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1. INTRODUCTION

Oxidative stress and excessive ROS accumulation are at the genesis of many pathological conditions. 
Because ROS production occurs very early in the progression of IRI, real-time detection and measurement of 
ROS can continuously monitor the casualty’s condition and therefore facilitate casualty triage and treatment. 
However, current tools to evaluate ROS as an indicator of injury progression have poor spatial and temporal 
resolution due to the high reactivity and short half-life of ROS. Our planned approach of applying an 
electrochemical biosensor to ROS detection is innovative as it overcomes both temporal and spatial limitations 
providing continuous, real-time feedback from the tissue of interest. 

2. KEYWORDS

Ischemia-reperfusion injury, rat, animal model, reactive oxygen species, ROS, electrochemical biosensor, 
real-time, superoxide, hemorrhage, oxidative stress 

3. ACCOMPLISHMENTS

What were the major goals of the project? (Goals to be accomplished and status.)

United States Army Institute of Surgical Research/Clarkson University Updates: 

Specific Aim 1: 
- STATUS: started Y1Q1, ongoing
- Aim 1: The surface of the bioreagent will be optimized to enhance the biosensor’s robustness and to

improve its sensitivity and signal-to-noise ratio. The probe will also be miniaturized for field
applications. The modified biosensor will be validated using freshly prepared rat kidneys subjected to
hypoxia-reoxygenation.

United States Army Institute of Surgical Research Updates: 
Specific Aim 2: 

- STATUS: started Y1Q3, ongoing. (Keep aims/tasks as formatted. Remove and write over these
instructions and examples of all text in blue before submission. For each aim/task, update the status
for the reporting period.)

What was accomplished under these goals? (Detailed progress and results.) 

United States Army Institute of Surgical Research Updates: 

Specific Aim 1: 

Animal protocols have been approved by local IACUC and ACURO. 

United States Army Institute of Surgical Research/Clarkson University Updates: 

Work during this time was performed to replicate the sensor design with consistent sensitivity for a broad 
range of superoxide concentrations (0.2 -1.4 µM) to facilitate translation of the technology. The superoxide 
biosensor fabricated on Au wire electrode using cytochrome C (cyt C) was develop with good reproducibility. 
While the use of self-assembled monolayers to attach the redox protein is a viable solution, this step is 
sensitive to a number of external factors such as humidity in the environment that can affect batch-to-batch 
reproducibility. We therefore investigate the use of alternative electrode coatings that could improve the 
surface chemistry, and that could also potentially be printed.  This reporting period we have investigated the 
use of pyrrole (Py) is used as a surface immobilization matrix for the attachment of cyt c.  Polypyrrole (PPy) is 
a conductive electroactive polymer that can be used as a matrix to entrap biomolecules providing increased 
bioactivity and sensitivity of biosensors. We evaluate the use of chemically synthesized gold (Au)-PPy on the 
electrode surface and immobilize cyt c within the polymeric nanostructure. To evaluate feasibility we first 
studied the electrochemical behavior of cyt c onto a glassy carbon electrode. The cyclic voltammetry shows 
well-defined peaks of cyt c onto the electrode confirming effective immobilization. Field-emission scanning 
electron microscopy shows uniform distribution of gold nanoparticles within a porous PPy matrix.  
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Figure 1. Characterization of biosensor with PPy to immobilize the biorecognition element. (A) Cyclic 
voltammograms of bare glassy carbon electrode (GCE) and GCE-Au-PPy-Cyt c electrode in 0.1M phosphate 
buffer at pH 7.4 at a scan rate of 50 mV Sec-1. (B) Field-emission scanning electron microscopy (FE-SEM) of 
the Au-PPy-GCE electrode. 

The technology was successfully transferred to Dr. Muraoka’s laboratory where the biosensor was fabricated 
and evaluated with ex vivo samples. In initial experiments, we focused on simple, proof-of-concept 
experiments to demonstrate practical application and validation of the biosensors. Platelet activation is a 
critical step to initiate hemostasis in actively bleeding patients and platelet transfusion to these patients is life-
saving. Methods to test platelet activation and function is an active area of research because stored platelets 
have diminished activity. Using the biosensor, we monitored superoxide anion (O2-) evolution in washed 
platelets after activation with thrombin. We show increased signal after addition of thrombin in fresh platelets, 
but significantly reduced signal in platelets stored for seven days. This application of the biosensor has the 
potential to monitor platelet function during storage and identify platelet units with high functional capacity.  
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Figure 2. Successful technology transfer to the ISR showing fabrication and application of the sensor.  (A) 
Specific detection of O2-. Arrows show time-point where O2- was chemically synthesized by introducing 
Xanthine Oxidase (XOD) and then consumed by adding Superoxide Dismutase (SOD). (B) Application of the 
biosensor to evaluate platelet function. Our initial attempts to apply the biosensor to combat casualty care was 
to monitor O2- evolution from washed platelets stimulated with thrombin. Purple arrow indicates introduction of 
thrombin (red trace) or vehicle (blue trace) to the electrochemical cell. 

Key Findings or Accomplishments: 

• Immobilization of the bio-recognition element with PPY is feasible and allows uniform distribution of
Au nanoparticles within the PPY matrix.

• Platelet activation induces O2
- release which can be monitored with the biosensor.

Specific Aim 2:  

Follow the same instructions as above. 

What opportunities for training and professional development has the project provided? 

Clarkson University Updates: Training: Aaditya Deshpande (Graduate Student) continued his training under 
the mentorship of Dr. Silvana Andreescu. This training was critical in the optimization and fabrication of the 
biosensor using PPy.  

United States Army Institute of Surgical Research Updates: 

Professional development: Cheresa Calhoun (Research Associate) continues to enhance her skill sets to now 
include rodent surgical procedures. 

How were the results disseminated to communities of interest? 

United States Army Institute of Surgical Research/Clarkson University Updates: We have published a peer-
reviewed article entitled “Electrochemical sensors for oxidative stress monitoring” in the journal Current 
Opinions in Electrochemistry. https://doi.org/10.1016/j.coelec.2021.100809. 

Plans for the next reporting period to accomplish the goals 

United States Army Institute of Surgical Research Updates: We are currently optimizing the method to prepare 
the kidneys to validate the sensor during hypoxia-reoxygenation. Initial experiments produced equivocal 
results likely due to cell viability once the kidney was excised. We plan to utilize the alternative strategy that 
was presented in the proposal.  

4. IMPACT

What was the impact on the development of the principal discipline(s) of the project?

Clarkson University Updates: Uniform immobilization of biorecognition elements with PPy has applications 
beyond monitoring reactive oxygen species. For example, monoclonal antibodies can be immobilized for the 
detection of specific pathogens or compounds. Thus, the techniques used in this project can be generally 
applied to other sensor designs. 

What was the impact on other disciplines? 

United States Army Institute of Surgical Research Updates: Our initial proof-of-concept experiments with 
platelets demonstrated a practical application of this technology that can be used by blood banks. Rapid 
evaluation of platelet function may benefit transfusion outcomes in actively bleeding patients. 
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What was the impact on technology transfer? 

United States Army Institute of Surgical Research Updates: The initial technology for biosensor fabrication has 
been transferred to the ISR (government) to evaluate its application in combat casualty care. The application 
of these sensors to monitor ischemia-reperfusion is novel and is being reviewed for an invention disclosure, 
pending experiment outcomes in Specific Aim 2. 

What was the impact on society beyond science and technology? 

Nothing to report. 

5. CHANGES/PROBLEMS
IMPORTANT REMINDER – Award recipient organization is required to obtain prior written approval from the
awarding agency Contracting/Grants Officer whenever there are significant changes in the project or its direction
such as significant change in scope or the Statement of Work (e.g. removal, change, or addition of aims/tasks or
animal model change), change in PI or key personnel, reduction of 25% FTE, or significant change in budget.

Changes in approach and reasons for change

Nothing to report. 

Actual or anticipated problems or delays and actions or plans to resolve them 
United States Army Institute of Surgical Research/Clarkson University Updates: COVID-19 travel restrictions 
have limited collaboration interactions and training of Dr. Muraoka’s team in the fabrication and operation of 
the biosensors. Nevertheless, Dr. Muraoka’s laboratory is now able to fabricate the biosensors and have 
performed initial experiments with them. 

United States Army Institute of Surgical Research Updates COVID-19 has created a back log for animal 
studies in the vivarium. Given that we are in the early stages of technology transfer, this is not an issue until 
animal studies commence. We will provide the vivarium with enough time to schedule our experiments. 

Changes that had a significant impact on expenditures 

Nothing to report. 

Significant changes in use or care of human subjects 

Not applicable. 

Significant changes in use or care of vertebrate animals 

United States Army Institute of Surgical Research Updates: 
TOTAL PROTOCOL(S): 1 

PROTOCOL (X of Y total): 
IACUC Protocol Number:  A-20-028 
ACURO Protocol Number: DM190422.e001 
Protocol  
Protocol Site: USAISR 
Protocol Title: Real-Time Measurement of Reactive Oxygen Species During Hemorrhage and Ischemia-Reperfusion 
Injuries in Rats (Rattus norvegicus) 
Number of Animals Approved for Use: 23 
IACUC INITIAL APPROVAL DATE: 7/6/2020 (expires 7/6/2023) 
ACURO INITIAL APPROVAL DATE: 8/21/2020 
RENEWAL APPROVAL DATES: 

- None.
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AMENDMENTS: 
- None.

ADVERSE EVENTS OR UNANTICIPATED PROBLEMS: 
- None.

Significant changes in use of biohazards and/or select agents 

Not applicable. 

6. PRODUCTS

Journal publications

United States Army Institute of Surgical Research/Clarkson University Updates: 

1. Deshpande A, Muraoka W, Andreescu S. Electrochemical sensors for oxidative stress monitoring. Curr
Op Electrochem. 2021; 29:100809. https://doi.org/10.1016/j.coelec.2021.100809.

a. Review
b. Published
c. Directly related to SOW, specific aim 1
d. DoD funding acknowledged

Books or other non-periodical, one-time publications 

Nothing to Report. 

Other publications, conference papers, and presentations 

Nothing to Report. 

Website(s) or other Internet site(s) 

Nothing to Report. 

Technologies or techniques 

Nothing to Report. 

Inventions, patent applications, and/or licenses 

Nothing to Report. 

Other Products 

Nothing to Report. 

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project?

United States Army Institute of Surgical Research Updates: 
Name:   Wayne Muraoka 
Project Role:   PI 
Researcher Identifier: 0000-0002-7960-7176 
Nearest person month worked: 4 
Contribution to Project:  Wrote and obtained approvals for animal protocol. Transitioned 
technology to ISR. Established working biosensors at ISR. Performing studies for ex vivo ROS 
monitoring. 

https://doi.org/10.1016/j.coelec.2021.100809
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Clarkson University Updates: 
Name:   Silvana Andreescu 
Project Role:   Co-PI 
Researcher Identifier: 0000-0003-3382-7939 
Nearest person month worked: 2 
Contribution to Project:  Overseeing electrode modification. 

Name:   Aaditya Deshpande 
Project Role:   Graduate Student 
Researcher Identifier: 
Nearest person month worked: 9 
Contribution to Project:     Performing experiments for electrode modification. 

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the 
last reporting period? 

Nothing to Report. 

What other organizations were involved as partners? 

Nothing to Report. 

8. SPECIAL REPORTING REQUIREMENTS
QUAD CHART

9. APPENDICES
 



Real-Time In Vivo Measurement of Reactive Oxygen Species: Potential Measure to 
Mitigate Injury Sequelae of Hemorrhaging Warriors
Proposal Log #: DM190422, Award #: W81XWH2020054
PI:  Wayne Muraoka, PhD Org:  The Metis Foundation       Award Amount: $324,972

Study/Product Aim(s)
•Aim 1: The surface of the bioreagent will be optimized to enhance the biosensor’s
robustness and to improve its sensitivity and signal-to-noise ratio. The probe will also
be miniaturized for field applications. The modified biosensor will be validated using
freshly prepared rat kidneys subjected to hypoxia-reoxygenation.
• Aim 2, The optimized biosensor will be validated in a rat model of ischemia-
reperfusion injury (IRI). The objectives of this aim are to determine whether reactive
oxygen species (ROS) measurements correlate with biomarkers of IRI and to
determine whether ROS is a prognostic indicator of IRI for real-time decision support.

Approach
Oxidative stress and excessive ROS accumulation are at the genesis of many pathological 

conditions. Because ROS production occurs very early in the progression of IRI, real-time 
monitoring of ROS can continuously provide information of the casualty’s condition and 
therefore facilitate casualty triage and treatment. However, current tools to evaluate ROS as 
an indicator of injury progression have poor spatial and temporal resolution due to the high 
reactivity and short half-life of ROS. Our planned approach of applying an electrochemical 
biosensor to ROS detection is innovative as it overcomes both temporal and spatial 
limitations providing continuous, real-time feedback from the tissue of interest.

Goals/Milestones
United States Army Institute of Surgical Research Updates:
CY20 Goal – Project initiation and approvals
 Obtain Local IACUC and ACURO approvals
Clarkson University Updates:
CY21 Goals – Sensor optimization and training
 Improve surface chemistry  and evaluate electrode printing methods
 Training of Muraoka lab for sensor operation
 Ex vivo evaluation of the sensor – in progress
United States Army Institute of Surgical Research Updates:
CY22 Goal – Sensor validation
 Validate sensor in a rat model of IRI and data analysis
 Presentation and publication of optimized sensor
Comments/Challenges/Issues/Concerns
• COVID-19 has created a back log in our vivarium. Given that we are still in the early

translational stage, this is not a big concern.
Budget Expenditure to Date: September 30, 2020 – July 1st, 2021
Projected Expenditure for Years 01-02: $324,972
Actual Expenditure: $64,514.88Updated: October 20, 2021

Timeline and Cost
Activities  CY    20         21

Local IACUC and ACURO 
approval (USAISR)

Estimated Budget ($K) $211K  $114K

Optimize sensor characteristics 
(Clarkson University)

Ex vivo validation (USAISR)

In vivo validation (USAISR)

Accomplishment: Successful technology transfer to the ISR showing fabrication and 
application of the sensor. (A) Specific detection of superoxide anion (O2

-). Arrows 
show time-point where O2

- was chemically synthesized by introducing Xanthine 
Oxidase (XOD) and then consumed by adding Superoxide Dismutase (SOD). (B) 
Application of the biosensor for acute traumatic coagulopathy. Our initial attempts to 
apply the biosensor to combat casualty care was monitor O2

- evolution from washed 
platelets stimulated with thrombin. Purple arrow indicates introduction of thrombin 
(red trace) or vehicle (blue trace) to the electrochemical cell.

1 U/ml Thrombin
Vehicle (PBS)

BA
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Introduction
Reactive oxygen and nitrogen species (ROS and RNS)
are formed by redox reactions of molecules that contain
oxygen or nitrogen. Reactive oxygen species include

superoxide (O2
.-), hydroxyl (HO.), peroxyl radical

(ROO.), hydrogen peroxide (H2O2), hypochlorous acid/
hypochlorite (HOCl/-OCl), and singlet oxygen (1O2)
[1,2]. Reactive nitrogen species include nitric oxide
(�NO), nitrogen dioxide (�NO2), and peroxynitrite
(ONOO�). Reactive oxygen/nitrogen species are
continuously produced during normal cell processes like
www.sciencedirect.com
oxidative phosphorylation, catabolism of fatty acids,
phagocytosis, breakdown of macromolecular com-
pounds, and protein folding. Classified as radical
(e.g. O2

.-, NO�, and OH�) or non-radical (e.g. HOCl and
H2O2), each type of ROS has a different reactivity rate,

biological activity, and role within the cell [3,4].
Collectively, both radical and nonradical ROS contribute
to the overall oxidative burden of the cell [2,4], and,
when in excess, the highly reactive nature of ROS/RNS
can damage cell components, leading to oxidative stress
[5]. While the significance of ROS is in general well
recognized, some aspects of ROS in distinguishing the
physiological and pathological processes are still
debated.

Despite the importance of ROS/RNS, there is still a lack

of suitable analytical tools to selectively monitor ROS/
RNS evolution to address the cell’s oxidative status in
situ. Using custom designed microelectrodes, electro-
chemistry provides unique opportunities to detect
reactive species in living tissues [6], thereby providing
direct and real-time evidence of ROS levels with high
spatial resolution [7e9]. In this review, we discuss
electrochemical detection methods and microsensors
for ROS/RNS, with focus on H2O2, NO and ONOO�
and O2

. . Finally, we conclude with a perspective on
future advances of this technology for the development

of electrochemical probes for real-time monitoring of
these species in biological systems as well as trans-
lational aspects for medical applications.
Cell oxidative stress: relevance and
significance
Reactive oxygen species play an essential role in redox
signalling, allowing the cell to rapidly adapt to environ-
mental or nutritional perturbations [3,10,11]. Under
homeostatic conditions, both enzymatic (e.g., superox-
ide dismutase, catalase, glutathione peroxidase) and
non-enzymatic (e.g., glutathione, thioredoxin, ascor-
bate) antioxidant mechanisms tightly regulate ROS
levels and prevent excess accumulation [11,12].
Dysregulation of the balance between pro-oxidants and
antioxidants is associated with physiological and devel-

opmental derangements. Insufficient H2O2 restricts
neuron growth, induces stem cell quiescence, and
thwarts wound healing, while insufficient O2

�- impairs
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immune cell clearance of pathogens [13e15]. However,
excessive ROS damages DNA, proteins, and lipids, and
can lead to cell death, tissue damage, and if not
corrected, organ failure [16e18]. Indeed, oxidative
damage to lipid (8-isoprostaglandin F2a and malon-
dialdehyde), DNA (8-hydroxy-deoxyguanosine), and
protein (3-nitrotyrosine) are often used as biomarkers of
oxidative stress in clinical samples [19,20]. Oxidative

stress is an imbalance of cellular redox where a pro-
oxidant state is favoured and is implicated in a myriad
of diseases [21,22]. Different types of ROS can impact
cell physiology and oxidative stress in different ways,
and it is important to measure individual species to
understand the impact of a specific ROS within each
(patho)physiologic setting [2]. Therefore, monitoring a
specific ROS in different disease conditions and exper-
imental treatments is necessary to investigate disease
mechanisms and drug efficacy. However, ROS are highly
reactive and extremely short lived in the body, making

its direct measurement in live tissues and organisms
difficult.

Biomarkers have the limitation that their accumulation
or removal will alter the quantity of the measured ana-
lyte but may not correspond to nascent ROS evolution.
Furthermore, biomarker measurements do not provide
insight into the type of ROS that is dysregulated, and it
is difficult to deconvolute the consequence from the
cause of oxidative stress. Methods to measure specific
types of ROS in tissues were described for electron

paramagnetic resonance and ultraweak photon-emission
spectroscopy [23,24]; however, their application for
in vivo ROS monitoring are hampered by high cost and
low temporal resolution. Therefore, there is a need to
develop tools that have an extremely rapid response
time, are sensitive and selective to individual species,
and capable of real time detection. The accurate mea-
surement of these species is still a bottleneck in un-
derstanding their physiological functions and a universal
technique that can detect the wide variety of radicals is
not available [25].
Electrochemical sensors and biosensors
for ROS/RNS detection
Monitoring ROS/RNS using electrochemistry provides a
valuable approach to quantifying oxidative stress
generated by these species in situ and can help eluci-

date their biological roles. Although a variety of elec-
trochemical sensors have been reported, relatively few
studies demonstrate their use in cells or biological sys-
tems. The use of glassy carbon electrodes is common in
literature; however, its bulky size restricts use to proof-
of-concept work to develop new chemistries, and it is
not suitable for live tissues. Smaller size electrodes that
can measure ROS in the proximity of cells are most
suited to explore biological mechanisms in situ.
Therefore, this review focusses primarily on
Current Opinion in Electrochemistry 2021, 29:100809
microelectrodes that have been used to measure reac-
tive species at the cellular or tissue level. These include
carbon fibre microelectrodes (CFME) with sizes from 5
to 10 mm and gold or platinum wire microelectrodes with
a diameter of ~100 mm.

Reactive oxygen/nitrogen species can be measured using
microelectrodes functionalized with chemical or bio-

logical coatings. Chemical sensors provide a direct
measure of the reactive species at their characteristic
potentials. Common examples are those measuring the
oxidation of NO at ~0.8 V vs Ag/AgCl, or the oxygen/
superoxide redox couple at ~ -0.33 V versus saturated
hydrogen electrode (NHE) [9]. Pioneering work done
by Amatore and Arbault [9], Amatore et al. [26], and Hu
et al. [27, 28] demonstrated the use of platinized carbon
microelectrodes (~10 mm diameter) for monitoring
ROS/RNS species produced by single cells [9,26e28]
and their ability to measure reactive species inside

single phagolysosomes of living macrophages using a
four step chronoamperometric method [28]. Recent
advances involve modification of microelectrodes with
catalytic materials to enhance the detection sensitivity
and tailor selectivity. In contrast, biological sensors are
protein-functionalized electrodes that contain a redox
protein immobilized at the electrode surface to selec-
tively recognize the targeted species and convert the
biorecognition into an electrochemical redox signal. A
common example is the use of cytochrome c (Cyt C) as
molecular recognition and electron transfer mediator for

O2
.- measurements [29]. In these sensors, the immobi-

lized Cyt C reacts with O2
.-; the protein is then oxidized

by direct electron transfer to/from the electrode,
generating a biocatalytic current that is proportional to
the O2

.- concentration. Because biological sensors take
advantage of the selectivity of biomolecules, they tend
to be more selective. However, they require immobili-
zation of the biomolecule onto the microelectrode sur-
face, and the long-term stability of these sensors might
be an issue. Table 1 provides an overview of microelec-
trode platforms for measuring superoxide O2

.-, H2O2.
The following sections discuss the most recent repre-

sentative examples of microelectrochemical sensors for
measurements of ROS/RNS in biological systems.

Electrochemical sensors for H2O2 and superoxide
radicals
The electroactive H2O2 can be detected electrochem-
ically using a chemically modified electrode [6]. Xu and
co-workers [33] modified a CFME with Au nanocones
and a synthetic molecular receptor having affinity to-
wards H2O2. The small size of the CFME coupled with
the selectivity of the synthetic receptor enabled mea-

surements of H2O2 in a single drop of blood. Measure-
ments were performed by differential pulse
voltammetry (DPV) in the range �0.5e0.6 V vs Ag/AgCl
electrode and the sensor was able to measure H2O2 in
www.sciencedirect.com
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Table 1

Details of some electrochemical sensors and biosensors and electrode modifications for detection of ROS/RNS released from cells and tissues.

# ROS/RNS Electrochemical
technique

Electrode
materials

Working
electrode

LOD Biological
system

Reference

1 H2O2 Fast scan cyclic
voltammetry

1,3-phenylenediamine CFME 20 mM* Rat brain [30]

2 H2O2 Chronoamperometry Pt–Pd bimetallic nanocoral CFME 0.42 mM A549 living cells, milk [31]
3 H2O2 Amperometry, CV Hemoglobin, SWCNT CFME 0.23 mM HePG2 cancer cells [32]
4 H2O2 Amperometry Au–Pd alloy NPs, graphene

quantum dots
CFME 500 nM Clinical breast

cancer tissue
[33]

5 H2O2 Amperometry Pt NPs, Nafion, PPD CFME 0.53 mM In vitro [34]
6 H2O2 Amperometry Platinized silica nanoporous

membranes
CFME or ITO 0.01 mM Rat brain [35]

7 H2O2, Chronoamperometry Heat treatment to create nanopores
to improve catalytic performance

Heat-treated
CFME

1 mM In vitro [36]

8 H2O2 Chronoamperometry Core-shell 2D VS2,@VC@N-doped
carbon sheets decorated by Pd NPs

CFME 50 nM MCS-7 cancer cells,
and breast cancer
tissue

[37]

9 H2O2 Chronoamperometry Pt–Pd NPs, graphene oxide CFME 0.3 mM Raw 264.7 cells
secretion

[38]

10 H2O2 Chronoamperometry Au–Ag bimetallic NPs/polydopamine CFME 0.12 mM HepG2 cells [39]
11 HClO/ClO- DPV Graphene oxide, carbon nanotubes, MBS CFME 0.5 mM Body fluids [40]
12 O :�

2 Chronoamperometry MWCNTs, Ionic Liquid-Br, SOD,
Prussian Blue NPs

CFME 0.42 mM Alzheimer rat brains [41]

13 O :�
2 DPV with ratiometric

signal output
Diphenylphosphonate-2-naphthol ester,

methylene blue SWCNTs
CFME 2 mM Rat brain [42]

14 NO DPV NiTSPc/nafion CFME 0.34 mM Zebrafish intestine [8]

a-NSGF, taurine-functionalized graphene foam; AgNPs, silver nanoparticles; APTES, (3-aminopropyl) triethoxysilane; AuNP, gold nanoparticles; BA, 5-(1,2-dithiolan-3-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)phenyl)pent-anamide; BBY, Bismarck Brown Y; CFME, carbon fiber microelectrode; CNT, carbon nanotubes; CTS, chitosan; CV, cyclic voltammetry; Cyt C, cytochrome C; D-cell, plastic
disposable carbon-based electrochemical cell; DNA, deoxyribose nucleic acid; FTO, fluorine-doped tin oxide; HTCMP, hollow tubular conjugated organic microporous polymer; ITO-PET, indium tin oxide
supported on poly-ethylene-terephthalate foil; MPNS, microporous polymeric nanospheres; MWCNTs, multiwalled carbon nanotubes; PDDA, poly(diallyl dimethyl ammonium chloride); Poly(5A1N),
electropolymerized 5-amino-1-naphthol; PSS, polystyrene sulfonic acid; rGO, reduced graphene oxide; XG, xerogel.
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4 Bioelectrochemistry
the 0.5e400 mM range [43]. de Meira et al. [44] used a
disposable plastic carbon-based electrochemical cell
with a chemically modified electrode coated with Ag
nanoparticles and d-FeOOH. The reduction of H2O2

catalyzed by Ag nanoparticles (NPs) lead to increased
sensitivity for H2O2 detection in fetal bovine serum.
Nonenzymatic detection of H2O2 is achieved with
electrodes functionalized with chemical mediators such

as Prussian blue (PB), used alone or in composite forms
with Au nanoparticles or graphene oxide. A PB-AuNPs-
graphene oxide deposited on a GCE enabled detection
of H2O2 down to 1.3 mM [45]. Similar strategies can be
used to increase selectivity of CFMEs (Table 1). Most
sensors use Pt-based structures that take advantage of
the catalytic activity of PtNPs for H2O2; these are often
combined with Au, Ag, carbon nanotubes, or graphene
oxide for enhanced performance. In some cases, the
growth and self-assembly of a multidimensional struc-
ture on the surface of CFMEs reduces the oxidation

potential minimizing interferences. A CFME function-
alized with VS2, @VC@N-doped carbon sheets deco-
rated by PdNPs enabled detection of H2O2 at �0.05 V
with no interferences from dopamine, uric acid, ascorbic
acid, and nitrite [37].

The standard redox potential of the O2/O2
.- redox couple

is between 330 mV and 140 mV versus NHE and thus
this can be determined by direct electrochemical
oxidation using platinized microelectrodes, or elec-
trodes modified with nitrogen-doped carbon AgNPs

[46] or porous carbon networks [47]. To improve
selectivity, a common approach is to immobilize Cyt C or
superoxide dismutase onto AuNP-functionalized mi-
croelectrodes [6]. A recent trend is to use enzyme
mimetic materials such as MnTiO3 microdiscs [48],
manganese phosphate [49], or nanostructured Mxenes
[50] and graphene/AgNP/CeO2/TiO2 [51] as alternative
to natural enzymes. However, specificity of measure-
ments is not always demonstrated, raising questions
about the accuracy of such configurations. Thick-films
Cyt cebased nanoporous gold electrodes with a detec-
tion limit of 1.9 nM and a sensitivity of

1.9 nM.nM�1cm�2 enabled the online detection of O2
.-

in skeletal muscle tissue [52].

Electrochemical sensors for nitric oxide and
peroxynitrite
Nitric oxide is a highly diffusible short-lived species,
which can interact with O2

.- to form peroxynitrite, a
highly reactive and toxic species that can damage DNA,
proteins, and lipids. Because NO has reduced stability,
NO sensors must have a short response time, be sensi-
tive, and have a wide linearity range. The electro-

oxidation of NO takes place at a potential >0.8V vs Ag/
AgCl that overlaps with the oxidation potential of other
electroactive species. To prevent interferences, CFMEs
are commonly functionalized with blocking membranes
Current Opinion in Electrochemistry 2021, 29:100809
such as Nafion [8], o-phenylene diamine (o-PD), and
chitosan [8,53]. Electrochemical NO sensors have been
reviewed by Brown and Schoenfisch [54] (see Figure 1).

Long-term electrochemical measurement of NO
released from cultured pro-inflammatory macrophages
was demonstrated using an Pt disk electrode (6 mm
diameter) modified with an electropolymerized 5-

amino-1-naphtol (Poly(5A1N)) and fluorinated xerogel
to prevent degradation (Figure 2) [55]. The xerogel
provided permselective properties imparting selectivity
and preventing biofouling. A detection limit of 1 nM and
a dynamic range 0.01e10 mMwas reported. Detection of
NO in human serum (detection limit of 52 nM and
linear range of 0.25e40 mM) was reported with an
electrode coated with reduced graphene oxide and
PtNPs [56]. A microsensor enabling detection of NO. in
the presence of H2O2 in static or flow conditions was
achieved with a dual-electrode set up. Poly(eugenol)

coating enhanced the selectivity of the Pt electrode and
was superior to bare Pt and PtePt black [57].

Recent developments in microelectrode design inte-
grate microelectrodes and wireless monitoring. Using a
flexible transient electrode, real-time monitoring of NO
over 5 days was recorded in the hearth and joint cavity of
rabbits [58]. The implantable sensor consisted of a
biocompatible electrode constructed from polylactic
acid and poly(trimethylene carbonate), an ultrathin Au
membrane, and a poly(eugenol) film. This sensor had a

detection limit of 0.97 nm and a 0.01e100 mM linear
range (see Figure 3).

Peroxynitrite, the primary product formed in the fast
reaction of superoxide radicals with NO, is an important
but difficult to measure RNS [59]. The formal potential
of ONOO�/ONOO. is 0.27 V vs SSCE [60]. Electro-
chemical detection of transient concentrations of
peroxynitrite was achieved with platinized, or nano-
structured microelectrodes modified with conjugated
Mn complexes (e.g., tetraaminophthalocyanine manga-
nese (II) [61], MnO2-Hemin [62] and PEDOT-Hemin

[63] layers, and microporous polymeric nanospheres
[64]) acting as electrocatalytic sites. Recent efforts are
dedicated to simultaneous detection of multiple ROS/
RNS released by cells by custom-designed microfluidic
devices [65] (see Figure 4) and ratiometric measure-
ments [66]. Such measurements can be effective at
determining multiple ROS/RNS species simultaneously
and take into account issues of cross-reactivity. This
approach is highly suited for the high throughput
monitoring of cells.
Biological applications and translational
aspects
Accurate ROS measurements are important to under-
stand the relationship between oxidative stress and
www.sciencedirect.com
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Figure 1

Example of electrochemical H2O2 sensors used using a chemically modified CFME. Reproduced with permissions (Dong et al. [43] with permission).

Figure 2

Example of NO sensor coated with gel to prevent degradation in biological medium (with permission from the study by Brown and Schoenfisch [55]).
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Figure 3

Flexible and transient NO sensor: (a) Illustration of sensor design composed of a bioresorbable copolymer of poly(L-lactic acid) and poly(trimethylene
carbonate (PLLA–PTMC) substrate, Au nanomembrane electrodes, and a poly(eugenol) thin film. NO concentration was measured through amper-
ometry. The sensor can continuously detect NO concentrations in vivo and transmit the data to a user interface through a customized wireless module. (b)
Optical image of the surface morphology of Au electrodes and SEM image of the surface morphology. (c) NO sensor under bending. (d) NO sensor in a
stretched state. (e) Images at various stages (0, 1, 6, and 15 weeks) of accelerated degradation of a transient NO sensor in phosphate-buffered saline
(with permission from Ref. [58]).
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disease. Oxidative stress underlies cardiovascular dis-
eases by impairing endothelial cell function, thereby
influencing vascular tone and inflammation [48,67].
How the mechanical forces from blood flow and smooth

muscle contraction alter ROS production was addressed
using a flexible electrochemical sensor [68]. This sensor
allowed for the attachment of cells onto a compliant
Current Opinion in Electrochemistry 2021, 29:100809
surface. By simulating in vivo conditions of mechanical
stress, it was shown that circumferential stretch at
normotensive strain induces NO� production, whereas
hypertensive strain promotes H2O2 production, possibly

through NADPH oxidase. This sensor revealed new
insight to the redox response of endothelial cells under
different mechanical stressors.
www.sciencedirect.com
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Figure 4

Microfluidic platform integrating four parallel channels for H2O2, ONOO–, NO$, and NO2
– measurements (with permission from the study by Li et al. [65]).
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Because oxidative stress is implicated in the progression
of many pathological conditions, considerable effort has
been made to affect ROS levels under various disease

settings for therapeutic benefit. Insights into the actions
of established and novel therapeutics were recently
addressed by electrochemical methods. Jiang et al. [67]
created nanowire electrodes capable of quantifying, at
the subcellular level, ROS production in fibroblast and
cancer cell lines. This electrode identified the mito-
chondria, specifically complex IV, as the principal site of
ROS production in response to chemotherapeutic.
Higher levels of paclitaxel-induced ROS were detected
in cancer cells compared with normal cells, suggestive of
a selective cytopathic mechanism. Vaneev et al. [69]

used platinized nanoelectrodes to demonstrate rapid
H2O2 evolution in single cells after treatment with
chemotherapeutics. The translational utility of this
sensor was demonstrated in tumour-bearing mice
treated with doxorubicin. In this application, ROS levels
increased with increasing tumour depth, highlighting
possible spatial heterogeneity within the tumour. Lastly,
Gubernatorova et al. [70] evaluated the in vivo ROS
scavenging ability of Europium-doped ceria NPs using a
Cyt C-based electrochemical biosensor [52]. This study
linked O2

.- formation with the induction of inflammatory

cytokines during intestinal ischemia-reperfusion injury.
Ultimately, a greater understanding of the mechanism
by which (chemo)therapeutics exert their effects may
facilitate the screening of new drugs that are based on
redox dependence, while avoiding interference of redox
signalling in normal cells.

Despite the desirable characteristics of electrochemical
sensors for in vivo ROS monitoring, several technical
challenges remain before these sensors realize clinical
utility. Biofouling, or adsorption of biomolecules onto
www.sciencedirect.com
the probe, can reduce the sensor’s detection capability.
This was observed with a carbon nanofiber sensor that
initially showed sensitive detection of O2

.- in the rat

brain, but sensitivity was reduced by ~60% after im-
plantation [41]. Antifouling strategies that mitigate
signal reduction are necessary. Interference by electro-
active compounds poses another challenge for in vivo use
of electrochemical sensors. This was recently addressed
by electrodeposition of 1,3-phenylenediamine onto an
electrode surface to create a perm-selective barrier. This
modification allowed for specific measurement of H2O2

flux in the brain [30]. Notwithstanding these chal-
lenges, there is an increasing need to accurately measure
oxidative status in the clinical setting. The recent

COVID-19 pandemic demonstrated the need for plat-
forms that have rapid response time to test clinical
specimens. An electrochemical sensor that detects
H2O2 was developed to screen human sputum for lung
inflammation [71]. Reactive oxygen species measure-
ments showed good agreement with the computed to-
mography scan of the lungs, and infection status could
be inferred from the applied potential sweep data.
These recent studies highlight electrochemical detec-
tion of ROS as a powerful tool for mechanistic and
translational studies, but also revealed challenges that

are currently being addressed.
Future challenges and trends
Although electrochemical sensors for ROS/RNS moni-
toring are well-established, most reported work mea-
sures concentrations of reactive species in standard

solutions or synthetically generated radicals with few
reports of implementation in live tissues. Advances in
electrode design, featuring increased sensitivity and
real-time capabilities, provide a solid foundation for
future implementation in biological systems. Because
Current Opinion in Electrochemistry 2021, 29:100809
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ROS/RNS is fundamental to many processes and dis-
eases, electrochemical sensors have great potential to
facilitate an understanding of their production and
removal in cells and tissues, establish the relation be-
tween free radical production and disease progression,
and evaluate oxidative stress mechanisms. The chal-
lenge is to design robust probes and surface modifica-
tions that can maintain performance in complex

biological environments without passivation or
biofouling. While these methods have improved in
recent years, their use for rutine applications requires
further refinement to address issues such as robustness,
selectivity toward specific ROS/RNS, and cross-
reactivity. Improving the selectivity toward individual
radicals or developing ratiometric or multi-array sensors
for simultaneous quantification of a broader range of
radicals through parallel measurements is of particular
interest for future research. Manufacturing of more
robust and stable microelectrodes and biosensors using

methods that enable large-scale production is also
needed.

Most measurements have been done to study released
kinetics in isolated cultures or cells, with few exam-
ples of implementation in tissues and organs. Adoption
of electrochemical probes to address relevant patho-
logical events relies on interdisciplinary research and
close collaboration between electrochemists, biologists,
immunologists, and medical doctors. Given the matu-
rity of these probes, future research is expected to

explore the use of this technology in relevant cellular
and animal models through implantation. An immedi-
ate use of implantable microelectrodes is for moni-
toring ROS/RNS species in real time to better
understand their interplay in the biological environ-
ment. Innovations in electrode design to increase
biocompatibility is also expected. To improve the ca-
pabilities of electrochemical measurements, the
following potential directions for future research are
expected: 1) increasing the sensitivity through
improving the electrochemical interface and immobi-
lization strategy by using two-dimensional and three-

dimensional nanostructures materials like MXenes,
metaleorganic frameworks, perovskites, or multilay-
ered polymer layers; 2) scalable manufacturing of mi-
croelectrodes to enable large scale adoption and
improve reproducibility through the use of additive
manufacturing techniques such as printing; 3) multi-
plexed detection of different ROS/RNS species
simultaneously placed along with sentinel or self-
reference electrodes to improve accuracy of measure-
ments and minimize interfering effects from coexisting
spices; 4) electrode coatings to minimize the non-

specific interaction and biofouling effects in biolog-
ical environments; 5) integration of electrochemical
measurements with chemometrics analysis, machine
learning and artificial intelligence, as well as wireless
connectivity to improve data processing and remote
Current Opinion in Electrochemistry 2021, 29:100809
monitoring capabilities of electrochemical measure-
ments; 6) finally, in vivo studies with implanted mi-
croelectrodes should be validated with suitable
biological manipulations to demonstrate usefulness
and accuracy of measurements. Monitoring physiolog-
ical and pathological events such as cancer, ischemia/
reperfusion, traumatic brain injury, trauma, and hypo-
volemic shock, are all relevant models for future

applications.
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