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1. INTRODUCTION 

 

Figure 1: Planetary boundary layer (PBL) illustration, and illustrated water vapor and potential temperature profiles showing 

sharp gradient at the top of the PBL 

Improved understanding of thermodynamics within the Planetary Boundary Layer (PBL), including 

its structure and PBL height (PBLH) over land and water as a function of time of day, is of great importance 

to NASA, as recommended by the National Academy of Sciences in the 2017 Decadal Survey for Earth 

Science and Applications from Space (“ESAS 2017”) [1, 2] and subsequently by the NASA PBL Incubation 

Study Team Report (STR; [3]). During the ESAS 2017 process, improved PBL monitoring from space was 

identified as a high priority across multiple interdisciplinary panels and science and application questions, 

leading to the current NASA PBL Decadal Survey Incubation (DSI) program that will invest in future 

spaceborne PBL mission development.  

In recent decades, spaceborne microwave and hyperspectral infrared (HIR) sounding instruments on 

Aqua, Suomi NPP, and JPSS have significantly improved weather forecasting [4, 5]. However, existing 

retrievals of lower troposphere temperature 𝑇 and water vapor 𝑞 profiles from HIR and microwave sounders 

have limitations in vertical resolution, and often cannot accurately represent key features such as the mixed 

layer thermodynamic structure and the inversion at the PBL top, the latter of which appears as a sharp 

gradient in 𝑞 or potential temperature 𝑇𝑝𝑜𝑡 as illustrated in Figure 1. With the mixed layer itself being ~1-

3 km thick, previously reported AIRS T and q profile resolution (and resultant PBLH) errors on the order 

of ~1-2 km [6] are not sufficient, and, alone, fall well short of the ESAS recommendation of ~100-300 m 

vertical resolution for new PBL observing systems. Because of the existing limitations in PBL remote 

sensing from space, there is an urgent need to improve routine, global observations of the PBL and 

enable advances in scientific understanding and weather and climate prediction. In addition, existing 

program of record (POR) satellite measurements such as those from HIR have not been the focus of targeted 

PBL retrieval assessment or development to date, which is particularly critical as NASA considers what 

next-generation sensors or observing systems will needed to address PBL needs. With the HIR sensor 

record continuing beyond the next decade with SNPP, JPSS, IASI, and planned GEO sounders, new 

methodologies that improve sounding capability will yield benefit for a long time to come. We therefore 

summarize the key questions we investigate as follows: 

• What is the upper limit of HIR vertical sounding capability in the PBL? 

• How can both AI and physics be used to constrain retrieval estimates in an explainable way, and 

improve upon current state-of-the-art retrieval approaches? 

In this report, we describe how some of our recent efforts have made progress toward addressing 

these questions. 
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2. CURRENT RETRIEVAL APPROACHES 

 

Sounding retrieval algorithms reconstruct a vertical distribution of atmospheric temperature and 

water vapor from the observations, which consist of thermal IR and microwave radiation emitted by layers 

of the atmosphere and measured by a sounder instrument on orbit [7]. The objective is to estimate the state 

of the atmosphere (represented by unknown parameter vector 𝑥, a vertical profile of 𝑇(𝑝) or 𝑞(𝑝), given 

spaceborne spectral radiance observations (represented by a radiance vector 𝑦). The IR observations used 

in 𝑦 are typically a cloud-cleared spectrum derived from a 3 by 3 group of neighboring cloudy spectra 

beforehand (though single-FOV retrievals have recently advanced [8] as well). This inverse problem is ill-

posed, lacking a single unique solution, with vertical details beyond a certain (scene- and data-dependent) 

vertical resolution limit not directly observable from the spectral measurements, including in the lower 

troposphere and the PBL. As highlighted below, this limitation in PBL information content from the 

instrument motivates the need for the new, AI-informed techniques described herein. 

Two approaches to sounding retrievals are described in Figure 2: physical retrievals and statistical 

regression retrievals. The physical retrieval approach uses a forward model (the radiative transfer model) 

to calculate the expected measurements 𝑓(𝑥) given a specific atmospheric state 𝑥. The estimate 𝑥 is 

iteratively adjusted to reduce the squared difference between the observations 𝑦 and prediction 𝑓(𝑥). Due 

to ill-posedness, an additional regularization term is required to stabilize the retrieval, often taking a form 

similar to what is shown in Figure 2, in which a penalty for deviations from a first guess 𝑥𝑝𝑟𝑖𝑜𝑟 is imposed. 

Statistical regression approaches, including neural networks, learn an empirical relationship 𝑥 = 𝑧(𝑦) 

between an ensemble of measurements 𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 and collocated ground truth datasets 𝑥𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 [9]. For a 

neural network, 𝑧(∙) is a nonlinear function composed of simple, interconnected computational elements, 

or nodes, defined by learned weight parameters and an activation function. A key advantage for neural 

networks over physical approaches is that they are fast and accurate, and, as universal function 

approximators [10], they can empirically learn complex, often indirect and nonlinear dependencies 

embedded in the data that may be difficult to physically model[9]. A key advantage of physical retrievals 

over statistical retrievals is that they are directly explainable, meaning that it is clear what part of the 

solution is introduced from the instrument radiances versus propagated from the first guess. Neural 

networks have attracted increasing wide from the sounding community in recent years [11-14] 

In recent years, the Level 2 retrieval algorithm for Aqua’s Advanced Microwave Sounding Unit 

(AMSU) has combined both of these approaches by using MIT-LL’s Stochastic Cloud Clearing/Neural 

Network (SCC/NN) retrieval [15, 16] as first guess for NASA GSFC’s physical retrieval. The introduction 

of SCC/NN as the first guess has led to improved accuracy and yield in down to the surface, including the 

PBL, versus previous versions with a different regression first guess[17]. In the current retrievals, PBL 

phenomenology is, to a significant degree, introduced via the SCC/NN first guess. This combination of 

neural networks and physical retrieval to improve operational science products resulted from over a decade 

of investment by NASA, long predating the recent intensified focus on AI from the larger science and 

technology community. 

 

Figure 2: Physical versus neural network retrieval approaches for atmospheric sounding 
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Figure 3:  PBL Tpot profiles for ARM-SGP, AIRSv6, AIRSv7 NN 

 

Figure 4: PBL q profiles for ARM-SGP, AIRSv6, AIRSv7 NN 

Despite these recent improvements, further efforts are needed to both understand and improve 

performance in the PBL. Figure 3 shows three example afternoon 𝑇𝑝𝑜𝑡 retrievals from AIRS/AMSU 

compared collocated radiosonde truth profiles at the Southern Great Plains (SGP) site in Oklahoma operated 

by the Atmospheric Radiation Measurement (ARM) facility in 2015[18]. The AIRS/AMSU retrievals 

include the version 6 (“AIRS v6”) product, and the NN first guess for the new v7 product (“AIRS v7 NN”) 

which aimed for PBL improvements. Figure 4 shows an analogous set of plots for 𝑞 profiles. The 

collocations used the nearest profiles flagged as high quality down to the surface, and are therefore best-

case matchups. Nevertheless, the examples illustrate limitations in current capability addressed by this 

proposal. Profiles tend to be overly smooth, with relatively weak vertical gradients compared to the sonde 

profiles due to limited information in the lower troposphere. As a result, distinguishing between the well-

mixed layer and the PBL top inversion is difficult, as is accurate determination of PBLH. This problem is 

especially apparent for 𝑞, where we have noted significant room for improvement. 
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3. MAP ESTIMATION AND VARIABLE SPLITTING FRAMEWORK  

A traditional approach to solving the physical retrieval problem is known as optimal estimation”[7], 

or maximum a posteriori (MAP) estimation. Here, we review MAP estimation, and then we use it to 

motivate a more general framework. We define, again, observations 𝑦 and unknown atmospheric state 𝑥 

(describing temperature T and humidity q). 

𝑥 = arg max𝑥 {log 𝑝(𝑦|𝑥) + log 𝑝(𝑥)}  

= arg max𝑥 {(data fitting term) + (regularization term)} 

 

(1) 

 

The data likelihood 𝑝(𝑦|𝑥) describes how well the observations 𝑦 match predictions 𝑓(𝑥), and is 

typically assumed normally distributed with inverse measurement covariance as in Figure 2: 

log 𝑝(𝑦|𝑥) = −
1

2
‖𝑦 − 𝑓(𝑥)‖Λ

2 + (const. ) (2) 

 

In principle, the prior model 𝑝(𝑥) describes how the set of all 𝑥 should be distributed, including 

complicated joint dependencies. In practice, a model 𝑝(𝑥) is chosen to regularize the MAP solution with 

certain key properties expected of 𝑥, like proximity to a first guess or a resolution limit, that can be captured 

in a tractable cost function, and it is typically assumed Gaussian, as shown in the example in Figure 2. We 

define 𝑔(𝑥) = −log 𝑝(𝑦|𝑥) and ℎ(𝑥) = −log 𝑝(𝑥), so that 

𝑥 = arg min𝑥{𝑔(𝑥) + ℎ(𝑥)}  
(3) 

 

For many typical choices of 𝑔(𝑥) and ℎ(𝑥), (3) can be solved using nonlinear least squares 

optimization techniques such as the Levenberg-Marquardt technique[7], or analogous techniques. Here, we 

use a different approach, known as “variable splitting”, with the aim of enabling the use of a wider variety 

of options for ℎ(𝑥), including non-Gaussian models [19-21]. Suppose we split 𝑥 into two different 

variables, 𝑥1 and 𝑥2, and minimize 𝑔(𝑥1) + ℎ(𝑥2) such that 𝑥1 = 𝑥2 as follows: 

(𝑥1, 𝑥2) = arg min
𝑥1=𝑥2

{𝑔(𝑥1) + ℎ(𝑥2)} 

= arg min
𝑥1,𝑥2

{𝑔(𝑥1) + ℎ(𝑥2) +
1

2𝜎2 ||𝑥1 − 𝑥2 + 𝑢||
2

} 

(4) 

 

where 𝑢 is an “augmented Lagrangian” to be solved for, similar to a Lagrange multiplier, and 𝜎 is a 

selectable parameter which controls the rate of convergence. This problem can be solved with a series of 

update steps that alternate among all the unknowns. This scheme, called “Alternating Direction Method of 

Multipliers” (ADMM)[19, 20], is powerful because it enables solution of a difficult, constrained 

optimization problem as a sequence of simpler unconstrained steps: 

• Initialize 𝑢 = 0 

• Repeat until converged: 

▪ �̂�1 = arg min
𝑥1

{𝑔(𝑥1) +
1

2𝜎2 ||𝑥1 − �̂�2 + 𝑢||
2

}   // Sensor model update step 

▪ �̂�2 = arg min
𝑥2

{ℎ(𝑥2) +
1

2𝜎2 ||�̂�1 − 𝑥2 + 𝑢||
2

}   // Prior model update step 

▪ 𝑢 = 𝑢 + (�̂�1 − �̂�2)   // “Augmented Lagrangian” 

We can define the following functions, which are called “proximal maps”, corresponding to the above 

update steps as follows: 
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𝐺(𝑥) = arg min
𝑣

{𝑔(𝑣) +
1

2𝜎2 ||𝑣 − 𝑥||
2

} 

𝐻(𝑥) = arg min
𝑣

{ℎ(𝑣) +
1

2𝜎2 ||𝑣 − 𝑥||
2

} 

 

(5) 

 

Informally, we can interpret the proximal map as an “agent” that improves the current estimate: 

• “Agent” that improves sensor model fit: 𝐺(𝑥) ≈ 𝑥-𝛼∇𝑔(𝑥) 

• “Agent” that improves prior model fit: 𝐻(𝑥) ≈ 𝑥-𝛼∇ℎ(𝑥) 

The above ADMM algorithm is then: 

• Initialize 𝑢 = 0 

• Repeat until converged: 
▪ 𝑥1 = 𝐺(𝑥2 − 𝑢)    // Sensor model “agent” 

▪ 𝑥2 = 𝐻(𝑥1 + 𝑢)    // Prior model “agent” 

▪ 𝑢 = 𝑢 + (�̂�1 − �̂�2)   // “Augmented Lagrangian” 

The ADMM alternates successive small improvements to the sensor model fit and prior model fits 

until convergence to a final result which strikes a balance between fitting both models. The prior model 

agent, in particular, tends to enhance the current estimate by denoising it or removing artifacts from it, 

bringing it closer into alignment with expected properties of valid solutions that the sensor model alone 

may not directly constrain. The convergence conditions are as follows: 

 

 

𝑥 = 𝐺(𝑥 − 𝑢) // Sensor model 

agent 

𝑥 = 𝐻(𝑥 + 𝑢) // Prior model agent 

 
 

Figure 5: CE force balance illustration 

 

These conditions have been introduced with the name “Consensus Equilibrium” (CE) by Buzzard et 

al.[21], evoking the idea of a “force balance” or “equilibrium” between multiple agents (in this case, the 

sensor model agent and the prior mode agent) acting on the estimate, as illustrated in Figure 5. 
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4. RECENT TARGETED RETRIEVAL WORK  AND APPLICATION TO PBL  

Drawing on the previous sections, we can describe a sensor model agent as a proximal map, based 

on (2) and Error! Reference source not found., with cloud cleared observations 𝑦 and radiative transfer f

orward model 𝑓(∙): 

𝐺(𝑥) = arg min
𝑣

{
1

2
‖𝑦 − 𝑓(𝑣)‖Λ

2 +
1

2𝜎2 ||𝑣 − 𝑥||
2

} 

 

(6) 

 

An implementation of  (6) for AIRS has already been developed on the existing 2017 TASNPP 

project, using the v7 SCC/NN retrieval as the clear state for cloud clearing and the Stand-alone Atmospheric 

Radiative Transfer Algorithm (SARTA) [22] forward model. Under this proposed work, we will draw on 

the team’s experience on the existing AIRS and CrIS Level 2 retrieval algorithms [16, 23] to improve the 

current sensor agent for both sensors, improving error propagation, cloud clearing, and channel selection. 

For example, as part of the TASNPP effort AIRS/AMSU Level 2 retrieval performance was evaluated for 

a selection profiles collocated with a PBL-focused SGP radiosonde measurement campaign. The 

comparison showed that there is room for improvement in vertical resolution in the PBL via physical 

retrieval approaches, for 𝑞 in particular, which subsequently became a subsequent area of focus. As a result, 

Milstein et al. developed a new approach for retrieving 𝑞, with the goal of making better use of the available 

radiances[24]. The approach starts with the v7 SCC/NN AIRS/AMSU retrieval as first guess accompanied 

by a newly developed per-retrieval uncertainty covariance estimate predicted using a Mixture Density 

neural network (described in Error! Reference source not found.). This first guess is then used as a clear s

tate and first guess for a new physical retrieval approach that differs in important ways from existing 

retrieval approaches: A total variation (TV) smoothness prior is used to regularize the solution while 

preserving sharp features. As Karl states in [25], “unlike standard quadratic Tikhonov solutions, total 

variation regularized answers can contain localized steep gradients, since the regularizer penalizes only the 

total amount of gradient in the image and not its distribution. As a result, edges are preserved in the 

reconstructions.” In addition, the predicted first guess covariance estimate is employed as a bounds 

constraint (e.g., “stay within 1-sigma of the first guess”), rather than a Gaussian prior adding a quadratic 

norm penalty to the cost function. Other bounds constraints from physical realism such as avoiding 

oversaturation are also enforced. Combined, these priors avoid conventional Gaussian assumptions which 

tend to oversmooth regularized solutions and are therefore appropriate for PBL-focused 𝑞 retrievals where 

a sharp gradient is expected. As illustrated in Figure 6, this approach can be described using the CE 

framework and alternating optimization approach of 3, with proximal map agents on a profile: a sensor 

agent similar to (6), a prior model agent that enforces bounds constraints relative to the first guess, and an 

additional prior agent that enforces the total variation prior model on the profile.  

 

Figure 6: Illustration of the 2017 TASNPP analysis effort as a CE problem  



7 

 

Figure 7: Example PBL q profiles for ARM-SGP, AIRSv6, AIRSv7 NN, and new ADMM approach.  

To evaluate this approach, these ADMM retrievals were added to those in Figure 4, and the results 

are shown in Figure 7. The ADMM profiles show more vertical structure, including inversions, near the 

PBL than the v6 and v7 SCC/NN retrievals. This work illustrates that significant improvement in resolving 

PBLH is possible using the proposed CE framework, incorporating more machine learning elements (such 

as first guess error prediction) and nontraditional, non-Gaussian prior models that preserve sharp gradient 

features of most interest in PBL retrievals.   
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5. CONCLUSION 

We have assessed IR+microwave retrievals from the existing AIRS/AMSU retrieval system and the v7 

Stochastic Cloud Clearing/Neural Network (SCC/NN) [15, 16] first guess in comparison to collocated 

radiosondes.  

 

We first reviewed the current AIRS/AMSU retrieval methodology and how it utilizes a neural network and 

physical retrieval in combination. We then described the recently introduced consensus equilibrium 

framework, highlighting how it generalizes traditional Bayesian optimal estimation techniques to include 

new, powerful prior models. We showed how new moisture retrievals developed under MIT-LL’s 2017 

TASNPP effort can be viewed as special case of this framework, leading to significant improvements in 

PBL vertical detail, including sharp gradients at the top of the PB. This new methodology balances sensor 

physics with a prior model informed by machine learning[24]. While encouraged by this recent progress, 

we hypothesize that significant further improvement in retrieval of 𝑇 and 𝑞 in the PBL is possible by 

expanding on these approaches. The ESAS 2017 outlines numerous high priority scientific questions that 

will be addressed with improved observations of the PBL, and our ongoing work, by improving global 

retrieval accuracy and resolution from POR systems, will offer cross-cutting benefit across all of them.  
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