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1.0 SUMMARY 

Printed Circuit Broad (PCB) level tampering attacks in an untrusted supply chain pose a major 
threat to DoD electronic systems. These tampering attacks, also known as PCB-level Trojans, are 
extremely challenging to detect due to the growing complexity of commercial COTS systems and 
lack of golden designs. Existing Trojan detection techniques suffer from the following major de-
ficiencies: (1) they focus on Trojan detection at chip level (e.g., µP, FPGA) and do not scale to 
board level; (2) board level inspection techniques (e.g., optical inspection) do not scale to large 
volume, and are expensive, time-consuming, and often not reliable in covering diverse Trojan 
space; and (3) they rely on availability of golden or reference designs, which may not be available. 
In this seedling project, we have made significant progress on developing preliminary versions 
of a board-level Trojan benchmarking platform and an innovative board-level Trojan detection 
tool.  We have also studied associated metrics and evaluated these tools for effectiveness with 
respect to diverse modes of tampering attacks. We have observed that our solutions can effec-
tively address the major deficiencies of state-of-the-art approaches and provides a scalable, flexible 
PCB assurance platform. In particular, the seedling project has enabled us to develop and evaluate: 

1. A preliminary version of CAD tool to automatically generate large population of syn-
thetic Trojans of all forms and sizes (i.e., different Trojan classes with varying trig-
gers/payloads), for various open-source PCB designs. We use a graph-based analysis for
a PCB design to develop a novel dynamic PCB benchmarking algorithm and tool, that
uses parameterized Trojan templates built on viable attack scenarios. The tool is “config-
urable” by the users, through use of Trojan templates. We have evaluated the tool for 10
open-source PCB designs.

2. An integrated PCB-level Trojan insertion system using a custom PCB built with Intel
MAX 10 FPGA. We considered a PC motherboard as target PCB under test. We success-
fully demonstrated the efficacy of the platform in emulating various Trojans with pay-
loads of denial of service or information leakage.

3. Finally, a CAD tool that integrates a Machine Learning (ML) engine to infer existence
of Trojan in a PCB from its functional and structural parameters. It enables automati-
cally provisioning the ML based inferencing system to account for newly discovered Tro-
jan attacks or new vulnerabilities. It is trained on collected data on sample commercial
boards with large number of synthetic Trojans inserted on it. We observe very high detec-
tion accuracy achieved by this tool.
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2.0 INTRODUCTION 

Printed circuit boards (PCBs) are an integral part of the electronic devices' life cycle as they pro-
vide essential mechanical support and electrical connections to microchips and discrete onboard 
components. The economic and operational advantages have led the PCB supply chain to incor-
porate various untrusted entities. As a result, PCBs are becoming increasingly vulnerable to mali-
cious design alterations, also known as Trojan attacks, due to such distributed business model. 
Such mischievous modifications can cause functional failures or secret information leakage during 
field operations. 

While researchers have been investigating the threat of malicious modifications within the regime 
of individual microelectronic components, the possibility of PCB-level manipulations has primar-
ily been unexplored. PCB-level Trojans are extremely challenging to detect due to (1) the lack of 
golden or reference models in most use cases, (2) potentially unbounded attack space, and (3) the 
growing complexity of commercial PCB designs. Existing PCB inspection techniques (e.g., optical 
and electrical) do not scale to large volumes and are expensive, time-consuming, and often unre-
liable in covering diverse Trojan spaces. In the absence of standard benchmarking solutions, pro-
spective countermeasures for PCB trust assurance are likely to utilize homegrown representation 
of the attacks that undermine their evaluation and do not provide scope for comparison with other 
techniques. Additionally, simulation-based approaches for PCB Trojan insertion, while effective 
at creating a large population of possible Trojans, fail to provide functional feasibility analysis 
with a realistic workload for a trigger circuit. They are also incapable of estimating a Trojan's side-
channel footprint due to unavailability of physical models of diverse PCB components. Corre-
spondingly, there is a growing need to explore possible Trojan attacks on PCBs, analyze their 
functional and physical characteristics (e.g., impact on power or delay), and study the effectiveness 
of countermeasures against these attacks.  

In this report, we present an extensive approach to address the PCB trust and assurance-related 
concerns encompassing three critical aspects. Firstly, we develop a software-based benchmarking 
solution to facilitate an unbiased and comparable evaluation of countermeasures applicable to PCB 
trust assurance. Based on a taxonomy tailored for PCB-level alterations, we design a software tool 
flow for automatic generation of Trojan benchmarks in facilitating a comprehensive evaluation 
against a large number of diverse Trojan implementations and application of data mining for trust 
verification. Using the tool flow, we develop a fully custom ̀ `Trojan Benchmarks Suite'' (i.e., PCB 
designs with Trojans) containing representative examples of Trojans in the taxonomy inserted in 
different PCB designs of varying complexity and functionality. We analyze the Trojan designs ' 
stealthiness through experimental measurements from a custom-made PCB and a netlist's struc-
tural analysis and present the tool's runtime for many PCB designs.   

Furthermore, we introduce a PCB-level emulation system for Trojan insertion and activation in 
actual hardware. It is the first and only existing hardware Trojan emulation platform ever presented 
to the best of our knowledge. We perform hardware-level validation on both custom-made PCB 
(Hardware Hacking/HaHa board) and multiple commercial PCBs (e.g., desktop motherboard) to 
test the proposed system's ability in emulating various hardware Trojans that are designed to ex-
ploit board-specific hardware characteristics. Our experimental results demonstrate that a wide 
range of Trojans can be successfully activated, thus enabling the expected payload effects on both 
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types of boards to be studied and quantified. Additionally, we analyze the resulting data to create 
PCB-level Trojan benchmarks. We utilize a comparative evaluation of the experimental results to 
propose a risk-level metric that quantifies the detection probability and degree of payload impact 
of each Trojan on a given commercial PCB.  

Finally, we present a PCB-level Trojan detection framework that employs a machine learning 
(ML) model to learn Trojan signatures in functional and structural space and uses a trained model
to discover Trojans in suspected PCB designs with high confidence level. Using extensive evalu-
ations with ten open-source PCB designs and a wide variety of Trojan instances, we exhibit that
the trained model can achieve over 98% accuracy and detect Trojans in partially recovered PCB
designs.
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3.0 RELATED WORKS 

The possibility of PCB-level hardware Trojan was first discussed in [1] with a general model of 
Trojan attacks applicable to PCB. They also demonstrate two specific attack instances assuming 
different sets of supply chain entities to be untrusted. However, it does not provide a detailed tax-
onomy for PCB-level Trojans and does not present any benchmark suite.      
An existing work on hardware Trojan taxonomy and benchmarking covers malicious modifica-
tion of digital IC designs [2]. A benchmark suite containing 96 Trojan-inserted designs are avail-
able on the Trust-HUB website. These designs are provided in the form of register-transfer-level 
(RTL) codes, gate-level netlists, and layouts. The Trojans are contained in various IP cores such 
as AES, RS232, MP8051, etc. The suite contains few representative Trojan benchmarks from 
various broad classes of Trojans in the taxonomy.  

 To eliminate the limitations inherent to a static benchmark suite, [3] proposed a tool-based Tro-
jan insertion process to generate a diverse possible implementation for each class of Trojans. The 
tool takes a sample gate-level design of an IC and some configuration parameters that define the 
functional and structural behavior of the Trojans to be inserted. The tool identifies potential re-
gions in the sample design for Trojan insertion and integrates a gate-level Trojan circuit. It also 
verifies if the Trojan can be activated under a specific input pattern to the sample design. Similar 
to Trust-HUB Trojans, the tool-based Trojan insertion methods do not serve the benchmarking 
purpose for PCB-level Trojan attacks. {While the gate-level Trojan insertion tool uses a directed 
hypergraph to represent the netlist, PCB designs require bi-directional hypergraph data structure 
which involves different functions for traversal and modification of the graph. Moreover, PCB 
designs have much higher diversity of components than gate-level designs, which needs to be 
properly accounted for during graph analysis as well as during simulation. The PCB-level Tro-
jans are more diverse in structure as well, requiring dedicated insertion technique for different 
Trojan types. Therefore, existing algorithm and tool for gate-level Trojan insertion in IC design 
cannot be directly used for PCB.} 

The authors in [4] presented a taxonomy of PCB-level malicious modification and toolflow for 
automatic Trojan insertion. 
Unlike the PCB Trojan taxonomy in [4], our revised taxonomy provides more consistent nomen-
clature to widely cited IC-level Trojan taxonomy presented in [2]. It also provides a more fine-
grain classification of the attacks compared to [4] that allows a more accurate representation of 
coverage over various countermeasures. Compared to the PCB-level Trojan insertion tool flow 
presented in [4], ours proposed technique is widely adaptable by the research community as it is 
based on a freely-available KiCAD tool. The Trojan-inserted KiCAD netlists are suitable for 
SPICE simulation and can be converted to PCB layout for fabrication. KiCAD is also compatible 
with external tools such as Altium (PCB design tool), Eeshow (schematic differences analyzer),  
fped (repeated footprint automation), KiCad StepUp (integration of mechanical models in 
KiCAD),  KiCost (generating part-cost spreadsheets), and many others [5]. Furthermore, our tool 
flow can perform dynamic alteration of the existing templates during insertion to create func-
tional variants of the Trojans; enabling the creation of a large pool of diverse Trojans from a lim-
ited number of designs. Such a diverse Trojan database is suitable for both evaluations of coun-
termeasures and training ML models for detection.      
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4.0  AN AUTOMATED FRAMEWORK FOR PCB-LEVEL TROJAN BENCHMARKING 

4.1 LIFE CYCLE OF PCB 

PCBs are commonly made from non-conductive substrate materials where layers of copper inter-
connects are etched to draw connections between the components on the board's surface. Not all 
PCBs go through the exact same steps, but generally, the process of forming a PCB board starts 
with a concept of the product elaborating its functionality and requirements for the intended appli-
cation (e.g., area footprint, cost, power budget etc.).  

The high-level concept of the product is partitioned into several functional units and for each unit, 
the design team develops a rough sketch of the schematic that can attain the desired functionality. 
Some partitions of the schematic can be simulated to ensure that the intended functional and par-
ametric behavior can be attained with the current design. Oftentimes, the schematic is finalized 
through multiple iterations of redesign and simulation. Once the schematic is completed, it is 
drawn using software that can further assist in the layout generation process. In many cases, the 
simulation and actual design process is performed using different software. To finalize the sche-
matic, the design team must ensure that the specific components used in the schematic are readily 
available in the market. This stage is also known as the Bill of Materials (BoM) validation where 
the specification, quality, and availability of each component used in the schematic is verified.  

After BoM is validated, the layout of the design is created. The layout creation stage takes ad-
vantage of an EDA tool that helps to create a board outline, importing netlist (obtained from sche-
matic), placement of netlist components, routing the interconnects, design rule check (DRC), silk-
screen cleanup, and generation of final design files for fabrication (e.g., Gerbers, netlists, etc.). 

The design files are sent to a fabrication facility where the board containing the interconnect is 
manufactured. The next stage in the supply chain is the assembly process where the components 
are mounted on the surface of the board. The assembled PCB is tested to ensure that all the com-
ponents are placed correctly and the system is providing the correct functionality. Various Design-
for-Test structures, such as boundary scan and built-in-self-test units are generally available within 
the PCB design to facilitate the testing process.  

For economic and practical reasons the design, fabrication, and assembly process of PCB is gen-
erally done by different vendors. If the design house procures the design from a third-party vendor 
in the form of a schematic, netlist, or layout, it cannot be trusted. Even if the design is in-house 
and considered trustworthy, reliance on a third-party fabrication or assembly facility introduces 
the potential of malicious modifications to the original design. In some cases, a PCB is procured 
from the market and the consumer is completely isolated from the design and fabrication process. 
In such a scenario, all the supply chain entities, including the design house, foundry, and assembly 
and testing facility are considered untrusted. Therefore, in the current business model, there are 
several scenarios where the trustworthiness of a PCB can be undermined.  
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4.2 DEFINITIONS 

4.2.1 PCB-LEVEL TROJAN 

PCBs consist of various microelectronic components spread across multiple alternating layers of 
conducting and insulating materials. Conductive planes across different layers are connected 
through vias.  

A PCB-level Trojan can be designed by introducing additional components that do not contain any 
malicious sub-circuit internally. For instance, to construct a PCB-level Trojan, an attacker may 
introduce several additional NPN transistors that strictly follow the behavior of a generic NPN 
transistor but do not have any relation in serving the intended functionality of the PCB.     

Board-level Trojans could also be introduced without integrating additional components by only 
altering the structural and/or parametric behavior of conducting (e.g., copper traces, vias, etc.) and 
insulating parts of the PCB layers.  

A more complex attack vector utilizing both intra-board and intra-component modification is pos-
sible as well. However, in this report, we assume that the individual microelectronic components 
perform their designated functionality and there is no malicious functionality hidden inside the 
components.  

4.2.2 PCB TROJAN BENCHMARKS 

A PCB Trojan benchmark is a PCB design with one or more PCB-level Trojan circuits implanted 
on it. The benchmark could be in the form of specification, netlist, schematic, or layout.   

Figure 1. Taxonomy of PCB-level hardware Trojans. The dotted-box show the Trojan 
classes primarily applicable to PCBs. 

4.3 PCB TROJAN TAXONOMY AND TROJAN DESIGNS 

4.3.1 PCB TROJAN TAXONOMY 

The only existing classification of PCB-level Trojans divides the Trojan space into two broad cat-
egories. In the first category, the design house is assumed to be trusted, and in the second one, both 
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design house and foundry are considered to be untrusted [1]. To precisely identify the coverage, 
strength, and weakness of various countermeasures, a taxonomy of Trojans with fine-grained clas-
sification is required. Again, existing taxonomy for IC-level Trojans do not directly apply for PCB 
as their design abstractions, flexibility for modification, and post-fabrication physical access to the 
internals are different [2]. Hence, by improving upon the existing taxonomy of IC-level Trojans, 
we have developed a fine-grained classification for PCB-level Trojans as presented in Figure 1. 
We can observe several categories of Trojans that are only applicable for PCBs (marked with 
dotted box). For instance, introducing additional components or alteration of traces after fabrica-
tion and assembly of the board is feasible in PCB. Such modifications are usually considered as 
invasive physical attacks [6]. The goal of PCB physical tampering is to observe an immediate 
malicious outcome during the attack, such as modchip attacks in gaming consoles. However, Tro-
jan insertion, whether before or after fabrication, is likely to occur with a future goal to compro-
mise the system.  

Most in-field invasive attacks on ICs require significant resources for decapsulation, delayering, 
and modification at the nano-scale level. For PCBs, physical alteration after fabrication is more 
feasible, which motivates us to consider post-fabrication alteration in the taxonomy. The physical 
alteration could also be used as an activation mechanism for certain Trojans. For instance, thinning 
of traces at the surface layer is very feasible and can be used to trigger a failure from heating 
generated during long hours of operation [1]. The location of insertion in a PCB can be classified 
with respect to the target layer of alteration. For instance, PCB designs developed by third parties 
may have malicious circuitry at the surface level of the PCB, as the consumers do not have a 
reference design. However, in the presence of a reference or “golden” design, the attacker is likely 
to introduce the alteration within the hidden layers only.          

Figure 2. High-level illustration of addition model Trojan that is designed by introducing 
additional com-ponent in the PCB. We present a number of methods to construct hard-to-

activate trigger logic and payload logic to leak a victim signal or corrupt its function 
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4.3.2  TROJAN DESIGNS 

We use two high-level Trojan models to describe the Trojan designs. These two models are defined 
by the type of change required for insertion.  

The designs under these two models represent various Trojan classes within the taxonomy. The 
first model requires the addition of new components, thus named Addition Model. The second 
model is called Alteration Model that alters the existing PCB layout without adding new compo-
nents.   

4.3.2.1 ADDITION MODEL 

Figure 2 shows the generic structure of this model that contains a trigger and a payload. The trigger 
takes one or more inputs from the existing traces of the board to construct a hard to activate trigger 
condition. This is necessary to ensure that the Trojan does not get accidentally triggered during 
functional testing of the board. Difficult activation can be ensured by integrating the large number 
of traces that rarely reach a specific activation condition, or by constructing a trigger circuit that 
requires multiple excitations of a specific condition. The payload can be designed to achieve a 
number of malicious outcomes as described in the taxonomy. Certain implementations may only 
contain a payload (i.e., always-on Trojan). However, such Trojans must not cause any observable 
impact on the functionality or parametric behavior of the board throughout their activation.  

For the addition model, we can generally assume that the PCB design is obtained from a third party 
vendor and the consumer has no reference design to identify components that are included for 
malicious purposes. If the design house is trusted and a reference design is available, such Trojans 
can be still be inserted in a stealthy manner such that they are hard to identify through simple visual 
inspection. This can be achieved by designing a Trojan with very few components with small 
footprint and encapsulating components between PCB layers using an “Oreo construction” [7]. 
However, such insertion currently requires manual intervention of the fabrication process. 

 In the addition model, we further classify the Trojan designs into two types: 1) Discrete compo-
nent-based Trojans and 2) IC-based Trojans. Discrete components are single units of circuit com-
ponents such as transistors, resistors, capacitors, and diodes. On the other hand, ICs contain a 
combination of discrete elements (e.g., transistors) in a large number and provide more complex 
functionality within a single component. While an IC could be used to implement a complex Tro-
jan, the presence of an IC that appears unrelated to the intended functionality of the system might 
raise more suspicion compared to a few discrete components like diodes, resistors, and capacitors 
spread throughout the board. Therefore, these two models provide a trade-off between functional-
ity and stealthiness. The discrete component-based Trojans in this report are designed by us, while 
the IC-based Trojans are from known attacks and literature.   
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Figure 3. Three different implementation of 2 input NAND: (a) using resistor-transistor 
logic, (b) diode-transistor logic, and (c) transistor-transistor logic. 

Figure 4. Example of alteration model: signal from component 3 with higher drive strength 
can overdrive the signal going from component 1 to component 2. Drive strength can be 

increased through the alteration of trace impedance or structure. 
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Table 1. Examples of Various Real-World PCB-level Trojan Attacks. 

4.3.2.2  ALTERATION MODEL 

For the alteration model, we explore the various trace modification techniques presented in [1] and 
[12]. Signal state hijacking techniques have been discussed in [12] through the alteration of drive 
strengths of different signals connecting together. Such connections are common in JTAG or other 
debug infrastructures where the debug pins are connected to different pins among several board 
components.  

As shown in Figure 4, trace from component 1 is designed to drive component 3 and component 
2. However, by configuring the pin of component 3 as an output with a higher drive strength than
the output of component 1, the signal going to the component 2 can be controlled via component
3. Drive strength of a trace can be altered by modifying the trace impedance, length, thickness, or
by integrating buffers [12]. Thinning of PCB traces has also been shown in [13] to reduce the
lifetime of interconnects (time-triggered functional failure).

Attack 
Primary Modifi-
cation Type 

Location of   Modi-
fication/Insertion Attack Goal Model 

Big Hack [8] 
Inclusion of small 
microchip 

Between the BMC 
and FLASH 

Alters the 
BMC firm-
ware Addition

Modchips of the State 
[9] Inclusion of FPGA 

Between the BMC 
and FLASH 

Alters the 
BMC firm-
ware Addition

Xbox  Hack [10] 
Inclusion of wires 
and modchip LPC Headers and IC 

Run unsigned 
soft-
ware/games Addition 

Firewalk  [11] 
RF Transceiver 
and processor 

Dual stacked RJ45 / 
USB   connector. 

filtering net-
work  traffic Addition 

Cottonmount-I [11] 
RF transceiver and 
digital core USB 

Provide a 
wireless 
bridge to net-
work, load ex-
ploit software Addition 

Surlyspawn [11] RF retro-reflector 
Data line from key-
board 

Broadcasts 
signals from 
keyboard Addition 

Trace   altration [1] 

thinning/rerouting 
of traces,   \\ alter-
ing drive strength   

JTAG connection 
and shared bus             

signal state hi-
jacking Addition

Crosstalk Trojan  
[12] 

Alters trace param-
eters 

Traces that may con-
tain critical data 

Corrupt data 
in critical 
traces Alteration
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The alteration model also includes Trojans that involve the replacement of existing components 
with recycled, counterfeit, or maliciously altered components. Therefore, new components are not 
included.   

Figure 5. Algorithm for Trojan Inertion. 

4.4 Toolflow for Synthetic Trojan Benchmark 

The proposed toolflow is capable of inserting Trojans presented in the addition model. Both dis-
crete component-based Trojans and IC-based Trojans can be inserted. Since the toolflow uses 
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KiCAD netlist, the user can include a desired Trojan by drawing the schematic in  KiCAD and 
exporting the netlist.  

KiCad can leverage ngspice to perform SPICE based circuit simulation. Therefore, the toolflow 
offers simulation-based insertion mode, along with random and user-defined insertion. It also pro-
vides dynamic alteration of the Trojan during insertion to create variants of the static templates.  

The Trojan insertion flow of our tool is presented in Algorithm in Figure 5. Algorithm for Trojan 
Inertion. The tool inserts a Trojan in a user-provided PCB netlist (Dhost) according to configuration 
parameter list Config that contains several variables. Using these variables under the Config list, 
the user can define the operational modes such as random or user-defined, desired trigger/payload 
templates, desired location for insertion, etc. For instance, the mode variable M1 (in line 2) helps 
the user to choose between random and user-defined selection of trigger and payload circuits, and 
mode variable M2 (in line 11) selects between various insertion modes (i.e., random, user-defined, 
and switching activity-based). The user also provides a Database directory that contains trigger 
and payload templates in KiCAD netlist format. The final output of the tool is the Trojan inserted 
PCB netlist DTrojan. Below we describe the individual steps in more detail.    

Figure 6. (a) Trigger circuit similar to A2 Trojan [14] where capacitor and op-amps are 
used to design activation mechanism that requires the rare condition to occur multiple 

times. Payload with single transistor: (b) impacts the victim when the transistor is off, (c) 
impacts the victim when the transistor is on. 
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4.4.1 SELECTION OF TROJAN AND INSERTION LOCATION 

As shown in Algorithm in Figure 5. Algorithm for Trojan Inertion. the PCB design provided by 
the user Dhost is parsed by the tool using the constructGraph function and a bi-directional graph 
Ghost is generated. The graph formed is bi-directional as a PCB netlist contains interconnects for 
which data/current can flow in either direction. The user can select between two different Trojan 
template modes using M1, random and user-defined. The random mode arbitrarily chooses a trig-
ger and payload template from the $Database$ directory using the randTemplate function. Two 
separate database directories for trigger and payload are provided by the user (i.e., Database.trig-
ger and Database.payload). Currently, the database contains various discrete component-based 
trigger and payloads. The integration of a template within the database requires the user to modify 
the trigger and payload net names in the KiCAD netlist to add labels such that the tool can identify 
the nets to be connected to the host design and the connection type. There are two major types of 
connections, continuous and discontinuous. Continuous connection involves directly connecting 
two nets.  and, discontinuous connection involves passing a host design's net through a Trojan 
component. For instance, in Figure 6 (a), the TRIG input of the trigger circuit should be directly 
connected to a net in the host design. To include the label in the trigger netlist, the input net names 
of the template should be changed to TRIGTriggerCont to indicate a trigger net with the continuous 
connection.    

Conversely, the discontinuous connection is generally used for certain payloads. As shown in Fig-
ure 6(b), a victim net in the host design must be broken and connected to Victim and VictimMod 
such that it passes through the payload transistor. To insert the labels in a netlist, Victim and Vic-
timMod should be converted to Victim_Payload_Discont_Begin and Victim_Mod_Payload_Dis-
cont_End respectively.    

Once the modification is done, the netlist is copied to the corresponding database.  

The user-defined trigger and payload selection mode is used when the user wants to insert a spe-
cific Trojan, instead of randomly selecting from the database. In this mode, the user must provide 
the file directories of the desired trigger and payload using the Config parameter list (lines 6 and 
7). To insert IC-based Trojans that combine trigger and payload circuitry in one IC, we provide 
the IC design as a trigger file and keep the payload directory empty. The tool automatically under-
stands the Trojan model and connects it to the host design according to the labels of trigger and 
payload nets in the netlist.  

Once the trigger and payload templates are selected, their location of insertion in the host PCB 
design is identified. The user can choose between three different insertion modes using M2, ran-
dom, user-defined, and switching activity-based insertion. For random mode, the tool first analyzes 
the trigger and payload templates to be inserted and counts the number of nets for which a connec-
tion to the host design is required. The tool then identifies all eligible nets in the host design for 
connecting the trigger and payload wires and then randomly selects from them using the randNet 
function (lines 13 and 15). 

The tool contains predefined rules to avoid redundant and invalid connections during the random 
selection of nets. For instance, GND and VDD nets in the host design are generally not eligible 
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nets for connecting the trigger or payload. The tool also avoids selecting the same nets in the host 
design for connecting the trigger and payload of the same Trojan as it could create a feedback loop. 
The tool avoids selecting the same host design net for connecting two different trigger nets as it 
would increase the activation probability of that Trojan, making it less stealthy. The tool also en-
sures that multiple Trojans inserted in the same host benchmark will use unique sets of trigger and 
payload nets to avoid placing the Trojan in the same location.  

If M2 is user-defined, the tool simply takes the insertion location for trigger and payload through 
a text file containing the location and connection information (i.e., user_trigger_loc and user_pay-
load_loc). If the user is interested in placing the Trojan in the desired target location, this mode is 
preferable. In this mode, the tool follows the information obtained from the text file, instead of the 
labels in the netlist. Each line of the text file should contain the trigger/payload net name, the 
corresponding host design net name to be connected, and the connection type (continuous/discon-
tinuous). For each discontinuous connection, two trigger/payload net names should be provided 
that will connect to the two segments of the host design net after it is divided into two nets. Before 
insertion, the tool will divide the host design net (e.g., N1) and create a new net with prefix Mod 
(e.g., N1_Mod). Therefore, for discontinuous connection, we include two net names (e.g., Victim 
and Victim_Mod) for one host design net (e.g., N1). During insertion, Victim connects to N1 and 
Victim_Mod connects to N1_Mod. 

For simulation-based insertion, the tool performs a simulation of the host PCB design using 
ngspice for large number of cycles and collects the signal transition information to identify rare 
nets. The simulation data from ngspice is dumped to a text file and the data is analyzed using a 
Python script to calculate the switching activity of each net (list $S$ in line 22). The user must 
provide a lower and upper bound of switching activity as input parameter using $S_{l}$ and 
$S_{h}$ respectively if the simulation-based insertion is selected.  

The tool then identifies eligible nets for connecting with the trigger circuit by comparing the 
switching activity of each net with a user-provided range. Finally, the tool randomly selects from 
these candidate rare nets using the randNet function.  
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Figure 7. Algorithm for Trojan Variant Generation of Discrete Templates 

4.4.2 DYNAMIC VARIANT CREATION 

While functional diversity can only be achieved by designing new Trojans with different function-
ality and integrating the insertion process within the tool, structural diversity can be achieved au-
tomatically by creating functional variants of the existing templates. The variant of a template 
should provide the same functional behavior but appears structurally different.  

The tool supports the alteration of an existing template prior to insertion to create variants. For 
certain discrete templates, as shown in Figure 6(a), the tool can automatically alter the resistance 
and capacitance value within a certain percentage such that the functionality is not changed.  

New resistor and capacitor can be included by series to parallel conversion of resistors and capac-
itor without changing the equivalent resistance/capacitance. The tool contains functions that per-
form this transformation to the graph representation of the templates prior to insertion. The func-
tion can be enabled by the user by setting a flag in the input parameter. The transformations are 
performed differently in each insertion.   



Approved for Public Release; Distribution Unlimited. 
16 

Algorithm in Figure 7. Algorithm for Trojan Variant Generation of Discrete Templates shows the 
algorithm to generate the variants. This algorithm only executes for the discrete templates. For a 
given template, it first identifies all resistors and capacitors in the trigger/payload template. 

Next, the tool randomly selects a certain number of resistors and capacitors to alter. For each re-
sistor and capacitor, the type of alteration (series-parallel transformation and minor value change) 
is also randomized. By randomizing the candidate number of elements to alter and their alteration 
type, a large number of variants can be created from a limited number of hand-crafted Trojan 
designs. To ensure functional correctness under minor resistance and capacitance value change, 
verification of the variant is performed (e.g., line 11 and line 19 in Figure 1Figure 7 Error! Ref-
erence source not found.). In our case, we perform SPICE simulation.}   

4.4.3 POST-INSERTION VERIFICATION AND ANALYSIS 

The proposed toolflow provides a two-phase verification process to ensure that the Trojan is cor-
rectly inserted, and the insertion process has not caused any invalid connection. The first verifica-
tion phase occurs when the Trojan is inserted by altering the graph Dhost. The tool checks if the 
Trojan template graphs (e.g., Dtrig, Dpay) are correctly connected to the desired edges of Dhost. After 
insertion, the tool parses the altered graph Dtrojan and checks if there exists a direct connection 
between the corresponding edges of D_host and expected D_trig/D_pay nets. If the tool finds no 
connection or connections with other components in the path, the tool will report the issue which 
can be checked by visualizing the graph.  

Certain invalid connections created during the insertion process will be indicated by the error mes-
sage when it is opened by KiCAD and an initial layout is generated. As shown in Figure 8, KiCAD 
automatically renders the connections among the different components and correct rendering of 
the design requires a design free from invalid connection as shown in Figure 9. Additionally, the 
user can invoke ngspice to perform a simulation of the Trojan inserted netlist to perform further 
analysis to confirm the desired malicious functionality. 
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Figure 8. Layout of the Trojan inserted PCB using KiCAD. 

Figure 9. Snapshot of error message in KiCAD while opening a Trojan inserted netlist with 
invalid connec-tions. 
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4.4.4 FABRICATION 

While certain countermeasures may only require the Trojan inserted netlist, or its graph represen-
tation for analysis, other detection techniques like side-channel analysis may require a fabricated 
Trojan inserted PCB design for evaluation.   

The layout in Figure 8 can be manually routed by the user to generate the final Trojan inserted 
PCB design that can be fabricated. Alternatively, the Trojan inserted netlist can be directly pro-
vided to other PCB design softwares like EasyEDA where the generation of routed design could 
be even easier [15]. Fig. \ref{fig:layout} (a) shows the routed version of the Trojan inserted PCB 
design. As shown in Fig. \ref{fig:layout} (b), KiCAD can also generate a 3-D model of the PCB 
automatically from the netlist where we marked the Trojan components in red.  After routing, the 
PCB design can be easily fabricated by sending the output files from KiCAD to a PCB foundry 
and assembler. The following output files can be generated by KiCAD for fabrication: 

 footprint position file, drill file, footprint report, IPC-D-356 netlist, bill of materials, and Gerber 
files. 

Figure 10. (a) Routed PCB layout obtained from the netlist after Trojan insertion using the 
tool. (b) 3-D view generated from the same netlist in KiCAD with the Trojan components 

marked in red. 
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4.5 RESULTS 

In this section, we present analyses related to the Trojan designs, generated benchmarks, and the 
runtime complexity of the tool. First, we present the side-channel footprint of some of the Trojans 
using a fabricated Trojan-inserted PCB. Next, we perform a dissimilarity analysis of the bench-
marks to show the structural stealthiness of the Trojans and the diversity of the benchmarks we 
used. Finally, we present a complexity analysis of our tool.    

Table 2. Trigger and Payload of the Fabricated Trojans. 
Trojan Name  Trigger Type  Payload Type 

Trojan1  4 input AND  XOR 

Trojan2  4 input NOR  XOR 

Trojan3  8 input Mixed  XOR 

Trojan4  8 input Mixed with Capacitor  MUX 

Trojan5  8 input Mixed with Capacitor  MUX 

Table 3. Overhead Analysis for Trojan Inserted PCB Designs 

4.5.1  EXPERIMENTAL RESULTS FROM FABRICATED PCB 

We designed a PCB Trojan platform by integrating five large discrete component Trojans with 
different trigger and payload combinations as listed in Table 2. These Trojans are selected due to 
their large area footprint.  

A mix trigger is 4-input AND and NOR triggers combined with one additional transistor. Trojan4 
and Trojan5 merges the mix trigger with two different capacitor-based triggers (without and with 
the diode). We used two 8-bit AVR microcontrollers to drive all the trigger inputs. The XOR 
payloads corrupt various victim signals going to the seven-segment displays. The MUX payloads 
were connected to leak victim signals via highly probable or observable points in the PCB, such 
as IOBs and LEDs. The fabricated PCB is shown in Figure 11.  

To analyze the side-channel footprint of each Trojan, we measured the board-level current while 
keeping the Trojan in two states: inactive and active. In inactive mode, the input to the Trojan 
under consideration was kept fixed at a value that does not trigger the Trojan. The rest of the PCB 
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that includes the other four Trojans were applied random vectors from the two microcontrollers. 
In active mode, the microcontrollers caused switching activity in the Trojan under consideration 
by applying vectors that alternatively activated and deactivated the Trojan in quick intervals. The 
activity of the rest of the PCB was kept the same as in the inactive mode. The current consumption 
of the five Trojans in active and inactive states is presented in Figure 12. We can observe a maxi-
mum of 3.5% increase in current consumption (for Trojan5). Without any reference design to ob-
tain a golden signature (assuming untrusted design house), such a minor increase in current con-
sumption is unlikely to raise any suspicion. In the presence of golden design, smaller Trojans can 
be inserted between the layers.      

Figure 11. Fabricated PCB Trojan platform designed from our benchmarks. 



Approved for Public Release; Distribution Unlimited. 
21 

Figure 12. Increase in current consumption due to Trojan activation (obtained from fabri-
cated PCB). 

4.5.2 PCB TROJAN BENCHMARK GENERATION 

Using the 10 sample PCB designs presented in the first column of Table 3, we generated large 
number of Trojan benchmarks.  

Most of the sample designs described are part of the CIAA (Computadora Industrial Abierta Ar-
gentina) project which is an open-source repository of various PCB designs [16], [17]. The sample 
designs are of varied complexities in terms of the number of components, number of connections, 
and types of components. The designs vary from containing simple components like resistors, 
capacitors, LEDs, transistors, etc. to complex components like SoC, microcontroller, memory, etc. 

We use different trigger and payload structures described in the addition model and inserted 50 
different Trojans in each of the sample designs using the random mode for both M1 and M2. We 
performed post-insertion verification of the Trojans using the graph-based automatic checking and 
all 500 Trojan inserted benchmarks were found to have the desired connectivity between the Tro-
jan and the host design. Thus, the proposed toolflow can handle PCB designs with varied com-
plexity.  

4.5.3 BENCHMARK DIVERSITY AND TROJAN STEALTHINESS 

We evaluated the structural dissimilarity of the golden (i.e., host design) and Trojan inserted 
benchmarks using a size-independent network similarity evaluation method called Netsimilie [18]. 
Given two networks or graphs, Netsimilie extracts features of each node of a graph, aggregates the 
features, and generates a signature vector for each graph. The Canberra distance between the sig-
nature vector of the graphs provides the dissimilarity value between the graphs. Lower Canberra 
distance indicates a lower dissimilarity between the graphs. Higher Canberra distance indicates 



Approved for Public Release; Distribution Unlimited. 
22 

that the graphs are highly dissimilar. A low Canberra distance between a golden design and a 
Trojan inserted design indicates the Trojan is structurally stealthy. 

The structural features extracted by Netsimilie for each node are based on the local and egonet 
based features. The egonet of a node is the induced subgraph of the node's neighboring nodes.  

The structural features extracted are: 

 Number of neighbors of the node

 Clustering coefficient of the node, defined as the number of triangles connected to the
node, divided by the number of connected triples centered on the  node

 Average number of neighbors that are two levels away from the node

 Average clustering coefficient

 Average number of nodes in the node's egonet

 Number of nodes in the egonet of the node

The above features form a feature matrix of a node. After extracting features from all the nodes of 
the graph, Netsimilie generates a node * feature matrix. The node * feature matrix is aggregated 
to a signature vector by using a set of aggregators on each feature. The aggregators used by Netsi-
milie are mean, kurtosis, standard deviation, skewness, and median. For each graph, a signature 
vector is generated. To calculate the distance between the signature vectors, the Canberra distance 
is used.  

To perform this analysis, the 10 PCB designs in Table 3 were inserted with the trigger circuit in 
Figure 6. The impact of this Trojan on the structure of each golden design as well of as the diversity 
among the 10 golden and 10 Trojan inserted designs were observed using the Canberra distance. 
The Canberra distance between all pairs of golden and Trojan inserted designs was calculated and 
plotted as a heatmap as shown in Figure 13. The rows of the heatmap were normalized with the 
highest value in that row. The dissimilarity between a golden design and the Trojan inserted design 
is very low (observable by the dark shade in the heatmap). Therefore, the Trojans inserted in these 
designs caused very minute structural changes. 

The dissimilarity between a pair of different golden designs is very high. Thus, the PCB designs 
selected for creating the benchmark suite are structurally diverse, making them suitable for exten-
sive and unbiased verification of countermeasure and creation of training database.   
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Figure 13. Figure shows the difference metric for different various pairs of PCB designs. 
Dark shade indicates lower difference and lighter shades indicate higher difference among 

two designs. The difference between the Trojan free and Trojan inserted version of the 
same design (e.g., ciaa_acc vs ciaa_acctr) have very minute difference. Conversely, two dif-

ferent benchmarks have very high difference value (e.g., ciaa_acc vs CIAA_K60). 

4.5.4 COMPLEXITY ANALYSIS OF THE TOOL 

The runtime of the tool primarily depends on the size of the design. The tool first converts the 
netlist to a graph using the constructGraph function that requires the tool to iterate through each 
component of the design and register them as an individual node and each net of a component as 
an edge. Constructing the graph has a complexity of O(n+w), where n is the number of components 
in the design and w is the number of nets. Selecting candidate nets for connecting to the trigger 
and payload circuit is O(rXw), where r is the number of triggers/payload nets required and $w$ is 
the number of nets. Simulation is another significant task that can be performed. Time to perform 
the simulation is also dependent on the design size and the time to analyze the simulation data 
depends on the number of nets in the design and the total time duration of the simulation. Simula-
tion is not a required component of our framework and is removed from the calculation. Therefore, 
the complexity is defined as O(n+w+rXw). Because r << w, the complexity simplifies to 
O(n+2w). Furthermore, in designs with complex ICs, the number of nets per component is very 
high, making 2w a more impactful component of runtime compared to n.  We ran the tool on a 
desktop computer with Intel i7 processor and 8GB RAM. The runtime is presented in Figure 14. 
For each host design with varied number of nets, the tool inserted 55 different Trojans. The light 
blue area plot shows the 50 runtime values for each host design. As we can see, the runtime does 
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not vary significantly while inserting different Trojans in the same design and changes proportion-
ally with the number of nets in the host design. For a design with around 800 nets (i.e., ciaa_acc) 
the runtime is around 1.8 seconds, which shows the scalability of the tool as the PCB design size 
increases.  

Figure 14. Graph of tool runtime for inserting 50 Trojan instances in host benchmarks of 
various sizes. The runtime is proportional to the number of nets in the host design. For in-
serting different Trojans in the same host design, there are minute variations in runtime. 
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5.0         AN AUTOMATED FRAMEWORK FOR PCB-LEVEL TROJAN BENCHMARKING  

5.1 PCB-LEVEL TROJAN INSERTION EMULATOR 

Figure 15. A high-level view of the system architecture used for Trojan insertion experi-
ments 

The architecture of our system for Trojan insertion emulation experiments is depicted in Figure 
15. By employing this system, necessary experiments can be conducted using either a custom
HaHa board, a computer motherboard, or a single-board computer. It uses one PCB as a victim
(into which the Trojans are inserted) and a custom HaHa board as a Trojan generator. The latter
uses an on-board Field-Programmable Gate Array (FPGA) to implement the payload circuitry for
a functional Trojan. The trigger input sources of each Trojan are derived from ICs on the victim
board or peripheral devices. The output of the trigger circuit transmits a “Trigger Enable” signal
that can activate each Trojan via its own FPGA-based payload circuit; the latter can utilize input
signals from other electronic components and/or devices of the victim PCB. Through the Trojan
payload circuit, both communication or side channel information leakage and Trojans of the ma-
licious memory/data write type can be implemented on the victim nodes. Their impacts can include
automatic overriding of the state of on-board LEDs, corruption of the readings of sensor ICs or
peripheral device parameters with false values, freezing or shutdown of the entire system, or un-
authorized readout of secret data bus information from the victim PCB, peripheral device, and/or
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other electronic components. A high-speed digital oscilloscope was used to probe the modified 
and/or leakage signals of the victim component or device. 

5.2 PCB-level Trojan Models on the Custom HaHa Board 

Figure 16. Triggers used for emulating PCB-level Trojan insertion using the custom HaHa 
board: (a) an AND gate, and (b) a NOR gate. Triggers used for emulating PCB-level 

Trojan insertion using commercial computer motherboards:  (c) an AND gate plus a circuit 
to hold. 

Figure 17. Trojan payloads used for emulation with the custom HaHa board: (a) an XOR 
gate, (b) a multiplexer that outputs the victim signal when enabled, and (c) a multiplexer 
with a linear feedback shift register (LSFR) circuit at the inputs that outputs the victim. 
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Figure 16 and Figure 17 list 2 different types of Trojan trigger circuits (Figure 16 (a)-(b)) and 3 
different Trojan payload circuits (Figure 17 (a)-(d)) that were used to generate hardware Trojans 
using the custom HaHa board. The trigger circuits consist of an AND gate or a NOR gate. The 
AND gate trigger is enabled only when all its inputs become logic high. By contrast, the NOR 
gate trigger is enabled only when all inputs are logic low. Both circuits were used to trigger the 
activation of the Trojan payloads shown in Figure 17. The number of trigger inputs determines 
the probability of the Trojan being activated. These inputs (denoted by Trig_1, Trig_2 and 
Trig_3) are derived from a second HaHa board that serves as the victim, as shown in the system 
architecture diagram (Figure 15). 

Three different payload circuits, as shown in Figure 17 (a)-(c), were designed to perform 
the functions of three types of Trojans. Each Trojan is only activated when its trigger conditions 
are satisfied. The circuit in Figure 17 (a) uses an XOR gate to invert each input data bit, thus 
implementing a Trojan that operates as a malicious memory/data write element. Another type of 
Trojan uses a multiplexer as the payload circuit (as shown in Figure 17 (b)) to leak either commu-
nication or side-channel data. This type of Trojan can be made less detectable by randomizing the 
input information with a linear feedback shift register (LFSR) circuit, as shown in Figure 17 (c)-
(d). Different combinations of these trigger and payload circuits can be used to design more so-
phisticated Trojans that maliciously modify data bus memory and/or automatically leak data bus 
information on the victim board based on the trigger inputs. 

5.3 PCB-LEVEL TROJAN MODELS ON COMMERCIAL DESKTOP MOTHER-
BOARDS 

Trigger circuits for commercial desktop motherboards were designed by adding an extra circuit 
that holds the trigger output value as long as the trigger logic generates a logic high. Two such 
Trojan trigger circuits are depicted in Figure 16(c)-(d). The extra circuit acts as a state machine 
that enters and holds the Trojan activation state as the trigger enable signal Trig_En goes logic 
high. The purpose of the state machine is to ensure that the Trojan remains activated even when 
any of the trigger inputs changes from logic ‘1’ back to logic ‘0’. This is very common when 
sourcing high-frequency trigger inputs, e.g., from signals on USB data buses or other high-speed 
input/output ports. 

Figure 17 (b) and Figure 17 (e)-(f) depict three payload circuits designed to insert Trojans 
into commercial PCBs such as motherboards and single board computers. Figure 17 (b) is used for 
information leakage from any victim IC on a commercial PCB or peripheral device, and is similar 
to that implemented on the HaHa board. The victim IC can be any chip that transmits and/or re-
ceives data - either from other ICs on the board or from peripheral devices. Fig. 8(e) is a circuit 
designed to maliciously write a logic ‘0’ into a vulnerable node of a peripheral device or an on-
board IC when the trigger is enabled (i.e., Trig_En goes logic high). Finally, Figure 17 (f) uses an 
inverting amplifier circuit to convert positive analog voltages at the input of an on-board analog to 
digital converter (ADC) into negative voltages, thus maliciously modifying the digitized data. As 
a result, the direct impact of the two latter Trojans is performance degradation of the victim device 
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and IC. Further impacts, such as a system-wide shut down, may occur if the device or IC is part of 
a critical on-board component such as the memory controller. 

5.4 EXPERIMENTAL SETUP AND DEMONSTRATION 

5.4.1 PCB TROJAN IMPLEMENTATIONS ON CUSTOM HAHA BOARDS 

Figure 18. Block diagram of Trojans implemented on custom Haha boards that (a) invert 
the state of an on-board LED, and (b) leak the state of the LED. In both cases, the Trojan is 

triggered when the user turns on all four on-board switches. 

Several Trojans were designed to perform either malicious data writes on a HaHa board or infor-
mation leakage operations using an on-board LED. Activation of these Trojans is determined by 
the state of four user-controlled switches on the victim HaHa board. Fig. 18(a) shows the block 
diagram of a Trojan inserted in the victim board that is activated when all four switches are turned 
on; the corresponding payload is maliciously inversion of the LED state. Fig. 18 (b) shows the 
block diagram of another Trojan that has the same trigger but a different payload, namely leakage 
of information on the LED state. The leaked data can be masked by adding an LFSR circuit that 
generates a pseudo-random code. Also, note that the AND-based trigger circuit of both these Tro-
jans can be easily replaced by a NOR-based circuit such that the Trojans are activated only when 
all the switches turn off. 

5.4.2 PCB TROJAN IMPLEMENTATIONS ON COMMERCIAL BOARDS 

In order to emulate the insertion of Trojans on commercial boards, we developed four different 
types of PCB Trojans and implemented them on either a motherboard or a single-board computer. 
Block diagrams of the first two designs, both of which contain a malicious data write payload, are 
shown in Fig. 19 and Fig. 20. As in Fig. 6, the experimental system uses a custom HaHa board as 
the Trojan generator and a desktop computer motherboard or a single-board computer as the victim 
board whose data buses are explored and modified. The first Trojan (Fig. 19) was implemented on 
a multi-protocol I/O and monitoring chip (F71889A from Fintek). We exploited a vulnerability in 
this IC's temperature monitoring function to generate false system temperature readings that can 
trigger unexpected system shutdowns. Specifically, the payload relies on the fact that the on-board 
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firmware automatically freezes or shuts down the system whenever the temperature sensed by the 
monitoring IC rises over a certain threshold. For this purpose, the chip uses an internal ADC to 
digitize the analog output voltage of a board-mounted temperature sensor. 

Figure 19. Block diagram of an “automatic computer freeze” Trojan triggered by a combi-
nation of USB device plug-in and audio playback events. 

Figure 20. Block diagram of an “automatic CPU fan speed change” Trojan triggered by a 
combination of USB device plug-in and audio playback events. 
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The temperature sensor voltage was found to decrease to a negative value when the temperature 
crosses the threshold value. Accordingly, the payload circuit uses an operational amplifier (op-
amp), as shown in Fig. 8(f), to convert the 3.3 V trigger enable signal (Trig_En) to a negative 
voltage that emulates an above-threshold temperature reading. The analog input pin for the 
F71889A’s temperature monitoring circuit requires a drive current of at least 0.1 A, so a high-
output-current op-amp (OPA551PA, from Texas Instruments) was used to implement the 
payload. The trigger circuit used by this Trojan consists of a three-input AND gate followed by 
a simple state machine. The latter captures transient logic “high” events at the AND gate output 
and holds (i.e., latches) them to generate a digital signal (denoted by Trig_En) that permanently 
triggers the payload. Here, the trigger inputs are two USB devices (USB mouse and keyboard) 
signals and one audio output signal from an audio codec IC (ALC892, from Realtek) on the 
motherboard. Accord-ingly, the Trojan is triggered whenever the two USB devices are plugged 
into specific USB ports (located on the motherboard's rear panel) and an audio file is played 
for more than 3 sec. The minimum audio duration for triggering the Trojan (3 sec in this case) 
was optimized to eliminate the possibility of unwanted triggering due to auditory noise (e.g., 
short-duration sounds generated when USB devices are plugged in). In addition, a level shifter IC 
is used to convert the low-voltage (~1 V) audio signals to 3.3 V logic signals that can be directly 
read by the FPGA. 

The second Trojan was designed to maliciously modify CPU fan operation, as shown in Fig. 
20. The victim node is the pulse-width modulation (PWM) input pin of the four-wire CPU fan 
on the motherboard, which can be attacked by overriding the PWM signal with a logic ‘0’. This 
results in a change of CPU fan speed, which can be confirmed through either a hardware 
monitoring program or directly via the sense pin of the CPU fan connector. The payload for 
this Trojan is identical to that shown in Fig. 8(e). Specifically, the multiplexer only passes a 
logic ‘0’ to the PWM pin when the trigger enable signal (denoted by Trig_En) is detected as 
a high level. The trigger circuit uses a two-input AND gate with a state machine, as shown in 
Fig. 7 (c). Here, the inputs are bus signals of two USB devices (USB mouse and keyboard). 
Thus, the impact of this Trojan is automatic and malicious change of CPU fan speed when both 
USB devices are plugged in.   

The third and fourth Trojans (shown in Fig. 21 and Fig. 22, respectively) are both focused on 
information leakage. The first design uses a AND-gate trigger and a multiplexer (as in Fig. 
8(b)) as the payload circuit. Its goal is to leak some data from the audio bus whenever the 
trigger is enabled, i.e., both USB devices are physically connected. A level shifter was again used 
to convert low-voltage audio signals to 3.3 V. The second Trojan design (Fig.  22) leaks data bus 
information from an Ethernet controller IC (RTL8152B, from Realtek) on a single-board 
computer through a physical-layer (PHY) transmit pin in 10 Mbps mode. The RTL8152B is used 
for high-speed wired networking over CAT-5 UTP cable (100 Mbps) or CAT-3 UTP cable (10 
Mbps).
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Figure 21. Block diagram of an “automatic audio data leakage” Trojan triggered by the 
plug-in of USB devices. 

Figure 22. Block diagram of an “automatic networking data leakage” Trojan triggered by 
the plug-in of USB devices. 
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5.5 SETUP FOR EXPERIMENTAL MEASUREMENTS 

Figure 23. (a) The custom hardware security platform (HaHa board) used for building the 
trigger and payload circuits. (b)-(d) Trojan insertion victims: (b) a motherboard, (c)-(d) a 

single-board computer (both front and back sides shown). 

Figure 24. Experimental setup for emulating Trojan insertion using (a) the HaHa board, 
and (b) the motherboard. 
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A custom HaHa board (shown in Fig. 23(a)) was used to implement Trojan generation for the 
proposed Trojan emulation architecture (shown in Fig. 6). The board contains an ARM-based mi-
crocontroller, a low-power FPGA (Intel MAX-10 with 50K logic elements), a flash memory mod-
ule, a side channel measurement module, an inertial measurement unit (IMU), a breadboard, and 
a few other basic elements commonly found on commercial FPGA development boards (including 
a seven-segment display, I/O modules, serial ports, switches, and buttons). The two primary mod-
ules used in the experiments were the FPGA chip and the breadboard; the former was programmed 
to implement the digital components of both trigger and payload circuits, while the latter was used 
to implement the analog components. The side-channel measurement module uses an instrumen-
tation amplifier that is configured to measure the current flowing through a 1 Ω current-sensing 
resistor. 

The desktop motherboard (MSI H67MA-E45-B3d with 16 GB DDR3 RAM) that was used 
as a Trojan insertion victim is shown in Fig. 23(b). The other victim used during the experiments 
was a single-board computer (LattePanda) with 4 GB RAM and 64 GB eMMC storage; its front 
and back sides are shown in Figs. 23(c)-(d). These two boards were chosen as being representative 
of older desktop computers and modern miniaturized computing platforms, respectively. 

Fig. 24(a)-(b) depict the setup used for Trojan insertion experiments on the HaHa board 
and the motherboard, respectively. The experimental setup using the single board computer as the 
victim is exactly the same as for the motherboard. A second HaHa board serves as the Trojan 
generator if a HaHa board is chosen as the victim, as shown in Fig. 24(a). The same HaHa board 
also generates Trojans when the motherboard or single-board computer is chosen as the victim, as 
shown in Fig. 24(b). In both cases, a high-speed digital oscilloscope (1 GHz bandwidth) was used 
to probe waveforms on the victim board. Finally, a laptop computer was used to compile the digital 
Trojan circuits (defined by Verilog netlists) and then program the FPGA on each HaHa board. 

5.6 TROJAN ACTIVATION AND VALIDATION RESULTS 

The setups shown in Fig. 24 were used to perform a variety of Trojan insertion experiments on 
both custom HaHa boards and commercial boards (motherboards and single-board computers). 
The results demonstrate successful Trojan insertion and payload activation, as described next. 

5.6.1 HARDWARE TROJAN INSERTION RESULTS ON THE HAHA BOARD 

We first conducted experiments to verify the effectiveness of all five Trojans designed using the 
HaHa board as a victim board, as listed in Table 4. The victim node explored during the experi-
ments is an LED that is programmed by the workload laptop to toggle every 0.76 sec. The Trojan 
trigger inputs are four switches on the victim HaHa board. In each case, the final experimental 
results matched the desired impacts of the Trojan payload. Trojans 1 and 2 were activated when 
all their trigger inputs became high or low, respectively, resulting in inversion of the LED state. 
Trojans 3 and 4 were triggered by the same inputs to leak state information from the LED on the 
victim board to another LED on the Trojan generator. Trojan 5 was also verified to function as 
expected; the LED state information received by the Trojan generator was equivalent to the ran-
domized information from the victim board. Table 4 lists the power consumption of the victim 
board (i.e., the device under test (DUT)), in two scenarios: i) when the Trojans are not activated, 
and ii) when they are activated. Among the five designs, Trojans 1, 2, and 5 result in a significant 
increase in power consumption when they are activated. As a result, these Trojans, which initiate 
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either malicious data writes or masked information leakage, are relatively easy to detect using on-
board supply current monitoring. 

Table 4. Summary of Trojan designs implemented on the HaHa board 

Trojan 

ID 

Trigger  

Input 

Trigger 
Circuit 

Payload Payload 
circuit 

DUT cur-
rent (mA), 
Trojan not 
activated 

DUT cur-
rent (mA), 
Trojan ac-

tivated 

Trojan 1 4 
switches 

4-input
AND gate 

Invert the 
state of one 
LED on the 
victim board 

2-input
XOR
Gate

14.01 36.44 

Trojan 2 4 
switches 

4-input
NOR gate 

Invert the 
state of one 
LED on the 
victim board 

2-input
XOR
Gate

5.23 17.86 

Trojan 3 4 
switches 

4-input
AND gate 

Leak the 
state of one 
LED on the 
victim board 
to an LED on 

the Trojan 
generator 

2-input
MUX

4.84 5.73 

Trojan 4 4 
switches 

4-input
NOR gate 

Leak the 
state of one 
LED on the 
victim board 
to an LED on 

the Trojan 
generator 

2-input
MUX

4.22 5.2

Trojan 5 4 
switches 

4-input
AND gate 

Leak the ran-
domized 

state  of one 
LED on the 
victim board 
to an LED on 

the Trojan 
generator 

2-input
MUX

21.56 26.82 
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5.6.2 HARDWARE TROJAN INSERTION RESULTS ON THE HAHA BOARD 

We first conducted experiments to verify the effectiveness of all five Trojans designed using the 
HaHa board as a victim board, as listed in Table 4. The victim node explored during the experi-
ments is an LED that is programmed by the workload laptop to toggle every 0.76 sec. The Trojan 
trigger inputs are four switches on the victim HaHa board. In each case, the final experimental 
results matched the desired impacts of the Trojan payload. Trojans 1 and 2 were activated when 
all their trigger inputs became high or low, respectively, resulting in inversion of the LED state. 
Trojans 3 and 4 were triggered by the same inputs to leak state information from the LED on the 
victim board to another LED on the Trojan generator. Trojan 5 was also verified to function as 
expected; the LED state information received by the Trojan generator was equivalent to the ran-
domized information from the victim board. Table 4 lists the power consumption of the victim 
board (i.e., the device under test (DUT)), in two scenarios: i) when the Trojans are not activated, 
and ii) when they are activated. Among the five designs, Trojans 1, 2, and 5 result in a significant 
increase in power consumption when they are activated. As a result, these Trojans, which initiate 
either malicious data writes or masked information leakage, are relatively easy to detect using on-
board supply current monitoring. 

5.6.3 HARDWARE TROJAN INSERTION RESULTS ON COMMERCIAL BOARDS 

Figure 25. Typical time-domain measurement results of functional leakage-type Trojans: 
(a) Trojan #3, and (b) Trojan #4.
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Table 5. Risk Level Metrics for Trojans on Commercial PCBs 

Trigger input Payload Signal 

frequency 

Probability of acti-
vation (score:0-1) 

Degree of payload 
impact (score: 0-5) 

Two USB mouse 
signals and 3-sec 

audio play 

Computer sys-
tem freeze 

DC 0.002 5

Two USB mouse 
signals 

CPU fan speed 
change 

35 kHz 0.02 2 

Two USB mouse 
signals 

Audio bus data 
leakage 

24 MHz 0.02 4 

Two USB mouse 
signals 

Ethernet control-
ler data leakage 

10 MHz 0.02 4 

Next, we replaced the victim HaHa board with commercial boards (initially the motherboard and 
then the single-board computer). The four Trojans designed for these boards were successfully 
triggered and resulted in the expected payload impacts (as summarized in Figs. 19 through 22). In 
the case of Trojan 1, the analog voltage at the temperature sensor input pin of the hardware super-
visor chip was converted from 1 V to -1 V, in turn causing the desktop computer to freeze when 
an audio file was played for more than 3 sec as well as a USB mouse and keyboard were plugged 
into selected USB ports on the back panel of the motherboard. In the case of Trojan 2, the CPU 
fan speed was maliciously decreased by ~32% (from 1554 rps to 1051 rps) by triggering a fre-
quency change of the CPU fan connector's PWM input signal (from 50 kHz to 35 kHz) when the 
two USB devices were plugged in. Trojans 3 and 4 were also inserted into both commercial boards 
and successfully acquired data bus information from the audio codec and the Ethernet controller, 
respectively. 

The leaked data from the victim boards was successfully probed at the Trojan generator; typical 
time-domain measurement results are shown in Fig. 25. The signal sensed from Trojan 3 (Fig. 
25(a)) is more distorted than that generated by Trojan 4 (Fig. 25(b)) due to its much higher data 
rate, which makes it susceptible to the effects of cable reflections. 

The measurement results were analyzed to derive Trojan risk level metrics, as summarized in Table 
5. Potential Trojan threats were assessed using two complementary criteria, namely probability of
activation and degree of payload impact, which can be multiplied together to obtain a measure of
overall risk. We quantified these criteria using scores with a range of 0 to 1 (for increasing proba-
bility of activation) and 0 to 5 (for increasing payload impact). In addition, we also specify the
characteristic signal frequency (or data rate) probed by each Trojan. This is because designs that
require access to higher-frequency signals are disfavored by attackers due to their increased hard-
ware complexity and data acquisition challenges. Based on our analysis, Trojan 1 has the highest
payload impact, because its activation leads to system freezes, which are very undesirable for any
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computing platform. This Trojan, however, is rarely triggered because its trigger conditions are 
more stringent than for the others (e.g., based on the number of required USB plug-in events), thus 
resulting in the lowest probability of activation. By contrast, Trojan 2 has the least serious payload 
impact, since normal system operation is largely unaffected by a modest change in CPU fan speed. 
Finally, Trojans 2, 3 and 4 have higher probability of activation because of their more relaxed 
trigger conditions. However, they are also likely to be disfavored by attackers due to their relatively 
high signal frequency. 

5.7 LIMITATIONS 

While the Trojan emulation platform can create benchmarks for assessing and comparing various 
PCB Trojan countermeasures, there still exist limitations on the types of boards and Trojans (de-
signs, payloads, and triggers) that are supported. One limitation is that leaking sensitive infor-
mation through power analysis of victim nodes on a commercial PCB is very difficult. The target 
signal trace path on the PCB has to be broken and a current sensor (e.g., a series resistor or Hall-
effect device) added after PCB fabrication and assembly to measure current flow, which is time-
consuming and demands significant PCB rework when the board has many layers. Another limi-
tation is that signals from high-speed ICs or peripheral devices on the victim nodes cannot easily 
serve as Trojan triggers because of two main reasons. Firstly, the FPGA on the HaHa board uses 
a relatively low clock frequency (in our case, typically set to 50 MHz). Secondly, high-speed I/Os 
based on low-voltage differential signaling (LVDS) require special impedance-matched driver cir-
cuits. In the absence of such drivers, LVDS signals above ~100 MHz are significantly distorted 
after transmission through 1-2 m of cable from the victim node to either the probing system or the 
custom HaHa board. The resulting degradation of signal integrity causes loss of the leaked infor-
mation that in turn makes the Trojan trigger unstable. A final limitation is that Trojans that mali-
ciously write data into on-board memory may not be enabled for some ICs on a commercial moth-
erboard or single-board computer unless the microprocessor or BIOS chip can be reprogrammed. 
If such specialized knowledge of the firmware is unavailable, inserting Trojans of this type into 
the PCB may lead to unexpected and permanent system-level failures. 

5.8 FLEXIBILITY AND SCALABILITY 

The Trojan emulation framework can be extended to find solutions to the three aforementioned 
problems. Firstly, other options for side channel attacks are available, including acquiring the local 
magnetic field and/or infrared (thermal) profiles near working ICs and traces. For example, sensing 
the magnetic fields generated on the PCB with and without Trojans inserted can allow significant 
amounts of information to be leaked from the victim nodes. In addition, the magnetic field ampli-
tude near a trace is proportional to current flow, which allows power consumption to be calculated. 
Limitations on information leakage from high-speed signals can be relaxed by replacing the FPGA 
on the HaHa board (i.e., the Trojan generator) with a higher-end chip that provides LVDS I/O 
modules for capturing high-speed data. Also, the bandwidth of the high-speed links between the 
Trojan generator and the victim nodes can be increased by using impedance-matched connections. 
Finally, collaborative Trojans can be developed to expand the scope of the emulation platform. In 
this approach, a microcontroller or microprocessor on the commercial PCB can be configured to 
serve as either the Trojan trigger or payload, thus enabling more complex Trojans to be realized. 
Fig. 26 shows a possible realization of a complex Trojan using the baseboard management con-
troller (BMC) module, as reported in [8]. The BMC module's function can be implemented into 
the FPGA of the HaHa board. 
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Figure 26. Implementation of the BMC module and other complex trigger logic can be 
done with the FPGA. 

5.9 INTEGRATION WITH EXISTING PCB ANALYSIS TOOLS 

More measurement instruments can be integrated into the proposed Trojan emulation platform. 
For example, a magnetic field probe (e.g., based on Hall-effect sensors) can measure the magnetic 
field near traces or ICs on the victim PCB, thus enabling power-based side channel attacks as 
described in the previous section. Also, high-speed digital oscilloscopes or logic analyzers can be 
added to the setup to allow probing and decoding of high-frequency data buses associated with 
DDR RAM, graphics processors, and other high-speed components. 
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6.0 A MACHINE LEARNING BASED GOLDEN-FREE PCB ASSURANCE FRAME-
WORK 

6.1 TROJAN DETECTION METHODOLOGY 

A golden-free Trojan detection framework is necessary for accurately detecting Trojans in a PCB 
design. We propose a framework that can detect Trojans in a PCB design using Machine Learning 
(ML) models. The overall flow of the Trojan detection framework is described in Fig. 9 where a
Trojan benchmarking tool is used to generate the Trojan inserted designs

For each type of Trojan a set of Trojan inserted designs is generated. The structural and 
structural-functional features of the Trojan inserted and Benign designs are extracted. The ex-
tracted features are represented in the form of an adjacency matrix. The adjacency matrix is flat-
tened to form a feature matrix. The data of the feature matrix is split into train and test dataset 
comprising of different Benign designs and different Trojan design, having no overlap of Trojan 
or Design. A machine learning classifier is trained on the training dataset, comprising of Benign 
and Trojan inserted design features. The trained ML model is evaluated on the test dataset com-
prising of different Benign and Trojan inserted designs. 

Figure 27. Overview of the proposed framework for hardware Trojan detection using  
Machine Learning. 

6.2 TRAINING DATASET GENERATION 

Generating Trojan-inserted PCB designs is one of the primary requirements for an ML-based 
Trojan detection framework. The Trojan inserted dataset needs to be sufficient as well as the in-
serted Trojans needs to have variations. We use a dynamic and automated Trojan insertion tool 
that can insert Trojans in any PCB design. The tool simulates the input design using an open 
source simulator and the uses it to generate the activation probability of each net in the input de-
sign. The structure of the Trojan templates are also modified. Based on the activation probability 
of the nets in the design, the tool selects the rare nets and connects them to the Trojan Trigger. 
The Trojan Payload is connected with a randomly selected design net. The Trojan Payload is 
connected at a random location to increase the coverage of the Trojans across the design. 
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Using the Trojan insertion tool, a large database of Trojans covering most of the design 
space can be generated. The Trojan insertion tool also makes the detection method robust by gen-
erating structural variations in the Trojan design. The tool can also support new Trojan designs 
which follow certain input/output rules. This enables us to integrate support for detection of new 
Trojan designs into the PCB Trojan detection framework. 

6.3 DATASET PRE-PROCESSING 

The Benign and Trojan-inserted PCB designs are pre-processed before extracting the features. 
Unlike gate level designs, PCB designs do not have a standard library which results in a high 
variation of component names across PCB designs.  

Therefore, we create a macro digest of possible PCB components for labeling and under-
standing the PCB.  The digest consists of 10 component categories: Programmable IC, Non-Pro-
grammable IC, Resistor, Capacitor, Crystal, Memory, Inductor,  Transistor, and Connector. Com-
ponents that support a workload or have programmable fabric fall under the Programmable IC 
category. Components consisting of digital circuits, like Operational Amplifiers, are considered 
under Non-Programmable IC category. Resistor, Capacitor, and Diode consists of all types of an-
alog resistors, capacitors, and diodes, respectively. Crystals and Oscillators are considered to be 
Crystals. Filters and Inductors are considered to be Inductor. Memory devices like RAMs are cat-
egorized as Memory. Discrete Transistors are considered as Transistors and Input/Output pins are 
categorized as Connector. While parsing of PCB, every component is annotated with a category 
from the digest. 

6.4 FEATURE EXTRACTION 

Based on the pre-processed PCB design description, the framework extracts a set of functional and 
structural features that are used in the subsequent steps. Fig. 10  illustrates the process of extracting 
the adjacency matrix from a sample PCB design. 

(a) (b) 

Figure 28. The feature extraction process from sample PCB designs: In (a) and (b) the sam-
ple PCB design (top) and the corresponding adjacency matrix (bottom) are shown. The 

part of the adjacency matrix colored in green is flattened to make the feature vector. 
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6.5  TROJAN DETECTION IN SUSPECTED PCB  

The feature matrix generated in the previous section is processed to generate training and testing 
datasets. The training data is used to train an ML algorithm to classify between Benign and Tro-
jan inserted designs.  

During evaluation of ML models among Support Vector Machine (SVM), Logistic Regression 
and Random Forest (RF), the RF classifier performed the best in detecting Trojans. Hence, we 
use the Random Forest classifier model for detection of Trojans in a PCB design. 

Random Forest (RF) is an ML algorithm based on Decision Tree algorithms. The algorithm utilizes 
ensemble learning in the prediction of an outcome. Multiple classifiers are used that solve a com-
plex problem. The algorithm is trained using Bootstrap aggregating which generates multiple train-
ing sets. Each of the generated Training sets are used to train a particular decision tress. The vari-
ance of each of the decision trees might be high but the overall variance is reduced. The reduced 
variance helps in increasing the stability of the algorithm. The increased stability of the algorithms 
prevents over-fitting. The average outcome of multiple decision trees are considered for the final 
prediction.
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6.6 EXPERIMENTS AND RESULTS 

In this section, we present the evaluation of the proposed PCB-level Trojan detection framework. 
We procure 10 open-source KiCAD [5] golden designs (see Table 6) and use the automatic Trojan 
insertion tool proposed in [19] to generate a diverse Trojan inserted design database. For both 
board level analysis (BLA) and element level analysis (ELA), we first randomly split the golden 
designs into two bins (train and test) based on a train-test split ratio. Next, we generate 15 variants 
for each of these design through non-malicious alterations without affecting the functionality. This 
leads to a total of 150 Trojan-free golden design variants split into test/train bins. For generating 
the Trojan inserted designs, we insert 2 to 6 ABT/DBT Trojans in the original 10 golden designs 
and split it based on the same train-test split ratio. For experimenting with partial PCB designs we 
first use hmetis to generate a random number of partitions in the range of [8,20]. Subsequently, a 
set of [1,8] partitions are considered hidden during the analysis. 

6.6.1 BOARD LEVEL ANALYSIS (BLA) 

In Table 7, for DBT with complete designs, we observe >90% Trojan/non-Trojan classification 
accuracy, Trojan class precision, and Trojan class recall. The same values are more than 80%, for 
ABT with complete designs. We observe a slight drop in detection efficiency for partial designs. 
Also, structural (struct) and functional (func) features combined generally leads to better accuracy 
for both ABT and DBT. Note, that the recall of our models are generally high indicating low false 
negatives. ASIC-based Trojans with only structural features appear to be harder to detect because 
they generally have a higher similarity with the host design. However, the detection efficiency 
increases when both structural and function features are combined. 

6.6.2 ELEMENT LEVEL ANALYSIS (ELA) 

For element level analysis (see Table 8), the accuracy, precision and recall values are generally 
high (>90%) expect for ABT with only structural features. As explained earlier, ABTs have a 
feature space overlap with the host design hence detecting them is slightly harder. As this is an 
element level analysis, if the framework can detect most of the malicious PCB components/ele-
ments, then the undetected/mislabeled malicious components can be subsequently inferred through 
manual inspection. 

6.6.3 TRAINING DATA REQUIREMENT ANALYSIS 

Obtaining good quality training data for PCB Trojan detection can be challenging. Hence, in Fig. 
27 and Fig. 28 we observe the effect of training dataset size on the detection accuracy. Increasing 
the training dataset leads to higher detection efficacy, however, even with a 60% training dataset, 
we were able to obtain >75% accuracy for all scenarios with only structural features. We observe 
similar trend for with both structural and functional features. 
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Table 6. Sample PCB Designs for Inserting Trojans 

Name of 
Design 

No. of 
comp. 

No. of 
comp. 

No. of 
conn. 

DC based 
Trojans 
inserted 

ASIC based 
Trojans 
inserted 

CIAA ACC 569 12 787 15 10

EDU CIAA 
K60 

187 2 238 15 10

CIAA K60 467 4 407 15 10

CIAA FSL-
MINI 

141 4 188 15 10

CIAA-PIC 433 4 404 15 10

EDU-INTEL 87 2 150 15 10 

CIAA PICO 67 2 144 15 10 

CIAA 
SAFETY 

275 2 240 15 10

CIAA-Z3R0 33 2 52 15 10

Audio Amp 49 2 78 15 10

Figure 29. Overall detection accuracy across all scenarios for different training dataset 
sizes with structural features. 
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Figure 30. Overall detection accuracy across all scenarios for different training dataset 
sizes with both structural and functional features. 

Table 7. Trojan detection results for board level analysis 

Trojan 
Type 

Features 
Used 

Accuracy (%) Trojan Class 
Precision (%) 

Trojan Class 
Recall (%) 

Com-
plete 

Design 

Partial 
Design 

Com-
plete 

Design 

Partial 
Design 

Com-
plete 

Design 

Partial 
Design 

DBT Struct 91.7 89.2 93.6 91.3 94.8 93.5 

Struct + 
Func 

95.8 92.1 94.5 94.6 99.7 99.3 

ABT Struct 85.7 68.6 85.4 71.0 100 97.0 

Struct + 
Func 

86.2 84.3 86.2 82.9 100 90..4 

Table 8. Trojan detection results for element level analysis 
Trojan 
Type 

Features 
Used 

Accuracy (%) Trojan Class 
Precision (%) 

Trojan Class 
Recall (%) 

Com-
plete 

Design 

Partial 
Design 

Com-
plete 

Design 

Partial 
Design 

Com-
plete 

Design 

Partial 
Design 

DBT Struct 97.6 94.8 94.9 92.5 96.2 92.6 
Struct + 

Func 
98.0 95.6 95.0 93.2 95.7 93.7 

ABT Struct 85.4 89.6 76.3 90.7 87.6 86.5 
Struct + 

Func 
86.7 92.8 95.1 92.4 91.4 88..4 
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7.0  CONCLUSIONS 

In this seedling project, we have developed a PCB-level Trojan benchmarking system and ex-
plored the feasibility of a machine learning based golden-model-free PCB trust verification pro-
cess. In this final report, we have described the major findings related to PCB-level Trojan inser-
tion and PCB trust verification. We have presented a taxonomy for PCB-level malicious circuits 
with associated designs of hardware Trojans. We have also presented a software tool flow for au-
tomatically generating a large number of diversified Trojan-inserted PCB benchmarks with dif-
ferent configuration options for Trojan insertion. We have analyzed the feasibility of these de-
signs by fabricating a set of representative Trojans on a custom PCB and observing their side-
channel footprint. We also analyzed the stealthiness of the Trojans through structural analysis 
and accessed the runtime by generating hundreds of PCB Trojan benchmarks.  

Moreover, we have described the design of a flexible hardware emulation platform that enables 
Trojan insertion and validation on both custom-made and commercial PCBs. A set of specialized 
hardware Trojans for both boards have also been designed and implemented. We have designed 
the Trojan triggers and payload circuits for activation using both internal (i.e., onboard) and ex-
ternal signals in both cases. We have implemented and presented an FPGA-based Trojan genera-
tor using the custom HaHa board to achieve this. The resulting data were analyzed to derive 
benchmarks for PCB-level Trojans, thus exploring their effects without fabricating and testing 
many board variants.  
Through hands-on experiments, we have exhibited that the Trojans triggered on HaHa boards 
can invert the state of an LED or leak the LED's state information to the Trojan generator. In ad-
dition, the Trojan-inserted motherboards and single-board computers can be triggered automati-
cally through multiple mechanisms (e.g., via USB device plug-in events or audio signals) to 
achieve the desired payload effects (e.g., system freezing, malicious changes in CPU fan speed, 
or sensitive data leakage from audio codecs or Ethernet controllers). The experimental results 
were analyzed to derive a risk metric for Trojans on commercial boards. The analysis manifested 
that Trojans that generate the most severe outcomes (e.g., system freezing) are less prone to be 
triggered (rare), thus reducing their risk of being exposed. On the contrary, the information leak-
age Trojans can be activated more often; however, they have less impact on the system.  

Finally, we have presented a comprehensive ML-based PCB-level Trojan detection framework 
that eliminates the need for golden or reference models. It integrates an automatic Trojan inser-
tion tool for creating a training dataset capable of creating significant structural and functional 
variants of Trojan instances for various Trojan classes. It uses a combination of structural (repre-
sented as subgraphs) and functional (computed as activation probabilities) features for training 
the ML models. The proposed method can detect whether a PCB is malicious and determine the 
type and location of malicious components present on a PCB. We have developed a completely 
automated tool flow, interfaced with commercial PCB design flow (with Ngspice for functional 
simulation), and evaluated it extensively with diverse PCB designs and Trojan types. We ob-
served that the proposed approach is highly effective in detecting unknown design alterations, 
and the false positive rate is very insignificant (<5%). The method is scalable to large PCB de-
signs and flexible to account for emerging Trojan types by accounting for a new Trojan template 
during training dataset creation. 
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While this seedling effort has made significant progress on PCB assurance under hardware Tro-
jan attacks and demonstrated the promise of a golden-free trust verification framework, our fu-
ture research and next steps can lead to transition of this technology to ensure trustworthiness of 
PCBs used in diverse DoD electronic systems, considering an untrusted supply chain. Future re-
search on this topic will include maturation of the PCB Trojan insertion tool and hardware emu-
lator as well as development of a golden-model-free PCB assurance framework that effectively 
leverages the power of supervised machine learning models. It will include development of al-
ways-on Trojans for PCBs with low area footprint and automatic insertion of Trojans from alter-
ation model that does not require incorporating new components. Automatic insertion of Trojan 
components between layers at the layout level using the Oreo construction can also be explored. 
Countermeasures that use reverse-engineering and side-channel analysis of power and thermal 
profiles can be evaluated using encapsulated Trojans with a small area footprint. We will also fo-
cus on improving the Trojan detection capability by considering additional features and more 
powerful ML models and evaluating emerging Trojan types.    
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