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Abstract 

The present effort (Phase 3) builds on our previously published prior 
efforts (Phases 1 and 2), which examined methods of determining the 
probability of detection and false alarm rates using thermal infrared for 
buried object detection. 

Environmental phenomenological effects are often represented in weather 
forecasts in a relatively coarse, hourly resolution, which introduces 
concerns such as exclusion or misrepresentation of ephemera or lags in 
timing when using this data as an input for the Army’s Tactical Assault Kit 
software system. Additionally, the direct application of observed 
temperature data with weather model data may not be the best approach 
because metadata associated with the observations are not included. As a 
result, there is a need to explore mathematical methods such as Bayesian 
statistics to incorporate observations into models. 

To better address this concern, the initial analysis in Phase 2 data is 
expanded in this report to include (1) multivariate analyses for detecting 
objects in soil, (2) a moving box analysis of object visibility with alternative 
methods for converting FLIR radiance values to thermal temperature 
values, (3) a calibrated thermal model of soil temperature using thermal 
IR imagery, and (4) a simple classifier method for automating buried 
object detection. 

  

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
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1 Introduction 

For this and subsequent studies, the Engineer Research and Development 
Center (ERDC) / Combat Capabilities Development Command (CCDC) 
Command, Control, Communications, Computers, Cyber, Intelligence, 
Surveillance, and Reconnaissance (C5ISR) Test Bed located at Cold 
Regions Research and Engineering Laboratory (CRREL) in Hanover, NH, 
was utilized. The Phase 1 study (2016) involved development of a test plot 
with buried objects and sensors emplaced with as minimal soil disturbance 
as possible (Clausen et al. 2020). The findings showed that significant 
spatial and thermal temporal variability is caused by incoming solar 
radiation, meteorologically driven surface heat exchange, subsurface soil 
temperatures, density, soil moisture content, and surface roughness. 
Observations indicate surface soil temperature is extremely heterogenous 
and the amount of temperature variance changes throughout a 24-hour 
(hr) cycle. The spatial distribution of thermal anomalies also varies with 
no consistent pattern. Consequently, comparing two different days with 
identically environmental conditions for a given time within a 24 hr cycle 
does not produce the same spatial background and target thermal 
response. We also found plastic objects heat and cool more rapidly than 
metal objects. 

Phase 1 showed that time differencing of images could enhance detection 
of buried objects as compared to background noise, making it possible to 
find objects not visible in a single image frame (Clausen et al. 2020). The 
effect of time differencing on the visibility metrics was also investigated 
and indicated a normalizing contrast metric was most useful for object 
detection. Using the normalized contrast metric we found that the soil 
over the buried objects exhibited a much larger difference in derived IR 
temperature, as compared to background implying the buried objects 
would be discoverable during sunny and warmer days near solar noon. 
Deeply buried objects became easily visible when incoming solar radiation 
was >900 watts per square meter (W/m2). 

A second study was conducted in 2018, referred to as Phase 2. Unlike 
Phase 1, Phase 2 involved removing the soil from the test plot area, 
homogenizing the material, then reapplying it along with buried sensors 
and objects representing targets of interest to the test plot into eight 
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discrete layers (Clausen et al. 2021). Each layer was compacted to a 
uniform density consistent with the background undisturbed density. 
Homogenization of the test plot soil greatly reduced the micro-scale soil 
temperature variability simplifying the analysis of the data. The Phase 2 
report focused on the design of the CRREL Test Bed along with data 
collection methodology and initial observations. Initial analyses were 
performed with a cross-correlation technique for determining the 
potential impact of meteorological factors and a simple contrast metric for 
detecting buried object visibility in thermal infrared (IR) imagery. 

The research objective of Phase 3, this report, is to continue to improve 
our understanding of the environmental (soil and atmospheric) 
phenomenological properties affecting the temporal and spatial thermal 
variance of soils. The primary question being addressed, similar to the 
previous phases, is how to quantify the natural variance, or background 
noise, such that it can be subtracted from a disturbed area or object 
“signal” by taking into account the physical phenomenological material 
and atmospheric properties. The CRREL Test Plot configuration used to 
facilitate this effort was identical to the Phase 2 setup. As the data 
collection methods and Test Plot configuration were covered in detail in 
that report (Clausen et al. 2021), this investigation is primarily concerned 
with statistical analyses of the data gathered during Phase 2. Our 
hypothesis continues to focus on the interplay of variables and the thermal 
behavior of a homogeneous soil. Our results build on the Phase 2 study to 
provide an even deeper understanding of the physical variables 
influencing background noise and hindering thermal IR sensor 
performance. 

1.1 Background 

 Environmental phenomenological impacts on thermal IR sensors 

Thermal IR sensing does present some challenges, thus inspiring this 
work. Environmental factors that affect probability of detection (PD) and 
generate false alarm rate (FAR) are soil/material variability and porosity, 
soil disturbance, moisture migration/evaporation, and terrestrial radiant 
reflection and emittance. Diurnal thermal fluctuations due to changing 
solar input throughout the day give rise to thermal contrasts at the soil 
surface (Khanafer and Vafai 2002; van De Griend et al. 1985). Adding to 
this complexity is the additional influence of a buried object on both heat 
and moisture transfer (Pan and Mahrt 1987). Increases in soil moisture 
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and density increase thermal conductivity, requiring specified calibration 
for the in situ soil under investigation (Smits et al. 2009). Under certain 
grain sizes, the effects of soil moisture can also be overshadowed by the 
latter porosity’s impact on thermal conductivity, leading to drastic 
electromagnetic attenuation (Koh and Wakeley 2009). Understanding the 
phenomenology along with the magnitude of the interference from 
environmental parameters helps in quantifying these affects, thus 
improving current detection algorithms through a process of strategic 
elimination (Howington et al. 2019). 

The trend in using active systems in thermal imagery does present some 
drawbacks as well. Potential scattering mechanisms that exist in the 
environment as well as the potential for sensor detection by an adversary 
need to be considered. When airborne particles are within a similar size as 
the wavelength, scattering efficiency increases. The particles in fogs, mists, 
and clouds range from 2–20 microns, making them an effective long-wave 
IR (LWIR) scatterer (Hudson and Hudson 1975). Furthermore, rainfall 
affects the physical and spectral properties of soils by separating silt 
particles away from larger particles in sand/silt soil mixture, which 
changes the surface particle size distribution (Ballard et al. 2013). Ballard 
discovered that the reflectance was most profound in the 8.1–9.2 micron 
band (thermal band). Ewing et al. (2020) went further in exploring the 
increase in the reststrahlen band with increasing sand/silt ratio with the 
maximum occurring at 80% sand but also demonstrated that mixed soil 
gives a reproducible decrease in reflectivity. Changes in temperature 
further affect the thermal conductivity and diffusivity of sand. For the 
silica sand samples investigated, Smits et al. (2013) discovered that the 
thermal conductivity and diffusivity increased most noticeably for 
temperatures greater than 50°C, in agreement with independent empirical 
models. But the accurate prediction of surface temperature is hindered by 
surface wetness and thermal inertia (Price 1985), leading to complex 
thermal variability. However, several properties of the soil can be rapidly 
analyzed with near-IR reflectance spectroscopy, which is the dominant 
analytical technique used for grain and forage quality assessments (Chang 
et al. 2001). 

Additionally, water molecules are IR active, thus atmospheric 
transmissions in the thermal IR band are degraded by molecular 
rotational transitions from water vapor or broadening effects from 
hydrogen-bonding interactions in the cases of liquid water (Gorman 1957; 
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Raqueno et al. 2008). Van Dam et al. (2003) concluded that water content 
does indeed affect thermal signatures, though the correlation didn’t have a 
quantifiable linear relationship. Instead, accounting for the properties of 
disturbed and undisturbed soil can help better detect buried objects 
(Koenig et al. 2008). The presence of a buried object disturbs the heat and 
diffusion parameters of the soil, enabling anomaly detection (Frost 2006). 
However, it now is generally believed that it is the disturbance of the soil 
and alteration of the soil properties that give rise to the thermal signature. 
Thermal contrasts are manifested as a result of three effects: (1) the object 
itself likely has different thermal properties than the soil it has replaced, 
which may result in differential heat transport and a thermal expression at 
the surface; (2) disturbing a soil normally changes its density and thermal 
properties, also leading to a surface expression of physical temperature; 
and (3) disturbing a soil redistributes finer particles to the ground surface, 
which, for some soil compositions, changes their spectral reflectance 
(Howington 2020). Interestingly, the surface effect remains for weeks 
after the disturbance and enhances the contrast induced by the buried 
object, a phenomenon also observed in our earlier work (Clausen et al. 
2021 and 2020). 

Waldemar et al. (2012) extended the work of Hong et al. (2002) and Van 
Dam et al. (2003). They used physical measurements and numerical 
modeling techniques to observe the effects that varying moisture levels 
and the density of soil have on buried-object detection. Howington et al. 
(2012) believe that hydrogeological variability must be considered on a 
similar scale of the sensor’s image pixels (a few centimeters) to isolate and 
quantify the near-surface process interactions to produce an accurate 
simulation. High resolution synthetic thermal image production has 
helped in optimizing explosive detection (Peters et al. 2007), along with 
using mathematical statistical modeling on the heat and water flow in the 
soil (Lamorski et al. 2002), but accuracy is highly dependent on 
knowledge of the external conditions in order to adjust the criteria used. 
Predicting expected surface temperatures is complicated by the nonlinear 
movement of water within soil and changes in surface temperature during 
the drying process (Frost 2006). Thành et al. (2011) introduced inverse 
problem setting and used a least-squares minimization approach for 
buried object detection. Their group confirmed that the deeper the object 
is buried, the less accurate will be the reconstruction, while larger objects 
produced greater accuracy upon reconstruction. However, their model 
didn’t tackle inhomogeneous soil and complex shapes. 
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Understanding the relationship between meteorological conditions and 
soil properties is paramount to detect objects buried in soil and predict 
sensor performance. An analytical solution requires extensive knowledge 
of the buried material, surface composition, water content, and humidity 
of the environment. This multivariate and multilayered problem is thus 
limited without quantifying the environment absolutely. Without knowing 
all the parameters involved, van Dam (2003) has stated that it’s 
impossible to predict the thermal signatures accurately. 

 Multi-sensor fusion including thermal IR 

However, at the opposite end of the spectrum, the sensor application 
community has been exploring “active” ways to increase PD of buried 
objects by utilizing a combination of various sensing technologies or a 
multi-sensor approach, sometimes referred to as sensor fusion. Recently, 
the resolution and contrast of thermal imaging has been shown to be 
significantly improved by utilizing polarized thermal sensors, which has 
the potential to simultaneously decrease background clutter while 
increasing contrast and producing highly resolved fused images (Baur et 
al. 2018; Jarrod et al. 2019). Disturbed regions in comparison to the 
surrounding exhibit higher degrees of linear polarimetric contrast (Gurton 
and Felton 2012). Gurton’s team utilized a spinning-achromatic-retarder 
platform for LWIR polarimetric imaging, resulting in improved 
detectability, regardless of the geographic location or soil type. Similarly, 
Abbott et al. (2020) created an effective detection algorithm by utilizing 
red, green, blue (RGB) imagery for translating non-corresponding 
LWIR/RGB datasets due to the lack of standalone IR annotated data. 
Pinar et al. (2017) added in a forward-looking ground penetrating radar 
(GPR) and light detection and ranging (LIDAR) in unison with their visible 
and thermal camera, improving the signal-to-noise-ratio and thus 
increasing the buried target classification accuracy.  

Active systems such as GPR have been coupled to a thermal camera’s 
superior standoff capabilities to complement GPR’s higher detection 
performance (Malof and Collins 2016; Hendrickx et al. 2006). As a 
standalone sensor modality, GPR has been gaining popularity in landmine 
detection (Shaw et al. 2016; Kelly et al. 2019). The polarization effects on 
GPR have been studied extensively (Dogaru and Le 2016, Sagnard 2017), 
as have the effects from soil moisture (Miller et al. 2004; Miller et al. 
2002). Miller’s (2004) field measurements showed that increasing 
moisture around a nonmetallic buried object can improve detection in 
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sand and silt soils due to the increasing contrast in the soil’s bulk dielectric 
constant as the water content increases. Clay soils, on the other hand, 
showed the opposite effect, with greater attenuation with increasing water 
content, limiting GPR’s potential as a standalone sensor modality.  

Other techniques in buried object detection include the use of microwave 
generators (Deans 2001) and IR heaters (Yao et al. 2019), which are 
utilized simultaneously with a passive thermal sensor to compliment and 
stimulate thermal variability. Yao’s team used an IR lamp adjusted to 800 
W/m2 to mimic the natural diurnal cycle of Earth in a controlled indoor 
environment. Li et al. (2020) took a different approach by observing how 
buried objects impacted the acoustic-to-seismic coupling efficiency by 
tracking the changes in acoustic impedance. Similarly, von Deimling et al. 
(2015) utilized a parametric echosounder system to investigate the angular 
response of the backscatter on underwater targets. Finally, Kabessa et al. 
(2016) introduced a standoff biosensor capable of buried object detection. 
Their detection scheme consists of genetically engineered live bacterial 
sensor strains that produce a dose-dependent amount of green fluorescent 
protein in the presence of explosives’ vapors, which are then remotely 
detected by a phase-locked optoelectronic sampling system. 

 Yuma Proving Ground (YPG) Countermine Test Site comparison with 
Phase 2 data 

The EDRC-CRREL team, along with personnel from ERDC-GSL and the 
Desert Research Institute, performed a field test over an 11-day period at 
the YPG test site during February 2020 to expand on CRREL’s Phase 2 
findings by gathering data on buried object visibility from a secondary 
location besides the CRREL test plot. The findings from the test effort are 
reported in Musty et al. (2021). In the test, four kinds of buried objects 
were used—shallow metal and plastic objects and deep metal and plastic 
objects—with size, composition, and depths identical to the CRREL 
Phase 2 test plot configuration (Clausen et al. 2021). In addition, the 
visibility of surface objects was tested using a total of six hockey puck–
shaped objects, with three composed of plastic and three of aluminum, all 
painted a uniform desert brown color to visually blend in with the surface 
soil.  

The same FLIR camera was used for both the CRREL test plot in Phase 2 
and the YPG test site. The thermal imagery collected for the buried objects 
exhibited a similar behavior for both data sets. In general, object visibility 
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predictably followed solar loading, with times coinciding with crossover 
yielding the least visibility. Soil moisture tended to confound this effect, 
with increased soil moisture typically resulting in reduced visibility. In the 
YPG dataset, solar loading, soil moisture, air temperature, and soil 
conductivity were the most impactful environmental variables on object 
visibility. This finding differs slightly from the CRREL test plot findings in 
that air temperature appeared to contribute more impact to visibility at 
CRREL than at YPG. Variables with little effect on visibility across both 
datasets include wind speed, humidity, and pressure. 

1.2 Objectives 

Our earlier work explored the soil and atmospheric phenomenological 
properties affecting temporal and spatial thermal variance of soils and 
targets. The goal of the present study is to improve subsurface object 
detection through an increase of PD and reduction in FAR for thermal IR 
sensors. To accomplish this goal our efforts have been focused on 
identifying, for a given soil and meteorological state, the physical variables 
that significantly contribute to soil temperature variations between 
disturbed and undisturbed soil. The question being addressed is how to 
quantify the natural variance “noise” such that it can be subtracted from a 
disturbed area “signal” by considering the physical phenomenological 
material and atmospheric properties. Our hypothesis is the thermal 
behavior of a soil is a function of several inter-dependent variables such as 
material density, moisture content, reflectance, surface texture, and 
atmospheric thermal loading. The information on environmental 
phenomenology will be incorporated into a pre-processor for improving 
automatic targeting recognition (ATR) software performance used by the 
Army. 

1.3 Approach 

Building on our prior research and data collected in Phase 2, we continued 
to investigate the phenomenological properties controlling sensor 
performance for detecting buried objects. Our approach toward meeting 
the research objective involved the characterization of soil along with 
changing atmospheric conditions to assess the impact of the spatial and 
temporal variance on IR buried object detection. To identify the 
environmental variables impacting ATR performance utilizing thermal IR 
data, we took a multi-pronged approach. We investigated if the buried 
object thermal anomalies from an IR sensor can be discerned within an 
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environment of spatial soil property variance and changing weather 
conditions utilizing continuous data collection from the CRREL Test Plot 
through (1) multivariate analyses for detecting objects in soil, (2) a moving 
box analysis of object visibility with alternative methods for converting 
thermal IR radiance values to thermal temperature values, (3) a calibrated 
thermal model of soil temperature using thermal IR imagery, and (4) a 
simple classifier method for automating buried object detection. Further, 
we expanded our dataset beyond the CRREL Test Plot through a 2-week 
field test at YPG, the full findings for which will be presented in a 
subsequent report. 
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2 Display of Environmental Effects on 
Detecting Surface Targets 
The displaying of the location, spatial relationships, and information 
related to surface-based targets is an essential element of battlespace 
success. The proper acquisition and geo-located display of pertinent 
targets and associated battlefield information for an area of operation 
dramatically enhances a commander’s situational awareness and reduces 
time for decision-making. In this section, the research program examines 
methods by which assessment of surface characteristics associated with 
targets can be geolocated and rapidly displayed to enhance understanding 
of the battlefield environment. 

2.1 Display capabilities 

The National Defense Strategy 2018 (McInnis 2018) emphasized that new 
technology will change the character of war. While many technological 
developments occur in the commercial sector, laboratories will also have 
to access and utilize these emerging capabilities.  

One such emerging technology, the Integrated Visual Augmentation 
System (IVAS), is being designed to incorporate head, body, and weapon 
technologies on individual soldiers. The IVAS system features advanced 
eyewear connected to a small computer that places simulated images in a 
soldier’s view of real-world environments. It is a single platform that the 
warfighter can use to fight, rehearse, and train that provides increased 
lethality, mobility, and situational awareness necessary to overmatch 
current and future adversaries. The system includes squad-level combat 
training capability for repeated iterations of training and rehearsals.  

Part of the early artificial intelligence/machine learning capability within 
the IVAS system are planning and operational tools utilizing the Tactical 
Assault Kit (TAK) software. The TAK software is a federally and U.S. 
Department of Defense (DoD)-adopted geospatial infrastructure and 
military situational awareness application with a plugin architecture 
allowing developers to add functionality. Specifically, TAK is an open-
source, map-based situational awareness software with applications that 
function across multiple computational platforms—including Android, 
Linux, and Windows—providing tactical capabilities for military 
operations. The TAK core is a software development foundation with an 
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extensible framework through which plugin architectures can provide 
enhanced capabilities for specific mission sets (direct action, combat 
decision-making, law enforcement, disaster response, etc.). Further, this 
software development framework addresses the nearly identical Standard 
and Shareable Geospatial Foundation requirements regarding content, 
formats, and services such as georeferenced imagery and geographic 
feature data, supporting the Geopackage data file profile, and supporting 
web map services. 

Our research effort utilized the Windows-based TAK software (DoD’s 
WinTAK), a version of the TAK geospatial development software that 
functions on a personal computer operating system installed on a laptop 
or tablet. WinTAK provides ground users and unmanned aircraft systems 
(UAS) pilots a meaningful, geospatial site picture and inter-operates with 
other DoD situational awareness tools including SpyGlass, RaptorX, 
FalconView, and other legacy systems. WinTAK’s standalone capabilities 
include moving map functions independent of the network and allowing 
maps to be loaded during mission pre-planning or execution phase. The 
WinTAK software is extensible, allowing users to add their own custom 
functionality and employ multiple types of analysis software systems 
simultaneously.  

2.2 Case study 

Fundamental to thermal target detection is the three-dimensional heat 
equation. This equation can be solved to demonstrate how heat diffuses 
through a medium of differing thermal conductivity and density. This 
calculation demonstrates that if an object is inserted into a medium of 
contrasting material (i.e., buried in soil) and a uniform thermal load is 
applied to the soil surface, the thermal response of the buried object 
initially lags that of the surrounding soil. However, after several hours the 
object will start to heat up faster than the surrounding soil, presumably 
due to differences in heat capacity. That is, the ground near the object will 
not warm as quickly as the surrounding terrain, providing a thermal 
difference that can be sufficient to identify buried targets. The periods in 
which target detection most easily occurs are when air and soil surface 
temperatures are rapidly increasing or decreasing. This knowledge then 
permits users of target detection to exploit the changing environment to 
find buried objects along a designated route. 
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Changes to surface temperature are well understood and associated with 
energy propagation to and from the land surface. The ways in which 
energy can propagate is described by the surface energy balance equation, 
which is defined as: 

 𝑹𝑹𝒏𝒏 = 𝑯𝑯 + 𝝀𝝀𝝀𝝀 + 𝑮𝑮 (1) 

where 

Rn = the net radiation which is the summation of downward short-
wave and long-wave radiation, 

H = sensible heat flux emitted from the surface (W/m2), 

λE = latent heat flux from the surface (W/m2), and 

G = heat conducted away from the surface (W/m2). 

The left-hand side of the surface energy balance equation denotes the 
energy inputs to the surface, which is also called the radiative forcing term 
or gain. The right-hand side of the equation denotes energy outputs from 
the surface, or loss terms.  

Typically, these surface fluxes require multiple sets of observation 
equipment installed at a particular site, making precise observations 
across an area of interest nearly impossible. However, a mean area 
solution to this equation can be obtained through utilization of a 
numerical weather prediction model. These models compute each 
component of the energy balance equation in a Land Surface Model (LSM) 
to describe the physical boundary between the surface and the 
atmosphere. The LSM provides estimates of the surface sensible and latent 
heat fluxes, the reflected short-wave radiation, and the upward long-wave 
radiation, upward long-wave radiation being interchangeable with the 
model estimate of local soil surface temperature and surface emissivity. 
Hence, the variations in model-predicted air surface temperature should 
be adequate to estimate periods of rapid ground temperature changes and 
by extension when surface and subsurface targets are more easily 
identifiable. 

A model of soil surface temperature change needs to be generated to 
identify periods of rapid temperature change. Here a simple model will be 
utilized—rather than forecast products from a high-resolution numerical 
weather prediction system—to validate the concept. This simple 
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temperature model will exploit findings of previous research which 
recognized that observed surface temperature tends to follow a sinusoid 
pattern over a 24-hour period (de Wit 1978; Baker et al. 1989). Supporting 
this concept, the sinusoidal model of de Wit (1978) provided a reasonable 
representation of the observed diurnal surface temperature variation 
(Baker et al. 1989). The formula describing the temporal temperature 
evolution divides the day into two periods, one from the time of morning 
minimum temperature to the time of afternoon maximum, the other 
covering the remainder of the 24 hr day. Each portion approximates the 
temperature as a cosine curve, scaling the respective period to a range 
between 0 to 𝜋𝜋 radians, resulting in consecutive half waves with amplitude 
equal to the total temperature difference for the select day with the whole 
function fluctuating about a center line connecting consecutive extrema:  

 𝑻𝑻(𝒕𝒕) = 𝑻𝑻𝒉𝒉+𝑻𝑻𝒊𝒊
𝟐𝟐

± 𝑻𝑻𝒉𝒉+𝑻𝑻𝒊𝒊
𝟐𝟐

𝐜𝐜𝐜𝐜𝐜𝐜 �𝝅𝝅 (𝒕𝒕−𝒕𝒕𝟏𝟏)
𝒕𝒕𝒉𝒉−𝒕𝒕𝒊𝒊

� (2) 

where warming periods utilize summation and cooling periods subtraction 
and 

T(t) = The surface air temperature at time t 
Th = The warmest temperature for the day 
Ti = The coolest temperature of the day 
π = 3.14159 
t = time [units=hr in model] 
t1 = start time 
th = time of warmest temperature 
ti = time of the coolest temperature. 

Since this formulation is based upon local time instead of Coordinated 
Universal Time (UTC), the temperature is phase shifted by roughly 90 
degrees. That is, the maximum temperature occurs near 1800 and the low 
around 0600. Given that cos(x+𝜋𝜋/2) = −sin(x), the surface temperature 
can be represented by a sine function. Further, it is recognized the 
temperature change is typically not as smooth as a single sine function and 
higher order modes might exist due to weather fronts, associated clouds, 
and precipitation. However, for this exercise we choose to represent the 
variations of surface temperature, T, with the function 
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 𝑻𝑻 = 𝑻𝑻𝒎𝒎 + 𝑻𝑻𝒂𝒂 𝐜𝐜𝐬𝐬𝐬𝐬(𝝎𝝎𝒕𝒕 + 𝝓𝝓) (3) 

where 

𝑇𝑇𝑚𝑚 = mean temperature (~12°C); 
𝑇𝑇𝑎𝑎 = daily temperature change amplitude (10°C); 
𝜔𝜔 = frequency of temperature oscillation (one day period);  
𝜙𝜙 = time phase shift for temperature to represent the local high 

and low readings of the day for a location in the Eastern 
Time Zone in UTC. 

The temperature equation produces an oscillating sine wave pattern 
plotted as the blue line in Figure 1. The temperature falls during the 
morning hours until shortly after sunrise when there is a leveling before a 
period of warming until close to the highest temperature of the day in the 
afternoon, where the temperature remains nearly constant before cooling 
for the remainder of the day. 

Figure 1. The temperature over time produced by assuming the high and low temperatures 
follow a sinusoidal function (solid blue line). An observed temperature (blue dot on dashed 

line) is assumed and entered at a specified observation time. The observation has a 
corresponding time in the forecast model (green dot on solid line) and a time in which the 

forecasted temperature value would match that of the observation (red dot on solid line). The 
difference in time between the red and green dot represents the time phase shift of the 

model and the observation. 
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Next, we examine temperature data to determine the periods of greatest 
temperature change. Given the rate of temperature change is described by 
the slope of the curve, one can compute the first derivative of T with 
respect to time, which is the equation that describes the temperature 
change over time.  

 𝒅𝒅𝑻𝑻
𝒅𝒅𝒕𝒕

= 𝑻𝑻𝒂𝒂𝝎𝝎𝐜𝐜𝐜𝐜𝐜𝐜(𝝎𝝎𝒕𝒕 + 𝝓𝝓) (4) 

where 

 𝑑𝑑𝑇𝑇 = change in temperature, 
 𝑑𝑑𝑑𝑑 = change in time, 

Ta = amplitude of the diurnal temperature change (Th − Ti), 
𝜔𝜔 = frequency of temperature oscillation (one day period), 
T = time [same units as frequency], and 
𝜙𝜙 = time phase shift for temperature to represent the local high 

and low readings of the day for a location in the Eastern 
Time Zone in UTC. 

Recognizing it is the rate of temperature change that enhances the 
detection of buried targets and not the magnitude of temperature increase 
or decrease, the magnitude of the first derivative is obtained (Figure 2). 
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Figure 2. (a) The temperature over time produced by assuming the high and low temperatures 
follow a sinusoidal function. (b) The corresponding magnitude of temperature change (°C/hr) 
revealing a repetitive peak occurring approximately 6 hr out of phase with the occurrence of 

the temperature extremes. 

 

The temperature change magnitude equation reveals that cyclic changes 
take place each day over several hours. Further, the magnitude of 
temperature change is almost never zero but instead rapidly increases and 
decreases during a 7 hr time interval in which the temperature change is 
greater than 1.2°C/hr, symmetric around a 2 hr block of time during which 
the temperature change is greater than 2.2°C/hr. Given these events occur 
twice daily and at regular intervals, they can be tested against 
observational data. 

The rate of temperature change can be separated into three periods and 
depicted with a stoplight color scheme for ease of comprehension. The 
stoplight colors highlight when air temperature is rapidly changing, which 
should lead to better conditions for surface target detection. In this study, 
we define temperature change magnitudes <1.2°C/hr as low probability 
(red) and change magnitudes >2.2°C/hr as high probability (green). 
Between the two is a region of medium probability of detection (yellow) 
(Figure 3). With these definitions there are clear demarcations between 
the detection probability time periods, with the emphasis falling in a time 
interval of approximately 4 hr centered at 0300 UTC (associated with 
evening cooling) and 1500 UTC (morning warming). 
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Figure 3. Computed stoplight color bar and magnitude of temperature change (°C per hour) 
revealing time periods of greatest temperature change which could permit easier detection of 

subsurface objects. 

  

An issue with implementing this temperature model is the smooth, cyclical 
nature of the solution compared to physical observations exhibiting higher 
order modes of a typical weather forecast model (Ek et al. 2003). The 
testing of the algorithm through utilization of numerical weather 
prediction forecast data would need to be conducted as these data are a 
forthcoming addition to the TAK software system (e.g., ATAK, WinTAK). A 
primary concern with forecast data inclusion is the coarse temporal 
resolution of the numerical products and these products’ ability to resolve 
the microscale phenomena contributing to the changes in temperature. 
Weather forecast data are often provided in hourly intervals, which can 
cause the exclusion or misrepresentation of ephemera or introduce lags in 
timing. 

Furthermore, the method of including temperature observations needs to 
be examined in greater detail. The direct application of observed 
temperature data with weather model data is not necessarily appropriate 
as metadata about the observation are not included. The local observation 
might be at a different altitude than the model and could be over a 
different land usage (vegetation type and coverage) or soil texture. This 
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suggests a need for exploring mathematical methods of incorporating 
observations into models such as Bayesian statistics. Accordingly, Sections 
3–6 comprise a multi-approach analysis of the CRREL Test Plot data. 
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3 Moving Box Analysis of Buried Object 
Visibility 

In this subtask, the buried object PD using a moving box and simple four-
square method of analysis was examined. Because the FLIR camera used 
in Phase 1 and Phase 2 utilizes a proprietary algorithm for producing 
thermal IR radiance values (FLIR Systems 2015), we first investigated two 
alternative methods of converting FLIR camera radiances to thermal 
temperatures. 

3.1 Convert FLIR camera radiances to thermal temperatures 

FLIR proprietary software and camera default values were used to convert 
the measured radiances to surface thermal temperatures for all of the 
Phase 1 and Phase 2 analyses. The camera measures the total radiation 
(Wtot, W/m2) given by (FLIR Systems 2015) 

 𝑾𝑾𝒕𝒕𝒕𝒕𝒕𝒕 = 𝜺𝜺𝜺𝜺𝑾𝑾𝒕𝒕𝒐𝒐𝒐𝒐 + (𝟏𝟏 − 𝜺𝜺)𝜺𝜺𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 + (𝟏𝟏 − 𝜺𝜺)𝑾𝑾𝒂𝒂𝒕𝒕𝒎𝒎 (5) 

where 

𝜀𝜀 = surface emissivity,  
𝜏𝜏= atmospheric transmission, 
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = object radiation (W/m2),  
𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = reflected radiation (W/m2), and  
𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚 = atmospheric radiation (W/m2).  

The first term quantifies the radiation emitted from the object, the second 
represents the reflected surface emittance, and the third is the background 
radiation emitted from the surrounding atmosphere. The radiation follows 
Stefan-Boltzman’s law such that  

 𝑾𝑾 = 𝜺𝜺𝜺𝜺𝑻𝑻𝟒𝟒 (6) 

where: 

𝜀𝜀 = surface emissivity, 
𝜎𝜎 = 5.670374419 × 10−8 W/m2k4  W/m2K4, 

which is the Stefan-Boltzman constant, and  
T = temperature (K). 
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The image metadata and radiance values were extracted within MATLAB 
using ExifTool software. Since the algorithm that FLIR Systems uses is 
unpublished, two other methods were investigated. For clarity in the 
following discussion, these are called simple and complex.  

The simple method uses the method presented by Harvey (2013). It 
assumes the object distance, OD, is 0 m and the external optics 
transmission, IRT, is 1.0. The resulting formulation is 

𝑻𝑻𝒕𝒕𝒐𝒐𝒐𝒐 =
𝑹𝑹𝟏𝟏

𝐥𝐥𝐬𝐬 � 𝑹𝑹𝟏𝟏
𝑹𝑹𝟐𝟐�𝑾𝑾𝒕𝒕𝒐𝒐𝒐𝒐 + 𝑶𝑶�

+ 𝑭𝑭�
  

 𝑾𝑾𝒕𝒕𝒐𝒐𝒐𝒐 = 𝑺𝑺−(𝟏𝟏−𝜺𝜺)𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

𝜺𝜺
  (7) 

𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝑹𝑹𝟏𝟏

𝑹𝑹𝟐𝟐(𝐞𝐞𝐞𝐞𝐞𝐞 [ 𝑩𝑩
𝑻𝑻𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓)

] − 𝑭𝑭)
− 𝑶𝑶 

The variables R1, R2, F, and O are various Planck constants and S is the 
camera measured radiance. The values used are part of the metadata 
associated with the thermal images and are listed in Table 1. 
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Table 1. Subset of FLIR image metadata. 

FLIR Parameter default value 

File Modify Date  

Emissivity,  0.92 

Object Distance, OD 2.0 m 

Reflected Apparent Temperature, Trefl 20.0°C (293 K) 

Atmospheric Temperature, Tatm 20.0°C (293 K) 

IR Window Temperature, TIRwin 20.0°C (293 K) 

IR Window Transmission, IRT 1.00 

Relative Humidity, RH 50.0 % 

Planck R1, R1 18112.691 

Planck B, B 1455 

Planck F, F 1 

Atmospheric Transmission Alpha 1, ATA1 0.006569 

Atmospheric Transmission Alpha 2, ATA2 0.012620 

Atmospheric Transmission Beta 1, ATB1 -0.002276 

Atmospheric Transmission Beta 2, ATB2 -0.006670 

Atmospheric Transmission X, ATX 1.900000 

Lens Model FOL4 

Planck 0, O -7882 

Planck R2, R2 0.011804782 

Raw Thermal Image Width 320 

Raw Thermal Image Height 240 

The complex method uses the algorithm presented by Tattersall (2019) in 
his R code “raw2temp.” Specifically: 

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐵𝐵

ln ( 𝑅𝑅1
𝑅𝑅2�𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑂𝑂�

+ 𝐹𝐹)
 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆/𝜏𝜏1/𝐼𝐼𝑅𝑅𝑇𝑇/𝜏𝜏2 −𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚1∗ −𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚2∗ −𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤∗ −𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1∗ −𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2∗ 

𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚1 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚2 =
𝑅𝑅1

(𝑅𝑅2exp [ 𝐵𝐵𝑇𝑇𝑎𝑎𝑤𝑤𝑟𝑟
] − 𝐹𝐹)

− 𝑂𝑂 
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𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚1∗ = [(1 − 𝜏𝜏1)/𝜀𝜀/𝜏𝜏1]𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚1,𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚2∗ = [(1 − 𝜏𝜏2)/𝜀𝜀/𝜏𝜏1/𝐼𝐼𝑅𝑅𝑇𝑇/𝜏𝜏2]𝑊𝑊𝑎𝑎𝑎𝑎𝑚𝑚2 

𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1 = 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 =
𝑅𝑅1

(𝑅𝑅2exp [ 𝐵𝐵
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

] − 𝐹𝐹)
− 𝑂𝑂 

 𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝟏𝟏∗ = [(𝟏𝟏 − 𝜺𝜺)/𝜺𝜺]𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝟏𝟏,𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝟐𝟐∗ = [𝑹𝑹𝒘𝒘𝒊𝒊𝒏𝒏/𝜺𝜺/𝜺𝜺𝟏𝟏/𝑰𝑰𝑹𝑹𝑻𝑻]𝑾𝑾𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝟐𝟐 (8) 

𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤 =
𝑅𝑅1

(𝑅𝑅2exp [ 𝐵𝐵
𝑇𝑇𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤𝑤𝑤

] − 𝐹𝐹)
− 𝑂𝑂,𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤∗ = [𝜀𝜀𝑤𝑤𝑤𝑤𝑤𝑤/𝜀𝜀/𝑇𝑇1]𝑊𝑊𝑤𝑤𝑤𝑤𝑤𝑤 

𝜏𝜏1 = 𝜏𝜏2 = 𝐴𝐴𝑇𝑇𝑥𝑥 exp�−√0.5𝑂𝑂𝑂𝑂�𝐴𝐴𝑇𝑇𝐴𝐴1 + 𝐴𝐴𝑇𝑇𝑜𝑜1�𝐻𝐻2𝑂𝑂��
+ (1 − 𝐴𝐴𝑇𝑇𝑥𝑥) exp�−√0.5𝑂𝑂𝑂𝑂�𝐴𝐴𝑇𝑇𝐴𝐴2 + 𝐴𝐴𝑇𝑇𝐵𝐵2�𝐻𝐻2𝑂𝑂�� 

𝐻𝐻2𝑂𝑂 = 0.01𝑅𝑅𝐻𝐻exp[1.5587 + 0.06939𝑇𝑇𝑎𝑎𝑤𝑤𝑟𝑟 − 0.00027816𝑇𝑇𝑎𝑎𝑤𝑤𝑟𝑟2 + 6.8455
× 10−7𝑇𝑇𝑎𝑎𝑤𝑤𝑟𝑟3 ] 

𝜀𝜀𝑤𝑤𝑤𝑤𝑤𝑤 = 1 − 𝐼𝐼𝑅𝑅𝑇𝑇,𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤 = 0 

where 

Rwin is the reflection of the camera lens,  
Tair is the air temperature (K),  

 is the lens emissivity, and  

* subscripts indicate attenuated values. 

All remaining parameters are defined in Table 1. All temperatures in the 
equation are in Kelvin. 

The sensitivity of the calculated thermal temperatures resulting from using 
either the simple or complex methods with both the default temperatures, 
relative humidity, object distance, and object emissivity versus measured, 
or calculated values, was investigated. For the latter, it was assumed that 
Trefl = Tair. To account for the darkening of the soil when it is wet, the 
emissivity was changed from 0.92 to 0.98 based on the work of Chung and 
Horton (1987). The dry value of 0.92 is consistent for silty sand, Unified 
Soil Classification System (USCS) soil type SM (silty sand, sandy-silt; 
Frankenstein and Koenig, 2004). Since the surface soil wetness was not 
measured, the increased emissivity is applied during a precipitation event 
until half an hour after the event.  



ERDC TR-22-4  22 

The results as well as values calculated using FLIR’s proprietary software 
are shown in Figure 4 for five images taken on the morning of 24 
September 2018. It is evident from this figure that FLIR uses the simple 
method, Equation (7), with default weather values. If the FLIR default 
weather-related parameters are used, there is an approximately 2ºC 
difference in thermal temperature between the two methods with the 
simple method being warmer than the complex one. If instead the 
measured weather data are used, there is almost no difference between the 
two methods. The highest temperatures are calculated if the actual 
distance between the camera and the soil surface, 4.27 m, is used instead 
of the 2.0 m default value (green dash-dot line in Figure 4). 

Figure 4. Image (a) minimum, (b) mean, and (c) maximum using the simple method with FLIR 
camera defaults (smpl1), measured weather (smpl2) or the complex method with defaults 

(cmpx1), weather (cmpx2), weather plus actual camera height (cmpx3), and FLIR’s proprietary 
software (FLIR). 

 



ERDC TR-22-4  23 

3.2 Extract weather and sensor data 

After converting the radiances to thermal temperatures, the next step 
before analyses could begin is to extract the associated weather. The image 
data is collected at 5-minute intervals while the meteorological and sensor 
information is averaged and recorded every 15 minutes. Two different 
recording devices are used, resulting in an offset between the two data 
sets. The sensors of interest for this initial analysis are the thermistors 
installed at 5 and 15 cm below ground surface (bgs) and the Campbell 
Scientific CS655 probes at 15 cm bgs. The pixel locations of these sensors 
are listed in Table 2. In order to compare on a pixel-by-pixel basis, the 
sensor data were gridded to the plot using MATLAB’s scattered interpolant 
function with the natural-neighbor method. Next, the sensor and 
meteorological data were extracted to the image times using linear 
interpolation. The image times used were the “File Modify Date” from the 
associated FLIR metadata.  

Table 2. Pixel location of area of interest and buried objects with respect to the full image. 

Location (column, row) 

upper left corner of image (0,0) 

lower right of image (320,240) 

upper left corner of plot (108,62) 

lower right corner of plot (222,174) 

upper left corner of DP (117,70) 

lower right corner of DP (135,87) 

upper left corner of DM (194,70) 

lower right corner of DM (212,87) 

upper left corner of SM (117,150) 

lower right corner of SM (135,167) 

upper left corner of SP (194,150) 

lower right corner of SP (212,167) 

object dimensions (18,17) 

thermal couples at 5 cm (126,79), (164,79), (203,79), (126,118), (164,118), 
(203,118), (126,158), (164,158), (203,158), (156,108), 
(172,108), (160,114), (168,114), (160,122), (168,122), 
(156,126), (108,118), (172,126), (108,158), (126,174), 
(164,174) 

thermal couples at 15 cm (126,136), (126,140), (126,144), (126,148), (181,158), 
(185,158), (189,158), (193,158), (156,108), (172,108), 
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Location (column, row) 

(160,114), (168,114), (160,122), (168,122), (156,126), 
(172,126) 

CS655 probes at 15 cm (126,79), (164,79), (203,79), (126,118), (164,118), 
(203,118), (203,148), (164,158), (126,158), (108,118), 
(108,158), (126,174), (164,174) 

3.3 Analyses 

 Moving box 

Since the exact location of a buried object is unknown a priori, analysis 
was performed for a moving box having dimensions 5 × 5 pixels, beginning 
in the upper left and ending in the lower right corner of the plot. The 
percent overlap of the box with each of the buried objects was recorded. To 
do this, the position of the boxes in the image needed to be determined. In 
doing this, it was found that a grayscale image was preferable to a false-
colored one. Figure 5 shows the location of the test plot within the full 
image as well as the four buried objects. The objects are equal sized, 40 cm 
× 40 cm × 20 cm. Two of the boxes are plastic (P), two are metal (M), and 
one of each material is buried such that the tops are either 5 cm (S) or 25 
cm (D) below the surface. The pixel locations of the objects are listed in 
Table 2. 

The difference between the moving box and plot means, standard 
deviations, and a visibility index (VI) are calculated. The VI is defined as 

 𝑽𝑽𝑰𝑰 = 𝒔𝒔𝒕𝒕𝒅𝒅𝟓𝟓𝟓𝟓𝟓𝟓−𝒔𝒔𝒕𝒕𝒅𝒅𝒑𝒑𝒓𝒓𝒕𝒕𝒕𝒕
𝒔𝒔𝒕𝒕𝒅𝒅𝟓𝟓𝟓𝟓𝟓𝟓+𝒔𝒔𝒕𝒕𝒅𝒅𝒑𝒑𝒓𝒓𝒕𝒕𝒕𝒕

 (9) 

where 

std5x5 is the standard deviation of the box and  
stdplot is the standard deviation of the plot. 
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Figure 5. Location of area of interest and buried objects with respect to the full image. DP = 
deep plastic object, DM = deep metal object, SM = shallow metal object, and SP = shallow 

metal object. 

 

As a first attempt to establish the statistical significance of differences in 
the standard deviation, mean temperature difference, and VI, a simple 
four-square method is used. The criteria are defined in Table 3. 

Table 3. Four Square Method 

Statistical Test Over Box Not Over Box 

larger or equal to criteria true positive (YY) 
no error 

false positive (YN) 
type II error 

less than criteria false negative (NY) 
type I error 

true negative (NN) 
no error 

TP + FN = total opportunities for positive calls 
FP + TN = total opportunities for negative calls 
PD = TP/(TP + FN) probability of detection 
PFA = FP/(FP + TN) probability of false alarms 
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The criteria vary by the amount of box overlap with the buried objects as 
well as different cutoff values for the parameters being investigated. An 
example is shown in Figure 6 for the difference in standard deviations with 
a cutoff value of 1.5 and box overlaps of 0.0, 0.4, 0.6, and 1.0 for the SP 
object. For reference, the air temperature and rainfall during this period is 
also shown. Lowering the cutoff value increases the PD while increasing it 
has the opposite effect. Although not shown, the probability of false alarm 
(PFA) is higher and the PD is lower for the other objects. The exception to 
this occurs on 28 August. The standard deviation is unusually large on this 
day for no obvious reason. Further investigation is needed to deduce 
whether this is an analysis or possible data error. 

Figure 6. Probability of detection and probability of false alarms for the shallow plastic box 
using a difference in standard deviation cutoff of 1.5. Moving box overlap values are 0.0, 0.4, 

0.6, and 1.0. Precipitation and air temperature are provided as points of reference. The 
dashed line in the upper left figure is at 0°C. 
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4 Assessment for Detecting Buried Objects 
in the Soil Using Multilevel Analyses 

In this section, we investigated buried object detection by employing 
multilevel modeling statistical analyses using the environmental data and 
thermal IR imagery collected at the CRREL test plot. The objectives of this 
subtask were to (1) determine the relational association between 
environmental inputs and responses and (2) examine the mixed effects on 
variations between the presence or absence of buried objects for detection. 

4.1 Data for statistical analysis 

The analysis data are aggregated for the period between 15 July and 31 
August 2018 given the significant amount of data collected for the entire 
study period. The data are then separated into four groupings representing 
the target areas (Figure 7) of buried objects (SP, DP, SM, and DM) and 
undisturbed locations without buried objects. The first four datasets 
created are point layouts to compare the targets with the environmental 
phenomenology variables and are arranged as follows: 

• Probe-id—The observations are nested in this variable from the test 
plot locations. The naming convention is based on individual soil 
temperature sensor identifiers with each dataset containing the 
following: 

o Group 1 represents the contrast between an SM buried object 
and undisturbed soil as shown in Figure 7a and includes 
Probe_id 1–10, 12, 14, and 28 for the undisturbed soil area 
and Probe_id 19 soil for the SM object location. 

o Group 2 denotes a DM buried object together with the 
undisturbed soil as shown in Figure 7b and includes 
Probe_id 1–10, 12, 14, and 28 for the undisturbed area and 
Probe_id 11 for the DM object location. 

o Group 3 represents an SP buried object as well as 
undisturbed area as shown in Figure 7c and includes 
Probe_id 1–10, 12, 14, and 28 for the undisturbed area and 
Probe_id 13 for the SP object location. 
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o Group 4 represents a DP buried object and the undisturbed 
area as shown in Figure 7d and includes Probe_id 1–10, 12, 
14, and 28 for the undisturbed area and Probe_id 33 for the 
DP object location. 

• Object—Dichotomous variable for contrast areas indicating whether 
the location has a buried object (1) or none (0). 

• AirTemp—Corresponds to an hourly average air temperature in °C; 
each record is the same for the entire plot and every timestamp (the 
record only varies from one timestamp to the next). 

• Rh—Represents the hourly average relative humidity observations 
in percent; each record is the same for the entire plot and every 
timestamp (the record only varies from one timestamp to the next). 

• WndSpd—Relates to the hourly average wind speed measurements 
in m/sec; each record is the same for the entire plot and every 
timestamp (the record only varies from one timestamp to the next). 

• WndDir—Hourly average wind direction; each measurement is the 
same for the entire plot and every timestamp (the record only varies 
from one timestamp to the next). 

• SW—Corresponds to the hourly average short-wave radiation; each 
observation is the same for the entire plot and every timestamp (the 
record only varies from one timestamp to the next). 

• SWR—Hourly average short-wave radiation reflectance; each 
record is the same for the entire plot and every timestamp (the 
record only varies from one timestamp to the next). 

• SoilTemp5—Hourly average soil temperature at 5 cm at each 
Probe_id in °C; in the case of a buried object location, the soil 
temperature is measured above the object. 

• Timen—Relates to time of day (referring to the 24 hr cycle) the data 
were collected. Since the data were collected every 15 minutes, the 
time is aggregated from 1 (midnight) to 24 (midnight); a code of 1 
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signifies 2400 to 2445 hours, a code of 2 signifies 0100 to 0145 
hours, and so on. 

The same timeline (15 July to 31 August 2018) includes thermal images 
obtained for the entire test plot to compare with the soil and 
meteorological dataset. A subset of images consisting of a 20 cm × 20 
cm area of 100 cells representing a 2 cm × 2 cm resolution is parsed for 
the locations with buried objects and undisturbed soil (Figure 8). The 
variables for the four datasets used to compare the target areas are 
arranged as follows: 

• Probe-id—The observations are nested in this variable in the test 
plot. The naming convention is based on the soil temperature 
sensor identification. Each combination consists of a control plus 
five 20 cm × 20 cm areas in the test plot as follows: 

o Combination 1 represents the contrast for the SM test plot 
versus undisturbed area (all the area highlighted in the blue 
boxes) as shown in Figure 8. 

o Combination 2 denotes the comparison between the DM 
area and undisturbed areas (all the area highlighted in the 
blue boxes) as shown in Figure 8. 

o Combination 3 represents the SP area together with 
undisturbed areas (all the area highlighted in the blue boxes) 
as shown in Figure 8. 

o Combination 4 represents the DP area along with 
undisturbed areas (all the area highlighted in the blue boxes) 
as shown in Figure 8. 

• Object—Dichotomous variable for contrast indicating whether the 
location has either buried object (1) or none (0). 

• Cell_id—Relates to each 20 cm × 20 cm Contrast Area, each 
consisting of 100 cells representing a 2 cm × 2 cm resolution. From 
right to left, the record starts with Cell_id 1 corresponding to the 
top left cell of the 20 cm × 20 cm area going 10 cells to the left. 
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• Timen—Relates to time of day that the data was collected. A code of 
1 signified 2400 to 2445 a.m., code of 2 for 0100 to 0145, and so on. 

• AirTemp—Represents the hourly average air temperature in °C; 
each record is the same for the 20 cm × 20 cm area, but the 
observation varies every Timen. 

• IR_tir—Corresponds to the hourly average temperature-converted 
IR radiation values in °C (calculated using the complex method, 
Equation (8), described in Section 3) for the 2 cm × 2 cm resolution 
FLIR image. The hourly IR_tir observations vary for the 100 cells in 
each 20 cm × 20 cm area. 

• Soil15—Relates to the hourly average soil moisture located at 15 cm 
below the ground surface with units in percent by volume. Each 
record in the 100 cells is the same for the corresponding soil 
moisture sensor in the 20 cm × 20 cm area, but the observation 
varies every Timen. For SM and SP object locations, the moisture 
sensors were positioned at the vertical midpoint of each buried 
object.  

• SoilTemp5—Represents the hourly average soil temperature at 5 cm 
at each Probe_id in °C; at the location of a buried object, the soil 
temperature is measured above the object. Each record in the 100 
cells is the same for the corresponding soil temperature sensor in 
the 20 cm × 20 cm area, but the observation varies every Timen. 

• SoilTemp25—This is an hourly average soil temperature at 25 cm 
below ground surface at each Probe_id in °C. The soil temperature 
observations at 25 cm are measured just below the SM and SP 
objects and above the DM and DP objects. Each record in the 100 
cells is the same for the corresponding soil temperature sensor in 
the 20 cm × 20 cm area, but the observation varies every Timen. 

Appendix A summarizes the descriptive statistics for the contrast areas 
the datasets used in the analyses. 
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Figure 7. Contrast Area plots (not drawn to scale) show the locations of undisturbed areas 
(small blue markers) and buried objects (solid and dashed blue and orange boxes with blue 
small markers in the middle). The four separate datasets for each object include the shaded 

zones for the (a) SM, (b) DM, (c) SP, and (d) DP of the CRREL test plot. 

 

 

 

(a) (b) 

(c) (d
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Figure 8. General plot layout (not drawn to scale) for the locations of IR imagery used in the 
analysis. The boxes denote 100 cells of 2 cm × 2 cm cells of data above or on SM, SP, DP, 

and DM and undisturbed locations (blue). 

 

4.2 Statistical analyses background 

 Logistic regression model 

The basic idea of using the logistic regression model is to describe data in 
terms of probability and to explain the relationship between one 
dependent binary variable and one or more nominal, ordinal, interval, or 
ratio-level independent variables (Hosmer and Lemeshow 2000; 
McCulloch and Searle 2001; Menard 2002; Snijders and Bosker 1999). 
The analysis represents a class of fixed effects regression models for 
several types of variables that may seem disparate (Nelder and 
Wedderburn 1972; Hedeker 2005). In this case, we want to assess which 
covariates have the highest probability for detecting the contrast between 
presence and absence of a buried object. Alternatively, do environmental 
conditions and soil temperatures have influence on detecting the contrast 
between having buried objects and undisturbed soil? The regression of an 
outcome or a dependent variable, y, on a predictor or an independent 
variable, x, is a linear function of x that produces the best prediction of y. 
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In this model, the best prediction means that the result has the smallest 
mean squared error (Snijders and Bosker 1999). However, logistic 
regression models do not account for clustering, meaning the data are 
structured as a single level. Multiple predictor or independent variables 
can be included in the regression model by accounting for the distribution 
of the multivariate observations and as long as the model produces the 
best prediction. 

The simple logistical regression model of bivariate distribution is: 

 𝒚𝒚𝒊𝒊 = β𝟎𝟎 + β𝟏𝟏𝟓𝟓𝒊𝒊 + ε𝒊𝒊 (10) 

where 

𝑦𝑦𝑤𝑤 is the dependent variable for contrast i, and  
𝑥𝑥𝑤𝑤 is the independent variable for contrast i. The coefficient terms 

are given by 

 β𝟎𝟎 = 𝓔𝓔(𝒚𝒚) − β𝟏𝟏𝓔𝓔(𝟓𝟓), β𝟏𝟏 = 𝒄𝒄𝒕𝒕𝒄𝒄(𝟓𝟓,𝒚𝒚)
𝒄𝒄𝒂𝒂𝒓𝒓(𝟓𝟓)

 (11) 

where 

ℰ(𝑥𝑥) and ℰ(𝑦𝑦) = the observation mean or expected value of x and y, 
respectively, and 

β0 and β1 = intercept and slope of the model, respectively.  

In a graphical sense, the intercept is the point where the line in Equation 
(10) crosses the y-axis at x = 0. The slope, β1, expresses the relationship 
between dependent variable y and independent variable x. A line with 
positive slope indicates larger values of x are associated with 
correspondingly larger values of y, while negative slopes mean larger x 
values are associated with smaller values of y. This means regardless of the 
slope direction, larger values of β1 (positive or negative) indicate a 
stronger linear relationship between dependent and independent 
variables. The term in Equation (10), ε, is the residual or error component.  

 Multilevel models 

A multilevel model approach allows an analysis with nested or multilevel 
data (Affleck et al. 2019; Ene et al. 2015; Heck and Thomas 2000; Hox 
2002; Klein and Kozlowski 2000; Raudenbush and Bryk 2002; Snijders 
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and Bosker 1999). Also, multilevel models incorporate the randomness 
and nonlinearity of outcomes in the analysis of the nested data. These 
models have also been referred to as hierarchical linear models, fixed 
effects models, mixed models, random coefficient models, and covariance 
component models (Snijders and Bosker 1999; Hox 2002). These 
statistical models are used to analyze nested sources of variability in 
hierarchical data, taking into account the variability associated with each 
level of the hierarchy (Ene et al. 2015; Garson 2012; Heck and Thomas 
2000; Hox 2002; Klein and Kozlowski 2000; Raudenbush and Bryk 2002; 
Snijders and Bosker 1999). These models assume all observations are 
independent of each other and are appropriate for analysis of several types 
of correlated data structures such as nested or longitudinal data. In nested 
designs, subjects or measurements are observed clustered within larger 
units (e.g., schools, hospitals, neighborhoods, workplaces, and so on). In 
longitudinal designs with temporal variables, repeated measurements are 
nested within subjects or test locations. The level-1 observations (variables 
or repeated measurements) are nested within the higher level-2 
observations (e.g., clusters within the respective test plots). 

A multilevel model augments the logistic regression model by estimating 
the intercept of the level-1 dependent variable as an effect of the level-2 
grouping variable and possibly other level-1 or level-2 (or higher) 
covariates. The association of nonlinearity of outcomes is modeled by 
computing the probability or likelihood estimation of a response. The 
simplified combination of level-1 and level-2 model yields a cluster-
specific model of response as follows: 

 𝒚𝒚𝒊𝒊𝒐𝒐 = β𝟎𝟎𝒐𝒐 + β𝟏𝟏𝒐𝒐𝟓𝟓𝒊𝒊𝒐𝒐 + ε𝒊𝒊𝒐𝒐 (12) 

where 𝑦𝑦𝑤𝑤𝑜𝑜 is the dependent variable for contrast i, and 𝑥𝑥𝑤𝑤 is the independent 
variable for contrast i. In our model, i denotes the level-2 units (e.g., 
Probe_id) and j denotes the level-1 units (e.g., nested observations). 
Assume there are i = 1, . . ., N for Probe_id test locations (level-2 units) 
and j = 1, . . . , ni for repeated observations (level-1 units) that are nested 
within each test location. The intercept β0𝑜𝑜 accounts for the mean 

likelihood of a response in Probe_id, j controlling the effects in the model. 
The term β1𝑜𝑜 is the slope associated with this predictor, 𝑥𝑥𝑤𝑤𝑜𝑜. The term ε𝑤𝑤𝑜𝑜 

represents a residual error for the effect associated within the Probe_id 
variations. 
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 Analytical steps 

The analytical steps in the statistical analyses included the overarching 
question of the best way to determine the relational association between 
atmospheric input and response for detecting the contrast between 
presence and absence of a buried object in the ground. To address the 
overarching question, the statistical analyses are separated into two 
approaches: (1) using an unclustered structure with logistic regression 
model to identify which covariates (environmental properties, soil 
conditions, and near-surface soil temperatures) have improved probability 
for detecting the contrast between presence/absence of a buried object 
(the multilevel model primarily assesses the overall relationship of 
covariates for detecting the contrast) and (2) incorporating the clustering 
structure of the data with nonlinearity and randomness of outcomes with a 
multilevel model, which utilizes the following sequences:  

a) A dichotomous procedure to identify which covariates can 
detect the contrast areas 

b) Using a continuous outcome with the generalization that the 
data are permitted to exhibit correlation and nonconstant 
variability to determine the overall probability of detecting 
the contrast areas or which contrast areas are significant. 
How do contrast area vary by the time of day? What time of 
the day has the highest unit change (probability) for 
discriminating the contrast areas?  

The model-building processes are listed in Table 4, which describes what 
effects are included in each of the models and the information about what 
output the various models provide. Each dependent variable is divided 
into four contrast areas using the SAS software (version 9.4, SAS Institute 
2017) with three types of statistical procedures: the PROC LOGISTICS 
procedure without clustering effects, PROC GLIMMIX, and PROC 
MIXED. 

The PROC LOGISTICS procedure is a logistic regression analysis that is 
often used to investigate the relationship between discrete responses (such 
as binary, ordinal and nominal) and a set of explanatory variables 
responses without the clustering effects 
(https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_logistic_overview.htm). 
The PROC GLIMMIX procedure is used to investigate the relationship 

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_logistic_overview.htm
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between discrete responses and a set of explanatory variables such as 
binary or dichotomous, ordinal and nominal responses with clustering 
effects (https://support.sas.com/rnd/app/stat/procedures/glimmix.html). The PROC 
MIXED is used to investigate the relationship between a continuous 
variable and a set of explanatory variables with clustering effects 
(https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.3/statug/statug_mixed_overview.htm). 

The analytical steps A1 and A2 (Table 4) used Object as a dependent or 
outcome variable with a logistic regression model. The goal for this step is 
to determine the probability of differentiating the presence of buried 
objects from undisturbed areas and the relationship between Object and 
other covariates or predictors (e.g., soil temperatures and changes in 
atmospheric conditions). The second procedure applied the multilevel 
model with Object as a level 1–dependent or outcome variable for 
analytical step A3 (Table 4) with a binary solution function in the PROC 
GLIMMIX procedure (SAS Institute 2017). The analytical step A3 model 
consisted of predictors in level 1 to determine the relationships between 
the level 1 outcome and the level 2 effects (in this case, using the Probe-id). 
The third approach used the multilevel model with continuous variables as 
dependent outcome measurements such as SoilTemp5 SoilTemp25, IR_tir 
and Soil15. In these analytical steps (B1, B2, B3, C and D), the procedure 
used the SAS PROC MIXED with Object variable as predictors in level 1 to 
determine the relationships between the level 1 outcome and the level 2 
effects (in this case, using the Probe-id). In each analytical step for B1, B2, 
B3, C and D, 96 individual models are created for all four contrast areas. 

Table 4. Summary statistical models used in the analyses. 

Outcome or 
Dependent 

Variable 
Analytical 

Steps Model Description 

Object 

A1 

Logistic regression model (without clustering 
effects) for individual contrast using the point 
layout datasets of the soil temperature and 
environmental variables  

A2 

Logistic regression model (without clustering 
effects) for individual contrast using the 20 
cm × 20 cm area with IR, soil temperature, 
and soil moisture 

A3 

Multilevel model (GLIMMIX procedure, 
LAPLACE and binomial function) for 
individual contrast using the point layout 
datasets of the soil temperature and 
environmental variables as level 1 predictors 
and nested in Probe-id as level 2 variable 

https://support.sas.com/rnd/app/stat/procedures/glimmix.html
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Outcome or 
Dependent 

Variable 
Analytical 

Steps Model Description 

SoilTemp5 B1 

Multilevel model (MIXED procedure) for 
individual contrast with Object as level 1 
predictor and nested in Probe-id as level 2 
variable using the point layout datasets. 96 
individual models are run for all four 
contrasts. 

SoilTemp5 Time1,  
… 
SoilTemp5 Time24 

B2 

Multilevel model (MIXED procedure) for 
individual hourly contrast with Object as level 
1 predictor and nested in Probe-id as level 2 
variable using the point layout datasets. 96 
individual models are run for all four 
contrasts. 

SoilTemp25 
Time1, … 
SoilTemp25 
Time24 

B3 

Multilevel model (MIXED procedure) for 
individual hourly contrast with Object as level 
1 predictor and nested in Probe-id as level 2 
variable using the point layout datasets 

IR_tir Time1,  
… 
IR_tir Time24 

C 

Multilevel model (MIXED procedure) for 
individual hourly contrast with Object as level 
1 predictor and nested in Probe-id as level 2 
variable using the 20 cm × 20 cm area 
datasets. 96 individual models are run for all 
four contrasts. 

Soil15 Time1,  
… 
Soil15 Time24 

D 

Multilevel model (MIXED procedure) for 
individual hourly contrast with Object as level 
1 predictor and nested in Probe-id as level 2 
variable. 96 individual models are run for all 
four contrasts. 

4.3 Statistical analyses results 

 Model A: Object as a dependent variable 

The parameter estimates for logistic regression model using Object as a 
dependent variable from analytical step A1 are shown in Table 5 with the 
point layout datasets and in Table 6 from analytical step A2 using the 20 
cm × 20 cm area datasets. The logistic regression model is used without 
clustering effects, and the results from the logistic regression model 
include the following: 

• Group 1 (SM buried object versus undisturbed soil): The intercept 
for Object has statistical significance (Table 5). However, the 
probabilities of the regressors have no statistical significance on 
detecting the contrast area for the SM and undisturbed areas. The 
beta or log odds estimated using logistic regression model are less 
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than or close to zero, which means these regressors have no effect 
on the variable Object.  

Using the 20 cm × 20 cm area dataset, the variable Object (Table 6) 
has statistical significance (p < 0.01) for its intercept and is overall 
statistically related (p < 0.01) to hourly average surface 
temperature (IR_tir), soil temperature at 5 cm bgs (SoilTemp5), 
and soil moisture at 15 cm bgs (Soil15). The overall odds for 
detecting the change in the temperature response between the 
undisturbed and SM object area decrease with decreasing surface 
soil temperature and increase with increasing surface soil 
temperature. In this case the surface soil temperature changes 
approximately −0.93°C as measured by thermal IR (IR_tir). Soil 
moisture is also a significant contributor to the contrast difference 
between undisturbed soil and SM metal object by approximately 
35.75% volume. It is important to note the soil moisture sensor is 
positioned adjacent (5 cm away) to the SM object at its vertical 
midpoint. 

•  Group 2 (DM versus undisturbed soil): The intercept for Object 
(Table 5) has statistical significance (p < 0.01). The probabilities of 
hourly average air temperature (Airtemp) and soil temperature at 5 
cm (SoilTemp5) also have statistical significance for detecting the 
contrast between the DM object and undisturbed soil. The 
remaining environmental regressors have no effect for estimating 
the difference between undisturbed soil and the DM object. 

The parameter estimates using the 20 cm × 20 cm area dataset 
showed the variable Object (Table 6) has statistical significance (p < 
0.01) for its intercept and is statistically related (p < 0.01) to hourly 
average surface temperature (IR_tir), soil temperature 
(SoilTemp5), and soil moisture (Soil15). The odds for a change in 
response to soil temperature from the undisturbed to SM object 
area increases with increasing surface soil temperature and 
decreases with decreasing surface soil temperature. Specifically, 
this means the soil above the SM object as measured by the thermal 
IR (IR_tir) is about 0.57°C warmer than the undisturbed soil. Soil 
moisture also contributes to a difference between buried object and 
no object. The change from no object DM object area is 
approximately 78.44% by volume of soil moisture, indicating the 
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soils above the DM are wetter than the background soils. It is 
important to note the soil moisture sensor is positioned 10 cm 
above the deep metal object. This suggests water from precipitation 
events migrates into the soil and then pools on top of the DM 
object. 

• Group 3 (SP versus undisturbed soil): The intercept for Object as a 
dependent variable has statistical significance (p < 0.01). The 
probabilities of hourly average air temperature (Airtemp), soil 
temperature at 5 cm bgs (SoilTemp5), time of day (Timen), relative 
humidity (Rh), and wind speed (WindSpd) also have statistical 
significance for detecting the difference between the SP object area 
and undisturbed soil. The remaining environmental regressors have 
no effect on the contrast (variable Object). 

Similarly, the variable Object (Table 6) has statistical significance (p 
< 0.01) based on the logistic regression model using the 20 by 20 
cm area dataset. The hourly average surface soil temperature 
(IR_tir), soil temperature at 5cm bgs (SoilTemp5), and soil 
moisture at 15 cm bgs (Soil15) are also statistically significant to the 
difference between SP area and undisturbed soil. This means the 
odds for change between undisturbed soil and the SP object area 
increases with increasing surface soil temperature as measured with 
thermal IR (IR_tir) by approximately 1οC. Soil moisture is also a 
significant contributor to the contrast with a change between 
undisturbed soil and a SP object area by approximately 17% by 
volume. It is important to note the soil moisture sensor is 
positioned adjacent (5 cm, away) to the SP object at its vertical mid-
point. 

• Group 4 (DP versus undisturbed soil): The intercept for Object as a 
dependent variable has statistical significance (p < 0.01). The 
probabilities of hourly average air temperature (Airtemp), soil 
temperature at 5 cm (SoilTemp5), and relative humidity (Rh) have a 
statistically significant influence on the ability of seeing the contrast 
between the DP object area and undisturbed soil area. The 
remaining environmental regressors have no effect on the contrast 
(variable Object). 
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Likewise, the parameter estimates using the 20 cm × 20 cm area 
dataset showed that the variable Object (Table 6) has statistical 
significance (p < 0.01). The hourly average surface soil temperature 
as measured with thermal IR (IR_tir), soil temperature at 5 cm 
(SoilTemp5), and soil moisture (Soil15) have a statistically 
significant impact on the contrast area. This means that the 
probability for a detectable change from an undisturbed area to a 
DP object area increases with increasing temperature. The thermal 
IR (IR_tir) signature for the DOP object area is approximately 
0.48°C warmer than the undisturbed area. Soil moisture is also a 
significant contributor to the contrast between undisturbed soil and 
the DM object area by approximately 75% volume of soil moisture. 
It is important to note the soil moisture sensor is positioned 10 cm 
above the deep metal object. 

Table 5. Model A1 output of probability estimates and standard errors (values in parenthesis) 
from logistic regression model with intercept of Object as a dependent variable using the 
point layout datasets of the hourly average soil temperature and environmental variables. 

Fixed Effects SM DM SP DP 

Intercept (Object) −2.505 (0.55)⊕ −3.56 (0.56)⊕ −5.24 (0.52)⊕ −4.488 (0.561)⊕ 

Airtemp −0.002(0.017) −0.03 (0.017)⊕ −0.091 (0.015)⊕ −0.062(0.016)⊕ 

SoilTemp5 −0.003(0.019) 0.049 (0.018)⊕ 0.132 (0.014)⊕ 0.093(0.018)⊕ 

Timen 0.0002(0.005) −0.003 (0.005) −0.008 (0.005)† −0.0059(0.005) 

Rh −0.0003(0.004) 0.005 (0.004) 0.016 (0.004)⊕ 0.0102(0.004)⊕ 

SW −0.00001 (0.0006) −0.0003 (0.0006) 0.0006 (0.0006) 0.0005 (0.0006) 

SWR 0.0001(0.004) −0.00195(0.004) −0.0054 (0.004) −0.0039(0.004) 

Rain 0.0004 (0.0785) −0.0067 (0.0795) −0.0202 (0.0819) −0.0125 (0.0804) 

WndSpd −0.003 (0.073) 0.046 (0.073) 0.1263 (0.0725)† 0.0860 (0.0726) 

WndDir −8.9e-6 (0.0006) 1.5e-4 (0.0006) 0.0004 (0.0006) 0.0003 (0.0006) 

Model fit, AIC 8302.07 8302.07 8124.66 8302.07 

Model fit, -2 Log L 8300.07 8300.07 8122.66 8300.07 
⊕p < .01; *p < .05; † p < .10 
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Table 6. Model A2 results of probability estimates and standard errors (values in parenthesis) 
from logistic regression modeling with intercept of Object as a dependent variable using the 

20 cm × 20 cm area with the hourly average IR temperature, soil temperature, and soil 
moisture. 

 Groups of Contrast 

Fixed Effects SM DM SP DP 

Intercept (Object) −87.41 (0.91)⊕ −15.7 (1.1)⊕ −74.26 (0.74)⊕ −7.15 (1.19)⊕ 

AirTemp −0.04 (0)⊕ 0.43 (0)⊕ 0.14 (0)⊕ 0.42 (0)⊕ 

IR_tir −0.93 (0.01)⊕ −0.57 (0.01)⊕ −1.02 (0.01)⊕ −0.48 (0.02)⊕ 

Soil15 34.75 (0.14)⊕ −78.44 (0.22)⊕ −17.42 (0.17)⊕ −75.23 (0.21)⊕ 

Soiltemp5 0.04 (0)⊕ −0.2 (0)⊕ 0.01 (0)⊕ −0.16 (0)⊕ 

Model fit, AIC 622857.82 

Model fit, −2 Log L 622855.82 
⊕p < 0.01; *p < 0.05; † p < 0.10 

Taking the summer datasets as whole for each group of contrasts, results 
from clustering effects using GLIMMIX, binary solution function with 
Object as a dependent variable, indicate none of the environmental 
variables are related (Table 7). When the Probe-id is added (level 2) for 
clustering effects, the dependent variable (Object) at level 1 having values 
of 0 and 1 does not vary by subsurface thermistor location. The estimates 
of the random effects are all the same. In other words, the outcome is the 
same within subsurface thermistor location at a summer observation. 
Thus modeling the Object variable as an outcome (y) variable is not an 
appropriate approach for this model in incorporating the clustering effects 
of level 2 (Probe-id) to use for detecting the contrast between the presence 
and absence of the objects. Using a continuous variable from in situ soil 
measurements as an outcome, as opposed to the Object variable, will 
provide the distinctive results for detecting the target (Section 4.3.2). 
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Table 7. Model A3 output of probability estimates and standard errors (values in parenthesis) 
from multilevel model procedures with intercept of Object as a dependent variable using 

GLIMMIX procedure and LAPLACE function. These estimates used the point layout datasets of 
the hourly average soil temperature and environmental variables. 

Fixed Effects SM DM SP DP 

Intercept (Object) −4.53 (93.89) −5.52 (93.38) −7.15 (85.96) −6.457 (94.067) 

Airtemp 0.223 (3.006) 0.176 (2.814) −0.020 (2.495) 0.173 (2.858) 

SoilTemp −0.4303 (2.997) −0.352 (2.684) −0.130 (1.752) −0.348 (2.798) 

Timen 0.0059 (1.275) 0.0043 (1.225) −0.0403 (1.242) 0.008 (1.166) 

Rh −0.117 (0.662) −0.117 (0.662) −0.112 (0.638) −0.108 (0.660) 

SW −0.0031 (0.095) −0.0032 (0.097) −0.00105 (0.092) −0.003 (0.100) 

SWR 0.0257 (0.62) 0.0237 (0.625) 0.0059 (0.6) 0.0224 (0.65) 

Rain −0.2014 (2.854) −0.166 (2.947) −0.0285 (4.796) −0.218 (2.643) 

WndSpd −2.667 (13.451) −2.798 (13.765) −2.5764 (12.6850) −2.492 (13.483) 

WndDir −0.0077 (0.1365) −0.0079 (0.1367) −0.0056 (0.1345) −0.0065 (0.133) 

Model fit, AIC 25.80 25.80 25.80 25.79 

Model fit, -2 Log L 3.80 3.80 3.80 3.79 
⊕p < .01; *p < .05; † p < .10 

 Model B: Soil temperature as outcome 

The soil temperature measurements are slightly different within probes 
and vary considerably with time. Having the soil temperature 
measurements (SoilTemp5 and SoilTemp25) individually modeled as an 
outcome, the Object variable is assigned as the predictor for detecting the 
contrast between the presence of objects and undisturbed soil. The 
multilevel model using the MIXED procedure is used given that soil 
temperature is a continuous variable and the model is nested at level 2 
with a Probe-id variable. 

Table 8 provides the parameter estimate summary for the timeline 
between 15 July and 31 August 2018 using the multilevel (MIXED) models 
with clustering effects, a level 2 (Probe-id), and the level 1 outcome of soil 
temperature (SoilTemp5). The results indicate the hourly average soil 
temperatures at 5 cm (SoilTemp5) for all the contrasting groups are 
statistically significant (p < 0.01) with estimated intercept ranging 
between 19.7 and 19.9°C. The soil temperatures at 5 cm (SoilTemp5) are 
statistically associated with air temperature (Airtemp), time of day 
(Timen), relative humidity (Rh), short wave (SW), short-wave reflectance 
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(SWR), and wind speed (WindSpd). The relationship with various slope 
values is naturally related to the temperature influence and energy balance 
or the surface/atmosphere radiation and absorption exchange. Generally, 
there is a statistical significance and positive relationship between soil 
temperature and Object variable particularly with plastic objects. On 
average, having a shallow plastic object buried in the ground increases 
(slope) soil temperature by 0.56°C and influences other variables in the 
model. Similarly, a DP buried object increases slope of the soil 
temperature by 0.26°C.  

Table 8. Model B1 results of probability estimates and standard errors (values in parenthesis) 
from multilevel model applying the PROC MIXED procedures for all contrasts with intercept of 

SoilTemp5 as a dependent variable. These estimates used the point layout datasets of the 
hourly average soil temperature and environmental variables. 

Fixed Effects SM DM SP DP 

Intercept (SoilTemp5) 19.775 (0.175) ⊕ 19.905 (0.177) ⊕ 19.67 (0.204) ⊕ 19.951 (0.177) ⊕ 

Object −0.008 (0.118) 0.1354 (0.118) 0.542 (0.118) ⊕ 0.262 (0.118)* 

Airtemp  0.696 (0.005) ⊕ 0.672 (0.005) ⊕ 0.696 (0.006) ⊕ 0.670 (0.005) ⊕ 

Timen 0.061 (0.002) ⊕ 0.062 (0.002) ⊕ 0.063 (0.002) ⊕ 0.062 (0.002) ⊕ 

Rh −0.102 (0.001) ⊕ −0.103 (0.001) ⊕ −0.107 (0.002) ⊕ −0.104 (0.001) ⊕ 

SW −0.004 (0.0002) ⊕ −0.004 (0.0002) ⊕ −0.004 (0.0003) ⊕ −0.005 (0.0002) ⊕ 

SWR 0.037 (0.002) ⊕ 0.037 (0.002) ⊕ 0.035 (0.002) ⊕ 0.037 (0.002) ⊕ 

Rain 0.133 (0.033) ⊕ 0.134 (0.033) ⊕ 0.144 (0.038) ⊕ 0.131 (0.033) ⊕ 

WndSpd −0.945 (0.03) ⊕ −0.946 (0.03) ⊕ −0.972 (0.035) ⊕ −0.948 (0.03) ⊕ 

WndDir −0.003 (0.0003) ⊕ −0.003 (0.0003) ⊕ −0.003 (0.0003) ⊕ −0.003 (0.0003) ⊕ 

Model fit, AIC 61507.2 61841.8 66511.5 61825.7 

Model fit, -2 Log L 61503.2 61837.8 66507.5 61821.7 
⊕p < .01; *p < .05; † p < .10 

Given soil temperature at 5 cm (SoilTemp5) for all contrasts are 
statistically significant, this raises the question of what time of day has the 
highest change (probability) for estimating the contrasts or what is the 
best time for detecting buried objects? Using nested observations at level 2 
with Probe-id variable, the multilevel model (MIXED procedure) 
generated individual hourly contrasts with SoilTemp5 as an outcome and 
Object as level-1 predictor using the point layout datasets. The individual 
hourly contrast model for time  of day (1, 2,…24) estimates the probability 
of the intercepts for soil temperatures at 5 cm and slopes of the 



ERDC TR-22-4  44 

relationship between the hourly soil temperature intercepts and slopes of 
Object from 0 (no object) to 1 (with object) for the corresponding contrasts 
(Table 9). For all contrasts, the estimated intercepts for SoilTemp5 have 
statistical significance (p < .01) and are the same within the specific time 
of the day. 

For example, the intercept at time code 2 from 0100 to 0145 is 22.6°C, 
which is the mean soil temperature probability distribution and controls 
for all effects in the model for that particular time of the day. The 
estimated intercepts for soil temperatures at 5 cm diurnally fluctuates 
from 21.1°C at 0600 to 31.7°C at 1500 with a 10.6°C increase due to heat 
gain. The slope estimates of Object from 0 (no object) to 1 (with object) 
correspond to the change in temperature and differ for each contrast in 
relation to undisturbed areas. The slope estimates have statistical 
significance primarily for the SP and SM contrast but not for the DM and 
DP contrasts. A negative slope means the temperature is decreasing during 
that time of the day above the objects, while the positive change or slope 
means there is warming relative to the intercept in the presence of buried 
objects. For example, the soil temperature above the SP object from 0100 
to 0145 is approximately −2.6°C relative to the intercept value of 22.6°C 
(about 20.6°C above the SP object) and about −0.5°C relative to the 
intercept value of 22.6°C for the SM object (about 22.1°C above the SM 
object). At this time the ground is slightly warmer above the SM object 
than the SP object. At time code 10 or around 0900, the estimated slopes 
of the Object for the SP and SM objects are almost equal; this means that 
soil temperatures above the SP and SM are almost identical. However, 
from 1300 to 1345, the soil temperatures above the SP and SM are 
estimated to be 5.5 and 1.1°C, respectively relative to the intercept of 
30.9°C (about 36.4°C and 32οC above the SP and SM objects, respectively). 
This means that at 1300 the ground is 4°C warmer above the SP object 
than the SM object. 
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Table 9. Model B2 output of probability estimates and standard errors (values in parenthesis) 
from 96 multilevel models of applying the PROC MIXED procedures aggregated based on time 

of day contrasts with intercept of soil temperature at 5 cm (SoilTemp) as a dependent 
variable.  

Time of day Intercept 
(SoilTemp5) 

Contrast (Objects versus without) 

SM DM SP DP 

Slope of Object 

1 (12–12:45am) 23.12 (0.08) ⊕ −0.598 (0.3)* −0.20 (0.30) −2.406 (0.309) ⊕ 0.25 (0.30) 

2 (1–1:45am) 22.6 (0.08) ⊕ −0.522 (0.301) † −0.27 (0.30) −2.558 (0.31) ⊕ 0.21 (0.30) 

3 (2–2:45am) 22.17 (0.08) ⊕ −0.447 (0.303) −0.296 (0.31) −2.625 (0.314) ⊕ 0.17 (0.31) 

4 (3–3:45am) 21.82 (0.08) ⊕ −0.389 (0.306) −0.33 (0.31) −2.628 (0.317) ⊕ 0.12 (0.31) 

5 (4–4:45am) 21.5 (0.08) ⊕ −0.339 (0.312) −0.35 (0.31) −2.614 (0.323) ⊕ 0.08 (0.31) 

6 (5–5:45am) 21.24 (0.09) ⊕ −0.298 (0.319) −0.36 (0.32) −2.574 (0.33) ⊕ 0.04 (0.32) 

7 (6–6:45am) 21.1 (0.09) ⊕ −0.226 (0.323) −0.36 (0.33) −2.465 (0.334) ⊕ 0.005 (0.32) 

8 (7–7:45am) 21.43 (0.09) ⊕ −0.011 (0.321) −0.299 (0.32) −1.965 (0.33) ⊕ −0.02 (0.32) 

9 (8–8:45am) 22.39 (0.09) ⊕ 0.319 (0.312) −0.16 (0.31) −0.926 (0.319) ⊕ −0.01 (0.31) 

10 (9–9:45am) 23.86 (0.09) ⊕ 0.679 (0.32)* 0.01 (0.32) 0.512 (0.33) 0.027 (0.32) 

11 (10–10:45am) 25.76 (0.1) ⊕ 1.04 (0.36) ⊕ 0.22 (0.35) 2.163 (0.38) ⊕ 0.098 (0.34) 

12 (11–11:45am) 27.76 (0.12) ⊕ 1.27 (0.43) ⊕ 0.46 (0.43) 3.76 (0.46) ⊕ 0.208 (0.43) 

13 (12–12:45pm) 29.55 (0.13) ⊕ 1.28 (0.49) ⊕ 0.61 (0.49) 4.909 (0.52) ⊕ 0.298 (0.49) 

14 (1–1:45pm) 30.88 (0.15) ⊕ 1.14 (0.55)* 0.69 (0.55) 5.508 (0.584) ⊕ 0.365 (0.55) 

15 (2–2:45pm) 31.56 (0.16) ⊕ 0.827 (0.61) 0.71 (0.61) 5.509 (0.646) ⊕ 0.414 (0.61) 

16 (3–3:45pm) 31.67 (0.17) ⊕ 0.477 (0.635) 0.75 (0.64) 5.127 (0.673) ⊕ 0.475 (0.64) 

17 (4–4:45pm) 31.35 (0.17) ⊕ 0.166 (0.649) 0.73 (0.65) 4.452 (0.686) ⊕ 0.522 (0.65) 

18 (5–5:45pm) 30.62 (0.17) ⊕ −0.128 (0.627) 0.66 (0.63) 3.564 (0.662) ⊕ 0.565 (0.63) 

19 (6–6:45pm) 29.54 (0.15) ⊕ −0.436 (0.57) 0.54 (0.58) 2.456 (0.599) ⊕ 0.552 (0.56) 

20 (7–7:45pm) 28.02 (0.13) ⊕ −0.74 (0.48) 0.39 (0.49) 1.15 (0.505) ** 0.49 (0.49) 

21 (8–8:45pm) 26.51 (0.11) ⊕ −0.9 (0.41)* 0.21 (0.42) -0.194 (0.425)  0.429 (0.42) 

22 (9–9:45pm) 25.32 (0.10) ⊕ −0.88 (0.36)* 0.06 (0.37) −1.165 (0.371) ⊕ 0.376 (0.37) 

23 (10–10:45pm) 24.39 (0.09) ⊕ −0.79 (0.33)* −0.06 (0.34) −1.796 (0.341) ⊕ 0.331 (0.34) 

24 (11–11:45pm) 23.67 (0.08) ⊕ −0.69 (0.31)* −0.14 (0.32) −2.186 (0.321) ⊕ 0.288 (0.32) 
⊕p < .01; *p < .05; † p < .10 

Since the hourly soil temperature at 5 cm bgs showed statistical 
significance for the estimates of the probability, would the soil 
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temperatures at 25 cm bgs differentiate the soil temperature response in 
the ground due to having the buried objects? The temperature sensors at 
25 cm below the ground are positioned just above the DM and DP and just 
below the SM and SP objects. Similar multilevel model processes were 
performed with SoilTemp25 as an outcome using the nested observations 
at level 2 with the Probe-id variable for individual hourly contrasts and 
Object as level-1 predictor. The individual hourly contrast model for time 
(1, 2,…24) of day provides an estimate of the probability of the intercept 
for soil temperatures at 25 cm and slope of the Object from 0 (no object) to 
1 (with object) for the corresponding contrasts (Table 10). For all 
contrasts, the estimated intercepts for SoilTemp25 have statistical 
significance (p < 0.01) and are the same within the specific time of day. 
For example, the intercept from 0700 to 0745 is 24.53°C, which is the 
mean soil temperature probability distribution that controls the effects for 
the particular time of day.  

The slope estimates have statistical significance at certain times of the day 
for all contrasts (Table 10). A negative slope means the temperature is 
cooling during that time of the day, while a positive slope means that there 
is warming relative to the intercept due to the influence of having the 
objects in the ground. For example, the soil temperature below the SP at 
time code 8 from 0700 to 0745 is approximately 0.9°C relative to the 
intercept value of 24.53°C (about 25.4°C below the SP object) and about 
−0.4°C relative to the intercept value of 24.53°C for the DP object (about 
24.1οC above the DP object). Also, at 0700 to 0745, the ground is warmer 
below the SP object than the SM object. Overall, the soil temperature 
below the SM object is relatively cooler than undisturbed areas. The DP 
object is differentiated by soil temperature at 25 cm from 0900 to 1145 
with negative slopes ranging from −0.52 to −0.57°C and from 1800 to 
0945 with positive change between 0.81 and 0.92°C. There is a very 
narrow window to differentiate the DM object between 1500 and 1845 
with a slope value of 0.5°C relative to the intercept values of soil 
temperature at 25 cm for those times.  
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Table 10. Model C results of probability estimates and standard errors (values in parenthesis) 
from multilevel model of applying the PROC MIXED procedures aggregated based on time of 

the day contrasts with intercept of soil temperature at 25 cm (SoilTemp) as a dependent 
variable. 

Time of day Intercept 
(SoilTemp25) 

Contrast (Objects versus without) 

SM DM SP DP 

Slope of Object 

1 (12–12:45am) 26.2 (0.07) ⊕ −0.87 (0.26) ⊕ 0.121 (0.259) −0.482 (0.253) † 0.49 (0.264) † 

2 (1–1:45am) 25.95 (0.07) ⊕ −0.85 (0.25) ⊕ 0.092 (0.251) −0.205 (0.246) 0.34 (0.255) 

3 (2–2:45am) 25.7 (0.07) ⊕ −0.84 (0.24) ⊕ 0.066 (0.244) 0.049 (0.239) 0.195 (0.247) 

4 (3–3:45am) 25.44 (0.06) ⊕ −0.82 (0.23) ⊕ 0.048 (0.237) 0.268 (0.233) 0.05 (0.241) 

5 (4–4:45am) 25.2 (0.06) ⊕ −0.80 (0.23) ⊕ 0.041 (0.231) 0.463 (0.228)* −0.07 (0.234) 

6 (5–5:45am) 24.96 (0.06) ⊕ −0.78 (0.22) ⊕ 0.033 (0.227) 0.627 (0.223) ⊕ −0.19 (0.229) 

7 (6–6:45am) 24.74 (0.06) ⊕ −0.75 (0.22) ⊕ 0.035 (0.223) 0.764 (0.22) ⊕ −0.30 (0.225) 

8 (7–7:45am) 24.53 (0.06) ⊕ −0.71 (0.22) ⊕ 0.037 (0.22) 0.877 (0.217) ⊕ −0.41 (0.223) 

9 (8–8:45am) 24.34 (0.06) ⊕ −0.61 (0.22) ⊕ 0.047 (0.219) 0.955 (0.216) ⊕ −0.49 (0.221)* 

10 (9–9:45am) 24.22 (0.06) ⊕ −0.46 (0.22)* 0.074 (0.218) 0.969 (0.215) ⊕ −0.55 (0.22)* 

11 (10–10:45am) 24.19 (0.06) ⊕ −0.27 (0.22) 0.115 (0.218) 0.885 (0.215) ⊕ −0.57 (0.22)* 

12 (11–11:45am) 24.27 (0.06) ⊕ −0.07 (0.21) 0.184 (0.216) 0.695 (0.213) ⊕ −0.52 (0.218)* 

13 (12–12:45pm) 24.48 (0.06) ⊕ 0.09 (0.21) 0.267 (0.214) 0.395 (0.211)* −0.42 (0.215) † 

14 (1–1:45pm) 24.80 (0.06) ⊕ 0.16 (0.22) 0.355 (0.217) 0.011 (0.217) −0.24 (0.217) 

15 (2–2:45pm) 25.19 (0.06) ⊕ 0.13 (0.23) 0.436 (0.226) † −0.417 (0.226) † −0.02 (0.226) 

16 (3–3:45pm) 25.61 (0.06) ⊕ 0.03 (0.24) 0.49 (0.235)* −0.834 (0.235) ⊕ 0.23 (0.235) 

17 (4–4:45pm) 26.01 (0.06) ⊕ −0.11 (0.24) 0.53 (0.24)* −1.186 (0.24) ⊕ 0.46 (0.24) † 

18 (5–5:45pm) 26.35 (0.07) ⊕ −0.27 (0.24) 0.53 (0.247)* −1.445 (0.243) ⊕ 0.66 (0.25)* 

19 (6–6:45pm) 26.61 (0.07) ⊕ −0.42 (0.26) 0.50 (0.259) † −1.596 (0.252) ⊕ 0.81 (0.26)* 

20 (7–7:45pm) 26.78 (0.07) ⊕ −0.58 (0.27)* 0.453 (0.27) † −1.63 (0.262) ⊕ 0.89 (0.28)* 

21 (8–8:45pm) 26.83 (0.07) ⊕ −0.72 (0.27) ⊕ 0.387 (0.276) −1.545 (0.268) ⊕ 0.92 (0.28)* 

22 (9–9:45pm) 26.77 (0.07) ⊕ −0.81 (0.27) ⊕ 0.308 (0.277) −1.35 (0.27) ⊕ 0.875 (0.28)* 

23 (10–10:45pm) 26.62 (0.07) ⊕ −0.86 (0.27) ⊕ 0.229 (0.274) −1.084 (0.267) ⊕ 0.77 (0.28)* 

24 (11–11:45pm) 26.41 (0.07) ⊕ −0.87 (0.26) ⊕ 0.163 (0.268) −0.786 (0.262) ⊕ 0.64 (0.27)* 
⊕ p < .01; *p < .05; † p < .10. 
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 Model C: Surface temperature with IR as outcome  

Based on the results from the logistic regression model (Table 6), the 
estimated probabilities indicated a statistical significance for the Object 
with surface temperature (IR_tir). Using similar multilevel model 
processes from previous analyses for soil temperature, the surface 
temperature derived from IR measurements (IR_tir) is used as an 
outcome with nested observations at level 2 with Probe-id variable and 
Object as level-1 predictor. The individual hourly contrast model for time  
of day (1, 2,…24) estimates the probability of the intercepts for IR 
temperatures (IR_tir) and slopes of the Object for the corresponding 
contrasts (Table 11). The results indicate the hourly average IR for surface 
temperatures (IR_tir) are statistically significant (p < .01) with estimated 
intercepts ranging between 19.8 and 35.9°C. The warmest mean surface 
temperature probability distribution based on the estimated intercept is 
between 1300 and 1345 at 35.87°C.  

The surface temperature change above the SP object around 2400 is 
approximately −1.6°C relative to the intercept value of 20.98°C (which is 
approximately 19.4°C for the SP). The contrast for the SP object around 
2400 is approximately 1°C cooler than for the SM object. At midday (1200 
to 1245), the soil surface above the SP object is warmer by 1.7°C than the 
contrast for the SM object. 

The estimated slope values for the SM object for most of the 24-hour cycle 
have statistical significance for detecting the contrast. The SM object 
contrasts are detectible with the lowest cooling unit change of −0.62 to 
−0.76°C from 2000 to 1245 and highest ranges of warming unit change of 
1 to 1.3°C from 1100 to 14:45. The DM object contrast appears measurable 
by thermal IR temperature based on the surface warming unit change of 
2.2 to 3.0°C from 1100 to 1545. There is a very a narrow window to detect 
the DM object contrast between 1200 and 1545 with slope values of 0.6°C 
relative to the intercept values of surface temperature at those times. 
Overall, the temperature change for SP object contrast is more noticeable 
or detectable most of the 24-hr cycle than for other objects, with the 
largest range of warming between 2.2 and 3°C from 1100 to 1645. 
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Table 11. Model D results of probability estimates and standard errors (values in parenthesis) 
from multilevel model of applying the PROC MIXED procedures aggregated based on time of 

the day contrasts with intercept of soil temperature radiance (IR_tir) as a dependent variable. 

Time of day Intercept 
(IR_tir) 

Contrast (Objects versus without) 

SM DM SP DP 

Slope of Object 

1 (12–12:45am) 20.98 (0.02) ⊕ −0.62 (0.06) ⊕ −0.36 (0.06) ⊕ −1.60 (0.06) ⊕ −0.24 (0.06) ⊕ 

2 (1–1:45am) 20.56 (0.02) ⊕ −0.56 (0.06) ⊕ −0.38 (0.06) ⊕ −1.66 (0.06) ⊕ −0.25 (0.06) ⊕ 

3 (2–2:45am) 20.33 (0.02) ⊕ −0.5 (0.06) ⊕ −0.38 (0.06) ⊕ −1.65 (0.06) ⊕ −0.25 (0.06) ⊕ 

4 (3–3:45am) 20.14 (0.02) ⊕ −0.45 (0.06) ⊕ −0.38 (0.06) ⊕ −1.63 (0.06) ⊕ −0.26 (0.06) ⊕ 

5 (4–4:45am) 19.96 (0.02) ⊕ −0.4 (0.06) ⊕ −0.37 (0.06) ⊕ −1.58 (0.06) ⊕ −0.26 (0.06) ⊕ 

6 (5–5:45am) 19.82 (0.02) ⊕ −0.36 (0.06) ⊕ −0.36 (0.06) ⊕ −1.53 (0.06) ⊕ −0.27 (0.06) ⊕ 

7 (6–6:45am) 20.15 (0.02) ⊕ −0.27 (0.06) ⊕ −0.3 (0.06)* −1.4 (0.06) ⊕ −0.23 (0.06)  

8 (7–7:45am) 21.66 (0.04) ⊕ −0.06 (0.09) −0.12 (0.09) −1.03 (0.09) ⊕ −0.11 (0.09) 

9 (8–8:45am) 24.15 (0.05) ⊕ 0.22 (0.12) 0.08 (0.12) −0.39 (0.12) ⊕ 0.04 (0.12) 

10 (9–9:45am) 26.95 (0.07) ⊕ 0.56 (0.18) ⊕ 0.24 (0.18) 0.41 (0.18) 0.17 (0.18) 

11 (10–10:45am) 30.18 (0.1) ⊕ 0.93 (0.24) ⊕ 0.45 (0.24) 1.28 (0.24) ⊕ 0.39 (0.24) 

12 (11–11:45am) 33.02 (0.11) ⊕ 1.2 (0.28) ⊕ 0.67 (0.28)* 2.16 (0.28) ⊕ 0.59 (0.28)* 

13 (12–12:45pm) 35.04 (0.12) ⊕ 1.27 (0.3) ⊕ 0.75 (0.3)* 2.76 (0.3) ⊕ 0.63 (0.3)* 

14 (1–1:45pm) 35.87 (0.12) ⊕ 1.2 (0.29) ⊕ 0.69 (0.29)* 3 (0.29) ⊕ 0.65 (0.29) ⊕ 

15 (2–2:45pm) 35.75 (0.11) ⊕ 1 (0.27) ⊕ 0.68 (0.27)* 2.99 (0.27) ⊕ 0.64 (0.27)* 

16 (3–3:45pm) 34.96 (0.09) ⊕ 0.69 (0.22) ⊕ 0.71 (0.22) ⊕ 2.76 (0.22) ⊕ 0.62 (0.22)* 

17 (4–4:45pm) 33.73 (0.07) ⊕ 0.44 (0.17)* 0.63 (0.17) ⊕ 2.36 (0.17) ⊕ 0.58 (0.17) * 

18 (5–5:45pm) 31.86 (0.05) ⊕ 0.13 (0.12) 0.44 (0.12)* 1.83 (0.12) ⊕ 0.46 (0.12)* 

19 (6–6:45pm) 29.59 (0.03) ⊕ −0.25 (0.08) 0.22 (0.08)* 1.1 (0.08) ⊕ 0.22 (0.08) 

20 (7–7:45pm) 26.57 (0.03) ⊕ −0.55 (0.07) ⊕ −0.04 (0.07) 0.34 (0.07) ⊕ −0.02 (0.07) 

21 (8–8:45pm) 24.39 (0.03) ⊕ −0.73 (0.07) ⊕ −0.18 (0.07) −0.4 (0.07) ⊕ −0.13 (0.07) 

22 (9–9:45pm) 22.95 (0.03) ⊕ −0.76 (0.07) ⊕ −0.26 (0.07) ⊕ −0.94 (0.07) ⊕ −0.19 (0.07) 

23 (10–10:45pm) 22.11 (0.03) ⊕ −0.73 (0.06) ⊕ −0.31 (0.06) ⊕ −1.27 (0.06) ⊕ −0.22 (0.06) ⊕ 

24 (11–11:45pm) 21.50 (0.03) ⊕ −0.67 (0.06) ⊕ −0.34 (0.06) ⊕ −1.48 (0.06) ⊕ −0.23 (0.06)⊕ 
⊕ p < .01; *p < .05; † p < .10. 
Random estimates for SM contrast within-Probe-id variance of 10°C at midnight and 38°C at 2 pm, between-Probe-id 

variance of 0°C at midnight and 0.07°C noontime. 
Random estimates for SP contrast within-Probe-id variance of 10οC at midnight and 41°C at 2 pm, between-Probe-ids 

variance of 0°C at midnight and 0.06°C noontime. 
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Figure 9 shows the comparison of responses between the IR temperature 
values and soil temperature at 5 cm. Each contrast corresponds with the 
estimated random intercept and the slope or unit change of IR 
temperature (left) and soil temperature (right). For all contrasts, the 
estimated intercepts (dashed line) for thermal IR temperature values are 
higher during the daytime by approximately 4°C and 2°C cooler at night 
than at 5 cm in the soil. However, the divergence due to the unit 
incremental change or the slope (solid line) varies for detecting the 
contrasts. The most pronounced divergence for detecting the contrast with 
background is with the buried SM object (Figure 9a) relative to no object, 
with the highest change of 5.5°C and 3°C soil temperature at 5 cm and 
thermal IR temperatures, respectively. 

The SM and SP object contrasts (Figure 9c) show statistical significance (p 
< 0.01) when the intercept (dashed line) and difference due to the 
temperature change or the slope estimates (solid line) for the buried object 
relative to no object are significantly diverging, while the divergences for 
the DM and DP objects are not as notable (Figures 9b and 9d, 
respectively).  

Figure 9. Probability estimates of intercept and slope of the hourly IR surface and soil 
temperatures at 5 cm for the four contrasts (a) SM, (b) DM, (c) SP, and (d) DP. 

 

18

22

26

30

34

38

0 2 4 6 8 10 12 14 16 18 20 22 24

Es
tim

at
es

Time of the Day

Intercept Unit Change

18

22

26

30

34

38

0 2 4 6 8 10 12 14 16 18 20 22 24

Es
tim

at
es

Time of the Day

Intercept Unit Change

SM Contrast
IR Soil Temp at 5 cm

(a) 



ERDC TR-22-4  51 

 

 

 

 Model D: Soil moisture as outcome  

The probability estimates of the intercepts (Figure 10a–d) for the hourly 
contrasts of soil moisture (Soil15) are statistically significant (p < 0.01). 
The slope estimates of the Object for the corresponding SM and SP 
contrasts have no statistical significance, meaning p > 0.50. On average 
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with having the SM object, the soil was 2% by volume wetter than 
surrounding soil without any object (Figure 10). On the other hand, the 
soil on the side of the SP object was approximately 1% by volume drier 
than surrounding soil without an object. This contradictory outcome is 
likely due to the moisture sensor positioned on the side of the objects. 
However, the slope estimates of the Object for the corresponding DM and 
DP object contrasts have statistical significance (p < 0.01) with values 
lower than the estimated intercepts. These indicate that overall soil 
moisture throughout the day is approximately 4–5% by volume lower on 
top of the DM and DP objects than surrounding soil with no objects. In 
this case, having the soil moisture sensors positioned 10 cm above objects 
provided a consistent response. 

Figure 10. Estimates of intercept and slope comparison for the hourly IR surface and soil 
temperature for the four contrasts (a) SM, (b) SP, (c) DM, and (d) SP.  
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4.4 ROC analysis 

Receiver operating characteristic (ROC) curves are useful for assessing the 
PD and FAR associated with object detection (Zoe et al. 2007; SAS 9.4). 
Incorporating ROC curves into our analysis of objective visibility using 
multilevel modeling allows for a single measure of comparison. One of the 
simplest scenarios for prediction is the case of a binary predictor. The 
most-used such measure is the area under the ROC curve (AUC). In 
general, an AUC of 0.5 suggests no distinction (i.e., ability to differentiate 
with and without the objects), 0.6–0.7 is considered marginal, 0.7–0.8 is 
considered acceptable, 0.8–0.9 is considered excellent, and more than 0.9 
is considered outstanding (Hosmer and Lemeshow 2000; Mandrekar 
2010). ROC curve comparisons in terms of AUC are conducted using the 
PROC Logistics procedure (SAS 2020). The AUC analysis of the contrasts 
included the hourly surface temperature (IR_tir labeled as IR temp), soil 
temperature at 5 cm (SoilTemp5 labeled in the plot as Soil temp), and soil 
moisture (Soil15 renamed in the plot as Soil MC) for Figure 4.5. An AUC 
composite of these three variables for the hourly SP object contrasts is also 
included in the analytical model (labeled in the Figure 7 plot as Model). 
Examples of the ROC plots for the corresponding object contrasts are 
shown in Figure 11, showing approximately the same AUC values at 1300 
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to 1345 and 1200 to 1245. The soil moisture–impacted AUC values are 
relatively uniform (Figure 12) throughout the 24-hour cycle, which 
matches undeviating patterns of the intercepts and slope estimates (Figure 
10). This is due to there being little variation in soil moisture during the 
study period (15 July–31 August 2018). Otherwise the AUC values of the 
soil temperature at 5 cm and IR temperature vary with time (Figures 11 
and 12). Particularly for the SM and SP objects, the AUC values for the IR 
temperature are marginal for differentiating with and without the objects 
at certain times of day (Figures 10 and 11). In general, the time of day with 
elevated AUC values for IR and soil temperature are identical with the 
probability estimates (Figure 9). The composite model provided excellent 
AUC values when surface temperature, soil temperature at 5 cm, and soil 
moisture were combined in the prediction for contrast. 

Figure 11. ROC curves for the four contrasts (a) SM, (b) DM, (c) SP, and (d) DP at 1300 to 
1345 (left) and at 1200 to1245 (right) for the surface temperature (IR_tir labeled as IR 
temp), soil temperature (SoilTemp5 labeled in the plot as Soil temp), and soil moisture 

(Soil15 renamed in the plot as Soil MC). 
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Figure 12. Hourly ROC curves comparisons for the (a) SM, (b) DM, (c) SP, and (d) DP contrasts 
between 15 July and 31 August 2018. 
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4.5 Section 4 discussion and summary 

Among the environmental or input measurements, the thermal IR and the 
soil temperature as well as the soil moisture are the outcome variables that 
have the probability of differentiating the contrast of the buried objects. 
Air temperature, relative humidity, SWR, and wind speed are 
measurements that have no direct impact on buried object contrasts and 
detectability. Although these measurements are statistically associated 
with the soil temperatures, the relationship with various slope values is 
commonly related due to energy balance or the surface/atmosphere 
radiation and absorption exchange. 

Overall, the multi-level modeling approach is able to differentiate and 
identify the contrast for the objects when taking into environmental 
phenomenology variables including the thermal IR surface temperature 
measurements and soil temperature at 5 cm. The object contrast responses 
differ in temperature magnitude as a function of sinusoidal changes in the 
24-hour period. In addition, the divergence between the intercept of the 
temperature responses and the slope varies for each contrast. The 
difference in slope for each contrast is due to differences in the rate of 
temperature change between no buried object and the buried objects. 
Among all the objects, the contrast for the SP object exhibits the highest 
probability of detection. The slope estimates have statistical significance 
primarily for the SP and SM object contrasts, but not particularly for the 
DM and DP object contrasts. This means that, compared to no object, the 
SP and SM objects are much more detectable than DP and DM objects 
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using the thermal IR temperature. The soil temperature above the SP 
object is overall warmer during the daytime and cooler at nighttime than 
the SM object by 4°C and 1.7°C, respectively, relative to soil temperature of 
areas with no buried objects. The thermal properties of the objects are 
influencing the temperature contrasts, which are detectable for shallow 
plastic and shallow metal objects when the ground is warm and cool. 
When the ground is warming during day light hours, the highest rate of 
temperature change occurs between 1200 and 1600 yielding the greatest 
detectability for the SP object. The highest detectability for the SM objects 
occurs between 1000 and 1400. Similarly, the surface soil temperature as 
measured with thermal IR above the SP object is generally warmer 
(daytime) and cooler (nighttime) than above the metals object by 
approximately 1.7°C and 0.9°C, respectively, relative to the adjacent 
background surface soil temperature with no buried objects. The 
maximum surface soil temperature above the SP objects as measured with 
thermal IR occurs between 1200 and 1600 for the plastic object and 
between 1100 and 1400 for the metal object. 

In general, the plastic materials have more insulative properties while 
metal materials are more conductive. In other words, the soil 
temperatures above the plastic objects heat more quickly in daylight hours 
and retain the thermal energy instead of diffusing it downward. The 
temperature effect of the plastic object is very localized and is greatly 
diminished even 10 cm away. However, for the deep buried objects the 
thermal contrasts due to the difference in surface soil temperature as 
measured with thermal IR are less than 1°C during daylight hours and 
2.3°C during nighttime hours. Thus, the detectability of deeper buried 
objects, > 5 cm from the ground surface, with thermal IR is limited. 

On average, the soil on the side of the SM object is 2% by volume wetter 
than surrounding soil without any object, while the soil on the side of the 
SP object is approximately 1% by volume drier than surrounding soil 
without any object. These results may not be representative moisture 
conditions on all sides of the objects. The soil moisture above the DM and 
DP objects contrasts is approximately 4 or 5% by volume wetter than the 
surrounding background soil.  

ROC curves incorporate observations into a single measure, which defines 
the responses into a plot of detection probability in the y-axis and the 
corresponding 1-specificity or FAR in the x-axis. Analysis of the AUC for 
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the ROC curves provided acceptable ranges of true positive rate versus its 
false positive rate for soil moisture for differentiating with and without the 
objects when there were no significant rainfall events and no significant 
change in soil moisture in the ground. In general, the time of day with the 
highest thermal FAR for IR and soil temperature is identical with the 
probability estimates from multilevel model results.  
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5 Thermal Model of Soil Temperature Using 
Thermal Imagery 

Buried objects have different thermal properties than surrounding soils 
resulting in localized areas with thermal contrasts above buried objects of 
different signatures than compared to the surrounding soil. The previous 
section demonstrated with multilevel modeling the surface soil 
temperature differences between locations with and without buried 
objects. The objective of this subtask is to develop a thermal model that 
can be used to increase the understanding of buried object detectability 
with thermal IR imagery. Once the model is calibrated and validated it can 
be used to identify environmental factors affecting thermal response from 
buried objects. The approach of this initial study involves using data 
collected during the summer of 2018 at the CRREL test plot (Clausen et al. 
2021) to calibrate and validate the model. 

5.1 Methods 

Transient thermal models of the CRREL test plot (Figure 8) were 
developed using several 2-D soil sections that included no buried object 
(for control) and metal and plastic objects at two different depths. For this 
modeling effort, the SVENVIRO module of Soilvision by Bentley Systems 
Inc., a 1-D/2-D/3-D finite element analysis software, was used. This 
module is a geotechnical software capable of modeling heat transfer under 
saturated and unsaturated conditions as well as thermal conduction and 
convection conditions. 

The model was set up as a 65 cm deep soil section with no flow boundary 
for the vertical section of the model (Figure 13). The applied boundary 
conditions utilized measured soil temperatures and thermal imagery 
temperatures. The soil temperatures measured at 65 cm bgs were applied 
to the bottom boundary. The thermal images of the test plot are 320 × 240 
pixels (Figure 8) where each area above each object is 18 × 17 pixels. A 
single pixel of FLIR imagery equates to a 2 mm area. To average the spatial 
differences between pixels, the average thermal temperature of 9 pixels 
centered above each control area and each object was used for the top 
boundary condition. The thermal imagery temperatures were converted 
from radiance using the FLIR software where default values were applied 
during conversion (see Section 4). In addition, several simulations were 
performed using converted radiances where the thermal imagery 
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temperatures were corrected using surface emissivity, air temperature, 
and relative humidity. 

Models were simulated both with no objects (control) and with objects 
(plastic and metal) at two depths (shallow and deep). The shallow objects 
were placed with a bottom depth of 25 cm bgs and the top at 5 cm bgs. The 
deeper objects were placed at a bottom depth of 45 cm bgs and the top at 
25 cm bgs (Figure 13). A calibration dataset was also modeled for five 
locations (control and objects) using a soil depth from 5 to 60 cm bgs 
where the soil temperatures measured at 5 cm were applied to the top 
boundary condition (see Figure 13). 

Figure 13. Model layout. 

 

A wall thickness of 3 × 10-3 m and 6 ×10-3 m was applied to the metal and 
plastic object, respectively. In the field, the objects were filled with 
ammonium nitrate (ANFO), which was also added to the objects during 
the simulations. The soil and object properties are listed in Table 12. 
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Table 12. Soil and object properties. 

Material 
Thermal 
conductivity 
(W/mK) 

Volumetric water 
content (%) 

Density 
(kg/m3) 

Specific heat 
(J/kgK) 

ANFO 0.11 0 850 1500 

6061 Aluminum 167 0 2700 897 

PVC Type 1 Plastic 0.19 0 1379 1004 

Silty sand 0.61 to 2.11* 20 1876 1066 

* Temperature dependent and based on laboratory results of samples from field site. 

Two time series were simulated using the soil sections as described above: 
40 days pre-emplacement (1 June–12 July 2018) and 94 days post-
emplacement (14 July–15 October 2018). A time-step of 15 minutes was 
used for the calibration simulations, and a 5-minute time-step was 
implemented for the thermal imagery temperature simulations. 

The model output was validated by comparing the simulated soil 
temperature to the temperature measurements from thermistors placed 
spatially in the test plot and at several depths (5, 15, 25, 35, 45, 55, and 65 
cm bgs). Figure 14 shows a top view of the buried object layout and the 
spatial locations of the temperature sensors at a depth of 5, 25, 45, and 65 
cm bgs. At these depths, thermistor strings were placed in each center of 
the nine 1 m × 1 m squares. In the 1 m × 1 m squares where no objects were 
placed, controls were assigned to the center (C1, C2, C3, C4, and C5).  



ERDC TR-22-4  64 

 

Figure 14. Overview of object (shallow plastic = SP; deep plastic = DP; shallow metal = SM; 
deep metal = DM) and thermistor placement at a depth of 5, 25, 45, and 65 cm. 

 

5.2 Results 

 Temperature variation between pixels 

To investigate the temperature variation between pixels, we investigated 
the standard deviation of the thermal imagery temperature of nine pixels 
above the controls and buried objects (Figure 14). The temperature 
variation ranges from 0.015 (SP) to 1.9°C (DP) for the pre-emplacement 
period (Figure 15a). The average standard deviation of the thermal 
imagery temperature ranges from 0.11°C (C4) to 0.19°C (C2). The standard 
deviation varies diurnally where a maximum standard deviation of the 
thermal imagery temperature is from mid-morning (~1000) to mid-
afternoon (~1500). On average, the diurnal increase in standard deviation 
thermal imagery temperature starts early morning (~0600) and ends mid-
evening (~1900). 

Similarly, for the post-placement time period there is a diurnal effect on 
the standard deviation. The standard deviation of the thermal imagery 
temperature of the nine pixels centered above each control section (C1–
C5) and above each object is about a degree Celsius lower than for the pre-
placement period and ranges from 0.009°C (C3) to 0.89°C (C1). The 
average standard deviation thermal imagery temperature is also lower 
than the pre-placement and ranges from 0.082°C (DP) to 0.12°C (C3) 
(Figure 15b). 
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Figure 15. Standard deviation of thermal imagery temperature of nine pixels at the control 
(C1, C2, C3, C4, and C5) and above each object (shallow plastic, deep plastic, shallow metal, 
and deep metal) and average for (a) pre-placement of objects (1 June–12 July 2018) and (b) 

post-placement of objects (14 July–15 October 2018). 

 

 

 Pre-emplacement models 

Model calibration simulations were performed for the pre-emplacement 
time period (40 days), both using the 5 cm soil temperature and the 
thermal imagery temperature as the boundary conditions. For the thermal 
imagery simulations, the average temperatures from nine pixels at the 
center of each square (Figure 14) was applied to the model. The associated 
measured soil temperatures at 65 cm for each square were implemented 
for the bottom boundary condition. Simulated and measured temperatures 
from these simulations at the 5 cm and 25 cm depths are shown in Figure 
16. 
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Figure 16. Simulated (BC: thermal imagery temperature and 0.05 m soil temperature) and 
measured temperatures at 0.05 m and 0.25 m for the (a) control (C3) and four object 

locations (b) SP, (c) DP, (d) SM, and (e) DM during the object pre-emplacement period (1 
June–14 July 2018). 

 

Regression graphs for these simulations indicate an overall good fit for a 
total of 3,841 time-steps (Figure 17) with R2 values above 0.98 where 1 
represents a perfect fit. The models where the 5 cm soil temperatures are 
applied to the surface boundary condition (Figure 17a, d, g, j, and m) have 
a slightly better goodness of fit at the 25 cm soil depth than when the 
thermal imagery temperature is applied to the boundary condition (Figure 
17c, f, i, l, and o). Similar results were found at other depths (45 cm and 55 
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cm, not shown). The thermal imagery simulations’ goodness of fit at 5 cm 
bgs (Figure 17b, e, h, k, and n) are slightly lower than at 25 cm bgs. A 
negative slope is seen for all 5 cm simulations where outliers of the 
simulated soil temperatures from the measured soil temperatures are 
shown at high and low temperatures. At a soil depth of 5 cm, a higher 
offset is shown for the DP, SM, and DM compared to shallows, and C3.  

Figure 17. Pre-emplacement regression graphs for soil temperature (at 5 and 25 cm bgs) and 
simulated for (a–c) Control 3, (d–f) shallow plastic, (g–i) deep plastic, (j–l) shallow metal, and 

(m–o) deep metal objects (y = a + bx). 

 

 Post-emplacement models 

For the post-emplacement models, C3, SP, DP, DM, and SM were 
simulated for a total time period of 94 days. Out of the five controls (see 
Figure 14), only one control was modeled (C3) because of similar 
temperatures and a low standard deviation in comparison to the other 
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controls (C1, C2, C4, and C5). The measured and simulated temperatures 
for six soil depths (5, 15, 25, 35, 45, and 55 cm) for C3 are shown in Figure 
Figure 18. Simulated temperatures at all depths show a close fit to the 
measured temperatures.  
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Figure 18. Simulated (boundary condition (BC) thermal imagery and soil temperature) and 
measured soil temperatures at C3 at soil depths (a) 5 cm, (b) 15 cm, (c) 25 cm, (d) 35 cm, (e) 

45 cm, and (f) 55 cm for the post-placement period (14 July–15 October 2018). 

 

Regression graphs of 9,025 time-steps for the C3 simulations show a 
goodness of fit above 0.99 for both the calibration simulations and the 
simulations where a thermal imagery temperature was applied to the top 
boundary condition (Figure 19). A negative slope for the thermal imagery 
simulations at depths down to 35 cm indicate that the model slightly 
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overestimates soil temperatures at higher temperatures and 
underestimates temperatures at lower temperatures.  

Figure 19. Regression plots of sensor temperature and simulated soil temperature for 
different soil depths at C3 (top panels) (y = a + bx). Temperature difference between the 

measured temperature (sensor) and model (bottom panel) at C3. 
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A comparison between the measured and simulated temperatures at C3 
was also done by investigating the temperature difference between the 
measured and simulated temperature at several depths (5, 15, 25, 35, 45, 
and 55 cm). The temperature difference between the measured and 
simulated temperature is lower for the simulations when the 5 cm sensor 
temperature is applied to the boundary condition compared to when the 
thermal imagery temperature is applied. The average temperature of the 
difference ranges from −0.009°C to −0.25°C for the 5 cm boundary 
condition compared to −0.21°C to −0.53°C for the thermal imagery 
temperature boundary condition. For the calibration simulations, the 
temperature difference ranges from a minimum of −1.17°C to a maximum 
of 0.96°C. The temperature difference is largest (−3.63°C to 2.86°C) for 
the 5 cm thermal imagery simulation. The smallest temperature difference 
is at the 55 cm depth (−0.8°C to 0.0075°C). 

The measured and simulated soil temperatures at soil depths of 5 cm and 
25 cm at each object (SP, DP, DM, and SM) are shown in Figure 20. 
Similar to the control simulations, the simulated temperatures show a 
close fit to the measured temperatures. 
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Figure 20. Simulated (BC thermal imagery and soil temperature) and measured soil 
temperatures at 5 cm and 25 cm bgs at the (a) SP, (b) DP, (c) SM, and (d) DM for the post-

placement time period (14 July–15 October 2018). 

 

5.3 Section 5 discussion 

A model of the pre- and post-emplacement of the buried objects for the 
field test in 2018 was calibrated using soil temperature measurements at a 
depth of 5 cm. Additional calibration was performed by applying the 
thermal imagery temperatures as the surface boundary condition. Thermal 
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imagery temperatures were averaged from nine pixels above each object 
(or from the center of each control square). It was shown that the standard 
deviation between the nine pixels was low, making the average suitable as 
a top boundary condition.  

In general, simulated soil temperatures exhibit a good fit to measured 
temperatures when simulations utilized the 5 cm soil temperatures as a 
boundary condition. A poorer fit occurred when the thermal imagery 
temperature was used as the upper boundary condition. The better 
goodness of fit found in the models using the measured soil temperatures 
at a depth of 5 cm for a boundary condition suggests there is slight 
systematic error in the conversion from the thermal imagery radiance 
values to thermal imagery temperature. Additional simulations (section 3) 
were performed where thermal imagery radiance values were converted to 
thermal imagery temperatures and then corrected for the air temperature, 
relative humidity, and emissivity. When comparing the two models—
uncorrected thermal imagery surface temperatures versus corrected 
temperatures (air temperatures, relative humidity, and emissivity)—some 
time periods exhibited a better match with one model than the other. 
However, model performance varied depending on the time period 
selected. This result indicates more careful calibration of the thermal 
imagery conversion parameters are needed for future modeling efforts in 
order to better match surface soil temperatures. It is also extremely 
important to address and validate the radiance value conversion to 
temperature when using thermal imagery in any other analysis. Working 
with radiance values rather than converted thermal imagery temperatures 
is the preferred approach when performing any imagery and buried object 
analysis. Radiance value conversion of thermal IR imagery is only 
necessary when absolute temperatures are required, such as calibrating 
models or comparing with other sensor-derived temperature 
measurements. From an object identification perspective, conversion of 
thermal IR radiance values to temperatures is not needed. In this 
modeling effort, because these discrepancies, or offsets, are comparable 
between the models presented in this report, there is not a direct need to 
improve this offset to test the impact of environmental factors on object 
detectability with thermal IR. In conclusion, this model is well-calibrated 
and can be used to test the effects of different environmental factors to 
thermal signal response to buried objects. 
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6 Automated Detection of Buried 
Objects: A Simple Classifier 
Method 

The main objective of this subtask is to determine the effect of 
environmental phenomenological conditions on the ability to detect buried 
objects using thermal IR sensors.  

Problem Statement 

Our objective can be summarized concisely by Figure 21. The initial 
concern is the arrow 𝜙𝜙, which represents the environmental effects on the 
IR images. This is too broad a question, so we use the arrow 𝜓𝜓 to 
determine specific characteristics of the IR images that are of interest, 
which we represent with the object variables. After doing this, the problem 
moves from 𝜙𝜙 to the arrow 𝑓𝑓 mapping the environmental variables 𝑋𝑋 to 
the object variables 𝑦𝑦. The goal of mapping 𝑓𝑓 is to understand how the 
environmental variables are related to the computed object variables, 
which are used as representatives for the IR images.  

Figure 21. A schematic of our main objectives. 

 

Section 6.3 is concerned with the arrow 𝜓𝜓 from Figure 21—that is, 
distilling the relevant IR image features down to one or more object 
variables. Section 6.4 is concerned with the study of 𝑓𝑓, in which the goal is 
to understand the complex relationship between the environmental 
variables and the object variables. We now organize the precise objectives 
of this work. 

Objective 6.1. Define the mapping 𝝍𝝍 between the IR images and 
object variables such that the image features relevant to IR object 
detection are identified by the object variables. 
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For the features relevant to detection we refer to Schacter (2012, 2018, 
2020) and Ahuja and Schacter (1981), and ultimately in this work we focus 
simply on average absolute contrast, which we address in Section 6.3. 
Some evidence that this is a reasonable approach to this objective is 
presented in Section 6.3.1. Having addressed Objective 6.1 related to the 
images, we can now define the objectives related to the environment. 

Objective 6.2. Approximate a low-dimensional representation of the 
observations of 𝑿𝑿 and understand the relation between the 
(potentially latent) variables describing this representation and the 
object variables. 

Section 6.4.2 details an unsupervised approach to this objective. 
Section 6.4.3 uses a similar approach using supervised techniques. 
Both techniques introduce latent variables, which are variables that 
are not directly observed (i.e., the environmental variables) but are 
inferred through mathematical modeling. These latent variables are 
used to obtain a lower-dimensional approximation of the observed 
variables. This approximation is achieved by projecting 𝑋𝑋 to a latent 
space, 𝑊𝑊, which contains the learned latent variables, and involves 
studying the induced map from 𝑊𝑊 to the object variables, 𝑦𝑦. Objective 
6.3 involves studying the map 𝑓𝑓 between the environmental variables 
and the object variables directly and is addressed in Section 6.4.4, 
Section 6.4.5, and Section 6.4.6. 

Objective 6.3. Approximate a function between the environmental 
variables and the object variables, 𝒓𝒓: 𝑿𝑿 →  𝒚𝒚, and interpret the 
effects of the environmental variables such that: 

1. The environmental variables with the largest effect on the object 
variables are identified 

2. Environmental variable ranges in relation to object variables are 
understood 

3. Interactions between the environmental variables in relation to object 
variables are understood 

6.1 Introduction 

This work is concerned with IR detection performance based on snapshots 
of data (assumed to be independent and identically distributed). The first 
main result is a method to measure IR detection performance by the 
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performance of a detection algorithm in Section 6.3.1. This framework 
allows us to associate to each IR image a number in the unit interval [0, 1] 
that measures the overall performance of a detection algorithm applied to 
the IR image in terms of AUC of a ROC. These AUC values can then be used 
to measure the effect of environmental conditions on IR detection of 
objects. 

To illustrate the use of these AUC distributions, consider the principle 
component analysis (PCA) results in Section 6.4.2. PCA is a dimension 
reduction technique in multivariate statistics in which the goal is to 
describe the higher-dimensional input environmental data with a low-
dimensional set of latent variables in a way that preserves the statistical 
variance in the data as much as possible. In Figure 6.9 it appears that the 
AUC tends to be higher when the first PCA component is negative. To test 
this hypothesis we compare the baseline distribution of AUC values (using 
all IR images with buried targets) against the test distribution of AUC 
values where we only consider data based on some environmental 
condition (in this case the condition is that the first PCA component is 
negative). Figure 30 shows how the AUC distributions change from the 
baseline behavior with respect to the environmental change being tested. 
The plot on the left shows how this change affects the SM object. The plot 
on the right shows how this change affects all objects considered in the 
experiment. This visualization is summarized by two rows in Table 14. 
These AUC distribution tables are used to compare the AUC distributions 
across various types of buried objects. Each AUC distribution table 
summarizes nine different distribution plots as in Figure 30. 

A more striking result using dimension reduction appears in Section 6.4. 
Here we use sliced inverse regression (SIR) to locate a subset of the data 
where all types of targets have AUC distributions with a mean above 0.92 
(see Table 15). The targets with an AUC distribution mean above 0.92 are 
considered in this analysis because this value also identifies a cluster of 
observations highlighted through the k-means clustering method, 
indicating the importance of this cluster of observations. The downside to 
this result is that the size of the data subset is small (716 observations). 
Objective 6.2 is addressed through the use of both PCA and SIR in an 
effort to obtain a lower-dimensional approximation of the input variables 
to identify notable features and clusters.  
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The main results of this work are obtained via two steps. First, through the 
construction of a nonlinear function that approximates the true 
relationship between environmental inputs and AUC outputs (Section 
6.4.4). Second, through the interpretation of these input/output 
relationships (Sections 6.4.5 and 6.4.6). Together these two steps address 
Objective 6.3. 

The second step involving the interpretation of the relationship between 
the environmental inputs and the AUC outputs (object variables) is 
accomplished through the use of two different analysis methods. First, we 
use Shapley values, which give a measure for how much each 
environmental variable contributed to the mapping between the 
environmental variables and the object variables represented by the 
nonlinear function constructed in the first step (Lundberg and Lee 2017; 
Lundeberg et al. 2018, 2020). In essence, Shapley values help us identify 
which environmental variables play an important role in the object 
identification task. Second, we use Sobol sensitivity analysis (Sobol 2001), 
which is a form of global sensitivity analysis. The idea behind the Sobol 
sensitivity analysis is to decompose the variance of the AUC output into 
fractions, each of which can be attributed to certain environmental inputs. 
Figure 35 (right) and Figure 37 (left) list the most important environmental 
variables affecting the data model according to the two interpretation 
methods, Shapley values and Sobol sensitivity analysis, respectively. We first 
summarize the results based on the Shapley methods. From the approach 
taken in Section 6.4.5, we obtain first-order trends between 
environmental variables and AUC output. The sensitivity analysis carried 
out in Section 6.4.6 gives some understanding of the second order interaction 
effects between the environmental variables. Second-order Sobol indices 
(Sobol 2001) are used to understand the second-order interactions 
between the environmental variable with the highest first-order Sobol 
sensitivity and the other remaining environmental variables. We now turn 
our attention to the description of the environmental variables. 

6.2 Environmental data snapshot 

The environmental data prepared in this section begins with data collected 
during a study conducted in 2018 at the ERDC-CRREL facility detailed in 
(Clausen et al. 2020, 2021). This study monitored a homogenized patch of 
soil from May to November 2018 by taking buried sensor readings and 
monitoring weather conditions at 15-minute resolution. By snapshot we 
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mean that the sequential aspect of the data as a time series is (mostly) 
disregarded. 

We first subdivide the data based on the date and time of collection in 
relation to object emplacement. Data collected prior to object 
emplacement is discussed in Section 6.2.2. Data collected after target 
emplacement is discussed in Section 6.2.3. 

Within each of these sections the data is further subdivided based on the 
variables being considered. When we combine all sensor data, weather 
measurements, and sun position variables, obtained using the methods 
described in (Kennedy 2020), we obtain over 300 environmental variables. 
In this work we analyze the complete set of all available variables as well as 
a subset of variables potentially more relevant to applications. 

6.2.1  Environmental variable description 

In this section we summarize the environmental variables monitored in 
(Clausen et al. 2021, 2020). There are approximately 300 environmental 
variables observed during this study. In the following we refer to Appendix 
C for a complete variable name explanation and a description of sensor 
locations and (Clausen et al. 2021, 2020) for more details. 

In the test plot, the CS655 sensors measure the temperature (◦C), electric 
conductivity (dS/m), and soil moisture (%). The sensors are buried at 
various depths within the test plot and the specific locations are shown in 
Appendix C. In the following analysis, for example in Figure 35, the 
depth and sensor location is listed in parenthesis for the corresponding 
environmental variable. Thermistors are used to monitor temperature of 
the soil (◦C) and they are also buried at various depths and locations 
throughout the test plot. We use the same convention in the following 
analysis to indicate the corresponding depth and sensor the considered 
variable.  

Other environmental variables tracked for the study include heat flux 
(W/m2), heat plate temperatures (°C), and incoming and reflected solar 
(short-wave) radiation (W/m2). Weather conditions are tracked using the 
ERDC-CRREL facility, and these measurements include average air 
temperature (°C), average pressure (mbar), 24-hour rain accumulation 
total (mm), relative humidity (%), average wind speed (m/s), and average 
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wind direction (°). Weather data are also collected from the nearby 
Lebanon airport, and this includes cloud cover (%), pressure (mbar), one- 
and three-hour rain totals (mm), one- and three-hour snow total (mm), 
and the minimum and maximum temperature for the day (°C). Finally, 
sun position and time of day variables are computed using the methods in 
Kennedy (2020). These metrics include absolute time (ms), absolute time 
after previous dawn (ms), absolute time after previous dusk (ms), solar 
azimuth, solar elevation, solar zenith, and time of day in military time.  

Both the full set of the 300 environmental variables and a chosen subset 
are used in the analysis. The subset consists of variables that are more 
likely to be measurable in the field and available through public sources 
and therefore potentially more applicable to field operations. This subset 
includes meteorological variables from the ERDC-CRREL test site as well 
as from the nearby Lebanon airport. The subset also includes solar 
radiation variables (incoming and reflectance) and shallow soil sensor 
variables down to 15 cm bgs. The thought is some subset of these variables 
can be estimated in the field, although determining the precise subset of 
variables applicable in the field requires further investigation. 

6.2.2  Before object emplacement 

Collecting data before object emplacement is important for characterizing 
the baseline behavior of sensors monitoring the test plot. The 
environmental data we refer to as before object emplacement occurred 
between 23 May 2018 at 1345, when data collection began, and 11 July 
2018 at 0815, when the test plot began to be disturbed by object 
emplacement activities. After filtering environmental observations to only 
include timestamps within 5 minutes of an IR image observation, we 
obtain 4,495 observations of environmental data before object 
emplacement. 

As described in Section 6.2.1, two sets of data were prepared using the 
timestamps before object emplacement. One set includes all environmental 
variables, and one set includes a subset of environmental variables more 
relevant to applications. 

6.2.3  After object emplacement 

The environmental data we refer to as after object emplacement occurred 
between 13 July 2018 at 1445 (after disturbances involved with object 
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emplacement ended) and 15 November 2018 at 0545 (when the last IR 
image was collected). After filtering environmental observations to only 
include timestamps within 5 minutes of an IR image observation, we 
obtain 11,705 observations of environmental data after object 
emplacement. As described in Section 6.2.1, two sets of data were prepared 
using the timestamps after object emplacement. One set includes all 
environmental variables, and one set includes a subset of environmental 
variables more relevant to applications. 

Now that we have an understanding of the environmental variables used 
in the following modeling and analysis, we must turn our attention to the 
definition of the object variables. In the next section, Objective 6.1 is 
addressed through the definition of the object variables which are used as 
a representative of the IR images in the modeling.  

6.3 Object variables 

In this section we define the object variables from the schematic in Figure 21. 
The main focus in defining an appropriate object variable is to determine 
precisely what features of the IR image we want to study. 

One possible object variable is a visibility index, defined in Clausen et al. 
(2021), where the response variable conveys a measurement of how visible 
the buried objects are to a human observer of the image. Another 
possibility—the one we will focus on in this work—is to replace the human 
observer with a classification algorithm and use the performance 
measurement of this algorithm as the response we want to study. 

Notation and standard techniques for measuring classifier performance 
are discussed in Appendix B. Section B.1 is an introduction to binary 
classification algorithms. The performance of a binary classifier can be 
measured according to the ROC analysis, which is reviewed in Section B.2. 
This section focuses on the specific object variables used in this work. 

6.3.1  Simple classifier 

A simple classifier was constructed to capture the contrast between object 
and non-object pixels. To do this we use the known locations (in the frame 
of reference determined by IR camera pixels) of buried objects in the area 
of interest (AOI) using object locations from Clausen et al. (2020). 
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We begin by subdividing the AOI as shown in Figure 22 and sampling from 
various pixel regions of the image. The AOI has four buried objects, which 
we label SP, DP, SM, and DM. The pixel coordinates used to sample over the 
targets are drawn in maroon. Control regions without targets are drawn in 
cyan. The background region without targets is drawn in green. 

Figure 22. The AOI with buried object locations with respect to the frame of reference 
defined by the IR image pixels. 

 

To build a simple classifier we compare pixels over objects and in control 
regions with the background pixels. To do this we sample 𝑘𝑘0 × 𝑘𝑘0 
submatrices from the controls, background, and adjusted object locations 
in Figure 22. Let 𝑘𝑘1 be the number of submatrices sampled from each 
object location and from each control. This gives us 8𝑘𝑘1 submatrices with 
𝑘𝑘1 submatrices from each of the 8-pixel regions (four objects and four 
controls). 

Let 𝐴𝐴𝑤𝑤 denote one of the 8𝑘𝑘1submatrices of size 𝑘𝑘0 × 𝑘𝑘0, let 𝛼𝛼𝑤𝑤 be the 
average pixel value of 𝐴𝐴𝑤𝑤, let 𝑘𝑘2 be the number of 𝑘𝑘0 × 𝑘𝑘0, submatrices 
sampled from the background pixels, and let 𝐵𝐵𝑜𝑜  denote one of the 
background submatrices with average pixel value 𝛽𝛽𝑜𝑜. We now compare the 
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contrasts which is defined to be the difference between the average pixels 
and the average background pixels |𝛼𝛼𝑤𝑤 − 𝛽𝛽𝑜𝑜| for indices in the following 
range: 

1 ≤ 𝑖𝑖 ≤ 8𝑘𝑘1, 
1 ≤ 𝑗𝑗 ≤ 𝑘𝑘2, 

to construct a scoring function as defined in Section B.1. 

Using the notation from B.1, an input 𝑢𝑢 is one of the random 8𝑘𝑘1 
submatrices 𝐴𝐴𝑤𝑤. The ground truth 𝑔𝑔 is determined by the sampling 
location of 𝐴𝐴𝑤𝑤  in the image. More precisely, the ground truth is defined 
as: 

 𝒈𝒈(𝑨𝑨𝒊𝒊) = � no, if 𝑨𝑨𝒊𝒊 is in control region
yes, if 𝑨𝑨𝒊𝒊 is in target region

. (13) 

The scoring function 𝑓𝑓 on the input 𝐴𝐴𝑤𝑤 is defined by taking the mean of 
the absolute value of the contrasts �α𝑤𝑤 − β𝑜𝑜� over all 𝑗𝑗, 

 𝑓𝑓(𝐴𝐴𝑤𝑤) ∶=
1
𝑘𝑘2
∑ �α𝑤𝑤 − β𝑜𝑜�
𝑘𝑘2
𝑜𝑜=1 . (14) 

The above scoring function will be used to measure classifier performance to 
obtain the desired object variable. For the remainder of this section we let 
𝑘𝑘0 = 5, 𝑘𝑘1 = 30, and 𝑘𝑘2 = 100. Section B.2 explains how to measure the 
performance of the resulting classifier using the area under the ROC curve 
(AUC) from a list of scores with their corresponding ground truth labels. 

Next, we describe precisely how to produce the lists of scores given this 
classifier setup using an explicit example. Suppose we are interested in the 
performance (in terms of AUC) of the binary classifier in detecting the DP 
object. Then we take the 𝑘𝑘1 = 30 matrices (of size 𝑘𝑘0 × 𝑘𝑘0 with 𝑘𝑘0 = 5) and 
compute their score using Equation (14). This yields k1 = 30 scores with 
ground truth label yes. The no labels are obtained from computing scores 
for the 4𝑘𝑘1 = 120 submatrices from the control regions. In this example 
we obtain 𝑘𝑘1 yes scores (from 𝑘𝑘0 × 𝑘𝑘0 matrices over the DP object) and 4𝑘𝑘1 

no scores (from the 𝑘𝑘0 × 𝑘𝑘0 matrices over the four controls). AUC is then 
computed using the machinery developed in Section B.2. 

Suppose instead we are interested in the classifier performance in 
detecting any shallow object (plastic or metal). Everything stays the same 



ERDC TR-22-4  83 

 

except that there are now 2𝑘𝑘1 scores with yes labels (𝑘𝑘1 for each of the two 
shallow objects). The no scores are the same as in the previous example. 
We can apply the above procedure to each IR image to obtain AUC values 
for each of the four objects (SP, SM, DP, and DM) as well as a grouping of 
plastic and metal objects, deep and shallow emplacements, and all four 
objects. 

Lastly, since our classifier is probabilistic, we calculate mean values for the 
AUC to gain some statistical robustness (we computed each AUC value 50 
times). The upshot is that for each IR image we compute nine AUC values 
(one for each group of objects) that measure the performance of the binary 
classifier described in this section on the given image and subset of 
objects. 

6.5 Data analysis 

This section is composed of techniques for analyzing data that is assumed 
to be independently and identically distributed, which we refer to as 
snapshot data. For details on the preparation of the input environmental 
data see Section 6.2. For details on the preparation of the object variables 
see Section 6.3. 

The objectives in Section 6.1 require a way to measure how target variables 
change as we place conditions on the input environmental variables. The 
approach we take to measure this change is based on comparing empirical 
distributions of the object variables. We begin by describing this approach 
(Section 6.4.1) and then use it in the subsequent sections. 

 Simple classifier AUC distributions 

We now describe our approach for comparing empirical distributions of 
object variable values to measure differences based on the input 
environmental conditions. The object variables of consideration are 
defined in Section 6.3.1. 

Recall from Section 6.3.1 that each IR image corresponds to nine AUC 
values between 0 and 1 based on the objects of interest. Probability density 
functions (pdfs) for these distributions can be approximated using Scott 
(2015) and Silverman (1982). To measure the empirical difference 
between two distributions, we report the calculated mean (indicated by µ) 
and standard deviation (indicated by σ) values. We also report the 
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Wasserstein distance, which is used to measure the distance between 
distributions (see Wasserman 2020 for additional information). 

To introduce how we will use these concepts, we begin with an example 
comparing the AUC distributions before and after object emplacement. 
Figure 23 shows AUC distributions for all target variables before and after 
object emplacement.  

Figure 23. AUC distributions (a) before target emplacement and (b) after target emplacement. 

 

 

Figure 23 makes it visually clear that object emplacement has an effect on 
the AUC distributions (which is expected), but we want to further analyze 
these differences by comparing each pair of distributions individually. 
Figure 24 compares AUC distributions computed using all objects and the 
Wasserstein distance between the before and after emplacement 
distributions is 0.2191. Figure 25a shows the comparison between metal 
objects with a Wasserstein distance between the distributions of 0.16657 
and Figure 25b shows a comparison of plastic objects with Wasserstein 
distance between the distributions of 0.2758. Figure 26 includes two 
comparisons, one for deep objects in plot (a) and one for shallow objects. 
Figure 27 includes four comparisons, one for each individual object. Table 

(a) 

(b) 
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13 distills all this information down to a single table of values. Since we 
will be using these tables (which we will refer to as AUC distribution 
tables) extensively, we conclude this section with an explanation of these 
values. 

Figure 24. AUC distributions before and after target emplacement with AUC values computed 
using all targets. The Wasserstein distance between the distributions is 0.2191. 

 

Figure 25. AUC distributions before and after object emplacement with AUC values computed 
using (a) metal objects with Wasserstein distance 0.1667 and (b) plastic objects with 

Wasserstein distance 0.2758.  

 

(a) 
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Figure 26. AUC distributions before and after target emplacement with AUC values computed 
using (a) deep objects with Wasserstein distance 0.2226 and (b) shallow objects with 

Wasserstein distance 0.2123.  

 

 

In Table 13 we are comparing AUC distributions for a baseline condition 
with a test condition. In this example, the baseline (or base) is before 
objects are buried. #base is the number of data observations of the baseline 
condition and #test is the number of data observations of the test 
condition. For Table 13, #base is 4,495, which is the number of IR images 

(b) 

(b) 

(a) 
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taken before object emplacement and #test is 11,705, which is the number 
of IR images taken after object emplacement.  

For a given set of baseline and test observations (in this example it is before 
and after emplacement) there are nine pairs of AUC distributions to 
compare and correspond to the rows of Table 13. The mean values of 
base and test distributions are reported in the 𝜇𝜇baseand 𝜇𝜇testcolumns, 
respectively. The standard deviations of the test and base sets are 
reported in the 𝜎𝜎base and 𝜎𝜎testcolumns. The column µchange is defined by 
the difference between the mean of the test and the mean of the base, 

  𝜇𝜇change = 𝜇𝜇test − 𝜇𝜇base. (15) 

Finally, the last column reports the Wasserstein distance to compare the 
baseline distributions to the test distributions. 

Comparing a test distribution to a baseline distribution is motivated by 
attempting to understand the underlying behavior against the test 
behavior. In the analysis that follows we will exclusively use the set of 
observations after target emplacement as the baseline behavior to test 
against. Comparing the effect of environmental conditions against this 
baseline behavior is the focus of these analysis sections. 

Figure 27. AUC distributions before and after object emplacement with AUC values computed 
using individual objects. The comparisons are for the (a) SP object with Wasserstein distance 

0.4088, (b) DP object with Wasserstein distance 0.1704, (c) SM object with Wasserstein 
distance 0.1221, and () d DM object with Wasserstein distance 0.2879. 

 

(a) 
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Table 13. AUC distribution table with baseline before target emplacement and test after 
object emplacement. 

targets 𝝁𝝁𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐜𝐜𝐞𝐞 𝝁𝝁𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝝁𝝁𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 𝜺𝜺𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝜺𝜺𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 Wasserstein 

all 0.212 0.554 0.766 0.085 0.189 0.2191 

SP 0.407 0.484 0.892 0.189 0.217 0.4088 

DP 0.137 0.579 0.716 0.202 0.293 0.1704 

DM 0.287 0.483 0.77 0.173 0.266 0.2879 

SM 0.015 0.671 0.686 0.183 0.301 0.1221 

 

(b) 

(d) 

(c) 
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targets 𝝁𝝁𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐜𝐜𝐞𝐞 𝝁𝝁𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝝁𝝁𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 𝜺𝜺𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝜺𝜺𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 Wasserstein 

metal 0.151 0.577 0.728 0.11 0.218 0.1657 

plastic 0.272 0.531 0.804 0.125 0.205 0.2758 

deep 0.212 0.531 0.743 0.138 0.261 0.2226 

shallow 0.211 0.578 0.789 0.149 0.202 0.2123 

 Principal component analysis  

Principal component analysis (PCA) is an unsupervised dimension 
reduction technique that aims to describe the input environmental data 
with a handful of latent variables. Dimension reduction techniques project 
data to spaces with lower dimensions while maintaining certain aspects of 
the data. In the case of PCA, the projection is an orthogonal linear map 
constructed to preserve as much statistical variance in the data as possible. 

If we take the input environmental data prepared in Section 6.2 using all 
300 environmental variables, then we can use PCA to project down to a 
dimension 9 space while maintaining over 95% of the variability in the data 
(Figure 28). Once the PCA projection has been computed using Bloam et 
al. (2020), we can begin to explore how the object variables behave 
under this mapping. 

Figure 28. The explained variance as the number of PCA components increases when the 
PCA is computed using all environmental variables.  

 

Since the object variables did not play a role in the PCA projection (it is an 
unsupervised method), we use coloring of the projected points to see if 
there is a relationship with the object variables (see Figure 29). 
Unfortunately, neither of the plots in Figure 29 appear to show any 
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striking behavior. The visualizations do suggest there is potentially some 
separation based on the sign of the first PCA component. 

Figure 29. Scatter plot of the first PCA component against (a) AUC and (b) scatter plot using 
three PCA components with both plots colored by AUC using all objects. 

 

 

To analyze the scenario above we use the comparison techniques described 
in Section 6.4.1. For the baseline observations we now use all observations 
after object emplacement, which corresponds to the full set of 11,705 IR 
images after emplacement. For the test observations we use only those 
observations whose projection to the first PCA component is negative, and 
this reduces the test set to a subset of 6,900 IR images. Table 14 
summarizes the results for the comparison for the situation when the first 
PCA component is negative. 

  

(b) 

(a) 
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Table 14. AUC distribution for the baseline of all observations made after object emplacement 
against observations where the first PCA component is negative. 

targets 𝝁𝝁𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐜𝐜𝐞𝐞 𝝁𝝁𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝝁𝝁𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 𝜺𝜺𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝜺𝜺𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 Wasserstein 

all 0.04 0.766 0.805 0.189 0.191 0.0395 

SP 0.005 0.892 0.897 0.217 0.204 0.0059 

DP 0.032 0.716 0.748 0.293 0.273 0.0318 

DM 0.002 0.77 0.771 0.266 0.27 0.008 

SM 0.12 0.686 0.806 0.301 0.26 0.1198 

metal 0.061 0.728 0.789 0.218 0.224 0.0607 

plastic 0.018 0.804 0.822 0.205 0.193 0.0184 

deep 0.017 0.743 0.759 0.261 0.256 0.017 

shallow 0.062 0.789 0.851 0.202 0.19 0.0624 

From Table 14 we see that this comparison highlights the SM object the 
most. To continue with this analysis we plot the SM comparison in Figure 
30a as well as the same plot using all targets for comparison in Figure 30b. 
Although PCA is a start toward Objective 6.2, we move on to supervised 
dimension reduction techniques (using the object variables) to tackle this 
objective. 

Figure 30. AUC distribution comparisons (using observations whose first PCA component is 
negative) for (a) an SM object with Wasserstein distance of 0.1198 and (b) all objects with 

Wasserstein distance of 0.0395.  

 

(a) 
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6.5.3  Sliced inverse regression  

Sliced inverse regression (SIR) is a supervised dimension reduction 
technique proposed in Li (1991) and implemented in R Core Team (2020) 
and Weisberg (2002) alongside other algorithms based on this idea. Let 𝑦𝑦 
denote the AUC target variable defined in Section 6.3 with sampling based 
on all buried objects. Then 𝑦𝑦 is univariate (instead of being composed of 
nine variables). Let 𝑋𝑋 be the approximately 300 environmental variables 
from Section 6.2.3. Inverse regression means that we regress 𝑋𝑋 against 𝑦𝑦 
instead of regressing 𝑦𝑦 against 𝑋𝑋. Sliced inverse regression is an efficient 
and relatively simple technique that also avoids any type of predictive 
model fitting discussed in other sections. The algorithm produces 
eigenvectors, 𝑤𝑤𝑤𝑤, ordered by corresponding eigenvalue and we project the 
environmental variables 𝑋𝑋 to the latent space 𝑊𝑊 to get an 𝑙𝑙-dimensional 
representation of our data. The latent space is defined as the span over the 
𝑙𝑙 eigenvectors produced by the SIR algorithm: 

 𝑊𝑊𝑟𝑟 ∶=  span{𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤𝑟𝑟 }. (16) 

In Figure 31a we show the projection of the input data 𝑋𝑋 to three 
dimensions using 𝑊𝑊3 with the color corresponding to the AUC object 
variable 𝑦𝑦. The most striking feature in this figure is a single high AUC 
cluster in the foreground of the plot. This cluster can be identified using 
the k-means algorithm (PyDataBlog 2020). After some experimentation 
with the value of k, we can identify this high AUC cluster using k-means 
with k = 7. The high AUC cluster is approximated by cluster 7 from the k-
means clustering shown in Figure 31b. 

(b) 
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Figure 31. Environmental data X projected to the SIR latent space W3 from Equation (16) 
(a) colored by AUC and (b) via k-means with k = 7. 

 

 

To analyze this more closely we consider the two-dimensional latent space 
𝑊𝑊2 instead of 𝑊𝑊3 shown in Figure 32. On the left we identify the high AUC 
cluster as the rectangular area bounded by the four cutoff values drawn in 
blue. On the right is the same projection colored using k-means 
assignments with k = 7. Again, we can see that the high AUC cluster is 
identified by k-means clustering. 

 

 (b) 

(a) 
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Figure 32. Environmental data X projected to the SIR latent space W2 from Equation (16) 
(a) colored by AUC and (b) via k-means with k = 7. 

 

To analyze the effect of this cluster on the AUC distributions we include an 
AUC distribution table (defined in Section 6.4.1) in Table 15. The identified 
subset consisting of 716 IR images within the blue rectangle in Figure 32a 
form the test set for this comparison, and the baseline set is taken to be all 
11,705 IR images after emplacement. As we can see from this table, we 
have identified a set of 716 observations based on the SIR latent variables 
𝑤𝑤1 and 𝑤𝑤2 that dramatically impact the AUC distribution. The baseline 
distribution means (𝜇𝜇base in Table 15) range from 0.686 to 0.892 across 
subsets of objects, and the test distribution means (𝜇𝜇test in Table 15) range 
from 0.927 to 0.961 for the 716 element subset of observations identified 
using SIR. Although the size of the test set of observations is relatively 
small, this analysis reveals a complicated relationship between the latent 
variables 𝑤𝑤1 and 𝑤𝑤2 and the AUC object variables in the direction of 
Objective 6.2. 

 

 

 

(b) 

(a) 
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Table 15. AUC distribution table comparing the baseline of all observations made after object 
emplacement against observations bounded by the blue cutoff values in Figure 6.32a. 

targets 𝝁𝝁𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐜𝐜𝐞𝐞 𝝁𝝁𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝝁𝝁𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 𝜺𝜺𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝜺𝜺𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 Wasserstein 

all 0.176 0.766 0.942 0.189 0.158 0.1763 

SP 0.07 0.892 0.961 0.217 0.146 0.0698 

DP 0.204 0.716 0.92 0.293 0.206 0.2039 

DM 0.165 0.77 0.935 0.266 0.193 0.1654 

SM 0.266 0.686 0.952 0.301 0.147 0.2659 

metal 0.216 0.728 0.944 0.218 0.16 0.2156 

plastic 0.137 0.804 0.941 0.205 0.164 0.1369 

deep 0.185 0.743 0.927 0.261 0.196 0.1846 

shallow 0.168 0.789 0.957 0.202 0.129 0.1679 

6.5.4  Nonlinear predictive models 

We now describe techniques to approximate 𝑓𝑓 in Figure 21, which 
represents the relationship between the environmental variables and the 
AUC object variables. The approximations described in Section 6.4.5 and 
Section 6.4.6 are used to address Objective 6.3. We follow the convention 
that 𝑋𝑋 is a matrix with a column for each environmental input variable and 
a row for each observed sample of these variables. Similarly, 𝑦𝑦 is a matrix 
with a column for each object variable of interest and a row of values for 
each row of 𝑋𝑋. Mathematically, the function 𝑓𝑓 maps the rows of 𝑋𝑋 to the 
rows of 𝑦𝑦. 

The general approach used here requires splitting the input environmental 
data 𝑋𝑋 and the output object variable data 𝑦𝑦 into so-called training and 
testing subsets. The machine learning algorithm implemented requires a 
set of data to learn the mapping between the environmental variables and 
the object variables, this is the training set. A separate set of data called 
the testing set is required to assess how well the algorithm performed the 
task of learning the mapping between the environmental variables and the 
object variables. To identify the training and testing subsets we begin by 
choosing a random permutation of the indices that index the pairs of input 
environmental observations 𝑋𝑋 and output object observations 𝑦𝑦. Let 𝐼𝐼 
denote these row indices, so that the randomly permuted data consists of 
pairs (𝑋𝑋𝑤𝑤 ,𝑦𝑦𝑤𝑤)𝑤𝑤∈𝐼𝐼where 𝑋𝑋𝑤𝑤 and 𝑦𝑦𝑤𝑤 denotes the ith row of 𝑋𝑋 and 𝑦𝑦, 
respectively. 

Next, we partition 𝐼𝐼 into two sets 𝐼𝐼train and 𝐼𝐼test such that we have the 
proportions: 
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 0.7 =  #𝐼𝐼train
#𝐼𝐼

, and 0.3 =  #𝐼𝐼test
#𝐼𝐼

. (17) 

Let 𝑋𝑋train and 𝑦𝑦train denote the inputs and outputs corresponding to 
the indices in 𝐼𝐼train, we call these sets the training data. Let 𝑋𝑋test and 
𝑦𝑦test denote the inputs and outputs corresponding to 𝐼𝐼test, the test data. 
More precisely, the training data are the collection: 

 {(𝑋𝑋𝑤𝑤 ,𝑦𝑦𝑤𝑤)}𝑤𝑤∈𝐼𝐼train  (18) 

and the test data are: 

 {(𝑋𝑋𝑤𝑤 ,𝑦𝑦𝑤𝑤)}𝑤𝑤∈𝐼𝐼test  (19) 

Approximations to the map 𝑓𝑓 representing the relationship between the 
environmental variables and the object variables are obtained by solving 
an optimization problem using the training data. 

We use the notation 𝑓𝑓 to denote an approximation to 𝑓𝑓 and also use the 
notation: 

 𝑦𝑦𝚤𝚤� ∶= 𝑓𝑓(𝑋𝑋𝑤𝑤), (20) 

to denote the predicted object variable given by evaluating the 
approximated function 𝑓𝑓 at the ith row of the environmental variables. For 
an individual prediction 𝑦𝑦𝚤𝚤�  we define the residual of that prediction by 𝑦𝑦𝚤𝚤� −
𝑦𝑦𝑤𝑤 = 𝑓𝑓(𝑋𝑋𝑤𝑤) − 𝑓𝑓(𝑋𝑋𝑤𝑤), which is the difference between the predicted output 
and the actual output. The training error is defined using root mean 
square error (RMSE) on the training data. 

 RMSEtrain ∶= � 1
#𝐼𝐼train

∑ �𝑓𝑓(𝑋𝑋𝑤𝑤) − 𝑓𝑓(𝑋𝑋𝑤𝑤)�
2

𝑤𝑤∈𝐼𝐼train �
 

1
2
 (21) 

Similarly, the test error is defined by: 

 RMSEtest ∶= � 1
#𝐼𝐼test

∑ �𝑓𝑓(𝑋𝑋𝑤𝑤) − 𝑓𝑓(𝑋𝑋𝑤𝑤)�
2

𝑤𝑤∈𝐼𝐼test �
 

1
2
 (22) 
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The value RMSEtest will be our measure of how well a predictive model fits 
the data. The training data should not be used in this measurement to 
avoid overfitting. 

It is common to start with linear regressors for these predictive models. 
Linear models are fast to train and have the added benefit of being easy to 
interpret. The downside to linear models is that they may not fit the data 
well in the sense of Equation (23). Indeed, using the linear model 
implementations in Alan Turing Institute (2020), we were only able to 
obtain RMSEtest = 0.12 which, put in the context of the after emplacement 
distribution in Section 6.4.1, appears to fit quite poorly. 

We instead opt to use the flexibility of a nonlinear model to find a model 
with a better (smaller) test error measured by RMSEtest. This flexibility 
comes at the cost of interpretation which we address in Sections 6.4.5 and 
6.4.6. The nonlinear model used here is a decision tree method called 
XGBoost (Chen and Guestrin 2016) implemented in (DDMLC 202). 
XGBoost is one of several popular decision tree methods. The core design 
principle of XGBoost is gradient boosting (Freund and Schapire 1997). The 
results from many decisions trees are combined to build the model from the 
training data by solving an optimization problem using gradient descent. 
Many hyperparameters (parameters that are not optimized through 
training) govern the performance of XGBoost (XGBoost 2020). 

After sufficiently tuning the XGBoost hyperparameters we obtain RMSEtest 
results less than half the size of the linear models. Residual plots for the 
XGBoost model, using all input environmental variables, are shown in 
Figure 33 with RMSEtest = 0.0579. Similarly, using the subset of applicable 
variables (defined in Section 6.2.1), we obtain RMSEtest = 0.0576 and plot 
the residuals in Figure 34. 
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Figure 33. Residual plots for XGBoost model using all environmental input variables. 

 

 

Figure 34. Residual plots for an XGBoost model using the subset of applicable environmental 
input variables defined in Section 6.2.1. 

 

(b) 

(a) 

(a) 
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In this section, we found a sufficient nonlinear approximation for the 
mapping between environmental variables and the object variables using 
the XGBoost algorithm. This model addressed the first point of Objective 
6.3, approximating the function 𝑓𝑓. Next, we address the second point of 
Objective 6.3, namely interpreting the effects of the input environmental 
variables on this approximation.  

6.5.5  Nonlinear interpretation with Shapley values  

Having developed a sufficiently accurate function that predicts AUC target 
variables from environmental inputs in the previous section, we now aim to 
interpret these predictions to approach the remainder of Objective 6.3. We 
restrict the analysis in this section to the set of applicable environmental 
variables defined in Section 6.2.1.  

We begin with an approach from (Štrumbelj and Kononenko 2014) based on 
the approximate calculation of Shapley values implemented in (Redell 
2020). Shapley values provide a measure of feature importance in a local 
sense by additively decomposing an observed response into a sum of effects 
from each input variable with respect to a baseline effect. In our case we 
can use Shapley values to decompose the observed AUC of an individual IR 
image into a baseline AUC (the average AUC over all observations) and a 
sum of AUC contributions (with respect to the baseline) for each 
environmental input. Equation (23) summarizes this decomposition in 
general: 

 observed AUC = baseline effect +
 ∑ (Shapley effect for a given feature).features  (23) 

(b) 
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Figure 35a provides an illustration of this decomposition for a specific 
example. A global measure of feature importance can be obtained from 
these local values by computing the mean absolute Shapley value for a fixed 
feature. We summarize the outcomes from these computations in Figure 
35b. 

Figure 35. Decomposition of an observed AUC based on (a) Shapley effects and (b) 
environmental variables ordered by feature importance measured by aggregating Shapley 

effects in relation to the baseline effect. 

 

 

To analyze this further (toward Objective 6.3) we consider the plots of 
Shapley values for a fixed environmental input. We refer to these as 
Shapley scatter plots. These plots can then be used to determine trends in 
the environmental variables that influence the AUC distributions. These 
trends can either be analyzed visually or by some type of curve fitting 
procedure. In Figure 36 are Shapley scatter plots for two environmental 
variables of interest. On the left is the scatter plot for the heat flux variable, 
FLX1, and on the right is the scatter plot for the soil temperature variable 
at a depth of 15 cm below the surface in location 20, 
DTLayer15_RawTmp(20). 

(b) 

(a) 
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Figure 36. Shapley scatter plots for (a) heat flux (W/m2) and (b) the temperature (°C) measured 
at a depth of 15 cm in location 20 within the plot. 

 

 

Using the roots of polynomials fit to the data, we obtain values 𝜁𝜁 which 
partially address Objective 6.3. For example, in Figure 36 for the heat flux 
variable FLX1, we found 𝜁𝜁 = −9.67 (W/m2) and this value identifies an 
approximate cut-off value for the heat flux in which we see a change from 
positive to negative Shapley values. When the Shapley value is positive it 
indicates the environmental variable has a positive effect on the 
interpretation of the function that maps the environmental variables to the 
object variables, which is a core goal of Objective 6.3. This can further be 
investigated through AUC distribution tables. In Table 16, we see that the 
heat flux variable FLX1 tends to increase AUC when FLX1 ≤ −9.67. 
Similarly, it can be seen in Table 17 that the AUC decreases when FLX1 ≥ 
−9.67. To automate this process we fit both linear and quintic polynomials 
to the data. The value ζ is then obtained by taking the real root of the 
quintic polynomial closest to the linear root.  

(b) 

(a) 
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Table 16. AUC distribution for the baseline of all observations made after object emplacement 
against observations where heat flux variable FLX1 ≤ −9.67. 

targets 𝝁𝝁𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐜𝐜𝐞𝐞 𝝁𝝁𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝝁𝝁𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 𝜺𝜺𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝜺𝜺𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 Wasserstein 
all 0.03 0.766 0.796 0.189 0.183 0.0305 
SP 0.023 0.892 0.915 0.217 0.204 0.0232 
DP 0.039 0.716 0.754 0.293 0.29 0.0386 
DM 0.06 0.77 0.83 0.266 0.24 0.06 
SM -0.002 0.686 0.684 0.301 0.311 0.011 
metal 0.029 0.728 0.757 0.218 0.208 0.029 
plastic 0.031 0.804 0.835 0.205 0.2 0.0309 
deep 0.049 0.743 0.792 0.261 0.247 0.0493 
shallow 0.011 0.789 0.799 0.202 0.208 0.0132 

Table 17. AUC distribution for the baseline of all observations made after object emplacement 
against observations where heat flux variable FLX1 ≥ −9.67. 

targets 𝝁𝝁𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐜𝐜𝐞𝐞 𝝁𝝁𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝝁𝝁𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 𝜺𝜺𝐛𝐛𝐜𝐜𝐜𝐜𝐞𝐞 𝜺𝜺𝐭𝐭𝐞𝐞𝐜𝐜𝐭𝐭 Wasserstein 
all −0.81 0.766 0.684 0.189 0.183 0.083 
SP −0.063 0.892 0.829 0.217 0.236 0.0631 
DP −0.105 0.716 0.611 0.293 0.273 0.1051 
DM −0.163 0.77 0.606 0.266 0.265 0.1634 
SM 0.006 0.686 0.692 0.301 0.272 0.0301 
metal −0.079 0.728 0.649 0.218 0.226 0.0789 
plastic −0.084 0.804 0.72 0.205 0.194 0.0841 
deep −0.134 0.743 0.609 0.261 0.252 0.1343 
shallow −0.029 0.789 0.76 0.202 0.183 0.036 

The Shapley values partially address Objective 6.3. In particular, the 
environmental variable with the largest positive Shapley value identifies 
which environmental variables have the largest effect on the object 
variable, addressing Objective 6.3.1. Further, through the polynomial 
fitting of the Shapley values, as shown in Figure 36, we can identify 
specific ranges of the environmental variables to determine how a value 
for that variable in the identified range will affect the prediction of the 
object variable, as was discussed for the heat flux variable above. Although 
the Shapley values begin to address Objective 6.3, there are some 
drawbacks. The first is that the Shapley computations rely on linearity 
assumptions. The second is that it is unclear (at the moment) how to deal 
with interaction effects between the environmental variables to determine 
second-order effects, which is the topic of Objective 6.3.3. For example, 
the Shapley analysis determined that the incoming solar radiation was the 
most important environmental effect in the relationship between 
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environmental variables and predicting the object variables. However, it 
would be helpful to understand which combination of environmental 
variables paired with the incoming solar radiation lead to this strong effect 
in the approximate model. It is certainly possible to analyze interaction 
effects with Shapley values (Lundberg et al. 2018, 2020; Lundberg and Lee 
2017), but this requires further effort to apply these techniques to our 
application. The next section begins to address the second shortcoming of 
the Shapley value analysis and helps to address Objective 6.3 more 
completely. 

6.5.6  Nonlinear interpretation with global sensitivity analysis  

To address the nonlinear interaction effects involved with interpreting the 
models defined in Section 6.4.4, we turn to sensitivity analysis. Global 
sensitivity analysis techniques are used to measure the contributions of 
input variables and their interactions with the overall uncertainty of the 
output. In the following analysis we use the Sobol method (Saltelli 2002, 
2010; Sobol 2001) following the implementation details in Rennels 
(2020), SciML Ecosystem (2020), Rackauckas and Nie (2017), and Usher 
et al. (2016). 

In what follows we only consider the subset of applicable environmental 
variables defined in Section 6.2.1. Let 𝑦𝑦 denote the AUC object variable 
defined in Section 6.3.1 with sampling based on all buried objects. By 
considering all objects together, we can treat 𝑦𝑦 as univariate (instead of 
being composed of nine variables) which simplifies the sensitivity analysis. 

The Sobol method for sensitivity analysis decomposes the variance of y 
into contributions from subsets of inputs in the following sense. Let k be 
the number of input environmental variables 𝑥𝑥1, . . . , 𝑥𝑥𝑘𝑘, and let 𝑦𝑦 be 
represented as 

 𝑦𝑦 = 𝑓𝑓0 +  ∑ 𝑓𝑓1(𝑥𝑥𝑘𝑘) + ∑ 𝑓𝑓𝑤𝑤,𝑜𝑜�𝑥𝑥𝑤𝑤 , 𝑥𝑥𝑜𝑜� + ⋯+ 𝑓𝑓1,2,…,𝑘𝑘
𝑘𝑘
𝑤𝑤<𝑜𝑜

𝑘𝑘
𝑤𝑤=1 , (24) 

where 𝑦𝑦 is decomposed into a background response given by 𝑓𝑓0 , and first-
order responses given by 𝑓𝑓1, and higher-order interactions between the 
environmental variables. With the representation of 𝑦𝑦 given in Equation 
(24), we can write the variance of the output variable as follows: 

 var(y) =  ∑ 𝑣𝑣𝑤𝑤𝑘𝑘
𝑤𝑤=1 +  ∑ 𝑣𝑣𝑤𝑤,𝑜𝑜 

𝑘𝑘
𝑤𝑤<𝑜𝑜 + ⋯+ 𝑣𝑣1,2,…,𝑘𝑘 (25) 
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The first and second order Sobol indices are defined by: 

 𝑆𝑆𝑤𝑤 ∶=
𝑣𝑣𝑖𝑖

var(y)
, and 𝑆𝑆𝑤𝑤,𝑜𝑜 ∶=

𝑣𝑣𝑖𝑖,𝑗𝑗
var(y)

 , (26) 

respectively. The Sobol total sensitivity (including all higher order 
nonlinear interactions) for a given environmental input xi is denoted 
by ST𝑤𝑤. 

Figure 37 lists the environmental inputs with the highest total sensitivity 
(left) and highest first order sensitivity (right). A large discrepancy 
between total sensitivity and first order sensitivity indicates the presence 
of interaction effects between the environmental variables (e.g. incoming 
solar radiation in Figure 37). Notably, both the total sensitivity and the 
first order sensitivity both identify the incoming solar radiation as the 
environmental variable with the largest effect on the object variable 𝑦𝑦 and 
this finding agrees with the Shapley analysis in the previous section. 
Figure 38 lists the environmental variables whose second order Sobol 
indices are highest when paired with incoming solar radiation. The second 
order Sobol indices for a given input variable can help determine what the 
most prominent second order interactions are for the fixed input variable. 
In the example for incoming solar radiation shown in Figure 38, the most 
important second order interactions are given by the heat flux and absolute 
time in the day.  

Figure 37. Sobol (a) total sensitivity and (b) first order sensitivity sorted by variance ratio. 

 

(a) 
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Figure 38. Highest second order Sobol indices associated with the average incoming 
solar radiation. 

 

6.6 Future directions 

We conclude by outlining some possible future directions for this work. 

 Target variables 

A great deal of effort has been put forth to study contrast metrics and 
detection algorithms in a wide variety of contexts (Schachter 2012, 2018, 
2020; Ahuja and Schachter 1981), and the task to determine the 
appropriate response variable appears to be a subtle topic. Since we are not 
necessarily attempting to construct a high-performance detection 
algorithm with this work, it is possible that the object variable we choose 
will not affect the results of the environmental studies. It is also possible, 
however, that we miss key points of the analysis based on a poor choice of 
target variable. IR image feature engineering for a specific application is 
likely to be necessary to obtain the most accurate and relevant results in a 
particular situation. Since the methods outlined in this work are general, 
the framework should require minimal changes to adapt the analysis to a 
new response. 

(b) 
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 Alternate approaches 

The data analysis approaches applied to date relied on a sophisticated, 
nonlinear regressor to identify the variable impacting object detection 
using thermal IR. Further investigation of applicable dimension reduction 
techniques and clustering methods are being evaluated. Another approach 
is to group environmental variables in a reasonable way to reduce the 
dimension of the problem. This could range from a simple solution, like 
averaging groups of sensors, to a more complicated mixed model 
approach. 

Lastly, an analysis of detection algorithms that include environmental data 
could also be explored. Note, that this is subtly different than the 
framework used in this work. Here we do not provide environmental 
information to the detection algorithms. AUC is computed without any 
knowledge of the environmental data, and the environmental effects are 
analyzed afterwards. Measuring how detection performance changes based 
on environmental data provided to the detection algorithm is perhaps 
another approach worth pursuing. Causal models such as those described 
in Redell (2019) and Tavares et al. (2019) could be applied in our context. 

 Time series analysis  

Perhaps the most promising approach is incorporating the sequential 
aspect of the data. Several simple attempts at addressing the temporal 
analysis were made and include: 

1. Input variables added to the data to encode important features related to 
time. For example, considering the environmental conditions leading up to 
a particular observation/IR image. 

2. Clock diagrams based on grouping data by time of day.  
3. The global search regression technique from the econometrics literature 

(Ungaro et al. 2020) was analyzed. Unfortunately, the linear model fit was 
poor (the best RMSE obtained was approximately 0.13). 

However, a thorough treatment of the data beyond the snapshot assumption 
is necessary. Time series classification and clustering should be considered 
(Kidger et al. 2020; Loning et al. 2019; Teichbraeber et al. 2019; Christ et 
al. 2018; Giannakis and Majda 2012). 
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 Extrapolation and validation 

Environmental results can be validated through physical modeling, 
additional field experiments, and from a demonstrated improvement in 
detection algorithms. Testing environmental results and having those tests 
inform future analysis is crucial to make real progress in this area. 
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7 Findings and Conclusion 

This work is a comprehensive follow on analysis of the data collected and 
discussed in the Phase 2 report (Clausen et al. 2021). Here we have 
expanded on the analysis of the Phase 2 data to include a multipronged 
analytical approach as follows: (1) multivariate analyses for detecting 
objects in soil, (2) a moving box analysis of object visibility with alternative 
methods for converting FLIR radiance values to thermal temperature 
values, (3) a calibrated thermal model of soil temperature using thermal 
IR imagery, and (4) a simple classifier method for automating buried 
object detection. In addition, we have expanded our field testing to include 
a 2-week test at the YPG Countermine test site and compared object 
visibility with the CRREL test plot thermal imagery—to be reported in a 
subsequent report.  

Environmental phenomenological effects are often represented in weather 
forecasts in a relatively coarse, hourly resolution, which introduces 
concerns such as exclusion or misrepresentation of ephemera or lags in 
timing when using this data as an input for the TAK software system. It is 
unclear if data from field programs examining the detection of buried 
targets will support the hypothesis that enhanced surface detection is well 
correlated with rapid changes in near surface temperatures. Additionally, 
the direct application of observed temperature data with weather model 
data may not be the best approach because metadata associated with the 
observations is not included. For example, the local observation may differ 
from the data incorporated in the model in terms of altitude, land usage 
(e.g. vegetation type and coverage), or soil texture. As a result, there is a 
need to explore mathematical methods such as Bayesian statistics to 
incorporate observations into models. 

Investigation of buried object detection using multilevel analyses revealed 
that IR temperatures of the thermal IR imagery along with soil 
temperature at 5 cm provide detection of the contrast of soil over buried 
objects compared with the surrounding soil at varying magnitude, with SP 
tending to be the most easily detectable and SM second. The reason for 
this variability is that metals are more conductive of heat energy, and thus 
the plastic object tends to heat up more slowly than the surrounding soil 
and to retain heat for a longer period as the surrounding soil cools. DP and 
DM objects are much less detectable using IR temperature and soil 
temperature at 5 cm. Of the environmental phenomenological variables 
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affecting contrast, soil temperature and soil moisture were the greatest 
contributors. Other variables such as air temperature, relative humidity, 
incoming short-wave radiation, and wind speed did not appear to have a 
direct effect on detecting buried objects. ROC analysis supports these 
findings. 

Because it was not known how the thermal temperatures were derived 
from FLIR radiance values using the FLIR Systems algorithm, we 
investigated two methods for converting FLIR radiance values to thermal 
temperature values. These methods correct for air temperatures, relative 
humidity, and emissivity. Using the weather data measured at the CRREL 
test site rather than the default weather parameters used in the FLIR 
algorithm, both of the non-FLIR methods yield the same results. 
Employing temperature values derived from these methods, we performed 
a moving box analysis of thermal IR imagery from July 2018–December 
2018. PD using this analysis was higher as box overlap decreased. 
Additionally, the SP object was most easily detectable, with the FAR for 
the SM, DP, and DM objects being relatively higher and PD lower. This 
effort will be expanded over FY21 to look at how dependencies change 
seasonally, with a focus on frozen soil and snow thickness/density. 

With our third analytical approach, we developed and calibrated a thermal 
model to improve buried object detection by using soil temperature 
measurements at 5 cm and thermal IR imagery temperatures as boundary 
conditions. In general, the soil temperatures simulated by the model 
exhibited a better fit when the measured temperatures at 5 cm were used 
as opposed to the thermal IR imagery temperatures. When the methods 
noted above for deriving thermal temperatures from FLIR radiances were 
used in place of the FLIR algorithm, some time periods were found to fit 
better in the model using the non-FLIR methods, and others fit better 
using the FLIR method. We concluded that this discrepancy indicates a 
need for more careful calibration of the thermal imagery conversion 
parameters in order to yield a closer match to surface temperatures. To 
avoid this problem and improve efficiency, it would be ideal to skip the 
conversion process altogether and use the raw FLIR radiances for buried 
object analysis as actual temperatures are not needed for object detection. 

In the Phase 2 report (Clausen et al. 2021), we introduced a simplistic 
differencing scheme using FLIR radiance values for automatically 
generating a VI of buried objects. Here we have developed an improved 
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classifier, which generates AUC values for nine discrete sections of the test 
plot using raw FLIR radiance values of both pre-object emplacement and 
post-object emplacement thermal IR images. The AUC value generated 
can be used as a metric to determine visibility for each buried object. The 
relative effect of the different variables on object visibility was determined 
by using a nonlinear interpretation of this method with Shapely values on 
environmental variables such as solar loading, soil moisture, air 
temperature, and soil conductivity having the greatest effect, in that order. 
We are currently developing more sophisticated methods for automating 
object visibility through machine learning (ML)/artificial intelligence (AI) 
data analysis of the CRREL test plot and YPG test data. The new classifier 
will be trained on our existing thermal IR imagery database for 2018 and 
2020 and imagery collected during the YPG field test to make a decision 
automatically and more accurately on the visibility of buried objects.  

In addition to a secondary testing site at YPG, we are also in the process of 
testing a number of variables in isolation at the CRREL field test site as 
well with a physics-based model (Trautz et al. 2021) to help validate our 
findings. These variables include wind speed, solar radiation, camera 
angle, soil moisture, surface topology, and soil density. Additional snow 
density, and surface object tests were conducted over winter 2020, and a 
final test of surface object visibility using the same hockey pucks that were 
used for the YPG test is currently in progress.  

This research effort will continue through FY21 as we expand on and 
improve our analyses and models. We plan to (1) explore the development 
of ML/AI approaches for analyzing data from the CRREL test plot in an 
effort to identify the variables that impact ATR performance; (2) complete 
the remaining field manipulation tests and perform a full analysis of the 
resulting test data; (3) develop a physics-based model for the YPG test plot 
and calibrate, validate, and compare with field observations; (4) 
summarize thermal imagery and environmental sensor field data collected 
over 2018–2021, (5) explore seasonal impacts on soil and object thermal 
response as it relates to object detectability, (6) develop an ML-based pre-
processor accounting for environmental phenomenology effects that can 
be linked to standard Army ATRs for improving object detection 
performance, and (7) develop approaches for efficiently generating AI/ML 
synthetic imagery in support of ML algorithms for object detection. The 
findings from these tasks will be presented in a follow-on report.   
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Appendix 
Appendix A 

Table A-1. Descriptive statistics for dependent and independent variables of point layout 
datasets for shallow and deep metal contrasts for timeline 15 July–31 August 2018. 

Contrast  - Shallow Metal Deep Metal 
Probe_id  - 1–10, 12, 14, 19, 28 1–10, 11, 12, 14, 28 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
Object 16128 0 1 0.07 0.25 0 0 1 0.07 0.25 0 
Time 16128 1 24 12.5 6.9 0.05 1 24 12.5 6.9 0.05 
AirTemp 16128 8.33 33.56 21.57 4.52 0.04 8.33 33.56 21.57 4.52 0.04 
Rh 16128 23.70 98.10 79.64 18.33 0.14 23.70 98.10 79.64 18.33 0.14 
WndSpd 16128 0.02 3.09 0.79 0.57 0.00 0.02 3.09 0.79 0.57 0.00 
WndDir 16128 34.50 306.18 177.75 58.06 0.46 34.50 306.18 177.75 58.06 0.46 
Rain 16128 0.00 11.43 0.05 0.40 0.00 0.00 11.43 0.05 0.40 0.00 
SW 16128 -9.32 966.5 197.06 267.5 2.11 -9.32 966.5 197.06 267.5 2.11 
SWR 16128 −6.48 148.05 28.07 38.01 0.3 −6.48 148.05 28.07 38.01 0.3 
SoilTemp5 16128 15.17 42.85 25.74 4.73 0.04 20.25 32.68 25.52 1.84 0.01 
SoilTemp5 Time1 672 17.13 29.88 23.08 2.01 0.08 22.94 31.67 26.21 1.73 0.07 
SoilTemp5 Time2 672 16.66 29.08 22.56 2.01 0.08 22.61 31.32 25.96 1.67 0.06 
SoilTemp5 Time3 672 16.22 28.53 22.14 2.03 0.08 22.25 30.99 25.70 1.63 0.06 
SoilTemp5 Time4 672 15.88 28.02 21.79 2.05 0.08 21.94 30.63 25.45 1.58 0.06 
SoilTemp5 Time5 672 15.58 27.78 21.48 2.09 0.08 21.61 30.33 25.20 1.54 0.06 
SoilTemp5 Time6 672 15.17 27.52 21.22 2.13 0.08 21.30 30.03 24.97 1.51 0.06 
SoilTemp5 Time7 672 15.18 27.35 21.08 2.15 0.08 21.00 29.78 24.74 1.49 0.06 
SoilTemp5 Time8 672 15.55 27.14 21.43 2.14 0.08 20.72 29.55 24.53 1.47 0.06 
SoilTemp5 Time9 672 16.74 26.59 22.41 2.08 0.08 20.47 29.35 24.35 1.46 0.06 
SoilTemp5 Time10 672 19.08 28.96 23.91 2.15 0.08 20.31 29.16 24.23 1.46 0.06 
SoilTemp5 Time11 672 20.22 32.27 25.83 2.41 0.09 20.25 28.91 24.20 1.45 0.06 
SoilTemp5 Time12 672 21.10 35.55 27.85 2.91 0.11 20.36 28.71 24.29 1.44 0.06 
SoilTemp5 Time13 672 22.03 38.36 29.64 3.28 0.13 20.64 28.47 24.50 1.43 0.06 
SoilTemp5 Time14 672 22.72 40.92 30.97 3.68 0.14 21.08 28.30 24.82 1.42 0.05 
SoilTemp5 Time15 672 23.66 42.63 31.62 4.07 0.16 21.66 29.00 25.22 1.44 0.06 
SoilTemp5 Time16 672 24.47 42.86 31.70 4.24 0.16 22.27 29.89 25.65 1.49 0.06 
SoilTemp5 Time17 672 24.58 42.59 31.36 4.33 0.17 22.63 30.75 26.05 1.57 0.06 
SoilTemp5 Time18 672 24.00 41.92 30.61 4.19 0.17 23.00 31.47 26.39 1.65 0.06 
SoilTemp5 Time19 672 23.38 39.97 29.51 3.80 0.16 23.38 32.07 26.65 1.73 0.07 
SoilTemp5 Time20 672 22.86 37.66 27.97 3.23 0.15 23.47 32.45 26.81 1.80 0.07 
SoilTemp5 Time21 672 20.88 35.33 26.44 2.74 0.12 23.50 32.63 26.86 1.84 0.07 
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Contrast  - Shallow Metal Deep Metal 
Probe_id  - 1–10, 12, 14, 19, 28 1–10, 11, 12, 14, 28 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
SoilTemp5 Time22 672 19.44 33.35 25.25 2.42 0.11 23.50 32.56 26.79 1.85 0.07 
SoilTemp5 Time23 672 18.45 31.91 24.34 2.22 0.09 23.46 32.35 26.64 1.83 0.07 
SoilTemp5 Time24 672 17.72 30.82 23.62 2.09 0.08 23.25 32.02 26.42 1.79 0.07 
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Table A-2. Descriptive statistics for dependent and independent variables of point layout 
datasets for shallow and deep plastic contrasts for timeline 15 July–31 August 2018. 

Contrast  - Shallow Plastic Deep Plastic 
Probe_id  - 1-10, 12, 13,14, 28 1-10, 12, 14, 28 and 33 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
Object 16128 0 1 0.07 0.25 0 0 1 0.07 0.25 0 
Time 16128 1 24 12.5 6.9 0.05 1 24 12.5 6.9 0.05 
AirTemp 16128 8.33 33.56 21.57 4.52 0.04 8.33 33.56 21.57 4.52 0.04 
Rh 16128 23.70 98.10 79.64 18.33 0.14 23.70 98.10 79.64 18.33 0.14 
WndSpd 16128 0.02 3.09 0.79 0.57 0.00 0.02 3.09 0.79 0.57 0.00 
WndDir 16128 34.50 306.18 177.75 58.06 0.46 34.50 306.18 177.75 58.06 0.46 
Rain 16128 0.00 11.43 0.05 0.40 0.00 0.00 11.43 0.05 0.40 0.00 
SW 16128 -9.32 966.5 197.06 267.5 2.11 -9.32 966.5 197.06 267.5 2.11 
SWR 16128 -6.48 148.05 28.07 38.01 0.3 -6.48 148.05 28.07 38.01 0.3 
SoilTemp5 16128 10.55 52.55 25.78 5.03 0.04 19.27 34.24 25.52 1.88 0.01 
SoilTemp5 Time1 672 13.25 29.88 22.95 2.15 0.08 22.94 33.19 26.23 1.76 0.07 
SoilTemp5 Time2 672 12.58 29.08 22.42 2.17 0.08 22.61 32.69 25.97 1.71 0.07 
SoilTemp5 Time3 672 12.00 28.53 21.98 2.20 0.08 22.19 32.14 25.71 1.65 0.06 
SoilTemp5 Time4 672 11.60 28.02 21.63 2.22 0.09 21.69 31.64 25.45 1.60 0.06 
SoilTemp5 Time5 672 11.11 27.78 21.32 2.26 0.09 21.19 31.19 25.19 1.56 0.06 
SoilTemp5 Time6 672 10.55 27.52 21.05 2.30 0.09 20.75 30.72 24.95 1.53 0.06 
SoilTemp5 Time7 672 10.74 27.35 20.92 2.31 0.09 20.33 30.32 24.72 1.50 0.06 
SoilTemp5 Time8 672 12.16 27.14 21.29 2.26 0.09 19.91 29.94 24.50 1.49 0.06 
SoilTemp5 Time9 672 14.70 26.59 22.32 2.14 0.08 19.57 29.61 24.31 1.48 0.06 
SoilTemp5 Time10 672 19.05 29.42 23.90 2.20 0.09 19.31 29.28 24.18 1.48 0.06 
SoilTemp5 Time11 672 19.75 35.46 25.91 2.56 0.10 19.27 28.94 24.15 1.47 0.06 
SoilTemp5 Time12 672 20.78 40.63 28.03 3.21 0.12 19.49 28.61 24.24 1.46 0.06 
SoilTemp5 Time13 672 22.03 45.55 29.90 3.69 0.14 20.00 28.27 24.45 1.44 0.06 
SoilTemp5 Time14 672 22.72 49.80 31.28 4.15 0.16 20.77 28.13 24.78 1.43 0.06 
SoilTemp5 Time15 672 23.66 52.30 31.96 4.54 0.17 21.66 28.82 25.19 1.45 0.06 
SoilTemp5 Time16 672 24.47 52.55 32.04 4.68 0.18 22.27 29.97 25.63 1.50 0.06 
SoilTemp5 Time17 672 24.67 51.47 31.67 4.72 0.18 22.63 31.19 26.04 1.59 0.06 
SoilTemp5 Time18 672 23.96 49.89 30.87 4.51 0.17 23.00 32.26 26.40 1.68 0.06 
SoilTemp5 Time19 672 23.13 46.75 29.71 4.05 0.16 23.38 33.14 26.67 1.77 0.07 
SoilTemp5 Time20 672 21.55 42.45 28.10 3.38 0.13 23.47 33.82 26.84 1.85 0.07 
SoilTemp5 Time21 672 19.33 37.94 26.49 2.83 0.11 23.50 34.21 26.90 1.89 0.07 
SoilTemp5 Time22 672 17.13 34.16 25.23 2.50 0.10 23.50 34.24 26.83 1.90 0.07 
SoilTemp5 Time23 672 15.38 31.91 24.26 2.32 0.09 23.46 34.03 26.67 1.88 0.07 
SoilTemp5 Time24 672 14.14 30.82 23.52 2.22 0.09 23.25 33.66 26.46 1.83 0.07 
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Table A-3. Descriptive statistics of soil temperature observations at 
25 cm for timeline 15 July–31 August 2018. 

Contrast  - Shallow Metal Deep Metal 
Probe_id  - 1–10, 12, 14, 19, 28 1–10, 11, 12, 14, 28 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
SoilTemp25cm 16128 20.25 32.38 25.47 1.83 0.01 20.25 32.63 25.53 1.84 0.01 
SoilTemp25cm Time1 672 22.50 31.49 26.14 1.72 0.07 22.94 31.67 26.21 1.73 0.07 
SoilTemp25cm Time2 672 22.17 31.13 25.89 1.67 0.06 22.61 31.32 25.96 1.67 0.06 
SoilTemp25cm Time3 672 21.86 30.77 25.63 1.62 0.06 22.25 30.99 25.70 1.63 0.06 
SoilTemp25cm Time4 672 21.57 30.44 25.39 1.58 0.06 21.94 30.63 25.45 1.58 0.06 
SoilTemp25cm Time5 672 21.28 30.11 25.14 1.54 0.06 21.61 30.33 25.20 1.54 0.06 
SoilTemp25cm Time6 672 21.00 29.80 24.91 1.51 0.06 21.30 30.03 24.97 1.51 0.06 
SoilTemp25cm Time7 672 20.72 29.53 24.68 1.48 0.06 21.00 29.78 24.74 1.49 0.06 
SoilTemp25cm Time8 672 20.52 29.28 24.48 1.46 0.06 20.72 29.55 24.53 1.47 0.06 
SoilTemp25cm Time9 672 20.40 29.08 24.30 1.45 0.06 20.47 29.35 24.35 1.46 0.06 
SoilTemp25cm Time10 672 20.31 28.86 24.19 1.44 0.06 20.31 29.16 24.23 1.46 0.06 
SoilTemp25cm Time11 672 20.25 28.66 24.17 1.44 0.06 20.25 28.91 24.20 1.45 0.06 
SoilTemp25cm Time12 672 20.36 28.47 24.27 1.43 0.06 20.36 28.71 24.29 1.44 0.06 
SoilTemp25cm Time13 672 20.64 28.27 24.49 1.41 0.05 20.64 28.47 24.50 1.43 0.06 
SoilTemp25cm Time14 672 21.08 28.13 24.81 1.41 0.05 21.08 28.30 24.82 1.42 0.05 
SoilTemp25cm Time15 672 21.66 28.72 25.20 1.43 0.06 21.66 29.00 25.22 1.44 0.06 
SoilTemp25cm Time16 672 22.27 29.57 25.61 1.48 0.06 22.27 29.89 25.65 1.49 0.06 
SoilTemp25cm Time17 672 22.63 30.42 26.00 1.55 0.06 22.63 30.75 26.05 1.57 0.06 
SoilTemp25cm Time18 672 23.00 31.17 26.33 1.63 0.06 23.00 31.47 26.39 1.65 0.06 
SoilTemp25cm Time19 672 23.38 31.77 26.58 1.72 0.07 23.38 32.07 26.65 1.73 0.07 
SoilTemp25cm Time20 672 23.47 32.19 26.74 1.79 0.07 23.47 32.45 26.81 1.80 0.07 
SoilTemp25cm Time21 672 23.50 32.38 26.78 1.83 0.07 23.50 32.63 26.86 1.84 0.07 
SoilTemp25cm Time22 672 23.44 32.35 26.71 1.84 0.07 23.50 32.56 26.79 1.85 0.07 
SoilTemp25cm Time23 672 23.13 32.14 26.56 1.82 0.07 23.46 32.35 26.64 1.83 0.07 
SoilTemp25cm Time24 672 22.82 31.83 26.35 1.78 0.07 23.25 32.02 26.42 1.79 0.07 
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Table A-4. Descriptive statistics of soil temperature observations at 25 cm for timeline 15 
July15–31 August 2018. 

Contrast  - Shallow Plastic Deep Plastic 
Probe_id  - 1–10, 12, 13,14, 28 1–10, 12, 14, 28 and 33 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
SoilTemp25cm 16128 20.25 32.38 25.49 1.80 0.01 19.27 34.23 25.52 1.88 0.01 
SoilTemp25cm Time1 672 22.94 31.49 26.16 1.69 0.07 22.94 33.19 26.23 1.76 0.07 
SoilTemp25cm Time2 672 22.61 31.13 25.93 1.64 0.06 22.61 32.69 25.97 1.71 0.07 
SoilTemp25cm Time3 672 22.25 30.77 25.70 1.59 0.06 22.19 32.14 25.71 1.65 0.06 
SoilTemp25cm Time4 672 21.94 30.44 25.46 1.56 0.06 21.69 31.64 25.45 1.60 0.06 
SoilTemp25cm Time5 672 21.61 30.11 25.23 1.52 0.06 21.19 31.19 25.19 1.56 0.06 
SoilTemp25cm Time6 672 21.30 29.80 25.01 1.50 0.06 20.75 30.72 24.95 1.53 0.06 
SoilTemp25cm Time7 672 21.00 29.53 24.79 1.48 0.06 20.33 30.32 24.72 1.50 0.06 
SoilTemp25cm Time8 672 20.72 29.28 24.59 1.47 0.06 19.91 29.94 24.50 1.49 0.06 
SoilTemp25cm Time9 672 20.47 29.08 24.41 1.46 0.06 19.57 29.61 24.31 1.48 0.06 
SoilTemp25cm Time10 672 20.31 28.86 24.29 1.46 0.06 19.31 29.28 24.18 1.48 0.06 
SoilTemp25cm Time11 672 20.25 28.66 24.25 1.45 0.06 19.27 28.94 24.15 1.47 0.06 
SoilTemp25cm Time12 672 20.36 28.53 24.32 1.43 0.06 19.49 28.61 24.24 1.46 0.06 
SoilTemp25cm Time13 672 20.64 28.41 24.51 1.41 0.05 20.00 28.27 24.45 1.44 0.06 
SoilTemp25cm Time14 672 21.08 28.30 24.80 1.40 0.05 20.77 28.13 24.78 1.43 0.06 
SoilTemp25cm Time15 672 21.66 28.69 25.16 1.42 0.05 21.66 28.82 25.19 1.45 0.06 
SoilTemp25cm Time16 672 21.94 29.57 25.55 1.48 0.06 22.27 29.97 25.63 1.50 0.06 
SoilTemp25cm Time17 672 21.99 30.42 25.93 1.56 0.06 22.63 31.19 26.04 1.59 0.06 
SoilTemp25cm Time18 672 22.13 31.17 26.25 1.65 0.06 23.00 32.26 26.40 1.68 0.06 
SoilTemp25cm Time19 672 22.28 31.77 26.50 1.73 0.07 23.38 33.14 26.67 1.77 0.07 
SoilTemp25cm Time20 672 22.49 32.19 26.66 1.80 0.07 23.47 33.82 26.84 1.85 0.07 
SoilTemp25cm Time21 672 22.71 32.38 26.72 1.83 0.07 23.50 34.21 26.90 1.89 0.07 
SoilTemp25cm Time22 672 22.89 32.35 26.67 1.83 0.07 23.50 34.24 26.83 1.90 0.07 
SoilTemp25cm Time23 672 23.08 32.14 26.54 1.80 0.07 23.46 34.03 26.67 1.88 0.07 
SoilTemp25cm Time24 672 23.22 31.83 26.35 1.76 0.07 23.25 33.66 26.46 1.83 0.07 
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Table A-5. Descriptive statistics of IR temperatures above the shallow and deep metal 
contrasts for timeline 15 July–31 August 2018. 

Contrast  - Shallow Metal Deep Metal 
Probe_id  - 1, 10, 12, 14, 19, 28 1, 10, 11, 12, 14, 28 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
Object 691200 0 1 0.17 0.37 0 0 1 0.17 0.37 0 
IR_tir 691200 8.06 59.58 26.35 7.29 0.01 8.38 60.98 26.36 7.27 0.01 
IR_tir Time1 28800 11.37 27.38 20.88 3.32 0.02 12.22 27.38 20.92 3.30 0.02 
IR_tir Time2 28800 10.36 27.06 20.46 3.47 0.02 11.14 27.06 20.49 3.46 0.02 
IR_tir Time3 28800 9.57 27.24 20.25 3.57 0.02 10.23 27.24 20.27 3.56 0.02 
IR_tir Time4 28800 8.73 27.39 20.06 3.64 0.02 9.33 27.39 20.07 3.64 0.02 
IR_tir Time5 28800 8.28 27.69 19.89 3.67 0.02 8.74 27.69 19.90 3.66 0.02 
IR_tir Time6 28800 8.06 27.38 19.76 3.74 0.02 8.38 27.38 19.76 3.74 0.02 
IR_tir Time7 28800 9.87 27.66 20.11 3.57 0.02 10.11 27.78 20.10 3.58 0.02 
IR_tir Time8 28800 13.65 27.11 21.65 3.17 0.02 13.56 27.11 21.64 3.19 0.02 
IR_tir Time9 28800 17.04 32.18 24.19 3.04 0.02 17.04 33.16 24.17 3.06 0.02 
IR_tir Time10 28800 20.73 36.68 27.04 3.37 0.02 20.59 37.06 26.99 3.36 0.02 
IR_tir Time11 28800 21.09 44.67 30.34 4.32 0.03 21.04 46.53 30.26 4.31 0.03 
IR_tir Time12 28800 22.64 51.18 33.22 5.01 0.03 22.60 52.91 33.13 4.99 0.03 
IR_tir Time13 28800 23.88 55.95 35.25 5.53 0.03 23.85 57.82 35.16 5.53 0.03 
IR_tir Time14 28800 25.40 59.58 36.07 5.91 0.03 25.40 60.98 35.99 5.90 0.03 
IR_tir Time15 28800 25.81 59.53 35.92 6.20 0.04 25.81 60.31 35.87 6.19 0.04 
IR_tir Time16 28800 25.99 56.24 35.07 6.07 0.04 25.99 57.25 35.07 6.08 0.04 
IR_tir Time17 28800 24.72 54.94 33.80 5.85 0.03 24.72 55.60 33.83 5.89 0.03 
IR_tir Time18 28800 23.71 50.08 31.88 5.04 0.03 23.71 50.73 31.93 5.09 0.03 
IR_tir Time19 28800 21.46 42.71 29.55 3.99 0.02 21.46 43.49 29.62 4.04 0.02 
IR_tir Time20 28800 18.85 35.79 26.48 2.96 0.02 19.20 35.79 26.56 2.98 0.02 
IR_tir Time21 28800 16.22 32.19 24.27 2.74 0.02 16.27 32.19 24.36 2.74 0.02 
IR_tir Time22 28800 14.49 29.89 22.82 2.83 0.02 14.57 29.89 22.91 2.82 0.02 
IR_tir Time23 28800 13.45 29.41 21.99 3.03 0.02 13.56 29.41 22.06 3.01 0.02 
IR_tir Time24 28800 12.45 28.32 21.39 3.10 0.02 12.96 28.32 21.44 3.08 0.02 
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Table A-6. Descriptive statistics of IR temperatures above the shallow and deep plastic 
contrasts for timeline 15 July–31 August 2018. 

Contrast  - Shallow Plastic Deep Plastic 
Probe_id  - 1, 10, 12, 13,14, 28 1,10, 12, 14, 28 and 33 

  N Min Max Mean SD SE 
Mean Min Max Mean  SD SE 

Mean 
Object 691200 0 1 0.17 0.37 0 0 1 0.17 0.37 0 
IR_tir 691200 5.45 62.45 26.37 7.55 0.01 8.55 60.36 26.36 7.26 0.01 
IR_tir Time1 28800 9.43 27.38 20.71 3.45 0.02 12.30 27.38 20.94 3.30 0.02 
IR_tir Time2 28800 8.18 27.06 20.28 3.62 0.02 11.31 27.06 20.52 3.45 0.02 
IR_tir Time3 28800 7.22 27.24 20.06 3.72 0.02 10.42 27.24 20.29 3.55 0.02 
IR_tir Time4 28800 6.22 27.39 19.87 3.79 0.02 9.45 27.40 20.09 3.63 0.02 
IR_tir Time5 28800 5.75 27.69 19.70 3.81 0.02 8.97 27.78 19.92 3.66 0.02 
IR_tir Time6 28800 5.45 27.38 19.57 3.88 0.02 8.55 27.48 19.78 3.73 0.02 
IR_tir Time7 28800 7.41 27.66 19.92 3.70 0.02 10.29 27.88 20.11 3.58 0.02 
IR_tir Time8 28800 11.62 27.11 21.49 3.26 0.02 13.65 27.11 21.64 3.18 0.02 
IR_tir Time9 28800 16.00 31.74 24.09 3.09 0.02 17.04 32.84 24.16 3.05 0.02 
IR_tir Time10 28800 20.30 37.20 27.02 3.43 0.02 20.51 36.12 26.98 3.35 0.02 
IR_tir Time11 28800 20.74 45.90 30.40 4.43 0.03 20.93 45.67 30.25 4.29 0.03 
IR_tir Time12 28800 22.45 53.09 33.38 5.21 0.03 22.46 52.23 33.12 4.97 0.03 
IR_tir Time13 28800 23.88 58.62 35.50 5.78 0.03 23.61 56.97 35.15 5.50 0.03 
IR_tir Time14 28800 25.40 62.36 36.37 6.19 0.04 25.12 60.21 35.98 5.87 0.03 
IR_tir Time15 28800 25.81 62.45 36.25 6.51 0.04 25.81 60.36 35.86 6.17 0.04 
IR_tir Time16 28800 25.99 59.13 35.42 6.37 0.04 25.99 57.19 35.06 6.06 0.04 
IR_tir Time17 28800 24.72 57.77 34.12 6.13 0.04 24.72 55.75 33.82 5.87 0.03 
IR_tir Time18 28800 23.71 52.88 32.17 5.29 0.03 23.70 51.36 31.94 5.09 0.03 
IR_tir Time19 28800 20.81 45.46 29.77 4.19 0.02 21.46 43.79 29.62 4.04 0.02 
IR_tir Time20 28800 17.98 37.66 26.63 3.08 0.02 19.20 35.79 26.57 2.98 0.02 
IR_tir Time21 28800 15.14 32.61 24.32 2.81 0.02 16.27 32.19 24.37 2.74 0.02 
IR_tir Time22 28800 12.85 29.89 22.79 2.91 0.02 14.57 29.89 22.92 2.82 0.02 
IR_tir Time23 28800 11.31 29.41 21.90 3.12 0.02 13.56 29.41 22.07 3.00 0.02 
IR_tir Time24 28800 14.14 30.82 23.52 2.22 0.09 12.96 28.32 21.46 3.07 0.02 
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Table A-7. Descriptive statistics of soil moisture observations at 15 cm for timeline 15 July–
31 August 2018. 

Contrast  - Shallow Metal Deep Metal 
Probe_id  - 1, 10, 12, 14, 19, 28 1, 10, 11, 12, 14, 28 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
Soil15cm - 0.13 0.28 0.18 0.03 0 0.07 0.26 0.17 0.03 0 
Soil15cm 
Time1 - 0.13 0.26 0.18 0.02 0 0.07 0.23 0.17 0.03 0 

Soil15cm 
Time2 

- 0.13 0.26 0.18 0.03 0 0.07 0.24 0.17 0.03 0 

Soil15cm 
Time3 

- 0.13 0.27 0.18 0.03 0 0.07 0.25 0.17 0.03 0 

Soil15cm 
Time4 

- 0.13 0.28 0.18 0.03 0 0.07 0.26 0.17 0.03 0 

Soil15cm 
Time5 

- 0.13 0.28 0.18 0.03 0 0.07 0.26 0.17 0.03 0 

Soil15cm 
Time6 

- 0.13 0.28 0.18 0.03 0 0.07 0.26 0.17 0.03 0 

Soil15cm 
Time7 

- 0.13 0.28 0.18 0.03 0 0.07 0.26 0.17 0.03 0 

Soil15cm 
Time8 

- 0.13 0.27 0.18 0.03 0 0.07 0.25 0.17 0.03 0 

Soil15cm 
Time9 

- 0.13 0.27 0.18 0.03 0 0.07 0.25 0.17 0.03 0 

Soil15cm 
Time10 

- 0.13 0.27 0.18 0.03 0 0.07 0.25 0.17 0.03 0 

Soil15cm 
Time11 

- 0.13 0.27 0.18 0.03 0 0.07 0.25 0.17 0.03 0 

Soil15cm 
Time12 

- 0.13 0.26 0.18 0.03 0 0.07 0.25 0.17 0.03 0 

Soil15cm 
Time13 

- 0.13 0.26 0.18 0.03 0 0.08 0.24 0.17 0.03 0 

Soil15cm 
Time14 

- 0.13 0.26 0.18 0.03 0 0.08 0.24 0.17 0.03 0 

Soil15cm 
Time15 

- 0.13 0.26 0.18 0.02 0 0.08 0.25 0.17 0.03 0 

Soil15cm 
Time16 

- 0.13 0.26 0.18 0.02 0 0.08 0.25 0.17 0.03 0 

Soil15cm 
Time17 

- 0.13 0.26 0.18 0.02 0 0.08 0.24 0.17 0.03 0 

Soil15cm 
Time18 

- 0.13 0.27 0.18 0.02 0 0.08 0.24 0.17 0.03 0 

Soil15cm 
Time19 

- 0.13 0.27 0.18 0.02 0 0.08 0.24 0.17 0.03 0 

Soil15cm 
Time20 

- 0.13 0.27 0.18 0.02 0 0.08 0.24 0.17 0.03 0 
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Contrast  - Shallow Metal Deep Metal 
Probe_id  - 1, 10, 12, 14, 19, 28 1, 10, 11, 12, 14, 28 

  N Min Max Mean  SD SE 
Mean Min Max Mean  SD SE 

Mean 
Soil15cm 
Time21 

- 0.13 0.26 0.18 0.02 0 0.08 0.24 0.17 0.03 0 

Soil15cm 
Time22 

- 0.13 0.26 0.18 0.02 0 0.08 0.23 0.17 0.03 0 

Soil15cm 
Time23 

- 0.13 0.26 0.18 0.02 0 0.08 0.24 0.17 0.03 0 

Soil15cm 
Time24 

- 0.13 0.26 0.18 0.02 0 0.08 0.23 0.17 0.03 0 
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Table A-8. Descriptive statistics of soil moisture observations at 15 cm for timeline 15 July–
31 August 2018. 

Contrast  - Shallow Plastic Deep Plastic 
Probe_id  - 1, 10, 12, 13,14, 28 1,10, 12, 14, 28 and 33 

  N Min Max Mean SD SE 
Mean Min Max Mean  SD SE 

Mean 
Soil15cm - 0.12 0.26 0.17 0.02 0 0.06 0.26 0.17 0.03 0 
Soil15cm 
Time1 

- 0.12 0.23 0.17 0.02 0 0.06 0.23 0.16 0.03 0 

Soil15cm 
Time2 

- 0.12 0.24 0.17 0.02 0 0.06 0.24 0.16 0.03 0 

Soil15cm 
Time3 

- 0.12 0.25 0.17 0.02 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time4 

- 0.12 0.26 0.17 0.02 0 0.06 0.26 0.17 0.03 0 

Soil15cm 
Time5 

- 0.12 0.26 0.17 0.02 0 0.06 0.26 0.17 0.03 0 

Soil15cm 
Time6 

- 0.12 0.26 0.17 0.03 0 0.06 0.26 0.17 0.03 0 

Soil15cm 
Time7 

- 0.12 0.26 0.17 0.03 0 0.06 0.26 0.17 0.03 0 

Soil15cm 
Time8 

- 0.12 0.25 0.17 0.03 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time9 

- 0.12 0.25 0.17 0.03 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time10 

- 0.12 0.25 0.17 0.03 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time11 

- 0.12 0.25 0.17 0.03 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time12 

- 0.12 0.25 0.17 0.02 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time13 

- 0.12 0.24 0.17 0.02 0 0.06 0.24 0.17 0.03 0 

Soil15cm 
Time14 

- 0.12 0.24 0.17 0.02 0 0.06 0.24 0.17 0.03 0 

Soil15cm 
Time15 

- 0.12 0.25 0.17 0.02 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time16 

- 0.12 0.25 0.17 0.02 0 0.06 0.25 0.17 0.03 0 

Soil15cm 
Time17 

- 0.12 0.24 0.17 0.02 0 0.07 0.24 0.17 0.03 0 

Soil15cm 
Time18 

- 0.12 0.24 0.17 0.02 0 0.07 0.24 0.17 0.03 0 

Soil15cm 
Time19 

- 0.12 0.24 0.17 0.02 0 0.07 0.24 0.17 0.03 0 

Soil15cm 
Time20 

- 0.12 0.24 0.17 0.02 0 0.07 0.24 0.17 0.03 0 
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Contrast  - Shallow Plastic Deep Plastic 
Probe_id  - 1, 10, 12, 13,14, 28 1,10, 12, 14, 28 and 33 

  N Min Max Mean SD SE 
Mean Min Max Mean  SD SE 

Mean 
Soil15cm 
Time21 - 0.12 0.24 0.17 0.02 0 0.07 0.24 0.17 0.03 0 

Soil15cm 
Time22 

- 0.12 0.23 0.17 0.02 0 0.07 0.23 0.17 0.03 0 

Soil15cm 
Time23 

- 0.12 0.24 0.17 0.02 0 0.07 0.24 0.17 0.03 0 

Soil15cm 
Time24 

- 0.12 0.23 0.17 0.02 0 0.07 0.23 0.17 0.03 0 
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Appendix B. Classifiers and ROC analysis 

In this section we discuss standard background material concerning 
classification algorithms and measuring their performance. 

Binary classifiers. A binary classifier is a process to label input data 
with yes or no. 

Definition B.1. Let 𝑈𝑈 ⊂ ℝ𝑤𝑤 be input data with 𝑈𝑈 a finite set. We say 
that 𝑈𝑈 is binary labeled data, or binary data for short, if there is a 
function 𝑔𝑔:𝑈𝑈 → {no, yes} referred to as the ground truth. Additionally, 
the labels no and yes must be ordered so that no is the negative label 
and yes is the positive label and we write no < yes. 

Note that a similar definition can be made if the input data consist of 
categorical variables. This detail is omitted from Definition B.1 for 
simplicity. 

Definition B.2. Let 𝑈𝑈 be binary data. A scoring function is a function 
𝑓𝑓:𝑈𝑈 → ℝ that assigns to each input 𝑥𝑥 a score 𝑓𝑓(𝑥𝑥). A binary classifier is a 
scoring function 𝑓𝑓 together with a threshold 𝜏𝜏 ∈ ℝ. 

A binary classifier (𝑓𝑓, 𝜏𝜏) can be used to predict the ground truth. More 
precisely, the prediction 𝑔𝑔�:𝑈𝑈 → {no, yes} is obtained from the binary classifier 
(𝑓𝑓, 𝜏𝜏) by defining 𝑔𝑔� on an input 𝑢𝑢 ∈ 𝑈𝑈 according to Equation (27).  

 𝑔𝑔(̂𝑢𝑢) ∶= �yes, if 𝑓𝑓(𝑢𝑢) ≥ 𝜏𝜏
no, if 𝑓𝑓(𝑢𝑢) < 𝜏𝜏  (27) 

The next step is to explain a way to measure the quality of a prediction 𝑔𝑔� as 
defined above. 

ROC analysis. Receiver operating characteristic (ROC) analysis is the 
primary tool for us to measure the prediction quality of binary classifiers. 
Here we review the basic concepts required for our purposes. For a more 
thorough treatment see (Fawcett 2006; Zou et al. 2011). Let (𝑓𝑓, 𝜏𝜏) be a 
binary classifier with input data, prediction 𝑔𝑔� and ground truth 𝑔𝑔 as defined 
above. For a given input 𝑢𝑢 there are four possibilities, which are 
summarized in Definition B.3. 

Definition B.3. Correct predictions, with 𝑔𝑔(̂𝑢𝑢) = 𝑔𝑔(𝑢𝑢), are referred to as 
true positive or true negative. An incorrect prediction with 𝑔𝑔(̂𝑢𝑢) = no is 
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called a false negative. An incorrect prediction with 𝑔𝑔(̂𝑢𝑢) = yes is called a 
false positive (also called false alarm). 

The confusion matrix, Table 26, is a way to organize how many times 
each of the four cases occurs. In the confusion matrix, TP stands for the 
number of true positives, and similarly for the other three cases. See 
Equation (28) for the precise definition of the confusion matrix 
entries. 

Table B-1. Confusion matrix for a binary classifier. 

- ground truth yes ground truth no 

predicted yes TP FP 
predicted no FN TN 

TP ∶= #{𝑢𝑢 ∈ 𝑈𝑈: 𝑔𝑔�(𝑢𝑢) = 𝑔𝑔(𝑢𝑢) = yes} 

TN ∶= {𝑢𝑢 ∈ 𝑈𝑈: 𝑔𝑔�(𝑢𝑢) = 𝑔𝑔(𝑢𝑢) = no}  

 𝐅𝐅𝐅𝐅 ∶= #{𝒖𝒖 ∈ 𝑼𝑼: 𝒈𝒈�(𝒖𝒖) = 𝐲𝐲𝐞𝐞𝐜𝐜,𝒈𝒈(𝒖𝒖) = 𝐬𝐬𝐜𝐜} (28) 

FN ∶= #{𝑢𝑢 ∈ 𝑈𝑈: 𝑔𝑔�(𝑢𝑢) = no,𝑔𝑔(𝑢𝑢) = yes} 

Definition B.3. The true positive rate (TPR), also known as 
probability of detection (PD), is defined by the ratio of true positives in 
the left column of the confusion matrix: 

 𝐓𝐓𝐅𝐅𝐓𝐓 ∶= 𝐓𝐓𝐅𝐅
𝐓𝐓𝐅𝐅+𝐅𝐅𝐅𝐅

. (29) 

Definition B.4. The false positive rate (FPR), also known as false alarm 
rate (FAR), is defined by the ratio of false positives in the right column of 
the confusion matrix:  

 𝐅𝐅𝐅𝐅𝐓𝐓 ∶= 𝐅𝐅𝐅𝐅
𝐅𝐅𝐅𝐅+𝐓𝐓𝐅𝐅

. (30) 

As explained above, given a binary classifier (𝑓𝑓, 𝜏𝜏) and input data, we can 
construct a confusion matrix. ROC analysis provides a framework to 
analyze how the confusion matrix changes as 𝜏𝜏 varies and 𝑓𝑓 and 𝑈𝑈 stay 
fixed. 

Definition B.5. Given a scoring function 𝑓𝑓 and binary input data 𝑈𝑈, 
a ROC graph or ROC curve is the set of 𝜏𝜏-indexed pairs 𝒞𝒞
∶= {(FPRτ, TPRτ)}𝜏𝜏 where FPRτ and TPRτ are the false positive rate and 
true positive rate, respectively, each obtained from the confusion 
matrix for the binary classifier (𝑓𝑓, 𝜏𝜏) on data 𝑈𝑈. 
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There are several observations to note about the ROC curve. First, 𝒞𝒞 is a 
continuous curve in the space [0,1] × [0,1] ⊂ ℝ2. Thus, the area under 𝒞𝒞 
(AUC) is well-defined and equal to the definite integral of a step function 
on the interval [0, 1]. Lastly, the value of the AUC is in the interval [0, 1] 
and is equal to 1 if and only if the point (0,1) ∈ 𝒞𝒞, which occurs if and only 
if 𝑔𝑔 =  𝑔𝑔� for every τ. 

Another way to think about 𝒞𝒞 is in terms of type I and type II statistical 
errors in Figure 39. In this illustration, the blue curve represents the 
density function for the set of yes scores, 

{𝑓𝑓(𝑢𝑢):𝑔𝑔(𝑢𝑢) = yes}, 

and the red curve represents the density function for the set of no scores 

{𝑓𝑓(𝑢𝑢):𝑔𝑔(𝑢𝑢) = no}. 

The true positive rate is 1 − 𝛽𝛽 and the false positive rate is 𝛼𝛼. As the 
threshold moves to the left the true positive rate increases (𝛽𝛽 decreases), 
but at a cost of an increase in the false positive rate (𝛼𝛼 increases). If we 
plot the false positive rate 𝛼𝛼 against the true positive rate 1 − 𝛽𝛽 as 𝜏𝜏 moves 
to the left, then we trace out the ROC curve 𝒞𝒞. 

In summary, the ROC curve 𝒞𝒞 is the plot of the true positive rate against 
the false positive rate for a family of binary classifiers {(𝑓𝑓, 𝜏𝜏): 𝜏𝜏 ∈ ℝ} on 
some fixed input data. The area under the ROC curve (AUC) is a common 
method to measure the overall performance distilled down to a single 
value in the unit interval [0,1]. 

Figure B-1. A visualization of the dichotomy between 𝜶𝜶 (type I error) and 𝜷𝜷 (type II error). 
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Appendix C. Locations of targets and sensors 

In this section we include a summary of the environmental variables 
monitored and some plots of target and sensor locations to reference for 
variable naming conventions. 

• The CS655 sensor locations are indicated in Appendix C in the 
moisture location figures. Each sensor yields three variables for 
temperature, electric conductivity, and soil moisture which we describe 
below. 
o TmpXSY temperature measured in °C 
o ECONDXSY electric conductivity measured in dS/m 
o VWCXSY soil moisture measured in % 
o X indicates the depth 
o Y indicates the location 
o e.g., Tmp35SM8, ECOND35SM8, VWC35SM8, indicate the three 

variables for the CS655 sensor at 35cm depth and location M8 in 
Figure C.4 

• DTLayerX_RawTmp(Y) temperature measured in °C 
o X indicates the depth 
o Y indicates the location 
o e.g., DTLayer15_RawTmp(18) indicates 15cm depth and location 

18 in Figure C.2 
• Plate1_0cm_Tmp, Plate2_5cm_Tmp heat plates measured in °C 
• FLX1, FLX2 heat flux measured in W/m2 
• ShortWave_In_Avg incoming short-wave radiation measured in 

W/m2 
• ShortWave_Reflect_Avg reflected short-wave radiation measured in 

W/m2 
• Weather data observed at the testing site at the ERDC-CRREL facility: 

o AirTemp_Avg measured in °C 
o Pressure_Avg measured in mbar 
o Rain_mm_Tot 24-hour rain accumulation total measured in mm 
o Rh_Avg relative humidity measured in % 
o WndSpeed_Avg measured in m/s 
o WndDir_Avg measured in ° 

• Weather data observed at the nearby Lebanon airport: 
o cloud_cover measured in % 
o pressure measured in mbar 
o rain_1h 1 hour rain totals measured in mm 

• 

• 
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o rain_3h 3 hour rain totals measured in mm 
o snow_1h 1 hour snow totals measured in mm 
o snow_3h 3 hour snow totals measured in mm 
o temp_min for the day measured in °C 
o temp_max for the day measured in °C 

• Sun position and time of day variables added using (Kennedy 2020): 
o absolute_time measured in ms 
o ms_after_previous_dawn measured in ms 
o ms_after_previous_dusk measured in ms 
o solar_azimuth, solar_elevation, solar_zenith 
o time_of_day measured in military time 

• Variables for temperature, electric conductivity, and soil moisture 
which we describe below. 
o TmpXSY temperature measured in °C 
o ECONDXSY electric conductivity measured in dS/m 
o VWCXSY soil moisture measured in % 
o X indicates the depth 
o Y indicates the location 
o e.g., Tmp35SM8, ECOND35SM8, VWC35SM8, indicate the three 

variables for the CS655 sensor at 35 cm depth and location M8 in 
Figure C.4 

• DTLayerX_RawTmp(Y) temperature measured in °C 
o X indicates the depth 
o Y indicates the location 
o e.g., DTLayer15_RawTmp(18) indicates 15 cm depth and location 

18 in Figure C.2 
• Plate1_0cm_Tmp, Plate2_5cm_Tmp heat plates measured in °C 
• FLX1, FLX2 heat flux measured in W/m2 
• ShortWave_In_Avg incoming short-wave radiation measured in 

W/m2 
• ShortWave_Reflect_Avg reflected short-wave radiation measured in 

W/m2 
• Weather data observed at the testing site at the ERDC-CRREL facility: 

o AirTemp_Avg measured in °C 
o Pressure_Avg measured in mbar 
o Rain_mm_Tot 24-hour rain accumulation total measured in mm 
o Rh_Avg relative humidity measured in % 
o WndSpeed_Avg measured in m/s 
o WndDir_Avg measured in ° 

• Weather data observed at the nearby Lebanon airport: 
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o cloud_cover measured in % 
o pressure measured in mbar 
o rain_1h 1 hour rain totals measured in mm 
o rain_3h 3 hour rain totals measured in mm 
o snow_1h 1 hour snow totals measured in mm 
o snow_3h 3 hour snow totals measured in mm 
o temp_min for the day measured in °C 
o temp_max for the day measured in °C 

• Sun position and time of day variables added using (Kennedy 2020): 
o absolute_time measured in ms 
o ms_after_previous_dawn measured in ms 
o ms_after_previous_dusk measured in ms 

• solar_azimuth, solar_elevation, solar_zenith 
o time_of_day measured in military time 

Temperature and moisture sensor locations 

This section details the location of temperature and moisture sensors in the 
test plot. We refer to the frame of reference used here as the sensor grid. 
This frame of reference conveys locations of sensors in relation to each 
other and in relation to target locations. It does not convey precise pixel 
locations within the IR images. We organize the figures by depth as 
follows: 

• Figure C-1 
o 5 cm 
o Temperature sensors and buried targets 

• Figure C-2 
o 15 cm 
o Temperature and moisture sensors 

• Figure C-3 
o 25 cm 
o Temperature sensors 

• Figure C-4 
o 35 cm 
o Temperature and moisture sensors 

• Figure C-5 
o 45 cm 
o Temperature sensors 

• Figure C-6 
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o 55 cm 
o Temperature and moisture sensors 

• Figure C-7 
o 65 cm 
o Temperature sensors 

Figure C-1. Locations of temperature sensors at 5cm 
with target locations in the sensor grid. 
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Figure C-2. Locations of temperature and moisture sensors at 15cm. 
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Figure C-3. Locations of temperature sensors at 25cm. 
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Figure C-4. Locations of temperature and moisture sensors at 35cm. 
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Figure C-5. Locations of temperature sensors at 45cm. 
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Figure C-6. Locations of temperature and moisture sensors at 55cm. 
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Figure C-7. Locations of temperature sensors at 65cm. 
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