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1. SUMMARY

We have implemented the latest version of the micro-mechanical damage model developed by Dr. 
Charles Sammis and associates in a Fortran 90 module that can be incorporated into a 1D, 2D or 
3D code. We have added the module to our 1D spherically symmetric nonlinear finite difference 
code SKIPPER and our 3D finite element code CRAM3D. During the first year of this project we 
performed an extensive set of calculations using the 1D code, and compared the results with near-
field data from US and former Soviet Union underground nuclear explosions. The new model 
gives a better data fit to the Degelen data than the quasistatic damage model used in Stevens et al 
(2003), and also gives a fairly good data fit to the Piledriver data without changing any parameters.
The results of the calculations will define the physical models and parameters that will be used in 
year 2 in the 3D code. 

2. INTRODUCTION

For many years, we have been modeling seismic waves from underground nuclear explosions 
using numerical calculations in one, two and three dimensions. Under AFRL support, we have 
developed CRAM3D, a finite element code specifically designed for calculating underground 
nuclear explosions. Currently CRAM3D uses a continuum model for material strength and 
damage. For the past two decades, Dr. Charles Sammis and associates at USC have been 
developing a micromechanical damage model, also developed under AFRL support, which 
explicitly takes into account damage due to microcracks and failure due to crack coalescence
(Ashby and Sammis (1990), Deshpande and Evans (2008), Bhat, Rosakis, and Sammis (2012),
Thomas et al, (2017)). We previously implemented an early version of this model in our one-
dimensional spherically symmetric code SKIPPER (Rimer et al, 1998,1999; Stevens et al,

2002, 2003). Here we implement the latest version of the micromechanical damage 
model first in SKIPPER and then in CRAM3D, and to use it to model the damage caused by 
the explosion and the effect of this damage on seismic waves. 

In the following sections of the report, we: 

1. Describe the current version of the micromechanical damage model and the equations that
are incorporated into the numerical codes

2. Describe the other nonlinear mechanisms that are included in our codes and how they
interact with the micromechanical damage model

3. Give the results of an extensive set of spherically symmetric calculations; compare the
results of the calculations to near-field data from the former Nevada Test Site, Fallon,
Nevada and Degelen Mountain in the former Soviet Union.

4. Describe how the micromechanical damage model is incorporated into the SKIPPER and
CRAM3D codes.

Approved for public release; distribution is unlimited.
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Figure 1. Geometry in the micromechanical damage mechanics model.    
   

               
   

  

 
 

The micromechanical damage mechanics formulated by Ashby and Sammis (1990) models the 
nucleation, growth, and interaction of a mono-        
orientation. Bhat et al. (2012) used this model as a template to develop their dynamic damage 
model, which we use in this study. The main features/assumptions of the Ashby/Sammis 
formulation were: 

Approved for public release; distribution is unlimited.

3. TECHNICAL APPROACH

3.1 The micromechanical damage model

We use the micromechanical damage mechanics originally formulated by Ashby and Sammis 
(1990) for compressive loading and generalized by Deshpande and Evans (2008) to also allow 
tensile stress states. As illustrated in Figure 1, frictional sliding on optimally oriented initial flaws 
nucleates tensile wing-cracks, which, at high stress, coalesce to pulverize the rock. If the initial 
fracture distribution is isotropic then there will always be optimally oriented starter flaws at any
azimuth and the resultant damage pattern will have spherical symmetry.
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(1) The starter cracks all have the same radius a and are all oriented at the same angle relative
to the axis of principal compression . If the orientation of changes with time so does the
populations of activated cracks. There are NV such optimally oriented 
for any orientation of . Sliding on the starter cracks is inhibited by Coulomb friction

f.
(2) All additional crack damage is in the form of tensile “wing cracks” that nucleate at the tips of

the  axis. They open in the direction of the least
compressive principal stress .

(3) The stress at which the wing cracks nucleate is taken from results in the literature and may be
expressed as= 1 + +1 + 31 +

(1)
where KIC is the critical stress intensity factor (fracture toughness), which is a material property.

(4) The stress intensity factor KI at the tips of the growing wing cracks (of length l) is approximated
as that at the tip of a tensile crack of radius + that is loaded by a point force at its center. The
point force is taken as the  component of for
The geometrical factor axis. This approximation
was tested against the numerical solution and found to be poor for small l but asymptotically better
as l increases. An adjustable parameter KI
to the numerical calculations of KI at small values of l.

(5) The failure stress ( ) the versus l curve at constant
.

There are thus four crack related parameters in the model:

(1) = where is the angle between an optimally oriented starter crack and the axis.

(2) adjusted to make the approximate expression for KI agree with the full numerical simulation
when the wing cracks are short.

(3) a = to the observed
onset of nonlinearity in the stress strain curve or the onset of acoustic emissions.

(4) NV =
the uniaxial strength.

Despite these apparently crude approximations, Ashby and Sammis (1990) found that this 
approximate model gave a ve rfaces, ( ), of a wide range of rocks 
for reasonable values of a (approximately the grain size) and NV. It was later shown by Bhat et al. 
(2012) that the inclusion of a size distribution of cracks and allowance for multiple crack 
orientations did not 

By approximating the interaction between growing wing cracks Ashby and Sammis (1990) found 
a positive feedback that led to mechanical instability and failure. They demonstrated that their 
model gave an adequate description of the failure envelope (  versus at failure) for a wide 
range of rocks loaded in triaxial compression ( < = , where compression is taken as 

Approved for public release; distribution is unlimited.
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negative). However since quasi-static crack growth was assumed (the stress intensity factor was
always at its critical value) their formulation does not include effects of loading rate. Bhat et al. 
(2012) extended the damage mechanics formulation in by incorporating theoretical and 
experimental dynamic crack growth laws that have been shown to be valid over a wide range of 
loading rates. They compared their model with uniaxial experiments in marble and were able to 
predict failure stress over a wide range of loading rates ( ~10-6 to 103 sec-1).

3.1.1 Development of the Constitutive Model 

In most brittle materials, micro-crack nucleation, growth and coalescence is driven by local sliding 
at micro-cracks or grain boundaries as shown schematically in Fig.1. This micro-crack physics 
produces inelastic dilatancy, modulus reduction, and strain-rate sensitivity of failure strength. Thus 
any realistic constitutive model of brittle materials should take into account the micromechanics 
of fracture. 

Continuum Constitutive Model From Micro-Scale Deformations 

Bhat et al. [2012] used an energy-based approach to determine the constitutive relationship of the 
damaged solid. If S denotes the current damaged state of the material in the sense that variations 
in stress at constant S induce a purely elastic response, then the stress-strain relationship and the 
compliance tensor can be written in terms of a Gibbs free energy function, W, under isothermal 
conditions as: = ( , )

= [ ( , )] (2)

where W is symmetrized in the components of  (notations in bold represent tensor quantities). 

Let dW denote the change in the free energy function when the solid undergoes deformation that 
takes it from the state S to S + dS at constant ij. Therefore, the inelastic strain associated with dW 
is given by = ( ) (3)

The Gibbs free energy is written as the sum of the elastic contribution and an inelastic one due to 
the presence of micro-cracks, which is written in terms of the stress intensity factors , , ,
where subscripts I, II, and III denote the three modes of loading at the crack tip. ( , ) = ( ) + ( , ) + ( , ) + ( , )( )  (4)

In this expression We is the elastic strain energy, is the locus of all crack fronts in the damaged 
solid, and ds is a function of position along describing the amount of local advance of the micro-
cracks. The stress-strain relation and the compliance tensor are then given by Eq. 2. 

Approved for public release; distribution is unlimited.
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3.1.2 Evaluation of the Stress Intensity Factors

The framework describe above was used to evaluate the Gibbs free energy, Eq. 4, and hence the 
stress-strain relationship and the compliance tensor, for the micro-crack model formulated by 
Ashby and Sammis [1990]. As discussed above, this model considers an isotropic elastic solid that 
contains an array of penny shaped cracks all of radius a (micro-cracks or grain boundaries) all 
aligned at an angle to the largest (most negative) remote compressive stress 1 (Fig. 1b).  Only 
those cracks that are optimally oriented for sliding are considered. The population of optimal 
cracks that exist prior to loading has the volume density Nv, which remains fixed during loading - 
no new sliding cracks appear during loading. The size and density of these initial flaws are 
characterized by an initial damage defined through the scalar variable = ( ) (5)

where a is the projection of the crack radius in a vertical plane parallel to the direction of 1, =
. As the wing cracks extend a distance l in the x1 direction (see Fig. 1) the damage increases 

as = ( + ) (6)

The stress intensity factors are found by calculating the shear and normal stresses on each sliding 
crack from the remote compressive stress field. Three deformation regimes for the microcracked 
solid were identified based on the remote loading state. In Regime I, the remote loading is 
compressive and is not large enough to overcome the frictional resistance on the sliding cracks.
The solid thus behaves like an isotropic linear elastic solid. In Regime II the frictional resistance 
on the sliding cracks is overcome by the remote compressive load leading to the nucleation and
growth of wing-cracks. In Regime III the remote loading stress in the x3 direction turns tensile 
leading to the opening of both the angled sliding cracks and their wing-crack extensions. 

Once the wing cracks nucleate, the Mode-I stress intensity factor, KI, at the tip of the wing-cracks 
(of length l) is evaluated. It has three contributions: (1) Sliding on the angle cracks leads to a 
wedging force, Fw, on the wing-cracks. This wedging force is simply the component of the sliding 
force resolved in the direction of the minimum principal stress 3. (2) The remote confining stress, 
characterized by 3 tends to close the wing-cracks and, (3) opening of the wing cracks  creates 
tension (i) on the unbroken ligaments between neighboring wing-cracks (see Fig. 1),  which is 
represented as an average global interaction between the wing cracks that enhances their growth.

3.1.3 Constitutive Relationship and Damage Evolution 

The Gibbs free energy function in Regime’s I, II, and III was evaluated using the stress intensity 
factors calculated as indicated in the previous section and Eq. 4. The Gibbs free energy function
was then differenced as shown in Eq. 2 to obtain the stress-strain relationship and the compliance 
and modulus tensors. The equations derived using this technique are given in Appendix A. 

To complete the constitutive model described above, we need an evolution law for the scalar 
damage parameter, D. Differentiating D in Eq. 6 with respect to time gives= / /

(7)

Approved for public release; distribution is unlimited.
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where / = is the instantaneous wing-crack tip speed. This is a geometric relation connecting 
the wing crack tip speed with the evolution of the damage parameter D. Completing this process
requires additional physics relating / to local stress conditions in the vicinity of the micro-
cracks. This is done by making the stress intensity factor and its critical value (toughness) loading-
rate dependent for both the nucleation and growth of the wing cracks.

To solve this problem, we need the state of stress around a crack-tip (both stationary and 
propagating) under various loading conditions. These values then need to be compared with 
experimentally determined fracture toughness of the material, under similar conditions, to develop 
crack initiation and growth criteria. The most common form for such criteria is the requirement 
that the crack must grow in such a way that some parameter (e.g. the dynamic stress intensity 
factor, ) - tains a value that is spe
This value, representing the resistance of the material to the advance of the crack, is called the 
dynamic fracture toughness ( ) of the material, and it can be determined through experimental 
measurements only. It can be represented with the following functional form = ( / )/ (8)

where vm is the experimentally determined branching speed.

The dynamic stress intensity factor for the growing crack is given by ( ) = ( / )/ (9)

where KI is the quasi-static stress intensity factor of an equivalent crack of the same length but 
growing at zero speed. The limiting speed of a mode I crack is thus the Rayleigh speed at which 
point ( ) = 0.

Setting the dynamic stress intensity factor (Eq. 8) equal to the dynamic fracture toughness (Eq. 9) 
gives the following non-linear equation for the crack speed: ( / )/ = ( / )/ (10) 

This expression is solved to obtain the crack speed, which is then used in Eq. 7 to complete the 
damage evolution equation.  

Approved for public release; distribution is unlimited.
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3.2 Implementation in SKIPPER and CRAM3D

Rimer et al (1998) implemented an early 
version of the micromechanical damage 
model in SKIPPER, the one-
dimensional spherically symmetric 
code. Although implementation in 
CRAM3D is somewhat more 
complicated, the procedure is essentially 
the same. Figure 2 shows a description 
of a single computational cycle. At the 
start of each time step, we calculate the 
accelerations from nodal forces, and 
update velocities, displacement, strains 
and strain rates. From this, we calculate 
new “trial” stresses and stress rates. 
“Trial” means that the stresses may be 
adjusted according to nonlinear 
constitutive models. If the strength of the 
material is exceeded, then the stresses 
are reduced according to a plastic flow 
rule. If a tensile crack opens, then the 
tensile stress is reduced to zero. 

The micromechanical damage model is another type of constitutive model, and it is updated at 
each time step after the deformation from the previous cycle is calculated. At each time step, and 
in each element, the code checks to see if the stress state allows cracks to extend, as discussed in 
the previous section. If it does, then we calculate the speed of crack extension and increase the 
crack length by the corresponding amount over a time step. If damage increases beyond a critical 
level failure occurs and we enter a post-failure constitutive model. In the quasistatic model used 
in the 1998-2003 studies, the code checked to see if an increase in shear stress caused a decrease 
in crack length, in which case unstable failure occurred. With the new dynamic model, the material 
does not necessarily fail immediately at the quasistatic failure point because the speed of crack 
growth is limited by an empirical maximum speed. We use D=1 as the failure condition. The main 
difference between the 1D and 3D implementations is that in 3D the principal stress directions 
change and need to be recalculated at each time step, while in 1D the principal stress directions 
always correspond to the radial and axial directions.

The following sections describe the other components of the numerical calculation. 

3.2.1 Equation of State 

The equation of state is specified by empirical constants for pressure vs. volume, plus an optional 

crush curve for porous media. The equation of state is defined by the equation 2P K B where 
P is pressure, K and B define the bulk modulus and is the volumetric change defined by 

0 1 where and 0 are the current and initial densities, respectively. Granite has a very 
small porosity and so does not require a crush curve. 

Figure 2. CRAM3D and SKIPPER Computational 
Cycle

Begin Cycle n+1, Time t+dt
Variables in zones i,j,k are 
known at cycle n, time t

Solve Equation of Motion
For change in velocity in each zone.

Update velocity, displacement, strains, strain rates

Use Constitutive Models
(Hooke’s Law, plastic flow rule, damage, etc.)

To compute mean, deviatoric stress in each zone 
At cycle n+1, time t+1,

From updated strains, strain rates

End of Cycle n+1
Bookkeeping to compute next time step dt, update 

time for next cycle

Approved for public release; distribution is unlimited.
7



3.2.2 Shear Strength 

Shear strength is defined by a failure (plastic 
yielding) condition expressed as a function of 
deviatoric stress invariants. In its simplest form, 
shear strength can be stated as a function of shear 
stress vs. pressure, with the strength increasing with 
increasing confining pressure. However, the 
material surrounding the explosion goes through 
some complicated strain states, initially compressed
radially and stretched axially, so a more general 
relation is needed. We use the formulation 
developed by Peyton (1983). The failure surface is 
defined by (Figure 3):

32
2 3 1JJ

where 2J is the second deviatoric stress invariant 
and J3

2
2 3J

function of the form, 

0 2m
m m

P P
P P

,

where 0+ m for P>Pm.

3.2.3 Tensile cracking

Tensile cracking is based on the 
formulation of Maenchen and Sack 
(1964), and can be a very important 
effect. When the normal stress in any 
direction becomes tensile, the material 
strength in that direction is set to zero. 
Tensile cracks can heal after compression 
is reapplied. Tensile cracking is turned on 
in the granite model. Tensile cracking
typically occurs soon after failure from 
the micromechanical damage model.

3.2.4 Shear strength reduction 
Several input parameters are required to 
define the strength reduction model. The 
first, cramepw, is the amount of plastic 
work accumulated before strength
weakening begins. For the Shoal granite 

Figure 3. Failure surface in principal 
 

and S3 are the principal deviatoric 
stresses. 

Figure 4. Granite strength model. “Initial” line 
is the initial granite strength, “Failed” is the 
strength immediately after failure, "Weakened” 
is the final shear strength.

Approved for public release; distribution is unlimited.
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model it is 500 Joules/m3 (5000 erg/cm3). The amount of strength reduction is determined by the 
shear strain, with limits deinit=0.001 and defull=0.06. The strength is weakened linearly between 
these values from the “Failed” strength to the “Weakened” strength. The “Failed” and “Weakened” 
lines can be thought of as corresponding to static and dynamic friction, which in this case have 
coefficients of friction of 0.6 and 0.02 (equivalent 0.528 and 0.017), respectively. The 
minimum failed strength is defined by a cohesive strength taucoh, which was set equal to the zero 

0. The strength states for this model are shown in Figure 4. 

3.2.5 Shear modulus reduction

The shear modulus decreases as a function of shear strain, from epinit to epfull,  from its initial 
value to its reduced value Gdam. For the Shoal granite model epinit=4x10-4, epfull=1.0*10-3, and 
Gdam=1.0x1010 Pa (10x1010 dyne/cm2).

3.2.6 Options and Order of Application 

The nonlinear codes SKIPPER and CRAM3D allow for any or all of these constitutive models to 
be used, but there is a prescribed order to how they are used, as follows: 

1. The elastic calculation is done first, generating the trial stresses.

2. The micromechanical damage model is done next, taking the material from its elastic state
through unstable crack growth.

3. Shear failure is calculated next, causing at least a small amount of plastic flow to occur
before other nonlinear effects are allowed. The amount of shear failure is measured by the
plastic work accumulated. There is an option to allow shear failure before failure from the
micromechanical damage model. This may be appropriate near the cavity where stresses
are very high and brittle failure is unlikely.

4. Tensile cracking can occur once plastic work is nonzero.

5. Shear modulus reduction can occur once plastic work is nonzero and the maximum shear
strain in an element has exceeded epinit.

6. Strength reduction can occur once plastic work exceeds cramepw and the maximum shear
strain exceeds deinit.

If the micromechanical damage model is not used, then the requirement that shear failure has 
occurred before shear modulus reduction can occur is removed. Otherwise, the same order applies.

Approved for public release; distribution is unlimited.
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4. RESULTS AND DISCUSSION

4.1 Comparison of Spherically Symmetric Granite Runs with and without the 
Sammis Micromechanical Damage Model

We have implemented the Sammis Micromechanical Damage Model in our 1D spherically 
symmetric nonlinear finite difference code SKIPPER. We compare the results with the strain 
damage model that has been used for calculations of Shoal, North Korea and other explosions 
(Stevens and Thompson, 2015). These calculations were all done with the parameters used for 
Shoal, a 12.5 kt explosion in granite at a depth of 367.4 m. In the following, we start with properties 
common to all calculations (Table 1), then discuss the nonlinear effects modeled in the original 
granite Shoal calculation, and then including the Sammis model with a range of variants on 
modeling parameters.  

Table 1. Properties of granite used in SKIPPER calculations. Numbers below are in SI and 
CGS units. CGS units are used in SKIPPER, SI in CRAM3D 

Property Value (SI) Value (CGS) Variable Name
Bulk modulus 37.9x109 Pa 379x109 dyne/cm2 K/aks/capa
Shear modulus 23.8x109 Pa 238x109 dyne/cm2 G/amu
Density 2600 kg/m3 2.6 g/cm3 rho
Melt energy 5.2x109 J/m3 5.2x1010 erg/cm3 em/emlt

0 - Strength at P=0 8.96x106 Pa 8.96x107 dyne/cm2 tauz
m - Strength at Pmax 3.313x108 Pa 3.313x109 dyne/cm2 taum

Pmax 5.0x108 Pa 5.0x109 dyne/cm2 pyld

4.1.1 Micromechanical Test Cases

The Sammis micromechanical damage model has several parameters, some of which can be 
determined experimentally. P and S velocities are derived from the properties in Table 1. 

Table 2. Sammis model properties for granite 
Property Value (SI) Value (CGS) Definition
vp 5175 m/s 5.175x105 cm/s P velocity
vs 3026 m/s 3.026x105 cm/s S velocity
vr 2723 m/s 2.723x105 cm/s Rayleigh velocity
vm 1000 m/s 1.000x105 cm/s Max crack speed
K1C 1.0x106 Pa-m1/2 1.0x108 dyne/cm2-cm1/2 Stress intensity factor
a 0.0001 m 0.01 cm Crack half-width
f 0.6 0.6 Coefficient of friction
D0 0.1 0.1 Initial damage

Other properties needed for calculations can be derived from these: 
10.5* tan 1/ f

cos( )
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Nv is the density of initial cracks that are optimally oriented for sliding – cracks per unit volume. 
For the parameters above, Nv is 36 cracks/cm3 (36x106/m3). is the angle of the optimally oriented 
crack measured from the direction of the maximum principal stress.

The properties used here are those used in Ashby and Sammis for granite, except that D0 is 
increased to 0.1 from 0.01 and a is 1 mm instead of 0.5 mm and the coefficient of friction is 0.60 
instead of 0.64. 

Of these properties, the two most likely to vary are the crack size a and the initial damage D0. For 
the following parameter study we left D0 fixed. Since the crack size is very likely to scale with 
problem size, we performed tests with a values of one millimeter, one centimeter, 10 centimeters 
and one meter. Note that any change in a also changes the crack density according to the equation 
above. Changing a from 0.1 mm to 1 m decreases Nv by 1012 which is one crack per 30,000 m3 
(about a 30 meter/side block). 

For a sphe 1 to be in the radial 
2 3 are equal. In an explosion, there is an initial pulse of high pressure, which 

causes a radial compressive strain and compressive stress. In the axial direction, there is 
compressive stress, but tensile strain as the material is forced to expand axially.

In addition to varying the initial crack size, we also vary the other nonlinear effects that can occur 
during the explosion. We ran 9 variations (Table 3); each of these were run four times for the 
different crack sizes. All cases allowed tensile cracking after, but not before, plastic yielding had 
occurred. Three of them used the reduced strength model described above. Three of the cases used 
the elastic moduli throughout and six used the damage dependent moduli calculated using the 
Sammis model.

Table 3. Nonlinear options used in test runs 
Case # Shear modulus 

reduction 
Plastic yielding 
allowed before 
crack failure

Sammis moduli 
instead of elastic 
moduli

Weakened 
shear strength

1 Off Off Off Off
2 On Off Off Off
3 On On Off Off
4 Off Off On Off
5 On Off On Off
6 On On On Off
7 Off Off On On
8 On Off On On
9 On On On On

Calculated cavity radii are listed in Table 4. Table 5 shows calculated reduced displacement 
potential (RDP). Table 6 shows the maximum extent of plastic yielding. Table 7 shows the 
maximum extent of full damage and Table 8 the maximum extent of partial damage. For the new 
calculations “partial damage” means that the cracks in the cell have extended according to the 
micromechanical damage model. “full damage” means that cracks have reached unstable failure. 
For the Shoal model, “damage” means that enough plastic work has accumulated to reduce the 
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strength in the cell, “full damage” means that the strength is reduced continuously from the origin, 
“partial damage” is discontinuous beyond the full damage extent. The measured cavity radius for 
Shoal was 25.6 meters (Beers, 1964).  

Table 4. Calculated final cavity radii (meters)
Case # N/A a=1mm a=1cm a=10cm a=1m 
Shoal 20.58 
1 16.28 16.42 16.67 16.40
2 16.62 16.57 16.81 16.80
3 15.38 16.82 17.24 17.26
4 15.96 15.61 14.65 13.24
5 16.22 15.70 15.17 13.99
6 13.91 14.74 15.02 14.42
7 25.42 23.00 21.35 20.36
8 25.77 23.17 22.23 21.85
9 21.71 21.79 21.87 21.42

Table 5. Calculated reduced displacement potential (m3) 
Case # N/A a=1mm a=1cm a=10cm a=1m 
Shoal 1760 
1 772 789 824 789
2 821 810 846 849
3 649 850 916 920
4 818 778 780 725
5 862 790 802 790
6 781 1494 1215 914
7 3160 2625 2754 2985
8 3254 2617 2999 3041
9 2992 2810 2625 2393

Table 6. Radius of plastic yielding (m) 
Case # N/A a=1mm a=1cm a=10cm a=1m 
Shoal 266.6 
1 140.5 162.5 186.4 171.3
2 145.8 162.5 189.5 177.2
3 156.8 162.5 192.7 192.7
4 143.1 162.5 180.2 168.3
5 151.3 162.5 180.2 168.3
6 180.2 208.9 208.9 199.1
7 278.5 266.7 303.4 286.7
8 278.5 270.6 307.7 290.8
9 262.8 215.7 212.3 199.1
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Table 7. Radius of full damage (m) 
Case # N/A a=1mm a=1cm a=10cm a=1m 
Shoal 137.9 
1 140.5 162.5 186.4 171.3
2 145.8 162.5 189.5 177.2
3 156.8 162.5 192.7 192.7
4 143.1 162.5 180.2 168.3
5 151.3 162.5 180.2 168.3
6 180.2 208.9 208.9 199.1
7 278.5 266.7 303.4 286.7
8 278.5 270.6 307.7 290.8
9 262.8 215.7 212.3 199.1

Table 8. Radius of partial damage (m) 
Case # N/A a=1mm a=1cm a=10cm a=1m 
Shoal 148.6 
1 140.5 180.2 219.0 233.0
2 145.8 183.3 219.0 243.9
3 156.8 183.3 226.0 243.9
4 143.1 183.3 240.2 357.8
5 151.3 186.4 240.2 367.5
6 180.2 236.6 290.8 521.2
7 282.6 307.7 403.1 626.9
8 282.6 307.7 408.4 589.9
9 262.8 286.7 329.8 527.8

Table 9. Minimum P velocity
Case # N/A a=1mm a=1cm a=10cm a=1m 
Shoal 4438 
1 5170 5170 5170 5171
2 4434 4435 4435 4435
3 4435 4435 4435 4435
4 5172 5171 5173 5180
5 4436 4452 4437 4443
6 4638 4466 4453 4485
7 5175 5173 5173 5182
8 4439 4437 4438 4444
9 4457 4468 4453 4450
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4.1.2 Comparison with Shoal 

Shoal had three shot level stations each located 
120 degrees apart (Figure 5) at a distance 
approximately to 590 meters from the shot. 
Stevens and Thompson (2015) modeled this 
explosion using the 3D finite element code 
CRAM3D, and including tectonic stresses. 
Stevens and Thompson were able to match the 
general character of the waveforms including 
variability from tectonic release, however they 
were not able to match the waveforms exactly. 
In particular, although the calculations clearly 
showed an increase in amplitude in the direction 
of PM-3, they could not match the very large 
observed amplitude at that station. The data at 
these three stations and the results of that 
calculation are shown in Figure 6. 

Figure 6. Left: radial velocity and displacement recorded at the three stations. 
Right: calculation at zero and 90 degrees. Zero degrees is the direction of PM-1. 

        
       

In 1D we cannot include tectonic stresses or other 3D effects, but it is still useful to compare with 
the data. The Shoal calculation in the tables above used identical material properties to the 
CRAM3D calculation, with a constant pressure corresponding to the overburden pressure at the 
shot depth. A comparison of the near-field shot-depth waveforms is shown in Figure 7. Excluding 
the anomalous station 3, which clearly shows the effect of tectonic stresses, the main difference 
between the calculated and observed data is that the calculated velocity has a sharper initial peak, 

Figure 5. Location of the Shoal explosion 
and the three nearfield shot level recording 
stations and the direction of the local stress 
state
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and both the observed velocity and displacement are spread out over a longer period of time. This
most likely means that the Shoal granite is weaker than the granite model.  

Figure 7. Comparison of SKIPPER calculations of Shoal at 590 meters (red) with recorded 
data (blue). 

The Shoal granite model was derived by combining two granite models, one for Piledriver and one 
for Degelen Mountain that was developed in an earlier study (Stevens et al, 2003). The Degelen 
Mountain granite was stronger than the Piledriver granite (NTS Climax Stock Granite). As 
discussed above, the shear failure model has three parts: an initial strength model corresponding 
to the laboratory strength of fractured granite, a post-failure model of weakened, crushed granite, 
and a model based on shear strain that defines how the strength reduction occurs (Figure 4).

In the same report, we studied several other material models. This model was referred to as the 
Yield/Failure Surface/Shock Damage (YF-SS) model. In the same study, we implemented an early 
version of the Sammis damage mechanics model. The damage mechanics model was used until 
unstable crack growth occurred, after which it was replaced by the shock damage model (SA-SS). 
We also studied acoustic fluidization as a post-failure model. We compared the results with data 
from Piledriver and Degelen Mountain and found that we achieved the best results with the SA-
SS model. Figure 8 shows the comparison with near-field Piledriver waveforms. Although the 
calculated waveforms are low compared to the data at the closest two stations, the waveforms are 
quite good at the next two stations. The calculations also have the long negative velocities observed 
in the data. As shown in Stevens et al (1986), Rimer et al (1987) and earlier reports, an effective 
stress model was developed that matched the first two stations quite well, but did not do as well 
farther out. Figure 9 shows calculated and observed waveforms from one Degelen Mountain 
explosion with a very good data fit at four locations. The main difference between the Degelen 
and Piledriver models is a weakened coefficient of friction of 0.2 vs. 0.02, respectively. 
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Figure 8 . Calculated (red) and observed (blue) waveforms from the 
62 kt explosion Piledriver using the SA-SS model

Figure 9. Calculated (red) and observed (blue) waveforms from the 78 kt 1987/07/17 
Degelen Mountain explosion using the SA-SS model  
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Plots were made for all of the cases above, and we show a subset here. Figure 10 shows all 
waveforms for case #8 with a=1 cm. The waveforms are very similar to the Shoal calculation. 
Figure 11 shows a comparison of the Shoal waveforms with the other crack sizes, also for case #8. 
The 1 cm case has slightly larger amplitudes than the others, with the smallest amplitudes at 1 mm 
and 1 m. 

Figure 10. Case 7 with a=1 cm

Figure 11. Calculated velocity waveforms (red) compared with Shoal data (blue) for case 7. 
Top row a=1mm, middle row a=10cm, bottom row a=1m 

One reason calculation #8 is so similar to the Shoal calculations is that case #8 includes most 
of the same nonlinear effects, particularly strain weakening and shear modulus reduction. The 
main difference are that case #8 uses the Sammis model and damage-dependent moduli pre-
failure. Velocity waveforms for all cases are shown together in Figure 12. 
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Figure 12. From top to bottom cases 1,2,3,4,5,6,7,8,9, velocity waveforms. All for 1 cm 
crack size

A few conclusions can be drawn from these. First only cases 7 and 8 have the broadening of the 
waveform and long negative pulse that is observed in the data. Case 9 has a broader waveform, 
but a much sharper first arrival. The difference between cases 8 and 9 is that Case 9 allows shear 
failure before damage due to cracks is complete. The motivation for including this is that near the 
cavity where stresses are very high and shear failure is physically reasonable, but it results in a 
high amplitude initial arrival not seen in the data. After the initial peak, however, it has the long 
duration negative pulse seen in the data. The difference between cases 7 and 8 is shear modulus 
reduction after failure. One of the motivations for this is that compressional velocities were 
observed to decrease near the cavity in the Degelen explosions, but it makes surprisingly little 
difference in the waveforms, at least at this distance range.
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4.1.4 Calculated Damage 

The calculations led to a variety of damage distributions. For the cases where plastic yielding was 
allowed before crack failure (3, 6, 9), yielding dominated close to the source and full damage did 
not occur in that region, but occurred farther out. There are also significant differences in the range 
of the damage depending on initial crack size (Figure 13, Figure 14).

Figure 13. Final damage for case #8. Top left: a=1mm, top right a=1cm, bottom left 
a=10cm, bottom right a=1m
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Figure 14 . Final damage for all cases, a=1 cm. Top: case 1 (left), case 2 
(right); row 2: case 3 (left), case 4 (right), row 3: case 5 (left), case 6 (right), bottom: 

case 7 (left), case 9 (right) 

More results from these calculations are shown in Appendix B.
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4.2 Comparison with Degelen Mountain Near-Field Data

In Stevens et al (2003), we compared calculations from an early version of the micromechanical 
damage model with shot level data from underground nuclear explosions at the former Soviet test 
site at Degelen Mountain. One example was shown earlier in Figure 9. Here we compare the same 
data set with the results of Shoal calculation #8 with a=1cm. To make this comparison we scale 
all of the data, both calculated and observed to a common yield of 12.5 kilotons. The waveforms 
shown are the closest distance used in the calculation to the scaled distance in the observation. The 
legend in each figure shows the actual distance (e.g. x90), the distance scaled to 12.5 kt, following 
that number, and the calculated distance shown as “ACE station# calculated distance”. This figure 
can be compared with figure 29 from Stevens et al (2003), which shows the same data together 
with calculations using the older quasistatic model. Here we have also integrated the velocity data 
to get displacement data. The data fit is at least as good as the 2003 report, which is quite 
remarkable since we were not explicitly trying to fit it. Furthermore it is a better data fit than we 
got to the Shoal data, which we were trying to model. 
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Figure 15 . Shot level data from Degelen Mountain explosions compared to 
Shoal calculation #8 The original data is the velocity data shown in blue in the upper half of 

each figure. The displacement data was obtained by integrating the velocity.
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4.3 Comparison with Piledriver Data

In the 2003 study, we also compared our calculations with Piledriver, using a slightly different 
model. See Figure 24 of the 2003 report and Figure 8 above. As in the earlier study, the amplitudes 
at the first two stations are low, but the calculation has the same long negative velocity pulse as 
the data, and the data fit is fairly good at the two more distant stations. 

Figure 16. Comparison Piledriver near-field data with Calculation #8 
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5. CONCLUSIONS

We have implemented the latest version of the Sammis micromechanical damage model in our 
spherically symmetric nonlinear finite difference code SKIPPER, using a Fortran 90 module that 
can be added unchanged to our CRAM3D nonlinear finite element code. We have run an extensive 
set of calculations using the spherically symmetric code and compared the results with data from 
nuclear explosions Shoal and Piledriver as well as a series of explosions at the Degelen Mountain 
test site. We have used this to determine a baseline case, described as Case #8 above, which is 
most consistent with all of the data. Remarkably, the new model gives a better data fit to the 
Degelen data than the 2003 model, and also gives a reasonably good data fit to the Piledriver data 
without changing any parameters. We will use this model as our starting model in the CRAM3D 
calculations in year two of this project.
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APPENDIX A. MICROMECHANICAL CONSTITUTIVE EQUATIONS 

Bhat et al. (2012) extended the Deshpande and Evans (2008) formulation to incorporate an 
experimentally motivated new crack growth (damage evolution) law that is valid over a wide range 
of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. 
Incorporating this feature produces strain-rate sensitivity in the constitutive response. Bhat et al. 
(2012) expressed the failure condition in terms of stress invariants, however because stress 
invariants are isotropic, we have reformulated the equations to allow the inherent anisotropy of the 
cracks to remain.

We follow Deshpande and Evans (2008) but use the Ashby and Sammis (1999) expression for KI.
When the cracks are shut and have no influence on the elastic response of the solid, the strain 
energy density W is that for an uncracked solid: 

= = ( + + ) ( + + ) + ( + + ) (1)

Where the elastic moduli are those of the uncracked solid.

When the wing cracks are activated the energy density can be found by a two-step process. First, 
seal the cracks (NV per unit volume) and apply the external loads. The strain energy density is 
given by W0 as above. Then, without changing the loads, release the cracks. This results in a change 

W in the strain energy per crack, whereupon the strain energy becomes= + (2)

The energy for a fixed value of / is = 2   (3)

We wish to put the Ashby and Sammis expression for the stress intensity factor in the form = ( + ) (4)

so that we can use it in the energy equation and stress-strain relations we have already found 
following the methodology in Bhat et al. and Thomas et al. Ashby and Sammis wrote the stress 
intensity factor at the tips of the wing cracks as = ( ) / + + (5)

where the wedging force is = ( ) (6)
The internal stress in (5) is = ( ) (7)

and the average area per crack in (7) is= / / = ( )/ (8)
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The constants are = (1 + ) / (9) = /( ) / (10) 

In the 1D model was set to = 0.1 to fit the numerical simulations. In the 3D model we treat 
as an adjustable parameter. Based on the fits to a wide variety of rock data in Ashby and Sammis 
(1999) we take   = 0.45. 

Ashby and Sammis [eqn. (26)] give the following equation for the stress intensity factor 

= / ( / ) / / / 1 1 + 2 ( / ) / 1 / /( / ) / 1
(11) 

where = (12) 

Writing KI explicitly in terms of 1 and 3

= / (( / ) / 1 + / ) / 1 1 + 2 ( / ) / 1 /1 /2 ( / ) / 1
(13) 

Define = / ( / ) / / / (14) = 1 + 2 ( / ) / 1 / / (15) = 2 ( / ) / 1 (16) 

as in Deshpande and Evans (eqn. 9). Then= 1 (17) 
which can be written = (18) 
or = + + (19) 

This is in the required form
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= ( + ) (20) =   (21) = +   (22) 

Now set = to get an equation for 1 as a function of 3 and D. This is the equation we need 
to solve at each time step for crack growth. We can continue to calculate the effective moduli for 
the cracked solid. = 2 = ( + ) 2 = ( + )  (23) 

Using = 2(1 + )  and = ( )
= ( ) ( + ) (24) 

The stress-strain expression is found by differentiation W= (26) 

In the principal coordinate system= = + ( ) 2 ( + ) (27) 

= = (28) 

= = + ( ) 2 ( + ) (29) 

For the elastic components we use the isotropic compliance matrix= ( ) [ ( + )] (30) 

= ( ) [ ( + )] (31) 

= ( ) [ ( + )] (32) 

= = = (33) 

Combining the elastic and damage contributions 
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= ( ) [ ( + )] + ( + ) (34) 

= ( ) [ ( + )] (35) 

= ( ) [ ( + )] + ( + ) (36) 

In matrix form

= ( ) (37) 

where = 1 + (38) = (38) = + (39) = = 1 =  (40) = + = = 1 +  (41) 
In matrix form

= ( ) 1 + +1+ 1 +  (42) 

It remains to invert M to find expressions for 1, 2, and 3 that can be used to update the stress 
state.

Let = 1 + = +      = 1 + (43) 

= ( ) (44) 

Then 
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= 1 (46) 

and det( ) = [ + ( + 2 )] (47) 

=
( )( ) ( )( )( ) (48) 

Note that these are all written in terms of the principal stresses and strains, so we need to rotate to 
the directions of the principal stresses in order to use the equations. For spherically symmetric 

1 2 3. We assume that cracks are randomly 
oriented around the radial direction. We can then use an axisymmetric form for the equations 
above: 

= 12 (1 + )
1 + 2 + ++ 1 ++ 1 +

And its inverse, defining = 1 + 2
=

( ) ( )( )( )
1
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APPENDIX B – DIAGNOSTIC DATA FROM THE SHOAL 
CALCULAITONS 
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APPENDIX B DIAGNOSTIC DATA FROM THE SHOAL
CALCULATIONS

To aid in understanding the calculations and the differences in results due to different parameters, 
we collected an extensive amount of diagnostic data and generated many plots. A sampling of 
these are shown here.

B.1 Comparison of stress/strain and K1R at 99m for Case8 with a=1mm to 1m.

Figure . K1R. Units are MPa-sqrt(m). K1R must exceed 1.0 MPa-m1/2 for crack growth
to occur.
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Figure . d(K1R)/dt*2.e-5/K1C. This is the factor that controls crack growth speed. 
Negative spikes happen when a tensile crack opens.  

Figure . Dependence of crack velocity on dK1R. 

Approved for public release; distribution is unlimited.
37



Figure . Crack growth speed. 
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Figure . Damage at 0.02 seconds. Top: 1mm (l), 1cm (r). Bottom: 10cm (l). 1m (r). 
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Figure . Damage at 0.1s. Top: 1mm (l), 1cm (r). Bottom: 10cm (l). 1m (r). 
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Figure . Strain in the first 0.1 s. 
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Figure . Stress in the first 0.1 s.
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Figure . Radial displacement and velocity. 
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Figure . RVP and RDP 
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B.2 Damage vs. Time

Figure  to  show damage vs. time for Case#8 with a increasing from 1 mm to 1 m. 

Figure . Damage vs. Time for Case 8, a=1mm
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Figure . Case 8, a=1cm
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Figure . Case 8, a=10 cm
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Figure . Case 8, a=1m 
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Figure . Stress vs. time at a distance of 99m in the first 1.0 s. Top row: a=1mm,
a=1cm; bottom row a=10cm, a=1m. 0-1s. 
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Matprops:
nsammis_matprop=    1

K= 3.790E+11
G= 2.380E+11

rho= 2.600E+00
E= 5.904E+11

pois= 2.404E-01
lambda= 2.203E+11

vp= 5.175E+05
vs= 3.026E+05
vr= 2.723E+05
vm= 1.000E+05
K1C= 1.000E+08

acrack= 1.000E-01
fric= 6.000E-01
D0= 1.000E-01
phi= 5.152E-01

alpha= 8.702E-01
Nv= 3.623E+01

beta= 4.500E-01
shapefac= 2.000E+00 (Not used)
End Matprops
Damage Dependent Quantities

D= 1.000E-01
c1= 3.356E-01
c2= 1.000E+00
c3= 0.000E+00
A1= 6.889E-01
A3= 2.149E+00

A_Sammis=-2.312E-01
B_Sammis= 7.213E-01
E_Sammis= 1.053E+00

A1S= 1.051E+00
A1Ssym= 0.000E+00

A2S=-3.199E-01
A3S= 1.248E+00
A4S= 2.088E-01

ASmat(3,3)=  6.963E+11  2.205E+11
2.209E+11  2.205E+11  6.889E+11  1.892E+11
2.209E+11  1.892E+11  5.661E+11

MSmat(3,3)=  1.737E-12 -4.071E-13 -5.418E-
13 -4.071E-13  1.694E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12

ASmatT(3,3)=  6.826E+11  2.066E+11
1.768E+11  2.066E+11  6.826E+11  1.768E+11
1.768E+11  1.768E+11  5.587E+11

MSmatT(3,3)=  1.694E-12 -4.071E-13 -4.071E-
13 -4.071E-13  1.694E-12 -4.071E-13 -4.071E-13
-4.071E-13  2.047E-12
ASmatSym(3,3)=  6.963E+11 2.210E+11
2.210E+11  2.210E+11  5.615E+11  1.648E+11
2.210E+11  1.648E+11  5.615E+11
MSmatSym(3,3)=  1.780E-12 -5.418E-13 -5.418E-
13 -5.418E-13  2.114E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12
End Damage Dependent Quantities

Matprops:
nsammis_matprop=    1

K= 3.790E+11
G= 2.380E+11

rho= 2.600E+00
E= 5.904E+11

pois= 2.404E-01
lambda= 2.203E+11

vp= 5.175E+05
vs= 3.026E+05
vr= 2.723E+05
vm= 1.000E+05
K1C= 1.000E+08

acrack= 1.000E+00
fric= 6.000E-01
D0= 1.000E-01
phi= 5.152E-01

alpha= 8.702E-01
Nv= 3.623E-02

beta= 4.500E-01
shapefac= 2.000E+00 (Not used)
End Matprops
Damage Dependent Quantities

D= 1.000E-01
c1= 3.356E-01
c2= 1.000E+00
c3= 0.000E+00
A1= 6.889E-01
A3= 2.149E+00

A_Sammis=-2.312E-01
B_Sammis= 7.213E-01
E_Sammis= 1.053E+00

A1S= 1.051E+00
A1Ssym= 0.000E+00

A2S=-3.199E-01
A3S= 1.248E+00
A4S= 2.088E+00

ASmat(3,3)=  6.963E+11  2.205E+11
2.209E+11  2.205E+11  6.889E+11  1.892E+11
2.209E+11  1.892E+11  5.661E+11

MSmat(3,3)=  1.737E-12 -4.071E-13 -5.418E-
13 -4.071E-13  1.694E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12

ASmatT(3,3)=  6.468E+11  1.708E+11
6.363E+10  1.708E+11  6.468E+11  6.363E+10
6.363E+10  6.363E+10  2.011E+11

MSmatT(3,3)=  1.694E-12 -4.071E-13 -4.071E-
13 -4.071E-13  1.694E-12 -4.071E-13 -4.071E-13
-4.071E-13  5.230E-12
ASmatSym(3,3)=  6.963E+11  2.210E+11
2.210E+11  2.210E+11  5.615E+11  1.648E+11
2.210E+11  1.648E+11  5.615E+11
MSmatSym(3,3)=  1.780E-12 -5.418E-13 -5.418E-
13 -5.418E-13  2.114E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12
End Damage Dependent Quantities

1 mm (cgs units) 1 cm (cgs units)
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Matprops:
nsammis_matprop=    1

K= 3.790E+11
G= 2.380E+11

rho= 2.600E+00
E= 5.904E+11

pois= 2.404E-01
lambda= 2.203E+11

vp= 5.175E+05
vs= 3.026E+05
vr= 2.723E+05
vm= 1.000E+05
K1C= 1.000E+08

acrack= 1.000E+01
fric= 6.000E-01
D0= 1.000E-01
phi= 5.152E-01

alpha= 8.702E-01
Nv= 3.623E-05

beta= 4.500E-01
shapefac= 2.000E+00 (Not used)
End Matprops
Damage Dependent Quantities

D= 1.000E-01
c1= 3.356E-01
c2= 1.000E+00
c3= 0.000E+00
A1= 6.889E-01
A3= 2.149E+00

A_Sammis=-2.312E-01
B_Sammis= 7.213E-01
E_Sammis= 1.053E+00

A1S= 1.051E+00
A1Ssym= 0.000E+00

A2S=-3.199E-01
A3S= 1.248E+00
A4S= 2.088E+01

ASmat(3,3)=  6.963E+11  2.205E+11
2.209E+11  2.205E+11  6.889E+11  1.892E+11
2.209E+11  1.892E+11  5.661E+11

MSmat(3,3)=  1.737E-12 -4.071E-13 -5.418E-
13 -4.071E-13  1.694E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12

ASmatT(3,3)=  6.293E+11  1.533E+11
8.598E+09  1.533E+11  6.293E+11  8.598E+09
8.598E+09  8.598E+09  2.717E+10

MSmatT(3,3)=  1.694E-12 -4.071E-13 -4.071E-
13 -4.071E-13  1.694E-12 -4.071E-13 -4.071E-13
-4.071E-13  3.706E-11
ASmatSym(3,3)=  6.963E+11  2.210E+11
2.210E+11  2.210E+11  5.615E+11  1.648E+11
2.210E+11  1.648E+11  5.615E+11
MSmatSym(3,3)=  1.780E-12 -5.418E-13 -5.418E-
13 -5.418E-13  2.114E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12
End Damage Dependent Quantities

Matprops:
nsammis_matprop=    1

K= 3.790E+11
G= 2.380E+11

rho= 2.600E+00
E= 5.904E+11

pois= 2.404E-01
lambda= 2.203E+11

vp= 5.175E+05
vs= 3.026E+05
vr= 2.723E+05
vm= 1.000E+05
K1C= 1.000E+08

acrack= 1.000E+02
fric= 6.000E-01
D0= 1.000E-01
phi= 5.152E-01

alpha= 8.702E-01
Nv= 3.623E-08

beta= 4.500E-01
shapefac= 2.000E+00 (Not used)
End Matprops
Damage Dependent Quantities

D= 1.000E-01
c1= 3.356E-01
c2= 1.000E+00
c3= 0.000E+00
A1= 6.889E-01
A3= 2.149E+00

A_Sammis=-2.312E-01
B_Sammis= 7.213E-01
E_Sammis= 1.053E+00

A1S= 1.051E+00
A1Ssym= 0.000E+00

A2S=-3.199E-01
A3S= 1.248E+00
A4S= 2.088E+02

ASmat(3,3)=  6.963E+11  2.205E+11
2.209E+11  2.205E+11  6.889E+11  1.892E+11
2.209E+11  1.892E+11  5.661E+11

MSmat(3,3)=  1.737E-12 -4.071E-13 -5.418E-
13 -4.071E-13  1.694E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12

ASmatT(3,3)=  6.269E+11  1.509E+11
8.911E+08  1.509E+11  6.269E+11  8.911E+08
8.911E+08  8.911E+08  2.816E+09

MSmatT(3,3)=  1.694E-12 -4.071E-13 -4.071E-
13 -4.071E-13  1.694E-12 -4.071E-13 -4.071E-13
-4.071E-13  3.553E-10
ASmatSym(3,3)=  6.963E+11  2.210E+11
2.210E+11  2.210E+11  5.615E+11  1.648E+11
2.210E+11  1.648E+11  5.615E+11
MSmatSym(3,3)=  1.780E-12 -5.418E-13 -5.418E-
13 -5.418E-13 2.114E-12 -4.071E-13 -5.418E-13
-4.071E-13  2.114E-12 End Damage Dependent
Quantities

10 cm (cgs units) 1 m (cgs units)

Figure . Calculated quantities for Sammis micromechanical damage model for four values
of the initial crack size acrack. 
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List of Symbols, Abbreviations, and Acronyms

AFRL Air Force Research Laboratory
NTS Nevada Test Site
USC University of Southern California 
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