circular YAG rod openings in the insulation. If not centered, then the furnace
location must be adjusted
Insert specimen onto the lower YAG rod. There should only be a couple millimeters
between the top of the specimen and the upper YAG rod.
Using the specimen alignment tool, center the specimen on the lower YAG rod with
extensometer grooves facing forward
Zero out the force by pressing the auto offset button in the Station Signals window
While the alignment tool is closed around the specimen and YAG rods, switch to force
control in the manual command window, and apply “-40 1bf” to the specimen. This will
ensure that the specimen is held tightly between each YAG rod
Remove the alignment fixture and ensure specimen appears fully straight and aligned
Loosen YAG rod holder screws so that the YAG rods are no longer clamped
Check extensometer alignment:
1) Load extensometer into the extensometer holder
i1) Place extensometer rod ends into specimen grooves

ii1) Ensure Extensometer is not touching any part of the holder edges

366



2)

iv) Loosely close one side of the furnace ensuring the extensometer rods are inside the
small openings in the front furnace insulation. If not the specimen must be raised or
lowered accordingly, and test setup must be restarted.

v) Remove extensometer from holder and set aside

z) Construct the alumina susceptor around the specimen, ensuring that the specimen and
Y AG rods are not bumped out of place

aa) Place extensometer back into the holder and ensure the rod tips are in contact with the
specimen grooves

bb) Check that the strain reading is somewhat close to zero, ensuring that rods are in contact
with the specimen grooves

cc) Screw on the extensometer cooling attachment

dd) With the susceptor held up by the right side furnace insulation, close the left side of the
furnace, and lock the furnace halves with the cross bar in the back

ee) Ensure that YAG rods are not touching the furnace insulation and that the extensometer
rods are also not touching the furnace insulation or the forward metal portion of the
extensometer mount

ff) Place additional soft insulation over the upper part of the furnace

gg) Turn on the air flowing to both furnace sides and to the extensometer cooling attachment

hh) Turn on the chiller and ensure that cold water is flowing to the grips

Initiate Creep Test Procedure

a) Switch manual control to “Force Control”, and adjust force to “-100 1bf”

b) Leave manual command in “Force Control”
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3)

2

h)

Zero out the strain measurement

Open appropriate procedure

Click “New Specimen” and type the specimen name

Lock procedure

Ensure that limits are set for upper and lower displacement values. These should be
approximately 10 mm above and below the current displacement value. Set these limits
as program stop interlocks in the “Detectors” window.

Click “Run Test”

Creep Test Procedure

a)
b)

Force is maintained at -100 lbf

Right and left temperature settings are increased to the desired temperature set point at
30°C/min

Once the desired furnace temperature settings are achieved, the specimen is held at that
temperature for 30 minutes to ensure that the specimen reaches uniform temperature
After temperature soak for 30 minutes, the desired creep load is applied at 10 kN/min
The specimen will remain under the desired creep load for 5 hours

After 5 hours the load is removed back down to -100 Ibf, and the temperature is reset to

room temperature allowing the furnace and specimen to cool slowly
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Appendix F: Effects of Notch Size on the Creep Behavior of YAG and LuAG

Creep specimens were designed with two parallel, horizontal notches machined into one side
in order to allow the tips of the extensometer rods to maintain contact with the specimen during
creep without slipping on the smooth surface. Initially, large rectangular notches were machined
into creep specimens in order to create the most reliable and consistent connection between the
extensometer rods and the specimen. However, it was hypothesized that the presence of these
large, rectangular notches may affect the state of stress within the specimens to such a degree
that the creep behavior could change.

In order to test this hypothesis, a second notch style was designed and implemented on the
remaining creep specimens. This iteration of the extensometer rod contact joint was smaller and
triangular in shape, and represented the smallest indentation within the specimen, which still
allowed for consistent contact between the specimen and the extensometer rods. Diagrams and
dimensions of both notches are included in Section 5.1. Preliminary creep tests were performed
at 1300°C in air using specimens with each notch design in order to determine the potential
effects on the creep behavior. Creep tests were accomplished using both YAG and LuAG
specimens. Creep results are displayed here in the same format as they were in Sections 6 and 7.
Figure F-1 shows a comparison of the creep strain vs. time curves for undoped, polycrystalline

Y AG specimens with small and large notches.
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Figure F-1: The creep strain vs. time curves for undoped, polycrystalline YAG specimens
with two different notch sizes at 1300°C in air.

There is a significant difference in the strain vs. time curves for YAG specimens with small
and large notches. Although the grain sizes of each sample set are not identical, they are close
enough to suggest that the difference in notch design is impacting these strain results. The
steady-state creep strain rates were determined from the strain vs. time curves, and are
summarized in Table F-1 for YAG specimens with large notches, small notches, and no notches.

The specimens with no notches were previously tested by Armani et al. and included here for

comparison.
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Table F-1: Summary of creep results for undoped, polycrystalline YAG with comparable grain
sizes and different notch sizes at 1300°C in air. Results for specimens with grain size of 0.92 um
from Armani et al. (2011) have no notches and are included for comparison [28], [29].

. o Creep Total Steady-Sta?e
Specimen | Grain Size | Notch Accumulated Creep Strain
Name [pm] Size [Sl\t/;';zs] Strain after 5 hrs Rate
[%] [s”']
Y-3-40-1 0.881 Large 50 1.01 4.51x107
Y-3-40-2 0.881 Large 100 1.73 7.14x 107
Y-5-40-1 0.809 Large 150 2.60 1.08x 106
Y-7-40-1 1.165 Small 50 0.31 9.19x 10
Y-7-40-2 1.165 Small 100 0.92 3.32x 107
Y-7-40-3 1.165 Small 150 0.95 3.42x 107
Armani-1* 0.92 None 50 Not Available** 1.09 x 107
Armani-2* 0.92 None 100 0.81 3.94x 107
Armani-3* 0.92 None 150 Not Available** 5.69 x 107
Armani-4* 0.92 None 200 1.33 6.91 x 107

*Results obtained by Armani et al. and referenced in this work for comparison [28], [29].
**Creep tests ended early, and strain accumulation after 5 hrs is unknown.

Figure F-2 shows the three sets of steady-state creep strain rates plotted vs. stress on a log-
log scale. While specimens with small notches behave very similarly to specimens with no
notches, the specimens with large notches show higher strain rates and a flatter slope, revealing a

different sensitivity to the applied stress during creep.
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Figure F-2: The steady-state creep strain rates of YAG specimens with comparable grain
sizes and different notch sizes at 1300°C in air. Results for specimens with grain size of (.92
pm from Armani et al. (2010) have no notches and are included for comparison [28], [29].

This analysis was accomplished for LuAG specimens with two different notch sizes as well.
Specimens with large notches came from two SPS billets with similar grain sizes. Two
specimens were tested from billet L-6-40 with an average grain size of 0.55 um, and two
specimens were tested from billet L-7-40 with an average grain size of 0.44 pm. Specimens with
small notches were from billet L-10-40 with an average grain size of 0.54 um. The creep strain

vs. time curves for all these specimens are shown in Figure F-3.
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Figure F-3: The creep strain vs. time curves for undoped, polycrystalline LuAG specimens

with two different notch sizes at 1300°C in air.

The observed difference in the creep strain results for LuAG specimens with large and small

notches is not as consistent as it was for YAG. However, there is still some notable variation.

While at 50 MPa the difference appears to be negligible, the difference at 200 MPa is very

significant. The steady-state creep strain rates were determined from the strain vs. time curves,

and are summarized in Table F-2 for LuAG specimens with small and large notches.

Table F-2: Summary of creep results for undoped polycrystalline LuAG with comparable grain
sizes at 1300°C in air with two different extensometer notch sizes.

Specimen | Grain Size | Notch | Creep Stress Total.Accumulated Steady-S.tate
. Strain after 5 hrs | Creep Strain Rate
Name [pm] Size [MPa] (%] [s71]
L-6-40-1 0.55 Large 50 0.66 1.80 x 1077
L-6-40-2 0.55 Large 100 4.47 1.60 x 10°°
L-7-40-1 0.44 Large 200 15.35 9.47 x 10°°
L-7-40-2 0.44 Large 200 17.01 1.11x 107
L-10-40-1 0.54 Small 50 1.48 7.09 x 107
L-10-40-2 0.54 Small 100 3.58 1.70 x 10°°
L-10-40-3 0.54 Small 200 15.16 536x10°
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Figure F-4 shows two sets of steady-state creep strain rates plotted vs. stress on a log-log
scale. Specimens with large notches have higher strain rates at 200 MPa than specimens with
small notches. Additionally, a much steeper trend in creep rate vs. stress is apparent for large
notches. It is unclear as to why the specimen with large notches at 50 MPa has the lowest creep
strain rate; however, it is apparent that the presence of the large notches is introducing a new

variable into the potential material properties and test conditions that influence creep behavior.

1.00E-04 ¢
E| X Specimens with Large Notches
d=0.44pm & 0.55 pm
1L.00E-05 L| DOSpecimens with Small Notches
E d=0.54 pm
= LuAG
% LOOE-06 k| 1300°C,Air
&
=7
7]
7]
S
1.00E-07
1.00E-08 . —
10 100 1000

Stress [MPa]

Figure F-4: The steady-state creep rates of LuAG specimens with two different
extensometer notch sizes with average grain sizes of 0.49 pm and 0.54 pm for large and

small notch sizes, respectively, tested at 1300°C in air.
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Appendix G: Fabrication Drawings

Figure G-1: Creep Specimen Drawing

Figure G-2: Susceptor Assembly Drawing

Figure G-3: Susceptor - Tube Half Drawing

Figure G-4: Susceptor — Extensometer End Cap Drawing
Figure G-5: Susceptor — Steam Tube End Cap Drawing
Figure G-6: Susceptor — Sleeve Drawing

Figure G-7: Furnace Insert Assembly with Susceptor
Figure G-8: Furnace Insert Assembly Drawing

Figure G-9: Furnace Insert - Insulation Drawing

Figure G-10: Furnace Insert - Upper H Bracket Drawing

Figure G-11: Furnace Insert - Lower U Bracket Drawing
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Figure G-7: Furnace Insert with Susceptor
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