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1. Introduction and Background 

Modeling complex time-varying problems in fluid dynamics often involves the 
solution of the Navier–Stokes equations along with applications of a wide range of 
techniques for artificial boundary conditions. The introduction of artificial 
boundaries (often referred to as truncated, nonreflective, radiative, etc.) is of prime 
importance as it is unfeasible to solve a problem computationally in an unbounded 
domain. Although academic problems are often solved by using periodicity or 
linear approximations, these lack the physical realism of time-varying practical 
flows. The main problem arises from the application of low-order extrapolations 
that often lead to artificial instabilities and degrade the quality of the solution. To 
date, ad-hoc fixes require the use of large computational domains, grid-stretching, 
and artificial viscosity methods that significantly increase its computational cost 
with marginal benefits. 

Remarkable progress has been made in the treatment of artificial boundary 
conditions that have enabled robust algorithms, procedures, and solutions of 
complex problems. Poinsot and Lele1 first introduced the Navier–Stokes 
Characteristic Boundary Conditions (NSCBC) approach and demonstrated its 
performance on transient computations, including an acoustic propagating wave 
and convection of a vortex through a nonreflecting boundary while mitigating the 
generation of high-frequency waves. They demonstrated the robustness and 
accuracy of NSCBC at both practical applications at sub to supersonic regimes. 
Spalart2 presents the fringe method for spatially developing boundary layers where 
an absorbing layer, along with rescaled periodic boundary conditions, is used before 
it is recycled back into the flow. This method was successful in obtaining boundary 
layer turbulence statistics while obviating the need for an outflow boundary. 
Orlanski3 presented a hyperbolic convective boundary condition that he called the 
Sommerfield radiation condition. Although its form resembled the Navier–Stokes 
equations, it lacked terms associated with buoyancy and viscosity. Later on, 
Fournier et al.4 modified the boundary condition to include viscous terms with 
demonstrably better performance. Colonius5 presented a comprehensive review of 
artificial boundary conditions for simulations of inflow, outflow, and far-field 
(radiation) problems. He reviewed linearized models for inflow and radiation 
problems as well as ad-hoc and limiting solutions for nonlinear outflow boundaries 
that remain a challenge. Overall, artificial boundaries in computational fluid 
dynamics remains an active research field with a potentially profound impact on 
the performance of algorithms and interpretation of results. 

To address the problem of spurious propagation of instabilities near outflows, this 
report describes an implementation of the Ghost Cell NSCBC (GC-NSBCB) 
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method6 on the US Army Combat Capabilities Development Command 
(DEVCOM) Army Research Laboratory’s massively parallel compressible code 
Athena-RFX. The formulation is described in detail along with demonstration test 
cases for a spherical pressure wave and vortex-driven flows. The method is also 
demonstrated in a spatially developing turbulent jet that is a canonical model of the 
DEVCOM Army Research Laboratory Hot Particulate Ingestion Rig (HPIR).6 The 
solutions presented demonstrate the NSCBC ability to mitigate artificial wave 
instabilities without altering the transport properties. This enables the application 
of Athena-RFX to a new class of problems involving interactions of turbulent 
structures near boundaries or time-varying inflow dynamics.  

2. Theoretical Description of Navier–Stokes Fluid Dynamics 
Solver in Athena-RFX 

Athena-RFX is a uniform grid, finite-volume compressible code that has been 
extensively used over the years to study the dynamics of chemical reacting flows, 
compressible turbulence, and more recently multiphase turbulent transport.7–9 It has 
served as the main numerical tool of three DOD Frontier Projects sponsored by the 
High Performance Computing Modernization Program (HPCMP) Office. One key 
performance feature of Athena-RFX is its excellent scalability on all existing DoD 
HPC platforms (calculations up to 65,000 cores, with the typical scalability of 
>90%). 

The remainder of this section describes the compressible form of the Navier–Stokes 
equations coupled with hydrodynamic drag and interphase heat transfer.  

𝜕𝜕ρ
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (ρu) = 0 (1) 

𝜕𝜕ρu
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (ρu ⊗ u) = −∇p + ∇ ⋅ τ (2) 

𝜕𝜕ρE
𝜕𝜕𝜕𝜕

+ ∇ ⋅ �(ρE + p)u� = ∇ ⋅ (κ∇T) + ∇ ⋅ (u ⋅ τ) (3) 

The fluid is treated as an ideal gas with 𝑝𝑝 = ρ𝑅𝑅𝑅𝑅. Shear stress tensor τ and the 
shear-rate tensor S are related by τ = 2μS with S defined as 

S =
1
2

(∇u + ∇u𝑇𝑇) −
1
3
∇ ⋅ u (4) 

The dynamic viscosity μ is computed using the Sutherland’s law given by  

μ(T) =
1.458 × 10−6 T1.5

T + 110.4
 (5) 
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and the coefficient of thermal conduction κ is given by  

κ(T) = Cpκ0Tn (6) 

where κ0 = 6.25 × 10−7𝑘𝑘𝑘𝑘 ⋅ (𝑠𝑠 ⋅ 𝑚𝑚 ⋅ 𝐾𝐾𝑛𝑛)−1and n = 0.7. 

The system of equations is solved using the massively parallel code Athena-
RFX.8,10,11 The integration is carried out using an unsplit corner transport upwind 
algorithm12 based on the work of Colella.13 An approximate HLLC Riemann solver 
is used along with a piecewise-parabolic method for flux reconstruction resulting 
in a spatial accuracy of third order.  

3. Theoretical Description of NSCBC in Athena-RFX 

As a reference for the following descriptions of the GC-NSCBC theory and 
benchmark problems, the nomenclature for an Athena-RFX problem is hereby 
presented. Figure 1 shows the Athena-RFX domain used for typical problems in 
time-varying flows, including inflow and outflow boundaries. Athena-RFX uses x1, 
x2, and x3 as its three spatial dimensions. The boundary for a given dimension 
closest to the origin is referred to as the inner boundary (abbreviated ix𝑛𝑛, where 
𝑛𝑛 ∈ [1,2,3]), and the boundary farthest from the origin as the outer boundary 
(abbreviated ox𝑛𝑛, where 𝑛𝑛 ∈ [1,2,3]). Throughout the report, subscripts refer to the 
spatial dimension (e.g., a subscript of 1 refers to quantities related to the  
x1-direction) and superscripts refer to specific elements of a vector (e.g., a 
superscript of 1 is the first element in a vector). For example, ℒ35 refers to the fifth 
element of the vector ℒ3, which is the characteristic wave amplitude vector ℒ for 
the x3-direction. 

 
Fig. 1 Computational domain with the injector (black circle) and outflow (white square)
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3.1 GC-NSCBC Outflow 

The GC-NSCBC approach was first presented by Motheau et al.14 as a way to 
incorporate the classical NSCBC method1 into a high-order computational fluid 
dynamic solver that uses boundary ghost cells for either adaptive mesh methods or 
parallelism. However, one limitation in Motheau’s work was that he considered a 
formulation for 2-D domains. As most problems of interest in Athena-RFX are 
inherently 3-D, a different formulation was adopted based on the work by Lodato 
et al.15 that included the transverse terms. This was then implemented into the ghost 
cell approach used in Athena-RFX.  

The goal of the GC-NSCBC approach, regardless of boundary type, is to model the 
time variations in the characteristic waves of the fluid at the domain boundary. 
Values for flow variables, seen as the primitive variable vector in Eq. 7, can then 
be imposed on the ghost cells that will prevent nonphysical flow feature reflections 
back into the domain. Equation 8 presents the characteristic wave speeds 
(eigenvalues of the flux Jacobian matrix) of a 3-D compressible gas. 

𝑸𝑸 = {𝜌𝜌 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑝𝑝}𝑇𝑇 (7) 

𝜆𝜆𝑛𝑛 = {𝑢𝑢𝑛𝑛 − 𝑐𝑐 𝑢𝑢𝑛𝑛 𝑢𝑢𝑛𝑛 𝑢𝑢𝑛𝑛 𝑢𝑢𝑛𝑛 + 𝑐𝑐}𝑇𝑇 (8) 

where 𝑛𝑛 ∈ [1,2,3]. 

Using the two vectors from Eqs. 1 and 2, the vector ℒ can be built to model the time 
variations in the characteristic wave amplitudes. Equation 9 provides the 
formulation of ℒ for an outflow at the ix3 boundary. This boundary is of special 
importance to the problem of interest, as it is the boundary into which the particle 
deposition models referenced in the overview are implemented. All following GC-
NSCBC outflow formulations in this section are provided for this boundary, and 
the application to all other boundaries follows as a straightforward modification of 
what is presented.  

ℒ3 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝜆𝜆13 �

𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥3

−
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

�

𝜆𝜆23
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥3

𝜆𝜆33
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥3

𝜆𝜆43 �
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥3

−
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥3

�

ℒ35 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (9) 
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With Eq. 9 in hand, the goal is now to find the changes in the primitive flow 
variables in the x3-direction, 𝜕𝜕𝑸𝑸

𝜕𝜕𝑥𝑥3
, using the values of those variables at the ix3 

boundary. For outflow boundaries, this can be simply accomplished by evaluating 
the terms as presented in Eq. 9. The exception is the fifth term, ℒ35, which is the 
incoming wave amplitude that must be modeled.  

The term can be found as 

ℒ35 = 𝐾𝐾Δ𝑝𝑝 − (1 − 𝛽𝛽𝑡𝑡)(𝔗𝔗15 − 𝔗𝔗2
5) (10) 

where 

𝐾𝐾 =
𝜎𝜎𝑐𝑐(1 −𝑀𝑀2)

ℓ3
 (11) 

Δ𝑝𝑝 = 𝑝𝑝 − 𝑝𝑝∞ (12) 

The transverse relaxation term 𝛽𝛽𝑡𝑡 in Eq. 10 is of special importance. Selection of 
the value for this term has a significant effect on the performance of the GC-
NSCBC. It is typically set to the reference Mach number of a flow (𝑀𝑀),15 though 
this can vary for certain problems. Ultimately, there is no effective rule to govern 
the selection of 𝛽𝛽𝑡𝑡 and it must be selected heuristically for a given problem.15 The 
pressure relaxation term, 𝜎𝜎, is commonly set to 0.2514 and ℓ3 is the total domain 
length in the x3-direction. 

The characteristic transverse terms in Eq. 10, 𝔗𝔗15 and 𝔗𝔗2
5, model the effect of the 

transverse velocities at the boundary on the incoming characteristic wave. They are 
built as 

𝔗𝔗𝑛𝑛
5 = 𝒯𝒯𝑛𝑛5 + 𝜌𝜌𝑐𝑐𝒯𝒯𝑛𝑛𝑛𝑛+1 (13) 

where 𝑛𝑛 ∈ [1,2] and 𝒯𝒯𝑛𝑛 are the transverse effects terms 

𝒯𝒯𝑛𝑛 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ −

𝜕𝜕𝜌𝜌𝑢𝑢𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛

−𝑢𝑢𝑛𝑛
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥𝑛𝑛

−
1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥1

−𝑢𝑢𝑛𝑛
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥𝑛𝑛

−
1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥2

−𝑢𝑢𝑛𝑛
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥𝑛𝑛

−𝑢𝑢𝑛𝑛
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥𝑛𝑛

− 𝛾𝛾𝑝𝑝
𝜕𝜕𝑢𝑢𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (14) 

At this point, to find the characteristic wave amplitudes at the corners and edges of 
the domain, the standard NSCBC approach from Lodato et al.15 would require the 
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coupling of characteristic wave amplitudes in two dimensions for edges and three 
dimensions for corners. The coupling of characteristic waves from multiple 
directions is a complex process that was determined by Motheau et al.14 in their 
original implementation of the GC-NSCBC to be at times extraneous for the ghost 
cell approach in the Pele Project.16 In Athena-RFX, Eqs. 10–14 are sufficient for 
finding ℒ35 for all boundary cells in the domain. Despite neglecting the coupling 
procedure, practice has shown that the corner ghost cells must be filled first.14  

After finding ℒ35,  𝜕𝜕𝑸𝑸
𝜕𝜕𝑥𝑥3

 can then be found by as 

𝜕𝜕𝑸𝑸
𝜕𝜕𝑥𝑥3

 = 𝑺𝑺3𝜆𝜆3
−1ℒ3 (15) 

where 𝑺𝑺3 is the eigenvector matrix 

𝑺𝑺3  =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
2𝑐𝑐2

0 0
1
𝑐𝑐2

1
2𝑐𝑐2

0 1 0 0 0
0 0 1 0 0
−1

2𝜌𝜌𝑐𝑐2
0 0 0

1
2𝜌𝜌𝑐𝑐

1
2

0 0 0
1
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (16) 

Finally, 𝜕𝜕𝑸𝑸
𝜕𝜕𝑥𝑥3

 is used in Eq. 17 to fill the ghost cells at the boundary. 

𝑸𝑸𝑘𝑘−1 = 𝑸𝑸𝑘𝑘+1 − 2Δ𝑥𝑥3
𝜕𝜕𝑸𝑸
𝜕𝜕𝑥𝑥3

 

(17) 
𝑸𝑸𝑘𝑘−2 = −2𝑸𝑸𝑘𝑘+1 − 3𝑸𝑸𝑘𝑘 + 6𝑸𝑸𝑘𝑘−1 + 6Δ𝑥𝑥3

𝜕𝜕𝑸𝑸
𝜕𝜕𝑥𝑥3

 

𝑸𝑸𝑘𝑘−3 = 3𝑸𝑸𝑘𝑘+1 + 10𝑸𝑸𝑘𝑘 − 18𝑸𝑸𝑘𝑘−1 + 6𝑸𝑸𝑘𝑘−2 − 12Δ𝑥𝑥3
𝜕𝜕𝑸𝑸
𝜕𝜕𝑥𝑥3

 

𝑸𝑸𝑘𝑘−4 = −2𝑸𝑸𝑘𝑘+1 − 13𝑸𝑸𝑘𝑘 + 24𝑸𝑸𝑘𝑘−1 − 12𝑸𝑸𝑘𝑘−2 + 4𝑸𝑸𝑘𝑘−3 + 12Δ𝑥𝑥3
𝜕𝜕𝑸𝑸
𝜕𝜕𝑥𝑥3

 

where 𝑘𝑘 = 4 is the index of the first cell inside the interior of the domain in the  
x3-direction. The indices for the x1 and x2-directions, 𝑖𝑖 and 𝑗𝑗, respectively, are 
omitted for clarity. Athena-RFX uses conservative variables in its solver, so the 
final step of applying the GC-NSCBC is to convert 𝑸𝑸 into the corresponding 
conservative variable vector  

𝑸𝑸� = {𝜌𝜌 𝜌𝜌𝑢𝑢1 𝜌𝜌𝑢𝑢2 𝜌𝜌𝑢𝑢3 𝐸𝐸}𝑇𝑇 (18) 
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3.2 GC-NSCBC Inflows 

For the injector in the ox3 boundary, the GC-NSCBC inflow boundary condition 
was implemented. The procedure for applying GC-NSCBC inflows is exactly the 
same as for outflows. The major difference is four incoming waves must now be 
imposed and only one outgoing wave can be directly evaluated. For the ox3 GC-
NSCBC inflow, Eq. 9 becomes 

ℒ3 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜆𝜆13ℒ31

𝜆𝜆23ℒ32

𝜆𝜆33ℒ33

𝜆𝜆43ℒ34

𝜆𝜆13 �
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥3

+
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

�⎭
⎪⎪
⎬

⎪⎪
⎫

 (19) 

The incoming waves ℒ31, ℒ32, ℒ33, ℒ34 can be found with 

ℒ31 = 𝐾𝐾Δ𝑢𝑢3 − (1 − 𝛽𝛽𝑡𝑡)(𝔗𝔗15 − 𝔗𝔗2
5) (20) 

ℒ32 = 𝜂𝜂2
𝑐𝑐
ℓ3
Δ𝑢𝑢1 − (1 − 𝛽𝛽𝑡𝑡)(𝔗𝔗12 − 𝔗𝔗2

2) (21) 

ℒ33 = 𝜂𝜂3
𝑐𝑐
ℓ3
Δ𝑢𝑢2 − (1 − 𝛽𝛽𝑡𝑡)(𝔗𝔗13 − 𝔗𝔗2

3) (22) 

ℒ34 = 𝜂𝜂4
𝜌𝜌𝑅𝑅𝑐𝑐
ℓ3

Δ𝑅𝑅 − (1 − 𝛽𝛽𝑡𝑡)(𝔗𝔗14 − 𝔗𝔗2
4) (23) 

where 

𝐾𝐾 =
𝜂𝜂1𝑐𝑐(1 −𝑀𝑀2)

ℓ3
 (24) 

Δ𝜒𝜒 = 𝜒𝜒 − 𝜒𝜒𝑖𝑖𝑛𝑛𝑖𝑖 (25) 

𝜂𝜂𝑛𝑛 are the relaxation parameters for each flow property, 𝜒𝜒 ∈ [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑅𝑅], and 
𝜒𝜒𝑖𝑖𝑛𝑛𝑖𝑖 is the target value for each property for the injector.  

4. Applications to Spherical Pressure Wave and Vortex 
Convection Problems 

4.1 Three-Dimensional Spherical Pressure Wave 

This section describes the first benchmark problem adopted in this work to validate 
the GC-NSCBC method as implemented in Athena-RFX. In the literature, this 
problem is presented in both two and three dimensions as described in Poinsot and 
Lele1 and the Pele Project.16 This work examines a challenging test case that is 
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represented by the 3-D form of the GC-NSCBC to demonstrate the correct handling 
of domain corners.  

Here, a spherical pressure wave is initialized in the center of a rectilinear domain 
with an initial pressure distribution of 

𝑝𝑝(𝑟𝑟) = 𝑝𝑝∞ �1 + δexp�−
𝑟𝑟2

2𝑅𝑅𝑝𝑝2
�� (26) 

where δ is the amplitude of the pressure wave, 𝑟𝑟 = �𝑥𝑥12 + 𝑥𝑥22 + 𝑥𝑥32 is the radial 
distance from the center point of the domain to a given (x1, x2, x3) position, and 𝑅𝑅𝑝𝑝 
is the initial radius of the pressure wave. Values for these and other important 
parameters, selected from Lodato et al.15 is presented in Table 1.  

Table 1 Computational parameters for spherical pressure wave problem 

ℓ 0.013 cm 
δ 0.001 
𝑅𝑅𝑝𝑝 0.05 ℓ 
𝑝𝑝∞ 1 atm 
𝑅𝑅∞ 300 K 
𝛽𝛽𝑡𝑡 0.50 
𝜎𝜎 0.25 

Figure 2 shows a comparison of the total energy results at t = 2.2e-7 s obtained from 
the solution of the 3-D GC-NSCBC and the zero-order extrapolation method used 
for the standard outflow boundary condition.  

 

Fig. 2 Cut-plane at the mid-section of x2-direction showing total energy contours at t = 2.2e-
7 s from solutions with GC-NSCBC (left) and extrapolation BCs (right) for the spherical 
pressure wave problem 
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Figure 2 (left) clearly shows that the GC-NSCBC method captures a more stable 
solution that allows the pressure wave to retain its spherical shape as it seamlessly 
leaves the boundary. On the other hand, Fig. 2 (right) obtained with extrapolation 
at the boundaries shows pressure wave radial distortions particularly near the edges 
and corners of the domain. As the solution evolves, the extrapolation boundary 
becomes unstable and leads to unphysical behavior at the domain corners. In Fig. 3, 
the 3-D solution comparing both approaches is shown. The figure shows contours 
of total energy (at t = 3.2e-7 s) just as the expanding pressure wave is leaving the 
outflow boundary. With the GC-NSCBC, the collapsing wave behind the 
expanding wave retains its shape, and the boundary, along with the entire domain, 
remains stable. For the extrapolation boundary, the collapsing wave becomes 
distorted as spurious, nonphysical flow disturbances begin to appear in the interior. 

 

Fig. 3 Three-dimensional pseudocolor maps of the total energy at t = 3.2e-7 s from solutions 
with GC-NSCBC (left) and extrapolation BCs (right) for the spherical pressure wave problem 

Finally, Fig. 4 presents the error between the two boundary conditions. The local 
relative absolute error was calculated at the center of the ix3 face, the center of the 
ox1-ix2 edge, and the ix1-ox2-ox3 corner as 

𝜀𝜀𝑟𝑟(𝑥𝑥, 𝜕𝜕) =
|𝑝𝑝(𝑥𝑥, 𝜕𝜕) − 𝑝𝑝0(𝑥𝑥, 𝜕𝜕)|

𝑝𝑝0(𝑥𝑥, 𝜕𝜕)
 (27) 

where 𝑝𝑝0(𝑥𝑥, 𝜕𝜕) is the pressure from a benchmark solution with the same initial 
conditions performed on a domain with edge lengths twice that of the featured test 
cases. 

The advantages of the GC-NSCBC are seen most starkly at the corners of the 
domain where the error is nearly an order of magnitude smaller as compared to 
using extrapolation boundary condition. 
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Fig. 4 Local absolute relative error in gas pressure comparing solutions with GC-NSCBC 
and extrapolation BCs to a benchmark solution for the spherical pressure wave problem 

4.2 Single Vortex 

The next benchmark problem selected is the single convective vortex transport 
across the boundary. It is intended to assess the ability of the GC-NSCBC to handle 
vortical structures, similar to turbulence, leaving the domain. The domain is 
initialized with a single vortex at the center in the x1- x3 plane and extends along 
the entire the x2-direction. The initial velocity and pressure fields are defined by 
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Eq. 28. The mass density is obtained from pressure and temperature using the ideal 
gas law. The vortex is superimposed onto a uniform flow field moving in the 
negative x3-direction. The ix3 boundary is set to a GC-NSCBC outflow, while the 
ox3 boundary is set to a GC-NSCBC inflow. The other boundaries in the x1- and 
x2-directions both use a periodicity condition.  

𝑢𝑢1 = −Γ𝑣𝑣𝑥𝑥3 exp�−
𝑟𝑟2

2𝑅𝑅𝑣𝑣2
� 

(28) 𝑢𝑢3 = −𝑉𝑉0 + Γ𝑣𝑣𝑥𝑥1 exp�−
𝑟𝑟2

2𝑅𝑅𝑣𝑣2
� 

𝑝𝑝(𝑟𝑟) = 𝑝𝑝∞ exp �−
𝛾𝛾
2 �

Γ𝑣𝑣
𝑐𝑐R𝑣𝑣

�
2

exp�−
𝑟𝑟2

2𝑅𝑅𝑣𝑣2
�� 

where Γ𝑣𝑣 is the circulation strength of the vortex, R𝑣𝑣 is the characteristic radius, and 
𝑉𝑉0 is the freestream velocity of the uniform field.  

The benchmark cases target two variations (weak and strong) of the convective 
vortex problem that differ in terms of vortex circulation intensity. The vortex with 
strong circulation is enough to potentially cause reversed flow at the boundary. A 
summary of the input conditions for both cases is found in Table 2. 

Table 2 Input conditions for the single moving vortex problems 

Variable Weak Strong 

ℓ 1.3 cm 1.3 cm 

𝑅𝑅𝑣𝑣 0.10 ℓ 0.10 ℓ 
𝑝𝑝∞ 1 atm 1 atm 
𝑅𝑅∞ 300 K 300 K 
Γ𝑣𝑣 50 cm2/s 3000 cm2/s 
𝑉𝑉0 20,000 cm/s 10,000 cm/s 
𝛽𝛽𝑡𝑡 0.575 0.286 
𝜎𝜎 0.25 0.25 

4.2.1 Weak Single Vortex 

For the weak vortex, Fig. 5 compares the total energy fields from the GC-NSCBC 
and the extrapolation boundary condition. The GC-NSCBC preserves the vortex’s 
structure and allows it to leave the domain smoothly, while the standard 
extrapolation boundary conditions begin to exhibit nonphysical reflections as the 
vortex nears the boundary. 
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Fig. 5 Cut-plane at the mid-section of x2-direction showing total energy grayscale map and 
contours from solutions with GC-NSCBC (left) and extrapolation boundary conditions (right) 
for the moving vortex problem 

The local relative error in the pressure for the single vortex is found with 

𝜀𝜀𝑟𝑟(𝑥𝑥, 𝜕𝜕) =
𝑝𝑝(𝑥𝑥, 𝜕𝜕) − 𝑝𝑝0(𝑥𝑥, 𝜕𝜕)

𝑝𝑝0(𝑥𝑥, 𝜕𝜕)
 (29) 

where 𝑝𝑝0(𝑥𝑥, 𝜕𝜕) is from a benchmark solution of the same initial conditions on a 
domain with edge lengths twice that of the test case. An examination of the error 
plot in Fig. 6 shows that the error for the GC-NSCBC case is nearly an order of 
magnitude lower than that of the extrapolation boundary condition. The 
extrapolation boundary also introduces artificial instabilities that develop after the 
vortex has left the domain. The GC-NSCBC retains a physical solution and 
mitigates the production of artificial instabilities.  

 

Fig. 6 Local relative error in the gas pressure at the vortex center comparing solutions with 
GC-NSCBC and extrapolation boundary conditions to a benchmark solution for the weak 
circulation moving vortex 
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4.2.2 Strong Single Vortex 

For the strong circulation vortex, a modification to the GC-NSCBC is required. As 
reversed flow develops at the boundary, the characteristic waves that were leaving 
the domain are now reversed and re-entering. To address this complexity, it is 
proposed that the waves with a convective velocity of 𝑢𝑢3, which corresponds to ℒ2, 
ℒ3, ℒ4, are set to zero. This approach was also adopted by researchers in 
Thompson17 with acceptable results. Although it is an ad-hoc solution for the 
problem, investigations of similar problems in literature show it is effective in 
preventing instabilities generated by reversed flows.15 

Figure 7 presents the local relative error for the strong circulation vortex. The GC-
NSCBC still exhibits a significant improvement over the extrapolation boundary 
condition, particularly early in the simulation. At later times, its accuracy decreases 
with local relative errors in the same order of magnitude as when using 
extrapolation boundary conditions.  

 

 

Fig. 7 Local relative error in the gas pressure at the vortex center comparing solutions with 
GC-NSCBC and extrapolation boundary conditions to a benchmark solution for the strong 
circulation moving vortex 

5. Applications to Spatially Developing Turbulent Jet Flows  

This section presents the application of the GC-NSCBC approach to the solution of 
a spatially developing turbulent jet flow.15 This is a canonical form of the HPIR 
described in Jain et al.6 but restricted to single phase flows at thermodynamic 
equilibrium conditions.  

In this demonstration case, the size of the computational domain is 5𝐷𝐷 × 5𝐷𝐷 ×
14𝐷𝐷 along the x1-, x2- and x3-dimension with the jet diameter 𝐷𝐷 = 0.0026 𝑚𝑚. The 
domain is discretized using 80 × 80 × 200 equispaced points along each direction. 
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The jet enters the domain through a circular inlet at x3 = 14D m with an axial 
velocity given by 

𝑢𝑢𝑧𝑧(𝑟𝑟) = 𝑈𝑈𝑐𝑐𝑐𝑐�1 − (2𝑟𝑟 𝐷𝐷⁄ )�1/7.4, (30) 

where 𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 is the radial distance along the x1-x2 plane and 𝑈𝑈𝑐𝑐𝑐𝑐 is the 
centerline velocity. The ratio of the bulk velocity 𝑈𝑈𝑏𝑏 and the centerline velocity 𝑈𝑈𝑐𝑐𝑐𝑐 
is set to 0.82. The bulk velocity is defined based on the jet Reynolds number 𝑅𝑅𝑅𝑅𝐷𝐷 =
ρ𝑈𝑈𝑏𝑏𝐷𝐷/μ set to 23,000. The inlet boundary is set to a GC-NSCBC inlet while the 
rest of the boundaries are set to GC-NSCBC outflows. The thermodynamic 
properties of the inlet jet match the ambient fluid (i.e., T = 300 K and p = 101325 
Pa) and are treated as ideal gas with γ = 1.4 and R = 287 J/kg-K.  

The simulation is advanced to a final physical time of 3 ms, and the results are 
compared with the regular zeroth-order interpolation outflow boundary conditions 
in Athena-RFX. With the regular outflows, the jet core disintegrates due to the 
reversed flow from the boundary conditions. This is shown in Fig. 8a. On the other 
hand, a stable jet is obtained with the GC-NSCBC outflows as shown in Fig. 8b–d. 
Furthermore, the effect of the pressure relaxation parameter σ = {0.25, 0.28, 0.30} 
is shown in Fig. 8b–d, respectively. At σ = 0.25, a significant backflow can be 
seen, which is substantially reduced as the value of σ increases to 0.3 resulting in a 
stable solution. The pressure along the centerline with regular outflows and GC-
NSCBC outflows is shown in Fig. 9. With the regular outflow boundary condition, 
the pressure in the domain is lower than the injection pressure of 1 atm as a result 
of fluid circulating back in through the outflow boundaries. On the other hand, a 
stable flow is obtained with the GC-NSCBC outflows.  
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Fig. 8 Instantaneous velocity magnitude with (a) zeroth-order extrapolation outflow 
boundary condition, (b) GC-NSCBC outflow 𝛔𝛔 = 𝟎𝟎.𝟐𝟐𝟐𝟐, (c) GC-NSCBC outflow with 𝛔𝛔 =
𝟎𝟎.𝟐𝟐𝟐𝟐, and (d) GC-NSCBC outflow with 𝛔𝛔 = 𝟎𝟎.𝟑𝟑 at t = 3 ms 

 

 

Fig. 9 Pressure along the centerline with zeroth-order interpolation boundary condition 
(red) and GC-NSCBC outflows (black) at t = 3 ms 
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The isocontour of the Q-criterion is shown in Fig. 10 along with a pseudocolor plot 
of velocity magnitude taken at the midsection along the x2-direction. It 
demonstrates Athena-RFX is now seamlessly able to capture the 3-D formation of 
coherent vortical structures at the outflow boundary. The simulation remains stable 
in the presence of large gradients near the outflow and does not introduce any 
spurious artificial instability waves or distortions. It also highlights the stable 
spatial development of velocity and pressure fields along the midsection.  

 

Fig. 10 Isocontours of the Q-criterion and the velocity magnitude of the jet with 𝛔𝛔 = 𝟎𝟎.𝟑𝟑𝟎𝟎 
at t = 3 ms 

6. Conclusions 

This report presents the successful implementation of the GC-NSCBC method to 
the Athena-RFX massively parallel computational fluid dynamics solver. The 
implementation was validated with benchmark solutions of 1) a spherical pressure 
wave propagation and 2) a convective vortex with weak and strong circulation 
intensities that have been reported extensively in the literature. Further, the method 
was also demonstrated for a more complex case consisting of a spatially developing 
turbulent jet flow. In all cases, the performance of the GC-NSCBC was compared 
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to an existing zeroth-order extrapolation outflow boundary condition and shown to 
offer a more accurate and stable solution. 

Future work will include extensions of GC-NSCBC to handle more complex 
physics, such as the interplay arising from high-pressure thermodynamic effects. 
Particle Image Velocimetry experimental data generated at DEVCOM ARL will be 
used to validate the jet transport properties in detail as the data becomes available. 
Also of interest is demonstrating the performance of GC-NSCBC in handling fluid 
interactions with solid surfaces and the ensuing transverse flow dynamics (e.g., 
radial jet transport). Other complementary approaches such as the Immersed 
Boundary Method will also be explored and its use together with the GC-NSCBC 
will be investigated.  
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List of Symbols, Abbreviations, and Acronyms 

ARL Army Research Laboratory 

CGS centimeter–gram–second  

DEVCOM US Army Combat Capabilities Development Command 

GC-NSCBC  Ghost Cell Navier–Stokes Characteristic Boundary Conditions 

HLLC Harten-Lax-van Leer-Contact 

HPCMP  High Performance Computing Modernization Program 

HPIR  Hot Particulate Ingestion Rig 

NSCBC  Navier–Stokes Characteristic Boundary Conditions  

  



 

21 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 DEVCOM ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 5 DEVCOM ARL 
 (PDF) FCDD RLC S 
   S STARR 
  FCDD RLW VA 
   L BRAVO  
   A GHOSHAL 
   M MURUGAN 
   R MCGOWAN 
 
 1 NIST 
 (PDF)    S SU 
 
 1 UNIV MD 
 (PDF)  A FLATAU 
 
 1 UNIV CINCINNATI 
 (PDF)  P KHARE 
 
 
 


	List of Figures
	List of Tables
	1. Introduction and Background
	2. Theoretical Description of Navier–Stokes Fluid Dynamics Solver in Athena-RFX
	3. Theoretical Description of NSCBC in Athena-RFX
	3.1 GC-NSCBC Outflow
	3.2 GC-NSCBC Inflows

	4. Applications to Spherical Pressure Wave and Vortex Convection Problems
	4.1 Three-Dimensional Spherical Pressure Wave
	4.2 Single Vortex
	4.2.1 Weak Single Vortex
	4.2.2 Strong Single Vortex


	5. Applications to Spatially Developing Turbulent Jet Flows
	6. Conclusions
	7. References
	List of Symbols, Abbreviations, and Acronyms

