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1. INTRODUCTION:  

 
 
The goal of this project is to improve the detection of aggressive (Gleason ≥7) prostate cancer by 
combining multiparametric MRI and urinary biomarkers. 
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3. ACCOMPLISHMENTS:  

What were the major goals of the project?

Major Task 1: Training and educational development in prostate 
cancer research 

1 – 48 
Months 

Research-Specific Tasks: 
Specific Aim 1: To assess the accuracy of a novel urine-based NGS 
assay for the detection of high-grade PCa. 0 – 20 months 

Major Task 1: Test the capacity of a novel urine-based NGS assay to detect 
aggressive PCa at first biopsy. 0 – 14 months 

Major Task 2: Determine the differential performance characteristics of a 
novel urine-based NGS assay to detect aggressive PCa in the setting of a – 
vs. + prostate mpMRI. 

10 – 20 
months 

Specific Aim 2: To comprehensively characterize the genomic and 
transcriptomic alterations associated with cancer visibility on mpMRI 

Major Task 3: Interrogate specific molecular changes associated with high-
grade PCa visibility on mpMRI. 

16 – 33 
months 

Major Task 4: Elucidate the molecular profile of low-grade fusion biopsy 
cores obtained from PIRADS 4 and 5 lesions and correlate these findings 
with RP pathology. 

28 – 38 
months 

Specific Aim 3: Determine and compare tissue versus a urine-based 
prognostic assays to predict Gleason upgrading at RP. 

Major Task 5: Assess tissue-based and novel urine-based prognostic 
scores in biopsy core and urine respectively in patients with Gleason 
upgrading 

34 – 48 
months 
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What was accomplished under these goals? 

We continue to make progress in our project specific aims as described below. It is worth 
mentioning, however, my lab is behind due to the ongoing COVID-19 pandemic and supply 
chain issues which have severely hampered our planned research activities. 

Major Task 1: Training and educational development in prostate cancer research: 
Training accomplishments: 

- Completion of R01 boot camp program at University of Michigan (UM). This grant
writing training program culminated in the submission of an R01 grant application that
was reviewed and triaged in June 2020; I revised the grant application based on the
reviewer comments and resubmitted in February 2021, discussed and scored but not
within fundable range. I will be submitting another grant application in 2022.

- I have continued to attend (virtually) the American Urological Association Annual
meetings, Society of Urologic Oncology annual meeting, and Prostate Cancer
Foundation annual meetings. I have presented results from this work at some of these
meetings. Continue as instructor/faculty of medical school/graduate courses.

- Co-lead of a Prostate SPORE project at UM.

- Awarded the AUA Rising Stars in Urologic Research.

Conferences/journal clubs: 
- Attend monthly prostate cancer seminars
- Meet with mentors (Drs. Palapattu and Tomlins) regularly to discuss research

progress/career development
- Continue leadership/active roles in Urology Grand Rounds, GU tumor board, Prostate

SPORE collaborative conferences.
- Participated in multiple study sections, including American Cancer Society and American

Urological Association. Now standing member of American Cancer Society Committee on
Clinical Cancer Research and Epidemiology Study Section.

- Named Review Editor for Urologic Oncology of Frontiers in Urology.

Clinical responsibilities: 
- Continue Urologic oncology clinic.
- Continue operative schedules.

Professional accomplishments: 
- Member of the AUA and NCCN Prostate Cancer Early Detection guidelines panels.
Member of the Society of Nuclear Medicine and Molecular Imaging Appropriateness Use
Criteria for PSMA PET imaging in prostate cancer.
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Specific Aim 1: To assess the accuracy of a novel urine-based NGS assay for the 
detection of high-grade PCa.  

We published the initial paper describing the Urnie NGS-assay this year. The findings are 
detailed in:  

Cani AK, Hu K, Liu CJ, Siddiqui J, Zheng Y, Han S, Nallandhighal S, Hovelson DH, Xiao L, 
Pham T, Eyrich NW, Zheng H, Vince R Jr, Tosoian JJ, Palapattu GS, Morgan TM, Wei JT, 
Udager AM, Chinnaiyan AM, Tomlins SA, Salami SS. Development of a Whole-urine, 
Multiplexed, Next-generation RNA-sequencing Assay for Early Detection of Aggressive 
Prostate Cancer. Eur Urol Oncol. 2021 Mar 31:S2588-9311(21)00046-8. doi: 
10.1016/j.euo.2021.03.002. Online ahead of print.PMID: 33812851 

• Major Task 1: Test the capacity of a novel urine-based NGS assay to detect aggressive
PCa at first biopsy. In the prior progress report, we reported that targeted RNA next
generation sequencing (NGS) of urine obtained from patients prior to first biopsy was
completed in 170 patients. Initial analyses to develop multiplex models to predict Grade
Group (GG2-5) as well as GG3-5 prostate cancers revealed training AUC of 0.63 and
0.70 respectively, which was below our anticipated performance.

We explored options for potential improvement in the AUC. We found wide variation in the 
distribution of the transcripts, with some transcripts having poor detection (Left panel). We 
believe this impacted the performance (measured by AUC) of the resulting models as shown 
above. Thus, we used a different RNA extraction method from urine in a subset of samples, 
the Zymo method which requires more urine volume for RNA extraction but takes more time 
and more hands-on (a manuscript using the Zymo method for RNA extraction is included in 
this submission). We observed high correlation of most transcripts (r = 0.75 – 1.0) between 
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both RNA extraction methods. However, we also observed poor correlation in some transcripts 
between the two methods (Right panel). 

• We have explored the following experimental and analytic approaches:
o Introduced clinical variables for predicting aggressive disease in model

development but with no improvement in performance.
o Since these experiments were performed on patients who underwent their first

prostate biopsies, we are evaluating the possibility of biopsy unersampling as a
confounder by collecting follow up biopsy or prostatectomy information to retrain
the model.

o Optimizing RNA extraction in a subset of urine samples with low transcripts
detection/expression. Our challenge here was exhaustion of urine specimens
given that large volumes of urine was required for RNA extraction using the
Zymo method.

o Earlier this year, our prostate SPORE program in prostate cancer increased the
amount of urine collection from patients to accommodate multiple assay
comparisons and the goal is to utilize some these specimens in the future to
further optimize our assay.

• Major Task 2: Determine the differential performance characteristics of a novel
urine-based NGS assay to detect aggressive PCa in the setting of a – vs. +
prostate mpMRI.
Next generation sequencing and bioinformatics analysis to evaluate the performance of
the novel urine based assay independent of mpMRI in this sub-aim is currently ongoing.
This aspect of the study is on hold pending further optimization of our urine assay.
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Specific Aim 2: To comprehensively characterize the genomic and transcriptomic 
alterations associated with cancer visibility on mpMRI  

• Major Task 3: Interrogate specific molecular changes associated with high-grade
PCa visibility on mpMRI.
We performed targeted NGS in 26 samples of mpMRI visible and invisible prostate
cancer. Bioinformatics analysis to compare the molecular profile of mpMRI visible
versus invisible lesions indicates that under expression of cellular organization and
structure underlies mpMRI invisibility (see publication, Appendix A).

• We also compared derived commercially available tissue-based prognostic biomarker
assays (Myriad Prolaris cell cycle progression (mxCCP), OncotypeDX genomic prostate 
score (mxGPS), and Decipher genomic classifier (mxGC) between mpMRI visible and 
invisible lesions and found no significant difference in the scores. 

Development a 9-gene signature to predict mpMRI visible tumors. Annotated heatmap of 
differentially expressed genes between mpMRI visible and invisible PCa which were identified with the 
EdgeR package using a Benjamini-Hochberg procedure (BH) adjusted false discovery rate (FDR) cutoff 
of < 0.05. Targets and samples were clustered using hierarchical clustering based on Euclidian 
distances. Comparisons of observed (first row) vs. predicted (second row) mpMRI visibility using the 9-
gene signature is shown. 
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• Major Task 4: Elucidate the molecular profile of low-grade fusion biopsy cores
obtained from PIRADS 4 and 5 lesions and correlate these findings with RP
pathology.
This experiments are ongoing.

• Major Task 5: Assess tissue-based and novel urine-based prognostic scores in
biopsy core and urine respectively in patients with Gleason upgrading
This analysis is scheduled to be performed in the 4th year of the award.

Derivation and comparison of expression-based prognostic scores between mpMRI visible and 
invisible lesions. A) Boxplots of derived Myriad Prolaris cell cycle progression (mxCCP), OncotypeDX 
genomic prostate score (mxGPS), and Decipher genomic classifier (mxGC) stratified by mpMRI visibility status 
in our preliminary cohort (n= 10 patients, 26 cancer foci). Points represent individual cancer focus colored 
according to ISUP Grade Group. Unpaired t-tests were used to test for significant differences in mean score. 
There was no statistically significant difference between the derived prognostic scores of mpMRI-visible and -
invisible lesions (p > 0.05). B) Comparisons of derived mxGPS submodules stratified by mpMRI visibility status. 
Boxplots of derived mxGPS Androgen, Cellular Organization, and Stromal submodules stratified by mpMRI 
visibility status are shown. Unpaired t-tests were used to compare mean sub-component scores. Only the 
Cellular Organization submodule had a significant difference in mean expression (p = 0.014).  



12 

What opportunities for training and professional development has the project provided? 
Nothing to Report 

How were the results disseminated to communities of interest?    
Findings were disseminated in the form of publications in journals(Journal of Clinical Oncology 
Precision Oncology and European Urology Oncology) as well as in talks and interviews. 

What do you plan to do during the next reporting period to accomplish the goals?  

Major Task 1: Optimize experimental and analytic efforts 
o Optimizing RNA extraction and assay in ongoing urine sample collection.

Major Task 2: Determine the differential performance characteristics of our novel urine-based 
NGS assay to detect aggressive PCa in the setting of a – vs. + prostate mpMRI. This will be 
achieved once we optimize our urine RNA extraction. 

Major Task 5: Assess tissue-based and novel urine-based prognostic scores in biopsy 
core and urine respectively in patients with Gleason upgrading. This analysis is 
scheduled to be performed in the 4th year of the award. 
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4. IMPACT:

What was the impact on the development of the principal discipline(s) of the project?
The finding that mpMRI invisible prostate cancer are just as important biologically as visible
ones indicates that we should not use mpMRI alone for determining which patients should
undergo focal therapy or active surveillance.

The potential impact of the ongoing analyses will delineate the utility of using a urine test to
supplement mpMRI for detecting clinically significant prostate cancer.

What was the impact on other disciplines?
Nothing to report

What was the impact on technology transfer?
Nothing to report

What was the impact on society beyond science and technology?
Nothing to report

5. CHANGES/PROBLEMS:

Changes in approach and reasons for change
See Major task 1 above.

Actual or anticipated problems or delays and actions or plans to resolve them
This project was severely impacted by lab closures and temporary furloughs due to the
COVID-19 pandemic. Most recently, we have suffered issues imposed by supply chain
shortages. Regarding exhaustion of urine samples necessary for urine RNA extraction
optimization, we plan to use ongoing urine sample collection in our prostate cancer SPORE
project.

We will need to apply for a no-cost extension of the grant to completed our stated work.

Changes that had a significant impact on expenditures
Nothing to report.

Significant changes in use or care of human subjects, vertebrate animals, biohazards,
and/or select agents
Not applicable.

Significant changes in use or care of human subjects
Nothing to report

Significant changes in use or care of vertebrate animals
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Not applicable 

Significant changes in use of biohazards and/or select agents 
Not applicable 
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6. PRODUCTS:

• Publications, conference papers, and presentations

Journal publications.

Salami SS, Kaplan JB, Nallandhinghal S, Takhar M, Tosoian JJ, Lee M, Yoon J,
Hovelson DH, Plouffe KR, Kaffenberger SD, Schaeffer EM, Karnes R, Lotan TL,
Morgan TM, George, AK, Montgomery JS, Davenport MS, You S, Tomlins SA, Curci
NE, Kim HL, Spratt DE, Udager AM, Palapattu GS. Biologic Significance of MRI
Invisibility in Localized Prostate Cancer (JCO Precision oncology, 2019, in press,
acknowledgement of federal support – yes)

Cani AK, Hu K, Liu CJ, Siddiqui J, Zheng Y, Han S, Nallandhighal S, Hovelson DH, Xiao
L, Pham T, Eyrich NW, Zheng H, Vince R Jr, Tosoian JJ, Palapattu GS, Morgan TM,
Wei JT, Udager AM, Chinnaiyan AM, Tomlins SA, Salami SS. Development of a Whole-
urine, Multiplexed, Next-generation RNA-sequencing Assay for Early Detection of
Aggressive Prostate Cancer. Eur Urol Oncol. 2021 Mar 31:S2588-9311(21)00046-8.
doi: 10.1016/j.euo.2021.03.002. Online ahead of print.PMID: 33812851

Books or other non-periodical, one-time publications.
Nothing to report

Other publications, conference papers and presentations. 

Eyrich NW, Wei JT, Niknafs YS, Siddiqui J, Ellimoottil C, Salami SS, Palapattu GS, 
Mehra R, Kunju LP, Tomlins SA, Chinnaiyan AM, Morgan TM, Tosoian JJ. Association 
of MyProstateScore (MPS) with prostate cancer grade in the radical prostatectomy 
specimen. Urol Oncol. 2021 Nov 6:S1078-1439(21)00433-6. doi: 
10.1016/j.urolonc.2021.09.007. Online ahead of print.PMID: 34753659 

Stensland KD, Kaffenberger SD, George AK, Morgan TM, Miller DC, Salami SS, Dunn 
RL, Palapattu GS, Montgomery JS, Hollenbeck BK, Skolarus TA. Prostate cancer 
clinical trial completion: The role of geography. Contemp Clin Trials. 2021 Oct 
19;111:106600. doi: 10.1016/j.cct.2021.106600. Online ahead of print.PMID: 34673273 

Jadvar H, Calais J, Fanti S, Feng F, Greene KL, Gulley JL, Hofman M, Koontz BF, Lin 
DW, Morris MJ, Rowe SP, Royce TJ, Salami S, Savir-Baruch B, Srinivas S, Hope TA. 
Appropriate Use Criteria for Prostate-Specific Membrane Antigen PET Imaging. J Nucl 
Med. 2021 Sep 30:jnumed.121.263262. doi: 10.2967/jnumed.121.263262. Online ahead 
of print.PMID: 34593595 

Stangl-Kremser J, Rasul S, Tosoian JJ, Salami SS, Zaslavsky A, Udager A, Mazal P, 
Kain R, Comperat E, Hacker M, Haug A, Mitterhauser M, Pozo-Salido C, Steinbach C, 
Hassler MR, Kramer G, Shariat SF, Palapattu GS. Single-lesion Prostate-specific 
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Membrane Antigen Protein Expression (PSMA) and Response to [177Lu]-PSMA-ligand 
Therapy in Patients with Castration-resistant Prostate Cancer. Eur Urol Open Sci. 2021 
Jun 30;30:63-66. doi: 10.1016/j.euros.2021.06.007. eCollection 2021 
Aug.PMID: 34337549 
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abstract

PURPOSE Multiparametric magnetic resonance imaging (mpMRI) is used widely for prostate cancer (PCa)
evaluation. Approximately 35% of aggressive tumors, however, are not visible on mpMRI. We sought to identify
the molecular alterations associated with mpMRI-invisible tumors and determine whether mpMRI visibility is
associated with PCa prognosis.

METHODS Discovery and validation cohorts included patients who underwent mpMRI before radical prosta-
tectomy and were found to harbor both mpMRI-visible (Prostate Imaging and Reporting Data System 3 to 5) and
-invisible (Prostate Imaging and Reporting Data System 1 or 2) foci on surgical pathology. Next-generation
sequencing was performed to determine differential gene expression between mpMRI-visible and -invisible foci.
A genetic signature for tumor mpMRI visibility was derived in the discovery cohort and assessed in an in-
dependent validation cohort. Its association with long-term oncologic outcomes was evaluated in a separate
testing cohort.

RESULTS The discovery cohort included 10 patients with 26 distinct PCa foci on surgical pathology, of which 12
(46%) were visible and 14 (54%) were invisible on preoperative mpMRI. Next-generation sequencing detected
prioritized genetic mutations in 14 (54%) tumor foci (n = 8 mpMRI visible, n = 6 mpMRI invisible). A nine-gene
signature (composed largely of cell organization/structure genes) associated with mpMRI visibility was derived
(area under the curve = 0.89), and the signature predicted MRI visibility with 75% sensitivity and 100%
specificity (area under the curve = 0.88) in the validation cohort. In the testing cohort (n = 375, median follow-up
8 years) there was no significant difference in biochemical recurrence, distant metastasis, or cancer-specific
mortality in patients with predicted mpMRI-visible versus -invisible tumors (all P . .05).

CONCLUSION Compared with mpMRI-invisible disease, mpMRI-visible tumors are associated with under-
expression of cellular organization genes. mpMRI visibility does not seem to be predictive of long-term cancer
outcomes, highlighting the need for biopsy strategies that detect mpMRI-invisible tumors.

JCO Precis Oncol. © 2019 by American Society of Clinical Oncology

INTRODUCTION

Distinguishing aggressive from indolent clinically lo-
calized prostate cancer (PCa) continues to pose
a significant clinical challenge. Recent efforts to
overcome this have involved the development and
optimization of several diagnostic strategies, including
multiparametric magnetic resonance imaging (mpMRI).
mpMRI permits visual identification of areas that are
suggestive for intermediate to high-grade cancer. The
emergence of various MRI/ultrasound fusion biopsy
platforms has led to increased detection of aggressive PCa
by facilitating targeted biopsy of visible lesions.1-6 As
a result, mpMRI is now widely used in guiding treatment
decisions in men with clinically localized disease, espe-
cially when selecting patients suitable for active surveil-
lance or potentially focal therapy.7-10 The prevailing view is
that only mpMRI-visible cancers require clinical action.

However, use of mpMRI in the evaluation of men with
PCa is limited by cancer multifocality and interfocal
disease heterogeneity. Individual patients are known
to harbor multiple spatially distinct PCa foci with
varying clinical, radiographic, and pathologic
characteristics.11-15 Up to 55% of all PCa foci and 35%
of clinically significant foci are not visible on
mpMRI.3,16,17 Furthermore, more than 35% of lesions
1 cm or larger are missed by mpMRI.17 Although some
studies have demonstrated that up to 50% of mpMRI-
invisible PCa may harbor relevant genomic alterations,
the clinical and prognostic significance of mpMRI-
invisible PCa remains unknown.18 An improved un-
derstanding of the molecular characteristics and
clinical trajectories of mpMRI-visible and -invisible
cancers could facilitate more optimal treatment allo-
cation. For example, if mpMRI-invisible foci are found
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to be biologically indolent, those with a known diagnosis of
low-grade disease and a negative mpMRI could be directed
toward active surveillance. Similarly, those with a single
lesion detected on mpMRI could be more confidently di-
rected toward focal therapy, with low concern for missing
a clinically relevant lesion. We herein sought to characterize
the molecular profile of mpMRI-visible and -invisible PCa
foci using next-generation sequencing (NGS). In addition,
we test the prognostic significance of our mpMRI-derived
genomic signature after radical prostatectomy (RP).

METHODS

Study Design

The study used three independent patient populations:
discovery, validation, and testing cohorts. Institutional re-
view board approval was obtained for each cohort. First, we
identified patients with clinically localized disease who
underwent preoperative mpMRI at the University of
Michigan in 2015 to 2016 and were subsequently found to
harbor multifocal PCa at RP. We enriched for patients with
both mpMRI visible and invisible PCa (Figs 1A and 1B) to
constitute the discovery cohort. The validation cohort from
Cedars-Sinai Medical Center included patients with either
mpMRI-visible or -invisible foci, as previously described.19

The testing cohort was composed of patients from the
Decipher GRID PCa database treated at Johns Hopkins
Medical Institute and Mayo Clinic (ClinicalTrials.gov iden-
tifier: NCT02609269) who underwent genome-wide ex-
pression profiling after RP.20,21

Preoperative Prostate mpMRI and Pathologic Evaluation

In the discovery and validation cohorts, mpMRI comprising
T2-weighted imaging, diffusion-weighted imaging, and dy-
namic contrast-enhanced imaging was obtained. All mpMRI
results were re-reviewed and coregistered with whole-mount
formalin-fixed paraffin-embedded RP specimens to delineate
mpMRI-visible (Prostate Imaging and Reporting Data
System [PI-RADS] version 2; score, 3 to 5) and -invisible

foci. Additional procedural details are described in the Data
Supplement. Data on mpMRI were not available for the
testing cohort.22

Targeted DNA and RNA NGS

In the discovery cohort, DNA and RNA from each focus
were co-isolated for targeted multiplex NGS as previously
described23 and detailed in the Data Supplement. Our
targeted NGS assays were designed to assess relevant PCa
genomic and transcriptomic alterations and derive clinically
available prognostic tests.15 The details of RNA sequencing
in the validation cohort and genome-wide expression
profiling in the testing cohorts have been previously
described.19,24

Bioinformatic Analysis of the Discovery Cohort

NGS data analysis was performed using Torrent Suite
(4.2.0; Thermo Fisher Scientfic, Waltham, MA) and the
Coverage Analysis Plug-ins v.5.0.4. (Thermo Fisher Sci-
entific), along with the Ion Reporter (4.2.0; Thermo Fisher
Scientific). All other analyses were performed using R
Project for Statistical Computing v.3.2.3. Details regarding
targeted NGS techniques, quality control parameters, DNA
copy number alterations and variant calls, fusion isoform
and partner level analysis, androgen receptor (AR) and AR-
splice variants detection, and prognostic scores derivation
have been previously described and summarized in the
Data Supplement.15,25,26

Differential Gene Expression Analysis of mpMRI-Visible

and -Invisible Cancer Foci

To determine gene expression differences between
mpMRI-visible and -invisible tumors, we analyzed RNAseq
data from the discovery cohort using two approaches—
differential expression (DE) analysis and random forest (RF)
classifier—as described in the Data Supplement. From
these two approaches, a gene expression signature com-
prising independent differentially expressed genes was
developed to predict mpMRI tumor visibility status.

CONTEXT

Key Objective
What is the molecular basis for prostate cancer visibility on multiparametric magnetic resonance imaging (mpMRI), and do

mpMRI-invisible tumors harbor any clinical or biologic significance compared with visible tumors?
Knowledge Generated
mpMRI-visible tumors demonstrated underexpression of genes associated with cellular organization and structure. Using

a novel genetic signature for tumor visibility on mpMRI, patients with predicted mpMRI-visible and -invisible tumors did not
experience significant differences in biochemical recurrence, distant metastasis, or cancer-specific mortality during follow-
up.

Relevance
Prostate cancers that are mpMRI invisible have similar clinical behavior to mpMRI-visible tumors. Negative mpMRI seems

insufficient to rule out clinically relevant prostate cancer, and patients at increased risk should be considered for additional
testing or systematic prostate biopsy.

Salami et al
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FIG 1. Radiogenomic characterization of multifocal prostate cancer. (A) Cartoon depicting multifocal prostate cancer (PCa) with both multiparametric
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Prognostic Significance of mpMRI-Based Gene

Expression Signature

A total of 375 patients with genome-wide expression pro-
files were pooled from two independent case-cohort
studies20,21 to constitute the testing cohort. The mpMRI-
based nine-gene expression signature was applied to the
testing cohort to predict mpMRI visibility status. Kaplan-
Meier curves and Cox proportional hazard regression were
used to evaluate the performance of this signature in
predicting oncological outcomes: biochemical recurrence-
free survival (BFS), distant metastasis–free survival
(DMFS), and PCa-specific mortality (PCSM). Multivariable
analyses were performed to evaluate this signature as an
independent predictor of oncological outcomes after
adjusting for relevant clinicopathological variables, in-
cluding preoperative prostate-specific antigen, pathologic
grade group (GG), surgical margins, extraprostatic exten-
sion, seminal vesicle invasion, and lymph node invasion.
Spearman correlation analysis was performed to measure
the association of the gene signature with cellular organi-
zation pathway activity. Mean expression of genes involved
in the cellular organization pathway on the Oncotype Dx
genomic prostate score (GPS; Genomic Health, Redwood
City, CA) assay was correlated with the mpMRI-based gene
expression signature.27 Statistical analyses were performed
in R version 3.3.3, and all statistical tests were two-sided
using a .05 significance level.

RESULTS

Study Cohorts

The discovery cohort included 10 patients from the Uni-
versity of Michigan PCa database with both mpMRI-visible
and -invisible lesions (Fig 1). The clinicopathological
characteristics of the discovery cohort are shown in the
Data Supplement. Of the 26 cancer foci identified on
surgical pathology specimens, 12 foci (46%) were visible
on mpMRI. Among the 14 mpMRI-invisible foci (54%), five
(36%) were GG2 and the remainder were GG1 (Fig 1C and
Data Supplement). There were 16 patients in the validation
cohort, of whom eight (50%) had mpMRI-invisible cancer
lesions, and two of these (25%) were GG2 (Data Supple-
ment). A summary of patient-level characteristics of the
testing cohort (n = 375) stratified by predicted mpMRI
visibility status is shown in the Data Supplement. The
median age at RP was 62 years, and median follow-up time
for censored patients was 8 years. During follow-up, 136
(36.3%) patients experienced biochemical recurrence,

55 (14.7%) developed metastasis, and 28 (7.5%) died as
a result of PCa (Data Supplement).

Detection of Mutations and Copy Number Alterations in

the Discovery Cohort

We detected high-confidence mutations in 14 of 26 (54%)
tumor foci; six (43%) of the mutations were identified in
mpMRI-invisible lesions. Notable somatic point mutations
were in APC, ARID1B, ATM, NOTCH1, and SPOP. We
detected PTEN one copy number loss in 25% (three of 12)
and 14.3% (two of 14) of mpMRI-visible and -invisible foci,
respectively (Fig 1C).

Discovery and Validation of a Nine-Gene Expression

Signature for mpMRI Visibility

Of the 26 total tumor foci in the discovery cohort and 306
amplicons on the RNAseq panel, 24 samples and 74
amplicons, respectively, passed quality control parameters
and underwent DE analysis (Data Supplement). Using DE
analysis (Data Supplement) and RF classifier (Data Sup-
plement) to identify candidate differentially expressed
genes, we interrogated four separate logistic regression
models for predicting mpMRI tumor visibility status using
the 19 DE analysis genes, 20 RF genes, 11 shared genes
between the DE analysis and RF gene sets, and 11 shared
genes combined with the mutually exclusive genes (Data
Supplement). A multivariable RNAseq-based logistic re-
gression model with the best performance for predicting
mpMRI visibility status, comprising a nine-gene expression
signature, was developed from the intersection of the DE
analysis and RF gene sets (Fig 2A; Data Supplement). This
signature correctly predicted seven (70%) of the mpMRI-
visible and 13 (93%) of the mpMRI-invisible foci in the
discovery cohort, yielding an area under the curve of 0.89.
The optimal probability cutoff for predicting mpMRI-visible
tumor was greater than 0.46, with a sensitivity and spec-
ificity of 80% and 86%, respectively, in the discovery cohort
(Figs 2A and 2B). We observed underexpression of seven of
the nine genes in mpMRI-visible tumors, the majority of
which were stromal, cellular organization, and structure
genes (Fig 2A; Data Supplement).

The nine-gene expression signature was then evaluated in
the independent validation cohort (Cedars-Sinai Medical
Center) using the predetermined optimal probability cutoff
(from the discovery cohort) to predict mpMRI visibility
status. The receiver operating characteristic curve in the
validation cohort is shown in Fig 2B, with an area under the
curve of 0.88. The sensitivity and specificity of the signature

FIG 1. (Continued). radical prostatectomy specimen (hematoxylin and eosin, panel 4). Cancer foci P2 (GG 2) and P3 (GG 1) were both mpMRI invisible. (C)
Integrative summary of the primary multifocal PCa cohort. Ten patients comprising 26 distinct PCa foci were evaluated. Two samples (patient 7) did not pass
initial RNA quality thresholds and were thus omitted. Each patient had at least oneMRI-visible and oneMRI-invisible cancer focus. Recurrent DNA variants are
shown. Log2 copy-number ratio for PTEN is also shown. PTEN one copy number loss was observed in 25% (three of 12) and 14.3% (two of 14) of mpMRI-visible
and invisible cancer foci, respectively (false discovery rate, less than 5%). Expression of SPINK1, ERG, and ETV1, as well as expressed isoforms of TMPRSS2-ERG
are shown.
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for predicting mpMRI visibility status were 75% and 100%,
respectively, in the validation cohort. Notably, the signature
correctly predicted two GG2 cancers that were mpMRI
invisible in the validation cohort.

Prognostic Significance of the Nine-Gene mpMRI

Visibility Expression Signature

The distribution of each gene composing the nine-gene
signature in the normalized microarray data (testing cohort)
from the Decipher GRID mapped to The Cancer Genome
Atlas Prostate Adenocarcinoma (TCGA-PRAD) RNAseq
closely resemble that of the discovery cohort (Data Sup-
plement). We applied the expression signature to the
testing cohort as a proxy for mpMRI tumor visibility. Of the
375 patients in the testing cohort, 177 (47.2%) were
classified as mpMRI visible (Data Supplement). Using the
predicted probability as a surrogate for mpMRI, we found
that the mpMRI visibility signature was not a predictor of
BFS, DMFS, or PCSM (Fig 3; all log-rank P . .05). Simi-
lar findings were observed when the testing cohort data

were not mapped to the TCGA-PRAD RNAseq cohort
(Data Supplement; all log-rank P . .05). Adjusting for
relevant clinicopathological variables on multivariable
analysis, we found that genomic signature–determined
mpMRI visibility status was not an independent predictor of
BCR, metastasis, or PCSM (Fig 4; Data Supplement; all P.
.05). Similar findings were observed when the testing co-
hort data were not mapped to the TCGA-PRAD RNAseq
data (Data Supplement; all P . .05)

Molecular Basis of Cancer Visibility on mpMRI

Using our multiplex (mx) RNAseq data from the discovery
cohort, we derived commercially available tissue-based
prognostic biomarker test scores (Myriad Prolaris cell cy-
cle progression [mxCCP] score, Oncotype DX [mxGPS],
and the GenomeDX genomic classifier [mxGC]) for each
cancer focus, as previously described.15 We found no
significant difference in the mxCCP, mxGPS, and mxGC
scores between mpMRI-visible and -invisible foci (Fig 5A;
all P . .05). However, as described above, we observed
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FIG 2. Development and validation of a nine-gene signature to predict multiparametric magnetic resonance imaging (mpMRI)–visible tumors. (A) Annotated
heat map of differentially expressed genes in the training cohort. Differentially expressed genes were identified with the EdgeR package using a Benjamini-
Hochberg procedure adjusted false discovery rate cutoff of less than 0.05. Targets and samples were clustered using hierarchical clustering on the basis of
Euclidian distances. Comparisons of observed (first row) versus predicted (second row) mpMRI visibility using the nine-gene signature are shown in the
annotation, as well as International Society of Urological Pathology grade group. (B) Receiver operating characteristic curves for the signature in the discovery
(University of Michigan [UM]) versus the validation (Cedars-Sinai Medical Center [CSMC]) cohorts. The signature was developed with multivariable ridge
logistic-regression model using cross-validation for λ hyperparameter selection. The area under the curve (AUC) for the signature was not significantly
different between the discovery and the validation cohorts (0.89 v 0.88, Delong’s unpaired t test, P = .877). The optimal probability cutoff for predicting
mpMRI-visible tumor was greater than 0.46, with a sensitivity and specificity of 75% and 100% in the validation cohort, respectively.
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underexpression of seven of the nine genes in mpMRI-
visible tumors, the majority of which were stromal, cellular
organization, and structure genes (Fig 2A; Data Supple-
ment). We then computed three subcomponents of the
OncotypeDx GPS, as previously described,15,27 and com-
pared these between mpMRI-visible and -invisible tumors.
There were no significant differences in the expression of
OncotypeDx GPS androgen signaling and stromal response
submodules between mpMRI-visible and -invisible tumors
(Fig 5B; both P. .05). However, we found underexpression
of the cellular organization submodule of the OncotypeDx
GPS panel in mpMRI-visible tumors consistent with the
results of the nine-gene signature (Fig 5B; all P = .014).

Similarly, using data from the testing cohort, we found
underexpression of the OncotypeDx GPS cellular organiza-
tion module in predicted mpMRI-visible compared with
-invisible foci (Data Supplement; all P , .05). Taken to-
gether, these findings suggest that loss of cellular organi-
zation and structure contributes to PCa visibility on mpMRI.

DISCUSSION

To better understand the molecular alterations associated
with mpMRI visibility and prognostic significance of
mpMRI-invisible disease, we performed a comprehensive
molecular characterization of primary multifocal PCa in-
clusive of both mpMRI-visible and -invisible tumor foci
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FIG 3. Prognostic significance of predicted multiparametric magnetic resonance imaging (mpMRI) visibility status.
Patients (n = 375) in the testing cohort were pooled from two independent case-cohort studies (Johns Hopkins
Medical Institute [n = 260] and Mayo Clinic [n = 235]) to test the capacity of predicted mpMRI visibility status to
predict (A) biochemical recurrence-free survival (BFS), (B) distant metastasis-free survival (DMFS), and (C) prostate
cancer–specific mortality (PCSM). The expression data in this cohort were generated using Affymetrix human exon
1.0 ST array (Santa Clara, CA). Normalization was performed to match the distribution of the genomic data from this
cohort to The Cancer Genome Atlas Prostate Adenocarcinoma RNAseq data, as described in Methods, to facilitate
testing of the RNASeq-based nine-gene signature to predict mpMRI-visible tumors (Data Supplement). mpMRI
visibility status was computed using the signature: high score denotesmpMRI-visible and low score denotesmpMRI-
invisible tumor. Kaplan-Meier survival curves were plotted and compared between predicted mpMRI-visible and
-invisible tumor using log-rank test. There were no significant differences in BFS, DMFS, and PCSM between
predicted mpMRI-visible and -invisible tumors (all P . .05). Similar results were obtained using the Affymetrix
microarray data that were not matched to the distribution of the The Cancer Genome Atlas Prostate Adenocarcinoma
RNAseq data (Data Supplement).
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using a targeted multiplex NGS approach. We observed
that mpMRI-invisible cancer may possess mutations in
known cancer-associated genes, with close to 15%
harboring PTEN one copy number loss. Using robust
biostatistic methods, we developed and validated a novel
nine-gene signature to predict PCa mpMRI visibility status.
Interrogation of this signature in a distinct cohort with long-
term follow-up revealed no significant association with BFS,
DMFS, or PCSM. Intriguingly, additional analyses revealed
that underexpression of genes associated with cellular
organization and structure may underpin the molecular

basis of PCa visibility on mpMRI. Taken together, these
findings indicate that mpMRI-invisible cancer foci harbor
many of the same aggressive molecular features as mpMRI-
visible foci and may also be clinically significant.

The molecular basis of PCa visibility on mpMRI is poorly
understood. Although tumor size and grade contribute to
cancer visibility on mpMRI, the architecture of the glands
may play an important role.28-31 For example, tumors
harboring cribriform Gleason pattern 4 were less likely to be
detected by mpMRI compared with poorly formed or fused
glands, suggesting that tumor size and grade alone do not
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explain cancer visibility on mpMRI.28 In a recent report, Li
et al19 observed significant fold changes of differentially
expressed genes on the basis of mpMRI visibility regardless
of Gleason score or tumor size, including genes involved in
cytoskeleton organization. Similarly, the majority of genes

composing our novel mpMRI visibility signature are in-
volved in cytoskeletal organization and structure. Other
smaller-scale studies have reported the possible role of
CHD1 deletion32 and PTEN loss33,34 in PCa mpMRI
visibility. In the current study, we found that 25% of
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FIG 5. Derivation and comparison of expression-based prognostic scores between multiparametric magnetic
resonance imaging (mpMRI)–visible and -invisible lesions. (A) Box plots of derived Prolaris cell cycle progression
(mxCCP) score, Oncotype DX genomic prostate score (mxGPS), and Decipher genomic classifier (mxGC) stratified
by mpMRI visibility status in the discovery cohort (n = 10 patients; 26 cancer foci). Points represent individual
cancer focus colored according to International Society of Urological Pathology grade group (GG). Unpaired t tests
were used to test for significant differences in mean score. There was no statistically significant difference between
the derived prognostic scores of mpMRI-visible and -invisible lesions (P. .05). (B) Comparisons of derived mxGPS
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mpMRI-visible foci in the discovery cohort demonstrated
PTEN one copy number loss compared with 14% in
mpMRI-invisible foci. In aggregate, our work and that of
others suggests that cellular (dis)organization contributes
significantly to the underlying basis of PCa visibility on
mpMRI. Additional studies are needed to further charac-
terize the fundamental basis of PCa visibility on mpMRI.

The prognostic significance of mpMRI-invisible PCa foci is
unknown. Although PCa is multifocal andmpMRI may miss
up to 35% of intermediate- to high-grade PCa, the absence
of visible lesions on mpMRI has been proposed as a reason
to defer confirmatory biopsy when considering active
surveillance.1,3,16,17 In addition, mpMRI is increasingly
being used to identify the index or dominant cancer foci for
focal therapy. To be sure, although size and grade are
believed to be important, how best to define the biologically
dominant cancer in multifocal disease is not known.35 To
date, no study has demonstrated the clinical trajectory of
mpMRI-visualized lesions. Such a study would be a chal-
lenge to perform, given the long duration of follow-up re-
quired and the multifocal nature of PCa, with frequent
coexistence of mpMRI-visible and -invisible cancers within
the same gland.31

Salmasi et al36 reported that the PI-RADS (a grading system
for mpMRI lesion visibility) was not a significant predictor of
adverse pathology at the time of RP. Similarly, Parry et al18

found that 50% of mpMRI-invisible cancers harbored one or
more genetic alterations commonly observed in metastatic
castrate-resistant PCa, suggesting that mpMRI-invisible tu-
mors may be as important as visible ones. In the study by Li
et al,19 a four-gene signature comprising genes differentially
expressed between mpMRI-visible and -invisible PCa was
shown to predict BFS in two external data sets. However, this
signature was not developed as a predictor of or a surrogate
for mpMRI cancer visibility, but rather it was selected on the
basis of their common association with mpMRI visibility and
metastasis. By contrast, in this first study of its kind to our
knowledge, using a validated novel mpMRI-based RNAseq
signature as a surrogate instrument for mpMRI visibility
status, we have demonstrated that predicted mpMRI visi-
bility status was not associated with BFS, DMFS, or PCSM
during long-term follow-up. Put another way, mpMRI-
invisible PCa does not seem to represent purely indolent
disease; mpMRI-invisible lesions may be just as clinically
relevant as mpMRI-visible disease. Future studies aimed at
better defining the biologically dominant nodule and prog-
nostic significance of mpMRI are warranted.

Our findings have significant clinical implications in the
management of PCa. First, in the diagnostic setting, these
data corroborate findings from several institutions in-
dicating that a negative mpMRI does not rule out the
presence of clinically significant PCa3,17,31 and should
therefore not preclude a prostate biopsy without consid-
eration of clinical risk.37,38 Second, in the setting of active

surveillance, our findings underscore the potential for
mpMRI-invisible cancer foci to harbor similar biologic
trajectories as mpMRI-visible disease. Although additional
studies are needed to delineate the utility of mpMRI in
reducing the frequency of surveillance biopsies, the current
literature supports systematic in addition to targeted bi-
opsies in men undergoing active surveillance.3,6 Last, for
men considering focal therapy, our data demonstrate that
mpMRI alone is not sufficient to rule out the presence of
a potentially lethal, nondominant cancer focus.

Our study has several limitations. First, we used a targeted
NGS approach; thus it is conceivable that other potential
alterations implicated in mpMRI cancer visibility may have
been missed. Notwithstanding, our novel RNAseq signa-
ture developed from a targeted NGS approach demon-
strated high fidelity for predicting mpMRI visibility in the
validation cohort, where tumors underwent whole-
transcriptome profiling. Second, we did not use the com-
mercially available platforms for Oncotype Dx, Prolaris, and
Decipher assays in the discovery cohort. The validity and
consistency of deriving these scores from RNAseq data has
been previously reported.15 Third, there were no GG4 and 5
lesions in our cohort. However, our novel RNAseq signature
demonstrated high accuracy for predicting mpMRI visibility
in the validation cohort, including 19% GG5 lesions.
Moreover, GG4 and 5 lesions are generally mpMRI visible,
and such patients routinely undergo whole-gland therapy.
Fourth, the discovery cohort was made up of a relatively
small sample, with low proportion of ERG-positive tumors.
Nonetheless, we similarly observed high test performance
in the validation cohort with ERG overexpression in 31% of
samples. Fifth, what constitutes mpMRI-visible or -invisible
lesions is not purely objective. To facilitate reproducibility,
all lesions in the current study were scored according to the
validated PI-RADS v2 system. PI-RADS 1 and 2 lesions
were classified as mpMRI invisible, and PI-RADS 3 to 5
were classified as mpMRI visible. Finally, the prognostic
significance of mpMRI-invisible cancer was evaluated in
the testing cohort using a surrogate molecular marker for
mpMRI visibility status. Thus, additional studies are needed
to delineate the prognostic significance of mpMRI-invisible
PCa in a prospective clinical cohort.

Discerning aggressive from indolent disease remains a
significant clinical challenge in the evaluation and man-
agement of men with primary PCa. Our findings indicate
that mpMRI-invisible cancers were no less likely to harbor
lethal biologic potential than visible tumors, highlighting the
limitation of using mpMRI alone to guide patient man-
agement or delineate specific index cancer foci for ablative
therapy. Our results also highlight the continued need for
biopsy strategies that detect mpMRI-invisible tumors. Fu-
ture PCa molecular studies are needed to further char-
acterize the molecular basis of cancer visibility on mpMRI
and determine its prognostic significance.
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Abstract

Background: Despite biomarker development advances, early detection of aggres-
sive prostate cancer (PCa) remains challenging. We previously developed a clinical-
grade urine test (Michigan Prostate Score [MiPS]) for individualized aggressive PCa
risk prediction. MiPS combines serum prostate-specific antigen (PSA), the
TMPRSS2:ERG (T2:ERG) gene fusion, and PCA3 lncRNA in whole urine after digital
rectal examination (DRE).
Objective: To improve on MiPS with a novel next-generation sequencing (NGS)
multibiomarker urine assay for early detection of aggressive PCa.
Design, setting, and participants: Preclinical development and validation of a
post-DRE urine RNA NGS assay (Urine Prostate Seq [UPSeq]) assessing 84 PCa
transcriptomic biomarkers, including T2:ERG, PCA3, additional PCa fusions/iso-
forms, mRNAs, lncRNAs, and expressed mutations. Our UPSeq model was trained
on 73 patients and validated on a held-out set of 36 patients representing the
spectrum of disease (benign to grade group [GG] 5 PCa).
Outcome measurements and statistical analysis: The area under the receiver
operating characteristic curve (AUC) of UPSeq was compared with PSA, MiPS,
and other existing models/biomarkers for predicting high-grade (GG �3) PCa.
Results and limitations: UPSeq demonstrated high analytical accuracy and con-
cordance with MiPS, and was able to detect expressed germline HOXB13 and
tio
Algorithm somatic SPOP muta
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GG �3 PCa, stratified to exclude GG 2 cancer in order to capture signal difference
between extreme ends of disease), UPSeq showed differential expression for T2:
ERG.T1E4 (1.2 vs 78.8 median normalized reads, p < 0.00001) and PCA3 (1024 vs
2521, p = 0.02), additional T2:ERG splice isoforms, and other candidate biomark-
ers. Using machine learning, we developed a 15-transcript model on the training
set (n = 73) that outperformed serum PSA and sequencing-derived MiPS in
predicting GG �3 PCa in the held-out validation set (n = 36; AUC 0.82 vs
0.69 and 0.69, respectively).
Conclusions: These results support the potential utility of our novel urine-based
RNA NGS assay to supplement PSA for improved early detection of aggressive
PCa.
Patient summary: We have developed a new urine-based test for the detection
of aggressive prostate cancer, which promises improvement upon current
biomarker tests.

© 2021 Published by Elsevier B.V. on behalf of European Association of Urology.
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1. Introduction

Despite rec ent biomarker and imaging advances, noninva-
sive early detection of aggressive prostate cancer (PCa)
remains clinically challenging. Serum prostate-specific
antigen (PSA) performance is limited by poor specificity
[1], diminishing its utility in early detection of aggressive
PCa or active surveillance (AS) of low-risk disease [2,3]. Re-
cently, multiparametric magnetic resonance imaging
(mpMRI) has improved the detection of aggressive disease
[4]; however, mpMRI misses up to 35% of aggressive PCa foci
in multifocal disease [5–7]. Additionally, biopsy remains a
costly, complication-prone procedure [8–10]. The current
paradigm has led to delayed high-grade PCa detection,
unnecessary biopsies, overdetection and overtreatment of
likely indolent, low-grade cancer, and unnecessary health-
care expenditure [11]. Hence, accurate noninvasive bio-
markers for aggressive PCa are urgently needed.

A urine-based approach has the theoretical potential to
overcome PCa multifocality, and inter- and intrafocal
heterogeneity [12–14]. Urine provides an opportunity to
sample the entire prostate, including lesions missed or
undersampled by mpMRI or biopsies. The only Food and
Drug Administration–approved PCa urine biomarker test,
the PROGENSA PCA3 assay, measures the PCa-associated
lncRNA PCA3 [15]. Other available urine-based laboratory-
developed tests (LDTs) include SelectMDx (DLX1+HOXC6)
[16], the Prostate IntelliScore (PCA3+ERG) [17], and
Michigan Prostate Score (MiPS; serum PSA + urinary
PCA3 + TMPRSS2-ERG [18,19] developed by our group).
These tests improve upon PSA alone in predicting the
presence of high-grade PCa (grade group [GG] >1).
However, the wealth of genomic/transcriptomic informa-
tion generated in the past decade from tissue-based next-
generation sequencing (NGS) studies remains largely
underdeveloped as early detection biomarkers [20–
23]. None of the currently available urine (or tissue)
assays targets gene fusions (beyond TMPRSS2-ERG.T1E4,
the predominant fusion transcript isoform joining the first
TMPRSS2 exon to the fourth ERG exon) or recurrent
germline/somatic mutations, or employs NGS.
Please cite this article in press as: Cani AK, et al. Development of a
Assay for Early Detection of Aggressive Prostate Cancer. Eur Urol
Here, we leverage data from PCa genomic and tran-
scriptomic profiling (including our previous development of
a 306-gene formalin-fixed paraffin-embedded [FFPE] tis-
sue-based RNA NGS assay [24]) to develop a robust post–
digital rectal examination (DRE) whole-urine RNA NGS
assay for early detection of aggressive PCa—Urine Prostate
Seq (UPSeq). We show high analytical performance of
UPSeq, detect germline and somatic PCa driver mutations,
and use a machine learning approach to train a preliminary
UPSeq model for aggressive PCa detection, which out-
performed serum PSA and current models.

2. Patients and methods

2.1. Patient selection, DRE, and urine collection

All samples were collected under institutional review board–approved
protocols with informed consent. We retrospectively identified
126 patients to represent the spectrum of disease, benign to GG 5 PCa
(n = 109 eligible for analyses; Supplementary Table 1 and Supplementary
material). Histopathology was assessed based on prostate biopsy (n = 76)
and radical prostatectomy (n = 33). To assess MiPS versus UPSeq
concordance, we selected patients with a range of clinical MiPS scores.
For UPSeq model development and validation, we used an extreme
design strategy, that is, compared benign/GG 1 (n = 65) versus GG �3
(n = 44) PCa. Urine collection was performed after an “attentive” DRE as
per the MiPS protocol (see the Supplementary material) [19].

2.2. RNA isolation, UPSeq panel selection, and model

development

RNA isolation for UPSeq was performed using the ZR Viral RNA Kit
(Supplementary material). Briefly, �5 ml of urine/GenProbe urine
transport media 1:1 mixture was mixed with 3� volume Viral RNA
buffer, passed through spin-column filters, washed, and eluted.

A schematic of our computational/experimental strategy is shown in
Supplementary Figure 1. A starting pool of 306 target transcripts from
our previously developed and validated amplicon-based multiplexed
PCa tissue RNAseq panel [24] was filtered down to 84 urine-relevant
amplicons, and a custom targeted RNA UPSeq panel was generated by the
ThermoFisher “white glove” team for the Ion Torrent AmpliSeq platform.

TargetedNGS was performed as previously described [24–30]. Briefly,
10–15ng DNase-treated RNA was subjected to random priming reverse
 Whole-urine, Multiplexed, Next-generation RNA-sequencing
 Oncol (2021), https://doi.org/10.1016/j.euo.2021.03.002
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transcription (RT). Target amplification on the cDNA using the UPSeq
panel with 23 polymerase chain reaction (PCR) amplification cycles
(adjusting up for low-RNA samples) and sequencing was performed on
the Ion Torrent platform. Data were analyzed using Torrent Suite
5.0.4. Target end-to-end read numbers were normalized to sample-
specific KLK3 reads. Traditional MiPS was performed as per the protocol
[19]. Expressed mutations were analyzed using aligned read pileups in
IGV.

Modeling and statistical analysis were performed in R version 3.2.3
(R Foundation for Statistical Computing). We divided the primary
extreme design cohort patients (representing the spectrum of disease
pathology, excluding GG 2) in a 2:1 ratio for model training and
validation, respectively. In the training dataset, we performed variable
selection using a random forest-based method and then logistic
regression to develop an UPSeq model for predicting GG � 3 disease,
maximizing the area under the receiver operating characteristic (AUC)
curve. The performance of the final 15-transcript model was evaluated
in the extreme design validation set by AUC with 95% confidence
interval (CI).
Fig. 1 – Workflow for the development of urine RNA NGS assay (UPSeq) for ear
FFPE tissue-based PCa prognostic RNA NGS assay [24] served as the starting po
three commercial tissue-based prognostic assays, relevant transcriptional signa
lncRNAs, expressed somatic/germline variants, etc. Heatmap shows tissue expr
spectrum. We filtered these 306 targets to select 84 transcripts relevant in urin
by tissue type in GTEX are shown), (2) transcripts differentially expressed in PC
vs prostate cancer are shown [24]), and (3) transcripts differentially expressed 

benign vs PCa are shown [24]). For our urine assay, �30 ml of first-catch urine
is mixed with RNA-preserving GenProbe urine transport media in a 1:1 ratio. F
transcript panel described above is performed on the Ion Torrent sequencing p
specific KLK3 read counts. A machine learning approach was used to train a m
CRPC = castration-resistant prostate cancer; FFPE = formalin-fixed paraffin emb
UPSeq = Urine Prostate Seq.

Please cite this article in press as: Cani AK, et al. Development of a
Assay for Early Detection of Aggressive Prostate Cancer. Eur Urol
3. Results

3.1. UPSeq assay design

Starting with the 306 transcripts from our previously
validated PCa tissue-based RNA NGS assay (Fig. 1) [24], we
generated a custom targeted RNA NGS panel (UPSeq)
comprising a target set of 84 transcripts (Supplementary
Table 2) for urine-based RNA sequencing using the
following three criteria: (1) prostate specificity (to avoid
confounding urine RNA contributions from other tissues);
(2) differential expression in PCa versus normal prostate
tissue; and (3) differential expression in aggressive/high-
grade PCa versus indolent/low-grade PCa (Fig. 1, violin, box
plots). Across a total of 233 samples, we isolated a median of
62.5 ng whole-urine RNA (interquartile range 34.2–
109.2 ng) from �2.5 ml urine with lysis, enough to perform
ly detection of aggressive prostate cancer (PCa). Our previously validated
ol of gene targets and amplicons. Its 306 amplicons include those in the
tures, vast majority of PCa gene fusions, known and novel PCa-related
ession data with expected patterns of expression across the disease
e, by prioritizing (1) prostate-specific targets (FOLH1 expression levels
a versus normal prostate tissue (HPN tissue expression levels for benign
in aggressive PCa (grade group >1; SChLAP1 tissue expression levels for

 obtained immediately after a digital rectal examination of the prostate
ive milliliters of this mix are used for RNA isolation. NGS with the 84-
latform, and target transcript read counts are normalized to sample-
odel for predicting the presence of PCa and aggressive PCa.
edded; GG = grade group; NGS = next-generation sequencing;

 Whole-urine, Multiplexed, Next-generation RNA-sequencing
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UPSeq four times (Supplementary Table 3 and Supplemen-
tary material).

3.2. UPSeq analytical performance and robustness testing

Detailed UPSeq assay analytical performance (Fig. 2 and
Supplementary Fig. 2), robustness testing (Supplementary
Fig. 3), and compatibility with high-throughput, low-
volume urine RNA isolation (Supplementary Fig. 4) are
presented in the Supplementary materials.

We performed UPSeq on two replicates each of 10 urine
samples performed �6 mo apart, to mimic real-world
conditions and test whether storage affects reproducibility
(Fig. 2A). Target transcript expression shown with unsuper-
vised hierarchical clustering yielded highly correlated
replicates (median Pearson’s R = 0.97, range 0.91–0.99) with
a wide dynamic range (representative sample and targets
shown in Fig. 2B and 2C). Target correlation matrices
yielded expected clusters of related targets (Supplementary
Fig. 2). UPSeq also demonstrated high robustness in various
suboptimal conditions (Supplementary Fig. 3) and in a high-
throughput automated RNA isolation method using ten-fold
lower urine input volume (Supplementary Fig. 4). Impor-
tantly, we demonstrate the ability of UPSeq to successfully
detect a PCa-predisposing HOXB13 p.G84E variant [31,32] in
urine RNA of one patient (Supplementary Fig. 5) at 42%
variant allele frequency (VAF), potentially a heterozygous
germline SNP that was validated in normal matched DNA.
UPSeq also successfully detected two SPOP hotspot somatic
mutations [20], p.F102C and p.F125I, in two PCa patients
(Supplementary Fig. 6 and 7, respectively) at low (but well
above background) VAFs (1.62% and 0.42%, respectively),
likely due in part to high SPOP expression in normal prostate
and urothelium (Supplementary Fig. 8) [33]. Negligible
levels of TMPRSS2-ERG reads were present in these samples,
consistent with mutual exclusivity between SPOP mutations
and ETS gene fusions [20,21]. Taken together, these data
support UPSeq’s ability to detect expressed PCa predispos-
ing germline variants and somatic mutations in urine, a
novel approach in the PCa urinary biomarker field.

We also assessed the performance of UPSeq using whole
urine not preceded by DRE (pre-DRE urine), which has
implications for direct-to-patient PCa screening. We
detected robust pre-DRE levels of highly expressed tran-
scripts (KLK2 and KLK3), concordant with their matched
post-DRE samples (R = 0.96 and 0.72, respectively; Supple-
mentary Fig. 9). More modestly expressed transcripts PCA3
and TMPRSS2-ERG.T1E4 were adequately detected, but with
generally reduced pre-DRE levels (R = 0.38 and 0.62,
respectively). Thus, detection of PCa RNA biomarkers in
pre-DRE urine is entirely feasible, even for low-expression
genes with some additional optimization.

Finally, to assess assay accuracy against orthogonal
methods, we performed reverse transcription quantitative
polymerase chain reaction (RT-qPCR) on patient urine RNA
samples for PCA3 and the two main TMPRSS2-ERG splicing
isoforms (T1E4 and T2E4; Fig. 2D). UPSeq and RT-qPCR
expression levels were highly correlated (R = 0.92, 0.95, and
0.97, respectively). Additionally, we assessed the perfor-
Please cite this article in press as: Cani AK, et al. Development of a
Assay for Early Detection of Aggressive Prostate Cancer. Eur Urol
mance of UPSeq against the transcription-mediated
amplification–based MiPS LDT test clinically offered by
our group [19]. Standard clinical MiPS scores were highly
concordant with UPSeq-derived scores for the two MiPS
transcripts (R = 0.75 and 0.96; Fig. 3A and 3B). MiPS also
combines these scores with serum PSA into two logistic
regression models that predict the risk of PCa or high-grade
(GG >1) PCa on pathology [19]. Clinical MiPS versus NGS-
derived MiPS model risk predictions were also highly
concordant (R = 0.86 vs 0.82) for each model (Fig. 3C and 3D,
and Supplementary Table 3). Taken together, these data
support UPSeq as a highly reproducible, robust, and
accurate assay that recapitulates clinically validated MiPS
for quantifying PCa biomarkers in post-DRE urine.

3.3. UPSeq model training and validation

Of the 126 patients analyzed by UPSeq in our extreme
design cohort, data from 109 (86.5%) patients met the
stringent sequencing quality criteria to constitute the
analytic cohort. It was stratified as 65 men with benign/
GG 1 versus 44 men with GG �3 cancer, thus excluding GG
2 patients in order to identify any transcriptomic differences
between extremes of the disease spectrum, while grouping
commonly indolent GG 1 cancer with benign cases.
Clinicopathological data showed expected marked differ-
ences between the two groups (Supplementary Fig. 10).
Conversely, 50/65 (77%) of benign/GG 1 patients had a
serum PSA level greater than the commonly used threshold
of 4.0 ng/ml, consistent with PSA’s modest specificity in this
setting.

A number of UPSeq targets showed differential expres-
sion between the two groups. Specifically, biomarkers
currently (or previously) used in existing clinical urine
assays were more highly expressed in urine of higher-GG
patients, validating our assay (PCA3 [2521 vs 1024 median
normalized reads, p = 0.02], TMPRSS2-ERG.T1E4 [78.8 vs 1.2,
p = 0.000003], ERG [955 vs 294, p = 0.0006], TDRD1 [549 vs
128, p = 0.0003], and HOXC6 [0.0 vs 0.0, p = 0.03]), and so
were the aggressive PCa-associated lncRNA SChLAP1
(1820 vs 1024, p = 0.005) [34] and a number of additional
TMPRSS2-ERG splicing isoforms (Fig. 4A and Supplementary
Fig. 11A). T1E4 was the most commonly expressed isoform,
followed by T2E4, mirroring PCa tissue (Fig. 4B). Several
isoforms were coexpressed in any individual urine sample,
with less common ones having lower expression levels, also
as previously observed in tissue [24]. Some benign biopsy
cases contained low-level urine TMPRSS2-ERG RNA (of the
more common isoforms), consistent with the presence of
clinically occult cancer foci missed by random systematic or
even MRI-guided biopsy [6,24]. Importantly, higher-grade
cancers expressed rarer isoforms such as T1EIIIc_4 and
T2EIIIc_4, which were at least not detectably present in
benign/low-grade cases (Fig. 4B). Taken together, this
suggests potential utility of combining multiple TMPRSS2-
ERG splicing isoforms as highly specific urine biomarkers for
the detection of high-grade PCa.

We next used a machine learning approach to develop a
prebiopsy risk predictor in a training portion of the extreme
 Whole-urine, Multiplexed, Next-generation RNA-sequencing
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Fig. 2 – UPSeq shows high technical reproducibility and accuracy. UPSeq showed high performance in reproducibility and accuracy testing. (A) Twenty
replicate NGS libraries (UR_A vs UR_B in sample ID) for ten randomly selected PCa patients’ urine RNA samples were constructed and sequenced on
separate days. Paired replicates are denoted with the same color in header above heatmap. Pearson’s pair-wise correlation R values for all KLK3-
normalized targets are shown inside colored boxes and demonstrated high reproducibility (median R = 0.97, range 0.91–0.99). Heatmap shows
expression levels (gene median centered, log2[normalized reads + 1]), where red and blue indicate over- and underexpression, respectively. Gene fusion
targets are restricted to those having >32 normalized sequencing reads in at least one sample (read levels below that threshold are zeroed as
background noise). Unsupervised hierarchical clustering (uncentered correlation similarity metric and centroid linkage clustering method) assigned
paired replicates adjacent to each other and in separate branches for all ten samples (sample dendrogram). (B) Expression levels (Log2[normalized
reads + 1]) over all 84 transcripts for replicate A versus B are plotted for one representative sample (UR222) showing high concordance over the entire
range of expression. (C) Expression levels (Log2[normalized reads + 1]) over all ten samples for replicate A versus B are plotted for PCA3 and TMPRSS2-
ERG isoform T1E4 (targets that are part of the MiPS test) showing high concordance. (D) Assay accuracy against an orthogonal method was assessed by
comparing UPSeq versus RT-qPCR in eight samples for PCA3 and the two main TMPRSS2-ERG splice isoforms T1E4 and T2E4. Bar graphs show KLK3-
normalized reads for UPSeq and 2DCtT c for RT-qPCR (where the constant c = 30 000, 100 000, and 500 000 for PCA3, TMPRSS2-ERG.T1E4, and TMPRSS2-
ERG.T2E4, respectively, for ease of visualization). Samples are sorted left to right by the RT-qPCR value. Pearson’s R values are shown, demonstrating
high concordance between the two orthogonal methods for all three transcripts. MiPS = Michigan Prostate Score; NGS = next-generation sequencing;
PCa = prostate cancer; RT-qPCR = reverse transcription quantitative polymerase chain reaction; UPSeq = Urine Prostate Seq.
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Fig. 3 – UPSeq shows high accuracy compared with the clinical MiPS laboratory developed test. We performed UPSeq on RNA isolated from stored
aliquots of same urine void from PCa patients who had undergone our laboratory developed transcription-mediated amplification (TMA)-based MiPS
test (measuring PCA3 and TMPRSS2-ERG.T1E4). (A) For MiPS scores, clinical TMA-based PCA3 number of copies is normalized to sample-specific KLK3
number of copies and multiplied by a coefficient of 1000. Similarly, for UPSeq-derived scores, PCA3 sequencing reads were normalized to sample-
specific KLK3 reads and multiplied by 1000. Expression level (Log2[normalized number of copies or sequencing reads + 1]) are plotted for 48 samples
with available clinical MiPS (or PROGENSA) PCA3 data. PCA3 scores were highly concordant between the two methods (Spearman’s rho = 0.75, linear fit
R2 = 0.63). (B) TMPRSS2-ERG.T1E4 scores for the two methods were calculated and plotted as for PCA3 in Fig. 3A (with the exception that a coefficient of
100 000 is used as opposed to 1000) for 32 samples with available clinical MiPS TMPRSS2-ERG.T1E4 data. TMPRSS2-ERG.T1E4 scores were highly
concordant between the two methods (Spearman’s rho = 0.96, linear fit R2= 0.91). Concordance plots of urine-based risk probabilities for the presence
of (C) PCa and (D) high-grade PCa (grade group >1) on biopsy. The clinical MiPS algorithm [19], which combines serum PSA with urine PCA3 and
TMPRSS2-ERG.T1E4 into a model validated to predict biopsy pathology, was used to calculate risk probabilities for clinical (TMA) and NGS-derived MiPS
scores for the two transcripts. Log2(% risk) is plotted for the 32 samples having clinical MiPS data. Risk predictions were highly concordant between
the two methods (Spearman’s rho = 0.86 and linear fit R2= 0.71 for all-grade PCa; Spearman’s rho = 0.82 and linear fit R2 = 0.74 for high-grade PCa).
MiPS = Michigan Prostate Score; NGS = next-generation sequencing; PCa = prostate cancer; PSA = prostate-specific antigen; UPSeq = Urine Prostate Seq.

E U R O P E A N U R O L O G Y O N C O L O G Y X X X ( 2 0 2 1 ) X X X – X XX6

EUO 435 1–10
design cohort (n = 73). Specifically, a random forest feature-
reduction process followed by logistic regression reduced
the 84 UPSeq targets to 15, yielding a model that included
several TMPRSS2-ERG splicing isoforms, additional mRNAs,
lncRNAs, and other current clinical biomarkers (Supple-
Please cite this article in press as: Cani AK, et al. Development of a
Assay for Early Detection of Aggressive Prostate Cancer. Eur Urol
mentary Fig. 11A and 11B). ROC curves (Fig. 4C, left) were
plotted for (1) serum PSA, (2) the high-grade MiPS model
(NGS derived) [19], (3) a retrained NGS-derived MiPS model
(limited to the three MiPS variables, but retrained on our
training set), and (4) the new 15-transcript UPSeq model.
 Whole-urine, Multiplexed, Next-generation RNA-sequencing
 Oncol (2021), https://doi.org/10.1016/j.euo.2021.03.002
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Fig. 4 – UPSeq-trained model outperforms serum PSA and derived clinical MiPS models in predicting biopsy results. Urine from a cohort of
109 patients representing those with benign or grade group (GG) 1 versus those with GG �3 prostate cancer (PCa) on biopsy (extreme design cohort)
was subjected to the UPSeq assay. Sequencing reads for the 84 targets were normalized to sample-specific KLK3 reads and multiplied by 100 000. (A)
Boxplots for nine selected targets with differential expression between the two groups are shown (median and interquartile range in log2 scale).
Mann-Whitney test p values (or Student t test for normally distributed values) are shown. Boxplots for the rest of the transcripts selected in the
trained UPSeq model (see below) are shown in Supplementary Figure 11. (B) Heatmap shows expression levels for all 18 targeted TMPRSS-2ERG splice
isoforms (gene-median-centered, log2[normalized reads + 1]). Red and blue indicate over- and under-expression, respectively. Headers show tissue
pathology results, type of tissue (RRP and PBX), serum PSA (ng/ml), clinical (TMA) and NGS-derived MiPS TMPRSS2-ERG.T1E4 and PCA3 scores
(calculated as in Fig. 3), and the UPSeq model (see below) prediction score from 0 to 1 for having GG �3 PCa on biopsy. (C) UPSeq data for all
84 targets from 73/109 extreme design cohort patients (training set), randomly selected to have a group-wise ratio proportional to that of the entire
cohort, underwent a random forest target reduction method to select the minimal number of the most informative targets (29 transcripts). A
regularized logistic regression model was built on the training set, which showed a higher area under the receiver operating characteristic curve
(AUC = 0.9) than serum PSA or the clinical high-grade (Hi-grade), and a retrained MiPS model using derived UPSeq PCA3 and TMPRSS2-ERG.T1E4 scores
(left panel). The UPSeq model also outperformed these three models in the held out set of 36 samples (validation set; AUC = 0.82; right panel). AUC 95%
CIs are shown. CI = confidence interval; MiPS = Michigan Prostate Score; NGS = next-generation sequencing; PBX = prostate biopsy; PCa = prostate cancer;
PSA = prostate-specific antigen; RRP = radical retropubic prostatectomy; TMA = transcription-mediated amplification; UPSeq = Urine Prostate Seq.
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Expectedly, serum PSA showed the poorest discriminatory
ability (AUC [95% CI] = 0.65 [0.51–0.78]), followed by high-
grade and retrained MiPS models (0.72 [0.60–0.84] and
0.80 [0.74–0.87], respectively), confirming MiPS biomarker
and model superiority to serum PSA alone [19]. Our new
UPSeq model had the highest training-set AUC of 0.90
(0.83–0.97). Importantly, similar results were observed in
the validation set (n = 36) where serum PSA, high grade, and
retrained MiPS had AUCs of 0.69 (0.51–0.87), 0.69 (0.50–
0.87), and 0.74 (0.55–0.92), respectively. The UPSeq model
had the strongest performance (AUC = 0.82 [0.65–0.98]) in
the validation set, supporting the potential value of
additional urine biomarkers beyond PCA3 and TMPRSS2-
ERG.T1E4 in early detection of PCa (Fig. 4C, right).

In exploratory analyses (see the Supplementary material
for details), we retrained NGS-derived HOXC6+DLX1
(SelectMDx) [16] and PCA3+ERG (ExoDx Prostate Intelli-
Score) [17] models. UPSeq model AUCs were higher than
those of the HOXC6+DLX1 and PCA3+ERG models in both
training and validation sets (training: 0.90 [0.83–0.97] vs
0.69 [0.57–0.81] and 0.69 [0.57–0.81], respectively; valida-
tion: 0.82 [0.65–0.98] vs 0.50 [0.50–0.50] and 0.66 [0.47–
0.85], respectively; Supplementary Fig. 12).

Taken together, our results demonstrate improved
performance of a multiplex biomarker approach compared
with a single biomarker or a combination of a few
biomarkers for detecting aggressive PCa.

4. Discussion

Here, we report the preclinical development and validation
of a novel post-DRE urine-based NGS assay for the detection
of aggressive PCa. Using machine learning to interrogate the
expression of 84 mRNA transcripts in urine collected from
men with PCa representing the ends of the disease
spectrum, we developed a novel 15-transcript model that
outperformed PSA, MiPS (serum PSA + urine T2:ERG + PCA3),
and derived PCA3 + ERG and HOXC6 + DLX1 scores for
predicting the presence of aggressive disease. These data
suggest that a multiplex model can improve upon
commercially available tests. Critically, to the best of our
knowledge, we report for the first time the ability to detect
expressed germline and somatic PCa mutations in urine
RNA. Our results support the continued development and
prospective clinical validation of this assay for the evalua-
tion of men at risk of PCa.

A urine-based multiplex biomarker approach has, at
least in theory, the potential to overcome tumor heteroge-
neity and multifocality to improve the detection of
aggressive PCa. Serum PSA, a widely used PCa early
detection biomarker, has led to unnecessary biopsies and
overdetection of low-grade likely indolent disease
(AUC = 0.59–0.64) [35]. To improve upon PSA performance,
several clinically available serum- or urine-based tests
comprising one to four biomarkers have been developed for
aggressive PCa detection (eg, 4K [AUC = 0.78], PCA3 [AUC =
0.75], MiPS [AUC = 0.77], SelectMDx [AUC = 0.86], and
IntelliScore [AUC = 0.77]) [15–17,19,36]. In the current study,
our novel 15-transcript UPSeq model outperformed serum
Please cite this article in press as: Cani AK, et al. Development of a
Assay for Early Detection of Aggressive Prostate Cancer. Eur Urol
PSA, MiPS, and the derived HOXC6 + DLX1 (SelectMDx) and
PCA3 + ERG (ExoDx Prostate IntelliScore) models in detect-
ing aggressive PCa. Although for the latter two we used NGS
as opposed to these assays’ true method (RT-qPCR) and
whole urine as opposed to IntelliScore’s intended substrate
(urinary exosomes), our data support the superiority of our
biomarker set over currently used ones.

Our novel assay has several potential clinical applica-
tions. First, it may be useful for early detection of aggressive
PCa in men undergoing initial prostate biopsy. Second, given
the possible capacity to overcome tumor multifocality and
heterogeneity, it has the potential to rule out high-grade
disease in men considering AS or for identifying patients for
surveillance biopsies. However, a formal assessment of
UPSeq’s predictive ability for AS upgrading and its robust-
ness to multifocality warrants further investigation. Third, it
may help identify negative MRI or benign biopsy patients,
but with ongoing clinical suspicion for PCa, to undergo
alternative biopsy strategies such as saturation biopsy.
Lastly, the assay’s ability to detect expressed germline and
somatic mutations in urine presents unique opportunities
for noninvasively identifying PCa familial predisposition or
precision medicine approaches. Overall, our novel UPSeq
assay has several potential clinical applications, and further
validation studies can delineate our assay’s application in
those clinical scenarios.

Our study has several limitations. First, an attentive DRE
is necessary prior to urine collection. Post-DRE whole urine,
however, is superior to urinary sediments or exosomes for
the detection of prostate/PCa-derived transcripts [37] and is
the basis for the PROGENSA PCA3 [15,38], MiPS [19], and
SelectMDx [16] tests. Second, our cohorts were selected in a
biased manner to demonstrate the feasibility of detecting
aggressive PCa transcripts in urine. Validation in larger
prospective cohorts is necessary to demonstrate clinical
utility. Third, our patients classified to have benign PCa had
undergone prostate biopsy only and may conceivably
harbor small undetected PCa foci, a known limitation of
current biopsy strategies.

5. Conclusions

A urine-based liquid biopsy may help overcome PCa
heterogeneity and multifocality. We developed a multiplex
urine-based 15-transcript UPSeq model with improved
performance for the detection of aggressive PCa. Our data
support the continued development and prospective
validation of this assay in larger patient cohorts for potential
clinical applications in the evaluation of men at risk of PCa
or aggressive PCa.
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