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1. INTRODUCTION
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Figure 1: Planetary boundary layer (PBL) illustration, and illustrated water vapor and potential temperature profiles showing
sharp gradient at the top of the PBL

Improved understanding of thermodynamics within the Planetary Boundary Layer (PBL), including
its structure and PBL height (PBLH) over land and water as a function of time of day, is of great importance
to NASA, as recommended by the National Academy of Sciences in the 2017 Decadal Survey for Earth
Science and Applications from Space (“ESAS 2017”) [1, 2] and subsequently by the NASA PBL Incubation
Study Team Report (STR; [3]). During the ESAS 2017 process, improved PBL monitoring from space was
identified as a high priority across multiple interdisciplinary panels and science and application questions,
leading to the current NASA PBL Decadal Survey Incubation (DSI) program that will invest in future
spaceborne PBL mission development.

In recent decades, spaceborne microwave and hyperspectral infrared (HIR) sounding instruments on
Aqgua, Suomi NPP, and JPSS have significantly improved weather forecasting [4, 5]. However, existing
retrievals of lower troposphere temperature T and water vapor g profiles from HIR and microwave sounders
have limitations in vertical resolution, and often cannot accurately represent key features such as the mixed
layer thermodynamic structure and the inversion at the PBL top, the latter of which appears as a sharp
gradient in q or potential temperature T, as illustrated in Figure 1. With the mixed layer itself being ~1-
3 km thick, previously reported AIRS T and g profile resolution (and resultant PBLH) errors on the order
of ~1-2 km [6] are not sufficient, and, alone, fall well short of the ESAS recommendation of ~100-300 m
vertical resolution for new PBL observing systems. Because of the existing limitations in PBL remote
sensing from space, there is an urgent need to improve routine, global observations of the PBL and
enable advances in scientific understanding and weather and climate prediction. In addition, existing
program of record (POR) satellite measurements such as those from HIR have not been the focus of targeted
PBL retrieval assessment or development to date, which is particularly critical as NASA considers what
next-generation sensors or observing systems will needed to address PBL needs. With the HIR sensor
record continuing beyond the next decade with SNPP, JPSS, IASI, and planned GEO sounders, new
methodologies that improve sounding capability will yield benefit for a long time to come. We therefore
summarize the key questions we investigate as follows:

*  What is the upper limit of HIR vertical sounding capability in the PBL?

* How can both Al and physics be used to constrain retrieval estimates in an explainable way, and
improve upon current state-of-the-art retrieval approaches?

In this report, we describe how some of our recent efforts have made progress toward addressing
these questions.




2. CURRENT RETRIEVAL APPROACHES

Sounding retrieval algorithms reconstruct a vertical distribution of atmospheric temperature and
water vapor from the observations, which consist of thermal IR and microwave radiation emitted by layers
of the atmosphere and measured by a sounder instrument on orbit [7]. The objective is to estimate the state
of the atmosphere (represented by unknown parameter vector x, a vertical profile of T(p) or q(p), given
spaceborne spectral radiance observations (represented by a radiance vector y). The IR observations used
in y are typically a cloud-cleared spectrum derived from a 3 by 3 group of neighboring cloudy spectra
beforehand (though single-FOV retrievals have recently advanced [8] as well). This inverse problem is ill-
posed, lacking a single unique solution, with vertical details beyond a certain (scene- and data-dependent)
vertical resolution limit not directly observable from the spectral measurements, including in the lower
troposphere and the PBL. As highlighted below, this limitation in PBL information content from the
instrument motivates the need for the new, Al-informed techniques described herein.

Two approaches to sounding retrievals are described in Figure 2: physical retrievals and statistical
regression retrievals. The physical retrieval approach uses a forward model (the radiative transfer model)
to calculate the expected measurements f(x) given a specific atmospheric state x. The estimate X is
iteratively adjusted to reduce the squared difference between the observations y and prediction f(x). Due
to ill-posedness, an additional regularization term is required to stabilize the retrieval, often taking a form
similar to what is shown in Figure 2, in which a penalty for deviations from a first guess x,.;,, is imposed.
Statistical regression approaches, including neural networks, learn an empirical relationship £ = z(y)
between an ensemble of measurements y,,.semnie @Nd collocated ground truth datasets Xepnsempie [9]1- FOr @
neural network, z(+) is a nonlinear function composed of simple, interconnected computational elements,
or nodes, defined by learned weight parameters and an activation function. A key advantage for neural
networks over physical approaches is that they are fast and accurate, and, as universal function
approximators [10], they can empirically learn complex, often indirect and nonlinear dependencies
embedded in the data that may be difficult to physically model[9]. A key advantage of physical retrievals
over statistical retrievals is that they are directly explainable, meaning that it is clear what part of the
solution is introduced from the instrument radiances versus propagated from the first guess. Neural
networks have attracted increasing wide from the sounding community in recent years [11-14]

In recent years, the Level 2 retrieval algorithm for Aqua’s Advanced Microwave Sounding Unit
(AMSU) has combined both of these approaches by using MIT-LL’s Stochastic Cloud Clearing/Neural
Network (SCC/NN) retrieval [15, 16] as first guess for NASA GSFC’s physical retrieval. The introduction
of SCC/NN as the first guess has led to improved accuracy and yield in down to the surface, including the
PBL, versus previous versions with a different regression first guess[17]. In the current retrievals, PBL
phenomenology is, to a significant degree, introduced via the SCC/NN first guess. This combination of
neural networks and physical retrieval to improve operational science products resulted from over a decade
of investment by NASA, long predating the recent intensified focus on Al from the larger science and
technology community.

Physical Retrieval Neural Network Retrieval
x= argminx{”y —f@lZ+||x - xprior”z} X = z(y), where z(-) is a neural network, trained using:
x Unknown 7(p) or g(p) profile
y Spectrum measurements
f(-)  Forward model ar'gminzc){”xensemble - Z(yensemble)”2 }
A B Meas. and prior inverse covariances
Xprior  First guess of 7(p) or q(p)

Figure 2: Physical versus neural network retrieval approaches for atmospheric sounding
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Figure 4: PBL q profiles for ARM-SGP, AIRSv6, AIRSv7 NN

Despite these recent improvements, further efforts are needed to both understand and improve
performance in the PBL. Figure 3 shows three example afternoon T, retrievals from AIRS/AMSU
compared collocated radiosonde truth profiles at the Southern Great Plains (SGP) site in Oklahoma operated
by the Atmospheric Radiation Measurement (ARM) facility in 2015[18]. The AIRS/AMSU retrievals
include the version 6 (“AIRS v6”) product, and the NN first guess for the new v7 product (“AIRS v7 NN”)
which aimed for PBL improvements. Figure 4 shows an analogous set of plots for g profiles. The
collocations used the nearest profiles flagged as high quality down to the surface, and are therefore best-
case matchups. Nevertheless, the examples illustrate limitations in current capability addressed by this
proposal. Profiles tend to be overly smooth, with relatively weak vertical gradients compared to the sonde
profiles due to limited information in the lower troposphere. As a result, distinguishing between the well-
mixed layer and the PBL top inversion is difficult, as is accurate determination of PBLH. This problem is
especially apparent for g, where we have noted significant room for improvement.




3. MAP ESTIMATION AND VARIABLE SPLITTING FRAMEWORK

A traditional approach to solving the physical retrieval problem is known as optimal estimation”[7],
or maximum a posteriori (MAP) estimation. Here, we review MAP estimation, and then we use it to
motivate a more general framework. We define, again, observations y and unknown atmospheric state x
(describing temperature T and humidity q).

% = arg max, {logp(y|x) + logp(x)} (1)
= arg max,, {(data fitting term) + (regularization term)}

The data likelihood p(y|x) describes how well the observations y match predictions f(x), and is
typically assumed normally distributed with inverse measurement covariance as in Figure 2:

1
logp(ylx) = = lly = FGOII} + (const.) 2)

In principle, the prior model p(x) describes how the set of all x should be distributed, including
complicated joint dependencies. In practice, a model p(x) is chosen to regularize the MAP solution with
certain key properties expected of x, like proximity to a first guess or a resolution limit, that can be captured
in a tractable cost function, and it is typically assumed Gaussian, as shown in the example in Figure 2. We
define g(x) = —log p(y|x) and h(x) = —log p(x), so that

% = arg min,{g(x) + h(x)} 3)

For many typical choices of g(x) and h(x), (3) can be solved using nonlinear least squares
optimization techniques such as the Levenberg-Marquardt technique[7], or analogous techniques. Here, we
use a different approach, known as “variable splitting”, with the aim of enabling the use of a wider variety
of options for h(x), including non-Gaussian models [19-21]. Suppose we split x into two different
variables, x; and x,, and minimize g(x;) + h(x;) such that x; = x, as follows:

(%1,%,) = arg min {g(x;) + h(xy)} 4
X1=X2 ( )
: 1 2
= arg min {g(r2) +hGx) + 55 |lv =2 + i}

where u is an “augmented Lagrangian” to be solved for, similar to a Lagrange multiplier, and o is a
selectable parameter which controls the rate of convergence. This problem can be solved with a series of
update steps that alternate among all the unknowns. This scheme, called “Alternating Direction Method of
Multipliers” (ADMM)[19, 20], is powerful because it enables solution of a difficult, constrained
optimization problem as a sequence of simpler unconstrained steps:

* Initializeu =0
* Repeat until converged:

" % =arg min {g(xl) + %“"1 — %, + u||2} // Sensor model update step
1

= %, =arg min {h(xz) + ﬁ“fl —x; + u||2} /I Prior model update step
X2

» u=u+ Xy —x,) I/l “Augmented Lagrangian”

We can define the following functions, which are called “proximal maps”, corresponding to the above
update steps as follows:




1
G(x) =arg mvin{g(v)+ﬁ||v—xl|2} (5)
. 1 2
H(x) = arg mvm{h(v) +ﬁ|lv — x|| }

Informally, we can interpret the proximal map as an “agent” that improves the current estimate:
e “Agent” that improves sensor model fit: G(x) = x-aVg(x)
e “Agent” that improves prior model fit: H(x) = x-aVh(x)

The above ADMM algorithm is then:
* Initializeu =0
* Repeat until converged:
= X =G(X, —u) //Sensormodel “agent”
» X, =H(X +uw) [/l Prior model “agent”
» u=u+ X —Xx,) Il “Augmented Lagrangian”

The ADMM alternates successive small improvements to the sensor model fit and prior model fits
until convergence to a final result which strikes a balance between fitting both models. The prior model
agent, in particular, tends to enhance the current estimate by denoising it or removing artifacts from it,
bringing it closer into alignment with expected properties of valid solutions that the sensor model alone
may not directly constrain. The convergence conditions are as follows:

G(x—u) H(x+u)

x=G(x—u) /I Sensor model \/\I x N

agent xX—u HHx+u

x = H(x + w) // Prior model agent Force Balance

Figure 5: CE force balance illustration

These conditions have been introduced with the name “Consensus Equilibrium” (CE) by Buzzard et
al.[21], evoking the idea of a “force balance” or “equilibrium” between multiple agents (in this case, the
sensor model agent and the prior mode agent) acting on the estimate, as illustrated in Figure 5.




4. RECENT TARGETED RETRIEVAL WORK AND APPLICATION TO PBL

Drawing on the previous sections, we can describe a sensor model agent as a proximal map, based
on (2) and Error! Reference source not found., with cloud cleared observations y and radiative transfer f
orward model f(-):

1 1
6) = arg min{5lly = FOIR + 57 lv — x|’} ©)

An implementation of (6) for AIRS has already been developed on the existing 2017 TASNPP
project, using the v7 SCC/NN retrieval as the clear state for cloud clearing and the Stand-alone Atmospheric
Radiative Transfer Algorithm (SARTA) [22] forward model. Under this proposed work, we will draw on
the team’s experience on the existing AIRS and CrlIS Level 2 retrieval algorithms [16, 23] to improve the
current sensor agent for both sensors, improving error propagation, cloud clearing, and channel selection.
For example, as part of the TASNPP effort AIRS/AMSU Level 2 retrieval performance was evaluated for
a selection profiles collocated with a PBL-focused SGP radiosonde measurement campaign. The
comparison showed that there is room for improvement in vertical resolution in the PBL via physical
retrieval approaches, for g in particular, which subsequently became a subsequent area of focus. As a result,
Milstein et al. developed a new approach for retrieving g, with the goal of making better use of the available
radiances[24]. The approach starts with the v7 SCC/NN AIRS/AMSU retrieval as first guess accompanied
by a newly developed per-retrieval uncertainty covariance estimate predicted using a Mixture Density
neural network (described in Error! Reference source not found.). This first guess is then used as a clear s
tate and first guess for a new physical retrieval approach that differs in important ways from existing
retrieval approaches: A total variation (TV) smoothness prior is used to regularize the solution while
preserving sharp features. As Karl states in [25], “unlike standard quadratic Tikhonov solutions, total
variation regularized answers can contain localized steep gradients, since the regularizer penalizes only the
total amount of gradient in the image and not its distribution. As a result, edges are preserved in the
reconstructions.” In addition, the predicted first guess covariance estimate is employed as a bounds
constraint (e.g., “stay within 1-sigma of the first guess”), rather than a Gaussian prior adding a quadratic
norm penalty to the cost function. Other bounds constraints from physical realism such as avoiding
oversaturation are also enforced. Combined, these priors avoid conventional Gaussian assumptions which
tend to oversmooth regularized solutions and are therefore appropriate for PBL-focused g retrievals where
a sharp gradient is expected. As illustrated in Figure 6, this approach can be described using the CE
framework and alternating optimization approach of 3, with proximal map agents on a profile: a sensor
agent similar to (6), a prior model agent that enforces bounds constraints relative to the first guess, and an
additional prior agent that enforces the total variation prior model on the profile.

Prior Agent 1: Synergy with NNv7 First
Guess and Predicted Covariance

Sensor Agent:
Cloud Cleared Data Fit

Prior Agent 2: Non-Gaussian Markov
Smoothness Model

Figure 6: lllustration of the 2017 TASNPP analysis effort as a CE problem
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To evaluate this approach, these ADMM retrievals were added to those in Figure 4, and the results
are shown in Figure 7. The ADMM profiles show more vertical structure, including inversions, near the
PBL than the v6 and v7 SCC/NN retrievals. This work illustrates that significant improvement in resolving
PBLH is possible using the proposed CE framework, incorporating more machine learning elements (such
as first guess error prediction) and nontraditional, non-Gaussian prior models that preserve sharp gradient
features of most interest in PBL retrievals.




5. CONCLUSION

We have assessed IR+microwave retrievals from the existing AIRS/AMSU retrieval system and the v7
Stochastic Cloud Clearing/Neural Network (SCC/NN) [15, 16] first guess in comparison to collocated
radiosondes.

We first reviewed the current AIRS/AMSU retrieval methodology and how it utilizes a neural network and
physical retrieval in combination. We then described the recently introduced consensus equilibrium
framework, highlighting how it generalizes traditional Bayesian optimal estimation techniques to include
new, powerful prior models. We showed how new moisture retrievals developed under MIT-LL’s 2017
TASNPP effort can be viewed as special case of this framework, leading to significant improvements in
PBL vertical detail, including sharp gradients at the top of the PB. This new methodology balances sensor
physics with a prior model informed by machine learning[24]. While encouraged by this recent progress,
we hypothesize that significant further improvement in retrieval of T and g in the PBL is possible by
expanding on these approaches. The ESAS 2017 outlines numerous high priority scientific questions that
will be addressed with improved observations of the PBL, and our ongoing work, by improving global
retrieval accuracy and resolution from POR systems, will offer cross-cutting benefit across all of them.
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