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ABSTRACT 

 Interference on the Global Positioning System (GPS) infrastructure poses a threat 

to the nation’s security and economy as systems become more dependent on the 

technology. The pervasiveness of GPS interference methods such as jamming and 

spoofing present multiple opportunities for adversaries to infiltrate and inject false data 

on systems as diverse as military, banking, shipping, ecommerce, transportation and other 

critical economic sectors. The study of GPS-spoofing–detection methods requires 

innovative and novel schemes to meet the challenge posed. With the increasing 

processing power of computer systems, artificial intelligence methods have become a 

prime candidate for application to the detection and reporting of these cyber threats. This 

thesis studied the application of machine learning and data analytics to identify false data 

injection attempts on military GPS. The study combined live and simulated GPS message 

traffic data to train and test machine learning algorithms to identify the threats. Applying 

both unsupervised and supervised learning methods to the dataset helped advance the 

study of the GPS spoofing problem and proved to be effective tools to monitor GPS 

traffic while serving as another layer of security to the GPS infrastructure. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. BACKGROUND AND PROBLEM STATEMENT ...............................1 
B. MOTIVATION FOR THESIS .................................................................7 
C. THESIS OBJECTIVE ...............................................................................9 
D. RESEARCH METHOD ............................................................................9 
E. EXPECTED BENEFIT OF THESIS RESEARCH ..............................10 
F. THESIS OVERVIEW .............................................................................10 

II. LITERATURE REVIEW ...................................................................................11 
A. GPS DESCRIPTION SYSTEM AND SYSTEM 

VULNERABILITIES ..............................................................................11 
B. DOCUMENTED STUDIES RELATED TO GPS SPOOFING ..........22 
C. ARTIFICIAL INTELLIGENCE METHODS ......................................26 
D. SUMMARY ..............................................................................................29 

III. GPS-SPOOFING–DETECTION AI SYSTEM .................................................31 
A. TAXONOMY OF GPS SPOOFING ......................................................31 
B. HIGH LEVEL CONCEPT FOR A GPS-SPOOFING–

DETECTION AI SYSTEM .....................................................................35 
C. PROTOTYPE GPS-SPOOFING–DETECTION AI SYSTEM 

FOR EXPERIMENTATION ..................................................................37 
1. GPS Data for Experimentation...................................................38 
2. Prototype System Description .....................................................38 
3. Experiment Concept of Operations ............................................41 

D. MACHINE LEARNING EXPERIMENTATION AND 
DEMONSTRATION ...............................................................................51 
1. Machine Learning Tools..............................................................52 
2. Anomaly Detection .......................................................................59 
3. Data Analytics Tools ....................................................................60 
4. Training/Testing of Model using Simulated Data .....................66 
5. Training/Testing of Model using Operational Data .................73 

E. SUMMARY ..............................................................................................76 

IV. ANALYSIS RESULTS ........................................................................................77 
A. BENEFITS AND SHORTFALLS OF DATA TYPES .........................77 
B. RESULTS OF MACHINE LEARNING EXPERIMENTATION ......80 

1. Unsupervised Learning Model....................................................80 



viii 

2. Supervised Learning Model ........................................................86 
3. Model Performance .....................................................................90 

V. CONCLUSIONS ..................................................................................................93 
A. THE UTILITY OF MACHINE LEARNING FOR DETECTING 

GPS SPOOFING ATTEMPTS ...............................................................93 
B. AN EXPERIMENTAL METHODOLOGY FOR ANALYZING 

MACHINE LEARNING METHODS FOR GPS SPOOFING 
DETECTION............................................................................................94 

C. FUTURE WORK .....................................................................................97 
1. Training and Testing Dataset .....................................................97 
2. Tuning Model Parameters ..........................................................98 
3. Testing on Keyed Systems ...........................................................98 
4. Creating Software Application ...................................................98 

LIST OF REFERENCES ................................................................................................99 

INITIAL DISTRIBUTION LIST .................................................................................111 

 

  



ix 

LIST OF FIGURES  

Figure 1. GPS System Components. Source: Ferre (2018). ........................................2 

Figure 2. GPS Jammer. Source: NovAtel (2012). .......................................................5 

Figure 3. GPS Spoofing: Source: Hohman (2020). .....................................................6 

Figure 4. The Orbits of GPS Satellites. Source: Howell (2018). ..............................12 

Figure 5. Control Segment. Source: GPS.gov (2018). ..............................................14 

Figure 6. Defense Advanced GPS Receiver. Source: BAE Systems (2020). ...........15 

Figure 7. GNSS Encrypted Signals. Source: Jones (2019). ......................................17 

Figure 8. GPS Message Structure: Source: NMEA (2012). ......................................19 

Figure 9. NMEA 0183 GSV Message: Source: NMEA (2012) ................................20 

Figure 10. GPS Spoofing: Source: Moody (2018). .....................................................22 

Figure 11. Taxonomy of GPS Spoofing ......................................................................33 

Figure 12. GPS Spoofing Detection Operational Concept ..........................................36 

Figure 13. Engineered GPS System ............................................................................40 

Figure 14. Engineered System Universe Diagram ......................................................43 

Figure 15. Engineered System Metafunction Diagram ...............................................44 

Figure 16. GSG-62 Display Parameters ......................................................................47 

Figure 17. NMEA 0183 Message Data .......................................................................49 

Figure 18. ICD-153 Raw Hexadecimal Data Sample .................................................50 

Figure 19. ICD-153 message ID 5040 Data Fields .....................................................51 

Figure 20. The Process of Supervised Learning. Source: Kotsiantis (2007, 250) ......58 

Figure 21. Data Science Construct Source: Wickham and Grolemund (2017) ...........61 

Figure 22. R Studio: Source R4epis (2021). ...............................................................63 

Figure 23. Orange Overview: Source Demšar and Zupan (2013). ..............................65 



x 

Figure 24. GPS Time Tag and EPE .............................................................................67 

Figure 25. GPS Time and EPE before FDI Application .............................................68 

Figure 26. Google Earth View ....................................................................................69 

Figure 27. Distribution of Vel Valid Bit .....................................................................71 

Figure 28. Sample FDI Dataset ...................................................................................72 

Figure 29. GPS Time Tag and EPE .............................................................................74 

Figure 30. GPS Time Tag and EPE with Outlier ........................................................75 

Figure 31. Orange Workflow ......................................................................................82 

Figure 32. K-means Clustering ...................................................................................83 

Figure 33. Pearson Correlations ..................................................................................85 

Figure 34. Pearson Correlation of Ground Speed and EPE ........................................86 

Figure 35. CART Model Results .................................................................................88 

Figure 36. Supervised Learning Orange Workflow ....................................................89 

Figure 37. Model Performance Test and Scores on Training Data .............................90 

Figure 38. Model Performance Scores on Test Data ...................................................91 

  



xi 

LIST OF TABLES 

Table 1. Types of Threats to GPS. Source: ICAO (2019, 6–7). ................................4 

Table 2. Engineered System Equipment List ...........................................................38 

Table 3. Simulated Data Statistics ...........................................................................70 

Table 4. Operational Data Statistics .........................................................................74 

 



xii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

AFATDS advanced field artillery tactical data system  
AFB Air Force Base 
AI  artificial intelligence  
ANN  artificial neural networks  
ARL  Army Research Laboratory  
AS  anti-spoofing  
AUC area under curve 
BP belief propagation 
CA classification accuracy 
C/A coarse/acquisition 
C/No carrier-to-noise ratio  
CART Classification and Regression Trees 
CDMA  Code Division Multiple Access  
COMSEC  communications security  
CONOPS  concept of operations  
COTS commercial-off-the-shelf  
CS control segment 
DA  data analytics  
DAGR Defense Advanced GPS Receiver  
DAR data at rest 
DIT data in transit 
DOD  Department of Defense  
DOP dilution of precision  
DoS denial of service 
DoT  Department of Transportation  
DSSS direct sequence spread spectrum  
EHE estimated horizontal error 
EPE estimated position error 
EVE estimated vertical error 
EW electronic warfare 



xiv 

FCC Federal Communications Commission  
FDI false data injection  
FOM  figure of merit 
FoS Family of Systems  
FPR  false positive rate 
GCCS-TCO Global Combat and Control System Tactical Combat Operations  
GDOP geometric dilution of precision 
GGA global positioning system fix data 
GLONASS  Globalnaya Navigazionnaya Sputnikovaya Sistema, or Global 

Navigation Satellite System 
GNSS  Global Navigation Satellite System 
GPS Global Positioning System 
GSA GNSS DOP and active satellites  
GSV GNSS satellites in view  
HDOP  horizontal dilution of precision  
IA information assurance 
ICD  Interface Control Document  
ISR  intelligence, surveillance, and reconnaissance  
JBC-P  Joint Battle Command Platform  
J/S jammer-to-signal ratio  
JTCW Joint Tactical Common Operational Picture (COP) Workstation  
km  kilometers 
KNN k-nearest neighbor 
kph kilometers per hour 
MEO  medium earth orbit 
MGUE Military GPS User Equipment  
ML  machine learning  
NAL  Notice of Apparent Liability for Forfeiture  
NavIC  Navigation with Indian Constellation  
NCCIC  National Cybersecurity & Communications Integration Center 
NIST  National Institute of Standards and Technology  
NMEA National Marine Electronics Association  



xv 

NN  neural network 
NTP  Network Time Protocol  
P-code  precise ranging code 
PCA  principal component analysis 
P(Y)-code  precise ranging code or encrypted precise ranging code 
PDOP  position dilution of precision  
PNT  positioning, navigation, and timing  
PPS  precise positioning system 
PRN pseudo random noise 
PVT position, velocity, and time  
QZSS  Quasi-Zenith Satellite System  
RF Radio Frequency 
RMC  Recommended Minimum Specific GNSS Data 
RNN recurrent neural network 
ROC  receiver operating characteristic curve  
SA  selected availability 
SDR Software Defined Radio 
SNR    signal to noise ratio 

SPS  standard positioning service  
SV    satellites in view 

SV  space vehicle 
SVM  support vector machines 
SWaP  size weight, and power 
T&E test and evaluation  
THS  Target Handoff System  
TDOP  time dilution of precision 
TFOM  time figure of merit 
TOA Time Of Arrival 
TPR true positive rate 
UAV unmanned aerial vehicle  
USNO United States Naval Observatory  
UT  University of Texas at Austin  



xvi 

UTC  Coordinated Universal Time  
VDOP vertical dilution of precision 
Vel  velocity 
VMF Variable Message Format 
Y-code  encrypted precise ranging code 
  



xvii 

EXECUTIVE SUMMARY 

Can artificial intelligence (AI) methods detect spoofing on the military Global 

Positioning System (GPS) infrastructure? Using AI and machine learning (ML) tools, we 

demonstrated the successful detection of spoofing on the Defense Advanced GPS Receiver 

(DAGR). Using systems engineering principles, we conducted an analysis of the problem 

space to include a literature review to identify the state of the art in AI. The result of this 

exploration revealed novel solutions applied to solve this problem. During the early stages, 

we considered various system designs before settling on a system that incorporated both 

live and simulated GPS message traffic. We integrated model-based systems engineering 

(MBSE) principles to the design concept to map the system levels and interactions. 

Humphreys et al. (2008) defines GPS spoofing threat by three techniques classed as 

simplistic, intermediate, and sophisticated attacks. A simplistic attack builds on the concept 

of using a commercial GPS signal simulator, amplifier, and antenna to broadcast signals 

towards target GPS receiver. An intermediate spoofing attack applies receiver-based 

spoofers to generate the spoofing signal towards the target receiver’s antenna. A 

sophisticated spoofing attack is the most complex of the three methods, has the capacity to 

vary both the carrier and code phase outputs transmitted by each antenna while controlling 

the relative code/carrier phases among the transmit antennas (Humphreys et al. 2008). 

Because successful GPS spoofing attacks impact time, frequency, and space domains, the 

developed system, at a minimum, must consider these parameters. The design concept 

employed requirements of identifying nonobvious and nontrivial relationships in the 

dataset. 

The system design followed a two-pronged approach; 1) develop a hardware system 

to inject a spoofing signal on the GPS infrastructure and 2) develop a software application 

to detect the injection of spoofing. The hardware system consisted of a GNSS simulator 

used to create spoofing scenarios, a radio frequency (RF) splitter to facilitate the input of 

both live and simulated message traffic, a DAGR and various data collection tools. The 

system operations followed the simplistic spoofing attack technique to execute overt 

spoofing attacks. A feature of overt spoofing is the jam-then-spoof strategy. Chapman 
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(2017, 1) describes overt spoofing attack as one where “the counterfeit GPS signals are 

simply broadcast at a significantly higher power level than the authentic satellite signals.” 

In overt spoofing the adversary increases the power of the spoofing signal to overpower 

the legitimate GPS signal feed. We successfully applied overt spoofing techniques to the 

engineered system and collected the data for analysis. The dataset formed the basis of the 

AI development tools and consisted of both National Marine Electronics Association 0183 

(NMEA 0183) and Interface Control Document-GPS 153 (ICD GPS153) message traffic. 

While the NMEA 0183 standard defines GPS message for commercial use, the ICD 153 

standard is used in the design and implementation of messages used on military platforms. 

We used messages from both the NMEA 0183 and the ICD 153 message standards in this 

study. 

Applying data reduction tools such as principal component analysis (PCA) on the 

dataset revealed the correlation of the parameters resulting in approximately 94% of the 

variance of dataset. The first principal component PC1 explains the variance. The study of 

AI tools identified applicability of both unsupervised and supervised learning tools. 

Unsupervised learning is effective in identifying characteristics within a dataset, while 

supervised learning methods are applied to datasets that have a known target. Using 

clustering methods such as k-means, we clearly identified the clusters formed by the 

application of spoofing on the signal. Clustering is effective as a visual tool. The 

unsupervised learning models effectively identified clusters formed by the spoofing 

scenarios. The onset of spoofing on the data structure was revealed in a separate cluster 

from the clusters formed before and after the application of the spoofing signal. We 

identified peculiarities and previously unidentified correlations within the data parameters 

that proved enlightening to the study. 

Using data mining and data analytics tools, we again processed the dataset to apply 

a labeled parameter and trained a supervised model to classify spoofing. We processed the 

dataset and examined the results using several supervised learning models. We executed 

the models on the labelled dataset with 85% of the data used for training and 15% reserved 

for testing in one while using cross validation. Applying cross-validation to the model 

eliminates the need for a validation split of the dataset. The results of the random forest 
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and logistic regression models show a 100% true positive rate on both the training set and 

the test set further proving that the AI model can detect spoofing on the GPS user 

infrastructure.  

We evaluated the effectiveness of supervised learning models using a suite of 

performance measures that are generally applied to ML, data science, and statistics 

problems. The training of the models presented excellent results with perfect recall and 

precision for all models. Recall is an important metric used in assessing the effectives of a 

tool in the detection of malicious activity such as spoofing attempts on the DAGR. The 

results of this study revealed that given the appropriate tools and access, an adversary can 

effectively spoof a military GPS device. The tools we developed and demonstrated 

throughout the thesis show that AI methods can detect spoofing attacks on the military GPS 

infrastructure. 
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I. INTRODUCTION 

This chapter presents an overview of the Global Positioning System (GPS) and the 

rationale for the study being undertaken in this thesis. In addition, the outline for the rest 

of the work is given to provide a foundation for understanding the methods applied to 

achieve the results. 

A. BACKGROUND AND PROBLEM STATEMENT  

GPS technology is ubiquitous in current positioning and navigation applications 

covering both civilian and military systems. In an article in IEEE Spectrum, the authors 

report that in 2011, Iran captured a classified drone belonging to the CIA (Psiaki, 

Humphreys, and Stauffer 2016). It is believed that the Iranians were able to interfere with 

the drone’s GPS to make it land in Iran rather than the planned destination of Afghanistan 

(Psiaki, Humphreys, and Stauffer 2016). The U.S. Department of Transportation (DoT) 

tracks and documents GPS issues on its public-facing web portal. Recent searches of the 

portal report that there have been “multiple instances of significant GPS interference 

reported worldwide in the maritime domain, resulting in lost or inaccurate GPS signals 

affecting bridge navigation, GPS-based timing, and communications equipment” (U.S. 

DoT 2020) In 2013, researchers from the University of Texas demonstrated that a GPS 

receiver could be tricked by broadcasting counterfeit GPS signals to send a set of false 

coordinates to an unsuspecting user (Newberry 2014). In another report, the Iranian 

military captured two U.S. Navy patrol boats with 10 U.S. servicemen onboard in Iranian 

waters (Psiaki, Humphreys and Stauffer 2016). These are just a few instances of high-

profile GPS interference that have been reported. With the dependence on GPS systems for 

navigation, the conclusion is that navigation systems are vulnerable to GPS interference. 

This thesis explores the question: Can an end user detect and identify a spoofing attempt 

on their receiver? 

The GPS was developed by the U.S. Department of Defense (DOD) and serves 

marine, airborne, and terrestrial users. Multiple sources associate the words “position,” 

“navigation,” and “timing” with GPS. A synthesized definition of GPS is “a satellite 
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navigation system capable of operating in all-weather conditions, providing users with 

positioning, navigation, and timing (PNT) services” (GPS 2014). The GPS system is 

composed of three components: 

1. The space segment, which consists of a constellation of satellites that 
transmits radio signals to users. 

2. The ground control segment, which consists of a global network of 
ground facilities that track, monitor transmissions, perform analyses, 
and send commands and data to the satellite constellation. 

3. The user segment, which consists of both vehicle borne and handheld 
portable devices. (GPS 2014) 

Navigation is not the only function provided by GPS; “communications networks, 

banking systems, financial markets, and power grids all depend on GPS for precise time 

synchronization” (GPS 2014). Figure 1 is a depiction of the components of the GPS 

architecture. The user segment shown in Figure 1 was the focus of this thesis. Although 

the study was geared towards spoofing of military systems, instances of commercial user 

systems were also explored and evaluated. These instances are documented in later sections 

of the study. 

 
Figure 1. GPS System Components. Source: Ferre (2018). 
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As a military asset, GPS is used in conducting land, sea, and airborne navigation in 

areas such as search and rescue operations, vehicle location systems, friendly forces 

tracking, and aerial refueling operations. A 2012 white paper from NovAtel explains that 

U.S. defense officials acknowledge that GPS was a force multiplier in both Operations 

Desert Storm and Desert Shield (NovAtel 2012). According to the paper, military vehicles 

were able to navigate using GPS and not rely on landmarks as points of reference. Former 

Defense Secretary James N. Mattis, in a 2018 speech, stated that “Success does not go to 

the country that develops a new technology first, but rather, to the one that better integrates 

it and more swiftly adapts its way of fighting” (Garamone 2018). GPS is one such 

application of technology that has been developed and adapted to the benefit to the U.S. 

military forces. Global Navigation Satellite Systems (GNSS) provides GPS service to a 

global audience. The U.S.-operated GPS is the first of the international operational GNSSs. 

Russia has the Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS), China has 

the BeiDou Navigation Satellite System, and the European Union has the Galileo system 

(GPS 2014a). While the four GNSSs have a global reach, both Japan and India operate 

regional GPS systems. Japan operates the Quasi-Zenith Satellite System (QZSS), and India 

operates the Navigation with Indian Constellation (NavIC) system (Kaplan and Hegarty 

2017). GPS is the first operational GNSS with worldwide availability.  

With all the benefits of GPS, the technology is not without weaknesses and 

vulnerabilities. There are many types of threats, both natural and manmade, that can 

interfere with a GNSS receiver’s functionality. Threats can be manifested as intentional or 

unintentional. Table 1 shows a list of threats and their impacts on the GPS infrastructure. 
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Table 1. Types of Threats to GPS. Source: ICAO (2019, 6–7). 

Threat Source Threat Type Description Impact on the User 
Solar Storms Unintentional Electromagnetic 

interference from solar 
flares and other solar 
activity “drowns out” 
the satellite signals in 
space. 

Loss of signal, or range 
errors affecting the 
accuracy of the location or 
timing information. 

Jamming Intentional Locally generated RF 
interference is used to 
“drown out” satellite 
signals. 

Loss of signal (if the 
jammer is blocking out all 
satellite signals) or range 
errors affecting the 
accuracy of the location or 
timing information. 

Spoofing Intentional Fake satellite signals 
are broadcast to the 
device to fool it into 
believing it is 
somewhere else, or at 
a different point in 
time. 

False location and time 
readings, with potentially 
severe impacts on 
automated and autonomous 
devices and devices that 
rely on precise GNSS 
timing. 

RF Interference Unintentional Noise from nearby RF 
transmitters (inside or 
outside the device) 
obscures the satellite 
signals. 

Loss of signal (if the 
transmitter is blocking out 
all satellite signals) or 
range errors affecting the 
accuracy of the location 
reading (if the receiver is at 
the edge of the 
transmitter’s range). 

Signal 
Reflection 

Unintentional Reflection due objects 
such as buildings. 

GNSS signals can reflect 
off relatively due to distant 
objects, such as buildings, 
which would cause gross 
errors in position accuracy 
if the receiver falsely locks 
onto the reflected signal 
instead of the direct signal. 

User Error Unintentional Users over-rely on the 
GNSS data they are 
presented with, 
ignoring evidence 
from other systems or 
what they can see. 

Can lead to poor decision-
making in a range of 
scenarios. 
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Jamming and spoofing attacks on GPS operations are on the rise (NovAtel 2012; 

Huber 2018). Military GPS systems must be robust and contain features that can withstand 

such attacks and remain operational despite the interference. This point is expanded upon 

in later chapters of the study. GPS signals are transmitted using low power thereby 

presenting a vulnerability to adversarial interference. The GPS signal strength reaching the 

surface of the Earth is about -130 dBm (Bonebrake and O'Neil 2014). As a result, the GPS 

technology is susceptible to disruptive interference methods. GPS jamming is described as 

the intentional or unintentional interference of the signal that prevents a legitimate signal 

from being received. GPS interference can also originate from unintentionally produced 

RF waveforms that essentially raise the effective noise floor in the receiver processing, 

resulting in the degradation or denial of a receiver’s ability to operate (National 

Cybersecurity & Communications Integration Center 2016). Figure 2 is a depiction of a 

jammer prosecuting a target. The radio signal emanating from the jammer needs to be at 

the same frequency as the user equipment in the vehicle. The impact of the jammer is that 

the vehicle is unable to determine its true position, as the jamming inhibits the user 

equipment’s ability to lock onto the signal being broadcast by the satellite. 

 
Figure 2. GPS Jammer. Source: NovAtel (2012).  
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GPS spoofing is caused by false radio frequency (RF) waveforms that are 

characterized as valid signals with the aim of interfering with a legitimate GPS signal. GPS 

spoofing is a malicious attack that can degrade, disrupt, or deceive the end user. In a 

spoofing scenario, false satellite signals are broadcast to the device to misrepresent its 

location and time. Spoofing “requires simulating the GPS accurately and capturing the 

user’s receiver away from the true signal to steer it off course” (Cole 2015). The graphic 

in Figure 3 is an illustration of a spoofing attack. The actual position being reported, and 

the real position are shown to be some distance apart; subsequent chapters of this study 

expand on this action.  

 
Figure 3. GPS Spoofing: Source: Hohman (2020). 

A GPS spoofing attack is more difficult to detect and has the potential to be 

significantly more menacing than jamming because the user device is most likely oblivious 

to the threat (Jafarnia-Jahromi et al. 2012). Humphreys et al. amplifies this concern stating 

that “spoofing is more sinister than intentional jamming because the targeted receiver 

cannot detect a spoofing attack and so cannot warn users that its navigation solution is 
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untrustworthy” (Humphreys et al. 2008, 1). These revelations about spoofing became 

motivators for undertaking this study as we believe that there are tools within our reach to 

address this vulnerability. Research shows that in the past, state-sponsored actors were the 

main players in the GNSS spoofing arena; however, spoofing is no longer in the domain 

of just nation actors. With the advances in software-defined radio (SDR) technology, 

GNSS spoofing can be executed effectively with cheap SDR using open-source software 

downloaded from the internet. Measurement spoofing and data spoofing are the two main 

classes of GPS spoofing (National Cybersecurity & Communications Integration Center 

2016). Measurement spoofing injects enough interference upon the RF waveforms with the 

result that the target receiver produces incorrect measurements of critical measurement 

parameters such as time-of-arrival and frequency-of-arrival. Data spoofing, on the other 

hand, pushes false digital data to the target receiver. The receiver uses this false data in the 

processing of signals and the calculation of PNT (National Cybersecurity & 

Communications Integration Center 2016). Either of these spoofing activities results in a 

disruption of the GPS signal. 

This thesis studied how artificial intelligence (AI) can improve the protection of the 

GPS against cyber-attacks by developing and analyzing a software system that incorporates 

machine learning (ML) and data analytics (DA) to identify GPS spoofing attempts. The 

developed ML algorithm identifies GPS spoofing attempts and alerts an end user of said 

spoofing attempt. 

B. MOTIVATION FOR THESIS 

The United States Armed Forces are the leaders in military space technologies and 

are dependent on satellite communications for the prosecution of armed conflicts. This 

technological advantage is not without risk. This risk has been made public, even reaching 

the halls of Congress. In a March 2017 “congressional hearing on space threats and the 

implications for homeland security, Rep. Donald Payne Jr. pointed to an example in his 

district of the dangers of GPS disruption” (Swarts 2017). He outlined the story of a truck 

driver using an illegal GPS jamming device in a company issued vehicle to deceive his 

employers on his location. This GPS jamming device presented interference and disrupted 



8 

the satellite-based tracking system at Newark Liberty International Airport. The GPS 

tracking system at airports serves a crucial role in the safety of air traffic both in the air and 

on the ground. GPS tracking is a vital tool used by air traffic controllers allowing them to 

communicate with the on-board systems on an aircraft. “The potential disruption and harm 

that such an attack could do to critical infrastructure, in particular maritime and aviation 

systems, are particularly troubling” (Swarts 2017). The Federal Communications 

Commission (FCC) issued a Notice of Apparent Liability for Forfeiture (NAL) to the driver 

imposing a fine of $31,875 for the resulting disruption (FCC 2013). If an enemy learns to 

spoof false GPS data into our GPS reliant weapons, they could be turned against us, or our 

allies (Rooker 2008).  

In an article in National Defense in 2010, the opening sentence was, “When it 

comes to battlefield intelligence, it’s far better to have too much than too little” (Magnuson 

2010). Those words were attributed to then Undersecretary of Defense for Intelligence 

James R. Clapper. The article covers conversations with senior members of the U.S. DOD, 

the intelligence community, and top military personnel discussing sensors and data. Lt. 

Gen. David A. Deptula, Air Force deputy chief of staff for intelligence, surveillance and 

reconnaissance was quoted as saying “We’re going to find ourselves in the not too distant 

future swimming in sensors and drowning in data” (Magnuson 2010). The DOD 

incorporates sensors on every platform in their arsenal, from ground sensors to airborne 

systems with each node collecting data, thereby lending credence to his statement. On the 

local level, our command collects data while participating in test events, whether in our 

onsite labs or on field test events. This thesis leveraged the stream of test and operational 

data being collected through our test and field operations. This operational data served as 

the source used to implement the AI/ML system. This system produced from this study 

will serve as a redundant channel to the existing systems used to inform operators of any 

spoofing attempts on the end user equipment. Developing this asset using existing 

technologies enhances the decision-making process and removes some of the uncertainty 

with which an operator might be faced. AI is a tool to help facilitate data analytics by 

providing a means to analyze the data within a system and aid the operator’s decisions. The 
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developed system presents notification to an operator when actions need to be taken based 

on the data received from the environment. 

C. THESIS OBJECTIVE  

Given the GPS vulnerabilities and many reported instances of GPS jamming and 

spoofing attempts, a means of detecting these events and alerting the end user is required. 

Evidence shows that users are not aware of jamming or spoofing events until the events 

have occurred. Knowing the danger that an anomalous activity poses, it is imperative that 

a system be put in place to enhance the current concept of operations (CONOPS). This 

thesis studied how AI can improve the protection of military GPS against cyber-attacks by 

developing and analyzing a software system that incorporates AI, ML, and DA tools to 

identify GPS spoofing attempts. 

D. RESEARCH METHOD  

This thesis applied a systems engineering analysis approach to conduct a problem 

space needs analysis, explore the use of AI and ML as a possible design solution, and to 

conduct a proof-of-concept to demonstrate the utility of the proposed solution to the 

original problem space. The problem space needs analysis consisted of researching military 

GPS systems, their data structures, and their system vulnerabilities. The problem space 

analysis included understanding the parameters that constitute the GPS data and identifying 

parameters that are susceptible to interference. The next step explored AI and ML as a 

design solution to address the problem space. A literature search identified model selection 

as one of the most significant and challenging issues in ML (Fujimaki et al. 2009). Toward 

this end, it was imperative that the area of ML was explored thoroughly to maximize the 

benefits of implementing the appropriate tools. The process of researching design solutions 

included the study of other programs that have successfully applied ML to anomaly 

detection, to adapt principles that have proven to be effective in achieving the objectives 

of this study. The final step in the thesis research was the demonstration of the application 

of ML to the GPS spoofing vulnerability problem. The study used live operational and 

simulated GPS data to train and test a variety of ML approaches (including anomaly 

detection, supervised learning, and unsupervised learning) to detect and classify GPS 
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spoofing activities. This demonstration served as a proof-of-concept to explore the use of 

AI and ML methods for providing layers of security for GPS and for quantifying the levels 

of PNT assuredness. 

E. EXPECTED BENEFIT OF THESIS RESEARCH 

An end user of a military GPS system will not know immediately that a spoofing 

attack is occurring on his or her receiver. One consequence of a spoofing attack is the 

reporting of false position and time information. False data can have severe impacts on an 

operation, on automated and autonomous systems, and on systems that rely on precise 

GNSS timing. Using both operational and simulated data for training and testing, the vision 

is to create an intelligent system that can detect and react to GPS spoofing attempts while 

alerting the operators of said actions. This thesis increases the military’s understanding of 

how AI can support GPS spoofing detection and reporting. 

F. THESIS OVERVIEW 

Chapter I provided an introduction, a description of the problem statement, an 

explanation of the motivation for this research, the thesis statement, and the research 

method for this study. 

Chapter II provides a summary of the literature surveyed in developing the methods 

used in this thesis. Chapter III describes the conceptual GPS-spoofing–detection AI system 

and the prototype that was developed for experimentation. Chapter III contains a 

description of the prototype demonstration and ML methods used for experimentation. 

Chapter IV provides the overall results of the study and ML demonstration of the prototype 

GPS-spoofing–detection system. Chapter V concludes the thesis with a summary of the 

research and recommendations for future work. 
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II. LITERATURE REVIEW  

This chapter provides a summary of the literature and sources that were used to 

increase the level of understanding on the study of GPS spoofing detection strategies. The 

literature review was focused in three areas: understanding GPS characteristics and 

capabilities, reviewing documented studies related to GPS spoofing, and exploring AI and 

ML methods being used in practice. 

The subject of AI is an evolving science that has adapted to the changing state of 

the art in computing. With that in mind, this thesis focused on reviewing literature from 

the last 15 years to form the basis of this research. The literature search explored AI and 

ML methods currently available and being used in both commercial and military 

applications. The literature review identified AI methods that show potential as solutions 

to address the GPS spoofing problem. The literature review provided a knowledge 

framework to support the thesis research by informing the needs analysis, identifying 

methods for the development of a design solution, and providing a basis for the ML proof-

of-concept analysis. 

A. GPS DESCRIPTION SYSTEM AND SYSTEM VULNERABILITIES 

GPS is a U.S.-owned satellite-based navigation system made up of 30+ navigation 

satellites circling the Earth and providing users with positioning, navigation, and timing 

(PNT) services. GPS has become a modern-day convenience used to support navigation 

between locations. The GPS system has three components: space systems, ground stations, 

and user equipment. The space systems, in the form of satellite constellations, consist of 

24 to 32 satellites. The satellites are organized in a configuration occupying six orbital 

planes with each plane oriented at angle of inclination of 55- degrees. The satellites travel 

in medium earth orbit (MEO) and are positioned 12,532 miles (approximately 20,200 km) 

above the Earth. Each configuration is equipped with four satellites per plane as shown in 

Figure 4, where each satellite completes one orbit in one-half of a sidereal day. Merriam-

Webster defines sidereal as “of, relating to, or expressed in relation to stars or 

constellations.” Expanding on this definition, a sideral day is a measure of the rotation of 
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the Earth relative to the stars and is approximately 23 hours 56 minutes and 4.1 seconds 

(Crockett 2012). The length of a sidereal day contrasts with a solar day, which is a measure 

of the 24 hours that it takes the earth to spin once on its axis while revolving around the 

sun. This configuration, combined with the global reach of GPS, makes navigation and 

timing available to users at any location on Earth. These users have persistent access to at 

least four satellites on demand.  

 
Figure 4. The Orbits of GPS Satellites. Source: Howell (2018). 

Communication between a GPS receiver and the satellites is based on one-way 

transmission from the satellites to the receiver using direct sequence spread spectrum 

(DSSS) modulation. DSSS works by multiplying the original satellite signal with a pseudo 

random noise spreading code. This technique reduces signal interference and produces a 
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continuous scrambled signal. The GPS system uses a one-way time-of-arrival (TOA) 

ranging technique in its operations (Kaplan and Hegarty 2017). TOA works on the 

principle that the distance between the satellite and the GPS receiver can be determined by 

using the propagation time and the speed of light. Transmission between the satellites and 

the user equipment depends on accurate synchronization of the clocks on both systems. 

The ranging codes and navigation data are broadcast using a code division multiple access 

(CDMA) technique on two frequencies in the L Band, L1 (1,575.42 MHz) and L2 (1,227.6 

MHz) (Kaplan and Hegarty 2006). CDMA allows multiple users to receive service on the 

same carrier frequency. GPS’s use of the L-band was crucial to the developmental concept 

of the system. GPS was designed to be able to operate in all types of environmental 

conditions and was required to operate using frequencies below 2 GHz (Ogaja 2011). The 

L-band occupies the 1–2 GHz frequency range with wavelengths between 15–30 cm. The 

L-band signals allow GPS to operate in many weather conditions such as snow, rain, and 

fog while also allowing GPS signals to penetrate some vegetation.  

The GPS control segment (CS) consists of a global network of ground facilities as 

shown in Figure 5. The master control station is located at Schriever Air Force Base (AFB) 

in Colorado, with an alternate master control station at Vandenberg AFB in California 

(GPS.gov 2018a). The CS, unlike the user segment, provides two-way transmission 

between the ground station and the satellites allowing for the tracking and maintenance of 

the satellites in space. Other functions of the CS include monitoring the health and signal 

integrity of satellites and maintenance of their orbital configuration. According to Kaplan 

and Hegarty, other functions assigned to the CS include updating the ephemerides and 

other critical parameters used to determine user position, velocity, and time (PVT) (Kaplan 

and Hegarty 2017). Merriam Webster defines ephemeris, singular of ephemerides, as “a 

tabular statement of the assigned places of a celestial body for regular intervals” (Merriam-

Webster. 2021). For GPS, ephemerides represent the position of the satellites relative to 

time and includes information on week number, satellite accuracy and health, age of data, 

and orbital parameters (Kaplan and Hegarty 2006). 
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Figure 5. Control Segment. Source: GPS.gov (2018). 

The user segment is represented by a GPS receiver. A GPS receiver unit takes many 

forms and can be as basic as wearables used for recreation and sport or as advanced as the 

equipment providing PNT capabilities to autonomous vehicle navigation. A GPS receiver 

contains an antenna for receiving signals, a receiver/processor unit for converting RF 

signals to a navigation solution, and a control/display unit, for displaying navigation to the 

user. The user receiver equipment performs navigation, timing, and other related GPS 

functions. An example of a GPS receiver used for military applications is the Defense 

Advanced GPS Receiver (DAGR). A DAGR is a military GPS receiver that can be used as 

a handheld device or as part of a vehicle-mounted system. A properly configured and 

fielded DAGR provides resilience to both jamming and spoofing thereby providing more 

security and reliability in the field. Figure 6 shows a DAGR being used in the handheld 

configuration. 



15 

 
Figure 6. Defense Advanced GPS Receiver. 

Source: BAE Systems (2020). 

GPS time is based on atomic clocks and is related to Coordinated Universal Time 

(UTC). The United States Naval Observatory (USNO) maintains the DOD reference for 

time and time interval (National Institute of Standards and Technology [NIST] 2019). To 

coordinate time between the satellites and receivers, “the time on each satellite is derived 

by steering the on-board atomic clocks to the time scale at the GPS Master Control Station, 

which is monitored and compared to UTC” (NIST 2019). The National Institute of 

Standards and Technology (NIST) explanation of GPS time further states that “since GPS 

time does not adjust for leap seconds, it is ahead of UTC by the integer number of leap 

seconds that have occurred since January 6, 1980, plus or minus a small number of 

nanoseconds” (NIST 2019). The time offset from UTC is understood to be contained in the 

GPS broadcast message that usually is applied automatically by GPS receivers (NIST 

2019). Tsui, (2000, 9) states that “In GPS, the position of the satellite is known from the 

ephemeris data transmitted by the satellite.” It is documented that the U.S.-operated GPS 

is the world’s first global navigation satellite systems (GNSS). GPS was developed as a 

military asset but now provides service to both civilian and military users. While the 

civilian service is freely available to all users on a continuous, worldwide basis, availability 
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of the military service is restricted to the U.S. services, allied armed forces, and approved 

Government agencies. GPS provides two levels of service: the standard positioning service 

(SPS) and the precise positioning service (PPS). SPS “was originally designed to provide 

civil users with a less accurate positioning capability than PPS, through a feature known as 

Selective Availability (SA)” (Office of the Department of Defense 2020). PPS is reserved 

for U.S. authorized military and select government agency users and provides a higher 

level of accuracy than SPS. Because PPS is used for military applications, access is 

controlled through cryptography. Anti-spoofing (AS) and SA are two measures used for 

PPS. AS is used to defeat deception jamming. Kaplan and Hegarty (2006, 4) describes 

deception jamming as “a technique that can be used to deceive an unsuspecting receiver by 

replicating the satellite ranging codes, navigation data signal(s), and carrier frequency 

Doppler effects.”  

Each satellite transmits on the L1 and L2 frequencies with ranging codes which 

differ by satellites. Ranging codes are also used by the system in computing PVT solution. 

Selection of the ranging codes is based on the criteria of having low cross-correlation 

properties relative to other satellites. GPS system is structured such that “each satellite 

generates a short code, the coarse/acquisition or C/A code and a long code, the precision 

or P(Y) code” (Kaplan and Hegarty 2006, 3). These two codes essentially distinguish the 

civilian and military use of GPS. Secure GPS and assured PNT refers to military-encrypted 

GPS that uses military P(Y) code and M-Code (Cole 2015). The encrypted P(Y) signal 

provides accuracy to within centimeters of the target, while the C/A signal produces an 

accuracy of about 5 meters (GPS.gov 2020). Y-code, the encrypted P-code used in military 

applications, is a pseudo random code that operates at ten times the frequency of that used 

in civilian applications. M-code is used in the L1 and L2 GPS bands, encrypts receiver 

signals, and provides the capability to detect and reject false GPS signals (Barker, et al. 

2005). While Y-code and M-code adds robustness to the system while offering higher 

levels of cyber resiliency to military systems; they do not eliminate all risks to assured 

PNT. Figure 7 presents a graphic illustration of both the GPS P(Y) Code and the GPS M-

Code on the L1 frequency band along with the other worldwide GNSS on said L1 
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frequency. The figure shows that the M-Code occupies a wider portion of the L1 spectrum 

than the P(Y) code furthering the robustness and resiliency of the system to interference.  

 
Figure 7. GNSS Encrypted Signals. Source: Jones (2019). 

GPS jamming and spoofing are two methods used to interfere with GPS signals. 

GPS spoofing is an attack in which valid waveforms with invalid data are transmitted to 

trigger a GPS receiver to produce valid messages with invalid PNT information. GPS 

spoofing aims to interfere with a legitimate signal by broadcasting false satellite 

information to the user device to misrepresent its location and time. Using a network 

analogy, a GPS receiver looks like an open port to an adversary. The receiver is always in 

a state of readiness, listening for, and receiving GPS signals, making it vulnerable to 

spoofing attacks. In the past, spoofing attacks were carried out by state actors, but with 

changes in technology and the low-cost of the required electronic components, non-state 
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actors can easily acquire the equipment needed to interfere with GPS signals. GNSS 

spoofing can be executed with commercially available hardware and open-source software, 

easily putting this capability in the hands of the general population (Korolov 2019). Cuntz 

et al. (2012) reiterate that GPS spoofing requires a more concerted effort than jamming, 

while the risk and consequences of not detecting such attacks are extremely high.  

The GPS signal presented at the antenna port of a user device contains information 

relating to PNT along with other information broadcast by the satellite. GPS signals to the 

user equipment travels on a one-way path from the satellite to the user equipment; there is 

no information exchange from the user equipment that is transmitted to the satellites. There 

are a specific set of messages and corresponding data fields that are used in the DAGR in 

providing a valid solution to the user. Within these messages there are data items that when 

interfered with, impacts the GPS solution presented to the end user. The National Marine 

Electronics Association (NMEA) 0183 Interface Standard “defines the electrical signal 

requirements, data transmission protocol and time, to support the one-way serial data 

transmission used for GPS” (National Marine Electronics Association 2012, xx). 

Typically, NMEA 0183 standard messages range from 11 to a maximum of 79 characters 

in length. Messages are generally transmitted at a maximum rate of one per second, 

according to the standard. All compliant GPS devices conforms with the NMEA 0183 

standard data format supported by GPS manufacturers. Messages that are impacted by GPS 

interference include the global positioning system fix data (GGA), the GNSS satellites in 

view (GSV), GNSS dilution of precision (DOP) and active satellites (GSA), and the time 

of day (ZLZ). The GGA message represents the time, position and fix related data for a 

GPS receiver. The GSV message presents the number of satellites (SV) in view, satellite 

ID numbers, elevation, azimuth, and SNR value. The NMEA 0183 standard dictate that the 

GSV sentence includes a maximum of four satellites per transmission. The GSA message 

contains “GNSS receiver operating mode information, the satellites used in the navigation 

solution reported by the GGA sentence, and the DOP values” (NMEA 2012, 94). The 

standard requires that the ZLZ message contains the time of day in hours-minutes-seconds, 

both with respect to (UTC) and the local time zone. The NMEA 0183 standard describes 

the Recommended Minimum Specific GNSS Data (RMC) message to include the “time, 
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date, position, course, and speed data provided by a GNSS navigation receiver” (NMEA 

2012, 113) as shown in Figure 8. The standard dictates that an RMC message “is always 

accompanied by RMB when a destination waypoint is active” (NMEA 2012, 113). The 

NMEA 0183 standard dictates that messages start with the $ character and that each data 

field is separated by a comma as illustrated in the following data sentence structure. 

 
Figure 8. GPS Message Structure: Source: NMEA (2012). 

RMC and RMB are the recommended minimum data to be provided by a GNSS 

receiver as stated in the NMEA 0183 standard. Further, all data fields must be accounted 

for in the message. In the event of a null field, there will be no data between the commas 

representing said entity. The NMEA 0183 standard describes the RMC sentence as a 

periodic message containing position, velocity, and time parameters that is transmitted at 

no more than two second intervals. The GSA GPS DOP and GSV message in Figure 9 uses 

a similar structure as the RMC message. The GSV message string contains information on 

the number of satellites in view, the PRN, elevation, azimuth, and SNR value for each 

satellite in view (NMEA 2012).  
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Figure 9. NMEA 0183 GSV Message: Source: NMEA (2012) 

The GNSS DOP and GSA message contains information such as the receiver’s 

operating mode, the satellites used in the navigation solution, and DOP values. Fields 3 

through 14 of the GSA represents the ID of the satellites in view while fields 15–17 

represent the various DOP elements. The information in the GSA represents the active 

satellites. Field 15 represents PDOP (position dilution of precision) and describes the error 

produced by the relative position of the GPS satellites. Field 16 represents horizontal 

dilution of precision (HDOP) in meters, while field 17 represents the vertical dilution of 

precision (VDOP) in meters. The DOP parameters are factors in the source of GPS error. 

The metrics that capture the error caused by the relative position of the GPS satellites are 

geometric dilution of precision (GDOP) or position dilution of precision (PDOP) (GIS 

Geography 2020). Even though we are using a DAGR in a static land-based construct in 

this experiment, both the horizontal and vertical accuracy and error factors are being 

factored in the analysis. Error and accuracy will be impacted by spoofing attempts. 

Additionally, geometry, atmospheric conditions, and nearby objects can impact the quality 

of a valid GPS solution. 

Military GPS receivers such as the DAGR are designed for compliance with NMEA 

0183 standard and therefore implement the messages discussed. In addition to the NMEA 

0183 standard, the DAGR implements Interface Specification IS-GPS-153 Interface 
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Control Document (ICD). IS-GPS-153 messages are also referred to as ICD-GPS-153 

messages. The web portal GPS.gov describes ICDs as “the formal means of establishing, 

defining, and controlling interfaces and for documenting detailed interface design 

information for the GPS program” (GPS.gov 2021a). The interface protocol and data 

message formats for the DOD GPS equipment are documented in the ICD-GPS-153. The 

DAGR used in this study provides an ICD-GPS-153 compliant port and will be discussed 

in subsequent chapters as part of the experiment set up and data collection scheme. 

There are two classes of GPS spoofing: measurement spoofing and data spoofing. 

The classes can be further expanded to capture the spoofing generation methods. According 

to Jafarnia-Jahromi et al. (2012) spoofing generation can be divided into three documented 

categories: GPS signal simulator, receiver-based spoofers, and sophisticated receiver-

based spoofers. In the GPS signal simulator category, the output of the GPS signal 

simulator is mixed with an RF signal to be presented as authentic GPS signals as illustrated 

in Figure 10. The scenario captured in the figure shows a missile launched from a ship in 

coastal waters. The spoofer can lock on to the GPS coordinates from which the operator 

increases the signal strength to overpower the legitimate signals resulting in a change of 

target location for the missile. The second category, a receiver-based spoofer, is a more 

advanced type of spoofer than a GPS simulator spoofer. The receiver-based spoofers 

operate by concatenating a GPS receiver with a spoofing transmitter. For a receiver-based 

spoofer to be effective, a line-of-sight position to the system needs to be established, 

thereby making this a more difficult method to execute. The sophisticated receiver-based 

spoofers are the most complex and the most effective of the three spoofing categories 

described in the literature (Jafarnia-Jahromi et al. 2012). These broad categories can be 

defined as synchronous and asynchronous attacks.  



22 

 
Figure 10. GPS Spoofing: Source: Moody (2018). 

This study used asynchronous attack methods to present a spoofing attack on the 

DAGR. An asynchronous attack attempts to overpower the legitimate GPS signal by 

increasing the power of the spoofing signal. 

B. DOCUMENTED STUDIES RELATED TO GPS SPOOFING 

Both jamming and spoofing attacks on GPS are in the realm of electronic warfare 

(EW) in the category of cyber-attacks. Jamming of GPS results in denial-of-service attack 

(DoS) inhibiting a user from accessing the required PNT information. According to the 

Cybersecurity and Infrastructure Security Agency (CISA), “A DoS attack occurs when 

legitimate users are unable to access information systems, devices, or other network 

resources due to the actions of a malicious cyber threat actor.” “A GPS jamming cyber-

attack blocks GPS signals from getting to a receiver, whereas GPS spoofing allows hackers 

to interfere with navigation systems without operators realizing it” (McAfee 2020). GPS 

spoofing attacks are more difficult to detect and require a higher level of technical expertise 
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to execute. As GPS spoofing impacts the GPS PNT solution, potentially placing a user in 

a location that is different from their planned position, the threat to safety is amplified.  

Much of the work on GPS vulnerabilities can be traced back to the President’s 

Commission on Critical Infrastructure that was established in July 1996. This Commission 

under the auspices of the DoT, ordered “an assessment of the vulnerability of the 

transportation infrastructure relying on the use of GPS” (Volpe 2001). The focus of the 

report was the perceived vulnerability of the U.S. transportation infrastructure; however, 

one recommendation was that the DOD “vigorously support and protect the spectrum for 

GPS and its applications” (Volpe 2001). The Volpe report identified jamming and spoofing 

as potential attack methods. The report also identified the exploitation potential of GPS, 

“as GPS further penetrates into the civil infrastructure, it becomes a tempting target that 

could be exploited by individuals, groups or countries hostile to the United States” (Volpe 

2001). Twenty years later, this finding resonates with the same impact as when the report 

was first released. Several studies about GPS jamming have been documented on the 

subject. GPS spoofing studies have not been reported at the same level as GPS jamming. 

Spoofing attacks are not necessarily fewer than jamming, but as stated previously, spoofing 

is more sinister and much harder to detect than a jamming episode.  

In the wake of the incident and outrage surrounding the capture of the U.S. drone 

by Iran in 2011, the U.S. Department of Homeland Security took up the charge to advance 

the study of spoofing of U.S. military assets. Behind the scenes, the speculation 

surrounding this capture was the cause of much consternation and led to congressional 

investigations. Todd Humphreys, an assistant professor at the University of Texas at Austin 

(UT), is one of the many researchers who has been advancing the work of identifying GPS 

spoofing activities. In June 2012, Professor Humphreys and his research team from UT 

were invited to participate in an exercise at the White Sands Missile Range in New Mexico 

to assess whether they could successfully commandeer military systems by injecting false 

GPS data. One objective was to provide incorrect data to an unmanned aerial vehicle 

(UAV) in flight to force the aircraft to land (Psiaki, Humphreys, and Stauffer 2016; Farivar 

2013). The team successfully injected their false data into the system causing the UAV to 

adjust its altitude as it was led to believe it was executing a climb. It took a manual override 
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of the controls to prevent the aircraft from crashing according to the report (Psiaki, 

Humphreys, and Stauffer 2016).  

The details of the White Sands exercise were presented at the 2013 South by 

Southwest Interactive conference and generated interest in both the public and private 

sectors. One attendee who took a keen interest in the presentation was Andrew Schofield, 

the “Master of the White Rose of Drachs.” The White Rose of Drachs is an $80 million 

213-foot British owned super yacht that was offered up to Professor Humphreys to conduct 

a spoofing exercise. That same year, Professor Humphreys once again led his research team 

from UT in conducting this experiment in the Mediterranean Sea. Armed with a customized 

GPS spoofer, the team set out to demonstrate that they could steer the White Rose off its 

designated course. To execute a successful spoofing attack, the spoofer had to mimic the 

true GPS signal from the satellite constellation to user equipment, which would then accept 

the false signal as being the true PNT solution. A spoofer, to be effective, must have line 

of sight with the target, knowledge of the satellites in view of the target, and the knowledge 

of the publicly available PRN code for the satellites. The spoofer must be able to transmit 

the PRN codes to the receiver in a series of steps to coerce the receiver into accepting the 

illegitimate signals. In the end, the team successfully forced the $80 million vessel to 

unknowingly stray off the planned course by spoofing the GPS signal using what was 

described in the literature as “the world’s first openly acknowledged GPS spoofing device” 

(UT News 2013). According to the UT News, the team wanted to assess whether the ship’s 

sensors could detect that spoofing was occurring. The team wanted to determine if carrying 

out such a spoofing attack would be possible. On the surface, one would believe that with 

a high value target such as the White Rose of Drachs, the on-board electronics would be 

robust and resilient to such interference. Nonetheless, the team was successful in carrying 

out this spoofing attack. The vessel tracked off the intended course by a kilometer without 

the captain’s knowledge, according to the reports (Farivar 2013; Psiaki, Humphreys, and 

Stauffer 2016).  

Spoofing attacks on a military system are, in theory, a more difficult proposition 

than the spoofing of the system on the White Rose of Drachs, due to the safeguards used 

by military GPS operations. Military GPS operates on the same L1 and L2 signals as 
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commercial systems. However, the keying or encryption of military systems using P(Y) 

Code and M-Code makes these systems more resilient to interference. The concept of 

operations (CONOPs) for fielding USMC GPS equipment dictate that said equipment uses 

communications security (COMSEC) encryption keys. NIST defines COMSEC as “a 

component of information assurance (IA) that deals with measures and controls taken to 

deny unauthorized persons information derived from telecommunications and to ensure the 

authenticity of such telecommunications” (NIST 2021). Documentation on the DAGR also 

decree that GPS equipment are loaded with valid COMSEC keys prior to operation in the 

field (logsa.army.mil n.d.). An unencrypted DAGR is as susceptible to a spoofing attack as 

a commercial GPS user device. The reports of the Navy ship in Iranian waters and the UAV 

captured by Iran are two of the documented incidents of spoofing U.S. military assets in 

the public domain. Even though most of the reports of GPS spoofing have been on 

commercial assets, the gravity of the consequences of a spoofed system should not be 

discounted.  

The U.S. Maritime Administration maintains a web portal that tracks reports of 

GPS incidents across the world and has documented multiple recent spoofing attempts. 

One report entitled “Did Russia make this ship disappear?” documents the experience of 

the captain of the Atria oil tanker, who recognized an anomaly in his navigation showing 

his ship being at an airport inland when, in actuality, the vessel was heading to a port 20 

nautical miles away (Darwish 2017). After reporting this incident to the U.S. Coast Guard, 

an advisory was issued showing that about 20 other vessels in the vicinity experienced 

similar issues wherein their navigation systems placed them in locations that were different 

from the true position (McLaughlin 2020). The evidence from these episodes pointed to 

Russia as the agitator. As mentioned earlier, GPS spoofing is no longer limited to nation 

states, but also to individuals who, with the right mix of skills and access, can execute these 

deleterious acts. Nation states and individuals with an agenda can wreak havoc in the 

transportation sector by using vehicular system spoofing to turn vehicles into deadly 

weapons. The possibilities are endless.  
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C. ARTIFICIAL INTELLIGENCE METHODS 

The work on AI started in earnest shortly after World War II. The term AI, by all 

accounts, was coined in 1956. Artificial intelligence is no longer a new area of science as 

evidenced by the number and diversity of organizations using AI as a tool. Russell and 

Norvig write that “homo sapiens, for thousands of years, have tried to understand how we 

are able to perceive, understand, predict, and manipulate a world far larger and more 

complicated than itself” (Russell and Norvig 2003, 1). The authors further state that AI 

takes the human attempts further and attempts not just to understand, but to also build 

intelligent entities. The field of AI has experienced significant growth. As stated in the 

literature, AI systemizes and automates intellectual tasks and can be applied to almost any 

sphere of human intellectual activity (Russell and Norvig 2003). AI also refers to computer 

systems trained to simulate human intelligence and can perceive the environment, make 

decisions, and take actions. 

Artificial intelligence encompasses ML, DA, and deep learning principles. The 

literature search underscores the concept that AI is one of the emerging technologies most 

used by large enterprises through ML and predictive analytics (Abramovich 2021). ML 

covers the concept of machines being able to learn from given data without human 

assistance. Deep learning is a subset of ML that is modeled after the neurons in the human 

brain. Deep learning uses “a hierarchical level of artificial neural networks (ANN) to carry 

out the process of machine learning” (Hargrave and Anderson 2021). Deep learning 

algorithms learn what features from a dataset are important. Deep learning functions on 

both structured and unstructured data. AI applications find usefulness in wide-ranging 

industries and market segments. An Internet search of AI applications generates any 

number of lists. For example, a 2020 blog published a list of top 10 real world AI 

applications in which marketing, banking, finance, agriculture, healthcare, space 

exploration, and autonomous vehicles are listed (Johari 2020). Recommender systems are 

used in the field of marketing to recommend items to customers based on demographic 

data and previous purchases. AI systems are being used in healthcare, to help practitioners 

more quickly and accurately detect and diagnose patients’ maladies. For autonomous 

vehicles, AI is used for vision systems and natural language processing. This list shows the 



27 

diversity of areas that are occupying the AI/ML technology space. With all the discussion 

presented about AI/ML, it should be reiterated that ML is considered a subset of AI. All 

ML applications are AI applications; however, the converse does not hold true. 

In the DOD, AI and ML are becoming widely adopted tools. According to Grady, 

AI and ML tools are “the new arms race among the great powers” (Grady 2020). In 2017 

the DOD launched Project Maven; an AI project conceived to take advantage of the 

abundance of image data captured by UAVs in theater. Shultz and Clarke (2020) in a 

publication on the Modern War Institute at West Point discuss the genesis of Project 

Maven. In the article, the authors state that one of the project’s objectives is “to automate 

the processing, exploitation, and dissemination of massive amounts of full-motion video 

collected by intelligence, surveillance, and reconnaissance (ISR) assets in operational areas 

around the globe” (Shultz and Clarke 2020). Project Maven is not without its share of 

dissenters. In 2018, it was reported that more than 3,000 employees at Google voiced their 

opposition to the company’s involvement in the project. Their reasoning was that by being 

involved with the project, Google’s brand and image would suffer in the eyes of the public. 

Meanwhile, it has been reported that researchers at the Army Research Laboratory (ARL) 

are working on a recommender system for use by the Army (Knapp 2018). Applying the 

underlying AI/ML principles of recommender systems used by commercial enterprises 

such as Netflix, Amazon, and a host of others, this system is being considered as a force 

multiplier in helping soldiers more quickly assess a situation and respond in kind. A RAND 

Corporation report published in 2020 brings to the fore the ethical concerns of using AI/

ML tools in prosecuting this new arms race. There are public concerns “about the legal and 

ethical implications of using AI in war or even to enhance security in peacetime” (Morgan, 

et al. 2020). Other documented findings show that the likelihood integration and 

employment of AI in military systems is inevitable, the risks of deploying AI/ML systems 

in warfare need to be addressed, and that there are apprehensions about the operational 

risks related to the reliability, fragility, and security of these systems (Morgan et al. 2020). 

The authors recommend that there should be a public outreach campaign “to inform 

stakeholders of the U.S. military’s commitment to mitigating ethical risks associated with 

AI to avoid a public backlash” (Morgan et al. 2020). 



28 

With the abundance of data being captured and stored in almost every human and 

machine activity, it seems logical to find methods to harness the power of the available 

data using AI tools. The findings of the literature review demonstrate that application of 

AI methods in the detection of spoofing activities on GPS is one area that has gained 

traction and is one of the areas being studied in earnest. Our literature search has found 

several commercial products that are being marketed as AI-based solutions for addressing 

the GPS spoofing attack issue. A 2019 publication from Mitsubishi Electric Research 

Laboratories documents a “wide-area algorithm” used in protecting GPS from spoofing 

attacks (Bhamidipati et al. 2019). The paper focused on signal-level spoofing using the 

methods of belief propagation (BP) and recurrent neural network (RNN). BP is used to 

estimate the states of unobserved variables in a system or perform inferences on models 

using Bayesian networks. A RNN is a deep learning tool that remembers important 

characteristics of the input stimuli thereby producing more accurate predictions. RNN 

lends itself well to working on sequential data such as time series, audio, and weather data 

(Donges 2019). 

A 2017 article in The Journal of Navigation describes using ML for detection of 

spoofing attacks by employing k-nearest neighbor (KNN) and naïve Bayesian classifier 

techniques. The paper illustrates a spoofing detection method implemented in an SDR. The 

algorithm uses neural networks (NN) to identify any unusual distortions of correlation to 

detect spoofing attempts (Mosavi and Moazedi 2017). The model in this solution is trained 

to apply a NN to identify when the signal index moves beyond the allowed threshold. A 

spoofing attempt is identified by a model that detects the nefarious action of an attacker 

that is attempting to “occupy the receiver’s correlation peak” (Mosavi and Moazedi 2017). 

The solution presented in this paper is shown to be a software add-on and requires no 

additional hardware, thereby not impacting the size, weight, and power (SWaP) of the 

current system. 

The literature search has shown that conducting scientific research can be 

accomplished in many ways. Dietterich state that “science-in-the-small” occupies one end 

of the spectrum. Science-in-the-small captures the work of individual scientists where they 

“formulate hypotheses, perform experiments, gather data, and analyze that data to test and 
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refine their hypotheses.” The article suggests that this approach “provides profound 

scientific understanding.” One of the weaknesses of science-in-the-small is that it yields 

progress slowly because each scientist has to overcome the limits of time and space in 

conducting their study (Dietterich 2009). Dietterich calls the other end of the spectrum 

“science-in-the-large.” Science-in-the-large works on a much larger scope than science-in-

the-small. Because of the larger scope of this science-in-the-large, automated tools and 

instruments are used to collect the data. Analysis of the data along with formulation and 

refining of the hypotheses are conducted using ML algorithms and data mining tools 

(Dietterich 2009). The approach to this study used both principles. Science-in-the-small 

was used to advance the hypothesis of the study, while “science-in-the-large” was used to 

capture data and conduct the data analysis portion of the study. According to the literature, 

ML methods often have been employed for pattern matching and discovery. ML can be 

viewed as a collection of tools and methods that can be applied to disciplines such as 

statistics, banking, agriculture, control theory, transportation, and AI. According to Ao, 

“the spectrum of AI tools includes inductive logic programming, genetic algorithms, neural 

network, Bayesian networks, and hidden Markov Models, etc.” (Ao 2010). 

D. SUMMARY 

This chapter presented the results of a literature review in three areas: a description 

of GPS and its vulnerabilities, documented cases of GPS spoofing, and an exploration of 

AI/ML methods including current commercial and defense applications. From the 

literature survey, we can conclude that GPS, as a system, is vulnerable to both jamming 

and spoofing. Jamming impedes the passage of the low power signal from reaching the 

GPS user device, while spoofing results of misinformation being ingested by the user 

device. Our experiments have demonstrated that GPS systems are vulnerable to spoofing 

and from these demonstrations, we can extrapolate that nefarious spoofing can lead to 

catastrophic consequences. While AI techniques, and ML specifically, offers potential 

solutions to the GPS spoofing problem, the work on identifying these cyber-attacks and 

informing an end user needs to be pushed to the forefront as a matter of urgency. 
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III. GPS-SPOOFING–DETECTION AI SYSTEM 

This chapter provides descriptions of a high-level concept and a prototype 

experiment for a GPS-spoofing–detection AI system that is intended to detect GPS 

spoofing attempts. The chapter begins with a GPS spoofing taxonomy that was developed 

to characterize different types of GPS spoofing attempts. Next, the chapter presents a 

proposed concept for the envisioned AI system and how it might interact with the existing 

GPS system to alert operators of nefarious spoofing attempts. Finally, the chapter describes 

the prototype GPS spoofing detection AI system that was developed for this thesis to 

support experimentation and demonstration of the concept. 

A. TAXONOMY OF GPS SPOOFING 

Cuntz et al. (2012) puts forward the theory that a successful GPS spoofing attack 

impacts time, frequency, and space domains. An effective spoofing detection system must 

therefore consider, at least, all three of these domains in the detection of an adversarial 

GPS attack. The structure of both NMEA 0183 and ICD-153 messages contain other data 

items that can also be impacted by false data injection (FDI), so it is imperative that we 

take a holistic view of the total message structure in our detection work. In the power 

industry, there is growing concern about cyber-attacks on the smart grid (SG); the term 

FDI attack is being used to represent one mode of attack (Oozer and Haykin 2019; 

Lakshminarayana et al. 2020). The challenge in the SG operations, as in the GPS 

interference arena, is making the supporting infrastructure resilient to such attacks. In the 

power industry, the supporting infrastructure is “the part equipped with intelligence, 

dealing mainly with the control and monitoring aspect of the fundamental operations of the 

SG using software, hardware and communication networks” Oozer and Haykin (2019, 48). 

We can see parallels between FDI attacks on the SG and interference on GPS systems, 

leading us to adopt the FDI acronym to represent the spoofing attack problem being 

studied. Although GPS spoofing attacks can be executed by different methods, the 

consequence of these attacks, if successful, results in deceiving users and placing them in 

locations that are different from their preplanned route or destination. (Cuntz et al. 2012) 
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present spoofing attacks in comparison to jamming events and concur with the statements 

put forward in other places that spoofing attacks require a more concerted effort than a 

GPS jamming episode. The impact, consequences, and the risk of not detecting the 

spoofing attack can be extremely detrimental to an operation (Cuntz et al. 2012). It is 

generally accepted that GPS spoofing techniques fall into three categories. The concept of 

three categories was presented in Humphreys et al. (2008). The authors identified 

simplistic, intermediate, and sophisticated techniques as known GPS spoofing methods. 

Figure 11 shows the taxonomy of GPS spoofing with the three categories of spoofing. The 

discussion of each of these methods follows in subsequent paragraphs. 

It is widely held that most connected devices in use today are inherently vulnerable 

to malicious attacks. GPS devices are no exception to this interference whether by jamming 

or spoofing. To lend more credence to this notion, (Humphreys et al. 2008) assert that “all 

stand-alone commercial civilian GPS receivers available today are trivial to spoof” (3). 

Their rationale stems from the fact that all that is required to execute an attack in this mode 

are the motivation, a rudimentary set of skills, basic tools, and some level of effort. A GPS 

simulator, a power amplifier, and an antenna that radiates RF signal towards the user 

device, put in the hands of an adversary presents a clear and present danger to an operation 

that relies on an accurate GPS solution. This construct describes the simplistic spoofing 

attack illustrated in Figure 11 and presented by (Humphreys et al. 2008). 
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Figure 11. Taxonomy of GPS Spoofing 

The simplistic attack aligns with the GPS simulator technique put forward by 

Jafarnia-Jahromi et al. (2016, 2). In that work, the authors concur with other disciples who 

have been advancing the study of GPS interference, that the simplistic type of spoofer can 

be effective against commercial GPS receivers “especially if the spoofing signal power is 

higher than the authentic signals” (2). These concepts were further amplified in a paper by 

Haider and Khalid (2016) describing a simplistic attack as one that “uses a commercial 

GPS signal simulator, amplifier and antenna to broadcast signals towards target GPS 

receiver” (573). By consensus, the simplistic technique is relatively easy to implement. 

However, getting a spoofer close enough to the targeted user system to make this approach 

work presents one obstacle to the effective execution of such an attack. For this approach 

to be effective, the spoofer must be co-located with the targeted user system. This approach 

is also referred to as a proximity-based attack in the literature.  

The intermediate spoofing attack (described in Figure 11) works via a portable 

receiver-spoofer – the receiver component captures the authentic GPS signals to 

approximate its own PNT (Humphreys et al. 2008). Using these approximations, the 

GPS Spoofing Techniques
Simplistic Attack
• Uses a commercial GPS signal simulator, amplifier, and antenna to broadcast signals 
towards target GPS receiver. 

Intermediate Spoofing Attack
• Applies receiver-based spoofers to generate the spoofing signal knowing the 3D pointing 
vector of its transmit antenna towards the target receiver antenna.

Sophisticated Spoofing Attack
• Has the capacity to vary both the carrier and code phase outputs transmitted by each 
antenna and to control the relative code/carrier phases among these transmit antennas.
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receiver-spoofer then generates similarly structured bogus signals to carry out the spoofing 

attack. The receiver-based spoofer presented by Jafarnia-Jahromi et al. (2012) also falls 

within the intermediate spoofing category. The authors believe that a spoofer needs detailed 

information such as the antenna position and velocity of the targeted system as they are 

aligned with the authentic signals. The authors further suggest that a spoofer has to 

synchronize their system with the GPS signal to be able to extract satellite information such 

as position, time, and ephemeris which it then uses to “generate the spoofing signal 

knowing the 3D pointing vector of its transmit antenna toward the target receiver antenna” 

(Jafarnia-Jahromi et al. 2012, 2). Humphreys et al. (2008) also believe that for this method 

to be effective in impacting a valid GPS solution, the spoofer must be located near the user 

equipment to align the spoofing signal with the authentic signal. One drawback to the 

intermediate spoofing is the lack of intimate knowledge of the genuine GPS signal. This 

weakness in the intermediate attack technique allows this type of spoofing to be detected 

easily (Humphreys et al. 2008). An intermediate attack using the methods described here 

can be more difficult to detect than an attack carried out by the simplistic method. Both the 

simplistic and intermediate spoofing methods are proximity-based spoofing attacks. An 

appropriately configured DAGR should identify and discriminate both simplistic attack 

and intermediate attack methods and reject such efforts. In addition, an operational military 

GPS receiver will employ multiple layers of security to include physical security, 

protection of data in transit (DIT), and data at rest (DAR), thereby decreasing the likelihood 

of such an attack being successful. 

The third, and most advanced, type of spoofing technique, sophisticated spoofing 

attacks (listed in Figure 11) are more complex and more effective than the previous two 

methods. Humphreys et al. (2008), presented a sophisticated attack using multiple phase-

locked portable receiver-spoofers. Montgomery, Humphreys and Ledvina (2009) further 

describe a sophisticated spoofer design as one that expands on the principles of the GPS 

receiver-based spoofer. The sophisticated receiver-based spoofer adds multiple transmit 

antenna functions to the intermediate concept. The sophisticated spoofer has the capacity 

“to vary both the carrier and code phase outputs transmitted by each antenna and to control 

the relative code/carrier phases among these transmit antennas” (Montgomery, 
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Humphreys, and Ledvina 2009, 126). The sophisticated receiver-based spoofer “is 

assumed to know the centimeter level position of the target receiver antenna phase center 

to perfectly synchronize the spoofing signal code and carrier phase to those of authentic 

signals at the receiver” (Jafarnia Jahromi 2013, 21). Tippenhauer et al. (2011) describe a 

sophisticated attack in which an adversary can inject shifts in the angle of arrival of GPS 

signals. Jafarnia-Jahromi et al. (2012) further stress that the sophisticated spoofer can 

exploit the concept of multiple transmit antennas used in this method to defeat direction of 

arrival anti-spoofing techniques.  

The consensus from these works is that GPS spoofing can be executed in three 

common ways from simplistic to sophisticated. The effort in creating these interference 

methods become more difficult as the attacks move up the scale. It is recognized that the 

spoofing detection methods increase in sophistication along with the attack vectors. This 

is not lost on the authors and researchers; when discussing sophisticated receiver-based 

spoofers, Jafarnia-Jahromi et al. (2012) declare that “the realization of these types of 

spoofers is very difficult and, in many cases, impossible due to the geometry and movement 

of the target receiver antenna.” At this point, the researchers (us), did not have the tools 

and resources to execute the sophisticated spoofing attack. However, it is well worth noting 

that this level of sophistication exists. With adversaries persistently looking for fissures of 

vulnerabilities within our infrastructure, it is conceivable that sophisticated attack modes 

are being studied with the goal of executing a clandestine attack at the opportune moment 

with maximum effect.  

B. HIGH LEVEL CONCEPT FOR A GPS-SPOOFING–DETECTION AI 
SYSTEM 

The work documented in this study was undertaken with the vision of applying to 

an operation construct. The goal of any new development should be to add to the efficiency 

of the operating forces without adding any new physical or mental load to the operator. 

Considering that SWaP should be a design criterion, during the development phase, we 

imagined tools that can positively impact operations while keeping said design criteria in 

focus. The spoofing detection is conceived and developed as a software application that 

can be installed in an operations center from which active monitoring of force movement 



36 

is dictated by CONOPS. The vision for the system is captured in Figure 12. The figure 

shows several Command and Control (C2)/ Situational Awareness (SA) systems currently 

operated by U.S. Forces. The Joint Battle Command Platform (JBC-P) Family of Systems 

(FoS) is a joint C2/SA system, marketed as “the Army’s next-generation friendly force 

tracking system, equipping Soldiers with a faster satellite network, secure data encryption 

and advanced logistics” (Program Executive Office Command, Control and 

Communications-Tactical (PEO C3T) n.d.). The Marine Corps developed developed the 

Marine Air-Ground Task Force Common Handheld (MCH) to be fielded as part of the 

JBC-P FoS. MCH uses commercial off the shelf (COTS) hardware to serve as “a tablet-

based communication system that enhances situational awareness on the battlefield” 

(Gonzales 2019b). As a portable handheld system, the device enables dismounted Marines 

to plot and display “own position” as well as be made aware of friendly and enemy 

positions. Another dismounted system in the battlespace is the Army’s Nett Warrior (NW) 

system. Nett Warrior also leverages COTS hardware on a portable platform “to provide 

situational awareness to the dismounted leader” (Program Executive Office Soldier 2019). 

 
Figure 12. GPS Spoofing Detection Operational Concept 

Digital Fires systems are represented by the advanced field artillery tactical data 

system (AFATDS) and the Target Handoff System (THS). Both the Marine Corps and U.S. 



37 

Army use AFATDS “to provide automated support for planning, coordinating, controlling, 

and executing fires and effects” (Raytheon 2021). THS v2 also leverages COTS devices to 

provide “a lightweight, fire control system to perform targeting functions” (Gonzales 

2019a). The Joint Tactical Common Operational Picture (COP) Workstation (JTCW) 

“combines seven tactical applications into one user interface” thereby providing “a single 

digital display of relevant operational information shared by battalion and higher leadership 

connected on the Global Combat and Control System Tactical Combat Operations network 

(GCCS-TCO)” (Browne 2016). The systems described in this section are a mix of portable 

handheld devices and vehicle mounted systems. The common thread through these systems 

is the need to always provide C2 and SA to friendly operating forces whether in mounted 

or dismounted platforms. GPS becomes a critical component in this environment as it can 

be a force multiplier when providing legitimate information.  

The AI system can be installed on a monitoring system located in the operations 

center where tracks are monitored. Most of the systems discussed communicate using some 

variant of the MIL-STD-6017 variable message format (VMF) a K05.1 position report 

message can be used to report “own position” on a periodic basis as dictated by doctrine. 

The study shows that a Marine in the field will not be aware that the position on being 

tracked has been spoofed, but with the spoofing detection system the operators in the 

operations center will have visibility on the wayward nature of the navigation and reach. 

We have investigated and discussed spoofing methods and the seriousness of their impact. 

The results of this study will provide an enhancement to the current system.  

C. PROTOTYPE GPS-SPOOFING–DETECTION AI SYSTEM FOR 
EXPERIMENTATION 

The design concept for the system was developed based on the research done and 

with the understanding that FDI can be effected in different ways. The methodology and 

tools used for the experimental system development are covered in this section. This 

section adds the systems engineering model and the requirements of the system. Success 

of the experiment will serve to validate the system design concept as well as the objectives 

of the study. 
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1. GPS Data for Experimentation 

The development of decision aids using AI requires datasets that represent specific 

mission threads identifying anomalous activities in the GPS data. The GPS data for this 

study contained both over-the-air signals, also called “live sky” data, and data from a GPS 

simulator. Orolia is one of the companies that manufactures and sells GNSS simulators. 

The company markets their family of GNSS simulators as “radio frequency generating 

instruments that can transmit the same data as GPS satellites” (Orolia 2018, 1). GPS 

simulators give users the option to create scenarios to manipulate parameters of interest 

from a test bench in evaluating a system under test. With a GNSS simulator, a user can 

simulate satellite signals that are then used to verify receiver signal acquisition (Orolia 

2018). Using GNSS simulators as a data source provided the option and flexibility to 

manipulate GPS data and message information to create mission scenarios that capture 

anomalous activity. For this study, we used a local data repository to obtain operational 

data as one source of truth data. Simulated data supplemented the operational data used in 

the study. Data pre-processing and processing were conducted using data mining tools 

before serving as an input to the AI/ML system. 

2. Prototype System Description 

The DAGR served as the device under interrogation and along with the equipment 

needed to support the execution of the experiment, formed the system under evaluation as 

depicted in Figure 12. The system under evaluation is also referred to as the engineered 

system and is comprised of the components listed in Table 2. 

Table 2. Engineered System Equipment List 

Component Manufacturer Serial Number Software version 
AN/PSN-13 DAGR Rockwell Collins 92840004 984-3006-009  
GPS Active DAGR 
Antenna 

Rockwell Collins N/A N/A 

GSG-62 Multiband 
GNSS Simulator 

Orolia  202189 V8.1.1 

C21 Combiner General Dynamics N/A N/A 
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Component Manufacturer Serial Number Software version 
Computer National Instrument 00371-OEM-

8992671-0040 
Windows 7 1.0.0f4 

 

The DAGR is primarily a handheld unit, but it can be installed in host platforms 

such as vehicles or control centers. The manufacturers of the DAGR markets the device as 

“a portable, versatile and precise, guiding tool used in vehicular, handheld, sensor and gun-

laying applications” (BAE Systems 2020, 1). As a force multiplier, the DAGR enables 

military personnel to execute tasks such as navigation, hazard avoidance, and location 

marking. The DAGR contains four external connectors, marked as J1–J4. The J1 port 

serves as an RS-232 compatible 2-way serial data I/O port, while the J2 port serves as both 

RS-232 and RS-422 compatible 2-way serial data I/O port. The J3 port provides an external 

antenna input, while the J4 port serves as an external power input port. For this study, the 

DAGR was used to track, collect, and process GPS signals on both the L1 and L2 frequency 

bands. The J2 port was used to facilitate two-way communication between the DAGR and 

the computer terminal shown in Figure 13. The computer terminal was used as the local 

data collection and processing hub. The J2 port integrates both COM1 and COM2 feeds 

via the RS-232 and RS-422 compatible 2-way serial data I/O port. This set up allowed for 

the collection of both NMEA and ICD 153 traffic on the laptop terminal through the J2 

port. The DAGR, through the 3 port RF combiner, received input signals on the J3 antenna 

port from both the GPS antenna and the GNSS simulator. It should be reiterated here that 

GPS signals at a receiver interface are low powered signals, in the region of -160 dBm to 

-130 dBm. The active L1/L2 RF antenna port on the DAGR is used to amplify the input 

GPS signal above the noise floor. The configuration used in this setup allowed for the 

creation of scenarios with the GNSS simulator used to inject an alternate signal feed to the 

DAGR. Power was supplied to the DAGR through port J4 from the DC Power supply. 
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Figure 13. Engineered GPS System 

GPS signal generators are radio frequency generating instruments that can transmit 

the same data as GPS satellites (Perdue 2017). Using this principle, the experiment was 

designed to take advantage of this operational principle of the simulator. Using the 

simulator allowed for the creation of scenarios that mimicked the satellite constellation and 

a variety of parameters as seen by the DAGR. The simulator was used as one signal source, 

while the live sky signal was used as a second source. The GPS 3 port RF combiner consists 

of two input ports and one output port and is typically used in scenarios “where two inputs 

from active GPS antennas are combined evenly into a single receiving GPS unit” (General 

Dynamics Mission Systems 2021, 1). The GNSS simulator signal was fed to one input, 

while the input from the active GPS antennas was fed to the second input port. The output 

port served as the source to the DAGR antenna port. The time synchronization provided 

the timing function to the system, ensuring that all devices were synchronized to the same 

time base. The GPS jammer is not an active component in the scenarios used for this 

experiment but was included in the system to provide the option to exercise the second 

GPS interference method—jamming—mentioned elsewhere in this study.  



41 

3. Experiment Concept of Operations 

The system setup shown in Figure 13 formed the basis of the experiment. Multiple 

scenarios were created to add FDI to the system using the simplistic attack method 

described earlier. INCOSE defines a system as “an arrangement of parts or elements that 

together exhibit behavior or meaning that the individual constituents do not” (INCOSE 

n.d). It is understood that systems can exist in a physical context, a conceptual context, or 

any combination of both, according to INCOSE. For this study, systems engineering 

principles were applied to the physical and conceptual model. INCOSE defines systems 

engineering as “a transdisciplinary and integrative approach to enable the successful 

realization, use, and retirement of engineered systems, using systems principles and 

concepts, and scientific, technological, and management methods” (INCOSE n.d). The 

result of the systems engineering process is an engineered system. The engineered system 

used in this experiment was designed to function in a simulated operational environment 

to prove the stated hypothesis of the study while advancing the study of GPS spoofing on 

military systems. As both jamming and spoofing attacks on GPS are illegal in the U.S., the 

experiments were carried out in a controlled environment with standalone systems. The 

FCC portal clearly states that “Federal law prohibits the operation, marketing, or sale of 

any type of jamming equipment that interferes with authorized radio communications, 

including cellular and Personal Communication Services (PCS), police radar, GPS” (FCC 

2020). Although the FCC statement did not specifically list GPS spoofing, we believe that 

the law also applies to this type of interference of the GPS devices. 

The systems engineering approach used in this study applied model-based systems 

engineering (MBSE) concepts to the overall system design. One definition of the MBSE 

concept is “a formalized methodology that is used to support the requirements, design, 

analysis, verification, and validation associated with the development of complex systems” 

(Shevchenko 2020). The position taken by Shevchenko (2020), who postulates that MBSE 

coalesces around the concepts of model, systems thinking, and systems engineering 

(Shevchenko 2020), finds concurrence in this study: In the text Application of Artificial 

Intelligence for Decision-Making, the authors explain that “systems engineering is based 

on the definition, allocation, and satisfaction of requirements” (Talbot and Ellis 2015, 14). 
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Requirements in the systems engineering arena are manifested in multiple categories and 

formats. For the engineered system concept applied to this study, the requirements included 

functional, performance, interface, and mission requirements. Functional requirements are 

tied to operations that the engineered system must execute in an operational construct. 

Performance requirements describe the measured parameters used to assess the system’s 

performance. Interface requirements map to interconnectivity and interface functions while 

facilitating the exchange of material, energy, or information with other systems (Talbot 

and Ellis 2015; Faisandier et al. 2021). Mission requirements define the “activities that 

constitute the discharge of an agency’s official responsibilities” (lawinsider.com 2021). A 

general concept of MBSE is the idea of an artifact, which is conceived as a source that 

provides the seed that germinated the concept being explored. Concept exploration was 

undertaken in the early stages followed by feasibility studies to identify and scope both the 

problem and the solution space. The AI/ML approach was identified as a viable candidate 

to tackle the spoofing problem. 

It is universally accepted that a model is a conceptual representation of an entity 

and can exist in various forms to include, graphical, mathematical, or physical forms. 

Software tools such as Innoslate describe the MBSE structure as one where “models 

describe physical components performing functions exchanging input/output (I/O) over 

links, as specified by requirements” (Kristin Giammarco, lecture notes, September 21 

2019). Applying this definition to the experiment, the engineered system receives 

navigation messages through the GPS input applied through user input as specified by the 

requirements. Innoslate uses the Life cycle Modeling Language (LML) in its operations. 

In the LML schema, an asset performs an action received by an input and generates an 

output. The underlying LML model used by Innoslate comprises the following seven 

classes of entities: “Requirement, Artifact, Action, Asset, I/O, Conduit, and Characteristic 

entities” (Innoslate 2021). The Universe, Figure 14, and the Metafunction, Figure 15, 

decompose to the physical and conceptual assets of the engineered system. In Innoslate, I/

O entities provide the means of communication between actions through conduit entities. 

Innoslate provides a list of definitions for the LML entities used in the tool. These 

definitions were adopted and applied to the engineered system. Another artifact of the 
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MBSE process is a Spider diagram. A spider diagram maps the engineered system in both 

the physical and conceptual contexts. Innoslate describes the spider diagram as “a type of 

hierarchical organizational chart used as a means of visualizing traceability” (Innoslate 

2021). A spider diagram in this context would show the Universe “decomposed by” path 

to the entities in Figure 14. The entities in the Universe then “performs,” through the 

conduits, the functions in the Metafunction; the DAGR performs the “provide navigation” 

function, while the FDI AI model performs the “detect spoofing activity” function.  

 
Figure 14. Engineered System Universe Diagram 

The engineered system Universe is composed of the elements required for the 

successful operation of the GPS spoofing generation and the detection of FDI. The external 

systems do not all exist in the physical domain. The DAGR exists in the physical domain, 

while the FDI AI model functions in the conceptual domain represented as a software 

application. The green blocks in both Figure 14 and Figure 15 represent the functional 

entities that are directly involved in getting the GPS signal to the DAGR. The yellow block 

represents the FDI AI model containing the algorithms that perform the spoofing detection 

function. 
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Figure 15. Engineered System Metafunction Diagram 

The engineered system Metafunction represents the Asset entity and specifies the 

object that performs the Actions of “detect spoofing activities.” An I/O entity transfers the 

information and input data that triggers the output from the spoofing Action. A Conduit 

entity serves as the transfer medium between the system Assets. The Risk entity is 

tangentially represented by the FDI AI model as it also captures the combined probability 

and consequence of not detecting the presence of FDI on the system.  

At the functional and operational level, a basic requirement of a GPS device is to 

provide navigation. As GPS finds applications in industries as diverse as communications, 

banking systems, package delivery, and financial markets, precise time synchronization is 

required for the smooth functioning of these operations. Some of the operations listed are 

time critical, thereby making timing another important GPS requirement. These basic 

requirements are at the heart of the PNT concept on which the DAGR operates. In the 

MBSE construct, “a requirement entity identifies a capability, characteristic, or quality 

factor of a system that must exist for the system to have value and utility to the user” 

(Innoslate 2021). The requirements for the engineered system were tailored to both the 

operational and functional contexts of the experiment. The requirements include:  

• The system shall operate as a software application. 

• The system shall receive NMEA 0183 navigation messages. 

• The system shall receive ICD 153 navigation messages. 

• The system shall receive GPS synchronization timing information. 

• The system shall receive GPS input signals through the antenna port. 
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• The system shall reject a spoofing attack. 

• The system shall accept navigation input from the user. 

• The system shall operate in accordance with USMC CONOPS.  

For this study, the Orolia GSG-62 Multiband GNSS simulator was used to generate 

GPS spoofing signals through the process of injecting FDI into the engineered system. The 

message traffic data was summarily captured for post processing, data analysis, and 

training of the AI/ML algorithm. To insert FDI on the engineered system, several spoofing 

scenarios were created and introduced to the system by the GNSS simulator. The operators 

pushed FDI on the system to manipulate parameters within the message structure with the 

goal of impacting the GPS solution, PNT, presented to the user. Message traffic used by 

military navigation systems, including the DAGR, are implemented in accordance with 

both NMEA 0183 and ICD-153-GPS message standards. The standards recommend that 

GPS messages should be received at one second intervals. For the engineered system, the 

GPS message received on the J3 port of the DAGR represented message traffic from both 

live sky feed and the GNSS simulator. The message traffic from both sources is directed 

to the DAGR by way of the RF 3-port combiner. The message traffic from the DAGR was 

delivered to the computer terminal by way of the J2 serial data I/O port. Software 

applications on the computer terminal were used to record the message traffic data stream. 

A LabVIEW program resident on the computer terminal was used to visualize, capture, 

and process the NMEA 0183 message traffic. LabVIEW is a software application tool that 

aids in visualizing message traffic in real time. The message traffic captured by the 

LabVIEW application was post-processed and used as an input to the AI/ML algorithm. 

The ICD-153 message traffic was similarly captured using the compliance tester software 

for ICD-GPS-153 (CTS-153) software. Similar to the LabVIEW application used for the 

NMEA 0183 messages, the CTS-153 software application was used to visualize, monitor, 

and log the ICD-153 message traffic from the DAGR. 

The initial phase of the experiment was structured to capture message traffic in a 

typical operational construct. The normal operations construct in this context refers to a 

situation wherein the DAGR receives GPS signals from the operational constellation 
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without any artificial interference. As discussed earlier, the GPS signal presented to the 

receiver is a low power signal. To add some context to the GPS power levels, Warner and 

Johnston (2012) describe the GPS signal strength as “roughly equivalent to viewing a 25-

Watt light bulb in Japan from Los Angeles, California.” Imagine that for a moment and 

think of the inherent vulnerabilities at play in this arena. This finding aligns perfectly with 

the argument presented by multiple sources from the literature review on GPS spoofing, 

which demonstrated that by changing power levels of a spoofing signal, FDI can be 

generated on GPS.  

The concept of varying power level on the GPS signal was used as a starting point 

for this exercise. The GSG-62 output signal level ranges from -65 to -160 dBm. The starting 

point for the scenarios in this study was -130 dBm. The main menu on the GSG-62 includes 

information such as the name of the scenario, the scenario start date, the transmit power, 

the trajectory, and the current position of the scenario. A total of four screen views are 

available on the GSG-62 during the execution of the scenario. Figure 16 shows the display 

panel settings for one of the scenarios run in this study. In view shows GP 11/15 indicating 

that 11 of 15 GPS satellites are in view for this scenario. The PRN field represents the IDs 

of the satellites, where the ‘G’ represents the U.S. system. The set of valid IDs for GPS are 

1–32. The satellite elevation (Elv) ranges between 0° and 90° and shows the angle between 

the horizontal plane and the satellite position. Azimuth (Azm) represents a direction 

measure ranging between 0° and 360°. The dBm parameter represents the transmit power 

ratio for the L1 frequency band. Only 8 channels are shown in Figure 16 in keeping with 

the GSG-62 function of displaying a maximum of 8 channels per view. The PDOP value 

of 1.37 represents an accurate positional measure. With all DOP measures, lower is better 

and values between 1 and 2 are desirable for navigation. 
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Figure 16. GSG-62 Display Parameters 

Monitoring message ID 5040 at the start of the application of FDI, the EPE was 

recorded as 104.04 m, the operating mode was 0h (continuous), Encryption Type was set 

to 1 (Y-code), Tracking State set to 5 = Carrier track/data (Good Track Mode), Code Type 

set to 1=C/A-code, Chan Status A/B Valid set to 0=Data Valid, Channel 1 Status B J/S = 

28 dB, Channel 1 Status B C/No = 32 dB-Hz. Similar values were recorded for Channel 2; 

however, Channels 3 – 5 all recorded J/S and C/No = 0. Antenna Source was recorded as 

1=External. There were nine satellites representing both the Number of Visible space 

vehicles (SVs) and the Number of Healthy SVs. An Almanac Age of one day was recorded 

for the duration of the experiment, in keeping with the operational concepts of the system. 

These parameters were verified by looking at both NMEA 0183 and ICD 153 message data 

traffic. 

A valid GPS solution will place a user in the pre-planned place and time that was 

input to the GPS equipment, within the statistical boundaries prescribed by the message 

standards. Extraneous factors such as environmental conditions and the interference 

methods studied in this work also impact a valid GPS solution. Moving on with this 

framework, the experiment was structured to present scenarios that put FDI in the GPS 

GPS Circle
Date: 07/22/2021
Lat: S35° 39.1740'
Lon: E117° 36.4610'
Alt: 169.92 m 193.49m (MSL)
Traj: Circle
Ephemeris: Default LS: 0
Speed: 5.0 m/s Heading: 189°
Pwr: -130.0 dBm

In view: GP 11/15
PRN: G3 G6 G22 G19 G14 G11 G32 G33
Elv: 37 27 32 67 55 49 43 5
Azm: 353 8 126 315 105 230 281 43
dBmL1: -130 -130 -130 -130 -130 -130 -130 -130

PDOP 1.37
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message traffic data with the goal of impacting the valid GPS solution. The “P” in the PNT 

represents position and was accepted as a likely candidate on which to focus in this study. 

To capture the essence of normal GPS message traffic, the engineered system was 

configured and run with the live sky feed as the sole GPS message traffic, thereby providing 

the basis of the training dataset. Following this, the GSG-62 GNSS simulator was 

introduced into the configuration. The simplistic GPS spoofing method was then started 

with scenarios mimicking the power levels, position, and timing factors of the live sky 

feed. The operational concept for infecting the system with FDI involved incrementally 

increasing the input signal levels on the GSG-62 and monitor the system for any changes. 

The message parameters were monitored on the LabVIEW and CTS-153 applications. 

During the scenario execution, adjusting the dBm parameter applies the changes to all the 

satellites at the same time. A sample of the message traffic data for the NMEA 0183 

message is shown in Figure 17. The file shows five types of messages, GPRMC, GPZLZ, 

GPGGA, GPGSA, and GPGSV. As described earlier in this report and displayed in Figure 

17, the NMEA messages begin with $ and end with the * before the value representing the 

checksum. Other message parameters such as GPS time, latitude, longitude, and date can 

be seen in the GPRMC message. 
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Figure 17. NMEA 0183 Message Data 

The raw ICD-153 message traffic is captured as a hexadecimal file representing the 

message, a sample of which is shown in Figure 18. The raw data file was post-processed 

using the CTS-153 software and presented as a *.prn file that can be consumed by most 

generalized text editors. The post-processed data file consists of rows and columns, where 

each row represents one second interval of message traffic. The columns represent the 

various data parameters of the dataset. The ICD -153 message ID 5040, for instance, 

consists of 131 columns of data. 
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Figure 18. ICD-153 Raw Hexadecimal Data Sample 

The columns represent the various data parameters of the dataset. The ICD -153 

5040 “current status” message, for example, consists of 131 columns of data shown in 

Figure 19. One of the objectives of this study is to apply AI/ML tools to this dataset to 

discern which combination of predictors from the 131 entities in this dataset are impacted 

by a spoofing attack.  
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Figure 19. ICD-153 message ID 5040 Data Fields 

Taking a cursory look at the list of parameters in Figure 19, we were able to filter 

the number of parameters factored in the solution by eliminating the items deemed not 

relevant to the study. Principal Components Analysis (PCA) is one data reduction tool that 

can be applied to the dataset to perform dimension reduction. The findings based on the 

data reduction theory are presented later in this study. 

D. MACHINE LEARNING EXPERIMENTATION AND DEMONSTRATION 

In the previous section we discussed the systems engineering process and the 

creating of the experiment and requirements following the principles. This section moves 

into a description of the tools that will be used to create the models and conduct data 

analysis of the results. The distinction between “normal” and spoofed data will be revealed 

and analyzed to identify the impact of undetected application of FDI on the DAGR. 
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1. Machine Learning Tools 

Machine learning is a subfield of AI that facilitates learning about a dataset by 

feeding it a training set. At its core, ML builds on the concept of teaching computers to 

learn from experience, and in so doing, to mimic what humans and animals naturally do 

(MathWorks 2020). Simeone (2018) describes ML as the approach taken to train a system 

to predict an outcome based on a large dataset, and then using the trained algorithm to 

explore ways to produce more advantageous outcomes (Simeone 2018). To concretize the 

concept of ML, Huddleston and Brown (2019) puts forward the notion that “the defining 

characteristic of ML is the focus on using algorithmic methods to improve descriptive, 

predictive, and prescriptive performance in real-world contexts.” Burkov (2019) expands 

on this definition by describing ML as “the process of solving a practical problem by 1) 

gathering a dataset, and 2) algorithmically building a statistical model based on that 

dataset.” Hall and Gill (2018), in discussing the social and commercial motivations for ML 

interpretability, acknowledge that “usage of AI and ML models is likely to become more 

commonplace as larger swaths of the economy embrace automation and data-driven 

decision making.” The results of this study will lend itself well to the concept of embracing 

automation and aid in the data-driven decision-making process. Hall and Gill’s perspective 

that increased convenience, coupled with automation and better structure in one’s daily 

activities, being one of the greatest hopes of applying data science and ML confirms the 

conclusions of this study. Having an automated system that detects spoofing activities 

reduces the burden on an operator by producing unbiased decision making in the face of 

FDI. 

The explanations of ML given in the previous paragraph are but a small sample of 

the definitions being applied to the AI/ML sphere. There is an overall belief that there are 

three groups of ML algorithms: supervised learning, unsupervised learning, and 

reinforcement learning (Russell and Norvig 2003; Han and Kamber 2006; Huddleston and 

Brown 2019; Simeone 2018). Huddleston and Brown (2019) highlight that the three ML 

algorithms are not mutually exclusive. Both supervised and unsupervised learning ML 

paradigms can be applied to a dataset to resolve tasks by learning from experience and 

performance measures applied. One definition of reinforcement learning put forward by 
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Microsoft is “the study of decision making over time with consequences” (Microsoft 2021). 

Burkov (2019), states that “the goal of a reinforcement learning algorithm is to learn a 

policy.” Sutton and Barto (2015) further add that reinforcement learning problems involve 

learning what actions are required to maximize a numerical reward signal. The dataset used 

in this study is not readily applicable to reinforcement learning and therefore will not be 

discussed further. 

Supervised learning is a ML technique used to develop a predictive model from 

labeled training data by mapping an input to an output based on input and output pairs. 

Supervised learning requires a teacher to help guide the learning process (Russell and 

Norvig 2003). Sutton and Barto (2015) in describing supervised learning, state that “the 

objective of supervised learning is for the system to extrapolate, or generalize, its responses 

so that it acts correctly in situations that are not present in the training set.” Burkov (2019, 

2) echoes Sutton and Barto (2015) by pointing out that “the goal of a supervised learning 

algorithm is to use the dataset to produce a model that takes a feature vector x as input and 

outputs information that allows deducing the label for this feature vector.” This fact was 

amplified by (Huddleston and Brown 2019, 2), where they stated that the goal of supervised 

learning is “to use available observations to predict the response variable associated with 

new observations.” Supervised learning is generally applied to a dataset that contains a 

specific variable that the model is trying to predict. Supervised learning occurs when a 

machine is trained using labeled data. 

Supervised learning problems are categorized as regression or classification 

problems. Han and Kamber (2006, 286) describe classification as the output of a model or 

classifier that is constructed to predict categorical labels such as “yes” or “no,” “spam” or 

“legit.” This point is also restated by (Hastie, Tibshirani, and Friedman 2008) in their 

discussion on the classification construct. James et al. (2017) report that classification 

problems usually involve the prediction of a qualitative response (James et al. 2017). The 

IBM Cloud Education portal in defining classification, concur with the descriptions given 

in the current discussion by adding that “classification uses an algorithm to accurately 

assign test data into specific categories.” Huddleston and Brown (2019, 23) provide the 

following list as some of the common classification algorithms in current use: 
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• K-nearest neighbors (KNN)—“Given a positive integer K and a test 

observation x0, the KNN classifier first identifies the K points in the 

training data that are closest to x0, represented by N0” (James et al. 2017, 

39). 

• Regression—“widely used in machine learning for prediction, time series 

forecasting, and classification problems” (Huddleston and Brown 2019, 

25). 

• Classification and Regression Trees (CART)—“provide a highly visual 

and human interpretable method for regression and classification 

problems” (Huddleston and Brown 2019, 27). 

• Time Series Forecasting—uses time as the independent variable and 

predicts future actions based on historical patterns in the dataset.  

• Decision Trees—“are an ideal base learner for data mining applications of 

boosting” (Hastie, Tibshirani, and Friedman 2008, 341). 

• Support Vector Machines (SVM)—“the motivating principle for support 

vector machines is to find a maximum separating hyperplane in feature 

space that separates classes” (Huddleston and Brown 2019, 30). 

• Artificial Neural Networks (ANN)—“are motivated by trying to mimic the 

way neurons in the brain fire to influence human learning and decision-

making” (Huddleston and Brown 2019, 31). 

• Ensemble Methods—“combines predictions from several (or many) 

machine learning algorithms” (Huddleston and Brown 2019, 33). 

The discussion of classification shows that the result of classification is a discrete 

value. On the other hand, “learning on a continuous function is called regression” (Russell 

and Norvig 2003, 653). This definition of regression is also widely supported in the sphere 

of mathematics and statistics. James et al. (2017, 28) states that “we tend to refer to 
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problems with a quantitative response as regression problems.” Regression problems are 

varied and include tasks such as predicting the weather based on current conditions or 

predicting the cost of real estate based on location and size, among other factors. 

Regression algorithms include generalized linear models, logistic regression, decision 

trees, linear regression, nonlinear regression, and neural networks. James et al. (2017) 

posted a summary statement of regression: “in the supervised learning setting, we typically 

have access to a set of p features X1, X2, . . ., Xp, measured on n observations, and a response 

Y also measured on those same n observations. The goal is then to predict Y using X1, X2, 

. . ., Xp” (James et al. 2017, 373). 

While supervised learning involves learning from a training dataset using the input 

and output data, unsupervised learning involves identifying patterns in the input where 

there are no predetermined labels. Delua (2021) asserts that “unsupervised learning uses 

machine learning algorithms to analyze and cluster unlabeled data sets.” Huddleston and 

Brown (2019, 3) state that unlike supervised learning where labeled data is required, 

“unsupervised learning seeks to identify latent (underlying or hidden) structures in a 

dataset.” Unsupervised learning works without having a labeled response variable. As 

unsupervised learning attempts to understand the structure implied by a set of variables 

without a response variable, uncovering patterns or relationships in a dataset is one of the 

strengths of this construct. This notion lends itself nicely to the detection of anomalies or 

outliers in this study. James et al. (2017) believe that unsupervised learning presents a more 

challenging situation than supervised learning since there is no label or teacher with which 

to evaluate the output. “For every observation i = 1, . . ., n, we observe a vector of 

measurements xi but no associated response yi, thereby making it impossible to fit a linear 

regression model, since there is no response variable to predict” (James et al. 2017, 26). 

“In this setting, we are in some sense working blind; the situation is referred to as 

unsupervised because we lack a response variable that can supervise our analysis” (James 

et al. 2017, 26). Huddleston and Brown (2019, 35) list “kernel density estimation, 

association rule mining, principal component analysis (PCA), clustering methods, and bag-

of-words” as some of the most frequently employed unsupervised learning techniques. 
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James et al. (2017) presented the clustering method as one of the tools that can be 

used to discern the relationships in the dataset. Clustering was also presented by 

Huddleston and Brown (2019), amplifying the concept. Clustering assembles data items 

that have similar properties and exhibit similar qualities together. Data items that are 

dissimilar are placed in a different cluster. James et al. (2017, 27) acknowledges that “the 

goal of cluster analysis is to ascertain, on the basis of x1, . . ., xn, whether the observations 

fall into relatively distinct groups.” Clustering can be a useful tool for anomaly/outlier 

detection because in a normally distributed dataset, most of the data is clustered around a 

mean; any data points outside of this normal distribution should be investigated as potential 

outliers. Not all parameters in our dataset display properties of a normally distributed set. 

In the text, An Introduction to Statistical Learning, the authors present K-means clustering 

and hierarchical clustering as the two most used clustering methods in use (James et al. 

2017). Hastie, Tibshirani and Friedman (2008) introduces K-means clustering as one 

method used for finding clusters and cluster centers in a set of unlabeled data. Meanwhile, 

Simeone (2018) describes K-means as a heuristic method used to cluster together points 

that are mutually close in Euclidean distance. In the literature, the K-means clustering 

algorithm is presented as one of the most popular iterative descent clustering methods. K-

means clustering is used in situations in which all variables are quantitative. One of the 

objectives of K-means clustering is the creation of partitions in the dataset into a pre-

determined number (K) of clusters.  

In hierarchical clustering, the number of clusters is not determined prior to the 

clustering operation. The result of hierarchical clustering is generally represented by a tree-

like structure called a dendrogram. A dendrogram shows the relationship between clusters 

and provides an easily digestible representation of the cluster in a graphical format. In some 

circles, it is believed that the main point of hierarchical clustering is to create the 

dendrogram because it is the dendrogram that creates the methodology used to extract the 

most optimal clustering configuration (Eremenko and de Ponteves 2021). At each level of 

the hierarchy, clusters are created by merging clusters at the next lower level (Michael 

Atkinson, lecture notes, May 19, 2021). A single cluster representing the full dataset resides 

at the highest level of the hierarchy, while at the lowest level, each cluster contains a single 
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entity from the dataset. Hierarchical clustering exists in either agglomerative or divisive 

forms. In the agglomerative form, the starting point represents each observation in its own 

cluster, which is then merged with other clusters. In the divisive form, the starting point 

contains all entries of the dataset represented as a single cluster, which is then decomposed 

into smaller sub-clusters. 

A major task in this study is the design of the experiment and data collection. The 

data collected from the experiment described earlier captures the GPS message traffic that 

formed the basis of the study. Having good data was crucial to the study because, in the 

words of W. Edwards Deming “without data, you’re just another person with an opinion.” 

This study was built around facts demonstrated throughout this report. Kotsiantis (2007) 

proposes one method of data collection as depicted in Figure 20. The process starts with 

identification of the problem. In this study, we identified the problem as “identifying 

spoofing activities on military GPS.” In keeping with the construct proposed by Kotsiantis, 

we identified the data necessary for the study and proceeded to construct a data collection 

plan as described in Figure 13. It has long been held that one of the biggest efforts in ML 

is the preprocessing of data. Data preprocessing is described as a data mining technique 

that transforms raw data into a clear and useable format (Techopedia 2021).  
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Figure 20. The Process of Supervised Learning. Source: Kotsiantis 

(2007, 250) 

As ML algorithms learn from data, it is vitally important that the data being applied 

is representative of the problem being studied. Data preprocessing involves verifying that 

the most meaningful features of the data set are captured and that the appropriate format 

for the data is being observed. A subset of the features is selected, removing as many 

irrelevant and redundant features as possible. For the dataset used in this study, we 

identified the features and parameters that are correlated and that influenced the integrity 

of the dataset. Recognizing that the selection of the right algorithm to solve the problem is 

critical, one approach was to exercise multiple ML software applications and algorithms to 

process the data and use statistical tools to measure and compare the performance of the 

algorithms. Kotsiantis (2007) in discussing supervised learning, states that “A common 
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method for comparing supervised ML algorithms is to perform statistical comparisons of 

the accuracies of trained classifiers on specific datasets” (Kotsiantis 2007, 251). This 

advice equally applies to the unsupervised learning paradigm and has been adopted for this 

study. 

Chen and Lui (2018) opines that “the current dominant paradigm for ML is to run 

an ML algorithm on a given dataset to generate a model” (1). In this instance, the model is 

then applied to the dataset for performing the FDI detection tasks. Chen and Lui (2018, 1) 

refer to this concept as “isolated learning because it does not consider any other related 

information or the previously learned knowledge.” The authors identify deficiencies within 

the isolated learning paradigm stating that “it does not retain and accumulate knowledge 

learned in the past and use it in future learning” (Chen and Liu 2018, 1). This statement is 

contrary to human learning as humans seldom “learn in isolation or from scratch” (Chen 

and Liu 2018, 1). The concept of human learning is captured by the constructivism theory. 

The main tenet of the theory is that humans learn by adding “new knowledge upon the 

foundation of previous learning” (McLeod 2019, 1). Expanding on the constructivism 

principle, the model should also exhibit perspicacious properties. Merriam-Webster gives 

this formal definition of perspicacious: “having or showing an ability to notice and 

understand things that are difficult or not obvious” (Merriam-Webster 2021). Former chess 

grandmaster Garry Kasparov (2018), in an article titled Intelligent Machines Will Teach 

Us—Not Replace Us, recommends that humans should think of AI as “augmented 

intelligence” because the “intelligent machines are making us smarter, just as our past 

technology made us stronger and faster” (Kasparov 2018). He goes on to state that “for the 

first time, machines aren’t just giving us answers more quickly and accurately; they are 

generating new knowledge that helps us better understand the world” (Kasparov 2018). 

These are sublte, yet important points, that we endeavoured to implement in our FDI 

system to complement to the human element. 

2. Anomaly Detection 

A spoofing attack can be represented as an anomaly in a dataset. Anomalies can 

show up as outliers in a dataset. Outliers are described as “an entry in a dataset that is 
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anomalous behavior relative to the majority of the other entries in the dataset” (Pearson 

2005, 23). Outliers can take different forms, with the simplest case being called univariate 

outliers. In this instance, in a dataset which contains a series of values {yk}, each 

observation yk may be represented as 

𝑦𝑦𝑘𝑘 =  𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 +  𝑒𝑒𝑘𝑘,  

where ynom represents the nominal value for this data sequence. The factor {ek} represents 

the error measure of the distance from the nominal value yk (Pearson 2005). 

3. Data Analytics Tools 

Investopedia defines data analytics as “a broad term that encompasses many diverse 

types of data analysis” (Frankenfield 2021). Frankenfield further states that “any type of 

information can be subjected to data analytics techniques to get insight that can be used to 

improve things.” Data analytics serves as a great tool as it presents techniques that can be 

used to reveal latent trends and metrics that are not immediately obvious to the untrained 

eye. This information gleaned from data analytics can be used as an input to streamline and 

optimize processes resulting in increased efficiency of a business or system (Frankenfield 

2021). 

There is an abundance of ML tools available for data extraction and decision 

making in the current environment. MathWorks, in answering the question, “when should 

you use machine learning?” responds with “Consider using machine learning when you 

have a complex task or problem involving a large amount of data and lots of variables, but 

no existing formula or equation” (MathWorks 2020, 10). The study being reported in this 

work certainly fits the profile of a system that will benefit from a ML intervention. A survey 

of ML shows a strong linkage between ML and statistics as evidenced by the application 

of statistical tools in the analysis of the output of ML algorithms. Hastie, Tibshirani, and 

Friedman (2008, 1) write that “the science of learning plays a key role in the fields of 

statistics, data mining and artificial intelligence, intersecting with areas of engineering and 

other disciplines.” The algorithm of ML takes input variables, manipulates the data, and 

produces output variables. 
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In the text, R for Data Science: Import, Tidy, Transform, Visualize, and Model 

Data, the authors posit that data science is a multi-step process as represented in Figure 21. 

The importance of data quality is captured in the import and tidy functions as this step 

prepares the dataset from the raw form for presentation to the data science tools. Wickham 

and Grolemund (2017) explain that “tidying your data means storing it in a consistent form 

that matches the semantics of the dataset with the way it is stored” (Wickham and 

Grolemund 2017, 1). Data tidying is complemented by the data preprocessing 

recommended by Kotsiantis. Applying the concept of tidying to our dataset, the ICD-153 

messages have a file structure containing 131 columns or variables. For the NMEA 0183 

messages, the number of columns or vary by the message type. For both message standards, 

each row represents a single observation, because the messages are captured at 1 second 

intervals. Therefore, the number of observations is determined by the duration of the run 

time required to capture the data. 

 
Figure 21. Data Science Construct Source: Wickham and Grolemund 

(2017) 

Wickham and Grolemund (2017) also believe that after the tidy data step, the 

visualization and modeling steps follow. Visualization and modelling are two main engines 

of knowledge generation according to Wickham and Grolemund (2017). Visualization and 

modeling are regarded as complementary tools as they blend the human element with the 

machine element. Some of the visualization tools applied to the dataset include the use of 

statistical tools such as PCA, histograms, and scatter plots. PCA was used to reduce the 
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dimensionality of the dataset while histograms and scatter plots were used to observe 

relationships between, and among, variables. Following the visualization step, the next 

logical step in the process is to get to the model phase. This path forward is in keeping with 

the structure presented by Wickham and Grolemund (2017).  

a. R Programming Language 

As discussed earlier, there are many AI/ML tools in use that can be applied to the 

dataset documented in this study. One such tool is the R programming language, a free 

open-source software used for data science, statistics, and visualization projects. R is a 

programming language and environment that finds applicability in statistical computing as 

well as graphics. The R programming language was built specifically for statistical analysis 

and data mining. The R programming language interfaces with RStudio a free, open-source 

integrated development environment (IDE) (Kent State University 2021). RStudio 

“includes a console, syntax-highlighting editor that supports direct code execution, as well 

as tools for plotting, history, debugging and workspace management” (RStudio 2021). The 

graphical user interface of R Studio shown in Figure 22, is organized to present the user 

with visuals of graphs, data tables, R code, and output in a single view. According to The 

R Foundation, the R programming language is a powerful and versatile tool that can be 

easily integrated with other platforms. The R programming language is a versatile tool that 

can be used to execute ML and statistics tasks such as linear and nonlinear modelling, 

classical statistical tests, time-series analysis, classification, and clustering (The R 

Foundation 2021). The R programming language was evaluated as a potential candidate 

for use in the model creation and analysis of the dataset.  
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Figure 22. R Studio: Source R4epis (2021). 

Most of the user interaction takes place in the Source Pane where “R Scripts” can 

be created and edited. According to Philips (2019), the R Console pane is the heart of R 

and serves as the area where the R code gets evaluated. A user can type code directly into 

the console after the prompt and get an immediate response (Phillips 2019). The 

Environment Pane is customarily situated in the upper-right panel and is most often used 

to see brief summaries of objects in the R Environment in the current session, according to 

(R4epis 2021). The lower-right pane contains the Files, Plots, Packages, Help, and Viewer 

functions. The R programming incorporates several libraries containing prebuilt functions. 

Libraries for data science include: 

• A caret package is a short form of Classification And Regression Training 

used for “miscellaneous functions for training and plotting classification 

and regression models” (Kuhn 2021). 

• dplyr is the package which is used for data manipulation by providing 

different sets of verbs including select (), arrange (), filter (), summarize (), 

and mutate () (Wickham 2018). 
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• “ggplot2 is based on the ‘Grammar of Graphics,’ which is a popular data 

visualization library. Graphs with one variable, two variables, and three 

variables, along with both categorical and numerical data, can be built” 

Smith (2020). 

• MLmetrics is a collection of statistical evaluation metrics, including 

LogLoss, sensitivity, accuracy, RMSE, AUC, ROC score and utility 

functions, that measure regression, classification, and other performance 

measures Yan (2016). 

• Recursive Partitioning and Regression Trees (rpart) “The rpart code builds 

classification or regression models of a very general structure using a two-

stage procedure; the resulting models can be represented as binary trees.” 

Atkinson (2019).  

b. Orange 

Orange is an open-source data visualization and analysis tool that can be used for 

data mining through visual programming. The underlying concept of Orange is built on 

Python scripting. Orange provides interactive data analysis workflows with multiple data 

mining tools supporting both supervised and unsupervised ML approaches. A screenshot 

of the Orange application user interface is shown in Figure 23 where a subset of the tool 

available categories are displayed. The categories include Data, Visualize, Model, 

Evaluate, and Unsupervised. These categories contain tools, also known as widgets, that 

are selected by the user and placed in the work area on the right. 

The Data category contains widgets used to enter data to the system. This is the 

area allows the user to perform data wrangling. Data wrangling is described as “the process 

of programmatically transforming data into a format that makes it easier to work with” 

(Talend SA 2021). The Visualize category is used to view properties of the data using tools 

such as tree viewer, box plot, violin plot, bar plot, scatter plot, line plot, linear projection, 

Venn diagram, and silhouette plot. The Model category contains algorithms such as 

calibrated learner, kNN, decision tree, random forest, gradient boosting, SVM, linear 
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regression, logistic regression, naïve Bayes, neural network, and stochastic gradient 

descent. The Model category includes the five most popular and effective algorithms listed 

by Burkov (2019) in Chapter 3—Fundamental Algorithms of The Hundred-Page Machine 

Learning Book. The Evaluate category contains the tools that can be used to assess the 

quality of the model. This category includes test and score, predictions, confusion matrix, 

ROC analysis, lift curve, and calibration plot. 

 
Figure 23. Orange Overview: Source Demšar and Zupan (2013). 

The Unsupervised category, as the name implies, contains the algorithms that are 

used to run unsupervised learning models. Algorithms include distance map, hierarchical 

clustering, k-Means clustering, DBSCAN, PCA, and manifold learning. Orange executes 

its tasks by a process called workflow. To start a workflow, widgets are dragged from the 

left panel and placed in the work area of the user interface. Some widgets have input and 
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output connectors, while others only have input connectors. The connectors are used to 

transfer information between widgets; the output of one widget is connected to the input 

of another widget to facilitate the communication and data transfer. An input file is selected 

in the workspace to initiate the workflow. Orange can handle and process multiple input 

file types including tab-separated values, *.csv, and Microsoft Excel spreadsheets (*.xlsx). 

The dataset generated for this thesis was formatted as both *.csv, and *.xlsx format, 

ensuring that the files are readable by Orange. 

4. Training/Testing of Model using Simulated Data 

Both RStudio and Orange were used in the model development process. RStudio 

was used in the data wrangling stage of the development, as a first step, to analyze the 

dataset and extract useful features. Using some of the R programming tools presented 

earlier in the report, we generated plots of the dataset and capture useful statistics. The plot 

command was used to generate Figure 24, which shows the relationship between the GPS 

Time Tag and the estimated position error (EPE) parameter as captured in the ICD-153 

message ID 5040. The EPE parameter is one of the metrics used to assess the performance 

of the FDI model. The GSG-62 GNSS simulator was used to generate the FDI dataset 

represented in the figure. Figure 24 shows a division in the dataset representing the signal 

levels before, during, and after the application of FDI to the system.  
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Figure 24. GPS Time Tag and EPE 

Analysis of the dataset can be conducted as two separate portions. Figure 25 shows 

the leftmost portion of the dataset from Figure 24 representing the normal portions of the 

live sky data. The outliers in this portion of the data were investigated. The spike in EPE 

occurred at 12:00:14 increasing from 22.49 m to 283.56 m and receding to 27.69 m over 3 

consecutive seconds. The EHE and EVE parameters showed significant increases over the 

same 3 second period as expected. The EPE represents the vector magnitude of EHE and 

EVE. The jammer-to-signal ratio (J/S) increased from 43 dB to 44 dB, otherwise, all other 

parameters in the dataset retained their normal state. 

𝐸𝐸𝐸𝐸𝐸𝐸 =  �𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝐸𝐸𝐸𝐸𝐸𝐸2 
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Figure 25. GPS Time and EPE before FDI Application  

The second segment of the plot in Figure 24 represents the period in which FDI 

was being actively applied to the system. There was a gradual increase in the EPE value as 

the operator increased the transmit power on the GSG-62. The increasing power resulted 

in the EPE climbing to over 600 m during the active spoofing period. Figure 26 captures 

the Google Earth view of the result of the FDI application on the system. The scenario was 

structured to mimic a route driving around in a loop. The green cluster at the northern most 

portion of the plot represents the normal data (and EPE) captured in the previous figures. 

With FDI applied to the system and the power levels gradually increasing over time, 

resulting in the EPE increasing with to the end of the green line shown in Figure 26. The 

red line on the plot was a line added to measure the distance of the EPE.  
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Figure 26. Google Earth View 

The dataset used in this study was stored in tables consisting of multiple rows and 

column data. Entries in the tables were a mix of categorical variables, logical, numeric and 

integer types. To perform functions in RStudio, the libraries were installed to carry out the 

functions needed. For instance, to install the ggplot2 package, type “library(ggplot2)” in 

the R console pane and press return. This principle was followed for the installation of the 

packages used in the analysis. To get specific measures of the dataset, the appropriate 

commands would be run. The names command, for instance, returns the name of columns 

in the dataset, while the dim command returns the number of rows and columns. The dataset 

represented in the plot was created from the file “2021-06-14_1845_unkeyed 

DAGR_GSG_5040.prn” that was captured on June 21, 2021. The *.prn file is a text file 

generated by the CTS-153 software application which was imported to a *.csv file format. 

Executing the (dim) command in RStudio confirms that the file contains 9969 rows and 

131 columns of data. Table 3 lists the EPE statistic which ranges between 11.82 m and 

757.19 m. The table shows the variation for EPE parameter with FDI applied to the system. 
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The values in the table were obtained from the results generated from processing the data 

using the RStudio using the summary(data) command. Further analysis of this dataset will 

be expanded upon in Chapter IV of the report.  

Table 3. Simulated Data Statistics 

Unkeyed DAGR Parameters 

Min (m) 1st Quartile Median Mean 3rd Quartile Max (m) 

11.82 21.37 509.18 344.71 615.66 757.19 

 
Application of FDI on the system was undertaken to pull the end user clandestinely 

from the preplanned route and possibly their destination. Within the messages used by the 

DAGR, there are requirements, at the bit level, that need to be set to provide a valid 

navigation solution. In the ICD 153 message ID 5040, both the Nav Converged and the Vel 

Valid bits need to be set to 1. The ICD-153 standard dictates that Nav Converged be set to 

“1” when the DAGR has achieved both a valid PVT solution and is also providing 

navigation to the user. The Status bit in the RMC NMEA 0183 message should also be set 

to “A = Data valid” during this time. The discussion of FDI and its impact on the system 

were centered around these conditions being met. A sample of the distribution of the Vel 

Valid bit in one ICD 153 message ID 5040 is shown in Figure 27. There are 5640 instances 

of TRUE for this dataset from 9969 rows of data. A similar plot was generated for the Nav 

Converged bit, where there were 3738 instances of TRUE condition.  
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Figure 27. Distribution of Vel Valid Bit 

From the previous discussion, not all instances of Nav Converged and Vel Valid 

occur together in the dataset. The first instance of the alignment of these two parameters 

occurred at 12:30:01 and ended 12:32:57. During this time, the Ground Speed parameter 

changed from 0 kilometers per hour (kph) at 12:30:00 to 1.86 kph at 12:30:01 and gradually 

increased to 30.99 kph at 12:32:57. A sample of the dataset representing the first instance 

of the convergence of Nav Converged and Vel Valid occur together is shown in Figure 28. 

The later portion of the dataset representing the instance when the Nav Converged 

parameter changed to FALSE is not shown here. At the point where the Nav Converged 

parameter changed to FALSE; the navigation solution was no longer valid. The Vel Valid 

parameter maintained the TRUE state until 13:54:02 before it too changed state to FALSE. 

The Ground Speed parameter maintained the 30.99 kph value for the period where the Vel 

Valid parameter maintained the TRUE state. Based on the definition of data mining, the 

data analysis being discussed here qualifies as such. Han and Kamber (2006, 5) describe 

data mining as the process of “extracting knowledge from large amounts of data.” This 
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process also fits the description of knowledge discovery. The bulk of the preliminary data 

analysis and data mining tasks were carried out using RStudio. This analysis also served 

as a reference point in the assessment of the model parameters discussed in Chapter IV. 

 
Figure 28. Sample FDI Dataset 

The simulated dataset was combined with the operational dataset captured through 

the live sky feed to serve as the training dataset for Orange. The file type used in RStudio 

was also used as the input to Orange to evaluate the model candidates. The algorithm 

selection, training, evaluation with the test set, and parameter tuning steps as described by 

Kotsiantis (2007), was applied to the dataset. Unsupervised learning was applied at this 

stage of the process. Clustering is one of the unsupervised learning algorithms and finds 

applications in situations where the objects within a dataset contain no known labels. Recall 

that a cluster groups data items that exhibit similar properties together. Using this concept, 

data items with dissimilar properties will be placed in other clusters making clustering an 

ideal tool for outlier detection. Han and Kamber (2006) lists portioning methods, 
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hierarchical methods, and density-based methods as three of the major clustering methods 

in use. The authors also list k-means, k-medoids, and their variations, as the most used 

partition methods (Han and Kamber 2006, 402). According to Witten et al. (2016, 45), “the 

success of clustering is often measured subjectively in terms of how useful the result 

appears to be to a human user.” Clustering tools have the added benefit of generating great 

visual representation of the data. Evaluation of the model involved the application of PCA 

and k-means clustering algorithms run on the simulated data from one of the scenarios 

created to add FDI to the system. 

In the text, Data Mining: Practical Machine Learning Tools and Techniques, 

Witten et al., (2016, 93) emphasizes the value of simplicity. The authors believe that 

“because the structure underlying many real-world datasets is quite rudimentary” simple 

rules are adequate for achieving the desired results. The simplicity concept was applied to 

the model development process and was followed throughout the process. 

5. Training/Testing of Model using Operational Data 

Operational data was captured from the system configured to receive only the live 

sky data feed. Figure 29 shows a plot of the GPS Time Tag vs EPE for operational message 

traffic from the dataset. The file “2021-06-14_Unkeyed DAGR_5040_GSG.prn” contains 

the dataset captured over a 36-hour period. During this time, the system was run in a normal 

operational mode; without FDI applied to the system. The contrast between the data in 

Figure 24 can be seen in the EPE values in the plot. The dataset displays periodicity 

representing the movement of the satellites in MEO. The outliers shown in Figure 29 were 

investigated by examining the dataset and isolating the period in question. 

Table 4 shows the statistics of the EPE parameter from the dataset. The EPE ranges 

between 9.55 m and the maximum of 55.27 m and represents the expected values for this 

parameter without FDI applied to the system. The values in the table were also obtained 

from the results generated from processing the data in RStudio using the summary(data) 

command. Discussion of the dataset and the analysis performed will be documented in 

Chapter IV.  
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Table 4. Operational Data Statistics 

Unkeyed DAGR Parameters 

Min (m) 1st Quartile Median Mean 3rd Quartile Max (m) 

9.55 11.48 12.44 13.26 13.85 55.27 

 

The live sky data was aggregated with data from generated from the GSG-62 and 

applied to the model as a training data. This method ensures that the model is trained with 

a representative sample of both types of data. 

 

Figure 29. GPS Time Tag and EPE 

Figure 30 shows the maximum value from the dataset over the period 02:54:00 to 

02:56:59 on May 29, 2021. The spike occurred over a three second period, 02:55:27 to 

02:55:29. The EPE increased from 17.11 m at 02:55:26 to 55.27 m, before declining 40.45 
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m at 02:55:30. Other parameters within message ID 5040, including PRN Code Tracked, 

Tracking State, Chan Status A/B Valid, jammer-to-signal ratio (J/S), and carrier-to-noise 

ratio (C/No) were all examined and found to be within the range of values for the period 

preceding and immediately following. The fact that the sharp rise and correspondingly 

sharp decline occurred within three seconds assures us that, indeed, this was not a FDI 

event. As shown previously, a FDI event persists in the system for a much longer than the 

time shown here. This spike event can be attributed to environmental factors, and not a FDI 

attempt.  

 
Figure 30. GPS Time Tag and EPE with Outlier 

The dataset from which the figures were obtained, was used as an input to the model 

to validate the inferences gained from the analysis done using RStudio and the application 

of statistical tools. Orange was recommended as the tool to execute this stage of the FDI 
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detection process. The same operational data that was used in the analysis described here, 

was used in Orange to assess the model performance. The model process employed by 

Orange provides more than ten model types. The approach used in this stage of the 

development focused on applying multiple models from the available options and evaluate 

the scores to determine the best. Evaluating the performance of the models is a fundamental 

step in the model development process. It is imperative to find the model that best 

represents the data as this effort forecast how effectively the model will work. This roughly 

follows the process described by Kotsiantis (2007, 250) in Figure 20. 

E. SUMMARY 

This chapter presented the taxonomy of the GPS spoofing along with a summary 

of the effectiveness and complexity of each method. The systems engineering process was 

followed to conceive and develop the system through the MBSE construct. The concept of 

operations applied to the system exposed some of the vulnerabilities inherent in the GPS 

structure. The tools that were applied to the results to show the nature of the GPS spoofing 

problem and the effectiveness of the toolset that will aid in ameliorating the FDI threat 

detection.  
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IV. ANALYSIS RESULTS 

This chapter provides an analysis of the findings of the study, expanding on the 

preliminary results presented in the previous chapter. The analysis was focused on the 

message traffic from both an operational concept as well as message traffic generated by a 

GNSS simulator. Both unsupervised and supervised learning model types were explored 

and applied to the datasets to assess performance measures. The results are presented with 

plots to visualize the dataset and the Orange dataflow used to generate the results. 

A. BENEFITS AND SHORTFALLS OF DATA TYPES 

The engineered system used for this study was set up to capture data traffic that 

conforms to commercial and military standards. Gakstatter (2015) describes NMEA as “a 

standard data format supported by all GPS manufacturers, much like ASCII is the standard 

for digital computer characters in the computer world.” This standard allows manufacturers 

in diverse operational areas to develop and manufacture commercial systems that allows 

interoperability across platforms and companies. The NMEA 0183 standard forms the basis 

of the message structure applied to most commercial GPS user devices. The ICD-153 

standard is applied to the development for application to military navigation systems. 

Military navigation systems are compliant with the NMEA 0183 standards while also 

implementing the DOD specific message structure. While both the NMEA 0183 and the 

ICD-153 messages contain the same navigation information, this information is distributed 

across multiple messages in the NMEA 0183 messages. The ICD-153 messages contain a 

more comprehensive list of attributes using fewer message types than NMEA 0183. This 

difference allowed for the verification of message information by consulting both message 

types for concurrence and consistency. 

The dataset for this thesis consisted of messages conforming to both the NMEA 

0183 standard and the ICD-153 standard. NMEA messages are sent from talker to listener. 

The NMEA 0183 standard defines a talker as any device that sends data to other devices 

within this standard, while a listener is any device that receives data from another device 

(NMEA 2012). NMEA 0183 messages contain a two-letter prefix that represents the 
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system on which they are being used. The U.S. system affixes GP to the three letter codes 

listed. Seven NMEA 0183 messages were monitored for this study: 

• GPGGA—GPS fix data message 

• GPGSA—GNSS DOP and active satellites message 

• GPGSV—GNSS satellites in view message 

• GPRMC—recommended minimum specific GNSS data 

• GPZDA—time and date message 

• GPZLZ—time of day message 

The ICD-153 messages consist of data messages and command messages. are sent. 

Data messages are used to transmit from intelligent terminals (INTER) and receivers 

(RCVR). Command messages facilitate the request of information by the INTER from the 

RCVR. Message ID 253—buffer box status request message is sent automatically every 6 

seconds in compliance with the standard. Likewise, message ID 5044—warning message 

is generated to capture and report detected errors. Message ID 9—receiver capabilities 

message, is a command message that returns system information such as hardware and 

software version from the DAGR. Four ICD-153 messages were actively monitored for 

this study: 

• Message ID 3—time mark data message 

• Message ID 4—24-channel time mark data message 

• Message ID 5040—current status message 

• Message ID 5042—extended status message 

The files “2021-06-14_1845_unkeyed DAGR_GSG_5040” and “2021-06-14_11-

41-26_DAGR_NMEA_Data” both contain the message traffic that captured the scenario 

that was analyzed in Chapter III. In all the simulated scenarios used in this experiment, at 

the start of the application of FDI, the message ID 5040 showed the Vel Valid and Nav 
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Converged parameters both being set to TRUE. The equivalent validation in the NMEA 

0183 message was indicated by parameters within the GPRMC message. With the Status 

bit set to A = Data valid and the Mode Indicator bit was set to A = Autonomous, a valid 

navigation was being provided to the user. Data valid is also expressed in message ID 4 

which contains the Nav Data Not Valid parameter. When set to 0, the navigation solution 

is valid. The parameters were crosschecked across the three messages to ensure alignment, 

thereby verifying the validity of the solution. Ground Speed from the ICD 153 message ID 

5040 is represented by speed over ground in units of knots in the GPRMC message. 

Applying the conversion factor of 1.852 translates knots to kph. The equivalency was 

verified by multiplying the speed value from the GPRMC message. The parameter Track 

in message ID 5040 and course over ground in the GPRMC message both represent the 

direction of travel in degrees. The combination of the GPZDA and GPZLZ messages 

capture the time and date as represented in message ID 5040. 

Message ID 5040 also captures the satellites in the constellation that are available 

through the Number of Visible SVs and Number of Healthy SVs parameters. The GPGSV 

message shows the number of SVs in view, SV PRN, as well as the elevation, azimuth, and 

SNR value of the SVs. The SNR in the GPGSV message is represented by the C/No 

parameter in message ID 5040. The GPGSA message displays the number of SVs in the 

active solution along with operating characteristics of said SVs. Two Mode parameters are 

included in the GPGSA message. In normal operations, it is customary to see one parameter 

set to A indicating that the system is allowed to switch automatically between a 2D and 3D 

fix. The second Mode parameter is enumerated with 1 representing “Fix not available,” 2 

representing 2D fix, and 3 representing 3D fix. The PDOP, HDOP and VDOP values are 

also shown in the GPGSA message. Message ID 5040 shows the GDOP parameter which 

is equivalent to the PDOP measure according to the research. GIS Geography (2021) 

confirms the relatonship between GDOP and PDOP with the statement that “GDOP or 

PDOP describes the error caused by the relative position of the GPS satellites.” Current 

DOP value is captured in message ID 4. Current DOP is “calculated using only SVs used 

in the PVT solution, represented as a scaled integer having a value from 0.0 to 6553.5, 

where 0 means DOP < 0.1 and 6553.5 means DOP ≥ 6553.5.” GPS Wing (2007, B-29). 
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The GPGGA message captures values related to the “time, position, and fix for a GPS 

receiver” (National Marine Electronics Association 2012). A GPS quality indicator of 1 

represents a valid fix in the GPS SPS Mode in the GPGGA. The equivalent of the quality 

indicator is found in the Operating Mode parameter in message ID 5040. This discussion 

helps to verify that both ICD 153 and NMEA 0183 messages contain the same information, 

only that they are not all represented in the same way or in the same message.  

B. RESULTS OF MACHINE LEARNING EXPERIMENTATION 

This analysis created and experimented with unsupervised and supervised machine 

learning models both in RStudio and Orange using the hybrid live stream/simulated 

datasets with FDI applied to the system. 

1. Unsupervised Learning Model 

This experiment demonstrated the ability of an unsupervised ML algorithm to 

cluster data according to similar characteristics. In the experiment, the ML algorithm 

correctly grouped the live stream/simulated data into four clusters: one representing the 

real GPS data, two representing two separate GPS spoofing attempts, and the fourth 

representing the spoofed state. The unsupervised model identified the portion of the dataset 

representing the onset of spoofing. This relationship was captured by the Ground Speed 

and Track parameters that registered non-zero values at the onset of the spoofing activity. 

The application of FDI on the engineered resulted in a change of the Ground Speed 

parameter from 0 and to 30.99 kph. This is another significant finding as it once again 

demonstrated the utility of the algorithms being applied to the dataset. Although spoofing 

was being actively applied to the system for upwards of 60 minutes in each scenario, the 

data shows that active spoofing triggers a change in position in as little as 40 seconds. From 

that point forward, the system remains in a spoofed state at the newly established position. 

Parameters such as J/S and C/No in message ID 5040 did not reflect the status change from 

the “normal state” to the “spoofing detected” state; however, the clustering algorithm 

detected spoofing activity. Further inspection and evaluation of the rate of change and 

second derivatives did not clearly identify a relationship with the spoofing activities. These 
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findings merit further research and should be pursued as part of the future work associated 

with the current study.  

Datasets generated from the engineered system are unlabeled and therefore do not 

contain any labeled parameter that defines spoofing. Armed with that information, we 

concluded that an unsupervised learning algorithm is an appropriate choice. Witten et al., 

(2016, 45) in discussing clustering, states “When there is no specified class, clustering is 

used to group items that seem to fall naturally together.” Clustering is one of the tools in 

the unsupervised learning model paradigm. Its use allowed us to capture characteristics of 

the dataset. Using this idea as a starting point we applied the k-means algorithm in keeping 

with the belief that k-means is one of “the most well-known and commonly used partition 

methods” (Han and Kamber 2006, 402). The Orange workflow shown in Figure 31 

represents the unsupervised learning model used to conduct the clustering operation on the 

dataset. The k-means clustering method is a centroid-based technique, where the similarity 

measure is based on the mean value of the other members of the cluster. Clustering methods 

such as DBSCAN are regarded as density-based algorithms because the measure is based 

on a density factor and not a mean value as in k-means. Lecture notes state that “DBSCAN 

focuses on clustering based on density: cluster observations in high density regions” 

(Michael Atkinson, lecture notes, May 5, 2021).  

The unsupervised learning workflow also contains Manifold learning, and PCA 

algorithms. The PCA results from the model resulted in two principal components with 

PC1 showing a value of 0.936. This value means that 93.6% of the variance of our dataset 

can be explained by PC1. The results of PCA were examined and showed the relationship 

between the North Ref Correction with EPE and its vector components. This was another 

previously unidentified relationship. The DBSCAN model showed a Euclidean distance of 

0.010 representing the neighborhood distance. The cluster from DBSCAN identified the 

same characteristics as the k-means results. The Manifold Learning results were also 

consistent with the others within the workflow. The model results from the other methods 

further amplified the results from the k-means clustering algorithm in identifying the 

clusters created by the application of FDI. Applying multiple models to the dataset 

provided the same answer to the question; can the AI model detect cyber attacks on the 
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military GPS? The Select Columns widget in Figure 31 was used to segregate the variables 

within the workflow. Obvious variables such as GPS Time Tag and Ground Speed were 

put in the Metas section of the widget, thereby isolating those parameters from the solution, 

yet leaving all other parameters in play. Ignoring the 18 data columns designated as 

“Spare” the model found and used all other 100+ parameters to determine the relationships 

that identified the spoofing threat. 

 
Figure 31. Orange Workflow 

Running the k-means clustering algorithm with k=4, identified the four clusters C1, 

C2, C3, and C4 shown in Figure 32 This plot exhibits a similar structure to the RStudio 

plot discussed in Chapter III (Figure 24) for the same dataset. We experimented with the k 

values from three to seven. In every instance, the clusters were represented as distinct 

clusters. During the period of actively applying FDI to the system (both Vel Valid and Nav 

Converged parameters = TRUE), the EPE recorded a gradual increase. The conditions for 

a valid solution were sustained for a period of 176 seconds (12:30:01 – 12:32:57). The four 
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identified clusters are in keeping with the analysis and discussion in Chapter III. The 

normal data flow discussed in Chapter III is represented by cluster C1 as shown in Figure 

32. Cluster C4, shown in gold represents the two active spoofing portions of the exercise. 

The EPE experienced a gradual increase from 103 meters climbing to 610 meters during 

this period. Correspondingly, the Ground Speed and Track parameters started to register 

non-zero values starting at 1.85 kilometers per hour (kph) up to 30.99 kph. The change in 

ground speed was an unexpected, but nonetheless important finding. This observation gave 

us the indication that active interference was occurring on the engineered system. 

 
Figure 32. K-means Clustering 

The highest EPE recorded in C4 was 409.8 meters at 12:32:09 which, by then the 

engineered system was displaying characteristics of being spoofed. Cluster C2, in red, 

represents the ‘end state’ where the system is already spoofed by the application of FDI. 
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The data represented by C2 could also be considered as normal data to the naked eye as it 

displays the characteristics of EPE discussed in Chapter III. The difference between C1 

and C2 is the distance measure of EPE. This finding is the result of a change in position 

brought on by active spoofing. Cluster C3 in green represents a second active FDI event 

that lasted 113 seconds from 14:00:10 to 14:02:03. The EPE reached a maximum of 509 

m during this episode as can be gathered from the figure. The two high measures in C3 

represent EPE values of 753 meters and 757 meters; both spikes occurred within two 

seconds of each other. The navigation solution was not valid at this point as only the Nav 

Converged parameter was set to TRUE. This observation is quite similar to the discussion 

of the anomalous data points in the operational dataset discussed in Chapter III and Figure 

30. Nothing in the dataset gave us any clear indication of what triggered these two spikes. 

All other variables in the dataset remained in their normal state during this period. Even 

though the conditions for a valid solution ended at 12:32:57, the EPE of 615 m remained 

until 13:54:02 resulting in the extended breadth of C2. Cluster C2 and C3 represent the 

engineered system in a spoofed state. In trying to identify relationships between and among 

the parameters in the datasets, a correlation method was applied. The Pearson correlation 

coefficient was chosen for this task. The Pearson correlation coefficient measures the linear 

dependence between two variables and is shown in Figure 33 for the predictors. The 

correlations shown in Figure 33 confirm that Ground Speed and North Ref Correction 

strongly impacts EPE and its vector components EHE and EVE. Correlation values above 

0.7 cover the range of high to very high correlation. Choosing EPE as the target yielded 

great dividends as this concept was then applied to a supervised learning tree. Discussion 

of the supervised concepts and applications are presented in the Supervised Learning 

Model section of this report. 
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Figure 33. Pearson Correlations 

Although GPS Time Tag and EPE were chosen as the two parameters to show on 

a plot, they were just two of the many potential combinations of data parameters that could 

be selected from the dataset. The selection was made based on the interesting 

characteristics observed during the data wrangling phase. Other combinations were 

examined and shown to give an equally vivid representation of the characteristics of the 

spoofing threat. The relationship between EPE and Ground Speed is shown from the 

RStudio window in Figure 34 and at 95% confidence interval, shows a very high 

correlation of 0.9670262. Correlation coefficients range from –1 to 1 where a value of 1.0 

represents a positive relationship between the two variables. For the variables EPE and 
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Ground Speed, a positive increase in the EPE variable, results in a positive increase in the 

Ground Speed variable 

 
Figure 34. Pearson Correlation of Ground Speed and EPE 

From statistics, recall than a p-value ≤ 0.05 is considered statistically significant. A 

low p-value “indicates strong evidence against the null hypothesis, as there is less than a 

5% probability the null is correct” (McLeod 2019). Therefore, we reject the null 

hypothesis, and accept the alternative hypothesis. According to McLeod (2019), “the null 

hypothesis states that there is no relationship between the two variables being studied.” We 

have demonstrated that increases in EPE results in increases in the Ground Speed 

parameter, thereby rejecting the null hypothesis. The dataset from the other simulated 

spoofing scenarios run during the experiment were also evaluated through the unsupervised 

learning model. Overall, the characteristics of the other scenarios and results were just like 

the scenario discussed in this chapter. No additional insights were gained from these 

datasets, so the results and analysis discussed for k-means equally applies to those datasets.  

2. Supervised Learning Model 

The unsupervised learning exercise provided additional insights to the dataset and 

created the desire to do more exploration of the data. The data wrangling process was once 

again initiated, this time to create a labelled dataset with the goal of training a supervised 

model. Two approaches were taken in this endeavor. First, the unsupervised model was 

used to identify clusters that served as the input dataset to train the supervised model. The 
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unlabeled test set was used to check the trained model and check the performance metrics 

to see how well the test set fit in the clusters. The second approach used a form of 

association rules to create a labelled column in the training dataset to serve as the 

supervised set.  

As a visual tool, the unsupervised learning algorithm proved their worth in the 

identification of characteristics of the datasets. This method aided in determining the binary 

classification of the data by identifying the both the spoofing and spoofed state of the 

system. Clustering algorithms have no tangible numerical measures in identifying 

spoofing. Enter the supervised learning algorithms which have several performance 

measures that can be applied to regression or classification problems. Spoofing detection 

falls in the category of binary or binomial classification problems. Burkov (2019, 19) states 

that “in a classification problem, a label is a member of a finite set of classes.” The spoofing 

detection problem is a binomial classification used to identify “spoofing” and “not 

spoofing” on the dataset. The supervised learning algorithms applied to the datasets gives 

confirmation of the procedures and results of the unsupervised algorithms. 

Recall that the message ID 5040 dictates that both the Vel Valid and Nav Converged 

parameters must be in a TRUE state. Using this knowledge, we used an AND function in 

Excel (=AND(U2,AN2)) and created a new column labelled ‘Spoofing’. For reference, in 

the Excel spreadsheet column “U” represents Vel Valid and column “AN” represents Nav 

Converged values. The condition where both Vel Valid and Nav Converged parameters are 

TRUE populates a value of TRUE in the Spoofing column. Conversely, in the case where 

either of Vel Valid or Nav Converged parameter is FALSE, a value of FALSE is populated 

in the Spoofing column. Witten et al., (2016, 11) describe association rules as “rules that 

strongly associate different attribute values.” The dataset was first run through RStudio to 

create a classification and regression tree (CART) model. The ‘dim’ command in RStudio 

indicated 4951 rows and 132 columns in the dataset. Querying the dataset with the 

‘summary’ command in RStudio revealed that the Spoofing column was of data type 

“Logical” and contained 4774 FALSE and 177 TRUE values. After successfully 

developing the CART model in RStudio, the workflow was created in Orange to verify the 

methods. Figure 35 shows the CART model using Orange. The CART model correctly 
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identified the labelled data in both RStudio and Orange tools. The CART algorithm poses 

a series of questions, and the answers result in either a terminal node or another question. 

CART models “are visually appealing, are computationally fast, and automatically 

includes interactions and non-linear relationships” (Michael Atkinson, lecture notes, May 

5, 2021). Figure 35 shows that for Ground Speed > 2.43927, the model is 100% accurate. 

For the implementation of the supervised learning tree, the select columns widget was once 

again applied with the Spoofing variable as the target. Metas consisted of GPS Time Tag, 

Nav Converged, and Vel Valid. The input features/variables included EPE, Current DOP, 

North Ref Correction, Channel J/S, Channel C/No, Ground Speed, and 100+ other features/

variables. The decision trees automatically selected the decision variables/features as 

shown in Figure 35. The automatic variables/features selection is one of the advantages of 

decision trees. 

 
Figure 35. CART Model Results 

A second workflow was created in Orange to test the model design concept. Figure 

36 displays the workflow used for the supervised learning model. The workflow includes 

random forest, neural network, logistic regression, and kNN models. Multiple supervised 

models were selected for this workflow to decide on the best model based on performance 
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measures. The workflow provides the option to run the models in several different 

configurations. For this stage, the models were run using 10 folds cross validation, test on 

train data, and test on test data configurations. It is customary for a dataset to be split into 

three portions, a training set, a validation set, and a test set. Running cross-validation with 

10 folds eliminates the need for a validation set in the development and testing of the 

model. For the test on train set configuration, Orange sets the spilt ratio for the training and 

test sets. The test and score widget along with the lift curve and the confusion matrix 

widgets captured the performance metrics of the models. The scatter plot widget displays 

the characteristics of the output data. 

 
Figure 36. Supervised Learning Orange Workflow 
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3. Model Performance 

After loading the dataset and running the workflow, the results were examined to 

determine the best model. Burkov (2019, 54) suggests that confusion matrix, accuracy, 

cost-sensitive accuracy, precision/recall, and the area under the receiver operating 

characteristic (ROC) curve (AUC) are “the most widely used metrics and tools to assess 

the classification model.” Figure 37 shows the performance metrics of each model from 

testing on the training dataset. All models performed admirably on the training data. The 

AUC measures the area underneath the entire ROC curve from (0,0) to (1,1) and just as 

integral calculus, the AUC measures the area under a curve. A ROC curve is a graph that 

shows the performance of a classification model at all classification thresholds (Google 

Developers n.d.). The ROC curve represents the true positive rate (TPR) and the false 

positive rate (FPR) parameters. 

 
Figure 37. Model Performance Test and Scores on Training Data 

Cross validation was used displayed similarly efficient results as on the training 

data with the random forest model having the best overall scores. The fact that random 

forest had the best result is in keeping with the instructions from the OS4106 Advanced 

Data Analysis lecture notes where it was reported that “random forests are very easy to 
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train and tend to work very well in many situations” (Michael Atkinson, lecture notes, May 

26, 2021). Because of the ease of use and benefits of random forest, the model should be 

one of the first go-to models according to the lecture notes. The results shown in Figure 38 

represent the scores from the models running the test set. Naïve Bayes, as in the training 

set results, shows the lowest ratings of the models. The other three models once again 

performed at close to 100% with the logistic regression model topping the list. 

 
Figure 38. Model Performance Scores on Test Data 

Elaboration of the performance measures applied to the models are presented here. 

Precision is represented mathematically as “the ratio of correct positive predictions on the 

overall number of positive predictions” (Burkov 2019, 55):  

𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

, 

According to Burkov (2019, 55), recall captures “the ratio of correct positive 

predictions to the overall number of positive examples in the dataset.” 

𝑝𝑝𝑒𝑒𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

, 
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Classification accuracy (CA) “is the ratio of the number of correct predictions to 

the total number of input samples” (Mishra 2018). In some instances, the CA value is 

represented by accuracy. Burkov (2019, 56) states that “accuracy is a useful metric when 

errors in predicting all classes are equally important.”  

𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑝𝑝𝑦𝑦 =  
𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝐸𝐸 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐸𝐸 + 𝐹𝐹𝑇𝑇
, 

The F1 score ranges between 0 and 1 and is seen as a measure of the precision of 

the classifier. Mishra (2018) defines the F1 score as “the harmonic mean between precision 

and recall.” A confusion matrix is another metric used calculate precision and recall. 

Examining the test and score results from the Test and Score widget, all models had similar 

overall scores. The overall scores from the supervised learning models demonstrate that 

both ML tools can be applied to the dataset from the engineered system to effectively used 

to detect the spoofing threat on the DAGR. 
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V. CONCLUSIONS 

The research documented in this thesis explored the use of machine learning to 

detect GPS spoofing attempts. The thesis developed an experimental methodology to 

analyze the utility of machine learning methods to this problem and conducted a set of 

experiments to demonstrate the utility of this approach. The thesis used a prototype military 

GPS system and created hybrid livestream/simulated GPS datasets for training and 

experimentation. The thesis concluded that both unsupervised and supervised machine 

learning methods show applicability for detecting spoofing attempts in military GPS 

systems. The thesis recommends further research and development with the intent to lead 

to an operational solution to address this critically important threat. 

A. THE UTILITY OF MACHINE LEARNING FOR DETECTING GPS 
SPOOFING ATTEMPTS 

Throughout Chapters III and IV we demonstrated that ML algorithms can be used 

to effectively detect GPS spoofing on the DAGR. In evaluating the ML tools, we applied 

concepts from both the unsupervised learning and the supervised learning arenas. For the 

unsupervised learning concepts several clustering algorithms were applied to the dataset 

with the goal of identifying and classifying the spoofing activities. Distance parameters 

were used as one measure in the initial stages of using clustering schemas. The relationship 

between EPE and GPS time was one of the predictors from the dataset that demonstrated 

the result of the ML tools. The grouping of the data formed by the clusters provided a clear 

demarcation between the normal data from the live sky feed and the spoofing data 

generated from the GSG-62 GNSS simulator. The clusters provided visual evidence of the 

effectiveness of the ML tools.  

The unsupervised methods applied to the dataset revealed the characteristics of the 

data while clearly showing the effects of the application of the spoofing signal. The clusters 

were identified and verified with the timeline of active spoofing. The study identified 

peculiarities and previously unidentified correlations within the data parameters that 

proved enlightening to the study. Applying data reduction methods such as PCA revealed 
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that even with upwards of 100 predictors in the dataset, approximately 94% of the data can 

be represented by the first principal component. This points to a dataset that is highly 

correlated as evidenced by the Pearson correlations captured throughout the study.  

The next level of the evaluation applied methods and tools from the supervised 

learning ML arena. As the dataset generated from the engineered system did not include a 

labeled parameter to capture the spoofing threat, we applied data mining tools combined 

with requirements from the NMEA 0183 and ICD-153 standards to define spoofing. The 

supervised learning tools were then applied to the new dataset to train and test the newly 

developed models. The effectiveness of supervised learning models was evaluated using a 

suite of performance measures that are generally applied to ML, data science, and statistics 

problems. The training of the models presented excellent results with perfect recall and 

precision for all models. Recall is an important metric used in assessing the effectives of a 

tool in the detection of malicious activity such as spoofing attempts on the DAGR. Lecture 

notes from the CS4315 Introduction to Machine Learning class, state that,  

• In detecting malicious behavior on a digital system, recall is more 
important than precision. 

• You don’t want to miss attacks, and you are willing to accept a lot of 
false positives. (Neil Rowe, lecture notes, July 21, 2021) 

The approach to this problem offered an opportunity to apply tools from both 

unsupervised learning and supervised learning algorithms to identify the spoofing threat 

during the application of the interference on the system.  

B. AN EXPERIMENTAL METHODOLOGY FOR ANALYZING MACHINE 
LEARNING METHODS FOR GPS SPOOFING DETECTION 

To begin the experiment of spoofing detection, it was imperative that an engineered 

system be developed to create a prototype to simulate a representative operational system. 

The design criteria of the engineered system included functional and operational 

requirements. The input to the system comprised live sky GPS traffic and spoofing signal 

traffic emanating from a GNSS simulator. This concept resulted in the development of a 

hybrid live-stream/simulated data sets to both train and experiment with the prototype GPS 

model. The results of the data analysis and model development revealed that the engineered 
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system can indeed be spoofed effectively. The application of a spoofing signal successfully 

moved the target, placing the user in a different location. The spoofing method used in this 

study is described as overt spoofing in the publications. A feature of overt spoofing is the 

jam-then-spoof strategy. This strategy is described as one where “the counterfeit GPS 

signals are simply broadcast at a significantly higher power level than the authentic satellite 

signals.” Chapman (2017, 1). Evidence of overt spoofing was identified as reported by the 

GPGSA message. The reduced number of active satellites in the solution were some of the 

first indicators of the impact of application of the spoofing signal on our system. While the 

number of visible SVs and number of healthy SVs recorded in message ID 5040 did not 

change from a normal operational scenario to a spoofing scenario, the number of active 

satellites reported in the GPGSA message were reduced. The equivalent DOP measures in 

the GPGSA messages correspondingly increased to values higher than the normal 

operating range. Overt spoofing methods were also described by (Kerns, et al. 2014), where 

the point was made that the adversary is not interested in being inconspicuous; their 

singular goal is to overpower the target. 

The requirements for the engineered system were tailored to both the operational 

and functional contexts of the experiment. For this study, the Orolia GSG-62 Multiband 

GNSS simulator was used to generate GPS spoofing signals by applying FDI onto the 

engineered system. Once again following a scaled version of the systems engineering 

construct, the results of the system would undergo test and evaluation. The test and 

evaluation (T&E) process is employed to verify the requirements of the system. Validation 

and verification are two steps used in systems engineering to assess the T&E phase of the 

systems engineering process. The AcqNotes portal describes verification as “a quality 

control process that determines if a system meets its system-level requirements” (AcqNotes 

2021). System verification methods are customarily listed as inspection, test, analysis, and 

demonstration. Demonstration and test were the verification testing methods used in the 

verification of the engineered system requirements.  

The results of requirements verification include:  

• The system operated as a software application as discussed throughout the 

report. 
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• The system received NMEA 0183 navigation messages. 

• The system received ICD 153 navigation messages. 

• The system received GPS synchronization timing information. 

• The system received live sky GPS input signals through the antenna port. 

• The system identified spoofing attacks using AI methods. 

• The system accepted navigation input from the user through the spoofing 

scenarios. 

• The system operated in accordance with USMC CONOPS.  

The results of the data analysis and model development revealed that the engineered 

system can indeed be spoofed effectively. The application of a spoofing signal successfully 

moved the target, placing the user in a different location. The spoofing method used in this 

study is described as overt spoofing in various publications. A feature of overt spoofing is 

the jam-then-spoof strategy. This strategy is described as one where “the counterfeit GPS 

signals are simply broadcast at a significantly higher power level than the authentic satellite 

signals” Chapman (2017, 1). Evidence of overt spoofing was identified as reported by the 

GPGSA message. The reduced number of active satellites in the solution were some of the 

earliest indicators of the impact of application of the spoofing signal on our system. While 

the number of visible SVs and number of healthy SVs recorded in message ID 5040 did 

not change from a normal scenario to a spoofing scenario, the number of active satellites 

reported in the GPGSA message were reduced. The corresponding DOP measures in the 

GPGSA messages similarly increased to values higher than the normal operating range. 

Overt spoofing methods were also described by Kerns et al. (2014), where the point was 

made that the adversary is not interested in being inconspicuous; their singular goal is to 

overpower the target. 

The unsupervised methods applied to the dataset revealed the characteristics of the 

data while clearly showing the effects of the application of the spoofing signal. The clusters 

were identified and verified with the timeline of active spoofing. The study identified 
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peculiarities and previously unidentified correlations within the data parameters that 

proved enlightening to the study. The decision to create a labeled dataset for supervised 

learning model has proven to be an effective strategy as evidenced by the results of the 

application of the training data. The supervised learning model was created and verified 

using CART in RStudio and further evaluated by the supervised models in Orange. As 

shown in this study, given the appropriate tools and access, an adversary can effectively 

spoof a military GPS device. The tools developed and demonstrated throughout this thesis 

show that we can use AI methods to detect spoofing attacks on the military GPS 

infrastructure. 

C. FUTURE WORK 

The study and results presented in this thesis are but a first step in the creation of 

an operational spoofing detection system. Additional research should be conducted to 

advance the methods used herein. The engineered system used in this study applied the 

theories described as simplistic spoofing and overt spoofing. As the names imply, there are 

additional levels of sophistication that can be used to apply to the spoofing threat. More 

research and development (R&D) is needed to move the study forward. Future work should 

attempt to further study the impact of more sophisticated measures on the GPS 

infrastructure. 

1. Training and Testing Dataset 

The datasets used in this study were generated from one operational scenario and 

three separate spoofing scenarios created and executed from the GSG-62 GNSS simulator. 

Each of the spoofing scenarios were executed for a period of a few hours with each scenario 

representing a different spoofing operation. Having this limited dataset impeded the 

development of adequate repository of training and testing data. Having access to a larger 

repository of training data representing multiple spoofing scenarios would offer a more 

comprehensive training dataset. The rate of change of the parameters within the dataset is 

a valuable indicator of anomalous activities. Exploration of the impact of the first and 

second derivatives should be undertaken as part of the dataset used in training and testing 
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as they usually provide valuable insight for anomaly detection. Future work should also 

study the impact of more sophisticated measures on the GPS infrastructure. 

2. Tuning Model Parameters 

The algorithm exploration for this study used RStudio. Using the RStudio toolset 

allowed us to experiment with individual parameters of the dataset and the options 

available in the application. Orange does not offer the same level of flexibility as most 

parameters are set “under the hood.” Further exploration of the capabilities of RStudio 

along with tools from providers such as TensorFlow, MATLAB, and Python would allow 

for customizing the model for spoofing detection. Tuning of the hyperparameters would 

also allow for better utility of the spoofing detection applied to the problem space.  

3. Testing on Keyed Systems 

Some of the vulnerabilities seen in this study can be addressed by applying keys to 

the GPS device used in the study. Can an adversary spoof a keyed system? The limited 

capability of the GNSS simulator used in the study prevented the testing of the methods on 

an encrypted system. Future work should include the exploration of means to test the 

algorithms developed in this study on an encrypted DAGR or a Military GPS User 

Equipment (MGUE) system. 

4. Creating Software Application 

The usefulness of this study will ultimately be determined by the application of the 

spoofing detection system in an operational environment. The engineered system used in 

this study used a combination of CTS-153 software, a LabVIEW program, and visually 

monitoring the DAGR to detect evidence of spoofing activities. Development of a user 

interface that can be installed in an operations center is critical for practical use. The user 

interface would allow the user to receive auditory and visual cues alerting the user to the 

detection of anomalous activity. The spoofing detection was developed as a supplement to 

the human element. 
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