
VIEW-DEPENDENT VIRTUAL REALITY CONTENT FROM RGB-D IMAGES

Chih-Fan Chen, Mark Bolas, and Evan Suma Rosenberg ∗

Mixed Reality Lab, Institute for Creative Technologies, University of Southern California

(a) (b) (c)

Fig. 1. (a) Fixed-texture models generated using the tradi-
tional approach of blending color images without texture op-
timization [1] and (b) with texture optimization [2]. The tex-
tures appear the same from all viewpoints. (c) Virtual objects
generated using our real-time view-dependent approach, as
viewed from three different perspectives.

ABSTRACT

High-fidelity virtual content is essential for the creation of
compelling and effective virtual reality (VR) experiences.
However, creating photorealistic content is not easy, and
handcrafting detailed 3D models can be time and labor in-
tensive. Structured camera arrays, such as light-stages, can
scan and reconstruct high-fidelity virtual models, but the ex-
pense makes this technology impractical for most users. In
this paper, we present a complete end-to-end pipeline for
the capture, processing, and rendering of view-dependent 3D

∗e-mail:{cfchen, bolas, suma}@ict.usc.edu

models in virtual reality from a single consumer-grade depth
camera. The geometry model and the camera trajectories are
automatically reconstructed and optimized from a RGB-D
image sequence captured offline. Based on the head-mounted
display (HMD) position, the three closest images are selected
for real-time rendering and fused together to smooth the
transition between viewpoints. The specular reflections and
light-burst effects can also be preserved and reproduced. We
confirmed that our method does not require technical back-
ground knowledge by testing our system with data captured
by non-expert operators.

Index Terms— Image-Based Rendering, Virtual Reality,
Appearance Representation

1. INTRODUCTION

With the recent proliferation of consumer head-mounted dis-
plays (HMDs), there is increasing demand for realistic 3D
content that can be integrated into virtual reality environ-
ments. However, creating photorealistic models is not only
difficult but also time consuming and expensive. A simpler
alternative involves scanning objects in the real world and
rendering their digitized counterpart in the virtual world. The
geometry of objects can be achieved by performing a 3D scan
using widely available consumer-grade RGB-D cameras. The
texture is determined by fusing data from multiple color im-
ages captured during the scan. Existing methods compute the
color of each vertex by averaging the colors from all or these
images. However, this technique of blending colors creates
blurry, low-fidelity models with fixed lighting textures that
are baked onto the model (see Figure 1 (a) and (b)). This lim-
itation becomes more apparent when viewed in head-tracked
virtual reality, as the illumination (e.g. specular reflections)
does not change appropriately based on the user’s viewpoint.

To improve color fidelity, techniques such as View-
Dependent Texture Mapping (VDTM) have been introduced
[3, 4, 5]. In this approach, the system finds observed camera
poses closest to the view point and uses the corresponding
color images to texture the model. Previous work has used
Structure-from-Motion and Stereo Matching to automatically
generate the model and the camera trajectory. Although these
methods typically result in higher color fidelity, the recon-
structed geometric model is often less detailed and more

2931978-1-5090-2175-8/17/$31.00 ©2017 IEEE ICIP 2017

(a) Example scene (b) Model from SfM (c) Model from KinFu

Fig. 2. Comparison of the 3D geometry reconstructed using
structure from motion (SfM) with color images vs. KinectFu-
sion with depth images.

prone to error than depth-based approaches. In this work,
we leverage the strengths of both methods to create a novel
view-dependent rendering pipeline (Figure 3). In our method,
the 3D model is reconstructed from the depth stream using
KinectFusion. The camera trajectory computed during re-
construction is then refined using the images from the color
camera to improve photometric coherence. The color of 3D
model is then determined at runtime using a subset of color
images that best match the viewpoint of the observing user
(Figure 1 (c)).

2. RELATED WORK

To visualize a real object in the virtual environment, image-
based modeling and rendering (IBMR) [6] requires a set of
color images captured from different viewpoints to generate a
new, uncaptured, view of the object or scene. The light field
rendering [7, 8, 9] used a ray tracing method to color each
pixel of the novel view with the corresponding color from im-
ages in the database. Although these methods do not need
the geometry information, they usually require a specially de-
signed camera array and well-controlled environment for cap-
turing data. On the other hand, generating the uncaptured
view from VDTM requires a geometry model and the related
camera position of each image. Each pixel color of the novel
view is interpolated from the mesh of the 3D model and sev-
eral appropriate images. As mentioned in [3], the visual affect
is reduced due to the geometry information. However, man-
ually reconstructing the model and setting the camera trajec-
tory involves significant human effort. Several visual odeme-
try techniques such as SfM [10, 5] or v-SLAM [11] were pro-
posed to automatically generate both the model and camera
trajectory from color images. However, these methods de-
pend solely on color information. Thus, they fail to build the
geometry information if the visual features are not distinct or
the appearance changes dramatically between frames due to
illumination differences (Figure 2 (b)).

The advent of consumer-grade depth sensors such as the
Microsoft Kinect has led to widespread interest in 3D scan-
ning. Variants on the KinectFusion algorithm [1, 12] have
gained popularity, due to its real-time reconstruction ability.
To color geometric models, existing systems use a volumetric

blending approach that integrates color samples over a voxel
grid [1, 12, 13]. This produces color maps that convey only
the objects general appearance. They suffer from blurring,
ghosting, and other visual artifacts that are readily apparent at
close range. Recent works [2, 14] had proposed color map-
ping optimization to produce higher quality models. They
aim to find the best representative color of each pixel by sev-
eral observations from a RGB sequence. However, the models
with fixed textures lack material property and are not ideal to
represent the true appearance from different viewpoints.

We propose a method that combines the advantage of
the two different approaches. Our system can generate a 3D
model and the corresponding camera trajectory that maxi-
mizes the color consistency from different viewpoints. Due
to the accurate and dense geometry information, our system
does not need to interpolate the pixel color in a novel view.
Instead, we update the color of each vertex based on the user’s
viewpoint. Because of the independence of each vertex, the
system can render the unseen view in real-time performance.
This technique provides a better color appearance and a
smoother transition when compared to a fixed-texture model.

3. PROPOSED FRAMEWORK

3.1. System Overview

We propose a system pipeline (Figure 3) to generate a view-
dependent 3D model from a RGB-D camera that involves
both offline and online stages. In the offline stage (Sec.3.2),
our method uses the depth data to reconstruct a geometric
model (Figure 2 (c)) and generate a corresponding camera tra-
jectory. To maximize the texture quality and the cover area,
we select color images based on the blurriness and the distri-
bution in physical space. Color trajectory optimization is used
to eliminate the noise from color-depth transformation and
leads to better color consistency. In the online stage (Sec.3.3),
the 3D model is projected to each color image for the visibil-
ity information, and the color of each vertex is precomputed
by averaging all of the images. Note that the procedure above
is performed only once. Based on the user’s viewpoint, the
closest images are fused to generate the texture at run-time.

3.2. Offline Stage

KinectFusion [1] is used to reconstruct a 3D model by inte-
grating the depth data into a voxel volume over time. The
camera pose of the latest frame is computed by comparing
its depth image and the reconstructed model from previous
frames. The 3D model M and the camera trajectory T =
{T 1,T 2, · · ·T n}, where T n is the extrinsic matrix of the n-
th tracked camera pose, are generated after capturing. Com-
pared to pure color images (Figure 2 (b)), the model created
by the depth sensor is higher quality (Figure 2 (c)).

As the data is captured from a handheld camera, some
of the color images are not ideal for rendering due to motion

2932

Fig. 3. An overview of the complete pipeline, consisting of
two phases: (1) offline processing/optimization, and (2) on-
line view-dependent texture rendering.

blur. Using blurry images does not improve the quality of tex-
ture rendering and also increases memory usage at run-time.
Instead of using every image from the trajectory, we select a
set of color images Ii with good image quality. In contrast to
Zhou et al. [2], who select frames from different time inter-
vals, we aim to maximize the covered area of viewpoints in
our online stage view-dependent rendering. To achieve this
purpose, the color images are first ranked by the blurriness
[15]. We add the top ranked images such that the distance be-
tween each selected image and the images already in Ii must
be larger than d cm, until we select K frame (see Algorithm
1). In our experiments, K was 100-150 and d was 5-10, based
on the total number of images and the covered area of the
object while capturing the data.

Data: Color sequence I
Result: Selected color image sequence Isel
Ranked color sequence IR= sort(blurriness(I));
Isel = ∅ ;
while i ∈ IR do

if (Pi − P ′i > d,∀i′ ∈ Isel) then
Isel = Isel ∪ {i}

end
if (length(Isel == K) then

break;
end

end
Algorithm 1: Key Frame Selection

The initial camera trajectories from KinectFusion are not
sufficiently accurate for texture mapping because they are
purely based on geometry. To maximize the color and geo-
metric agreement, first we calibrate and align the color and
IR camera. Then, we apply Color Mapping Optimization
[2] to yield even more accurate camera poses. The objective
function minimizes the difference between the color of the
vertices and their corresponding color in each frame. Note
that we only use the alternating optimization method; as
noted by Narayan et al. [14] the deformation grid optimiza-

Fig. 4. A view-dependent texture rendered using three source
images (left) compared with a texture generated using a single
image (right).

tion method sometimes leads to divergence. This approach
iteratively solves the problem from the initial state T sel and
converges to T opt by Gauss-Newton method.

3.3. Online Stage

To update the vertex color, the visibility is used to avoid in-
correct texture mapping. We project the 3D model to each
image space and generate the associated depth images for a
visibility check. If the distance from the vertex to the image
is larger than the value in the depth image, the vertex is con-
sidered invisible. By using visibility information, the vertex
color can be updated in a parallel fashion, even without ge-
ometric information, to achieve real-time performance. We
also pre-compute the basic color for each vertex by averag-
ing the RGB value from all images that pass the visibility
check. The vertex color remains the same if not rendered by
any additional images. These two procedures only need to be
applied once unless images are added or removed from the
database, so it does not effect the process time at run-time.

At the online stage, we sample images based on the eu-
clidean distance between the user’s HMD position and all the
camera positions in our database. The HMD position pu is
provided by the Oculus Rift DK2’s position tracking camera.
The camera position of each image can be computed from
the transformation matrix Topt in Sec. 3.2.3. Each transfor-
mation matrix T i ∈ Topt can be decomposed to a rotation
matrix Ri ∈ R3X3 and a translation matrix ti ∈ R1x3. The
camera position is obtained by pi = −Ri

T ti.

Ir = argmini ||pi − pu||2, 0 ≤ i ≤ K (1)

Utilizing the closest image to render the model creates a
sudden transition from one image to another. It also produces
a sharp edge between updated vertices and the others (Figure.
4) (left). Selecting more images can achieve smooth transi-
tions with head movement but at a cost; details, such as spec-
ularities and light-bursts will be lost (e.g., in the fixed-texture
model colored by all images). In our experiment, we select
three images to not only preserve the detail but also smoothly
switch from different viewpoints (Figure. 4).

Each vertex is mapped to image planes to retrieve their
corresponding RGB values. We compute the vector from the

2933

Fig. 5. (top left) An image of a real object captured using a
Kinect v1. (middle left) The untextured 3D model. (bottom
left) The model with a fixed texture generated from blending
the source images (right). The model with view-dependent
texture rendered from several viewpoints. Note the flame
from the candle within the object.

model center to the HMD position pu. If it intersects the tri-
angle formed by the three selected camera poses {p1,p2,p3}
at p, we use the barycentric coordinates to compute the
weight.

p = w1p1 + w2p2 + w3p3 (2)

If the direction ray from the model center does not in-
tersect with the triangle (e.g., the user position is outside the
cover area), we use the inverse of euclidean distance as the
weight. (i.e., wi = ‖p− pi‖−12 , i ∈ {1, 2, 3})

Before combining these values, we must perform a visi-
bility check to detect occlusions. RGB values that fail the vis-
ibility check are then discarded (i.e., set the weight to zero).
The remaining weights are normalized and the vertex color is
updated by the new RGB value.

C(v) = w′1c1 + w′2c2 + w′3c3 (3)

where C(v) represents the color of vertex v, w′i =
wi/(w1 + w2 + w3), i ∈ {1, 2, 3}, c1, c2, and c3 are the
pixel colors retrieved from projecting the vertex onto the
chosen images.

4. EXPERIMENTAL RESULTS

We used a Microsoft Kinect v1, which streams VGA resolu-
tion (640X480) depth and color images at 30 fps. The color
images are captured with fixed exposure and white balancing.
The position of specular reflection varies by viewpoint. The
color images captured the light-burst effect and accurately re-
produced it at run-time (see Figure 5).

Object vertex surface images color/depth images
Sculpture 208K 406K 108 3210 / 3225
Table 390K 763K 98 2906 / 2918
Chair 255K 495K 111 3299 / 3313
Figurine 99K 197K 96 2843 / 2856

Table 1. Information about the 3D models and images used
in different examples.

We used the data from Choi et al. [16] to test our system,
as it contains thousands of RGB-D sequences. We selected
disparate models, including a female nude sculpture (3887),
round table (5648), antique leather chair (5989), and an el-
derly male figurine (9933), where the number in parenthe-
ses is the index of the sequence in [16]. Figure 1 first shows
the 3D model generated from KinectFusion without texture
optimization (Figure 1 (a)) and with texture optimization [1]
(Figure 1 (b)). The textures are identical from all viewing an-
gles. In contrast, virtual objects generated using our real-time
view-dependent approach preserves the specularity of the ob-
ject from different viewpoint (Figure 1 c). It is worth noting
that these sequences are captured by individuals who are not
experts in computer vision or engineering. The detail of each
model is shown in Table. 1.

All the experiments were performed in Unity 5.3 on a
Macbook Pro with an Intel i7-4850HQ CPU, Nvidia GeForce
GT750M GPU and 16 GB of RAM. Our method can render
the models in Figure 1 in 10-15 milliseconds (i.e., 70-90 fps),
making it sufficient for real-time high-frequency rendering.

5. CONCLUSION

We propose a novel pipeline for rapidly creating photorealis-
tic virtual reality content with only one consumer-grade RGB-
D sensor. Our system automatically generates the geomet-
ric model and the camera trajectory of selected color images
from a RGB-D sequence. It also generates a texture for the
3D model that changes based on the HMD position in real-
time, and is robust enough to extend to viewpoints that were
not originally captured. By fusing weighted vertex color from
multiple images, we can smoothly transition the texture from
one viewpoint to another. We demonstrated that our system
will correctly reproduce the appearance of objects captured
by individuals without expert knowledge, making it a useful
application for real-world 3D scanning.

6. ACKNOWLEDGEMENT

This work is sponsored by the U.S. Army Research Labo-
ratory (ARL) under contract number W911NF-14-D-0005.
Statements and opinions expressed and content included do
not necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.

2934

7. REFERENCES

[1] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli,
Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew
Davison, and Andrew Fitzgibbon, “Kinectfusion: Real-
time 3d reconstruction and interaction using a moving
depth camera,” in Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology,
New York, NY, USA, 2011, UIST ’11, pp. 559–568,
ACM.

[2] Qian-Yi Zhou and Vladlen Koltun, “Color map op-
timization for 3d reconstruction with consumer depth
cameras,” ACM Trans. Graph., vol. 33, no. 4, pp. 155:1–
155:10, July 2014.

[3] Paul Debevec, Yizhou Yu, and George Boshokov, “Ef-
ficient view-dependent image-based rendering with pro-
jective texture-mapping,” Tech. Rep., University of Cal-
ifornia at Berkeley, Berkeley, CA, USA, 1998.

[4] John Bastian, Ben Ward, Rhys Hill, Anton Hengel, and
Anthony Dick, “Interactive modelling for ar applica-
tions,” in In 2010 IEEE International Symposium on
Mixed and Augmented Reality, IEEE, 2010.

[5] Yuta Nakashima, Yusuke Uno, Norihiko Kawai,
Tomokazu Sato, and Naokazu Yokoya, “Ar image gener-
ation using view-dependent geometry modification and
texture mapping,” Virtual Reality, vol. 19, no. 2, pp.
83–94, 2015.

[6] Harry Shum and Sing B. Kang, “Review of image-based
rendering techniques,” in Proc. SPIE, 2000, vol. 4067,
pp. 2–13.

[7] Marc Levoy and Pat Hanrahan, “Light field rendering,”
in Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, New York,
NY, USA, 1996, SIGGRAPH ’96, pp. 31–42, ACM.

[8] Mark Bolas, Ashok Kuruvilla, Shravani Chintalapudi,
Fernando Rabelo, Vangelis Lympouridis, Christine Bar-
ron, Evan Suma, Catalina Matamoros, Cristina Brous,
Alicja Jasina, Yawen Zheng, Andrew Jones, Paul De-
bevec, and David Krum, “Creating near-field vr using
stop motion characters and a touch of light-field render-
ing,” in ACM SIGGRAPH 2015 Posters, New York, NY,
USA, 2015, SIGGRAPH ’15, pp. 19:1–19:1, ACM.

[9] J. Thatte, J. B. Boin, H. Lakshman, G. Wetzstein, and
B. Girod, “Depth augmented stereo panorama for cin-
ematic virtual reality with focus cues,” in 2016 IEEE
International Conference on Image Processing (ICIP),
Sept 2016, pp. 1569–1573.

[10] Chris Buehler, Michael Bosse, Leonard McMillan,
Steven Gortler, and Michael Cohen, “Unstructured lu-
migraph rendering,” in Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive
Techniques, New York, NY, USA, 2001, SIGGRAPH
’01, pp. 425–432, ACM.

[11] Abe Davis, Marc Levoy, and Fredo Durand, “Unstruc-
tured light fields,” Comput. Graph. Forum, vol. 31, no.
2pt1, pp. 305–314, May 2012.

[12] T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J.J.
Leonard, and J.B. McDonald, “Kintinuous: Spatially
extended KinectFusion,” in RSS Workshop on RGB-
D: Advanced Reasoning with Depth Cameras, Sydney,
Australia, Jul 2012.

[13] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Bur-
gard, “3D mapping with an RGB-D camera,” IEEE
Transactions on Robotics, vol. 30, no. 1, pp. 177–187,
Feb 2014.

[14] K. S. Narayan and P. Abbeel, “Optimized color models
for high-quality 3d scanning,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Confer-
ence on, Sept 2015, pp. 2503–2510.

[15] Frederique Crete, Thierry Dolmiere, Patricia Ladret, and
Marina Nicolas, “The blur effect: perception and esti-
mation with a new no-reference perceptual blur metric,”
in Proc. SPIE, 2007, vol. 6492, pp. 64920I–64920I–11.

[16] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and
Vladlen Koltun, “A large dataset of object scans,”
arXiv:1602.02481, 2016.

2935

