
1
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Managing Technical Debt
throughout the Software
Development Lifecycle

Ipek Ozkaya

GBSD Training

2
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM22-0178

3
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

ALL SYSTEMS HAVE TECHNICAL DEBT!

4
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What is technical debt?

• Its definition and relationship to defects and vulnerabilities

• Misconceptions of what technical debt is

Context matters!

Recognizing technical debt

• Understanding causes of technical debt

• Detecting technical debt

Making technical debt visible

Technical debt within the acquisition lifecycle

Goals of the Training

5
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical Debt: A Definition

In software-intensive systems, technical debt

consists of design or implementation constructs

that are expedient in the short term but set up a

technical context that can make future changes

more costly or prohibitively costly.

Technical debt presents an actual or contingent

liability that impacts internal system qualities.

Kruchten, P.; Nord, R.L.; & Ozkaya, I . Managing Technical Debt: Reducing Friction in
Software Development. Pearson Addison-Wesley. 2019. ISBN-10: 013564593X.

6
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Common Consequences of Technical Debt

• Integration of products built by different teams reveals that

incompatibilities cause many failure conditions and lead to

significant out-of-cycle rework.

• Progress toward milestones is unsatisfactory because

unexpected rework causes cost overruns and project-

completion delays.

• Recurring user complaints about features that appear to

be fixed and other systematic issues make the system less
usable.

• Outdated technology and platforms require lengthy
convoluted solutions and added complexity in maintaining

or extending the systems.

7
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Unmanaged technical debt costs organizations time and money!

• Government’s old technology deficit that needs to be replaced is estimated to be up to

$7.5 billion in 2016 (https://federalnewsradio.com/reporters-notebook-jason-

miller/2016/09/39000-shows-modernization-effort-matters-much/)

• U.S. Department of Veterans Affairs spending 75% of its technology budget to maintain

outdated legacy systems (https://techcrunch.com/2017/06/19/how-the-presidents-

american-tech-council-should-tackle-reforming-government-tech/)

• Major government programs often in the news for lack of their technical debt

management (https://www.military.com/daily-news/2016/02/17/f35-deficiencies-

decreasing-hundreds-remain-program-manager.html)

• High-profile industry failures are often associated with technical debt (for example,

United Airlines network connectivity failure and New York Stock Exchange glitches of

July 8, 2015: https://venturebeat.com/2015/07/09/3-takeaways-from-3-big-tech-

outages-nyse-united-and-wsj/)

Technical Debt is Common

https://federalnewsradio.com/reporters-notebook-jason-miller/2016/09/39000-shows-modernization-effort-matters-much/
https://techcrunch.com/2017/06/19/how-the-presidents-american-tech-council-should-tackle-reforming-government-tech/
https://www.military.com/daily-news/2016/02/17/f35-deficiencies-decreasing-hundreds-remain-program-manager.html
https://venturebeat.com/2015/07/09/3-takeaways-from-3-big-tech-outages-nyse-united-and-wsj/

8
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

A Typical Technical Debt Example

A decade ago, processors were not as powerful. To optimize for performance,

we would not insert code for exception handling when we knew we would not

divide by zero or hit an out of bounds memory condition. These areas now

are hard to track and have become security nightmares.

Technical debt is a software design decision made to solve a problem but
may not stand the test of time and will cause rework. Technical debt, therefore

• Exists in an executable system artifact, such as code, build scripts, data model,

automated test suites

• Often is traced to several locations in the system, implying issues are not isolated

but propagate throughout the system artifacts

• Has a quantifiable and increasing effect on system attributes (e.g., increasing

defects, negative change in maintainability and code quality indicators)

9
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Ernst N.; Bellomo, S.; Ozkaya, I.; Nord, R.; & Gorton, I . Measure it?
Manage it? Ignore it? Software Practitioners and Technical Debt. In

Int. Symp on Foundations of Software Engineering. 2015.

Software Architecture and Design Tradeoffs Matter

Results from over 1800 developers from
two large industry and one government

software development organizations
reinforce that unattended architecture

decisions and practices are at the root of
technical debt.

10
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

New features
and added

functionality

Architectural,
structural

features

Defects
Technical

Debt

Visible Invisible

Positive

Value

Negative

Value

Essential Elements of Software Development

Kruchten, P.; Nord, R.L.; & Ozkaya, I . Managing Technical Debt: Reducing Friction in
Software Development. Pearson Addison-Wesley. 2019. ISBN-10: 013564593X.

11
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

The Need to Identity Technical Debt

Defects

Technical

Debt

Vulnerabilities

Defect proneness implies increased

vulnerability risks.

Technical debt increases vulnerability

risks.

Technical debt, as it lingers in the system,

increases defect proneness.

Some issues just overlap, making them

hard to tease apart!

Defect – error in coding or logic that

causes a program to malfunction or to
produce incorrect and/or unexpected

results

Vulnerability – system

weakness in the intersection of
three elements:

• system flaw
• attacker access to the flaw

• attacker capability to exploit

the flaw

Technical debt – design

or implementation construct
traced to several locations

in the system, that make
future changes more costly

12
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Common Misconceptions

Technical debt is not simply bad quality.

Lack of process is not technical debt; rather, it results in technical debt.

New features not yet implemented are not technical debt.

Everything not yet done is not technical debt.

13
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Context Matters

14
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Unmanaged Technical Debt Puts Programs at Risk

Example critical quality attributes for mission critical systems:

Safety – Architectural Design must address

Hazards: Prevention, Detection, Isolation & Recovery

(PDI&R), plus Operational Transparency w/Diagnostic

Visibility (OTwDV).

Security – Architectural Design must address Cybersecurity

Threats & Hazards (PDI&R, OTwDV).

Reliability – Architectural Design must minimize disruption

during upgrades (Sprints, Defect Resolution, Tech Insert

&Tech Refresh); it must also provide Fault Tolerance

including Fault DI&R and OTwDV.

Certifiability – Architectural Design must

address Certification Requirements (Certification

Requirements Analysis, Requirements Decomposition and

Traceability, System Testability under Certification

Test Conditions, …) including General Testability.

All these attributes are mission critical, will be impacted
by technology evolution, and have critical cost and

assurance impact if the system needs to be reworked
unintentionally due to technical debt.

15
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

All Software Matters!

Mission-critical tactical systems are composed of many intertwined hardware and

software components! All of the software involved in these components create

opportunities for technical debt to accumulate and propagate to the rest of the system!

Software
Testbed
Control/

Simulator

Mission Operations
Support Tools

Mission Planning &
Scheduling

Development Infrastructure

Data
Management

& Analysis
ToolsHardware

Testbed
Control/

Simulator

Flight
Software

Ground Operations
Software

16
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What is technical debt?

• Its definition and relationship to defects and vulnerabilities

• Understanding misconceptions of what technical debt is

Context matters!

Recognizing technical debt

• Understanding causes of technical debt

• Detecting technical debt

Making technical debt visible

Technical debt within the acquisition lifecycle

Goals of the Training

17
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Separate What Causes Technical Debt from the Actual Debt

Common causes of technical debt

Techniques and approaches to eliminate the causes will be different
from those to identify and remove technical debt. Understanding and

eliminating causes help avoiding future technical debt.

18
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Purpose: A systematic approach to navigate through the state

of a software development project focusing on key areas

including vision, architecture, development practices, and

organization.

- This is a recommended first step to ensure causes and actual debt
are understood and separated to ensure appropriate management

and avoidance strategies are implemented in a timely manner.

Approach: Set of interviews and day-long multiple stakeholder

focused meetings, supported by artifact review as needed.

Ideally conducted before major milestones and as a program is

going through major transitions.

Outcomes: A scorecard and supporting data which includes a

list of potential and actual causes of technical debt, impact

rating for each and a mapping to the timeline and approaches

for identifying technical debt.

Technical Debt Exposure Workshop and Analysis

business goals +

success strategies +

resources =

customer communication =

consequences of business decisions =

 feedback cycles =

... ...

architecturally significant requirements –

architecture fitness –

architecture issues =

short-term and long-term architecture goals –

impact of technology change =
 build, integration, test, and deployment alignment –

… ...

development infrastructure =

quality assurance =

development tools –

 done criteria –

code maintenance and evolution –

 software development processes and practices =

…

 collaboration =

change management +

 cost of delay and rework =

uncertainty –

development team resources =

new employee onboarding +

team communication +

… ...

B
us

in
es

s
V

is
io

n
A

rc
hi

te
ct

ur
e

D
ev

el
op

m
en

t
O

rg
an

iz
at

io
n

LEGEND + Issues are managed to minimize technical debt exposure

= Can improve, can contribute to technical debt

– Significant issues contributing to technical debt

Sample scorecard

19
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical debt can be recognized directly or indirectly by

• Recording decisions to intentionally incur debt

• Conducting design and architecture reviews

• Analyzing development and management artifacts for symptoms

• Talking to development teams

Recognizing Technical Debt

20
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

The Technical Debt Landscape

The technical debt landscape. On the left, evolution or its challenges; on the right, quality issues, both internal and external.

VisibleVisible

New Features
Additional Functionality

Evolution Issues: Evolvability

Defects
Low External Quality

Quality Issues: Maintainability

Mostly Invisible

Code

Low Internal Quality
Code Complexity

Code Smells

Coding Style Violations

Architecture

Architecture Smells
Pattern Violations

Structural Complexity

Other Development Artifacts

Testing and Documentation Issues

Kruchten, P.; Nord, R.L.; & Ozkaya, I. 2012. Technical Debt: From Metaphor to Theory and Practice. IEEE Software. Volume 29. Number 6. Nov/Dec 2012.

21
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

An Example Technical Debt Causal Chain

22
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Detecting Technical Debt

1. Detect technical debt from code, where code-level conformance and structural

analysis indicate maintainability and concerns related to the structure of the

system and the codebase

2. Detect technical debt from symptoms that signal architecture issues.

3. Detect technical debt from architecture during design reviews and analysis of

decisions

4. Detect technical debt from development and deployment infrastructure, which

are not typically part of the delivered system but may impact its delivery,

security, and quality

Examples of Technical Debt’s Cybersecurity Impact, Robert Nord,

Ipek Ozkaya, Carol Woody, SEI Technical Note for GBSD. July 2021.

23
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What is technical debt?

• Its definition and relationship to defects and vulnerabilities

• Misconceptions of what technical debt is

Context matters!

Recognizing technical debt

• Understanding causes of technical debt

• Detecting technical debt

Making technical debt visible

Technical debt within the acquisition lifecycle

Goals of the Training

24
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Making technical debt visible implies communicating and tracking technical debt in

a manner that

• Is timely

• Concretely identifies what and where

• Includes experienced and potential consequences

• Involves all relevant stakeholders

Making Technical Debt Visible

25
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Technical Debt Items and Their Context

Kruchten, P.; Nord, R.L.; & Ozkaya, I . Managing Technical Debt: Reducing Friction in
Software Development. Pearson Addison-Wesley. 2019. ISBN-10: 013564593X.

26
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Name Connect #Gateway-1631:

Remove empty Java packages

Summary The re-architecture of the source code to support

multiple adaptor specifications has introduced a
new Java packaging scheme. Numerous empty
Java package folders across multiple projects.

Consequences No impact to functionality; however, re-

architecture may lead to confusion for users
implementing enhancements or modifications to
the source code.

Remediation

approach

New and existing classes have been moved into

these new package folders; however, the
previous package folders have been left in place
with no class files.

Reporter /

assignee

Gateway developers

.

Technical Debt Examples – Detect from Code

Next sprint
stories

New story

Break-down epic

Delete obsolete items

Epic (tbd in the future)

T
o

p
 p

ri
o

ri
ty

 i
te

m
s

=
 f
in

e
r
g

ra
n

u
la

ri
ty

TD item

27
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Name Unexpected crashes due to API incompatibility

Summary The source code uses a very large negative letter-spacing
in an attempt to move the text offscreen. The system

handles up to -186 em fine, but crashes on anything
larger. A similar issue was fixed with a patch, but there

were several other similar reports. My sense is that if we

patch it here, it will pop up somewhere else later.

Consequences We already had 28 reports from seven clients. And it
definitely leaves the software vulnerable. Finding the root

cause can be time consuming given that existing patches
did not resolve the issue.

Remediation

approach

The external web client and our software likely has an API
incompatibility, but further analysis is needed. The course

of action is to verify where the root of this problem is and
see if we can fix it on our side. If the external web client

team needs to fix it, we would need to negotiate.

Reporter /

assignee

DevSecOps Team / External Web Client Team

.

Technical Debt Examples – Detect from Symptoms

28
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Name Publish/subscribe design likely to not meet real-time

timing requirements as message load increases

Summary We are not able to guarantee delivery of messages in
priority order with the current pub/sub design. We already

need to deal with increasing number of messages, which
is slowing down performance. We may likely have missed

messages as well.

Consequences We will not be able to meet the real-time requirements,
hence not pass the tests in the lab, which will delay

production.

Remediation

approach

Given the size of the code base, switching to a different
messaging approach is too risky. However, we can

supplement our existing pub/sub architecture with a
message prioritization approach with some local

architectural changes

Reporter /

assignee

Reported during system integration test /assigned to the
architecture team

.

Technical Debt Examples – Detect from Architecture

29
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Example Quality Attribute Roots of Technical Debt

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, Mary Popeck: Got technical debt?: surfacing elusive technical debt in issue trackers. MSR 2016: 327-338

Deployability, buildability

Maintainability, modifiability

Testability

Data model

30
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Recommendations for Managing TechDebt Items

Create a dedicated technical debt item label in your issue tracker.

Ensure that you are only identifying technical debt symptoms through static

analysis within the CI/CD tool chain, but also uncovering the technical debt related
to the symptoms.

Add technical debt identification at multiple points in the software development

lifecycle, including architecture reviews, cybersecurity analysis, and code quality
analysis.

Monitor technical debt based on cost of rework, new technical debt items

identified, and high-priority technical debt items that need to be resolved.

Triage identified technical debt items regularly based on their priority and decision

to when and if to resolve.

31
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

What is technical debt?

• Its definition and relationship to defects and vulnerabilities

• Misconceptions of what technical debt is

Context matters!

Recognizing technical debt

• Understanding causes of technical debt

• Detecting technical debt

Making technical debt visible

Technical debt within the acquisition lifecycle

Goals of the Training

32
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

All long-lived, large-scale system have

technical debt!

• Allocate time for managing technical debt at

every iteration.

• Invest in a sound development and testing

infrastructure that includes automated quality

measurement.

• Differentiate strategic technical debt from

technical debt that emerges from low code

quality or poor engineering practices.

Living with Technical Debt

New features
and added

functionality

Architectural,
structural

features

Defects
Technical

debt

Visible Invisible

Positive

Value

Negative

Value

33
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Incorporate Tracking into Existing Practices

Incentivize developers and acquisition organizations to disclose technical debt

when they recognize it through simple practices.

Start with a simple issue type labelled technical debt. This practice quickly helps

recognize specific aspects of your technical debt.

Scout for project management and technical review practices that can easily be

revised to include discussing and recording technical debt, augmenting technical
debt issues with its effects and consequences if not resolved.

34
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Manage the Technical Debt Timeline

35
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Include language on how technical debt will be managed in contracts, including

• Percentage of resources to be withheld until high-priority technical debt is resolved

• Data to be shared throughout the development lifecycle

• Ongoing analysis to be conducted and its results shared

• Incentives to share technical debt the contractor takes on

Include technical debt discussions as part of assessments, and request use of

both appropriate software quality tools and architecture reviews.

Request evidence from contractors and continuously assess where you are on the
technical debt timeline.

• Helpful data includes commit histories, defect logs, testing results, architecture

conformance measures, and software quality analyses.

Technical Debt Management and the Acquisition Lifecycle

36
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Acquisition Pathways – Software

Programs will maximize use of

automated software testing and

security accreditation,

continuous integration and

continuous delivery of software

capabilities, and frequent user

feedback and engagement.

Programs will consider the

program’s lifecycle objectives

and actively manage technical

debt. ….

(https://aaf.dau.edu/aaf/software/)

37
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

The Cost of Accepting Technical Debt

For each instance of technical debt

• Understand range of consequences

• Measure what you can

• Qualitatively assess what you can’t

• Reconcile data with assessments

Make informed tradeoff decisions about

remediation.

Expected CoC

Actual CoC

Time

C
os

t o
f

C
ha

ng
e

(C
oC

)

Accumulating
technical debt

38
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Next Steps

Build a case to manage debt:

• Identify instances of technical debt over the

history of the project.

• Correlate identified instances with expected

symptoms of accruing interest.

Use data to identify instances:

• Insights into the planned design (from

team members)

• Narrative information about the project

history (specifically, any major refactorings

that have occurred)

• Code repository; architecture documentation;

defect and vulnerability instances

Use data to detect symptoms:

• History of change and defect reports on a project;

ideally traceable to versions of the code under
configuration management, and to the code

modules involved

• Classification of defects and/or changes by type

• Effort by change and/or defect fix

39
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Resources

International Conference on Technical Debt

• Each year the conference brings industry, researchers, and tool vendors together to

discuss approaches to improve managing technical debt

(e.g., https://conf.researchr.org/home/TechDebt-2022).

• Kruchten, P.; Nord, R.L.; & Ozkaya, I. Managing Technical Debt: Reducing

Friction in Software Development. Pearson Addison-Wesley. 2019. ISBN-10:

013564593X.

https://conf.researchr.org/home/TechDebt-2022

40
Managing Technical Debt throughout the Software Dev elopment Lifecycle
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public release and unlimited distribution.

Contact Information

Dr. Ipek Ozkaya

Technical Director

Engineering Intelligent Software Systems

Software Engineering Institute

Carnegie Mellon University

ozkaya@sei.cmu.edu

mailto:ozkaya@sei.cmu.edu

