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ABSTRACT

Realism is required not only for how synthetic characters look but also for how they 
behave. Many applications, such as simulations, virtual worlds, and video games, 
require computational models of intelligence that generate realistic and credible 
behavior for the participating synthetic characters. Sigma (Σ) is being built as a 
computational model of general intelligence with a long-term goal of understand-
ing and replicating the architecture of the mind; i.e., the fixed structure underlying 
intelligent behavior. Sigma leverages probabilistic graphical models towards a 
uniform grand unification of not only traditional cognitive capabilities but also key 
non-cognitive aspects, creating unique opportunities for the construction of new 
kinds of non-modular behavioral models. These ambitions strive for the complete 
control of synthetic characters that behave as humanly as possible. In this paper, 
Sigma is introduced along with two disparate proof-of-concept virtual humans – 
one conversational and the other a pair of ambulatory agents – that demonstrate 
its diverse capabilities.
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1. INTRODUCTION

Twenty years ago, Tambe et al. (1995) discussed the generation of human-like syn-
thetic characters that can interact with each other, as well as with humans, within 
the emerging domain of highly interactive simulations. Many of these simulations 
strove to create environments that looked realistic, and synthetic characters that 
looked and behaved as real people to the extent possible. The behavioral models 
in these simulations extensively utilized cognitive architectures (Langley, Laird, 
& Rogers, 2009) – models of the fixed structure underlying intelligent behavior in 
natural and/or artificial systems – as the underlying driver for human-like intelligent 
behavior. Twenty years later, developments in computer graphics and animation 
have allowed for extremely realistic-looking interactive simulation environments; it 
is now possible to create almost photo-real synthetic characters with realistic gaits 
and gestures. However, progress in behavior generation has been more mixed. Main-
stream cognitive architectures, including Soar and ACT-R, originated as production 
systems and are fairly capable of modeling the reactive, knowledge-intensive, and 
goal-driven aspects of human behavior. For example, Tambe et al.’s (1995) work in 
the air-combat simulation domain utilized Soar (Laird, 2012) to model the behavior 
of pilots. These cognitive architectures are also capable of working in real time and, 
in ACT-R’s case, with explicit models of human reaction times and limitations. 
However, they have not yet been able to successfully incorporate all the capabilities 
that are required for human-like intelligence.

As Swartout (2010) has pointed out, behaving like real people requires synthetic 
characters to, among other things: (1) use their perceptual capabilities to observe 
their environment and other virtual/real humans in it; (2) act autonomously in their 
environment based on what they know and perceive, e.g. reacting and appropriately 
responding to the events around them; (3) interact in a natural way with both real 
and other virtual humans using verbal and nonverbal communication; (4) possess 
a Theory of Mind (ToM) to model their own mind and the minds of others; (5) un-
derstand and exhibit appropriate emotions and associated behaviors; and (6) adapt 
their behavior through experience. The Soar and ACT-R communities worked 
toward addressing these six capabilities for synthetic characters (referred to as the 
capability list hereafter) but some items were simply not feasible within the core 
architecture. For example, external modules were required for acceptable percep-
tual and communication capabilities. Likewise, most of the emotion models were 
also outside the core. More importantly, they haven’t been able to fully capture the 
advances that have been made in recent years in behavioral adaptation, or in other 
words, learning. A number of aspects of learning were successfully incorporated 
but generality in statistical machine learning, for example, has eluded them.
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Probabilistic graphical models (Koller & Friedman, 2009) provide a general tool 
that combines graph theory and probability theory to enable efficient probabilistic 
reasoning and learning in ways that haven’t been possible with traditional cogni-
tive architectures based on production systems. The machine learning community 
employs such models as one of its primary tools, yielding state-of-the-art results 
for at least four of the listed capabilities that have challenged traditional cognitive 
architectures: perception, autonomy, interaction and adaptation. However, most 
of these improvements have been achieved independently, as examples of narrow 
Artificial Intelligent (AI) systems, with little effort toward cross-integration.

One of the main reasons for the relative lack of integration efforts is the inherent 
difficulty of general intelligence research: not only is it challenging to integrate all 
of the requisite capabilities, but it is also hard to measure the resulting incremental 
progress toward human-like intelligence (Goertzel, 2014). In contrast, many forms 
of narrow AI systems can easily track incremental progress as they try to improve 
“intelligent” behaviors in very specific contexts. Therefore, it is easier to assess the 
merit of these systems through simple comparisons. This strategy has helped narrow 
AI approaches dominate the research in the last two decades.

The objectives for generally intelligent systems, however, are quite different from 
narrow AI systems. Generally intelligent systems are not necessarily focused on the 
extremes of performance in limited contexts but rather on the ability to achieve a 
wide range of goals and to carry out a variety of tasks in many different contexts 
and environments, as stated by Goertzel (2014). Such systems require the traits of 
the capability list to be integrated together and work coherently. As pointed out by 
Swartout (2010), this integration can be quite difficult, but it can potentially yield 
more than the sum of its parts. Mainstream cognitive architectures, as natural can-
didates for the desired integration, have attempted to add some of these capabilities 
without actually updating their cores (Ji, Gray, Guhe, & Schoelles, 2004). This 
approach has improved their overall functionality but still has not been enough to 
capture many critical developments, especially in perception and learning.

This paper introduces a nascent cognitive architecture/system, Sigma (Rosen-
bloom, 2013), that conflates traditional cognitive architectures and probabilistic 
graphical models. The long-term goal is to understand and replicate the fixed structure 
underlying intelligent behavior in both natural and artificial systems. Sigma is moti-
vated by the original grand goal of AI, as well as by the more recent reformulation of 
this goal within artificial general intelligence (AGI) (Goertzel, 2014), in an attempt 
to create a full cognitive system that can implement the qualities in the capability list 
and more. As such, it is intended ultimately to support the real-time needs of truly 
autonomous characters, whether robots or synthetic characters (virtual humans).

Sigma’s development is guided by a quartet of desiderata: (1) grand unification, 
uniting the requisite cognitive and non-cognitive aspects of embodied intelligence 
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for intelligent behavior in complex real worlds; (2) generic cognition, spanning 
both natural and artificial cognition at a suitable level of abstraction; (3) functional 
elegance, yielding broad cognitive (and sub-cognitive) functionality from interactions 
among a small general set of mechanisms; and (4) sufficient efficiency, executing 
rapidly enough for anticipated applications. The first, second and last desiderata are 
directly relevant to the construction of broadly capable, real-time virtual humans 
(VHs), while the third implies a rather unique path towards them, where instead 
of a disparate assembly of modules, all of the required capabilities are constructed 
and integrated together on a simple elegant base.

Most of the work to date on Sigma has explored various capabilities individu-
ally: learning (Rosenbloom, 2012, 2014; Rosenbloom, Demski, Han, & Ustun, 
2013), memory and knowledge (Rosenbloom, 2010, 2014; Ustun, Rosenbloom, 
Sagae, & Demski, 2014), decision making and problem solving (Chen et al., 2011; 
Rosenbloom, 2011b), perception (Chen et al., 2011), speech (Joshi, Rosenbloom, 
& Ustun 2014), ToM (Pynadath, Rosenbloom, Marsella, & Li, 2013; Pynadath, 
Rosenbloom, & Marsella, 2014), and emotions (Rosenbloom, Gratch, & Ustun 2015). 
But, even more importantly, Sigma’s non-modular, hybrid (discrete + continuous) 
mixed (symbolic + probabilistic) character also supports attempts at a deep form 
of integration across the capability list, straddling the traditional boundary between 
symbolic cognitive processing and numeric sub-cognitive processing. Sigma provides 
the ability to exhibit this combination of capabilities in a unified manner because of 
its grounding in a graphical architecture that is built from graphical models (Koller 
& Friedman 2009) (in particular, factor graphs and the summary product algorithm 
(Kschischang, Frey, & Loeliger 2001)), n-dimensional piecewise linear functions 
(Rosenbloom, 2011a), and gradient descent learning (Rosenbloom, Demski, Han, 
& Ustun, 2013). The required VH capabilities emerge in a functionally elegant 
manner from both interactions among this small but general set of mechanisms and 
knowledge captured in Sigma models. For example, reinforcement learning (RL) 
arises from the interactions between gradient descent learning and particular forms 
of both domain-specific and domain-independent knowledge (Rosenbloom, 2012). 
Truly autonomous characters would require a computational intelligent behavior 
model that pushes the boundaries of how the broad range of traits in the capability 
list may be integrated, with Sigma providing a unique, and potentially powerful, 
way of doing this.

Still, this is just the beginning of a long journey. The real power of the unique 
path taken by Sigma is in the emerging synergy between diverse capabilities. Yet 
the models discussed in this paper are just the first attempts toward developing 
integrative virtual humans. There is definitely a need to devise more comprehen-
sive virtual humans with more interactions among characters in realistic scenarios 
and trained across multiple environments in order to assess Sigma’s true potential. 
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Nonetheless, Sigma is maturing day by day, and the diverse progress that has been 
made so far provides initial evidence that Sigma will be capable of creating truly 
autonomous VHs as a capstone of its maturation.

There have been a few other recent proposals for the utilization of graphical 
models in cognitive architectures (Cassimatis, 2010; Danks, 2014; Lee-Urban et 
al., 2015), but they are mostly just proposals with quite limited implementations. 
Neural networks also provide a major alternative to graphical models for addressing 
a number of the items in the capability list that most challenge traditional cognitive 
architectures, and with the recent focus on deep models provide the current state of 
the art in statistical machine learning. General intelligence is emerging as a popular 
research topic in the deep learning community (Mikolov, Joulin, & Baroni 2015; 
Schmidhuber, 2015; Strannegard, von Haugwitz, Wessberg, & Balkenius 2013), 
but it remains to be seen what the research in this field will yield. In general, none 
of the current approaches is yet adequate for comprehensively encompassing the 
capability list.

In this paper, first a case is made for needing truly autonomous characters that 
embody human-like intelligence, rather than just characters who may be perceived as 
intelligent, in interactive simulation environments. Then, Sigma will be introduced 
and its potential for creating truly autonomous synthetic characters will be discussed 
along with two disparate proof-of-concept virtual humans – one conversational (Us-
tun, Rosenbloom, Kim, & Li 2015) and the other a pair of ambulatory agents (Ustun 
& Rosenbloom, 2015) – that demonstrate its diverse capabilities. Both varieties of 
virtual human combine cognitive and non-cognitive capabilities, and in the case of 
the ambulatory agents integrate together diverse forms of learning.

2. TRULY AUTONOMOUS CHARACTERS

Traditional cognitive architectures have controlled virtual characters capably in a 
number of interactive simulation environments (Tambe et al., 1995; Traum, Mar-
sella, Gratch, Lee, & Hartholt 2008; Zemla et al., 2011). One of the most relevant 
examples is the use of the Soar cognitive architecture to create a synthetic character 
with multiple goals and extensive tactics in the computer game Quake II (Laird and 
van Lent 2001). Laird and van Lent (2001) states: “While the Soar Quakebot explores 
a level, it creates an internal model of its world and uses this model in its tactics to 
collect nearby weapons and health, and set ambushes. It also tries to anticipate the 
actions of human players by putting itself in their shoes (creating an internal model 
of their situation garnered from its perception of the player) and projecting what 
it would do if it were the human player” (p. 22). The Soar Quakebot did not have 
as many rules as a fully developed commercial synthetic character would, nor did 
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it have any probabilistic reasoning or learning capabilities, but it did show some 
potential to create realistic and believable synthetic characters.

Yet similar efforts never gained much traction due, at least in part, to the reality 
that major consumers of interactive simulation environments – e.g. training, gam-
ing, and entertainment communities – are not interested in whether these synthetic 
characters are actually intelligent or not, but only in the perceived intelligence of 
these characters. This perspective severely limits the resources allocated for efforts in 
general intelligence. Many of these interactive simulation environments even prefer 
stricter control on the interactions between synthetic characters and real humans, as 
such tight control can prevent synthetic characters from exhibiting behaviors that may 
be potentially perceived as unintelligent. Many simulations use the labor-intensive 
process of defining hierarchical representations of goals and rules that cover almost 
all of the simulation’s situations. For a higher level of control of these situations, 
it is a common practice to “cheat” by collecting information on human opponents 
without actually perceiving them in the gaming environment (Bourg & Seaman 
2004; Schaeffer, Bulitki, & Buro, 2008). When these rule-based decision models 
are combined with very realistic graphics and animations, striking applications can 
be created with even a relatively simple rule structure (DeVault et al., 2014).

The relative success of applications with extensive rule structures in guiding 
behavior impedes the penetration of even basic narrow AI approaches into interac-
tive simulation environments. Basically, training by observation is considered to be 
too time consuming and the resulting behavior unpredictable (Robertson & Watson, 
2014; Umarov, Mozgovoy, & Rogers, 2012) when the sole focus is on perceived 
intelligence. There are even some experts who believe that all that users want is 
predictability and that it is therefore unnecessary to pursue synthetic characters 
that learn by experience. On the other hand, there are other experts and researchers 
who believe that human behavioral models with cognitive capabilities and more 
human-like intelligence can make simulations more varied and the games more 
enjoyable (Lucas & Kendall, 2006; Robertson & Watson, 2014). Many interactive 
simulation models already desire synthetic characters that are not only believable but 
also indistinguishable from humans – performing coherent sequences of believable 
behavior sustained across different tasks and environments. Human behavior is still 
considered a challenge by/for the simulation community (Taylor et al., 2015), where 
there is a need for creating truly autonomous synthetic characters that actually have 
generic perception, action and learning capabilities appropriate for a variety of envi-
ronments. Such characters are almost impossible to generate by strictly controlling 
their behavior, as this approach would require generating rules for each different 
task, each different environment, and every possible interaction. These characters 
need to be trained by observation, and thus they ideally require architectures with 
general learning capabilities.
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Characters that are truly autonomous would be very interesting for interactive 
simulation environments, as they would be defined by the experiences they have 
undergone and the environments where they have been, contributing to the person-
ality of each character. Eventually, the hope is that progress in the development of 
these characters will yield plug compatibility between humans and artificial systems 
(Tambe et al., 1995). Such characters would open doors to uncharted territories and 
to immense opportunities for the training, gaming, and entertainment communities. 
One recent example is the deep reinforcement-learning algorithm that has been used 
to train a synthetic character from high-dimensional sensory inputs to play multiple 
Atari games (Mnih et al., 2015). The synthetic character in this study received only 
the game score and pixels as input and was able to achieve a level comparable to 
humans using the same algorithm, network structure and hyperparameters across 
games. There was no interaction with other synthetic characters or switching of 
contexts in this study, but it is still an inspiring achievement in using real perceptions.

Overall, interest in general intelligence is increasing, and many rich applications 
with truly autonomous synthetic characters are envisioned for the future. Architec-
tures capable of creating such characters are thus very intriguing.

3. SIGMA

The Sigma cognitive architecture is built on factor graphs (Kschischang, Frey, & 
Loeliger 2001) – undirected graphical models (Koller & Friedman 2009) with vari-
able and factor nodes, and functions that are stored in the factor nodes. Graphical 
models provide a general computational technique for efficient computation with 
complex multivariate functions – implemented via hybrid mixed piecewise-linear 
functions (Rosenbloom, 2011a) in Sigma – by leveraging forms of independence 
to: decompose them into products of simpler functions; map these products onto 
graphs; and solve the graphs via message passing or sampling methods. The summary 
product algorithm (Kschischang, Frey, & Loeliger 2001) is the general inference 
algorithm in Sigma (Figure 1). Graphical models are particularly attractive as a basis 
for broadly functional, yet simple and theoretically elegant, cognitive architectures 
because they provide a single general representation and inference algorithm for 
processing symbols, probabilities and signals.

The Sigma architecture defines a high-level language of predicates and condi-
tionals that compiles down into factor graphs. Predicates specify relations over 
continuous, discrete and/or symbolic arguments. They are defined via a name and 
a set of typed arguments, with working memory (WM) containing predicate instan-
tiations as functions within a WM sub-graph. Predicates may also have perception 
and/or long-term memory (LTM) functions. For perceptual predicates, factor nodes 
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for perceptual buffers are connected to the corresponding WM sub-graphs. For 
example, Observed(object:object visible:boolean) is a perceptual predicate with two 
arguments: (1) object of type object; and (2) visible of type boolean. This predicate 
specifies which objects are visible to the agent at any particular time. For memo-
rial predicates, function factor nodes (FFNs) are likewise connected to the corre-
sponding WM sub-graphs. Messages into FFNs provide the gradients for learning 
the nodes’ functions. Gradient calculations require identifying parent-child relation-
ships among predicate arguments; for instance, the predicate function for the Object-
Location-X(object:object x:location%) predicate defines a distribution over the x 
coordinate given an object (x is marked as the child variable in this predicate by %).

Conditionals structure LTM and basic reasoning, compiling into more extended 
sub-graphs that interconnect with the appropriate WM sub-graphs. Conditionals are 
defined via a set of predicate patterns – in which type specifications are replaced 
by constants and variables – and an optional function over pattern variables. Con-
ditions and actions are predicate patterns that behave like the respective parts of 
rules, pushing information in one direction from the conditions to the actions. The 
example conditional in Figure 2 updates the information about which objects have 

Figure 1. Summary product computation over the factor graph for f(x,y,z) = 
y2+yz+2yx+2xz = (2x+y)(y+z) = fi(x,y)f2(y,z) of the marginal on y given evidence 
concerning x and z
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been seen so far, based on the information in the Observed predicate. Condacts are 
predicate patterns that support the bidirectional processing that is key to probabilistic 
reasoning, partial matching, constraint satisfaction and signal processing. Examples 
of probabilistic networks based on condacts and functions will be seen in the com-
ing sections on virtual humans. Overall, conditionals provide a deep combination 
of rule systems and probabilistic networks.

The core processing in Sigma is driven by a cognitive cycle that comprises input, 
graph solution, decisions, learning, and output. Graph solution yields inference via 
the summary product algorithm, by product of the messages coming into each node 
– including the node’s function when it is a factor node – and then summarization, 
via integration or maximum, of unneeded variables from outgoing messages. Per-
ception and action are modeled as sub-symbolic reasoning in Sigma that occurs 
predominantly within graph solution, rather than within external modules (Joshi, 
Rosenbloom, & Ustun, 2014). Specifically, perceptual information collected during 
the input phase is passed to WM, where it is combined with the current contents of 
the WM and knowledge available within the LTM – such as might define a hidden 
Markov model (HMM) or a conditional random field (CRF) – yielding new WM 
content at the end of the graph solution phase.

Decisions in Sigma, in the classical sense of choosing one among the best opera-
tors to execute next, are based on an architecturally distinguished selection predicate 
– Selected (state:state operator:operator) – with typically the operator associated 
with the highest value, or utility, in the distribution for a state being selected. The 
learning phase then modifies the long-term functions in the graph via a general 
form of gradient-descent learning. Finally, in the output phase, selected actions are 
performed in the outside world.

A single cognitive cycle yields reactive processing; a sequence of them yields 
deliberative processing; and reflective processing occurs when no operator can be 
selected, or a selected operator can’t be applied, similar to impasses in Soar (Laird, 
2012). Activities such as classifying an object or executing a body of rules can all 
occur reactively, within a single cognitive cycle. Deliberative processing utilizes 
reactive processing, and thus individual cognitive cycles, as its inner loop in provid-
ing sequential, algorithmic behavior that leads to problem solving and reasoning. 

Figure 2. Conditional for context information
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When impasses occur, deliberative processing – either in the same or different 
problem spaces – can be used reflectively to yield the knowledge that would resolve 
the impasses.

4. THE IMMERSIVE NAVAL OFFICER 
TRAINING SYSTEM (INOTS)

The first proof-of-concept Sigma Virtual Human discussed in this paper focuses on 
language and conversation. This Sigma model replicates the mind of a deployed, 
but cognitively rather simple, virtual human that was originally developed for the 
Immersive Naval Officer Training System (INOTS) system, a training vehicle for 
junior leaders in the U.S. Navy in interpersonal communication skills (Campbell 
et al., 2011). INOTS replaces the live role player in a traditional role-play practice 
with a virtual human, creating a blended learning environment that merges tradi-
tional classroom instruction with a mixed reality training setting. For instance, the 
virtual human’s behavior and dialog are tailored to provide the cues indicative of 
when to apply specific strategies and skills for the problems on hand. The imple-
mentation uses a branching narrative such that each utterance (also known as a 
challenge in INOTS) by the virtual human is a decision point with a fixed number 
of possible responses by the trainee. At each challenge, the system displays the 
possible responses for the trainee to choose. The trainee is expected to speak one 
of the possible responses that are recognized by the system. Each response is linked 
to another decision point in the narrative representing the virtual human’s reaction 
and the next set of possible utterances for the trainee. The scripted dialogue of the 
virtual human and the scripted possible responses for the trainee allow practicing 
the strategies that an expert leader would use to solve certain types of interpersonal 
problems (Campbell et al., 2011).

4.1 INOTS Sigma Model

The overall control structure for the INOTS virtual human is based on a branch-
ing – directed acyclic – network of states and utterances plus an utterance classifier 
that is used to determine which choice to make at each point, and thus also what 
response to make. Two separate tools were combined to make this work, one for the 
branching structure and the other for the utterance classifier (Campbell et al., 2011). 
In Sigma these two functionalities were mapped, respectively, onto: (1) deliberative 
movement in a discourse problem space composed of operators for speaking and 
listening, and (2) a reactive bag-of-words naïve Bayes utterance classifier (Ustun, 
Rosenbloom, Kim, & Li 2015).
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The basic control structure alternates whose turn it is to talk, with a listen op-
erator selected when it is the human’s turn and a speak operator selected when it is 
the VH’s turn. When it is the human’s turn, their utterance – which is typed rather 
than spoken to Sigma – is classified as one from among a small set of standard 
utterances that have been predefined for the corresponding dialogue state; there 
are typically 1-3 standard utterances per state. Two distinct types of conditionals 
realize this naïve Bayes classification: (1) the prior on the utterance being classified 
(Figure 3), and (2) the conditional probabilities on the words given the utterances, 
with one conditional per word in the vocabulary (Figure 4). The Prior-Meaning 
conditional (Figure 3) defines the valid utterances for the current dialog state by 
having an Utterance(meaning:utterance-number) predicate pattern as a condact, 
where utterance-number is a discrete numeric type that uniquely identifies the dis-
tinct utterances known to the system. The function in the Prior-Meaning conditional, 
in which only valid utterances for the current dialog state are assigned non-zero 
probability, captures the prior on the utterances (m is the child variable for this 
function). In the current implementation, a uniform distribution is used as a prior 
over the valid utterances for the current dialogue state.

The conditional in Figure 4 demonstrates how conditional probabilities are 
represented for the word play given the utterance. A conditional probability distri-
bution is defined over the likelihood of the presence of play in a sentence spoken 
by the trainee for each associated meaning via the function in the Sentence-Word-
Play conditional (wp is the child variable for this function). Similarly, for each word 
in the VH’s vocabulary, there is a distinct conditional and function that capture the 
likelihood of the presence of that word in each utterance. At the end of graph solu-
tion, a posterior distribution is yielded for the Utterance predicate and the utterance 

Figure 3. Prior on the sentence

Figure 4. Example conditional for the bag-of-words model
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with the highest probability is selected as the one that is heard. However, if none of 
the utterances have a probability greater than 0.5, it is assumed that the trainee has 
entered something unrecognizable, and s/he is asked to reenter the utterance.

The selected standard utterance – as represented in the Heard-Utterance predicate 
– then feeds the transition conditional (Figure 5), which determines the subsequent 
dialogue state. When it is the VH’s turn to speak, only one possible utterance ex-
ists for each dialogue state, so it is simply produced and the next dialogue state is 
determined as a direct function of the previous one.

This VH mind works in real-time, and is capable of holding a dialogue compa-
rable to the one in the original system. However, it is still rather limited in its capa-
bilities. Even though Sigma is capable of learning the conditional probability dis-
tributions for the bag-of-words model, and has done so in a variety of other tasks, 
for the current implementation these distributions were determined outside of 
Sigma and then imported into conditional functions. The original goals for imple-
menting this particular VH mind within Sigma were to show that simple such minds 
could be created simply, and in an integrated fashion, and that they could then be 
extended to more sophisticated intelligent behavior as required – typically cus-
tomer requirements in domains like this start simple, but then grow as it is understood 
what the initial system can and cannot do. The first part of this was demonstrated, 
but not yet the second part, although such extensions could still be explored in the 
future.

5. PHYSICAL SECURITY SYSTEM

Chen et al. (2011) discussed the fusion of symbolic and probabilistic reasoning at an 
earlier stage of the development of Sigma. In that study, initial steps towards grand 
unification were demonstrated when perception, localization and decision-making 
were implemented within a single graphical model, with interaction among these 
capabilities modulated through shared variables. The work here greatly expands 
on this approach to yield a more significant combination of capabilities, plus a 
deployment in virtual humans – within a 3D virtual environment (rather than a toy 
one-dimensional space) – embodied in the SmartBody character animation system 

Figure 5. Transition conditional
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(Shapiro, 2011). SmartBody’s internal movement, path-finding and collision detec-
tion algorithms are used in animating the virtual human’s actions, although eventu-
ally much of this is to be moved within Sigma. Sigma has no “direct” access to the 
virtual environment, being limited instead to perceiving and acting on it through a 
(deliberately) noisy interface.

A number of capabilities within Sigma have been combined to construct an 
adaptive, interactive virtual human in a virtual environment. The VH is adaptive not 
only in terms of dynamically deciding what to do based on the immediate circum-
stances, but also in terms of embodying two distinct forms of relevant learning: (1) 
the automated acquisition of maps of the environment from experience with it, in the 
context of the classic robotic capability of Simultaneous Localization and Mapping 
(SLAM); and (2) reinforcement learning (RL), to improve decision making based 
on experience with the outcomes of earlier decisions. The VH is interactive both 
in terms of its (virtual) physical environment – through high-level perception and 
action – and other participants, although the latter is still quite limited. Speech and 
language are being investigated in Sigma, but neither is deployed in these virtual 
humans yet, so social interaction is limited to constructing – actually, learning, 
with the help of RL – models of the self and others. These forms of adaptivity and 
interaction are combined together, along with for these initial virtual humans a basic 
rule-based decision framework, all within Sigma.

5.1 Physical Security System Conceptual Model

Physical security systems are comprised of structures, sensors, protocols, and poli-
cies that aim to protect fixed-site facilities against intrusions by external threats, as 
well as unauthorized acts by insiders. Physical security systems are generally easy 
to understand but they also allow complex interactions to emerge among the agents. 
These properties make physical-security-systems simulation a natural candidate as 
a testbed for developing cognitive models of synthetic characters (Ustun, Yilmaz, 
& Smith 2006). Similar to the discussion made by Ustun et al. (2006), a physical-
security-system scenario in a retail store has been selected as a platform to develop 
and test Sigma VH models.

In a typical retail-store shoplifting plot, offenders first pick up merchandise in a 
retail store and then try to leave without getting caught by any of the store’s secu-
rity measures. A simple grab-and-run scenario is considered in this paper (a large 
number of different scenarios are possible). In this scenario, the intruder needs to 
locate the desired item in the store, grab it, and then leave the store. The role of 
security is to detain the intruder before s/he leaves the store. A basic assumption is 
that it is not possible to tell what the intruder will do until s/he picks up an item and 
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starts running. The security can immediately detect the activity and start pursuing 
the intruder once the item is picked up (assuming CCTV). If the intruder makes it 
to the door, it is considered a success for the intruder.

For the basic setup, it is assumed that the intruder does not know the layout of 
the store and hence it has to learn a map and be able to use it to localize itself in the 
store. When the intruder locates the item of interest, it grabs the item and leaves the 
store via one of the exits. In the hypothetical retail store used here (Figure 6), there 
are shelves (gray rectangles), the item of interest (the blue circle) and two entry/exit 
doors (red rectangles). The intruder leaves the store via either (1) the door it used 
to enter or (2) the door closest to the item of interest. The main task for security is 
to learn about the exit strategies of intruders and use this to effectively detain them.

SmartBody (Shapiro, 2011), a Behavior Markup Language (BML) (Kopp et al., 
2006) realization engine, is used as the character animation platform for this study, 
with communication between

the Sigma VH model and SmartBody handled via BML messages. In the current 
setup, locomotion and path finding are delegated to the SmartBody engine. Sigma 
sends commands and queries to SmartBody to perform these tasks and to return 
perceptual information. Two basic types of perception are utilized by the Sigma 
VH model: (1) information about the current location of the agent, mimicking the 
combination of direction, speed and odometry measurements available to a robot; and 
(2) objects that are in the visual field of the agent, along with their relative distances, 
mimicking the perception of the environment for a robot. Location information is 
conveyed to the Sigma VH model with noise added – perfect location information 
is not available to the model.

Figure 6. Layout of the store and its SmartBody representation
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5.2 Physical Security System Sigma Model

In a typical physical security system setting there are intruders (shoplifters) and 
security personnel. There may also be neutrals, but they are not modeled in this 
work. In this initial implementation, an intruder and a security agent are modeled 
as virtual humans. There are two distinct types of learning (and probabilistic infer-
ence) in this scenario: (1) The intruder agent does not know the layout of the store 
in advance, and so it must learn a map of the store while simultaneously localizing 
itself in the learned map (SLAM model), and (2) The security personnel agent infers 
the strategy of the intruder agent – i.e., whether it exits through the entry door or the 
closest door – by first learning a policy for the intruder agent via RL and then using 
this policy and the intruder agent’s actions to determine on each trial the relative 
likelihoods of the two strategies being used (Section 5.2.1). The intruder also needs 
a decision framework to dynamically decide what to do based on its immediate 
circumstances (Section 5.2.2).

5.2.1 Learning in the Physical Security System VH Models

Sigma can effectively utilize different types of learning, a key capability leading 
towards adaptive and interactive synthetic characters that are truly autonomous. 
Here, the agents learn the probability distributions in a Bayesian network and Q 
functions for an RL algorithm using the same basic set of architectural mechanisms, 
something that would require multiple distinct modules in other architectures if it 
could be done at all.

In the SLAM model, the intruder has no a priori knowledge about the layout of 
the retail store (which is as shown in Figure 6). Therefore, it needs to learn a map of 
the store while simultaneously using the map to localize itself in the store. A 31×31 
grid is imposed on the store for map learning. A virtual human only occupies a single 
grid cell, whereas objects in the environment – such as shelves – can span multiple 
cells. While performing SLAM, a Dynamic Bayesian Network (DBN) is utilized 
(Figure 7) (Grisetti, Kummerle, Stachniss, & Burgard 2010). In this representation, 
l is the location, u captures the odometry readings, p represents perceptions of the 
environment, and m is the map of the environment.

The Sigma VH model defines two perceptual predicates – Location-X(x:location) 
and Location-Z(z:location) – to represent the location of the virtual human on the 
grid; here, the location type is discrete numeric, with a span of 31. Together these 
two predicates represent the space of 2D cell locations in the grid. They are percep-
tual predicates, and hence induce perceptual buffers that emulate odometry readings. 
In particular, the current location of the agent is perceived with noise – the default 
noise model assumes that any neighboring cell of the correct cell may be perceived 
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as the agent’s current location. In addition, the objects in the visual field are also 
perceived along with the relative distances of the center of these objects to the 
agent’s location.

The DBN is captured in two almost identical conditionals, one for x (Figure 8) 
and a similar one for z. These conditionals convert relative locations of objects given 
the agent to absolute locations in the map. They use Sigma’s general capability for 
affine transforms in visual imagery (Rosenbloom, 2012) to offset the agent’s current 
location by the distance to the object being updated. In Figure 8, the Object-Location-
X predicate is a memorial predicate so it has a function that learns the x coordinates 
in the map via gradient descent. Since both the Location-X and Object-Location-X 
patterns are condacts, the processing is bidirectional between them; both perception 
of the VH’s location and perception of the object locations have an impact on the 
posterior for the VH’s location. This bidirectional processing forms the basis for 
SLAM, where the map is learned while it is simultaneously used for localization.

Once it was verified that without noise this implementation of SLAM could 
acquire appropriate maps, an additional experiment was run on this VH to explore 
more probabilistic learning under noise, and thus uncertainty. This experiment in-

Figure 7. Dynamic Bayesian Network of the SLAM process
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vestigated the effect of different noise models on the number of trials required to 
learn a correct map. A normally distributed noise with mean 0 and varying standard 
deviations was added to the location perceptions of the VH in this experiment, with 
the results shown in Figure 9. As expected, the learned map is sensitive to noise, 
but small amounts of it can be tolerated, even given just a small number of trials 
(Figure 9 (a)). However, high-variation noise models make it hard to learn correct 
maps. In Figure 9(c), the correct location of the item of interest is not effectively 

Figure 8. SLAM conditional for the x coordinate

Figure 9. Learned distributions over the displacements of the x (left) and z (right) 
coordinates from the correct values for the item of interest after varying number of 
trials, under three different noise models
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learned even after 10 trials. These experiments provide evidence that general prob-
ability distributions are effectively learned in the Sigma cognitive architecture.

In addition to mapping and localizing itself like the intruder, the security agent 
needs to reason about the intruder agent’s actions for effective detainment, and hence 
it needs to learn about the policies used by the intruder agent. One basic assumption 
made in this paper is that it is easy to recognize that a grab-and-go scenario has 
been initiated, by observing the pick-up behavior of the intruder.1 However, even 
though security can easily recognize when such a scenario has been initiated, it still 
needs to intercept the intruder before it leaves the retail store. As there are two exit 
doors, early anticipation of the intruder’s choice increases the chances of a success-
ful detention.

Theory of Mind (ToM) involves formation of models of others and generation 
of expectations about their behavior based on these models to enable effective deci-
sions in social settings (Whiten, 1991). In decision theoretic approaches to ToM, 
such models can be represented as reward functions. For the intruder in our scenario 
there are two possible models, distinguished by whether a reward is received when 
the agent returns to its door of entry or when it reaches the nearest door from the 
item of interest. This corresponds to Bayesian approaches to multi-agent modeling 
that use a distribution over a set of policies to specify the beliefs that one agent has 
about another (Pynadath & Marsella, 2005).

Here, as in the work by Pynadath et al. (2014), RL is leveraged in selecting 
among models of other agents; in particular it is used so that the security agent 
can learn a model of the intruder. First a form of multiagent RL is used to learn a 
distinct policy, or Q function, for the intruder under each possible model, and then 
these policies are used in combination with the perception of the intruder’s actions 
to yield a gradient over the two models that is proportional to the models’ Q values 
for the performed actions. For example, the model for which the observed action has 
higher Q values will achieve increased likelihood in the posterior distribution. This 
very quickly enables the security VH to determine the correct door in the experi-
ments run, with the Q value learned by RL substituting for what would otherwise 
be a need to explicitly extrapolate and compare the paths the intruder might take 
to the two doors.

The conditional that compares the Q values and generates a posterior distribution 
for the models is shown in Figure 10. It multiplies the Q values for the observed 
action – specified by the location of the intruder agent and the direction of move-
ment from that location – in each policy by 0.1, to scale utilities in [0,10] to values 
for selection in [0,1], and then projects these values onto the model predicate to 
generate a posterior distribution on the model currently being used by the intruder.

In general, RL enables agents to learn effective policies for task performance 
based on rewards received over a sequence of trials (Sutton & Barto, 1998). In 
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Sigma, RL is not a separate architectural learning algorithm, but occurs through a 
combination of gradient-descent learning and the appropriate knowledge expressed 
in predicates and conditionals. This also means that, similar to the work by Pyna-
dath et al. (2014), it is possible to move from single-agent to multi-agent RL, and 
from RL given a single reward function to RL given a range of possible reward 
functions – i.e., models – by appropriately changing the predicates and conditionals.

5.2.2 Behavior Rules in the Physical Security System VH Models

The objective of the intruder is to grab the item of interest (Figure 6) and to leave 
the store through one of the exits without being detained. In the current implemen-
tation, four basic behaviors, with corresponding Sigma operators, are available to 
the intruder: (1) walk towards target object; (2) run towards target object; (3) pick 
up target object; and (4) walk towards random object. Target objects play a role in 
the intruder achieving its goals, while random objects drive exploration of the store.

The intruder is initialized with a sequence of target objects that it needs either 
to walk towards or to pick-up. Given that the intruder does not have a priori knowl-
edge of the store, the location of the current target object may be unknown to it. In 
this case it needs to explore the store, mapping it in the process, to locate the target 
object. The basic operator used for exploration is walk towards random object. The 
intent is that doing this will help the agent discover new objects, and eventually the 
target object.

This exploratory operator is always available; however, if other more task-relevant 
behaviors are available, they take precedence. For example, Figure 11 shows a con-
ditional in which the operator walk towards target object is suggested for selection 
with a utility of 0.5 when the virtual human has seen the target object (and hence, 
there is an estimate of its location). Exploration has a lower utility, so walking to a 
target object takes precedence if both operators are available.

When the virtual human is within a threshold distance of the target object, a new 
operator – pick-up target object – is selected. The model terminates when the in-
truder reaches its preferred exit door, which acts as the target object for the run 
towards target object operator.

Figure 10. Model prediction conditional
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Combining the short-term adaptivity provided by this rule-based behavior with 
the long-term adaptivity provided by map and ToM learning yields embodied 
Sigma-based VHs that exhibit effective social and environmental interaction in the 
physical security model.

6. CONCLUSION

The two models presented here are important steps in the maturation of Sigma as 
they are the first uses of Sigma to control virtual characters, demonstrating small 
but diverse combinations of symbolic and sub-symbolic processing. Each embod-
ies an important subset of the capabilities that virtual humans should support. It is 
hoped that over the long term such combinations of the capabilities of traditional 
symbolic cognitive architectures and probabilistic graphical models may assist in 
the generation of high-fidelity computational behavior models. There are short-term 
plans for extending these particular models: (1) the INOTS model is to incorporate 
a Sigma-based continuous speech recognizer, and (2) the physical security model 
is to incorporate natural language, speech, and affect. Furthermore, the variety 
of participants involved – intruders, security, and neutrals – makes the physical 
security model in particular extremely flexible for the generation of scenarios that 
encompass many different interactions among VHs and between VHs and humans. 
As the scenarios get more complex, the expectation is that the forms of cognition 
exhibited will keep up, going beyond simple rule-based reasoning to more involved 
combinations of reactive, deliberative and reflective processing. Further experiments 
with these models will help to test the limits and assess Sigma as an architecture 
for general intelligence.

Broadly capable real-time virtual humans provide ideal test beds for demonstrat-
ing and evaluating progress on Sigma’s four desiderata, with “broadly capable” 
challenging the extent of its grand unification; “real-time” challenging its sufficient 
efficiency (Rosenbloom, 2012); and “virtual humans” with their need to exhibit 
human-like behavior in artificial systems, challenging its generic cognition. The 

Figure 11. Conditional suggesting the walk towards target object operator
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virtual humans here also leverage Sigma’s functionally elegant approach to providing 
and combining the requisite capabilities, such as rule-based reasoning, language, 
SLAM, ToM, and RL.
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ENDNOTE

1  The details of this recognition process are beyond the scope of this paper but 
there are a variety of behavioral cues (e.g. posture changes while concealing 
an item, gait changes under stress etc.) that could be revealing. Exhibiting and 
detecting such cues is one of a number of intriguing future directions for this 
work.
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