

 ARL-TN-1112 ● MAR 2022

Running Virtual Environment-Based
Experiments Online

by Benjamin T Files, Kimberly A Pollard, Ashley H Oiknine, and
Bianca Dalangin

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-1112 ● MAR 2022

Running Virtual Environment-Based Experiments
Online

Benjamin T Files and Kimberly A Pollard
DEVCOM Army Research Laboratory

Ashley H Oiknine and Bianca Dalangin
DCS Corporation

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

March 2022
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

1 October 2020–1 February 2022
4. TITLE AND SUBTITLE

Running Virtual Environment-Based Experiments Online
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Benjamin T Files, Kimberly A Pollard, Ashley H Oiknine, and Bianca Dalangin
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory
ATTN: FCDD-RLH-FA
Playa Vista, CA

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-1112

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES
ORCID IDs: Benjamin T Files, 0000-0002-1141-7886; Kimberly A Pollard, 0000-0002-5849-1987; Ashley H Oiknine, 0000-
0001-9092-7958; Bianca Dalangin, 0000-0002-6084-2803

14. ABSTRACT

Conducting behavioral experiments online enables researchers to obtain large sample sizes quickly. Existing tools for online
experiments are primarily suited for text and 2-D images, while bringing 3-D virtual environment experiences to the web for
research remains a challenge. This technical note describes a process to present complex 3-D virtual environments to online
participants and collect the resulting data. The process starts with a virtual environment built in Unity and describes the steps
to display the virtual environment in the context of a Qualtrics questionnaire, including how to save data into a Qualtrics user
record. Code and examples are provided with the hope that other researchers can conveniently follow this process to conduct
online behavioral experiments using 3-D virtual environments.

15. SUBJECT TERMS

virtual environments, online experiments, behavioral sciences, online methods, remote testing, Unity, Qualtrics

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

22

19a. NAME OF RESPONSIBLE PERSON

Benjamin T Files
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(310) 577-6212
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction and Overview 1

1.1 Unity 2

1.2 GitHub Pages 2

1.3 Qualtrics 2

2. Showing a Virtual Environment as a Qualtrics Question 3

2.1 Background: WebGL 3

2.2 Unity’s WebGL Build 4

2.3 Hosting WebGL on the Web 5

2.4 Qualtrics Question and HTML 5

2.5 Qualtrics Style Sheet 7

2.6 Qualtrics JavaScript 8

3. Saving Data 10

3.1 Writing Data from WebGL to the JavaScript Intermediary 11

3.2 From the Intermediary to Qualtrics 12

4. Recipe 13

5. Conclusion 14

6. References 15

Distribution List 16

iv

List of Figures

Fig. 1 Flowchart with a high-level representation of how Unity, GitHub
Pages, and Qualtrics work together to enable online virtual
environment-based experiments ... 1

Fig. 2 Screen capture of the Qualtrics question editor with a new text/graphic
question in HTML view .. 6

Fig. 3 Screen capture of the Qualtrics style menu ... 7

1

1. Introduction and Overview

Conducting behavioral experiments online is convenient and effective, but running
behavioral experiments online can be technically challenging.1 Excellent resources
are available for running behavioral experiments online with tools focused on text
and/or 2-D graphics (e.g., psychopy2 and jsPsych3). For 3-D virtual environment-
based research, additional tools are needed.

This note describes one approach to putting a virtual environment-based behavioral
experiment online using a combination of Unity, GitHub Pages, and Qualtrics
(Fig. 1). Alternative technologies are available to implement virtual environments
on the web. For example, the Unreal Engine is capable of building experiences for
the web and could be used in place of Unity. For this note, we focus on Unity,
GitHub Pages, and Qualtrics as technologies that are relatively accessible, intuitive,
and widely available to researchers. This note does not describe the process of
generating a virtual environment with Unity* or provide comprehensive
instructions for building questionnaires in Qualtrics†. Instead, the focus is on
getting these technologies to work together to enable a researcher to run their
experiment in participants’ browsers and record results without requiring additional
steps from the participant.

This note will first describe how to put a virtual environment-based behavioral
experiment online, then how to save the data from the experiment. Towards the end
of this note, a more concise step-by-step guide is provided.

The following section will describe the three technologies we use for running online
virtual environment-based behavioral experiments.

Fig. 1 Flowchart with a high-level representation of how Unity, GitHub Pages, and
Qualtrics work together to enable online virtual environment-based experiments

*Tutorials and other learning materials are available on the Unity learning website.
†The Qualtrics documentation website provides detailed instructions for building questionnaires.

https://learn.unity.com/
https://www.qualtrics.com/support/survey-platform/survey-module/survey-module-overview/

2

1.1 Unity

Unity is a cross-platform engine for games and other virtual/interactive
experiences. It is also a tool for building these experiences. It includes a graphical
interface for building environments as well as a scripting interface for code to
specify behaviors and influence the flow of the game or experience. Although it is
relatively easy to build and run simple games and experiences on Unity, making a
virtual environment and scripting it for the purposes of a behavioral experiment on
this platform requires some expertise. This note will not attempt to provide
guidance on building a Unity-based behavioral experiment per se, and instead
focuses on taking an existing virtual experiment and making it available over the
web.

Unity is commercial software. The cost of using Unity depends on the details of
who is using it and for what purpose. Unity provides free licenses for personal/small
organization use as well as for student use.

1.2 GitHub Pages

GitHub Pages is a web hosting service integrated with GitHub. GitHub is an online
development platform that integrates with Git, a source control tool. Git and GitHub
are both powerful and complex tools, but this note will just focus on GitHub Pages
as a convenient web host for some of the components of the online behavioral
experiment.

GitHub Pages can be used for free, although it is available as a paid service as well.
The primary difference is that free accounts may not make their repositories private.
This means that anyone may view the code and data posted to GitHub Pages (i.e.,
the repository is public). This limitation is not relevant to our use-case, because we
need the behavioral experiment to be available to participants, so it needs to be
public.

1.3 Qualtrics

Qualtrics is a web-based platform that can create and deploy questionnaires with
sophisticated structures and interactive capabilities. Qualtrics has various built-in
question templates to help create a questionnaire from standard question types such
as multiple choice and free-response. In addition, Qualtrics allows creators to add
HTML to questions to create custom question types. Qualtrics also allows custom
functionality by applying JavaScript code to questions. Qualtrics provides a
JavaScript API to interact with Qualtrics-specific functionality, including storing
custom data within the questionnaire response record. These features provide the

3

flexibility to include a WebGL-based virtual environment within a Qualtrics
question.

Qualtrics is not a free service, although Qualtrics offers demonstration accounts for
free. A paid subscription is required to use some of the features leveraged in the
process described in this note.

Having reviewed these three technologies, the remainder of this note is organized
as follows: First it covers how to display the Unity experience within Qualtrics, and
then it covers how to pipe data from the Unity experience into Qualtrics.

2. Showing a Virtual Environment as a Qualtrics Question

At a high level, the process of showing a Virtual Environment as a Qualtrics
question involves first using Unity to build the project as WebGL files, then putting
those WebGL files on a web server, and lastly, loading the WebGL into the
Qualtrics question. Here, we provide some brief background on WebGL and then
provide details of each of these steps.

2.1 Background: WebGL

For a user to interact with a Unity project without having access to Unity, a build
must be created for the target operating system or platform. Unity can build projects
targeting WebGL, instead of a particular operating system like Windows. WebGL
uses HTML5 to render 3-D content within a web page. JavaScript (a scripting
language that works in most web browsers) then enables features like animation
and interactivity. Many browsers support WebGL, but it is disabled or prohibited
in some cases. The WebGL web page has a quick test that shows whether WebGL
is enabled and documentation for enabling it in some situations.

https://get.webgl.org/

4

2.2 Unity’s WebGL Build

When a Unity project builds with WebGL as the target, Unity generates a folder
with an index.html file and two subfolders, Build and TemplateData. The Build
subfolder has the JavaScript and data for the WebGL. TemplateData has some
images supporting the WebGL. For this note, the TemplateData folder includes
images to support the loading bar and so on, and importantly it has the style.css file.
This controls the look and positioning of the WebGL canvas, so it is important for
functionality.

Some functionality that is available when building a Unity project for a non-
WebGL target is prohibited or needs special handling in a WebGL build. Some
examples include locking or hiding the mouse cursor, accessing network resources,
accessing the local file system, and playing audio. These special cases will not be
covered in this note, but they are explained in the Unity documentation.

The following is a listing of files and folders generated by Unity’s build process for
an example build called qualifier.

qualifier
│ index.html
│
├───Build
│ qualifier.data.unityweb
│ qualifier.framework.js.unityweb
│ qualifier.loader.js
│ qualifier.wasm.unityweb
│
└───TemplateData
 favicon.ico
 fullscreen-button.png
 progress-bar-empty-dark.png
 progress-bar-empty-light.png
 progress-bar-full-dark.png
 progress-bar-full-light.png
 style.css
 unity-logo-dark.png
 unity-logo-light.png
 webgl-logo.png

The Unity project settings dialog has some compression options that could be used
to speed load the virtual environment. Some compression options require
configuration of the web host to send special headers; configuring that goes beyond
the scope of this document. Our recommendation is to use the uncompressed option
unless load times become unacceptable.

The WebGL build includes a simple web page, index.html, that can be opened with
a web browser. This shows a loading bar as it attempts to load the WebGL

https://docs.unity3d.com/Manual/webgl.html

5

experience, but file permission errors will usually prevent the loading from
succeeding. For successful loading, the page needs to be served by a local web
server*, which can be done automatically using Unity’s Build & Run option. This
will allow the experience to work in the browser on the local machine, but it will
not let anyone else see it. That works well for testing, but to deploy the experience
to Qualtrics, this WebGL build needs to be somewhere on the internet so others can
see it.

2.3 Hosting WebGL on the Web

Any web server should work for hosting the WebGL build on the Internet. The web
server needs to be configured to allow cross-origin requests of WebGL textures†.
One option is a GitHub Pages account (see https://pages.github.com/ for details on
setting up an account and configuring a GitHub repository with pages). It is free
and easy to use, and it does not require any special configuration to host a WebGL
virtual environment for use in Qualtrics. Using Git, you can push the WebGL build
folder (generated by Unity, see above) to a GitHub project configured to use
GitHub Pages. Although there is sometimes a delay of a few minutes, you can
confirm the WebGL build worked by pointing a browser at the index.html on
GitHub Pages.

Once the code and data that drive the WebGL experience are on the internet for
anybody to see (i.e., set to public), the behavioral experiment should run. This is
fine for demonstration and testing, but it will not save any data or results. Next we
turn to how to embed this experience in a Qualtrics question so that the results can
be saved.

2.4 Qualtrics Question and HTML

With the WebGL experience hosted on the web, we turn to presenting the
experience in the context of a Qualtrics question. This requires a few steps. First
we create a Qualtrics question within a questionnaire. The “Text/Graphic” question
type creates a blank template, which we can edit using the HTML view (Fig. 2).

*Running a local web server is not as difficult as it might sound. For example, Python provides a
one-line command that starts up a simple local web server.
†See Using textures in WebGL - Web APIs | MDN for information about cross-origin requests of
WebGL textures.

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Using_textures_in_WebGL

6

Fig. 2 Screen capture of the Qualtrics question editor with a new text/graphic question in
HTML view

The following snippet of HTML is copied from the index.html (with some
modifications explained below) that Unity generated when it built the WebGL
build. The only piece of this that is not generic is the text “ExampleTitle”, which
may be changed to suit the project. The text is displayed to the participant near the
bottom of the question. The other change is to set the fullscreen button div to be
hidden (visibility="hidden"), because for this project we wanted to disable the
fullscreen button. Here is text to paste into the Qualtrics HTML question:

<div id="unity-container" class="unity-desktop">
 <canvas id="unity-canvas"></canvas>
 <div id="unity-loading-bar">
 <div id="unity-logo"> </div>
 <div id="unity-progress-bar-empty">
 <div id="unity-progress-bar-full"> </div>
 </div>
 </div>
 <div id="unity-footer">
 <div id="unity-webgl-logo"> </div>
 <div visibility="hidden" id="unity-fullscreen-button"> </div>
 <div id="unity-build-title">ExampleTitle</div>
 </div>
</div>

Note: Much of this could be customized to obtain a different look. For example, the
Unity footer could be omitted. That would require some changes to other pieces
that reference the Unity footer, and such changes will not be covered here.

7

2.5 Qualtrics Style Sheet

For everything to look the same within the Qualtrics question as it does when
testing locally or on the web, Qualtrics will need to use the Unity-generated
cascading style sheet (CSS). To set up the Qualtrics questionnaire to use this CSS,
select any question within the project and select the Look and Feel setting (a paint-
roller icon on the left) and then click Style (Fig. 3).

Fig. 3 Screen capture of the Qualtrics style menu

Scrolling down, insert the URL for the style sheet into the external CSS field:
https://btfiles.github.io/qualifier/TemplateData/style.css (In this
example style sheet URL, “btfiles” is the GitHub Pages account name, “qualifier”
is the name of the build folder, and “TemplateData/style.css” are the folder and
filename Unity uses by default). This external style sheet handles the look and feel
of the text and is important for the functionality of the loading bar.

8

After pasting the URL for the CSS file, insert code to designate the desired size of
the question container, for example:

#SkinContent
{
 min-width:1024px;
 min-height:768px;
}

That custom CSS makes sure the question container is the right size for the WebGL
canvas. We use 1024 × 768 pixels for the question size because we designed our
virtual environment for that size. To use a different size, all instances of 1024 and
768 would need to be swapped for the new width and height, respectively.

2.6 Qualtrics JavaScript

Next, we need to add JavaScript to the question. Pressing the “add javascript”
button on the question brings up a JavaScript template. Importantly, we need to put
all the JavaScript that loads the WebGL into the “onload” section:

Qualtrics.SurveyEngine.addOnload(function()
{
 /*Place your JavaScript here to run when the page loads*/
 this.hideNextButton();
 this.hidePreviousButton();

 var q = this;

 window.dataFun = function (str) {
 str = str.replace(/(?:\r\n|\r|\n)/g, '
 ');
 console.log("DataFun Says: " + str);
 Qualtrics.SurveyEngine.setEmbeddedData('CSVString', str);
 q.showNextButton();
 console.log("calling clickNextButton.");
 q.clickNextButton();
 };

 var buildUrl = "https://btfiles.github.io/qualifier/Build";
 var loaderUrl = buildUrl + "/qualifier.loader.js";

 jQuery.getScript(loaderUrl, function (data, textStatus, jqhxr) {
 var config = {
 dataUrl: buildUrl + "/qualifier.data.unityweb",
 frameworkUrl: buildUrl + "/qualifier.framework.js.unityweb",
 codeUrl: buildUrl + "/qualifier.wasm.unityweb",
 streamingAssetsUrl: "StreamingAssets",
 companyName: "CCDC ARL",
 productName: "QUVE_Qualifier",
 productVersion: "0.1",
 };

 var container = document.querySelector("#unity-container");

9

 var canvas = document.querySelector("#unity-canvas");
 var loadingBar = document.querySelector("#unity-loading-bar");
 var progressBarFull = document.querySelector("#unity-progress-bar-full");
 var fullscreenButton = document.querySelector("#unity-fullscreen-button");
 fullscreenButton.style.display="none";

 if (/iPhone|iPad|iPod|Android/i.test(navigator.userAgent)) {
 container.className = "unity-mobile";
 config.devicePixelRatio = 1;
 } else {
 canvas.style.width = "1024px";
 canvas.style.height = "768px";
 }
 loadingBar.style.display = "block";

 createUnityInstance(canvas, config, (progress) => {
 progressBarFull.style.width = 100 * progress + "%";
 }).then((unityInstance) => {
 loadingBar.style.display = "none";
 fullscreenButton.onclick = () => {
 //unityInstance.SetFullscreen(1);
 };
 fullscreenButton.style.display="none";
 }).catch((message) => {
 alert(message);
 });
 });

});

Qualtrics.SurveyEngine.addOnReady(function()
{
 /*Place your JavaScript here to run when the page is fully displayed*/

});

Qualtrics.SurveyEngine.addOnUnload(function()
{
 /*Place your JavaScript here to run when the page is unloaded*/
 this.showNextButton();
 this.showPreviousButton();

});

Most of this JavaScript code is pasted from the Unity-generated index.html, but
some adjustments allow it to work within Qualtrics.

In the Unity-generated index.html, there’s a script (inside a <script> tag) that
builds a script object, sets that object’s onload property to that createUnityInstance
function call, and then appends the script object to the document. This procedure is
a best-practice for fast page loads when using JavaScript, but we need to put the
code into a special onload context within Qualtrics.

10

Note: Everything above the buildUrl line is added to support data saving and
interactions with Qualtrics; that will be covered in the next section.

The buildUrl value needs to be edited to reflect the actual URL of the build folder
on the web. If the build name changes, then that line needs to change, as do all the
places where the word “qualifier” appears (Unity names all the files after whatever
the build name is). Similarly, if you change compression options in the Unity
project settings, you might also need to change the extensions on some of those
files.

The jQuery call loads the loader script that lives in the Build folder. This is
necessary, because createUnityInstance is defined in the loader script. That call
loads the script over the web and then calls the function defined in the second
argument once the load is complete.

From there, the rest is copied from the index.html. However, the following lines
disable and hide the “go fullscreen” button:
 fullscreenButton.onclick = () => {
 //unityInstance.SetFullscreen(1);
 };
 fullscreenButton.style.display="none";

 If the fullscreen button is desired for a project, then those lines should be pasted
from the original WebGL build folder without modification.

Another addition is the calls to the Qualtrics Question API to hide any next/prev
buttons so they are not drawn on top of the WebGL or accidentally pressed
prematurely. Note these are unhidden down in the onUnload section.

3. Saving Data

We now have a Qualtrics question that loads our WebGL from GitHub Pages and
presents the WebGL experience. If you were to run this now, you would run
through to the end of your 3-D experience and then nothing would happen. This is
progress, but for research, we also want to save data generated when the participant
interacts with the Unity experience.

The experiment’s 3-D task will be collecting some data, as designed within the
Unity project. We need to get that data out of the WebGL and into a location where
it can be saved. An effective solution is to save it in a Qualtrics embedded field,
found in the Qualtrics survey flow, so that the data become part of the participant’s
record in Qualtrics. Fortunately, Unity allows us to write functions in JavaScript.
Those functions have access to the global workspace (i.e., the JavaScript context of
the web page, in this case the Qualtrics web page showing our question). Qualtrics

11

gives us a way to use JavaScript to write to embedded fields. Rather than put
Qualtrics-specific JavaScript inside the WebGL, we ask the WebGL to call a
generic JavaScript function, and then we define that function in the Qualtrics
question. This function serves as an intermediary between WebGL and Qualtrics.

As a result, data will flow from WebGL to JavaScript to Qualtrics. Once the data
are written, we need to re-enable the next and previous Qualtrics buttons, and to
help the participant out, we click the next button for them to advance past this
question. The sections that follow provide more details.

3.1 Writing Data from WebGL to the JavaScript Intermediary

Within the Unity project, we need to designate that the project will need to use some
JavaScript. This web page has the basics for making that happen:
https://docs.unity3d.com/Manual/webgl-interactingwithbrowserscripting.html.

Using those instructions, Unity can then call a JavaScript function instead of
attempting to write data to the local disk. This function will need to be defined in
the global window workspace and called dataFun(str). That function is not
defined in the Unity project (and Unity can check if the function exists so things
fail gracefully).

Following the Unity documentation recommendation, we put a .jslib file in the
assets/plugins directory in the Unity project. It looks exactly like the example in the
documents, but with the following function added:

LogStringJS: function (str) {
 var data_str = Pointer_stringify(str);
 try {
 window.dataFun(data_str);
 } catch (err) {
 console.log(err); // Error: "dataFun is not defined"
 }
 console.log(data_str);
},

Note the use of Pointer_stringify, which Unity defines and turns a Unity
pointer into string data that JavaScript can actually use. Then, within the C# code
for the Unity project, that function is imported as follows:

12

[DllImport("__Internal")]
 private static extern void LogStringJS(string str);

 ...

 public void SendDataToJS(string str)
 {
 LogStringJS(str);
 }

If the experiment were to run on a local computer, then the Unity project might
have a call to save a data output file to disk for later analysis. Here, that call would
be replaced with a call to SendDataToJS, which sets up the Unity project to send
data to our JavaScript intermediary. Note that if you build and run to WebGL now,
window.dataFun will not be defined, and you will see an error in the web console
(along with whatever text data you were trying to save).

3.2 From the Intermediary to Qualtrics

Now we just need to define that window.dataFun function to put the data into a
Qualtrics embedded field. The dataFun function is defined in the JavaScript on
Qualtrics (it appears in the full JavaScipt above, but here it is as a reminder):

 window.dataFun = function (str) {
 str = str.replace(/(?:\r\n|\r|\n)/g, '
 ');
 console.log("DataFun Says: " + str);
 Qualtrics.SurveyEngine.setEmbeddedData('CSVString', str);
 q.showNextButton();
 console.log("calling clickNextButton.");
 q.clickNextButton();
 };

This function does a bit of processing (as well as printing to the console log for
debugging).

It strips out newlines and replaces them with
 and puts the data into a Qualtrics
embedded data field. Embedded data cannot have line breaks, so that is why they
are replaced with
 tags. Once that processing is complete, the call to the
Qualtrics API writes the string data to an embedded data field. In this example the
field is called CSVString; if you use something different, you will want to update
this code.

Embedded data fields are created within the Qualtrics’ “survey flow” to allow
JavaScript to write to them. The field should be created and named, but no value
should be set for it. Embedded fields are limited to 20 KB, so if your embedded
data are longer than that, you might need to break the data over multiple fields.
Instructions for working with embedded fields can be found at

13

https://www.qualtrics.com/support/survey-platform/survey-module/survey-
flow/standard-elements/embedded-data/.

For simplicity, we are assuming that it makes sense to save a single result string at
the end of the experiment. It would be possible to save several results throughout
the course of the experiment. This would require some additional logic to write
each result to a different Qualtrics embedded field.

Finally, this function reveals the next button and then clicks the next button. Note
that q object is defined farther upscript as this, which provides access to the
Qualtrics JS API.

The unload code still runs, so the next and previous buttons are re-enabled there.

4. Recipe

In summary, these are the steps and recommended order for getting a virtual
environment-based experiment working within Qualtrics:

1) Create your virtual environment-based experiment in Unity.

2) Define and use LogStringJS within your Unity project to output data.

3) Make a build of your virtual environment-based experiment, targeting
WebGL.

4) Push the build folder to your GitHub Pages project.

5) Create your Qualtrics questionnaire and question:

1) Create a Text/Graphic question.

2) Edit the question in HTML view and paste the HTML snippet.

3) Press the Add JavaScript button and paste the JavaScript snippet,
making edits to reflect your build name and GitHub Pages URL.

6) Set up the Qualtrics style:

1) Go to the Look and Feel>Style button and enter the custom CSS
snippet.

2) Enter the GitHub Pages URL for the Unity-generated CSS file.

7) Create your embedded data fields in the Qualtrics survey flow.

14

5. Conclusion

This note has reviewed how to put a virtual environment-based behavioral
experiment online by using Unity to build the project to WebGL, posting the
WebGL on a web server, and then importing that WebGL experience into a
Qualtrics question. It has also covered the mechanics of passing data from within
the WebGL to the participant record within Qualtrics. We hope that this approach
is useful to others who are interested in conducting virtual environment-based
behavioral experiments.

15

6. References

1. Grootswagers T. A primer on running human behavioural experiments
online. Behav Res. 2020;52:2283–2286.
https://doi.org/10.3758/s13428-020-01395-3.

2. Peirce JW. PsychoPy—psychophysics software in Python. J Neuroscience
Methods. 2007;162(1-2):8–13.
https://doi.org/10.1016/j.jneumeth.2006.11.017.

3. de Leeuw JR. jsPsych: A JavaScript library for creating behavioral
experiments in a web browser. Behav Res. 2015;47:1–12.
https://doi.org/10.3758/s13428-014-0458-y.

16

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLD DCI
 TECH LIB

 1 DEVCOM ARL
 (PDF) FCDD RLH B
 T DAVIS
 BLDG 5400 RM C242
 REDSTONE ARSENAL AL
 35898-7290

 1 DEVCOM ARL
 (PDF) FCDD HSI
 J THOMAS
 6662 GUNNER CIRCLE
 ABERDEEN PROVING
 GROUND MD
 21005-5201

 1 USN ONR
 (PDF) ONR CODE 341 J TANGNEY
 875 N RANDOLPH STREET
 BLDG 87

ARLINGTON VA 22203-1986

 1 USA NSRDEC
 (PDF) RDNS D D TAMILIO
 10 GENERAL GREENE AVE

NATICK MA 01760-2642

 1 OSD OUSD ATL
 (PDF) HPT&B B PETRO
 4800 MARK CENTER DRIVE
 SUITE 17E08
 ALEXANDRIA VA 22350

ABERDEEN PROVING GROUND

 17 DEVCOM ARL
 (PDF) FCDD RLH
 J LANE
 Y-S CHEN
 P FRANASZCZUK
 K MCDOWELL
 FCDD RLH F
 J GASTON
 K OIE
 FCDD RLH FA
 AW EVANS
 G BOYKIN
 B FILES

 FCDD RLH FB
 J GARCIA (A)
 H ROY
 B DALANGIN
 A OIKNINE
 FCDD RLH FC
 J TOURYAN (A)
 T ROHALY
 K POLLARD
 FCDD RLH FD
 A MARATHE

	List of Figures
	1. Introduction and Overview
	1.1 Unity
	1.2 GitHub Pages
	1.3 Qualtrics

	2. Showing a Virtual Environment as a Qualtrics Question
	2.1 Background: WebGL
	2.2 Unity’s WebGL Build
	2.3 Hosting WebGL on the Web
	2.4 Qualtrics Question and HTML
	2.5 Qualtrics Style Sheet
	2.6 Qualtrics JavaScript

	3. Saving Data
	3.1 Writing Data from WebGL to the JavaScript Intermediary
	3.2 From the Intermediary to Qualtrics

	4. Recipe
	5. Conclusion
	6. References

