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A PROCESS TO DIGITALLY MAP HELICOPTER MAIN ROTOR 
BLADES IN SUPPORT OF CONDITION BASED ACQUISITION 

AND SUSTAINMENT ACTIVITY 

ABSTRACT 

The Black Hawk utility helicopter is a valuable warfighting asset in the Army 

aviation fleet. The helicopter also has a substantial sustainment and maintenance cost. 

One particular subsystem of the helicopter is the main rotor blade, which is a critical 

component for flight and has a substantial procurement and sustainment cost. For the 

purpose of this research, we examine current main rotor blade inspection methods, 

investigate advanced inspection technologies, and produce a concept of integration. 

Digital imaging is also introduced to show how an automated method for inspection 

produces a return on investment that is worth exploring. The recommendations of using 

new technologies for the Black Hawk main rotor blades has the potential to not only 

prevent unnecessary overhaul and repair costs of a rotor blade but also to reduce the 

schedule associated with sustainment and the logistics footprint. Overall, the 

recommendations shown in this research offer the Army an opportunity to modernize 

sustainment practices and reduce maintenance burdens. These same recommended 

improvements are not limited to the Black Hawk fleet but may be considered for 

application across the Army sustainment enterprise to increase materiel reliability and 

improve warfighting capabilities. 
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EXECUTIVE SUMMARY 

As Department of Defense and Army directives push for modernization of defense 

systems and increased reliability of weapon systems, it is imperative that critical 

warfighting systems and components are adequately inspected and examined in order to 

meet all directives. The Black Hawk helicopter main rotor blade is one of those critical 

components within the Army fleet of aircraft. Due to the stresses induced to provide lift to 

an aircraft, the rotor blade is designed as a complex composite system that contains 

multiple layers of material. This report breaks down the examination and research 

conducted on current sustainment activities into the following sections: background, 

research methodology, results, and closeout. A brief summary of each section is provided 

below. 

The background section of this report identifies the overall processes that occur 

during the sustainment phase of the Black Hawk main rotor blade life cycle in response to 

Army directives with the intent to maintain an operationally capable fleet. The details of 

the background section cover several aspects ranging from time change requirements for 

overhauls to reporting methods, aviation messages, and enduring and present concerns 

plaguing Black Hawk rotor blades. This section is intended to provide a baseline 

understanding of the requirements driving the activities conducted to ensure a main rotor 

blade is reliable and mission ready. This section concludes with the identification of 

concerns that are noted within the Black Hawk community via aviation messages. These 

aviation messages are generated in order to direct the Black Hawk community to address 

suspect or confirmed rotor blade issues. Thus, the current methods of ensuring rotor blade 

reliability such as inspections, repairs, or overhauls are less than efficient in meeting the 

needs of the warfighter. 

Following the background section, the research methodology section examines the 

activities occurring within the sustainment processes to meet the quality and reliability 

requirements of Army directives for aircraft components. Current inspection processes are 

identified in this section along with non-destructive inspection methods. Current test 
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methods can be aged in decades instead of years and can be very subjective or non-

conclusive.  

Newer inspection technologies examined are shearography and thermography. 

Both of these technologies are similar such that they are capable of providing digital 

imaging of composite structures, so defects can be easily identified at a very small level. 

The combined hardware and software used in shearography and thermography is capable 

of developing digital images, or digital maps, of components, which can be valuable tools 

for detecting potential failures of a critical flight component. Current and past industry uses 

of these technologies are provided as examples to show the potential for improved 

inspection methods to be introduced into the Black Hawk rotor blade inspection processes. 

The investigation into new inspection technologies leads this report into the results section 

to investigate the potential for improving sustainment operations of Black Hawk main rotor 

blades with improved technology. 

The results section of this document outlines a description of comparative image 

processing along with an abstract on how digital images are computationally compared. 

Since shearography and thermography result in improved data analytic tools and can 

provide digital maps of a composite structure, they are ideal candidates for proposing a 

concept of induction into the inspection process of the main rotor blade. Examples of 

potential improvements are captured in the results section of this document, which present 

the opportunity for substantial cost and time savings coupled with the chance to prevent 

failures with early detection of defects. In addition to the proposed integration of a new 

inspection method, the current process map is identified in a flow diagram that shows how 

many times a person is required to make a decision on the reliability of a rotor blade. The 

intent of this diagram is to show how many times human error can affect the decision matrix 

of a main rotor blade. 

In summation, the research and information gathered lead to the recommendations 

of adopting new inspection technologies to create baseline digital images of each rotor 

blade, digital image histories, and computer-aided systems for analyzing component maps. 

These suggestions would standardize the data collection methods and evaluate deviation in 

the digital repository while minimizing human subjectivity. Digital component mapping, 
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computerized analysis, and integrated data repository would put the U.S. Army on course 

toward full digital integration and directed modernization efforts. 
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I. INTRODUCTION 

A. PURPOSE 

The U.S. Army faces a monumental task of maintaining the reliability of equipment 

to support combat readiness. The 21st century adversaries are far more advanced and pose 

even more of a threat than the 20th century Cold-War era. We have witnessed their 

capability through cyber, proxy wars, and regional alliances by way of aid. 

Advanced manufacturing methods and materials, fused with digital engineering, in 

theory results in a revolution of how the Army designs, delivers, produces, and sustains, 

and improves materiel capability. As mentioned in the above statement, it will provide the 

Army a means to modernize weapons systems and maintain technological advantage over 

adversaries. 

According to a 2019 Army directive titled Enabling Readiness and Modernization 

Through Advanced Manufacturing,  

Advanced manufacturing refers to activities that depend on the use and 
coordination of information, automation, computation, software, sensing 
and networking, and/or make use of cutting-edge materials and emerging 
capabilities enabled by the physical and biological sciences. It encompasses 
new ways to manufacture existing products and the manufacturing of new 
products resulting from advances in technology. (Department of the Army 
[DA], 2019a, p. 1)  

The memo also notates some common advanced manufacturing methods and 

materials that “includes, but is not limited to, additive manufacturing (also known as three-

dimensional [3D] printing), artificial intelligence, robotics, and advanced composite 

materials” (DA, 2019a, p. 1). In general, the intention of the memo is to point out that the 

fusion of traditional manufacturing processes with modern manufacturing methods and 

materials creates a disruptive opportunity that will improve the way the Army develops, 

produces, and continues materiel capabilities. 

There are key areas that advanced manufacturing, along with digital enterprise 

systems, improve. A few of those areas are: 
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• innovation 

• modernization 

• performance 

• reliability 

• sustainment 

• obsolescence 

Modern equipment requires expediency to meet combat readiness, but it also must 

outperform and extend system reliability. These advanced methods will decrease time-to-

market, ensuring warfighters obtain critical capabilities as needed. Reduction on the 

Army’s logistics footprint can also be achieved through minimizing risk of obsolete parts 

and diminishing supply. 

The overall objective will require organizations across the Army to adopt advanced 

manufacturing techniques. The 2019 Army directive identifies these organizations to 

include “requirements, research and development, acquisition, sustainment, and 

contracting activities” to provide superior capabilities and overmatching our near-peer 

adversaries (DA, 2019a, p. 2). 

This report will focus on a critical component of the Army’s Black Hawk 

helicopter. It will also detail the current life cycle processes to better understand whether 

the Army is able to adjust to meet these demands to stay ahead. The recommendations set 

forth, in the conclusion, will address inefficiencies that are detailed within this research. 

This research shall evaluate the Black Hawk main rotor blade (MRB) quality 

control mechanisms, some manufacturing and sustainment processes, reported component 

deficiencies and enterprise efforts to mitigate identified risks. Figure 1 is an adapted image 

from an Army Technical Manual that shows an overall outline of the UH-60 Black Hawk 

aircraft. Figure 2 is an extract from an automated logistics critical item database called 

reliability improvement thru failure identification and reporting (RIMFIRE), which shows 
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a Black Hawk rotor blade. This document will articulate the benefits of digitally mapping 

MRBs throughout the component life cycle and the associated inspection technologies that 

could support digital mapping. The following are the research questions: 

• Could digitally mapping MRBs provide a decision-making template to 

assist in evaluating component integrity to design specification? 

• Are the benefits of digitally mapping MRBs throughout the component 

life cycle quantifiable? 

• Do past and present MRB inspection methods and component 

documentation procedures still provide the best sustainment for the Army 

as we advance further into a growing digital environment and prepare for 

future conflicts? 

 
Figure 1. UH-60 Black Hawk Main Rotor Blades. Adapted from U.S. Army 

Technical Manual TM 1-1520-237-10 (1996). 
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Figure 2. Black Hawk MRB. Source: RIMFIRE (2018). 

B. TERMINOLOGY 

Digital mapping refers to the practice of gaining a present condition depiction of a 

component to identify suspect flaws in material or to enable a digital comparison. For the 

purpose of this research, the terms digital map and digital image will be used 

interchangeably. Some new technologies will be explored in order to evaluate the 

feasibility in application for a Black Hawk MRB. Every alternative will have inherited 

weakness either through scan time, floor space, resourcing, and/or costs. Some new 

technologies that offer some promising improvements will be identified and analyzed 

through this research. 

C. SCOPE OF CONCERNS 

The main rotor system and its dynamic components are a most vital part of any 

helicopter. Helicopter main rotor systems rely on rotary wings and complex control 

systems to generate sufficient aerodynamic force to achieve flight. A helicopter rotary wing 

is most often referred to as a MRB. The MRB is a key component of the helicopter main 

rotor system. 
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The main rotor blades on a helicopter may be compared to tires on a car, each are 

subject to many factors that affect their longevity of use. Similar to periodic tire servicing; 

MRBs require routine inspections, repair or replacement when necessary, and proper 

sustainment planning to schedule necessary resourcing. Tire failures often result in 

automobiles easing to the shoulder of the road; unfortunately, when a MRB of an aircraft 

fails the effects can be catastrophic—particularly if the aircraft is in a critical mode of flight 

or thousands of feet above ground. Early fault detection is critical to safe operation and 

prolonged component life. Environmental conditions coupled with the dynamic forces 

required for flight place variable stresses on a MRB. Additional factors impacting MRB 

sustainment fall into the following categories: 

1. Performance 

When it comes to helicopters, engines alone do not determine how well the aircraft 

performs. Rather, it comes down to how well the rotor blades handle power input and the 

amount of aerodynamic force required to produce lift and thrust. Aircraft weight, airspeed, 

and density altitude are three major environmental factors influencing MRB performance. 

Figure 3 is an example of a height velocity (H/V) diagram. The risk of unfavorable 

outcomes increases during loss of lift events when a helicopter remains for prolonged 

periods within the avoid region depicted on the performance chart. The engines and rotor 

system may not be capable of overcoming the effects of gravity and adverse environmental 

conditions should a loss of MRB lift occur. 

Helicopters operate routinely within the avoid area of the performance chart. 

Varieties of missions require such operation; routine observance of transient controlled 

flight occurs during takeoff, landing, and hovering events. Optimal MRB design with 

reliable and uncompromised material integrity help ensure adequately driven rotor systems 

perform safely through their intended flight regimes. 
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Figure 3. Sample Height/Velocity Diagram. Source: Flight Literacy, 

https://flightliteracy.com/helicopter-performance-charts-part-one/, n.d.). 

2. Product Assurance 

MRBs are subjected to reliability, availability, and maintainability (RAM) policy 

set forth from the Department of the Army, Army Regulation (AR) 702-19. The regulation 

identifies requirements for RAM associated with combat or mission essential items for 

military use. More specifically, AR 702-19 states: 

This regulation sets forth policies for planning and managing Army materiel 
systems’ reliability, availability, and maintainability (RAM) during 
development, procurement, deployment, and sustainment. It applies to all 
combat or mission essential developmental, non-developmental, 
commercial items adapted for military use, and product improved hardware 
and software systems. Materiel systems also include, but are not limited to, 
stand-alone or embedded automatic data processing equipment hardware 
and software; support and ancillary equipment comprising the total materiel 
system; and multi-Service materiel systems when the Army is lead Service. 
(p. 1) 

https://flightliteracy.com/%E2%80%8Bhelicopter-performance-charts-part-one/
https://flightliteracy.com/%E2%80%8Bhelicopter-performance-charts-part-one/
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Black Hawk MRBs are costly, critical safety item components and inherently fall 

within the oversight boundaries of RAM policy. The aviation program executive office is 

responsible for ensuring RAM analysis occurs throughout the MRB life cycle. RAM 

analysis provides information to evaluate product assurance by identifying trends in 

sustainment activities including type of component repairs, rates of replacement and 

component failure reports—helping formally address operational trends and mitigate 

above baseline risk. 

3. Obsolescence 

According to a 2017 Department of Defense (DOD) acquisition note regarding 

obsolescence, it is observed as the “lack of availability of an item or raw material resulting 

from statutory and process changes, as well as new designs. Obsolescence deals with the 

process or condition by which a piece of equipment becomes no longer useful, or a form 

and function no longer is currently available for production or repair. Implementation of 

new technology causes older technology to become less supportable because of the 

diminished availability of parts and suppliers” (AcqNotes, 2017). 

As the Black Hawk enduring fleet ages, so does the supply chain and the 

manufacturing that goes with it. Adequate inventory must be purchased to ensure the Army 

has an ample supply of MRBs to mitigate obsolescence concerns. No matter if the United 

States is at peace or actively involved in war, the reliability of supply is a necessity during 

the procurement process. 

4. Innovation 

Innovation can be characterized as a new idea or method. When it comes to 

helicopter blades, it could mean a new design that improves cost, reliability, or 

performance. However, innovation is not limited to brand new designs. Innovation can be 

seen as new methods of production, revised processes, or inspection methods. In this 

document, innovation will be approached from the perspective of improving sustainment 

activities by means of inspection. Using a new innovative approach for MRB inspections, 

opportunities for cost savings, time savings, and improved inventory reliability will be 

explored to identify a return on investment (ROI). 
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5. Army Modernization 

The 2019 Army Modernization Strategy prescribes how the future Army will shape 

out in 2035. This document outlines a path forward for the Army to transition into the 

Army of tomorrow. One particular section of the modernization strategy specifically 

addresses the overarching goal of Army aircraft and component improvement such as 

“platforms and technologies increase the maneuverability, endurance, lethality, and 

survivability of Army aircraft—increasing their operational reach and effectiveness against 

near-peer competitors” (DA, 2019a, p. 6). As the Department of Army looks to capitalize 

on modernizing existing products and processes, it only makes sense to examine the 

numerous, relatively expensive and critical main rotor blades used on the Black Hawk 

helicopter. 

D. PAST, PRESENT, AND FUTURE 

MRBs supporting current Army aviation aircraft for combat readiness went through 

decades of research and development. Many of the methods and processes of ensuring 

reliability and performance of Black Hawk MRBs date back to the original introduction of 

the helicopter in the late 1970s and early 1980s. It becomes more apparent each year that 

established methods of inspection are becoming outdated, and some of the inspections may 

be improved utilizing new technologies. As will be examined in this research, current 

sustainment costs associated with maintaining a mission ready supply inventory of MRBs 

is becoming increasingly more cost prohibitive. As directed through Department of Army 

memos and guidance, opportunities to take advantage of technologies to improve readiness 

and modernize our nation’s defenses should be evaluated. The question must be asked, do 

past and present MRB inspection methods and component documentation procedures still 

provide the best sustainment for the Army as we advance further into a growing digital 

environment and prepare for future conflicts? 

The following chapter will provide a brief background of the Black Hawk MRB 

and provide a summary of data collection tools used to analyze fleet readiness. Chapter III 

will outline the research methodology that was taken to identify existing areas where 

improvements could be made. Also included are some overall values associated with MRB 
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readiness, current inspection methods, and possible technologies that could be 

implemented to enhance inspections. Chapter IV will be used to analyze the results of the 

research conducted on MRB sustainment improvements and the level of impact that could 

be seen. Digital mapping resulting from the implementation of newer technologies and the 

associated advancements in efficiencies will also be examined in the same chapter.  

Chapter V presents conclusions of findings and final recommendations for consideration. 
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II. MRB BACKGROUND 

As mentioned earlier, the MRBs are a vital component of the helicopter. Modern-

day MRBs are no longer made from wood. Modern helicopter rotor blades are made of a 

mixture of materials. Titanium, carbon fiber, fiber glass, and stainless steel can all be found 

in the vast array of main rotor blades designs. Some designs are simple, and some are 

highly complex (James, 2021). 

The U.S. Army Black Hawk fleet utilize two different MRB designs. The H-60A/

L/V series aircraft utilize a variation of the original MRB delivered on the first Black Hawk, 

minor design changes included improvements in the blade cuff and tip cap regions of the 

assembly intended to increase durability. The H-60M series utilize an improved wide chord 

MRB design adapted from a commercial helicopter—providing greater lift and noise 

reduction. Our analysis will highlight sustainment challenges with the original MRB and 

how like challenges remain a concern in ongoing MRB sustainment efforts. 

The evolution of material continues as the demands on helicopter vertical lift 

capability increases. The Army’s future vertical lift (FVL) is an ambitious program 

modernizing the Army’s aging aviation fleet. This program is identified in the Army’s top 

six modernization priorities. The seven tenants of FVL are: 

• improved maneuverability 

• improved range 

• improved speed 

• improved payload 

• improved survivability 

• improved reliability 

• reducing logistical footprint 
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No matter the vertical lift platform we are looking at, from future long-range assault 

aircraft (FLRAA) to future attack and reconnaissance aircraft (FARA), or the present 

enduring fleet, the MRB is key to supporting Army priorities. As FVL ramps up in 

development, we still need to ensure that our current platforms remain readily available 

and capable of withstanding harsh combat conditions. (Congressional Research Service, 

2021) Thus, analysis of the Black Hawk MRB is where this research focuses.  

As the Black Hawk MRB transitions through its acquisition life cycle, it has been 

subjected to various sustainment processes. The five major events that impact the usability 

of the MRB throughout its life cycle are: time change/retirement change, failure mode 

effects and criticality analysis, quality assurance (QA), product quality deficiency reports, 

and aviation messages. Each of these events are employed to mitigate or identify defects 

with the MRB itself. Below are the processes impacting a typical MRB as it transitions 

through its life cycle. 

A. TIME CHANGE / RETIREMENT CHANGE (TC/RC) 

According to a Department of the Army pamphlet 738-751, time change (TC) is 

referred to as “an item that has a fixed operating time between overhauls based on safety 

margin or design limitations. The item must be replaced with a new or fully serviced item 

after the specified time” (DA, 2014b, p. 180). Once an MRB reaches its TC, it will then be 

overhauled at a depot level facility to be returned to service later. 

In order to identify the maximum allowable operating time (MAOT) of an aircraft 

component, Army pamphlet 738-751 describes retirement change (RC) as “an item that 

has been assigned a safe maximum allowable operating time since new, that the item can 

safely be operated before it must be removed from service, mutilated, and lost out of Army 

inventory. This item can be repaired prior to reaching its MAOT, normally RC items will 

not be overhauled, and must be removed from service when it reaches its MAOT” (DA, 

2014b, p. 179). 
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B. FAILURE MODE EFFECTS AND CRITICALITY ANALYSIS (FMECA) 

According to TM 5-698-4: “The FMECA is composed of two separate analyses: 

the failure mode and effects analysis (FMEA) and the criticality analysis (CA). The FMEA 

analyzes different failure modes and their effects on the system as a whole while the CA 

classifies, or prioritizes, their level of importance based on failure rate and severity of the 

effect of failure. The ranking process of the CA can be accomplished by utilizing existing 

failure data or by a subjective ranking procedure conducted by a team of people with an 

understanding of the system” (DA, 2006, p. 4-1). 

A company titled Quality-One International lists on their website that “FMECA is 

a bottom-up (hardware) or top-down (functional) approach to risk assessment. It is 

inductive, or data-driven, linking elements of a failure chain as follows: effect of failure, 

failure mode and causes/mechanisms” (Quality-One International, n.d.). It also says: 

The effect of failure duplicates the experience of a user/customer and is then 
translated into the technical failure description or failure mode. The 
technical failure description answers the question “why,” introducing 
causes that result in the failure mode. Each failure mode has a probability 
assigned and each cause has a failure rate assigned. If data is not available, 
probability of occurrence is assigned. The probability depends on the failure 
data source documents utilized in the FMECA. The FMECA is performed 
prior to any failure occurring. FMECA analyzes risk, which is measured by 
criticality (the combination of severity and probability), to act and thus 
provide an opportunity to reduce the possibility of failure. (Quality-One 
International, n.d.) 

For application to the Black Hawk MRB, the FMECA process is typically 

conducted in the bottom-up approach. The FMECA analysis is based on test results and 

the identified failures of a blade. The MRB cuff and spar assembly are the most critical 

interfaces for MRB integrity. The tip cap and skin bond are secondary but are also critical 

components that can have a major impact on MRB integrity. 

It is useful to note that another complimentary method of addressing and mitigating 

reliability and maintainability issues throughout the entire life cycle of an aviation 

component is to use a failure reporting, analysis, and corrective action system (FRACAS). 

The FRACAS was identified as an acquisition requirement in the September 1980 military 
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standard 785 with the later military handbook 2155 detailing the uniform requirements of 

a FRACAS. Per military handbook 2155 the FRACAS and FMECA are complimentary, 

yet independent, tools that generate a synergistic effect when they are combined (DOD, 

1995, p. 7). The same handbook differentiates the two efforts by identifying FMECA as an 

“analytically derived identification of the conceivable hardware failure modes of an item 

and the potential adverse effects of those modes on the system and mission. The FMECA’s 

primary purpose is to influence the system and item design to either eliminate or minimize 

the occurrences of a hardware failure or the consequences of the failure. The FRACAS 

represents a ‘real world’ experience of actual failures and their consequences” (DOD, 

1995, p. 7). 

C. QUALITY ASSURANCE  

The federal acquisition regulation section 46.202-2 identifies the requirements for 

quality assurance that are leveraged on prime contractors. The original equipment 

manufacturer (OEM) and associated vendors are responsible for quality assurance of 

materiel delivered to the United States government. Defense contracting management 

agency (DCMA) representatives perform surveillance checks during the manufacturing 

process to ensure configuration compliance with source control documents. (Federal 

Acquisition Regulation [FAR], 2019) After the MRBs are deemed acceptable by the 

DCMA, a transfer of hardware can be attained from the manufacturer to government 

inventory through the DD250 process. 

Once the Black Hawk MRBs have transitioned into Army inventory from the OEM, 

they are subject to Army quality standards prescribed in AR 702-11 Army Quality 

Program. To aid with quality standards, the Army developed a software tool/database 

known as the Army maintenance management system (TAMMS). The DA PAM 750-8, 

The Army Maintenance Management System (TAMMS) User’s Manual states: 

The purpose of the Army Maintenance Management System (TAMMS) is 
to assist commanders at all levels in managing equipment use and 
operations, equipment maintenance, and repair operations and to maintain 
equipment to the Army standard as outlined in Army Regulation (AR) 750–
1. It also provides the foundation for materiel condition status reporting 
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(MCSR) as outlined in AR 700-138 and controlling equipment as outlined 
in AR 600-55. 

TAMMS is a comprehensive management information system, consisting 
of automated information components and records, manually maintained 
components and records, and a central Army database at Logistics Support 
Activity (LOGSA). This central database is the Maintenance Module of the 
Logistics Integrated Database and is used by all Army commands. 

TAMMS uses a set of time-proven maintenance processes, engineering 
practices, and industry standards. The TAMMS process and maintenance 
records enable commanders to manage equipment readiness, availability, 
and durability, based on the level of resources provided by higher command. 
Resources include the application of time, trained personnel, tools, test 
equipment, and funds. (DA, 2005, p. 1) 

While TAMMS is used at both field and sustainment level maintenance activities, 

RIMFIRE is a sustainment level decision support system database, detailing component 

condition upon initial inspection for repair, overhaul and rebuild. RIMFIRE provides 

critical component information to material developers and item managers performing 

national inventory control point sustainment activities. 

As this document evaluates new technologies as additive or replacement inspection 

methods for Black Hawk MRBs, it is assumed that the existing RIMFIRE database will be 

matured to utilize digital data gathered during the application of new inspection methods. 

As demand for additional data storage increases, additional servers and/or network attached 

storage devices may be required to support a centralized digital mapping effort. The 

adaptation of digital mapping software may help achieve a timelier, automated analysis by 

comparing digitized records including component images. 

D. PRODUCT QUALITY DEFICIENCY REPORTS (PQDR) 

AR 702-7-1 states that “the Army will process all PQDRs in accordance with this 

regulation. The purpose of the PQDR program is to remove defective nonconforming and/

or dangerous items from the Army inventory; provide remediation to the unit for defective 

items; determine the root cause of the defective item to prevent its reoccurrence; and collect 

failure and nonconformance data for trend analysis to continuously improve system 

performance. The PQDR program establishes official product quality feedback channels to 
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the designated Army national inventory control point (NICP) responsible for the product 

design, procurement and distribution of items and materiel identified as defective, and 

provision of a means for correcting deficiency” (DA, 2020b, p. 1). 

For the PEO AVN, the PQDRs are a common tool used to identify deficiencies in 

the Black Hawk MRBs and monitor progression from identification through disposition. 

As this research looks at new methods for inspection, it is understood that an inspection 

may lead to the generation of a PQDR for an MRB or that a PQDR may lead to an 

inspection based on findings in the field. Either way, a new inspection technology will 

assist in remedying any suspect failures of a composite MRB. 

E. AVIATION MESSAGE SUMMARY/AVIATION MAINTENANCE 
ACTION MESSAGE (AMAM) 

Over the last decade, no fewer than 19 aviation messages have been released 

involving Black Hawk main rotor blades: 2-safety of flights (SOF), 10-aviation safety 

action messages (ASAM) and 7-AMAMs. Each of these message types are critical and 

provide alerts to appropriate stakeholders regarding aviation equipment. These messages 

also pertain to the Black Hawk MRB and require some form of action, or 

acknowledgement, once released. The below paragraphs detail the three types of safety 

messages and the impact they have. 

A United States Aviation and Missile Command news article from 2020 titled 

Safety of Flight Messages Saves Lives states,  

SOF messages are high-priority notifications pertaining to any defect or 
hazardous condition of an Army-fielded system that can cause personal 
injury, death, or damage to the system. SOF messages can restrict specific 
performance capabilities, operational limits, or require immediate 
maintenance actions for a variety of reasons that could include material 
defect conditions. Depending on the severity of the defect, the entire fleet 
or a portion of the fleet could be grounded. (Miller, 2020)  

SOF messages require an immediate response from the OEM and PEOs to address 

the findings. 

ASAMs “convey aviation or equipment maintenance, technical, or general interest 

information where a low to medium risk safety condition has been determined per AR 
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385-10 or an Army approved risk decision matrix. These messages are of a lower priority 

than a SOF” (DA, 2018, p. 4). “These messages may require accomplishment of a task or 

tasks and require report of completion or findings” (DA, 2018, p. 4). An ASAM can have 

three different categories depending on the results of investigative efforts: maintenance 

mandatory, operational, informational. When specifically associated with aviation, the 

formal tag for this message is AMAM where the MA is the generic Army message. The 

descriptions of the three versions of an ASAM are defined per AR 750-6 Maintenance and 

Supplies of Equipment - Army Equipment Safety and Maintenance Notification System as: 

Maintenance Mandatory: directs maintenance actions (MAs) and/or updates 
technical manuals and may also require compliance reporting and task/
inspection reporting. 

Operational: pertains to aircraft or equipment operation, flight or ground 
procedures, limitations, or operational policy. 

Informational: provides status and information of a maintenance, technical, 
or general nature. (DA, 2018, p. 4) 

As a subset of the ASAM, the AMAM specifically drives a maintenance 

requirement out to the PEOs and OEMs. The AMAMs “convey maintenance, sustainment, 

logistics supply, technical, operational, or general maintenance, or sustainment interest 

information that is not related to safety and will not be used to mitigate risk” (DA, 2018, 

p. 4). AR 750-6 states that the purpose of the AMAM “is to mitigate negative maintenance, 

logistics, sustainment, or maintenance operational impacts” (DA, 2018, p. 4). 

Many of the aviation messages have alerted the aviation stakeholders of issues 

regarding the MRBs and enforced modified inspection procedures or replacement intervals 

that are intended to ensure component integrity. Directed changes were implemented to 

mitigate identified risks or improve material readiness at both field and sustainment level 

maintenance activities. 

F. ENDURING/PRESENT CONCERNS 

The aviation messages referenced above address systemic production and 

environmental use concerns adversely impacting MRB safety and reliability—including 

the MRB cuff, tip cap, core bond, and weight/balance adjustments. Several of the messages 
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introduce expanded inspection methods and inspection frequencies to mitigate known 

concerns. The released messages have not resolved all identified concerns, and the fleet 

continues to struggle with sufficient nondestructive inspection methods capable of 

detecting conditions known to undermine component integrity. Undetected material faults 

may ultimately compromise component integrity as evidenced in Figure 4. 

    
Figure 4. Undetected Material Faults. Images courtesy of U.S. Army 

Program Executive Office - Aviation (2014, 2012). 

Main rotor blades continue to appear in quality assessment reports (see Figure 5) 

as a top customer complaint for good reason—failures are not only costly but result in 

significant emotional events. Changes in MRB integrity radically impact blade balance and 

flight characteristics beyond rotor system control and design limitations resulting in the 

increased risk of catastrophic loss of the entire helicopter and crew members. Component 

faults identified during field inspections routinely result in PQDR submittals, particularly 

when the component has little time since new operating hours, or low operating time since 

last overhaul/sustainment activity. 
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Figure 5. Corpus Christi Army Depot Quality Assessment Report. Source: 

Logistics Data Analysis Center (LDAC) (2021). 

The following chapter will address various aspects that are being evaluated in order 

to determine if improvements to the MRB sustainment methods can be introduced.  

Chapter III will also identify current methods of inspection that have allowed MRBs to be 

decommissioned, or dismantled and repaired, simply for means of inspecting primary 

components. The same chapter will introduce two possible technologies that can be used 

in conjunction with, or as complete replacements for, current inspections to provide non-

destructive data analysis of rotor blade integrity. 
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III. RESEARCH METHODOLOGY 

In order to provide a base understanding of the approach taken to analyze the 

current sustainment practices and provide recommended changes for the UH-60 (displayed 

in Figure 6) MRB this chapter will outline current sustainment practices and data analytic 

tools used by the Army aviation enterprise. In addition, the chapter will explore alternative 

technology options for Black Hawk MRB examinations that could provide digital mapping 

for improvement of current rotor blade inspections. To properly analyze the options 

available, present-time technologies will be evaluated to determine the possibility of 

integrating these technologies into the MRB procurement and maintenance processes. 

 
Figure 6. UH-60 “Black Hawk” Helicopter. DOD photo by Gertrud Zach 

(2013). 

There are many approaches to identifying defects in the MRBs. Regularly 

scheduled maintenance checks are conducted as preventative measures. To properly 

analyze MRBs during these maintenance checks, inspections are conducted. These 
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inspections are primarily non-intrusive to the MRB, occasionally inspections may result in 

some form of disassembly or destructive evaluation. Some inspection methods are 

subjective, while others are very definitive but difficult to conduct due to use of composite 

materials within the MRB assembly. Examining the current inspection methods seems 

straight forward; unfortunately, inspection results and analysis remain subjective and 

vulnerable to human error. Exploring new inspection methods using automated analytical 

tools may present some solutions, even if introducing additional challenges for gaining 

enterprise acceptance. MRB analysis will be primarily focused on blades used on the H-

60A/L/V versions of the aircraft. 

A. MRB CONDITION BASED MAINTENANCE 

When considering condition-based maintenance, there are two main methods used 

today to gauge the present condition of MRBs: preventative maintenance operations and 

periodic inspections. These inspection methods are detailed within the Army technical 

manual TM 1-1500-328-23. The standards outlined within the technical manual have been 

established to provide basic mandatory requirements to which all Army aeronautical 

equipment is to conform. (DA, 2014a) 

1. Preventative Maintenance Operations 

Army aviation preventative maintenance systems utilized are expressed in detail 

within Chapter II of TM 1-1500-328-23. Generally defined preventive maintenance 

operations utilize a series of inspection systems intended to evaluate component condition 

throughout the component’s life cycle. The Army has used preventative maintenance 

operations for decades to sustain most of its fielded weapon systems and major system 

components. Examples of common preventative maintenance inspections conducted on the 

Black Hawk MRB include pre-flight and thru-flight inspections completed by the aircrew 

throughout daily operational periods. The intent of these particular preventative inspections 

is to detect unacceptable component conditions affecting airworthiness that may become 

apparent after or before completion of other periodic inspections—conditions such as 

lightning strike, hail or wind or damage suffered during flyable storage and bird strikes or 

shrapnel damage occurring during flight. The pre-flight and thru-flight inspections are 
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commonly referred to as operator level inspections and are completed using operator 

checklists and general condition criteria. When a components general condition is suspect, 

or questionable, then detailed inspections are performed. 

Formal periodic inspections are more thorough and involve specified inspection 

requirements published in component and system level technical manuals. The general 

condition pre-flight and thru-flight inspections are operationally driven and work in 

conjunction with detailed periodic inspections to provide a comprehensive preventative 

maintenance environment, ensuring safe and reliable component operation. 

2. Periodic Inspections 

There are various periodic inspections to which the Black Hawk MRB is subjected. 

These periodic inspections include scheduled maintenance inspections, recurring special 

inspections, and non-recurring special inspections. While each serves the intent of meeting 

specific inspection requirements, the inspections are performed reciprocally as required to 

ensure operational integrity of all MRBs. Even though TM 1-1500-328-23 is intended to 

cover all Army aeronautical equipment, it is interesting to note that the UH-60 platform is 

the only one that utilizes the periodic/preventive maintenance service (PMS) inspection 

methods. 

Black Hawk scheduled maintenance inspections come in three standardized 

inspection intervals: preventative maintenance daily (PMD), PMS and phase maintenance 

inspection (PMI). The PMD is completed at the end of each mission day and provided the 

aircraft is not flown, remains valid for seven days; the PMS is completed every 40 aircraft 

hours; and the PMI is completed every 480 aircraft hours or 48 months, whichever occurs 

first. Each scheduled maintenance inspection utilizes a seven-section checklist to 

accomplish required inspections. Black Hawk MRB scheduled maintenance inspections 

are detailed in section 6 (main rotor pylon section) of each maintenance checklist and 

corresponding component work package. 

Recurring special inspections are individual inspections that occur at intervals that 

are not generally compatible with other scheduled preventative maintenance inspections. 

Recurring special inspections are subject to tolerance windows allowing inspection 
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accomplishment with flexibility to minimize impact on aircraft availability. Tolerance 

windows are limited to plus or minus 10% of the inspection frequency—but shall not 

exceed 5 hours or 30 days. 

For example, if an inspection with a 25-flight hour interval was due at 1550 
aircraft hours and it was completed between 1547.5 and 1552.5 hours (25 
X 10% = 2.5 hours), the next scheduled inspection would be due at 1575 
aircraft hours; or a 75 hour interval was due at 1550 aircraft hours and it 
was completed between 1545 and 1555 hours (75 X 10% = 7.5 hours not to 
exceed 5 hours) the next scheduled inspection would be due at 1625 aircraft 
hours. (DA, 2014a, p. 2-4) 

Non-recurring special inspections contain detailed special instructions for 

equipment subjected to unusual events such as lightning strike, sudden stoppage, hard 

landing, and over speed check. Aviation messages may direct special inspections to 

mitigate a variety of concerns—including safety hazards and critical sustainment activity 

impacting maintenance or system readiness. 

The integration of new technologies to perform MRB inspections and provide the 

improved data analysis is intended to be compatible with the existing preventative 

maintenance schedules. It is expected that they will support the existing maintenance 

requirements and provide valuable data collection without component disassembly and tear 

down of rotor blades in the field. 

A relatively recent and successful adoption of new technology to monitor 

component vibration levels on the Black Hawk is known as the integrated vehicle health 

management system (IVHMS). The system works in conjunction with scheduled and 

unscheduled maintenance inspections to mitigate the effects of out of tolerance vibration 

levels. The continuous monitoring capability and related data analysis assist in decision-

making to refine periodic inspections, and enable early troubleshooting of components 

prior to failure—using near real time data analysis and preset condition indicators. Data is 

collected continuously during operation and analyzed each day using off aircraft software 

applications as part of the PMD inspection process. Rotor system vibration and balance 

data is collected and relatable to each MRB. The IVHMS is providing a condition based 

maintenance opportunity to refine Black Hawk preventative maintenance inspections. 
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B. RELIABILITY AND MAINTAINABILITY 

1. MRB Inspections 

MRB detailed inspection, serviceability and repair criteria are published in work 

package format and available within each Black Hawk series technical manual utilized by 

enterprise maintenance activities. The work package format essentially breaks down an 

inspection method into a work breakdown structure (WBS) for a maintenance/inspection 

effort to be conducted. For the Black Hawk MRB, a work package may have sections 

detailing the tools and equipment needed, removal and tear-down instructions, inspection 

criteria, and assembly and re-installation procedures. In addition to published work 

packages, depot maintenance work requirement (DMWR) publications provide even more 

stringent inspection and repair criteria to accomplish a complete overhaul of major 

components to return the items to wholesale supply inventory in a like new condition. 

An example of such depot sustainment repair activity includes MRB cuff 

replacement. The MRB cuff is the portion of the MRB assembly that attaches each MRB 

to its corresponding spindle attachment lugs on the main rotor head. The cuff is critically 

attached to the MRB spar using methods not easily achievable, available, or authorized to 

be performed by field level maintenance activities. The MRB cuff has a life limit 

significantly lower than the life limit established for the MRB spar. The MRB assembly is 

returned to sustainment level maintenance activities when complex repairs and component 

replacement, or overhaul becomes necessary. 

2. MRB Performance Specification 

Black Hawk system specifications recognize the MRB as a major component. 

Major component removal rates are used to quantify component reliability. Removals are 

categorized utilizing the following terms: mean time between removal (MTBR) and mean 

time between removals requiring depot return (MTBRRDR). Chargeable removals are 

those removals resulting in the component being replaced with a like serviceable item. 

MRBs removed to facilitate phase maintenance inspection and found to be serviceable 

without repair are not counted as a chargeable removal. Main rotor blade average MTBR 
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and average MTBRRDR inherent values are established at 1700 aircraft-operating hours 

based on aircraft performance specifications SES-700700 & AVNS-PRF-10002. 

3. Historical Rates 

As of July 2021, TAMMS records indicate more than 15,000 original-design MRBs 

have been recorded as gained to inventory since 1977. 4700 MRBs are reported currently 

installed on various aircraft. 2700 records indicate spare MRBs that are uninstalled and 

serviceable. Another 4000 are uninstalled unserviceable—awaiting disposition, including 

field repair or induction into sustainment maintenance activity. Approximately, 3600 

MRBs have been retired or scrapped from usable inventory. Item management return data 

indicates an average of over 40 monthly returns to depot sustainment activities occurring 

over the last 24 months. Component returns do not always equate to material maintenance 

induction to repair or overhaul—as noted above some items are retired or scrapped. 

Likewise, average monthly demands for replacement MRBs do not always equate to the 

same return rates. This is due to many uninstalled main rotor blades within the enterprise 

inventory. 

C. SUSTAINMENT 

According to the PEO Enterprise Information Systems (EIS) website: Army 

material item managers utilize the logistics modernization program (LMP) information 

system to manage material and conduct enterprise material resource planning. The LMP 

has been in use over two decades and continues to mature to meet changing sustainment 

and material management requirements spanning inventory, contracting, material repairs 

and nearly every other facet of logistics integration including Army working capital fund 

financial management. Direct LMP data access requires unique user familiarization 

training and access authorizations (PEO EIS, n.d.). 

Web based tools were developed to enable other stakeholders within the Army 

sustainment enterprise to extract LMP data through user friendly interfaces without directly 

accessing the top tier data server in real time. The LMP data accessed from lower tier 

servers are routinely updated—but typically no more frequently than 12 hours and often 

only weekly. The stored static information is sufficient for most material sustainment and 
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forecast planning efforts but not always adequate for moment-to-moment, just-in-time 

decision-making required of material item managers. 

One LMP access tool used to support MRB asset and pricing data analysis included 

information extracted from the intelligent interactive logistics (I2LOG, n.d.) website. 

I2LOG has been in use over 17 years; unfortunately for familiar users, this web-based 

interface is slated for sunset in fiscal year (FY)23 as the Army digital environment 

continues evolving to address cyber security concerns and limited resourcing. 

The highlighted price in Figure 7 reflects MRB retail cost without exchange credit. 

Exchange credit is awarded for unserviceable turn-ins. Although the MRB is a critical 

component of the aircraft, the individual cost of a Black Hawk MRB is relatively large 

when compared to the total aircraft cost. For example, a UH-60L variant helicopter 

procurement cost is approximately $6M. The material cost of installing a quantity of four 

rotor blades at approximately $214k each, the entire set of MRBs consume about 14% of 

the total aircraft cost. Thus, the disposition of an MRB as demilitarized or turn-in and 

unrepairable is a substantial cost impact. 

 
Figure 7. Screen Shot of Total Assets Visibility for Original MRB. Source: 

I2LOG) 

1. Material Inventory 

In an effort to obtain some cost savings over the procurement of new blades, the 

Army generates solicitations, and awards contracts, for the overhaul of UH-60 MRBs. The 
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contracts are typically developed as firm-fixed price contracts that can be implemented as 

an indefinite delivery/indefinite quantity (IDIQ) for a five-year period. The overhaul of a 

rotor blade consists of rework activities that will result in the rotor blade being 

reconditioned to a ‘like new’ status. The typical process of an overhaul contract requires 

the winning bidder to tear down and evaluate each MRB to a point where an overhaul cost 

estimate can be determined. Per the contract, a maximum overhaul price is determined 

before any rework is conducted. If the estimated repair work is greater than the maximum 

allowable overhaul cost, the blade is scrapped, and the Army gets to count the blade 

towards it minimum required buy quantity per the contract. FY21 data extracted from the 

I2LOG database and merged into the LMP show the sustainment overhaul price is 

approximately $114k per MRB. Per I2LOG data, the latest FY21 contract price for a 

volume buy from the OEM came in at approximately $124k per each MRB. 

As an example of impact, given a quantity of 700 MRBs on contract for an overhaul 

and using the current sustainment overhaul cost of $114k per blade, the total contract cost 

would be expected to come in around $79.8M. If the government is capable of conducting 

pre-overhaul screenings using new inspection technologies along with existing inspection 

methods, even an avoidance of sending 70 MRBs (10% impact) could be a cost prevention 

of around $8M. Thus, implementing the use of a new inspection method could have the 

capability of providing a ROI rather quickly. 

In the interest of preventing unnecessary costs of MRBs being deemed as 

unrepairable, the new and improved inspection methods outlined in this document are 

intended to mitigate some of the sunk costs incurred by the Army during routine 

sustainment practices (such as MRB overhauling). If the Army can conduct inspections 

that can better determine the operational status of a MRB, then cost avoidance can be 

achieved by reducing the quantity of MRBs included in a contract. 

2. Average Monthly Demand (AMD) 

The AMD, provided via the i2log web interface, of Black Hawk MRBs provides 

the monthly sustainment requirements. These values are important because they provide a 

realistic demand of the MRBs, which can be used to determine the impact that a field 
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inspection method can have on the fleet. However, inputs to the logistical i2log database 

are not restricted to field use only values. Values such as lump contract buys may also be 

included in these numbers. As can be seen in Table 1 under the January 2020 column “01/

2020,” the monthly requirement is recorded as 230, a value far beyond the typical monthly 

field requirement. When values in the AMD fields are obviously larger than expected, they 

are discarded in the count for the AMD. Once the data outliers are discarded from the 

calculations a realistic AMD can be obtained. As the circled area confirms, the AMD for 

the Black Hawk MRBs averages a quantity of 33 blades over a 24-month period. This 

allows us to compute the annual AMD of the Black Hawk MRB at approximately 396. 

Table 1. Black Hawk MRB AMD 

 
 

D. CURRENT NONDESTRUCTIVE INSPECTION METHODS 

There are seven primary forms of non-destructive inspection methods as listed in 

this section: visual, coin tap, bond testing, eddy current, fluorescent penetrant, ultrasonic, 

radiographic. Each of these inspections provide a different set of information depending 

on the desired results and may provide a data set that is subjective in nature or very specific 

and detailed. Each of these inspection methods will be described in more detail in the 
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following paragraphs and be used in comparing technologically advanced inspection 

methods that this research recommends for use. 

1. Visual 

The visual inspection relies on an operator to know an MRB well enough to 

understand what dictates a potential issue. The service team member responsible for 

performing this inspection is not limited strictly to a visual of the MRB, but may also use 

their hands to run along the surface of the blade in order to detect irregularities in the 

material. Because of the subjectivity of this method, it’s desired that experienced personnel 

with practice identifying field issues conduct this test. 

2. Coin Tap 

The coin tap method of inspection uses a device (typically a smooth disc) to tap on 

the rotor blade to detect delamination or debond in the epoxy. A coin is typically used in 

the sustainment community simply because they are readily available amongst service 

personnel. Due to the composite nature of the UH-60 MRB, a coin tap will provide different 

types of audible feedback depending on where the coin is being tapped on the blade. Thus, 

because of the dynamic variability of the MRB and the subjectivity of audible feedback, 

experienced personnel are desired to conduct the test. In order to detect a defect within the 

rotor blade, the coin tap inspector relies on a hollow audible tone from a tap on the rotor 

blade which would indicate an issue. 

3. Bond Testing 

According to department of the Army technical manual TM 1-1520-265-23 for UH-

60 maintenance: 

The bond testing equipment, Bondmaster, used in the procedures in this 
manual, operates by generating mechanical vibration into the material being 
tested. This equipment is designed to detect flaws in bonded metallic and 
composite structures. The instrument can determine bad bonds, de-
laminations, unbonds, and crushed honeycomb core defects. (DA, 2008, p. 
1-21) 
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Mechanical vibration energy generated by resonance test equipment can be 
measured, analyzed by the tester, and then displayed on a screen. There are 
several ways this energy can be applied to material and then be analyzed. 
Because bonded metallic and composite material properties differ 
substantially, no one test method will detect flaws in all types of material. 
(DA, 2008, p. 1-23) 

4. Eddy Current 

From department of Army technical manual TM 1-1500-204-23-7 for 

nondestructive testing and flaw detection: 

Eddy currents are electrical currents induced in a conductor of electricity by 
reaction with a magnetic field. The eddy currents are circular in nature, and 
their paths are oriented perpendicular to the direction of the applied 
magnetic field. In general, during eddy current testing, the varying magnetic 
field is generated by an alternating electrical current flowing through a coil 
of wire positioned immediately adjacent to the conductor, around the 
conductor, or within the conductor. 

Eddy current techniques are particularly well suited for detection of service-
induced cracks in the field. Service-induced cracks in aircraft structure are 
generally caused by fatigue or stress corrosion. Both types of cracks initiate 
at the surface of a part. If this surface is accessible, eddy current inspection 
can be performed with a minimum of part preparation and a high degree of 
sensitivity. Unlike penetrant inspection, eddy current inspection can usually 
be performed without removing such surface coatings as primer, paint, and 
anodic films. Eddy current inspection has greatest application for inspecting 
small, localized areas where possible crack initiation is suspected rather 
than for scanning broad areas of metal for randomly oriented cracks. In 
some instances, it is more economical to scan relatively large areas with 
eddy current rather than strip surface coatings, inspect by another method, 
and then refinish. (DA, 1992, p. 7-1) 

5. Fluorescent Penetrant 

Army technical manual TM 1-1500-204-23-7 for nondestructive testing and flaw 

detection describes penetrant inspection as: 

Penetrant inspection is a quick and reliable nondestructive test method used 
for detecting various types of discontinuities which are opened to the 
surface of an object or part. 

The basic principle of penetrant inspection is to increase the visible contrast 
between the discontinuity and its background. This is done by treating the 
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whole object with an appropriate searching liquid of high mobility and 
penetrating power and then encouraging the liquid to emerge from the 
discontinuity to reveal the flaw pattern to the inspecting personnel. (DA, 
1992, p. 3-1) 

Fluorescent penetrant field inspections applied to Black Hawk MRB are generally 

limited to attaching hardware or used as back up to validate surface discontinuities 

identified in components through visual inspection or other nondestructive inspection 

methods. An example of effective fluorescent penetrant use providing increased visibility 

is evident in the following Figure 8. 

 
Figure 8. Fluorescent Penetrant High Contrast Surface Discontinuity. 

Source: Sentinel, https://www.sentinelltd.co.nz/ (2021). 

6. Ultrasonic 

Army technical manual TM 1-1500-204-23-7 states: 

Ultrasonic is the name given to the study and application of sound wave 
frequencies higher than those to which the human ear can respond, 20,000 
Hz (hertz or cycles per second). In contact ultrasonic testing the most used 
frequencies range is from 2.25 to 10 MHz (megahertz or million cycles per 
second). Frequencies below this range and up to about 25 MHz are also used 
on occasion. 

Ultrasonic detection equipment has made it possible to locate defects in all 
types of parts without damaging the part being inspected. Minute cracks, 

https://www.sentinelltd.co.nz/
https://www.sentinelltd.co.nz/
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checks, and voids, too small to be seen by X-ray, are located by ultrasonic 
inspections. Access to only one surface of the part is necessary. 

The sound beam is not a straight sided projection of the face of the search 
unit having uniform intensity. The sound beam spreads out beyond the face 
of the search unit and varies in intensity. This causes dead zones and other 
problems. (DA, 1992, p. 6-1) 

7. Radiographic 

For radiographic inspection methods, technical manual TM 1-1500-204-23-7 

describes the method as: 

X-ray and gamma ray radiographic inspection utilizes the penetrating power 
of radiation to reveal the interior of objects as recorded on film. The extent 
of recorded information is dependent upon three prime factors which are 
responsible for an object to absorb radiation to varying degrees. These are: 

• The composition of the object. 
• The product of the density and the thickness of the object. 
• The energy of the X-ray gamma rays which are incident upon the object. 

Its discontinuities cause an apparent change in these characteristics and 
thus make themselves detectable. 

Radiography is a useful non-destructive inspection method designed to 
detect internal discontinuities is many parts and substances. 

Radiography may be applied to the inspection of castings, welds, and 
assembled components. Various metals, both ferrous and nonferrous, as 
well as nonmetallic metals such as ceramics and plastics, can successfully 
be inspected. 

Radiography is not a cure-all and should be used only when conditions are 
satisfied. Multiple film techniques and other special methods make 
radiography a versatile tool for evaluation. (DA, 1992, p. 5-1) 

E. POSSIBLE ADVANCED TECHNOLOGY INSPECTION SOLUTIONS OR 
APPLICATIONS  

The two technology areas that will be explored as possible partial replacement 

methods for current inspections are shearography and thermography. Each of these 

methods could be examined as a singular solution to replace a majority of the current 

subjective inspections or a combination of the two to provide a holistic view of an MRB. 

Both methods offer benefits extending beyond current inspection methods but may have 
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drawbacks such as substantial resource investments and a shift in inspection professions to 

an engineering expertise. Both technologies noted can be used to generate a digital map. 

The digital mapping method could be inserted into an automated comparator software tool 

to provide near instantaneous unbiased feedback to the inspection crew responsible for the 

MRB integrity. 

One of the primary benefits of both partial replacement methods is their non-

destructive nature they bring to the table. While some of legacy inspection methods are 

non-destructive, none of them alone offer a full solution without some form of destructive 

maintenance to investigate suspect failures. Other benefits in using newer technologies is 

the reduction in time it takes to perform an inspection, the level of detail provided from 

digital processing, and the recurring reliability. 

Although current MRB inspection methods evaluated in this research occur at a 

depot/maintenance level, the possibilities of exploring newer technologies could preclude 

the need for removal of rotor blades from the aircraft. The reason for exploring depot/

sustainment maintenance level inspections while on the aircraft can provide substantial 

ROI if the requirement to remove blades no longer exists. 

1. Shearography 

Shearography, or speckle pattern shearing interferometry, can be described simply 

as a light refraction measurement methodology. Renishaw states on their website that 

interferometry is defined as “a measurement method using the phenomenon of interference 

of waves (usually light, radio or sound waves)” (Renishaw, n.d.). More descriptively, TWI 

Ltd. defines shearography as a technology that “uses coherent laser light in a similar 

manner to holographic interferometry to create a visual representation of a test object.” 

(TWI, n.d.). As an example, shearography is capable of producing images like the one 

shown in  

Figure 9. It also shows a 14 ft. long aircraft flap that was tested in a vacuum shearography 

chamber with automatic image stitching. In this particular example, over 90 spots of 

delamination were detected using shearography. Due to the ability of shearography 
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technologies to examine composite materials like a rotor blade as seen in Figure 10, this 

becomes an ideal inspection method for Black Hawk MRBs. 

 
Figure 9. Shearography Used on an Aircraft Flap. Source: Science Direct 

(2018). 

 
Figure 10. Representative Composite Structure of a Rotor Blade. Source: 

ResearchGate (2021). 

Instead of dismantling an MRB to examine a possible delamination of materials, 

shearography can be utilized to provide a visual (or digital) image of the rotor blade. If 

shearography confirms a suspected portion of the blade needing repair, the repair job 

becomes minimalistic. For example, if a coin tap inspection leads a maintenance crew to 
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suspect delamination interior to the MRB, large area of the blade would be disassembled, 

or dismantled, in order to find the suspected area of delamination. Since shearography 

provides a collective data set with high-fidelity, the defect can be located with pin-point 

accuracy preventing a larger than necessary portion of the MRB to be repaired. 

2. Thermal Imaging (Thermography) 

Thermography is a more common industry inspection method that captures 

differences in heat signatures using infrared radiation. Thermography is more commonly 

known for its use in the medical industry for identifying health concerns. More specifically, 

as infrared technologies improve, it is becoming widely used to identify signs of breast 

cancer. Although thermography has a strong foothold in the medical industry, it is also 

used in non-medical activities such as security and construction applications. This is an 

emerging technology that the renewable energy industry is working to apply to wind 

turbine blades. Because of its non-destructive applicability, thermography can be a 

valuable preventative maintenance tool for wind turbine blades while in operation. Similar 

in design to UH-60 MRBs, wind turbine blades can be used as a comparable test item as 

can be seen in Figure 11. The figure shows the results from using thermography on a wind 

turbine blade at three different times throughout the day. Part (a) is the result of a 

thermographic image taken at 9am in the morning, (b) was taken at noon, and (c) was taken 

at 6pm. The reason for capturing images at multiple times is the difference in heat signature 

provided by the suns radiation. As can be seen in the image below, additional applied heat 

can provide more spectral density allowing for better detection of flaws. 
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Figure 11. Thermographic Results for a Wind Turbine Blade. Source: Hadi 

Sanati, David Wood, and Qiao Sun (2018). 

Thermography tests on wind turbine blades has produced several valuable papers 

on the benefits and limitations of using this method. One of the benefits is that 

thermography can be used during active rotation of rotor blades reducing the need for 

disassembly from the aircraft. The rotor blades would be required to rotate at a slower pace 

than in flight. Like shearography, thermography works best when the unit under test is 

subjected to a stress. Instead of using external mechanisms to stress the blade by bending 

or twisting, the rotation would provide the necessary stress levels to capture meaningful 

data. With a man in the loop, the speed of rotation can be controlled from the cockpit in a 

reliable manner. Another aspect of thermography, although not specifically required, that 

would improve the reliability of consistent data sets is the application of heat to substantiate 
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detection of rotor blade defects. Thermal imaging can be conducted without the application 

of heat; however, the data sets and images produced can be more subjective at cooler 

temperatures and allow for human error. 

The following chapter, Chapter IV, will take a deeper dive into the recommended 

application of shearography and thermography as possible replacements for some of the 

current inspection methods. At a minimum, we will explore opportunities for the new 

technologies to be used as additive data analysis tools to improve current data sets. The 

data collected during shearography and thermography tests can be used to generate a visual 

image, or digital map, for ease of comparison to baseline information sets. Digital mapping 

represents an opportunity space that the DOD can take advantage of in order to provide 

high-fidelity digital data. This data can be used to provide substantial improvements to 

inspection methods with the intent of reducing the logistics footprint. Opportunities for 

improvement exist in the realm of inspection time, inventory improvements resulting from 

the reduction of destructive tests, and a substantial cost savings associated with 

procurements and repairs. 
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IV. RESULTS 

A. COMPARATIVE IMAGING PROCESS 

In order to improve the inspection methods for the Black Hawk MRB, it is 

recommended that the two inspection technologies listed earlier as shearography and 

thermography be considered for adoption. Each of these inspection methods can be used 

to generate digital images, or maps, for comparison. For the process to be beneficial and 

useful to the Black Hawk logistics and sustainment communities, standards should be 

established amongst the original equipment manufacturer (OEM) and the Army. For the 

purposes of this document, it is recommended that shearography and thermography be used 

to generate baseline images from the OEM and sustainment images after the MRBs are 

placed into service. Once a new inspection technology is adopted, the potential exists for a 

sustainment digital map of a MRB to be compared to a baseline map in order to detect 

differences over time. It may prove difficult to alter the current method of inspecting rotor 

blades, but it is the intent of this research to show how beneficial such changes can be. Not 

only does the implementation of new inspection technologies provide an opportunity to 

improve costs, they may also prevent catastrophic failures seen in the field by catching 

issues that otherwise may not be identified. 

1. Digital Mapping and Comparison 

When inspections lead to data sets that are developed digitally and stored as images, 

they can be used as resources to feed into a comparative tool in order to analyze and 

calculate the difference between images. In order to understand the basics of how two 

images can be compared to one another, a general description of how a digital image is 

computationally generated is provided. Every digital image is the result of millions of 

picture elements, or pixels, which are combined to form a single digital image. Each digital 

pixel is displayed as a color that is determined based on a combination of binary numbers. 

Variations and composites of colors combined are what creates an image that can be easily 

distinguished by the human eye. However, at the root of every computer operation is a 
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binary number; for images, it’s no different. Each variation of color that can be recognized 

in a digital image has a representative binary number associated with it. 

In order to compare two images to one another a software tool can be used or a 

person can visually compare the images. Unfortunately, anytime a human is included in 

any process loop, there is room for human error and the possibility of subjectivity. Whether 

a fault in comparison be human error or subjectivity, both induce the risk of missing 

possible issues identified by variations in imagery. As with any intricate process where a 

human is asked to distinguish between right and wrong, experience becomes a necessity 

and can only be obtained after time. However, a benefit to using a human in the loop is the 

ability to catch large variations in images that can be obvious to even the most novice 

operator. Therefore, it only make sense to use a human in the loop and a software tool as 

complimentary processes. 

In order to digitally compare two images to one another, each pixel per image is 

compared to the same pixel in a comparable image. Instead of a computer working to 

determine the variation in brightness and contrast from pixel to pixel, it actually calculates 

the difference in binary values from pixel to pixel and displays a new image that highlights 

variations. This is the general process that is used anytime two images are compared to one 

another. This same process can be developed into a software tool with a graphical user 

interface that can be used by virtually anyone. 

The benefits to using a software tool is that it can catch differences down to a single 

pixel, which could easily be missed by a person inspecting an image. Using a person to 

compare two images has benefits too; a person can easily distinguish between two images 

when there is a substantial difference. In order to prevent unnecessary inspection scans or 

rework, it is recommended a person conduct an initial evaluation to determine large image 

discrepancies between two images and then use the software tool to identify any minuscule 

deltas between pixels. 

2. Baseline Imaging 

Currently, the OEM provides a certificate of component quality assurance and 

compliance with manufacturer drawings and specifications. No digital imaging of the MRB 
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is provided to establish a material baseline at gain to inventory. Creating a baseline image 

ensures a tangible record of component configuration conformance upon delivery to the 

government. Benefitting all stakeholders by documenting component attributes during the 

gain to government inventory. 

3. Sustainment Imaging 

Once the Black Hawk MRBs are gained inventory and installed for use, the 

recurring and time cycle inspection clock begins. For every recurring and time cycle 

inspection, this research looks at injecting a new inspection technology into the process. 

The two recommended technologies defined earlier in this document as shearography and 

thermography will be examined as 1) possible inspection methods that can be used to 

identify failures that may not be captured during routine inspection practices and 2) tools 

to generate digital maps to track changes in MRBs over time. Both of these options have 

the opportunity to provide the defense industry a substantial return on investment (ROI). 

a. Possible Application of Shearography 

Unlike other inspection methods, such as a visual examination, that could allow the 

MRB to remain virtually untouched, shearography requires the test unit be stressed in order 

to obtain a reliable data set. Implementation on an MRB would require an image be taken 

during the application of specific wavelengths of light in a normal state. The MRB would 

then be held in a stressed state, by either twisting or bending, while a second image is taken. 

The delta between the two images would then provide a speckle pattern image (another 

name for shearography). This new speckle pattern image would provide quick and visible 

feedback to a maintenance crew. Two possible methods for applying shearography to the 

Black Hawk MRB would be to have the rotor blade removed from the aircraft for 

inspection or conduct a field level inspection at the fully installed rotorcraft level. Although 

the removal of the MRBs is a viable option for improving inspection techniques and is 

briefly mentioned below, we will examine the application and benefits of performing on-

aircraft inspections in order to recognize the substantial ROI these changes can have. 

With the MRB removed from the aircraft, the hardware and tooling needed for 

shearography would allow for a smaller footprint. The MRB could be affixed to a rigid 
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platform on one end while the opposite side of the MRB is coupled to a torque motor that 

would provide the stressing required by shearography. Understanding the MRB stress 

limits would need to be taken into careful consideration to ensure no damage to the rotor 

blade. Cameras could be placed in multiple locations to provide a 360° view of the MRB 

while subjected to light waves. An article written in 2003 by R. Krupka, T. Waltz, and  

A. Ettemeyer regarding the Industrial Applications of Shearography for Inspection of 

Aircraft Components validates shearography as an improved non-destructive test (NDT) 

for aircraft components, specifically helicopter rotor blades. This article provides examples 

of shearography being applied as inspection methods for rotor blades as seen in Figure 12. 

Figure 12 shows an inspection of a helicopter rotor blade inside a vacuum chamber that is 

using shearography to detect any deformations and/or delamination (Krupka, 2003). In this 

particular example, the vacuum chamber is applying the stress required to conduct a non-

destructive shearography test. 

 
Figure 12. Shearography Applied to a Rotor Blade Inside a Vacuum 

Chamber. Source: Krupka (2003) 

In a similar fashion, the MRB could also be inspected at a field level while installed 

on the aircraft. Inspecting a MRB while on the aircraft will pose a significant challenge in 

changing the status-quo associated with typical inspection routines. Typically, the MRBs 

are removed, not only to provide for a better inspection, but also so the aircraft is not 

subjected to anything that could pose a risk of damage. Due to the substantial cost of an 
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aircraft, any risk of damage is typically mitigated via removal of the hazard. In this 

particular scenario, the hazard would be performing an inspection while the rotor blades 

remain intact to the aircraft. However, given due diligence and design, it can be argued that 

the probability of risk can be mitigated down to a negligible level. 

Currently, conducting an on-aircraft inspection using shearography would require 

a substantially different arrangement of equipment that is required for the inspection, but 

would offer the benefit of a quick system level inspection represented in Figure 13. The 

aircraft could be brought into a hangar where each of the UH-60 four rotor blades would 

be rotated to a side of the hangar housing the shearography apparatus. In this scenario, the 

aircraft could be used to apply a torque to the MRB or could be used to hold the MRB 

rigid. In either application, a connection would be made to the rotor blade at the opposite 

end of the main rotor mast. At the tip of the MRB, a torque motor could be used to bend or 

twist the MRB or the tip of the MRB could be coupled to a rigid collar to hold the blade. 

See Figure 13 for a depiction of a possible test configuration at the full assembly level. 

 
Figure 13. Depiction of Shearography Test Configuration for a Full 

Assembly. Adapted from Introduction to Aerospace Engineering with a 
Flight Test Perspective (2017, p. 29). 
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Per The Welding Institute limited (TWI Ltd.), an innovative company with an 

expertise in material analyses, given the proper equipment an inspection can conducted at 

nearly 1m2 per minute using shearography (TWI Ltd., n.d.). At an approximate size of 5m2 

[length of the chord] x [length of the MRB], the Black Hawk MRB active inspection time 

using shearography could be as little as 5 minutes per blade. Comparing the time to inspect 

a MRB while installed on an aircraft to the time it takes to remove, package, ship, setup, 

and inspect a MRB using the current methods, an inspection can be reduced from days to 

minutes. Not only is there a potential for substantial cost savings in labor, there is a 

significant reduction in the logistics footprint currently required to inspect a MRB. 

b. Benefits of Shearography 

As shearography technologies continue to advance and industries take advantage 

of it NDT capabilities, the benefits of using the inspection methods can be observed. 

According to an article written by John Newman for Quality Magazine in 2009, 

shearography became the first certified NDT method for the National Aeronautics and 

Space Administration (NASA) to inspect space shuttle foam (Newman, 2009). Some of the 

benefits of shearography that could recognized immediately after integration into the 

inspection process of MRBs would be the improvement of cost, schedule and quality. 

(1) Cost 

Earlier in this document, in Chapter III C.1., a hypothetical example is given with 

a 10% reduction in overhaul costs from a lot consisting of 700 MRBs that provided a 

savings of $8M. Although an estimated cost of procuring and installing a shearography 

system for examining MRBs would need to be acquired through market research and 

request for proposals, conversations with Army material analysis experts express that a 

system can be assumed to cost around $10M. Given that a shearography system 

procurement cost would consume $10M in investment funds, the ROI would be recognized 

rather quickly if the system could reduce the return of a MRB lot by 10%. It is reasonable 

to assume that a 10% reduction of MRB overhaul contract quantities could be recognized 

simply because the rotor blades are critical and an expensive component of the helicopter, 

which increases the chance of an operator notating a defect based solely on suspicion. 
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(2) Schedule 

If the inspection of a MRB was conducted on the aircraft, as recommended, the 

time to conduct a routine inspection and analyze the results could be reduced from days to 

minutes. This reduction in schedule would substantially impact a fleet via a reduction in 

maintenance crew time and the time associated with the logistics footprint of removing and 

shipping a MRB. Although time can always be converted to dollars, the benefit of reducing 

the inspection time from days to minutes alone is substantial enough to warrant an 

investment into a technology such as shearography. 

(3) Quality 

As pointed out in a NASA article authored by James L. Walker and Joel D. Richter, 

shearography is not an ideal inspection method for detecting defects deep within a system; 

however it is ideal for detecting issues just beneath the surface of a component, such as 

delamination (Walker, n.d. p 4). Delamination is known as a common failure mode for 

Black Hawk MRBs in the field, thus shearography offers promising improvements for 

catching issues that current inspection methods may miss. As noted in the John Newman 

Quality Magazine article mentioned above, shearography has an extreme sensitivity such 

that it could catch defects down to 10 nanometers during an inspection (Newman, 2009). 

Using this technology would provide a more thorough and systematic approach to capture 

defects of a composite rotor blade, as seen in Figure 10, which would improve quality of 

MRBs via inspection practices in the field. 

c. Possible Application of Thermography 

Similar to the shearography methods of testing, thermography could be applied at 

a MRB level or at the aircraft level. One of the primary benefits of thermography is that 

the rotation of the blades would provide an acceptable stress level that would mitigate the 

need for external torque devices. For the purpose of this research, we will examine the 

possibility of using thermography at the aircraft level with possible controls in place to 

provide better data sets. For the same reasons as discussed for using shearography at the 

aircraft level, modifying status-quo inspection methods to include thermography at the 

system level would be difficult as it would subject the aircraft to undesired risks. However, 
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if the Army is willing to trade negligible risks for cost and time savings coupled with 

quality improvements during inspections, thermography offers the same benefits as 

shearography. 

In order to control the test environment, it would be recommended that the rotor 

blades be subjected to a radiant heating mechanism while in a slow rotation. Although not 

needed, a slow rotation would supply a reasonable amount of stress to a rotor blade, which 

can provide results that are easier to analyze both visually and via a software tool. A method 

of producing a test configuration would be to install an overhead radiant heater while 

capturing thermal images of the rotor blades in rotation. Although the details of 

determining what the best speed of rotation is, how to rotate the blades, and the amount of 

applied heat required to provide legitimate results still need to be determined through 

analysis, it is reasonable to assume that this could be conducted given proper attention to 

analysis. A depiction of a possible test setup can be seen in Figure 14. 

 
Figure 14. Depiction of a Controlled Thermography Test Configuration. 

Adapted from Introduction to Aerospace Engineering with a Flight Test 
Perspective (2017, p. 29). 
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With improvements in instrumentation that can be used to conduct thermography 

scans, a leading industry organization Thermal Wave Imaging (TWI) is pushing the limits 

for how thermography is used in the defense industry. Like shearography, thermography 

is also a NDT that can be used to detect anomalies or defects of composite materials. As 

depicted in Figure 15, TWI is pushing to advance inspection techniques in the field even 

with new and emerging weapon systems such as the future vertical lift platforms. Although 

Figure 15 shows an inspection on the body of an aircraft, according to TWI the technology 

is best fit to inspect composite images for impact damage, delaminations, water ingress, 

foreign object debris detection, thickness measurement, porosity, and disbonds (TWI, n.d.). 

Similar to the honeycomb structure of a rotor blade, TWI shows an example on their 

website, Figure 16, of how thermography can assist in detecting trapped water internal to 

a honeycomb structure. 

 
Figure 15. Large Area Inspection Concept as presented on the TWI website. 

Source: TWI, https://www.thermalwave.com/technology/. 

https://www.thermalwave.com/technology/
https://www.thermalwave.com/technology/
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Figure 16. Trapped Water in Honeycomb Structures. Source: TWI,  

https://www.thermalwave.com/applications/#aerospace. 

d. Benefits of Thermography 

Anytime a new and proven technology is properly introduced into an existing and 

outdated process, it almost always adds a ROI that exceeds the investment cost. 

Fortunately, since its discovery in the early 19th century thermography has been an 

advancing and widely used technology. The historical use of thermography has allowed 

industry to generate and compile information that validates thermography as a beneficial 

tool. In the same way that shearography was examined with regards to cost, schedule and 

quality, this research examines thermography in the same way. 

(1) Cost 

Using the same hypothetical example that was used to determine a potential cost 

savings associated with a reduction of blades on an overhaul contract, it is reasonable to 

assume that similar cost preventative measures could be calculated to be around $8M. The 

cost of procuring and investing into a thermographic test setup was determined via 

conversations with material analysis experts to cost approximately $8M (slightly cheaper 

than its shearography counterpart). According to the small unmanned aircraft system 

(sUAS) news website on the business of drones, substantial savings have been noted by 

several industry organizations. One client managing a large portfolio of solar modules 

provided feedback to sUAS news stating that they save approximately $383k annually by 

repairing defective solar panel modules that would not have been discovered during hands-

on inspections (sUAS, 2020). Although the cost savings that are recorded on the website 

https://www.thermalwave.com/applications/#aerospace
https://www.thermalwave.com/applications/#aerospace
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are cost savings realized using thermographic inspections of solar modules, that same data 

can be translated to the defense industry for rotor blade inspections. 

(2) Schedule 

The same organization listed above, sUAS, lists on their website that “the greatest 

advantage of aerial thermography is its speed. A manually piloted drone is able to collect 

data 10 times faster than a technician on the ground within 97% accuracy” (sUAS, 2020). 

This technology is being applied via drones to several square miles covered with solar 

modules. Thus, if applying this technology to a small area, such as the size of a rotor blade 

(approximately 5m2), the time of inspection would be reduced dramatically considering 

that the rotor blade does not need to be removed, packaged, shipped, and inspected. Similar 

to shearography, the time savings can be seen as a reduction from days to minutes. 

(3) Quality 

As noted above on the sUAS website, thermography offers a 97% accurate solution 

for inspection processes. Moreover, a published Multidisciplinary Digital Publishing 

Institute Sensors article by Francesco Ciampa, Pooyah Mahmoodi, Fulvio Pinto and 

Michele Meo titled Recent Advanced in Active Infrared Thermography for Non-

Destructive Testing of Aerospace Components analyzes and details the quality benefits of 

using thermography as a potential inspection source for composite aerospace components. 

Using the analysis in article as validation criteria, it states that “material-based 

thermography methods have proved to offer a fast, low power, accurate and reliable 

assessment of delamination and cracks in aerospace composite components” (Ciampa, 

2018, p. 30). 

B. PROCESS MAPPING 

Each blade currently goes through a cycle from a defined process. Figure 17 depicts 

at a given period; the blade must be visually inspected and move onto a deeper examination 

if there is sufficient wear and tear that is observed. The process identifies stress state from 

possible fatigue failure. MRBs that go through this process mapping routine still go through 

manually. Any correlation is identified by an individual or individuals doing the mapping. 
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The key issue with this process is human error. There is not an automated process that can 

compare images or identify patterns at any given combination of causes. The 

manufacturer’s MRB historical data may or may not provide sufficient data to provide the 

inspection team a predicted or realized pattern of stress fatigue. 

Figure 17 furthermore illustrates where a person is required to examine a 

component consisting of composite material. As mentioned before, the complexity of 

identifying flaws or defects on a modern MRB is very challenging and subject to human 

error due to its composite nature. At this point in time, the Army does not possess a 

computer system that can assist in the comparison process; let alone a means of correlating 

the data since past findings are manually scanned and archived into a resting database. 

During all inspections the data collected and repairs initiated end up being logged into a 

RIMFIRE report. An extraction from a RIMFIRE report can be seen in Figure 18. This 

current process mapping is plagued with inconsistent information and data that is not easily 

accessed for analyzing present maintainability concerns and predicting future component 

failures. As can be seen in the RIMFIRE report extract, it would be extremely difficult to 

correlate incidents and repairs over time via sorting through PDF documentation. 
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Figure 17. Current process of identifying characteristic stress of the 
component. Adapted from A Modified Stress Field Intensity Approach for 

Fatigue Life Prediction of Components (2020, p. 4). 
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Figure 18. Extracts from a RIMFIRE Report. Adapted from RIMFIRE 

Teardown Analysis Full Report for Main Rotor Blade (2018). 
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V. CLOSEOUT 

1. Recommended Changes 

After researching and analyzing current sustainment and maintenance practices 

used on Black Hawk MRBs, the primary areas for recommended change are: 

• inclusion of new inspection technologies to create digital maps 

• generation of a baseline digital image of each MRB using new technology 

• generation of sustainment digital images for each MRB 

• acquisition of a software tool to analyze digital maps 

After summarizing these recommendations, we explore potential areas for further 

research. A conclusion will be provided at the end of this chapter to summarize this 

research. 

a. New Inspection Technology 

There are existing technologies which might be applied to more efficiently evaluate 

component design integrity throughout the component life cycle. Our study explored 

utilizing shearography or thermography to generate a digital map to systematically measure 

deviations in MRB integrity during sustainment level maintenance activity. These 

technologies can be used to update and renew an outdated and unreliable combination of 

inspection techniques that allow MRB failures to occur in the fleet. The outdated inspection 

methodologies also allow for an unnecessary quantity of MRBs to be contracted for an 

overhaul simply because the technologies to properly inspect composite materials has not 

been integrated in the Army sustainment model. The technologies introduced in this 

research provide the capability of the Army to generate digital maps that can be used for 

analysis or comparison to older maps (or images). This mapping can be used during routine 

checkups and identify any degradation or defects while in service. Digital mapping may 

prove vital in safeguarding serviceability and reliability of MRBs once placed into service. 
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It is highly recommended that at least one of the inspection technologies, shearography or 

thermography, be inserted into the existing inspection processes. 

b. Baseline Digital Imagery 

For each Black Hawk MRB, it is recommended a baseline image be provided by 

the OEM as part of each component material delivery to the government. The imagery 

would establish an initial database for comparative analysis. These images and associated 

configuration documents are used as a reference before a MRB ever goes into service, to 

ensure compliance with drawings and specifications upon initial delivery. If an incident 

were to ever happen with a MRB after installation, these images and files could always be 

referenced. In order to perform any type of image comparisons, sustainment images would 

be captured for comparison with the baseline or previous sustainment image. Any 

comparison of a baseline image to a sustainment image today would require the visual 

interpretation of an engineer or experienced maintainer. Unfortunately, this method of 

relying on image comparison may be negatively impacted by poor focus, as well as 

inexperience or subjectivity of the person performing oversight. Thus, it is recommended 

that one of the technologies explored in this document be used to generate baseline digital 

maps to improve analysis and comparison of MRBs during the inspection processes. 

c. Sustainment Digital Imagery 

One of the major changes recommended through analysis for the acquisition and 

sustainment process is to integrate a digital mapping and software comparison capability 

into the component inspection processes used in the sustainment phase of the MRB 

acquisition life cycle. Using technology to generate better inspection methods with 

improved detection, storing a digital map, and using software tools to quantify changes 

over time, the defense industry can realize cost avoidance opportunities and take measures 

to further eliminate faults leading to component failures before occurrence. After a baseline 

digital map is generated and stored, it can then be compared to new digital maps created 

during maintenance repair and overhaul activities. Our analysis supports considering the 

use of shearography or thermography as an inspection method for use during MRB 

sustainment activities. 
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d. Software Tools 

The research conducted for this document did not go into any detail concerning the 

use of, and acquisition of, a software tool that could be used to analyze and/or compare 

digital images. However, the advance of technology over the last decade has allowed for a 

multitude of software analytic tools that are available in private industry. Such an example 

would be the facial recognition tools used in airports around the world. Software tools such 

as this allow for an evaluation of a captured image in reference to a baseline image. Thus, 

it is reasonable to assume that a software tool could either be acquired and/or developed or 

adapted from an industry technology that already exists. 

2. Potential Areas for Further Research 

Identification of software tools that could be used for analysis and comparison as 

follows: 

• integrating automated software tools to enable AI analysis for complete 

integration with the digital enterprise 

• incorporating baseline digital mapping with CAD drawing during the 

DD250 gain to inventory process as a means to verify quality assurance 

• explore recommendations applied to other components to assist in life 

cycle management 

3. Conclusion 

Not only is it time to renew the current inspection processes used on Black Hawk 

MRBs that date back 4 decades, the Black Hawk sustainment community also recognizes 

a change is needed in order to improve cost. This is evidenced as a comment from the item 

manager, material release point notes within the I2LOG and LMP database, which 

identifies cost savings opportunity by avoiding manual labor cost associated with strip and 

rebuild overhaul activity. The statement regarding the cost of overhauling a blade twice to 

achieve the same operating time as purchasing a new blade identifies additional 

opportunity for savings—through use of improved inspection processes to reduce the 
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MTBRRDR and premature divestiture. The complete and direct quote regarding 

sustainment cost avoidance from the database item manager states: 

7 July 2021, The New IDIQ for M&O Repair quantity of min120/max720 
for the CAT IV Repair Program for the Legacy Blade has been cancelled as 
of 30 June 21. This a TOP 25 Readiness Driver. This action was being 
initiated to maintain the CAT IV repair program with the Sikorsky but has 
since been discussed and now needs to be canceled due to MEL Price being 
$119,404.23 and the Strip & Rebuild proposed cost on current PRON 
ranges from $136K to $174K as well as the decrease in AMD 50.79 as well 
as current SOH-293 BO’s-0. This buy was needed so that we could continue 
to have a steady flow of assets to support the high AMD however, taking 
into account the number of hrs (average ~3,000 hrs) on Blades going into 
S&R, and if the average Blade lasts~6,000hrs, that means we would be 
paying approximately more than twice ($136,000 x 2 = $272,000) vs. new 
spares cost ($183,698.82). Mr. Muniz received approval from upper 
management within ALC which is allowing us to cancel this M&O Repair 
effort. (“I2LOG Material Release Point Notes,” 2021) 

In summary, this research detailed the aspects of the Black Hawk MRB and the 

associated life cycle processes. The primary goal of this research was to answer the three 

research questions: 

1. Could digitally mapping MRBs provide a decision-making template to 

assist in evaluating component integrity to design specification? 

Answer:  Yes, with a caveat of allowing a computer-aided system to 

analyze and correlate the initial component data from the OEM. 

2. Are the benefits of digitally mapping MRBs throughout the component 

life cycle quantifiable? 

Answer:  Yes, the benefits are appreciably quantifiable—based on cost 

savings opportunity examples and component reliability improvements 

gained from early defect detection and improving component QA 

processes. Also efficiencies gained by new technology infusion and digital 

imagery comparisons for structural anomalies revealed over time through 

use of automated software. The mapped data captured and compared 

during sustainment would feed product improvement initiatives and OEM 
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component designs during next generation development and 

manufacturing improvement initiatives. 

3. Do past and present MRB inspection methods and component 

documentation procedures still provide the best sustainment for the Army 

as we advance further into a growing digital environment and prepare for 

future conflicts? 

Answer:  No, based on analysis, the Army has not taken a leap forward in 

fully digitizing or automating component inspection processes to 

document material condition. A lack of digital mapping limits opportunity 

for AI integration, subjecting components to cycles of inspections without 

correlation to previous or future inspections, and remaining subject to 

human inaccuracies that negatively impact component reliability. 
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