
Deep learning with limited data:
A synthetic approach

LINUS J. LUOTSINEN, FARZAD KAMRANI,
LUKAS LUNDMARK, JOHAN SABEL,
HARALD STIFF, VIKTOR SANDSTRÖM

FOI-R--5215--SE
ISSN 1650-1942 December 20212

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Deep learning with limited data:
A synthetic approach

Linus J. Luotsinen, Farzad Kamrani,
Lukas Lundmark, Johan Sabel, Harald Stiff,
Viktor Sandström

Bild/Cover: Photo by Sandeep Arora from FreeImages

FOI-R--5215--SE

Titel

Title

Report no

Month

Year

Pages

ISSN

Customer

FOI Research area

Armed Forces R&T area

Project no

Approved by

Division

Export control

This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted
in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law,
requires the written permission of FOI.

Djupinlärning med begränsade datamängder:
Ett syntetiskt angreppssätt

Deep learning with limited data:
A synthetic approach

FOI-R--5215--SE

December

2021

50

1650-1942

Swedish Armed Forces

C3 and Human Factors

Command and Control

E85002

Cecilia Dahlgren

Defence Technology

The content has been reviewed and does not contain information
which is subject to Swedish export control.

2

FOI-R--5215--SE

Abstract

Keywords

This report focuses on how synthetic data, created using simulation or gener-
ative models, can be used to address the deep learning data challenge. These
techniques offer many advantages: 1) data can be created for rare cases that
are difficult to observe in the real world; 2) data can be automatically labeled
without errors; and 3) data can be created with little or no infringement on
privacy and integrity.

Synthetic data can be integrated into the deep learning process using tech-
niques such as data augmentation or by mixing synthetic data with real-world
data prior to training. This report, however, focuses mainly on the use of trans-
fer learning techniques where knowledge gained while solving one problem is
transferred to more efficiently solve another related problem.

Besides introducing synthetic data generation and transfer learning techniques,
this report presents experimental results that provide valuable insights into
the potential of the synthetic data approach in the context of pilot behavior
cloning, vehicle detection and face verification tasks. Preliminary results from
the experiments show that military simulators and generative models can be
used to support deep learning applications. However, the performance is often
limited by the fidelity gap between synthetic and real-world data.

Artificial intelligence, machine learning, deep learning, deep neural networks,
synthetic data, simulation, generative models, transfer learning

3

FOI-R--5215--SE

Sammanfattning

Nyckelord

Denna rapport fokuserar p̊a hur syntetisk data, skapad genom simulering el-
ler generativa modeller, kan användas för att adressera databrist inom dju-
pinlärning. Dessa tekniker erbjuder m̊anga fördelar: 1) data kan skapas för
fall som är sv̊ara att observera i den verkliga världen, 2) data kan annoteras
automatiskt och felfritt, och 3) data kan skapas utan risk för att vara integri-
tetskränkande.

Syntetisk data kan integreras i inlärningsprocessen med hjälp av tekniker
som dataaugmentering eller genom att blanda syntetisk med verklig data in-
nan träning. Den här rapporten utforskar främst överföringsinlärningstekniker
i vilka kunskap som erh̊allits fr̊an att lösa ett problem kan överföras och
återanvändas för att mer effektivt lösa ett annat relaterat problem.

Förutom att introducera syntetiska datagenererings- och
överföringsinlärningstekniker presenterar denna rapport experimentella
resultat som ger insikter i hur effektiv syntetiskt skapad data kan vara i
tillämpningar som kloning av stridspilotbeteende, detektion av militära fordon
och ansiktsverifiering. Preliminära resultat fr̊an experimenten visar att militära
simulatorer och generativa modeller kan användas för att stödja inlärning i
dessa tillämpningar. Prestandan begränsas dock ofta av gapet i realism mellan
syntetisk och verklig data.

Artificiell intelligens, maskininlärning, djupinlärning, djupa neuronnät, syn-
tetisk data, simulering, generativa modeller, överföringsinlärning

4

FOI-R--5215--SE

Contents

1 Introduction 7

1.1 Purpose and scope . 8

1.2 Target readership . 8

1.3 Reading instructions . 8

1.4 Outline . 8

2 Synthetic data generation 9

2.1 Data augmentation . 9

2.2 Self-supervision . 11

2.3 Simulation and domain randomization 11

2.3.1 The robotics approach 12

2.3.2 The computer vision approach 12

2.4 Generative models . 14

2.5 Summary . 16

3 Transfer learning 17

3.1 Notation and definition . 17

3.2 Pre-training and fine-tuning . 17

3.3 Domain adaptation . 19

3.4 Multi-task learning . 21

3.5 Meta-learning . 23

3.5.1 Optimization . 24

3.5.2 Metric . 25

3.6 Domain generalization . 26

3.7 Summary . 27

4 Case studies 28

4.1 Fighter pilot behavior cloning 28

4.1.1 Concept . 28

4.1.2 Military applications . 29

4.1.3 Experimental setup . 29

4.1.4 Results . 30

4.2 Vehicle classification using synthetic meta-learning 33

4.2.1 Data generation . 33

4.2.2 Experimental setup . 33

4.2.3 Results . 34

4.3 Face verification using synthetic data from generative models . 35

4.3.1 Concept . 36

5

FOI-R--5215--SE

4.3.2 Military applications . 37

4.3.3 Experimental setup . 37

4.3.4 Results . 40

5 Conclusions 42

Bibliography 43

6

FOI-R--5215--SE

1 Introduction
Deep learning (DL) is a technology that has increased the abilities to auto-
mate complex tasks in a wide range of real-world applications. Translation,
transcription, video surveillance, recommendation systems and self-driving cars
represent examples where DL-based solutions have already been developed and
deployed for commercial purposes. In the military domain, DL has the poten-
tial to support human decision making in all domains and levels of warfare with
applications such as automatic target recognition, predictive maintenance and
automatic control of unmanned vehicles.

Similar to other machine learning (ML) techniques, DL uses algorithms to
extract knowledge from data. The knowledge is in this case encoded in high-
capacity deep neural networks (DNNs) that may consist of thousands, millions
or even billions of adjustable parameters, depending on the complexity of the
considered task. To properly adjust these parameters, the learning algorithm
requires large quantities of training data. Without it the DNN will not be able
to generalize, hence, it will not perform well when presented with previously
unseen data.

Acquiring training data for DL is difficult. This is true in commercial
applications but perhaps even more so in the military domain. One of the
bottlenecks is that the learning algorithm often requires data that has been
manually labeled (i.e., provided with a correct answer to each input data point).
Therefore, even in cases where it is relatively cheap to acquire large quantities
of input data, it is often expensive and time-consuming to correctly label all
the data. For instance, each of the 5,000 samples in the Cityscapes dataset
took on average 1.5 hours to label (roughly ten months for the full dataset) [1].
Furthermore, since labeling is performed by humans, the result can be incorrect,
biased or even prejudiced, which would also be reflected in the behavior of the
trained model.

In addition, training data often suffers from the long tail distribution prob-
lem. That is, training data is relatively easy to acquire for a limited number of
common cases but inherently difficult to acquire for a large number of impor-
tant edge cases. For instance, consider a UAV-based military vehicle surveil-
lance and tracking system. In this case, aerial images of friendly vehicles are
relatively easy to acquire. Vehicle data can be acquired in a variety of loca-
tions, altitudes, angles, weather conditions, environments, etc. Acquiring a
similar real-world dataset representing the vehicle fleet of a qualified opponent
is typically not possible as such an invasive intelligence operation would result
in adversarial actions. A system trained using a dataset that follows a long
tail distribution is often of limited practical value as it can only be used when
conditions are ideal (i.e., the input data is similar to the common cases). The
system will not perform well and cannot be relied upon when presented with
real-world data representing edge cases.

7

FOI-R--5215--SE

1.1 Purpose and scope
The objective of this report is to introduce techniques that can be used to ad-
dress some of the challenges associated with limited training data in a military
context. Specifically, this report focuses on how synthetic data, created us-
ing military simulation or generative models, can be used in combination with
transfer learning techniques such as fine-tuning, domain adaptation, multi-task
learning and meta-learning to accelerate the development and deployment of
future DL applications in the military domain.

1.2 Target readership
The target readership of this report is personnel that operate, acquire or de-
velop military systems where AI, ML and DL technologies are used by or
embedded in the systems.

1.3 Reading instructions
This report assumes that the reader has basic a knowledge about ML and DL
concepts such as supervised learning, reinforcement learning, loss functions,
gradient descent and backpropagation. Readers lacking such knowledge are
encouraged to read chapter 2 in the FOI-report FOI-R–4849–SE [2] prior to
proceeding with this report.

1.4 Outline
Chapter 2 provides an overview of techniques and methods that can be used
to generate and integrate synthetic training data in deep learning. Chapter
3 provides an overview of transfer learning techniques that can be used to
facilitate the reuse of knowledge from one task to another. In chapter 4, a subset
of the techniques is evaluated, and experimental results that provides insight
into the potential of the synthetic data approach are provided. Conclusions
are presented in chapter 5.

8

FOI-R--5215--SE

2 Synthetic data generation
This chapter presents synthetic data generation techniques and discusses how
to incorporate them into the DL pipeline.

2.1 Data augmentation
Data augmentation [3] is arguably the most popular and widely used data
generation technique. It is often applied to improve model performance even
in cases where there is no shortage of data. The idea is to expand the size of
a training dataset by creating modified versions of existing data. For instance,
image datasets are often augmented using transformation functions such as
translation, rotation and scaling. Similarly, in the audio domain, functions
such as time stretching and pitch scaling can be used.

Data augmentation is a straightforward technique that does not require
significant modification to the training pipeline, DL algorithm or the DNN
structure. Figure 2.1 illustrates data augmentation in a supervised learning
context. Here, the inputs are transformed to create augmented inputs that in
turn are fed into the model.

Model Predicted labelAugmented input

Transform

Input

Minimize Deviation

Label

Figure 2.1: Data augmentation in supervised learning. Learning is performed using
inputs that have been augmented using various transformation functions. Light gray
boxes represent training data (i.e., inputs and their labels).

To better understand why data augmentation improves the performance of
a model, consider a DNN that is trained for object classification in images.
It is reasonable to assume that the model should be able to classify objects
regardless of rotation, scaling, image noise, coloring, etc., as long as the im-
age contains the same object. Figure 2.2 illustrates the effects of applying
different transformation functions to an image of a fighter jet. The plots to
the right of each image represent the distribution of the pixel values for each
augmented image. In this case a human has no problem classifying the object
in the images as a fighter jet. However, given that the distributions are very
different from each other, a DNN may struggle to correctly identify the fighter
jet. To mitigate this problem the model should preferably be trained with as
many augmentations or semantically invariant transformations of the image as
possible.

Many more augmentation methods exist, developed for specific domains
and applications, but all methods rely on the idea of training on a more diverse
distribution of data to achieve a more robust model.

9

FOI-R--5215--SE

(a) Original (b) Noise

(c) Color filter (d) Blur

(e) Scaled (f) Scaled and rotated

Figure 2.2: An image of a fighter jet (2.2a) that is augmented by adding noise (2.2b),
color filter (2.2c) and blur (2.2d), and also by scaling (2.2e) and scaling followed by
rotation (2.2f). Each image is accompanied by the corresponding plot over the dis-
tribution of the average RGB values of all pixels. While all images are semantically
invariant, the shapes of the distributions vary significantly.

10

FOI-R--5215--SE

2.2 Self-supervision
Self-supervised learning is a technique where DNNs are trained using unlabeled
datasets. The idea is to learn from auxiliary tasks that are created using the
unlabeled data. For instance, reconstruction tasks are relatively easy to create
from images or text by occluding parts of the image or text sequence [4]. Given
such transformation it is possible to apply the standard supervised learning
procedure (Figure 2.3) to train DNNs capable of reconstructing the occluded
image or sentence on potentially unbounded unlabeled datasets.

Self-supervised learning results in DNNs that learn how to represent and
extract features from data. These models contain general knowledge that is
useful when learning other downstream tasks where, for instance, training data
is limited. Self-supervised learning has been successfully applied in the text
[5], image [6], and speech [7] domains, where there is an abundance of publicly
available unlabeled data.

Model Reconstructed inputOccluded input

Transform Minimize Deviation

Input

Figure 2.3: Similar to supervised learning, the objective of the self-supervised learning
process is to create a model that minimizes the deviation from the presented training
examples. In this case the task is to learn how to reconstruct (automatically created)
occluded versions of the original inputs.

2.3 Simulation and domain randomization
Simulation provides a convenient way to generate data that can be used to
create or expand training datasets for DL. The main advantage of using simu-
lators, as opposed to data augmentation and self-supervision, is that they can
be used to create arbitrary data representing edge cases that rarely occur in
the real world. However, since simulators only represent simplified versions of
the real world, the created data will also be of lower fidelity compared to data
observed in the real world. Bridging this fidelity gap is perhaps the greatest
challenge of the simulation-based synthetic data approach.

Domain randomization [8] is a technique that has been proposed to address
this challenge. It is based on the idea that models will generalize to the real
world with no additional training, assuming that the variability in the synthetic
data is rich enough. In other words, the goal is to introduce sufficient variability
in the data during training so that, when deployed, the real world will appear
as just another variation to the model.

DL applications that take advantage of simulators and domain randomiza-
tion mainly originate from the robotics and computer vision research commu-
nities. Despite similarities, these two communities employ synthetic data and
simulators in rather different manners and are therefore discussed separately
in the remainder of this section.

11

FOI-R--5215--SE

2.3.1 The robotics approach
Deep reinforcement learning (DRL) is a learning strategy that can be used to
solve complex robotic control problems in simulated domains [9, 10]. DRL typ-
ically requires that the robot randomly explores the environment and gathers
hundreds of thousands of samples. Clearly, such an approach is not feasible in
terms of time and cost in physical environments. The ideal setting is that the
policy (i.e., a function approximated by a DNN that maps the robot’s differ-
ent states to appropriate actions) is learned entirely in a simulation and later
transferred to the physical domain, preferably without any additional train-
ing [8]. While simulation has been used for education and testing purposes for
many years, significant progress has only recently been made in transferring
capabilities learned in simulation to reality [11].

The domain randomization technique has been used in a wide range of
robotic applications (e.g., robotic control training [12, 13, 14] and drone rac-
ing [15]). One issue with the original domain randomization, which uses uni-
form sampling to create data, is that not all possible simulation settings con-
tribute equally to training. Some settings might even negatively affect the
robot’s ability to learn. One approach that has been proposed to address this
challenge is automatic domain randomization [14]. Here, the learning algorithm
is able to automatically determine the data it needs to learn, as opposed to the
unguided random approach taken in standard domain randomization. In addi-
tion, the difficulty of the task gradually increases alongside the robot’s ability
to learn. Using only simulation, automatic domain randomization has been
successfully applied to train a five-fingered robotic hand to solve the Rubik’s
cube [14] in the physical domain. The robot is able to manipulate the Ru-
bik’s cube even when two of the fingers are tied together. It can also solve the
cube when pushed by external forces. None of these scenarios are encountered
during training.

2.3.2 The computer vision approach
In recent years, computer vision researchers have started to use synthetic im-
ages created by various rendering tools for DL tasks such as object recogni-
tion [16, 17, 18, 19], semantic segmentation [20, 21, 22, 23, 24], and, more
recently, face-related tasks such as face parsing (assigning a label to each pixel
in an image, e.g., eyes, mouth or nose), and facial landmark localization (find-
ing the position of facial points of interest in 2D) [25].

Semantic segmentation lays the foundation for many vision applications
such as autonomous driving and medical image analysis. It involves assign-
ing a label to every pixel in an image so that semantically equivalent pixels
have the same label. Large training datasets are crucial for training seman-
tic segmentation systems. However, manual segmentation of real images is a
time-consuming and labor intensive task.

One way to overcome this problem and create large-scale training image
data is to use commercial video games. The scale, appearance, and content of
many video games have significant advantages over open-source 3D animation
tools that lack this extensive content. As shown in [24], it is possible to cre-
ate pixel-accurate semantic label maps for images (Figure 2.4) extracted from
games without access to the source code or the internal operation of the game
by using only the communication between the game engine and the graphics
hardware.

Domain randomization in computer vision tasks has been used in two seem-
ingly contrary manners:

12

FOI-R--5215--SE

(a) Original image from GTA (b) Segmentation

(c) Original image from GTA (d) Segmentation

Figure 2.4: Segmentation of two sample images from the popular game Grand Theft
Auto V (Figure 2.4a and 2.4c), and the corresponding segmentation map (Figure 2.4b
and 2.4d) [24].

� The parameters of the simulator (such as lighting and object textures)
are randomized indiscriminately, without any efforts to make the rendered
images realistic [26].

� Structured domain randomization, which takes into account the context
of the scenes when synthesizing them. Instead of sampling different ob-
jects uniformly, each aspect of a synthetic image is generated given a
probability that preserves the structure, or context, of the scene (e.g.,
the probability of cars, trucks or pedestrians being present on a road
lane) [21].

The structured domain randomization is developed further in Meta-Sim [22]
and Meta-Sim2 [23], in which creating the scene is automated. In Meta-Sim, it
is assumed that the structure of each scene is correct (e.g., in a driving scene
there is a road, a sidewalk and a number of cars), and the goal is to learn the
attributes of each object (the location of cars, etc.), so that the gap between
rendered images and real-world scenes is minimized. In Meta-Sim2, both the
structure of the scene and the attributes of the objects are learned.

Another conceptually similar approach, albeit technically different from
Meta-Sim, is learning to simulate [27]. Here, the idea is to learn how to config-
ure the simulator used to create training data. Using this approach, the data
generation process itself is optimized so that it can create the most relevant
data needed by the model to maximize its performance. The approach reduces
the amount of human expert effort required to configure the simulator and
may also reduce the amount of training data needed to learn. As illustrated in
Figure 2.5, the learning to simulate approach uses, reinforcement learning to
learn the data generation policy.

In essence, methods such as structured domain randomization, Meta-Sim
and Meta-Sim2 aim to reduce randomization in the data creation process.
Whether more or less randomization yields better performance is considered
to be an open question [23].

13

FOI-R--5215--SE

Figure 2.5: An overview of the learning to simulate approach. Using reinforcement
learning a policy learns to tune the simulation parameters so that the generated data
increases the accuracy of the target model.

2.4 Generative models
Generative models have in recent years significantly improved the ability to
generate synthetic yet highly realistic data to the degree that they are now
a potential threat to society, primarily its digital and political security [28].
Regardless of such malicious use, these techniques also have the potential to
accelerate the development and deployment of other DL applications in the
military domain. The reader is referred to [29] for an in-depth introduction to
generative models from a security and defense perspective. The remainder of
this section focuses on a subset of the techniques, specifically those that have
been applied to address the data challenge.

Many generative models for synthesis and manipulation of high-dimensional
data such as images, texts, voices and videos have been introduced. A non-
exhaustive list of applications that use generative models includes generating
synthetic photographs of human faces [30], generating realistic photographs [31],
image-to-image translation [32], text-to-image translation [33, 34], face-aging [35],
3D object generation [36], super-resolution [37], and video face swap [38].

Image synthesis methods that rely on generative adversarial networks (GANs)
capture the underlying distribution of some large training datasets and generate
new samples based on the learned distribution and bypass physical modeling of
objects, material appearance, and lighting. One problem with these approaches
is that it can be hard to control the details of the generated images, which is
often required when addressing the data challenge.

Recently, Richter et al. [39] present a technique capable of enhancing the
photorealism of synthetic images, which are produced by modern video games,
using GANs (i.e., synthetic-to-real translation). They also introduce several
architectural improvements in the DNN modules used for photorealism en-
hancement and report progress in stability and realism in comparison to a
variety of other image-to-image translation approaches. The method is tested
for transferring images acquired from the popular game Grand Theft Auto
V [24] (source domain) to the real-world datasets KITTI [40], Cityscapes [1],
and Vistas [41] (target domains). It is demonstrated that the model is able
to transfer synthetic source images to visual styles of the real-world target
datasets (Figure 2.6).

14

FOI-R--5215--SE

(a) Original image from GTA (b) Trained on KITTI

(c) Trained on Cityscapes (d) Trained on Mapillary Vistas

Figure 2.6: A rendered image from the popular game Grand Theft Auto V (Fig-
ure 2.6a) is enhanced using real images from KITTI, Cityscapes, and Vistas as target
datasets (Figure 2.6b, 2.6c and 2.6d, respectively). The characteristic appearance of
these datasets, (e.g., sensor noise in KITTI, saturation in Cityscapes, and fine textures
in Vistas are reproduced while the structure of the original GTA image is kept. Sample
images from the respective target dataset are inset beneath each image [39].

15

FOI-R--5215--SE

2.5 Summary
In this chapter, four different techniques to address the data challenge have
been introduced:

� Data augmentation: This is an approach that expands the size of a train-
ing dataset by creating modified versions of existing data. The method
is well elaborated and is already widely used to prevent overfitting.

� Self-supervision: In this approach DNNs are trained from auxiliary tasks
and synthetic data that are automatically created using unlabeled data.

� Simulation: This approach offers a safe and relatively low-cost way to
acquire labeled data representing rare edge cases. The goal is often to
create data using high fidelity simulators so that the synthetic data is
highly similar to the real world. However, high fidelity simulators are not
always required, instead domain randomization can be used to create a
diverse training dataset that, despite appearing unrealistic to humans,
results in better models.

� Generative models: This approach can be used to create highly realistic
data or even to improve the realism of data created using simulators.

16

FOI-R--5215--SE

3 Transfer learning
Transfer learning (TL) [42, 43, 44] is a broad research topic in ML that focuses
on applying knowledge gained while solving one problem to another related
problem. TL is typically used to train models that could otherwise not be
trained successfully due to insufficient access to training data or limited com-
putational resources (e.g., embedded systems and laptops). Although there
are many variants of TL, this report focuses primarily on techniques that have
been evaluated and applied in a DL context.

Specifically, this chapter presents TL techniques that can be used to extract
and transfer knowledge from models trained using synthetic datasets, which are
relatively easy to acquire, to more efficiently train other models using datasets
that are limited in size and difficult to acquire. A subset of the TL techniques
identified in this chapter are evaluated for such purposes in chapter 4.

3.1 Notation and definition
The notation and definition that follow originate from [42]. TL can be defined
in terms of domains and tasks. A domain, D, consists of two components:
1) a feature space, X , and 2) a marginal probability distribution, PX over
X . For a given domain, D, a task, T , also consists of two components: 1) a
label space, Y, and 2) a predictive function f(·) parameterized by θ, that are
learned from pairs of feature vectors and labels (x(i), y(i)), where x(i) ∈ X and
y(i) ∈ Y. Given a source domain DS and learning task TS , a target domain
DT and learning task TT , transfer learning aims to help improve the learning
of the target predictive function fT (·) on TT using the knowledge in DS and
TS , where DS ̸= DT or TS ̸= TT .

Domains cannot be observed directly, although sampled data from domains
can be observed. In this report, source and target domain samples are collected

into datasets DS = {(x(i)
S , y

(i)
S)}nS

i=1 and DT = {(x(i)
T , y

(i)
T)}nT

i=1, respectively. In
general, TL techniques are useful when the amount of source domain data is
much greater than the amount of target domain data, 0 ≤ nT ≪ nS .

3.2 Pre-training and fine-tuning
Pre-training and fine-tuning are arguably the most popular and commonly used
TL techniques in DL. Both techniques assume that there exists either a large
labeled training dataset, DS , that can be used to train a model, fS(·), from
scratch or more commonly that the model, fS(·), has already been trained
for a given source domain and task. Typically, the label spaces of the source
and target tasks are different from each other, YS ̸= YT . The main idea, as
illustrated in Figure 3.1, is to:

1. Copy parts of the source model, fS(·), into a target model, fT (·).
2. Add one or more randomly initialized (untrained) layers to fT (·) so that

the last layer matches the target label space, YT .
3. Train the target model, fT (·), using target domain data, DT .

Pre-training and fine-tuning differ only in step 3. In pre-training the model
parameters in fT (·), which were copied from the source model, are frozen.
That is, only the parameters in the additional, randomly initialized, layers are
updated during training. In this case, the source model is merely a feature
extractor used by the target model. When fine-tuning is used some of the

17

FOI-R--5215--SE

layers originating from the source model are also updated, or fine-tuned, during
training.

yS ∈ YS

xS ∈ XS

yT ∈ YT

xT ∈ XT

Copy

Task-specific
knowledge

General
knowledge

Figure 3.1: Pre-training and fine-tuning is performed by copying layers from a source
model (left) to a target model (right). Only the task-specific layers closest to the output
in the target model need to be trained. When successfully applied the target training
data, DT , is typically much smaller than the source training data, DS .

A major advantage of the pre-training and fine-tuning techniques is that
they are relatively easy to apply. Another upside is that there are many down-
loadable pre-trained models on the internet that have already been trained for
weeks or months using specialized high-end computational resources. There
are, however, also several downsides associated with the pre-training and fine-
tuning techniques:

� Reusing models or even datasets that are available online may introduce
vulnerabilities that are unacceptable in many military applications [45].

� Pre-trained models typically only exist for common domains such as text,
images and audio. Military models trained using sensor data from LI-
DAR, IR, SAR, hyperspectral and other military specific domains are
typically not shared.

� There is no guarantee that a source model is suited for a given target task.
The techniques only perform well when the source and target domains
are similar and related to each other. Hence, in practice many different
models need to be empirically evaluated to identify good candidates.

� Selecting which layers to freeze and which layers to fine-tune is important
to ensure that only useful knowledge from the source task is transferred to
the target task [46]. Performance drops are expected if specific knowledge
from the source task is also transferred to the target model.

Similar to other TL techniques many improvements have been proposed.
Adaptive fine-tuning [47] is one such approach, where the layers to freeze and
update are automatically selected by the learning algorithm for each training
sample. This approach improves the model’s ability to adapt to the target
domain and may also reduce the amount of human effort required to train
models using the fine-tuning approach.

18

FOI-R--5215--SE

3.3 Domain adaptation
Domain adaptation (DA) [48, 49, 50] is another common approach to TL where,
in contrast to pre-training and fine-tuning, the source and target domains are
different, DS ̸= DT , but the tasks are the same, TS = TT . Specifically, the
marginal probability distributions of the data are different in the domains,
PXS

̸= PXT
. DA can be either homogeneous or heterogeneous. In the homo-

geneous case the feature spaces remain the same, XS = XT , whereas they are
different in the heterogeneous case, XS ̸= XT . Furthermore, DA can be su-
pervised, semi-supervised and unsupervised where target domain data, DT , is
represented by labeled data, a mix of labeled and unlabeled data and unlabeled
data, respectively.

This report focuses primarily on homogeneous and unsupervised DA (UDA)
because of its intriguing capability to support the synthetic data approach
presented in this report. The UDA approach assumes that labeled data is
cheap and easy to acquire for the source, DS , and that only unlabeled data is
required for the target, DT . UDA can be used to manage domain shifts that
occur as a result of sensor variations. For instance, [51] addresses the challenge
of recognizing faces in the video domain, where labeled data is limited and
expensive to acquire, by transferring knowledge using labeled datasets that
have been acquired and used to recognize faces in the image domain.

UDA has already been proposed as a technique for bridging the gap between
synthetic and real-world data. This is actively being pursued [52, 53, 54, 55, 56,
57] using a variety of techniques, such as adversarial domain loss [58], generative
adversarial networks (GANs) [59, 60, 61], and divergence minimization [62, 63].

The UDA approach taken in [58] is often used as a baseline when compar-
ing and evaluating other UDA techniques. Figure 3.2 illustrates the concept
of this approach. Here, the network is separated into three trainable modules,
where the parameters are optimized using different objectives. The primary
task is to minimize the error given the source dataset, DS . The domain clas-
sifier is trained using inputs originating from both the source, DS , and target,
DT , datasets, with the objective of minimizing the domain classification error
(i.e., its goal is to determine if an input originates from DS or DT). Finally,
a domain invariant feature extractor, ϕ, is implicitly trained to minimize the
error of the primary task, but also to maximize domain classification error.
The maximization objective is in this case achieved using a gradient reversal
layer that negates the gradients originating from the domain classifier during
training. As a result, the feature extractor is trained to map source and tar-
get data to a feature space where both datasets have a similar distribution
(i.e., PXS

̸= PXT
, but ϕ(PXS

) ≈ ϕ(PXT
)). The domain classifier and the fea-

ture extractor are adversarially trained to optimize domain classification and
misclassification (i.e., domain confusion), respectively.

19

FOI-R--5215--SE

Y

X

YDC = {DS , DT }

Gradient reversal

Primary
task

Domain
invariant
feature
extractor

Domain
classifier

Figure 3.2: UDA using an adversarial multi-task learning approach [58].

20

FOI-R--5215--SE

3.4 Multi-task learning
In multi-task learning (MTL), multiple tasks are trained simultaneously in a
single DNN. Thereby, knowledge from one task is reused in another task [64,
65]. The main goal in MTL is to improve generalization by using the domain
information contained in the training signals of related tasks. MTL accom-
plishes this by training tasks in parallel while using a shared representation.
As a result, the training signals for extra tasks serve as an inductive bias (a set
of hints that the learner uses to predict outputs of unseen inputs) [65].

To provide a sense of how MTL works, consider Figure 3.3a, where a single
DNN with three outputs aims to solve three different (but related) tasks. Each
of the three outputs corresponds to one of the tasks. These three outputs are
fully connected to a shared hidden layer and the backpropagation is performed
in parallel on the three outputs in the DNN. Since the three outputs share com-
mon hidden layers, it is possible for one task to use the internal representations
that have been learned in the hidden layer by other tasks. The central idea
in MTL is sharing what is learned by different tasks while tasks are trained
in parallel [66, 65]. This can be compared with a scenario where three dis-
tinct DNNs are trained separately for the same tasks, without the possibility
of sharing what they learn.

While early literature discussed MTL in non-neural models and shallow
neural networks, most recent literature has mainly focused on how MTL can
be used in DNNs. In this context, MTL is typically achieved with either hard
or soft parameter sharing of hidden layers [67] (Figure 3.3):

� Hard parameter sharing: This is, in fact, the original MTL as suggested
by [64, 65]. It is applied by sharing the hidden layers between all tasks,
while keeping several task-specific output layers as shown in Figure 3.3a.

� Soft parameter sharing: Here, different tasks have their own models with
their own parameters. However, to share extra information in the train-
ing signals between tasks, the distance between the parameters in corre-
sponding layers are regularized using some regularization method (e.g.,
ℓ2 distance). See Figure 3.3b for a high-level outline of the soft parameter
sharing MTL.

21

FOI-R--5215--SE

Task A Task B Task C Task-
Specific
Layers

Shared
Layers

(a) Hard parameter sharing.

Task A Task B Task C

Constrained
Layers

(b) Soft parameter sharing.

Figure 3.3: MTL parameter sharing approaches in DNNs [67].

22

FOI-R--5215--SE

MTL provides a solution for applications in which there is an interest to
predict multiple tasks simultaneously. However, in many situations there is
only concern about one task. To make use of the benefits of multi-task learning,
one can still find suitable auxiliary tasks and use extra information signal during
training to generalize over a wider set of data even though these predictions
are not required. Hence, when deployed the auxiliary networks are completely
discarded. Examples of auxiliary tasks and auxiliary networks in the context
of self-driving cars are presented in [68, 69, 70].

Figure 3.4: A DNN is trained to predict steering wheel angle of a self-driving car using
images, where a segmentation network and an optical flow network contribute with
their extracted features with soft parameter sharing. The two auxiliary networks are
discarded after training [71].

3.5 Meta-learning
Meta-learning [72, 73], or learning to learn, techniques are specifically designed
to extract meta-knowledge (i.e., knowledge on how to learn) from one or more
source tasks. That is, in contrast to the other TL techniques introduced in
this chapter, a meta-learner typically consists of an outer learner, where a
meta-objective function is explicitly defined for the purpose of updating one or
more, task-specific, inner learners so that the outer meta-objective gradually
improves throughout training. When successfully applied the model will not
necessarily perform well on any specific task, instead it will quickly adapt and
learn new tasks given only limited training data.

Meta-learners are often applied and evaluated using few-shot, or k-shot,
learning (FSL) problems, where multiple tasks, each represented by only a
limited number (e.g., k = 1, k = 5, k = 10 and k = 20) of task-specific training
examples, are used to train a model. After training, evaluation is performed
using a different, but related, set of tasks to measure the model’s ability to
extract useful knowledge (i.e., generalize across task) to rapidly learn new tasks.
Note that, in the case of FSL classification, the n-way k-shot notation is used,
where n is the number of classes in the task, and k is the number of training

23

FOI-R--5215--SE

examples per class.
Training data for FSL originates from multiple source tasks and is therefore

also represented by multiple training datasets. Each task’s training dataset is
separated into support and query sets, DS =

{
Dsupport

S , Dquery
S

}
. The support

set consists of k training examples, or k×n in the classification case, and is used
to learn the specific task. The query set consists of q examples, or q×n examples
in the classification case, and is used to learn the meta-objective. Furthermore,
multiple test datasets (i.e., target tasks), DT =

{
Dsupport

T , Dquery
T

}
, are typi-

cally used to evaluate the learner’s performance. During testing the support
dataset represents the knowledge required to learn a new task, whereas the
query data is used to gather performance statistics.

Meta-learning can be implemented using a wide range of techniques. This
section introduces two different approaches. The first approach learns a meta-
model where the parameters have been optimized for fast adaptation using
gradient descent. The second approach learns embedding functions that cap-
ture meta-knowledge. Yet another approach, not covered in this work, uses
memory augmented neural networks (MANN) [74], e.g., the neural Turing ma-
chine (NTM) [75], where attention and external memory mechanisms are used
to facilitate meta-learning.

3.5.1 Optimization
Model agnostic meta-learning (MAML) [76] is an influential meta-learning ap-
proach that can be applied to any learning problem and model that is trained
using backpropagation and variants of the gradient descent procedure. Back-
propagation is the standard approach used in DL to find the directions (or gra-
dients), ∇θL(fθ), required to minimize an error or loss function, L(fθ), using
gradient descent. Thus, MAML can be applied in both supervised, unsuper-
vised and reinforcement learning problems using different DNN architectures
(e.g., fully connected, convolutional and recurrent).

The meta-objective of MAML is to find the optimal initialization of the
trainable parameters, θ, for a given DNN architecture, fθ. Learning is per-
formed iteratively, where the outer loop initially provides a randomly initial-
ized θ to the inner loop. The inner loop iterates over multiple tasks, where
each task i is represented by a training dataset, DSi =

{
Dsupport

Si
, Dquery

Si

}
,

with only k training examples (or k × n in the classification case) to promote
fast adaptation. Given fθ and Dsupport

Si
a new set of parameters, θ′i, can be

acquired using backpropagation and gradient descent. The outer loop then
applies backpropagation and gradient descent again using the updated DNNs
from the inner loop, fθ′

i
, and the query dataset, Dquery

Si
. That is, the outer

loop literally finds the gradients of the gradients and uses this information to
update θ. As a result, the outer loop updates θ so that the average performance
over all tasks is increased. This process is repeated until θ has converged to a
satisfactory solution. The MAML algorithm is visualized in Figure 3.5.

Many improvements to the MAML algorithm have been proposed. First
order MAML (FOMAML) [76] and the Reptile algorithm [77] approximate
the second order derivative of MAML to reduce the number of computations
needed. MAML++ [78] improves the ability of MAML to generalize and con-
verge and also reduces the computational overhead of the algorithm. The ANIL
algorithm demonstrates that MAML can learn with almost no inner loop [79].

24

FOI-R--5215--SE

Dsupport
Si

∇θLi(fθ) fθ′
i

Inner loop:
For each task i

∑
i ∇θLi(fθ′

i
)fθ Dquery

Si

Outer loop

Figure 3.5: MAML consists of two loops. The inner loop learns specific tasks using
a support dataset, Dsupport

Si
, that consists of only k training examples (or k × n in

the classification case) to promote fast adaptation. The outer loop then uses a query
dataset, Dquery

Si
, and the information gained in the inner loop (i.e., θ′i) to update the

trainable parameters in θ. The outer loop updates θ so that the meta-objective, in this
case the average performance over all tasks, is increased.

3.5.2 Metric
The objective of metric-based meta-learning is to learn an embedding that,
combined with a similarity function, can be used to determine how close in-
puts are to each other. For instance, in a one-shot learning context where each
example in the support set represents a unique class, a query example is clas-
sified by calculating similarity values for all examples or classes in the support
set and then picking the class it is most similar to.

One simple approach, often used as a baseline to evaluate other FSL al-
gorithms, is the siamese network [80]. In this case inputs are, as illustrated
in Figure 3.6, processed in pairs using two identical DNNs (i.e., two bodies)
that output an embedding or feature vector representing each input. The em-
beddings are then merged (i.e., into one head) using a distance layer (e.g.,
Euclidean distance or cosine simularity) and a sigmoid-based output layer that
is used to squash the distance value into a continuous similarity value between
0 (i.e., not similar), and 1 (i.e., similar). Training is performed using posi-
tive and negative sample pairs, where the two inputs belong to the same (i.e.,
y = 1) and, different (i.e., y = 0) class, respectively. Given that this is now a
binary classification task, the siamese network can be trained using the binary
cross entropy loss function. Improvements to the siamese networks approach
include replacing the binary cross entropy with contrastive [81] or triplet [82]
loss functions (see section 4.3 for a case study where triplet loss is used for face
verification purposes).

Recent work has shown that metric-based approaches can be used in com-
bination with pre-training to achieve state-of-the-art FSL results [83, 84]. The
idea is to transfer knowledge acquired in a pre-trained network by removing
the output layer and using the remainder of the network to produce embed-
dings (see section 3.2). In the case where the support set contains multiple
embeddings for each class (i.e., k > 1), the average value of all embeddings are
used to create a single centroid embedding. The cosine similarity function is
then applied given the query set and the centroid embeddings to generate a
prediction. The approach has also been extended to include a meta-learning
phase using fine-tuning that improves performance even more [84].

25

FOI-R--5215--SE

y

Sigmoid

Distance

Embedding

x1

Embedding

x2

Identical

DNNs

Figure 3.6: Siamese networks consist of two identical networks that share a single
head. The network is capable of calculating a similarity metric given an input pair.
Each input is first processed by the twin networks to generate an embedding. The
embedding is then merged into a single head using a distance layer whose output
is then processed by an output layer where a sigmoid activation function is used to
produce a similarity value that can be thresholded to determine if the two inputs are
from the same class or not. Siamese networks can be trained using binary cross-
entropy, contrastive or triplet loss functions.

3.6 Domain generalization
Domain generalization (DG) aims at learning from a set of domains, and from
this learning procedure extract a model that generalizes well on related unseen
domains [85]. That is, the model must learn domain-invariant features from the
source domains in order to be successful on the unseen target domain. Unlike
DA and meta-learning, the target data is not accessible in DG.

To demonstrate the application of DG, consider the Photo-Art-Cartoon-
Sketch (PACS) dataset [85]. This dataset contains roughly 10,000 images in
seven categories (person, horse, elephant, guitar, dog, giraffe and house) in the
four different styles suggested by the name (as illustrated in Figure 3.7).

Figure 3.7: Examples from the dataset PACS [85] for domain generalization. The
training set is composed of images belonging to domains of photos, cartoons, and art
paintings. The aim of the learning is to learn a generalized model that performs well
on the unseen target domain of sketches.

26

FOI-R--5215--SE

Suppose that the goal is to correctly classify the images of one specific style,
but only have access to the remaining styles at training time. The problem of
DG is then to use the remaining datasets to train a model that performs well
on the style in question. This could be to classify sketch images using photo,
art and cartoon images (Figure 3.7). This benchmark problem has been widely
studied [86, 87, 88], reaching up to 88% average accuracy.

A model capable of generalizing in unseen domains is highly desirable. A
comprehensive survey of existing DG methods is provided in [89]. In this
survey, DG is categorized into three groups:

1. Data manipulation: These methods attempt to increase the diversity and
quantity of existing training data using techniques such as interpolation,
data augmentation, domain randomization and generative models. For
instance, interpolation has shown promising results on the PACS prob-
lem, reaching 83.7% [87].

2. Representation learning: These methods are based on decomposing the
predictive function into two parts, fθ = g ◦ h, where g is a classifier
function and h is a representation learning function. The latter function
is designed to either learn a domain-invariant feature representation of the
data or to decompose a feature representation into domain-invariant and
domain-specific features. Kernel methods and multi-component analysis
are techniques that can be used to learn h.

3. Learning strategy: These methods focus on exploiting the general learn-
ing strategy to boost generalization. It mainly includes two different
approaches: 1) ensemble learning DG, which uses an ensemble of mod-
els to learn a unified and generalized model, and 2) meta-learning DG,
which uses a mechanism to learn general knowledge by constructing meta-
learning tasks to simulate domain shifts (see section 3.5).

3.7 Summary
The TL techniques introduced in this chapter highlight a subset of the most
popular and promising approaches used in DL to more efficiently learn new
tasks through the transfer of previously acquired knowledge. The remainder
of this report focuses on how these TL techniques can be used in combination
with synthetic data generation to address the DL data challenge.

27

FOI-R--5215--SE

4 Case studies
This chapter introduces and provides experimental results from case studies
where synthetic data and TL techniques have been applied to train DNNs
for behavior cloning (section 4.1), vehicle classification (section 4.2) and face
verification (section 4.3) tasks. In the first two cases, data was generated using
a military combat simulator (Virtual Battlespace 3 or VBS3), and in the last
case a generative model was used. In all cases the majority of the training data
was synthetic. Hence, the results represent baselines where improvements were
expected as more real-world data was acquired and integrated into the learning
process over time.

4.1 Fighter pilot behavior cloning
DL techniques can potentially be used to construct realistic models of human
behavior for fighter pilots [90]. Such models are expected to improve the re-
alism and also the training effects of simulation-based training facilities. The
present case study examined the fine-tuning TL technique (see section 3.2) in
the context of one such fighter pilot model. As a part of an ongoing research
project at the Swedish Defence Research Agency (FOI), the main idea was
to investigate how well this model can learn different flight dynamics models
(FDMs). An FDM is a mathematical function used in flight simulators to
calculate the succeeding state given the current state and some input [91].

The experiments were designed to resemble a scenario in which a fighter
pilot model is trained using a low-fidelity flight simulator where large datasets
are cheap to produce, and subsequently transferred and fine-tuned in a different
high-fidelity flight simulator environment where training data is scarce. The
work was conducted at FOI in 2021 as part of a master thesis [92].

4.1.1 Concept
A large number of problems exist where predictions affect the environment in
some way. These problems are generally of a sequential nature, where each
state is followed by an action that affects the next visited state. Such prob-
lems are regularly addressed in reinforcement learning and imitation learning.
The latter represents methods to train models by imitating experts. These ex-
pert demonstrations are generally comprised of sequences of state-action pairs,
meaning that the expert demonstrates the correct action given the current sit-
uation. An imitation learning model (commonly referred to as a learner policy)
is said to guide an agent in an environment, such as, drive a van (agent) on a
test track (environment) [93]. Imitation learning is generally a difficult prob-
lem, but is often approached with some simplifying assumptions. The simplest
assumption reduces the imitation learning problem into a supervised learning
problem, an approach commonly called behavior cloning. Although this re-
duction makes training easier, it can result in poor performance, as explained
in [94].

Suppose that a trained learner policy is available and performs well, then it
is natural to investigate how well this specific policy performs in a related en-
vironment. It is conceivable that a policy capable of acting in one environment
can learn the new environment more efficiently compared to a randomly in-
stantiated policy. In this study, a policy was pre-trained to fly a Jas Gripen 39
FDM on a track in the VBS3 combat simulator. This policy was subsequently

28

FOI-R--5215--SE

queried to fly an F22 represented by a significantly different FDM. The effect
on the performance as a function of the amount of training data was measured
and compared against a model that was not pre-trained.

4.1.2 Military applications
Fighter pilots conduct much of their training in simulator facilities. In these
environments, the pilots often train various combat scenarios using realistic
computer generated forces (CGFs). DL has the potential to improve the realism
of CGFs, but this also requires that the facility has the capability to to train and
deploy such models. Typically, adding DL capabilities to an existing training
facility requires significant effort. A proposed solution is to develop CGFs
using an alternative flight simulator that was specifically designed for DL, and
subsequently use TL to incorporate the models into the target facility.

4.1.3 Experimental setup
This section describes the data acquisition infrastructure and how to enable
aircraft control for both learner and expert policies. The considered task is
explained in detail, as is how to measure the model performance and TL effi-
ciency. The final policy is represented by a three-layered DNN trained using
behavior cloning (i.e., supervised learning).

Flight scenario

The policy is trained to control and navigate the agent around a track consist-
ing of five waypoints placed at a distance of 15 km (Figure 4.1). A waypoint is
considered complete if the aircraft passes within a sphere of radius 250 meters,
an error margin corresponding to about one degree from the straight line con-
necting the two waypoints. Given three runs, the objective was to complete a
full lap on each run.

Using the TL notation from section 3, the source and target domain orig-
inate from the same simulator but using two different FDMs, and the source
and target task is identical, i.e., DS ̸= DT and TS = TT .

Figure 4.1: Task illustration. Each waypoint is placed a distance d = 15 km with
α = 72◦. A cross marks a waypoint and the star marks the starting position. The
track is oriented clockwise.

29

FOI-R--5215--SE

State vector

To complete the flight scenario, the policy must receive enough information to
be able to determine the correct action in a given state. This means that it
must be able to navigate to the next waypoint, orient the aircraft with respect
to the waypoint and the surface of the earth and, ideally, predict some future
state to avoid catastrophic errors. The navigation and orientation quantities
are: 1) a vector pointing towards the waypoint, and 2) a unit vector pointing
in a cardinal direction, both in a local reference frame. These vectors are
calculated using Tait-Bryan angles and basic matrix transformations [95]. The
last quantity are derivatives. The main reason for including this are as follows.
Consider two different scenarios: 1) a snapshot of the aircraft at level flight,
and 2) a snapshot of the aircraft at the exact moment where the aircraft is at
level flight but is rotating at high velocity. If the derivatives are not included,
the policy would consider the two scenarios as identical, but the second scenario
would clearly require a compensating action to compensate for this rotation.
The state vector at time t could thus be written abstractly as

xt =
(
navigation, orientation, derivatives

)⊤
,

for this specific problem. Note that this was a sufficient, but not necessarily
optimal, choice of state vector. If the scenario had been different, then a
different state vector might have been needed.

Measuring performance

Two metrics are used to measure performance. This first and primary metric
is the ratio of completed waypoints, RoC. If RoC = 0.8, then 80% of all
waypoints were completed.

The second metric is called relative closeness, CR, and measures how close
to the completed waypoint the aircraft passes, compared to the expert demon-
strations. Assuming that the learner perfectly imitates the expert, then the
relative closeness would be CR = 1 and form a strict lower bound. If CR > 1,
then the agent (on average) performed worse than the expert.

Control setup

In previous work [96], a software infrastructure was developed to enable both
human and AI control of the aircraft in the simulator. The setup uses two
control loops: 1) a control loop that allows a human pilot to control the aircraft,
and 2) a control loop allowing the policy to steer the aircraft. The first control
loop uses a manual joystick, which is mapped to a virtual joystick software to
steer the aircraft. The virtual joystick feeds the simulator with control data
and a human pilot can operate the aircraft through computer screen visuals.

The second control loop uses code that extracts the data from the simulator,
converts it to the desired state space representation and subsequently feeds
it into the trained policy. The policy outputs control signals to the virtual
joystick, which in turn controls the agent in the simulator. Figure 4.2 illustrates
the full setup. In the figure, a block denoted Data Manager calculates the state
vector from raw data and also produces a dataset for training and performance
analysis.

4.1.4 Results
The results of the experiments are summarized in Table 4.1. Both policies
performed better as a function of the amount of data used in training, and
the pre-trained model (Policy B) was able to complete the full track (RoC =

30

FOI-R--5215--SE

Virtual Joystick

Learner

Joystick

VBS3

Data Manager

Expert

+

action

action∗

state

action∗

action

action∗

raw data

screen

data

Figure 4.2: Illustration of control and data gathering setup. The star superscript marks
the expert (human) pilot.

1) after training on 75% of the data, whereas the other model (Policy A)
required training on the full dataset to reach RoC = 1. The results indicate
that fine-tuning can be used to reduce the amount of data to reach a certain
level of performance in the target domain by about 25%. Most likely, more
sophisticated TL techniques could increase this number significantly.

Table 4.1: Performance for each percentage of the dataset used in training. Recall that
Policy B was pre-trained in the source domain.

% of data
Policy A Policy B

RoC CR RoC CR

0 0.000 - 0.200 1.193
25 0.267 3.168 0.600 2.417
50 0.267 2.725 0.600 2.412
75 0.467 1.882 1.000 2.208
100 1.000 2.357 1.000 1.063

As for the relative closeness metric, it is more difficult to draw conclusions.
The relative closeness for Policy B reached a level almost as good as the expert
(CR = 1), but the values show a high variance. For this to be a more deci-
sive number, the sample size must be increased to reduce the statistical error.
However, if one compares the relative closeness for the runs where RoC = 1, it
seems that Policy B reached Policy A’s closeness value already at 75% and the
last 25% reduced the value close to one. The resulting trajectories for Policy
B are shown in Figure 4.3.

31

FOI-R--5215--SE

Figure 4.3: Learning process for Policy B: Plots showing the resulting trajectories for
different amounts of data used in training. The red dots are spheres of radius 250m,
which indicates the error margin.

32

FOI-R--5215--SE

4.2 Vehicle classification using synthetic meta-learning
Meta-learning and FSL (see section 3.5) techniques are used to train models
that are fast learners. These models are capable of learning complex, down-
stream tasks using only a handful of examples. However, meta-learning requires
that the model is pre-trained using a large dataset. In the present case study,
the VBS3 simulator was used to generate such a dataset, and several meta-
learning algorithms were implemented and evaluated in the context of military
vehicle classification tasks.

4.2.1 Data generation
The present case study used an in-house developed data generation tool capable
of generating millions of automatically labeled vehicle images using the VBS3
simulator. VBS3 contains more than 2,000 vehicle models. However, many
models are variants of the same real-world vehicle, differing only in coloring
or weapons mounted, and are therefore grouped into a single class. Figure 4.4
represents an example image of a military truck generated using the tool.

Figure 4.4: Synthetic image of a military truck, including its bounding box and segmen-
tation annotation.

4.2.2 Experimental setup
The evaluation was performed using four different meta-learning approaches:
1) model agnostic meta-learning (MAML); 2) meta-baseline (MB); 3) rethink-
ing few-shot (RFS), and; 4) feature reconstruction networks (FRN). The first
approach is optimization-based and the last three approaches are metric-based.

In this experiment, learning was performed using the synthetic dataset and
evaluation was performed using a real-world dataset. The synthetic dataset
consisted of 400,000 images covering 407 different vehicles. The evaluation
dataset consisted of 40 different real-world military vehicle types with roughly
10-30 examples per class.

In an attempt to compare the synthetic meta-learning approach with the
ideal scenario, where real-world data is abundant, a dataset of 10,000 images
covering 64 different real-world vehicles was also used to represent an estimated
upper bound baseline. Furthermore, a lower bound baseline was included in

33

FOI-R--5215--SE

the experiments using randomly initialized DNNs where no pre-training was
performed.

4.2.3 Results
The results are presented in Table 4.2. The metric learning approaches failed
to learn and were not much better than the randomly initialized DNNs. The
only exception is FRN that outperformed even the upper baseline, but it was
still significantly worse than MAML. This result is most likely due to FRNs
non-standard method of pre-training, making it less likely to overfit to the
training data.

Table 4.2: Accuracy for the four meta-learning approaches in % over three different
5-way few-shot settings. The upper and synth subscripts denote models pre-trained
using the real-world and synthetic datasets, respectively. The lower subscript repre-
sents the randomly initialized model.

Models 1-shot (%) 5-shot (%) 10-shot (%)

MAMLlower 31.95 49.92 52.54
MAMLsynth 46.41 67.83 72.92
MAMLupper 62.97 72.88 73.70
RFSlower 29.40 36.32 40.10
RFSsynth 30.28 41.21 44.16
RFSupper 37.67 52.01 55.87
MBlower 29.31 36.73 40.80
MBsynth 29.54 39.14 44.01
MBupper 37.59 51.55 55.13
FRNlower 27.95 34.51 36.80
FRNsynth 36.31 52.70 58.67
FRNupper 35.20 50.48 54.35

In the present case study MAML was the best approach. This result is
surprising since in recent research, MAML has often been outperformed by the
metric approaches. However, MAML has some advantages that may contribute
to the results:

� The fine-tuning step of MAML offers more ways to compensate for the
domain shift between synthetic and real data. MAML updates the en-
tire DNN on the query set with 1-10 gradient updates, which neither of
the metric approaches does. This allows the DNN to adjust its feature
representation to the real-world data.

� MAML computes its batch normalization statistics over the given query
batch. This is called transient learning and can make the DNN more
robust to the domain shift.

� MAML uses a smaller DNN making it less prone to overfitting. The
metric approaches uses larger DNNs based on the ResNet12 architecture,
which seems to require more data to generalize.

The goal of the case study was to demonstrate that meta-learners can com-
pensate for the lack of real-world data by pre-training on synthetic data. Un-
fortunately, the fidelity of the synthetic data seemed to be too low in this case,
ultimately making the gap to the real-world data too large to bridge for most
meta-learning approaches.

34

FOI-R--5215--SE

4.3 Face verification using synthetic data from generative
models

The present case study examined the problem of building a face recognition
system without having access to training images of real people. Face recogni-
tion is commonly divided into verification and identification. Face verification
is the task of determining whether two given images contain the face of the
same person (Figure 4.5). Hence, face verification systems can be used to de-
termine whether a person is who he/she claims to be. Face identification is the
task of determining whether a given facial image matches one of the identities
in a database containing facial images of known persons (Figure 4.6). Hence,
face identification systems can be used to find out the identity of a person.

Leonardo DiCaprio

TEMPLATE IMAGE

Is this actually
Leonardo DiCaprio?

Leonardo DiCaprio

QUERY IMAGE

FACE VERIFICATION SYSTEM

Yes

COMPARISON

No

Elin Nordegren

TEMPLATE IMAGE

Is this actually
Elin Nordegren?

Priscilla Presley

QUERY IMAGE

COMPARISON

Figure 4.5: Face verification system. During verification, the query image is compared
with an existing template image of the person whose identity is being claimed (one-to-
one matching). All facial images have been obtained from [97].

In this study, focus was on face verification. One important aspect when
it comes to face verification systems is the ability to handle new identities
that were unknown at the time of system deployment. One does not want
to recalibrate the whole system every time a new identity is introduced. For
instance, a website might require newly registered users to verify their identity
by providing two facial images: a live webcam image and a scanned passport
image. This is an example of one-shot learning, since a model must be able to
determine whether the person in the webcam image is who he/she claims to
be based only on one single template image (the passport).

DL-based methods have been shown to perform well when applied to face
verification tasks. For instance, the FaceNet [82] model achieves over 99% accu-
racy when evaluated on the Labeled Faces in the Wild (LFW) [97] benchmark
dataset. Given a facial image x as input, the model outputs a face embedding
vector f(x). Two different vectors can be compared to obtain a distance met-
ric, which indicates the similarity of the two corresponding images. A short

35

FOI-R--5215--SE

Pierce Brosnan

TEMPLATE IMAGE

Who is this person?

John Travolta

QUERY IMAGE

FACE IDENTIFICATION SYSTEM

John Travolta

COMPARISON

John Travolta

TEMPLATE IMAGE

John Travolta

QUERY IMAGE

COMPARISON

•
•
•

Figure 4.6: Face identification system. A person is identified by comparing the query
image with all template images in a database (one-to-many matching). All facial im-
ages have been obtained from [97].

distance (i.e., similar vectors) indicates that the images contain the face of the
same person. The ability to produce high-quality face embeddings for previ-
ously unseen persons is learned by minimizing a triplet loss function during
training of the model. The word triplet comes from the use of an anchor image
xa (an identity), a positive image xp (same identity but a different image),
and a negative image xn (another identity). The loss function encourages the
model to minimize the distance ∥f(xa)− f(xp)∥22 between images of the same
identity (anchor and positive), and maximize the distance ∥f(xa)− f(xn)∥22
between images of different identities (anchor and negative):

L = max(∥f(xa)− f(xp)∥22 − ∥f(xa)− f(xn)∥22 + α, 0),

where α is a margin enforced between positive and negative pairs [82].

4.3.1 Concept
The purpose of this study was to investigate to what extent it is possible to
perform face verification on real images of faces after training a face verification
system on synthetic images of faces generated by generative adversarial net-
works (GANs). Using synthetic training data is not only interesting given the
focus of this report, but could also help overcome privacy and data protection
issues related to the use of datasets containing images of real people. A few
years ago the face recognition dataset MS-Celeb-1M [98], which contained ap-
proximately 10 million facial images of 100,000 different persons, was deleted.

36

FOI-R--5215--SE

The reason for doing this is unclear, but it is not unlikely that data protection
laws such as GDPR influenced the decision. Nevertheless, there is no guaran-
tee that large datasets of real faces will continue to be publicly available, and
permitted to use, in the future.

GAN models such as StyleGAN2 [30] can be used to generate synthetic
images of faces (i.e., facial images of non-existing persons) that are perceived
as authentic by humans. StyleGAN2 is able to produce an unlimited number
of faces after being trained on a relatively small dataset of real faces. This
could potentially help reduce the need for large amounts of real data in many
applications. However, at least two different images of each unique person are
required in order to train a face verification system. This is problematic since
the GAN does not provide full user control over the output. Even small changes
in input might result in a completely different face.

With all this in mind, experiments were performed for the present study,
attempting to 1) generate multiple facial images of the same identity; 2) train
a face verification system on such images; and, 3) evaluate its performance on
facial images of real persons.

4.3.2 Military applications
Face recognition technology can be applied to various fields, such as surveil-
lance, security, and biometric authentication. There are both commercial and
military use cases, ranging from facility and airport security systems to drone
surveillance systems and websites requiring users to verify their identity. For
instance, a face recognition system could be integrated with the door access
control system to grant authorized personnel access to restricted facilities, or
even be used on the battlefield to determine whether an individual is part of
the own military personnel or the enemy.

4.3.3 Experimental setup
The description of the experimental setup used in this case study can be di-
vided into: 1) the process behind generating synthetic training images; 2) how
FaceNet models were trained on the images; and, 3) the evaluation protocol
used to measure the performance of the models when tested on real facial
images.

Generating synthetic training data

StyleGAN2 [30] currently yields state-of-the-art results for image synthesis.
Therefore, it was decided to use a pre-trained StyleGAN2 model to build a
dataset of synthetic facial images. However, it is not trivial to generate two
different images of the same person when using GAN models out of the box,
and only changing details such as the hair or freckles is not sufficient. During
training of the face verification model, the anchor image and the positive image
should ideally look quite different, as long as one can make sure that they
contain the same identity. Otherwise, the model cannot be expected to perform
well when tested on real images, since two images might have been captured
at different locations with different camera angles, showing different poses and
facial expressions of the same person.

Luckily, Härkönen et al. [99] have demonstrated methods to augment pre-
trained GANs with control variables. For StyleGAN2, they used principal
component analysis (PCA) to find principal components (principal directions)
in the intermediate latent space. Loosely speaking, a component could be
seen as corresponding to a specific image attribute when restricted to certain

37

FOI-R--5215--SE

StyleGAN2 layers. For instance, the authors managed to rotate the head of a
person by moving along the second component only at the first three layers.
This type of edit can be done for various attributes without them interfering
with each other (although some attributes are still entangled to some degree).
In other words, it is possible to edit specific facial attributes of an identity
without accidentally changing the entire identity in the process.

The authors provided an interactive tool for exploring principal directions
and changing attributes. In this case study changes were made to their code to
automatically generate two images of the same person. Specifically, functional-
ity was added to generate an image of a person as well as a new version of the
same image, but with randomly edited attributes (e.g., hair color, hair length,
head rotation, facial expression, background and light direction). This made it
possible to automatically build a synthetic training dataset containing 12.5M
identities (i.e., 25M facial images). Some example facial images are shown in
Figure 4.7.

Figure 4.7: Synthetic images randomly selected from our training dataset. For each
image pair, the face that was originally generated is shown to the left while the edited
face is shown to the right. Note that all images have been cropped around the face.

38

FOI-R--5215--SE

Training FaceNet

Three separate FaceNet models were trained with the same architecture1 and
randomly initialized parameters, using triplets from the generated training
dataset:

� The first model was trained with randomly selected triplets, i.e., for each
epoch and anchor-positive pair a negative image was randomly selected. All
images were cropped around the face before being fed as input to the model.

� The second model was trained in the same way as the first model. However,
this time each input image was augmented on the fly using a random com-
bination of the post-processing techniques presented in Figure 4.8. Specifi-
cally, for every image, each post-processing technique was applied with 30%
probability, in random order, using a randomly chosen intensity. Data aug-
mentation is commonly used to expand datasets with altered samples, which
helps prevent overfitting, especially when there is limited training data. It
is also well known that DL-based computer vision models tend to be suscep-
tible to image distortions [100], which is important to keep in mind when
a model trained on synthetic data is intended to be used on real images
that might have been distorted during acquisition, transmission, or storage.
Therefore, although it was possible to generate a large number of synthetic
images, they were still augmented during training in an attempt to improve
model robustness and generalizability.

� The third FaceNet model was trained in the same way as the second one.
However, this time a simple technique was also used to select more ideal
negative images. Focusing on difficult triplets during training has been shown
to be important in order to increase the performance of the model [82].
Therefore, for each training epoch and anchor-positive pair, 1,000 randomly
selected negative images were compared to the anchor image. Specifically, the
negative image xn

i with the smallest distance ∥f(xa)− f(xn
i)∥22 was chosen as

input (the distance can be viewed as a dissimilarity metric, which in this case
should be minimized to select similar faces that represent a difficult case).
It was also required that ∥f(xa)− f(xp)∥22 < ∥f(xa)− f(xn

i)∥22, since the
model indeed became stuck in a local minimum without this requirement [82].

In all three experiments, a validation loss was computed on unseen syn-
thetic images after each training epoch. The model state with the lowest val-
idation loss was saved as the final state of the model (i.e., a total of three
models were saved since one model was trained in each experiment). In every
experiment, the model with the lowest validation loss computed on the CASIA-
WebFace [101] dataset, which contains 10,575 real identities, was also saved.
Note that all models were trained exclusively on synthetic images, but in this
case real images were used to choose which models should be used later during
evaluation.

Measuring performance

The trained FaceNet models were evaluated on real faces from the Labeled
Faces in the Wild (LFW) [97] database, which is commonly used for bench-
marking face verification in unconstrained settings. The standard evaluation
protocol [97] was followed and accuracy was measured using 6,000 testing im-
age pairs, i.e., 3,000 matched pairs (same identity) and 3,000 mismatched pairs
(different identities). Accuracy here refers to the fraction of image pairs that

1https://github.com/timesler/facenet-pytorch

39

FOI-R--5215--SE

Original Gaussian Blur Compression Contrast Downsizing

Sharpness Gaussian Noise Brightness Color Rotation

Figure 4.8: GAN-generated facial image post-processed using the highest intensities
considered in this case study. Since it is possible to decrease and increase the image
color, both alternatives are shown in the same image (bottom row fourth column).

was correctly classified by FaceNet. In other words, for every image pair,
FaceNet predicted whether or not both images contained the face of the same
person. As mentioned, when FaceNet outputs an embedding vector for each
image in a pair, face similarity corresponds to the distance between the two
vectors. It is therefore necessary to specify at what distance two images should
be considered a matched pair. Since a small distance indicates similar faces, it
is suitable to set an upper threshold distance value that should not be reached.

The LFW testing images were divided in 10 subsets of equal size. Following
the standard protocol, 10 separate experiments were performed in a leave-
one-out cross validation scheme. In each experiment, 9 subsets were used to
select the distance threshold rendering the highest accuracy on those subsets,
while the remaining (left out) subset was used for measuring the final testing
accuracy. Note that a different subset was left out in every experiment, i.e.,
each subset was left out exactly one time. Hence, the final performance was
reported as the mean accuracy computed across all 10 left out subsets.

4.3.4 Results
The face verification performance of FaceNet on LFW is presented in Table 4.3.
As mentioned, two FaceNet models were evaluated in each experiment: one
selected using synthetic validation images from StyleGAN2, and another one
selected using real validation images from CASIA-WebFace. Recall that all
FaceNet models were trained exclusively on synthetic images.

As shown in Table 4.3, FaceNet did not achieve satisfying performance when
trained directly on synthetic images. The mean accuracy on real testing images
from LFW was below 60%, which can be compared to FaceNet models that
achieve over 99% accuracy when trained on real images. An untrained FaceNet
model with randomly initialized parameters would yield approximately 50%
accuracy. However, when trained on randomly post-processed synthetic images,
FaceNet achieved around 73% accuracy. This is a significant improvement,
although far from perfect. Finally, accuracy did not increase significantly when
using a simple technique to select more difficult triplets during training. In all
experiments, the performance only improved marginally when using real images

40

FOI-R--5215--SE

Table 4.3: FaceNet performance on real images from the LFW database, reported
as the mean accuracy obtained when following the standard LFW evaluation pro-
tocol for face verification. Accuracy is presented for three experiments: Default
(FaceNet trained directly on StyleGAN2 images), Post-Processing (FaceNet trained on
post-processed StyleGAN2 images), and Triplet Selection (FaceNet trained on post-
processed StyleGAN2 images when using a technique to select more difficult triplets).

Validation
Images

Experimental
Setup

Default Post-Processing Triplet Selection

StyleGAN2 57.67%± 0.85 72.62%± 0.74 72.28%± 0.66
CASIA-WebFace 58.28%± 0.75 73.02%± 0.70 73.38%± 0.84

from CASIA-WebFace for model selection.
The experiments performed in this study indicate that face verification

models trained exclusively on synthetic data tend to lack sufficient generaliza-
tion capability when applied to real data, at least when using FaceNet and
the experimental setup specific to this study. The models turned out not to
be reliable enough. However, the results are still rather promising since there
are some experimental details that could help improve performance further.
As mentioned, when selecting more difficult triplets, each anchor image was
compared with 1,000 randomly selected negative images after computing the
embedding vectors. The original authors of FaceNet, on the other hand, per-
formed the comparison using almost twice as many images [82]. In other words,
the triplet selection approach in the present study could probably be improved,
but limited computational resources did not allow for this. One should also
keep in mind that the LFW validation dataset is commonly used for model
selection, which might help improve performance on the corresponding testing
dataset. It was decided to use the CASIA-WebFace validation dataset since
the LFW validation and testing sets overlap, i.e., some of the images occur
both in the validation and testing set, which might lead to biased results.

41

FOI-R--5215--SE

5 Conclusions
Acquiring sufficient training data for DL is a major challenge when solving
complex tasks. These tasks require large DNNs and, ultimately, large datasets
to learn how to generalize to real-world inputs. Fortunately, many techniques
have been proposed to enable learning even if the available training dataset is
limited.

This report’s specific focus is on the use of synthetic data created using
simulators, generative models or a combination of the two (e.g., generative
models that are used to enhance data created by simulators). The report
presents several techniques that can be used to integrate the synthetic data
into the DL training pipeline. For instance, simply augmenting the real-world
training dataset with synthetic data often has a positive, but limited, impact
on overall performance. For more challenging cases where, for instance, the
majority of training data is synthetic it is possible to use transfer learning
techniques such as multi-task learning, meta-learning and domain adaptation.

Empirical results from case studies where DNNs have been trained using
synthetic data and transfer learning are presented in the report. In the first
case it was shown that a model trained to navigate between waypoints using a
JAS-39 simulator can be reused using fine-tuning to more efficiently, with 25%
less training data, learn to perform the same task in a F22 simulator where
the aircraft is governed by a different flight dynamics model. The second
case shows that meta-learning can be used to train a model, which learns
how to learn, given a large synthetic dataset and a relatively small real-world
dataset. Results show that the model can learn a 5-way vehicle classification
task at an accuracy of approximately 73% using only 5 real-world observations
of each vehicle. Although these results are promising, there is a significant
loss in performance when compared to models trained using only real-world
data. In the face verification case, where generative models are used to create
highly realistic data that even humans struggle to recognize as synthetic, the
performance is approximately 73% compared to 99% when trained using only
real-world data.

In this report, it is concluded that the synthetic data approach is promising
for military DL applications where training data is limited and difficult to
acquire. However, more research is needed to better bridge the fidelity gap
between synthetic and real-world data to, ultimately, improve performance.

42

FOI-R--5215--SE

Bibliography
[1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,

Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The Cityscapes dataset for semantic urban scene under-
standing. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[2] Linus J. Luotsinen, Daniel Oskarsson, Peter Svenmarck, and Ulrika Wick-
enberg Bolin. Explainable artificial intelligence: Exploring XAI tech-
niques in military deep learning applications. Technical Report FOI-R--
4849--SE, Swedish Defence Research Agency (FOI), 2019.

[3] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data
augmentation for deep learning. In Journal of Big Data, volume 6, 2019.

[4] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and
Alexei Efros. Context encoders: Feature learning by inpainting. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Proceedings of the Ad-
vances in Neural Information Processing Systems (NeurIPS), volume 33,
pages 1877–1901, 2020.

[6] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu, Pengchao
Wang, Vivek Pai, Mannat Singh, Vitaliy Liptchinsky, Ishan Misra, Ar-
mand Joulin, and Piotr Bojanowski. Self-supervised Pretraining of Visual
Features in the Wild. arXiv e-prints, page arXiv:2103.01988, March 2021.

[7] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.
wav2vec 2.0: A framework for self-supervised learning of speech represen-
tations. In Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pages 12449–12460, 2020.

[8] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. Domain randomization for transferring deep neu-
ral networks from simulation to the real world. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 23–30, 2017.

[9] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518:529–533, 2015.

43

FOI-R--5215--SE

[10] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. In
Proceedings of The 33rd International Conference on Machine Learning
(ICML), volume 48, pages 1329–1338, 2016.

[11] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa,
Florian Golemo, Melissa Mozifian, Chris Atkeson, Dieter Fox, Ken Gold-
berg, John Leonard, C. Karen Liu, Jan Peters, Shuran Song, Peter
Welinder, and Martha White. Perspectives on Sim2Real Transfer for
Robotics: A Summary of the R:SS 2020 Workshop. arXiv e-prints, page
arXiv:2012.03806, December 2020.

[12] Rika Antonova, Silvia Cruciani, Christian Smith, and Danica Kragic.
Reinforcement Learning for Pivoting Task. arXiv e-prints, page
arXiv:1703.00472, March 2017.

[13] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Sim-to-real transfer of robotic control with dynamics random-
ization. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1–8, May 2018.

[14] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn
Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,
Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving Rubik’s Cube with a robot hand. arXiv e-prints, page
arXiv:1910.07113, October 2019.

[15] Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy,
Vladlen Koltun, and Davide Scaramuzza. Deep Drone Racing: From
Simulation to Reality with Domain Randomization. arXiv e-prints, page
arXiv:1905.09727, May 2019.

[16] Tomás Hodan, Vibhav Vineet, Ran Gal, Emanuel Shalev, Jon Hanzelka,
Treb Connell, Pedro Urbina, Sudipta N. Sinha, and Brian Guenter. Pho-
torealistic image synthesis for object instance detection. In Proceedings
of the IEEE International Conference on Image Processing (ICIP), pages
66–70, 2019.

[17] Artem Rozantsev, Vincent Lepetit, and Pascal Fua. On rendering syn-
thetic images for training an object detector. Computer Vision and Image
Understanding, 137:24–37, 2015.

[18] Weichao Qiu and Alan L. Yuille. UnrealCV: Connecting computer vi-
sion to unreal engine. In Proceedings of the European Conference on
Computer Vision (ECCV), volume 9915 of Lecture Notes in Computer
Science, pages 909–916, 2016.

[19] Yue Yao, Liang Zheng, Xiaodong Yang, Milind Naphade, and Tom
Gedeon. Simulating content consistent vehicle datasets with attribute
descent. In Proceedings of the European Conference on Computer Vision
(ECCV), 2020.

[20] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual
worlds as proxy for multi-object tracking analysis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

44

FOI-R--5215--SE

[21] Aayush Prakash, Shaad Boochoon, Mark Brophy, David Acuna, Eric
Cameracci, Gavriel State, Omer Shapira, and Stan Birchfield. Structured
domain randomization: Bridging the reality gap by context-aware syn-
thetic data. In Proceedings of the International Conference on Robotics
and Automation (ICRA), pages 7249–7255, 2019.

[22] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan,
Matt Rusiniak, David Acuna, Antonio Torralba, and Sanja Fidler. Meta-
Sim: Learning To Generate Synthetic Datasets. arXiv e-prints, page
arXiv:1904.11621, April 2019.

[23] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-Sim2: Unsuper-
vised learning of scene structure for synthetic data generation. In Pro-
ceedings of the 16th European Conference on Computer Vision (ECCV),
volume 12362 of Lecture Notes in Computer Science, pages 715–733.
Springer, 2020.

[24] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun.
Playing for data: Ground truth from computer games. In Proceedings
of the 14th European Conference on Computer Vision (ECCV), volume
9906 of LNCS, pages 102–118. Springer International Publishing, 2016.

[25] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio,
Matthew Johnson, Virginia Estellers, Thomas J. Cashman, and Jamie
Shotton. Fake It Till You Make It: Face analysis in the wild using
synthetic data alone. arXiv e-prints, page arXiv:2109.15102, September
2021.

[26] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun
Jampani, Cem Anil, Thang To, Eric Cameracci, Shaad Boochoon, and
Stan Birchfield. Training deep networks with synthetic data: Bridging
the reality gap by domain randomization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[27] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker. Learning
to simulate. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

[28] Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley,
Ben Garfinkel, Allan Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Fi-
lar, Hyrum Anderson, Heather Roff, Gregory C. Allen, Jacob Steinhardt,
Carrick Flynn, Seán Ó hÉigeartaigh, Simon Beard, Haydn Belfield, Se-
bastian Farquhar, Clare Lyle, Rebecca Crootof, Owain Evans, Michael
Page, Joanna Bryson, Roman Yampolskiy, and Dario Amodei. The Ma-
licious Use of Artificial Intelligence: Forecasting, Prevention, and Miti-
gation. arXiv e-prints, page arXiv:1802.07228, February 2018.

[29] Fredrik Johansson, Andreas Horndahl, Harald Stiff, and Mari-
anela Garćıa Lozano. Data synthesis using generative models. Technical
Report FOI-R--5041--SE, Swedish Defence Research Agency (FOI), 2020.

[30] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. Analyzing and improving the image quality of Style-
GAN. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

45

FOI-R--5215--SE

[31] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN
training for high fidelity natural image synthesis. In Proceedings of the
7th International Conference on Learning Representations (ICLR), 2019.

[32] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 2242–2251, 2017.

[33] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xi-
aolei Huang, and Xiaodong He. AttnGAN: Fine-grained text to im-
age generation with attentional generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1316–1324, 2018.

[34] Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiao-Yuan Jing,
Fei Wu, and Bingkun Bao. DF-GAN: Deep Fusion Generative Ad-
versarial Networks for Text-to-Image Synthesis. arXiv e-prints, page
arXiv:2008.05865, August 2020.

[35] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay. Face Aging
With Conditional Generative Adversarial Networks. arXiv e-prints, page
arXiv:1702.01983, February 2017.

[36] Edward Smith and David Meger. Improved Adversarial Systems
for 3D Object Generation and Reconstruction. arXiv e-prints, page
arXiv:1707.09557, July 2017.

[37] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, and Wenzhe Shi. Photo-Realistic Single Im-
age Super-Resolution Using a Generative Adversarial Network. arXiv
e-prints, page arXiv:1609.04802, September 2016.

[38] Yuval Nirkin, Yosi Keller, and Tal Hassner. FSGAN: Subject agnostic
face swapping and reenactment. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages 7183–7192,
2019.

[39] Stephan R. Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhanc-
ing Photorealism Enhancement. arXiv e-prints, page arXiv:2105.04619,
May 2021.

[40] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the KITTI vision benchmark suite. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3354–3361, 2012.

[41] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and Peter
Kontschieder. The Mapillary Vistas dataset for semantic understand-
ing of street scenes. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 5000–5009, 2017.

[42] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 22(10):1345–
1359, 2010.

46

FOI-R--5215--SE

[43] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of
transfer learning. Journal of Big data, 3(1), 2016.

[44] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and
Chunfang Liu. A survey on deep transfer learning. In Proceedings of the
International Conference on Artificial Neural Networks (ICANN), pages
270–279, 2018.

[45] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into
Transferable Adversarial Examples and Black-box Attacks. arXiv e-
prints, page arXiv:1611.02770, November 2016.

[46] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How trans-
ferable are features in deep neural networks? In Proceedings of the Ad-
vances in Neural Information Processing Systems (NIPS), volume 27,
2014.

[47] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana
Rosing, and Rogerio Feris. SpotTune: Transfer learning through adaptive
fine-tuning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

[48] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey.
Neurocomputing, 312:135–153, 2018.

[49] Wouter M. Kouw and Marco Loog. An introduction to domain adaptation
and transfer learning. arXiv e-prints, page arXiv:1812.11806, December
2018.

[50] Garrett Wilson and Diane J. Cook. A survey of unsupervised deep do-
main adaptation. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 11(5), 2020.

[51] Kihyuk Sohn, Sifei Liu, Guangyu Zhong, Xiang Yu, Ming-Hsuan Yang,
and Manmohan Chandraker. Unsupervised domain adaptation for face
recognition in unlabeled videos. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017.

[52] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan
Wang, and Kate Saenko. VisDA: The Visual Domain Adaptation Chal-
lenge. arXiv e-prints, page arXiv:1710.06924, October 2017.

[53] Jaeyoon Yoo, Yongjun Hong, YungKyun Noh, and Sungroh Yoon. Do-
main Adaptation Using Adversarial Learning for Autonomous Naviga-
tion. arXiv e-prints, page arXiv:1712.03742, December 2017.

[54] Yuhua Chen, Wen Li, and Luc Van Gool. ROAD: Reality oriented adap-
tation for semantic segmentation of urban scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7892–7901, 2018.

[55] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and
Patrick Perez. ADVENT: Adversarial entropy minimization for domain
adaptation in semantic segmentation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2019.

47

FOI-R--5215--SE

[56] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalash-
nikov, Alex Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Kon-
stantinos Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 12627–12637, 2019.

[57] Ajay Kumar Tanwani. Domain invariant representation learning for sim-
to-real transfer. In Proceedings of the Conference on Robot Learning
(CoRL), 2020.

[58] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation
by backpropagation. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning (ICML), volume 37,
pages 1180–1189, 2015.

[59] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks.
In Proceedings of the Advances in Neural Information Processing Systems
(NIPS), volume 29, 2016.

[60] Muhammad Ghifary, W. Bastiaan Kleijn, Mengjie Zhang, David Bal-
duzzi, and Wen Li. Deep reconstruction-classification networks for unsu-
pervised domain adaptation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 597–613, 2016.

[61] Minghao Chen, Shuai Zhao, Haifeng Liu, and Deng Cai. Adversarial-
learned loss for domain adaptation. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04):3521–3528, 2020.

[62] Baochen Sun and Kate Saenko. Deep CORAL: Correlation alignment for
deep domain adaptation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 443–450, 2016.

[63] Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Beyond shar-
ing weights for deep domain adaptation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 41(4):801–814, 2019.

[64] Richard A. Caruana. Multitask learning: A knowledge-based source of
inductive bias. In Proceedings of the Tenth International Conference on
Machine Learning (ICML), pages 41–48. Morgan Kaufmann, 1993.

[65] Richard A. Caruana. Multitask learning. Machine Learning, 28:41–75,
1997.

[66] Steven C. Suddarth and Yannick L. Kergosien. Rule-injection hints as
a means of improving network performance and learning time. Lecture
Notes in Computer Science, 412, 1990.

[67] Sebastian Ruder. An overview of multi-task learning in deep neural net-
works. arXiv e-prints, page arXiv:1706.05098, June 2017.

[68] Lukas Liebel and Marco Körner. Auxiliary Tasks in Multi-task Learning.
arXiv e-prints, page arXiv:1805.06334, May 2018.

[69] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning us-
ing uncertainty to weigh losses for scene geometry and semantics. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7482–7491, 2018.

48

FOI-R--5215--SE

[70] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy. Learning
to steer by mimicking features from heterogeneous auxiliary networks.
In Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
pages 8433–8440, February 2019.

[71] Jonny Sparrenhök. Influential learning: Knowledge sharing between ar-
tificial neural networks for autonomous vehicles. Master’s thesis, KTH,
School of Electrical Engineering and Computer Science (EECS), April
2021.

[72] Timothy M Hospedales, Antreas Antoniou, Paul Micaelli, and Amos J.
Storkey. Meta-learning in neural networks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2021.

[73] Mike Huisman, Jan N. van Rijn, and Aske Plaat. A survey of deep
meta-learning. Artificial Intelligence Review, 2021.

[74] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra,
and Timothy Lillicrap. Meta-learning with memory-augmented neural
networks. In Proceedings of the International Conference on Machine
Learning (ICML), volume 48, pages 1842–1850, 2016.

[75] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines.
arXiv e-prints, page arXiv:1410.5401, October 2014.

[76] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the In-
ternational Conference on Machine Learning (ICML), volume 70, pages
1126–1135, 2017.

[77] Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-
Learning Algorithms. arXiv e-prints, page arXiv:1803.02999, March
2018.

[78] Antreas Antoniou, Harrison Edwards, and A. Storkey. How to train
your MAML. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

[79] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals.
Rapid learning or feature reuse? towards understanding the effectiveness
of MAML. In Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

[80] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neu-
ral networks for one-shot image recognition. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), Deep learning work-
shop, 2015.

[81] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction
by learning an invariant mapping. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), volume 2, pages
1735–1742, 2006.

[82] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 815–823, 2015.

49

FOI-R--5215--SE

[83] Guneet S. Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Ste-
fano Soatto. A baseline for few-shot image classification. In Proceedings of
the International Conference on Learning Representations (ICLR), 2020.

[84] Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan Xu, and Trevor Dar-
rell. A New Meta-Baseline for Few-Shot Learning. arXiv e-prints, page
arXiv:2003.04390, March 2020.

[85] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper,
broader and artier domain generalization. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 5543–5551,
2017.

[86] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-
challenging improves cross-domain generalization. In Proceedings of the
16th European Conference on Computer Vision (ECCV), pages 124–140.
Springer, 2020.

[87] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain Gen-
eralization with MixStyle. arXiv e-prints, page arXiv:2104.02008, April
2021.

[88] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Se-
unghyun Park, Yunsung Lee, and Sungrae Park. SWAD: Domain Gener-
alization by Seeking Flat Minima. arXiv e-prints, page arXiv:2102.08604,
February 2021.

[89] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Wenjun Zeng,
and Tao Qin. Generalizing to unseen domains: A survey on domain gen-
eralization. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 2021.

[90] Farzad Kamrani, Mika Cohen, Fredrik Bissmarck, and Peter Hammar.
Behaviour modelling with imitation learning. Technical Report FOI-R--
4890--SE, Swedish Defence Research Agency (FOI), 2019.

[91] Bernard Etkin and Lloyd D Reid. Dynamics of Flight, volume 2. Wiley
New York, 1959.

[92] Viktor Sandström. On the efficiency of transfer learning in a fighter pilot
behavior modelling context. Master’s thesis, KTH, School of Engineering
Sciences (SCI), 2021.

[93] Dean A. Pomerleau. ALVINN: An autonomous land vehicle in a neural
network. In Proceedings of the 1st International Conference on Neu-
ral Information Processing Systems (NIPS), pages 305––313. MIT Press,
1988.

[94] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learn-
ing. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010.

[95] Paulo Flores. Euler angles, bryant angles and euler parameters. In
Concepts and formulations for spatial multibody dynamics, pages 15–22.
Springer, 2015.

[96] Andreas Horndahl, Daniel Oskarsson, and Linus Luotsinen. Machine
learning in FLSC. Technical Report FOI-D--0954--SE, Swedish Defence
Research Agency (FOI), 2019.

50

[97] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. Technical Report 07-49, University of Mas-
sachusetts, Amherst, October 2007.

[98] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao.
MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recogni-
tion. arXiv e-prints, page arXiv:1607.08221, July 2016.

[99] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris.
GANSpace: Discovering interpretable GAN controls. In Proceedings of
the Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 33, pages 9841–9850, 2020.

[100] Samuel Dodge and Lina Karam. Understanding how image quality af-
fects deep neural networks. In Proceedings of the Eighth International
Conference on Quality of Multimedia Experience (QoMEX), pages 1–6,
2016.

[101] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning Face Repre-
sentation from Scratch. arXiv e-prints, page arXiv:1411.7923, November
2014.

FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology
development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-
sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number
of fields such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

FOI
Defence Research Agency Phone: +46 8 555 030 00 www.foi.se
SE-164 90 Stockholm Fax: +46 8 555 031 00

