Representations of Dialogue State for Domain
and Task Independent Meta-Dialogue

David R. Traum
University of Southern California
Iustitute [or Creative Technologies
13274 Fiji Way
Marina del Rey, CCA 90292

traum@ict .usc.edu

Carl F. Andersen, Waiyian Chong, Darsana Josyula, Yoshi Okamoto
Khemdut Purang, Michael O’Donovan-Anderson, Don Perlis
Computer Science Department and
[nstitute for Advanced Computer Studies
University of Maryland
AV, Williams Building
College Park, MD 20712 USA
{cfa,yuan,darsana,yoshikpurang,mikeoda,perlis}@cs.umd.edu

Abstract

We propose a representation of Tocal dialogue conlext, motivaled
by the need to react appropriately to meta-dialogue, such as various
sorts of corrections to the sequence of an instruction and response
action. Such context includes at least the following aspects: the
words and linguistic structures nilered, the domain correlales of those
linguistics sirucbures, and plans and aclions in response.  Each of
these is needed as part of the context in order to be able to correctly
interpret the range of possible corrections. Partitioning knowledge
ol dialogue structure in this way may lead to an ability to represent
generic dialogue slructure (e, in the lorm ol axioms), which can be
particularized to the domain, topic and content of the dialogue.

1 Introduction

Many simple dialogue systems are constructed in a more or less halistic
fashion, not making clear differentiations between linguistic, dialogue, and
domain componcnts or rcasoning, treating cverything other than speech
input and ontput as the “dialogne component”. Such architectures allow
shortcuts in the design process and fine-tuning to the particular anticipated
task and dialogue interaction, which can speed up both system implementa-
tion time and run-time. However, the resulting systems are not particularly
portable to other domains, tasks within the same domain, or even very ro-
bust in the face of different styles of interaction in accomplishing the task.
Often, where the dialogue compenent 1s concerned, all that can be carried



over into the next system 1s the experience gained by building such a sys-
tern. Taolkits for constructing scripted dialogues, such as [Sutton et ol
1996] make the construction process faster, but do not address the underly-
ing problem of partitioning dialogue knowledge from linguistic and domain
knowledge in order Lo reuse Lhe same dialogue siralegies.

Simply partitioning the knowledge sources is also not sufficient to achieve
domain-independent reusable dialogue modules. Like a holistic system, a
dialogue componenl (in the narrow sense, dealing sirictly with conlexl up-
dates and decision-making about what to say) must have appropriatc access
to both linguistic and domain knowledge sonurces in order to perform appro-
priate dialogne actions. While there will always be a certain amount of worlk
involved in adapting a generic dialogue module to particular inguistic pro-
cessing components and domain knowledge sources and manipulators, there
ig gtill some room for generic dialogue function. abstracting away from the
specific representations provided by other modules. The key is heing able
to represent aspects of the dialogue in a suitably abstract fashion, to allow
reasoning about generalities without relying on peculiarities of interfaces to
linguistic and domain modules. We maintain, agrecing with [McRoy et al.
1997], that it is important to keep several different kinds of representations
of an utterance available as context, in order to act appropriately in the
face of meta-dialogue, such as corrections, as well as to be able to give the
right kind of feedback about problems in the system’s ability to interpret
and act appropriately.

As an cxample of a simple dialogue cpisode which can motivate the
kinds of representation we propose, consider the exchange schema in (1).
In order to understand and respond to [3] properly, B must at least keep
some context around of [1] and [2]. This raises the question as to how to
rcepresent this context in a compact and uscful form.

(1y T[] A:do X
[2] B: [does something]
3] A:no,do...

In the next section, we quickly review several structural proposals for
representation of local exchanges like (1]. Then in Section 3, we recan-
sider these proposals in the light of a suile ol examples of dilferent kinds
of negative feedback. This leads us, in Section 4, to propose a reprosen-
tation based on considering not just the utterances themselves, but ather
intensional information associated with the utterances. These include, for a
request produced by the nser of a gyatem: the literal request, an interpreted
version, still at the level of natural language description, and a domain-
spectfic version. For the reply, this also includes both the plan leading to
its performance, as well as observed feedback. These varions levels provide
both a source for detecting potential or actual incoherence 1 dialogue, as
well as serving as a source ol polential repair requests. Tn Section 5, we
illustrate those lovels in action in a dialogue manager for the TRAINS-G6
system [Allen cof al., 1996]. Finally, we conclude with some observations of
more general applicability ol these levels.

2 Representations of Local Dialogue Struc-
ture

There have been several proposals [or the kind of dialogue unil represented
in (1), using structural terms like adjocency pair [Schegloff and Sacks, 1973



cechange [Sinclair and Counlthard, 1975], game [Severinson Eklundh, 1983,
Carletta et al., 1997], TR-unit [Ahrenberg et al., 1990] and argumentation
act [Traum and Hinkelman, 1992]. At an abstract level, we need an IRF-
unit which can contain the three moves or acts: Initiative, Response, and

Teedback, as indicaled in {2).

(2) [l] Initiative: Request{Act) [Instruct)
[2] Response: Do(Act)
3]  Feedback: Eval [+ Counter-Request (Act )]

There are several ways in which this unit could be structured. In Fignre 1
we show several proposed structures for this or similar units for questions.
{A) shows a flat structurc containing all three acts, as proposed by [Sinclair
and Conlthard, 1975]. Some authors prefer to allow only hinary hranching
units, which leads o structures (B) through (D). (B) was proposed by
[Wells et al., 1981] (though with the unit names Solicit-Give and Give-
Acknowledge), and is also used by [VicRoy ef al., 1997]. (C) and (D) were
Loth proposed in [Severinson Eklundh, 1983], the lormer for informatiou-
seeking questions, and the latter for exam-questions. (E) shows a finite
automaton which could be induced from these structures, allowing multiple
rejections and counter-requests before a final aceeptance.

There may be different motivations for these different types of structures,
but for the present purposes, we will consider them strictly in terms of
what kind of context is provided for the antecedent of the utterance [3]. Tn
particular, what is the utterance of “no” roferring to: A’s imitial utterance
[1], B's reaction in [2], or some other construct? Of course such examinations
really require hoth the structure itsell as well as an algorithm lor Lraversing
the structure and deciding on a referent. For the present purposes, we will
consider a defanlt algorithm, in which one looks first to (all) siblings of
the current node. and then siblings of a parent. etc. Structure (A) would
predict a choice of [1] or [2], equally. Structures (B) and (C) would have a
preference for [2] as the antecedent (with (C) allowing [1] as a dispreferred
option, and (B) disallowing it), while (D) would see the unit of [1] and [2]
combined as the most likely antecedent, i.c., not necessarily a rejection of
[2] in and of itsclf, but of [1] and [2] together as the realization of the goal
that inspired production of [1] (for reasons that might he due to problems
with either of the utterances/actions themselves, or the coherence of the
two).

3 Examples

In order to decide on which structure is most appropriate, as well as what
kinds of representations arc needed for the task, it will be helpful to cxamine
a suite of instantiations of the exchange schema in (1). We first examine
some examples of corrections fo exchanges found in human-human task
oriented dialogue, specifically the Maplask. We then turn o the TRATNS-
96 domain, abstracting some simpler examples that can straightforwardly
be tested in a spoken dialogue system.

3.1 Maptask Corpus Examples

We draw cxamples of correction cxchanges from the DCIEM (cxamples 3- 7)
[’l‘aylor et ol., 1998] and HCRC [Carletta et ol., 1947] (example 8) Maptask
corpora. In the dialogues comprising these corpora, two people are looking
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at their own versions of maps of the same territory. The maps arc slightly
different, and neither can see the other person’s map. One person (the
Giver, indicated by [(]) is attempting to give directions te the ather (the
follower, indicated by [F]). For cach excerpt, identifying information about
the specific dialogue 1s given above.

In (3) the giver has requested an action: “go west”, which the follower
confirms.  But then the giver changes his mind (realizes he has made a
mistake) and correcis Lo: “[go] easl”.

(3) <text id=r120.f.q2c5.10.2-4.3-1>

[G]: You'll ... You'll go narth ... and then youll turn
west, onto the bridge.

[F]: Okay.

[(]: Or, east. Correction.

[F]: Okay.

In (4), the requested action, go west at the boltom ol the ravine itsell,
has been (slightly) misunderstood as a request to go west on the word
‘ravine” despite explicit instructions to the contrary.

(4) <text id=r110.p.q4c3.36.5-6.11-3>
[G]: then curve back out...and then, at the bottom of

the raving, not the word {cilravine}, the ravine
aell...

: {gg |Uh-huh]}

D you're going to head wesf.

: Okay. So basically I'm going to be on the...I'm
going to curve...and I’'m going to be on the wost
side of the ravine?

[(z]: Right.

[F]: And then, on the word {cilravine}, go west,
right?

[(s]: No. In line with the bottom of the ravine itself ...

[F]: Okay.

[G]: go west.

Example (5) is a little trickier, since the action request is implied: [look]
in the arca of the playground [and tell me what vou sec]. The giver clarifics
the action: look to the east of that {[are you looking] ‘to the east of it?").
The follower reports a tyre swing. ‘No. To the east of it, further.” Ilere the
giver has uscd an impreeise dircetion, [look] “to the cast’, which has becn
disambiguated incorrectly by the follower (lock only a fittle to the east).
When the follower reports what he sces, the giver repeats the same request,
‘to the east of it7, but then clarifies with the more precise “further’.

(h) <text id=r120.f.g3c5.22.2-4.7-1>
[(3]: Okay ... Have you goi anything in the {fpluh}

adventure playground arca?” Like...

1: Yeah, they're ... tyres?

]: To the east of 1t7

1: A tyrc swing?

]: 4fplUh}, no, to the east of it, further. My map’s
empty here.

: A privately owned fields?

[G]: Privatcly owned ficlds.

5 oHos



In (6), the giver requests an action: ‘curve toward the train crossing ...
containing an ambiguons designator ‘the train crossing’ which the follower
disambiguates in a way not consonant with the giver’s intention. In this
cxchange the sign that this is the casc comes when the follower realizes
that the rest of the instruction: ‘up along the wesl side of the waler[all’
18 incompatible with ‘towards the train crossing.” He initiates a repair by
explaining the position of Ais train crossing. The giver acknowledges the
repair: ‘no no, nol thal train crossing” and here 1l does not seem lar-lelched
to claim that there is an implied: ‘the other train crossing.” The interspersed
confirmations (F: Okay. G: Okay ...} seems to bear ont the supposition that
there is a task (scarching for the other train crossing) which is being carried
out. Tn this case, the task fails, because the giver’s map has no ather
train crossing, and other repairs must be attempted to allow a complete
interpretation of the giver’s original intention. In the current casc the sign
of the problem with the disambiguation is the contradiction between two
parts of the giver’s request, and this contradiction is noticed by the follower.

(6) <text id=r120.f.q3c5.22.2-4.7-1>
[G]: Okay, curve down towards the train crossing ...
and up along the west side of the walerlall. Stop
when you get to the top of the waterfall.
[[]: Wait, my train crossing is {fplum} {brlnorth
west=northwest) of the watcrfall.

[G]: {£g|0Oh} no no, not that train crossing.
[F]: Olay.

[(G]: Okay ...

[F: T only have a waterfall, then.

Example (7) is more straightforward: the lollower, in response Lo a com-
plicated and ambiguous sct of instructions (which arc not worth taking
space with here], checks his understanding by saying: *I'll go right ta the
rope rope bridge’. The giver things this is a mistake, that the user 18 going
to turn right to get to the bridge, rather than go straight there. So he gives
a less ambiguous instruction: ‘go due north” However, the follower had the
correct, intention all along.

(7) <text id=ri130.f.¢2¢5.10.2-4.3-1>
[[]): T'll go right 1o the rope rope bridge.
[G]: No, you want to go duc north ...
[F]: Yeah.

Example (8) is a common exchange for anyone giving real-time direc-
tions, e.g. while driving in a car. The request is ‘go to the left.” The follower
does the correct thing, but says ‘right, O’ which is understood as being the
opposttc of what the giver wanted. Hence the re-assertion of the direction,
m this casc in Just the same form: ‘No, [go] loft’

(8) (HCRC Maptask Corpus [g2nc7.trnl)
[(i]: So, {fgleh}, go to the left two inches.
[F]: {fg|Eh}, right, okay.
[G]: No, left.

3.2 Example Suite

Tor more easy comparison, we casl various Lypes of repair, such as those
found in examples (3 - 8), above, from the maptask corpus in a snite of



minimally different cxamples, We use the TRAINS-96 domain [Allen ct af.,
1996, in which a user interacts with a dialogne system to provide routes for
trains. Figure 2 illustrates an episode from this taslk, in which there are two
trains of interest, Northstar, which is currently at Boston, and Mctroliner,
which started the lask al Boston, but is now al Albany. Given Lhis same
context, consider the dialogues in (9) through (15).

[igure 2: Trains Scenario

(@) [I]  A: “send Northstar to New Yark.”

[2] B: [sends Northstar to NY]
[3] A: “no, send Mectrolincr.”

(10) [I] A: “send Metroliner to New York.”
[2] B: [sonds Northstar to NY]
[3A] A: “no, send Metroliner.”

(L)  [1]  A: “send the Boston train to New York.”
[2] B: [sends Northstar to NY]
[3] A: “no, send Metroliner.”

(12)  [1] A: “send the Boston train to New York.”

[2] B: [sends Northstar to NY]

[3A] A: “no, send the Boston train.”
(13) [l] A: “send the Boston train to New York.”
[2] B: [sends Metroliner to NY]
[3]  A: “no, send Metroliner.”
{(14) 1]  A: “send Metroliner to New York.”
[2] B: [sends Mctroliner to NY]
[A]  A: “no, send Metroliner.”

(13) 1]  A: “send Northstar to New York.”
[2] B: [scnds Mctroliner to NY]
[3] A: “no, send Metroliner.”

In each of these, the semantic structure of utterance [4] is something like
(16). Contlext is used to delermine whal “X" relers o, and also lo construe
“¥” to he appropriately coherent, if possible.

=1



(16) Don’tDo(X) & Do(Y)

FExample (9) is similar to corpus example (3) — a changed instruction.
Example {10) is a very common sort of cxchange, where, as in cxample
(4), the second contribution indicates a misunderstanding of the original.
Examples (11) and (12} involve clarificalions to an ambiguous reference.
The tyre swing (5) and train crossing (6) examples arc similar to these types.
"I'he suceessful adjudication of the problems in the exchange will rely on
treating the combined user utterance as the expression of a single intention
: ‘send the Boston Train to New York ... no, send the Boston Train’ which is
only incoherent in the case that the system disambiguates ‘the Boston Train’
the same way each time. This strikes us as very similar to reasoning recuired
in maptask example (6), in which the giver’s instructions are only incoherent
on onc interpretation of the designator ‘the train crossing.” The difference is
anly that there is no accessible aption for the follower in (6) for an alternate
disambiguation (there s no other train crossiug on the follower’s map), and
this fact dictates a different repair strategy. Example (13) is very similar
to the rope bridge example (7), although this may not be immediately
apparenl. The polential difliculty is thal, although in the examples [rom
the corpora the feedback from the follower i3 verbal, in the case of the
TRAINS-96 system, the feedback is visual: one sees the train move. It is
casy to imagine that the verbal report of the follower being misinterpreted,
but less easy to imagine that the same ambiguity could arige in the case
of the clear image of trains moving around the screen: one can simply see
whether the intention is being carried onl. Bul this 18 nol necessarily so:
the trains in the TRAINS system arc color-coded, rather than labeled with
their names.” ‘I'hus the uscr secs the green train moving (which is in fact
the correct train Tor the system o move] butl thinks i should be the red
train moving. Assuming that the problom is the ambiguity of the initial
ingtruction, the user is more specific, but the system has done the right
thing all along. Txample (11} is very similar to the left-right-left corpus
example (8). Example (15) can be scen as a slight moedification of  (9): the
user has changed his mind, however in this case, the system has complied
with the new rather than originally expressed intention. The user may either
be unaware of {(or have misunderstood) the actual action, or want to aveid
a possible repair by the system, upon recognizing the discrepancy between
original directive and action.

3.3 Examples and Structures

Let us now turn back to the different structures in Figure 1, and see if
the cxamples from the previous sections have any implications for which
structures would be most useful. The coherence of Dialogue (9) but lack of
coherence of (16) indicates a problem with (A): it seoms that after [2], [1] 1s
no longer a possible antecedent in the same way. The contrast between (9)
and (10) shows that the problem with [2] can be either a lack of coherence
with [1]. or a change in intention. ‘This wonld seem to he a problem for
(),
(11) and (12), the source of the problem is likely the interpretation of the
referring expresgion, “the Bosgton train”. Thig is important for interpreting
[3] coherently in {12), and recognizing (13) as incoherent. It is less easy
to sec how this information can be retricved from (C) as opposcd to (D).

which does nol preserve [1] as part of the context for [3]. Likewise, in

LThe name labels [or the trains in Figure 2 were added for illustralive purposes, and
not part of the actual display.



In gencral, for these cxamples, the source of the correction in [3] can be
anywhere in the space including what A actually said in [1] (true 3rd tumn
repair), B’s interpretation of that, or B’s response in [2] (2nd turn repair).
(D) scems to be the most uscful candidate representation, since it provides
the complex act of [1] and [2] together as a likely antecedent lor [3]. (L)
capturcs the move sequences correctly, but docs not help much with the
referential dependencies.

The interesting issue [or these examples is how Lo respond lo [3] in each
casc. For cxamples (9), (10) and (11), B can just undo the action performed
in [2] and proceed to do the one mentioned in (3). In fact, this is just what
the Rochester TRAINS-96 system [Allen et al., 1996] will do. For (12), the
gituation 18 a hit more complex. B must recognize that the previous choice
of anchor for the referring expression “the Boston train” was likely to be
wrong, and choosc a different candidate, given A’s response. For (13), (14)
and (15}, there is no obvicus strategy to make [3] coherent, so some sort
of repair would be warranted to overcome the incoherence. In order to be
able to engage in fruitful dialogue rather than just respond to a sequence of
commands, the important thing to realize is that [3] is a complex command
with structure like (16], rather than unrelated cancel and request acts. To
engage 1n natural dialognes, it is important to find a coherent interpretation
when possible, and note and repair the incohercnce when 1t 1s not possible
to find such an interpretation.

4 Our Approach: Internal Representations

Qur approach to the problem of representing local sub-dialogue structure of
an TRF unit such as {2) is to represent, not just the moves [1], [2], and [3],
thomsclves, as part of the IRF unit, but also, like [McRoy cf al., 1997], some
associated internal structures, which can help provide Tikely candidates for
resolving any seeming incoherence. Thus, our counterparl of the Reg-Do
sub-structurc in Figurc 1 (D) includes not just the two acts, but cach of the
following components:

1. Lrreq  (for “literal”. or “locutionary™) the actual words said.

2. Irreq (for “interpreted”, “intentional” or “illocutionary™) the direct
logical interpretation. This level maintains all ambiguity present in
the original, including lack of a specific referent for “the Boston train™.

3. D-req (for “disambiguated” or “domain”) a precisification of the I-req
that actually represents a specific request for an action that can be
performed by the domain module. For simple, unambiguous requests,
in which the representation output by the language module and used
by the domain module are the same, D-req can be just about identical
with I-req; for cases with ambiguity or divergences in representation,
il may involve several operations Lo get from T-req o D-req. D-Reqg
represents what should be done in a manner that the domain reasoner
can understand.

1. P-act {for “plan”} a specification of khow to do the requested act in
D-req. A plan suitable for execution, which, if carried out will satisfy
the original request

h. E-Act (for “execution™) the action the system actually takes in ful-
[illing the request, which could be a physical {or simulated) aclion, or
natural language production, or some combination.



6. O-Act (for “obscrvation”) concerns monitoring or obscrvation of the
gvstem’s act. Even if the svstem performed the act correctly, it might
not have evidence of this fact. For linguistic actions, this is related
to grounding [Clark and Schacfer, 1989, Traum, 1994]. Grounding
involves adding Lo the common ground belween conversalional partic-
ipants, c.g., by presenting matcrial and acknowledging and for repair-
ing presented material. For linguistic actions, or actions whose only
evidence is through linguistic reports (e.g., the maplask examples in
Sccticn 3.1), the grounding process is the best indication of the success
or Tailure of the action. Likewise, for environments such as THAINS,
in which there is visual evidence, monitoring the reactions to these
acts are a primary method for grounding, as well as telling whether
requested acts are successful (in terms of meeting the intentions of the
requester).

Assaid above, the interpretation of D-req [rom I-req could involve several
intermediate actions. In the case of dialogues (11), (12), and (13), it involves
construction of a new query (correspending ta “which engine is the Boston
engine” ), calculating the answer (o this query (perhaps using messages Lo a
domain reasoner], and then fitting this answer into the D-req for the main
request (replacing the more indirect information present in the I-req) Le.,
in processing (13), “Boston train” will give “train at Boston” at the I-req
level, but “Metraliner” in T-req.

In the example dialogues, utterance [1] has the same L-teq and I-req
im (11}, (12), and (13} {though different from (9) and (14)). For (11) and
(12}, the D-req is the same as in (9), while in (13), the D-req is the same as
(14}, depending cn the interpretation of “the Boston train™ as Northstar or
Melroliner, respeclively.

Using this more finc-grained notion of the Req-Do unit, we can re-
examine the likely sources for the correction in [3] in each of the cases.
Tor (9), the obvious interpretation is that there was a problem with I-req:
cither A mis-spoke in [1], or changed his mind, or B mishcard; pinpointing
the exact source of the problem is not important, given that the same action
can be taken to rectify the situation in each case. Tor (10), B must have
misheard (or somehow made a mistake in execution). For {(L1), the most
natural intcrpretation is that therc was a problem at the D-req lovel, and
A meant Metraliner rather than Northstar. For (12), things are a bit more
subtle. Prabably the problem is the same as for (11), but less information
is provided by A about the correction — B must use the information that
Northstar 18 probably not the correct chaice when interpreting the repair.
Tor (13}, (14), or (13), the problem is most likely with P-aci or T-acl, or
L-req (i.c., in the speech recognizer, but then with L-req for [1] or [3]7) or
some nnresclvable contradiction. With lick, the confusion can be cleared
up using a subdialogue with the user. While il is nol always crucial to
identify the exact source of the problem, it 18 important to recognize these
situations of incoherence when they occur, and not just undo the previous
act and redo the vory same thing.

4.1 Repair at various levels

In addition to being able to repair when faced with an unresclvable contra-
diction, as in dialogues (13), (14) and (13), repair is also an option whenever
there 1g difficulty computing any of these companents of the representation,
or when the system 1s insufficiently confident of 1ts computation. Some ex-
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amples of the kinds of repairs that concern difficultics at the different lovels
are shown in {17).

(17) L-req: “what was thc third word?”
I-req: 18 Metroliner an engine?”
D-req: “which train did vou mean when vou said ‘Boston train’?”

P-act: “is going through Albany an appropriate way to send Metro-
liner to NY?”

E-Act: “should T do that now or after T send Bullet through?”

O-Act: “igit there now?”

A central issue for dialogue management becomnes which strategy to nse
when facing nncertainty about the user’s intent. E.g., in the case of two
possible candidates for the referent of an expression like “the boston engine” .
one could either pick one and try it, or ask for clarification, as above. ‘I'he
decision should be motivated by Tactors such as how dillicult it will be to
correct a mistake and the likelvhood of picking incorrectly — in general users
have litttle tolerance for multiple confirmations when things are going well.
The represenlalions here give a general sel ol possibilities [rom which to
choose, based on actual circumstances, while current systems mainly allow
only pre-designed decision points. See [Traum and Dillenbourg, 1998] and
[Horvitz and Pack, 2000] for some ideas on how to use utility thcory to
chooge which action to perform.

5 Implementation: ACDM

We have implemented this approach to dialogue representation in the Alma
Carne Dialog Manager (ACDM), using Active Togic [Elgot-Drapkin and
Perlis, 1990, Elgot-Drapkin et al., 1996, Gurney ef al., 1997]. The dialog
manager and rcasoner arc relatively domain and system independent, re-
I¥ing however on translation actions to convert hetween the internal logic
and external system components. Alma (Active Logic MAchine) [described
briefly in [Purang et al., 1999]), the eurrent implementation of active logic,
comhines logical reasoning in time with an ahility to perform and monitor
the progress ol exlernal acltions. Carne 1s used to model aspects ol the
agent's bchavior which need not be expressed logically. Carne can run pro-
cedures for Alma, and acts as the I/O channel to Alma. ACDM is aimed
at achicving a higher degree of conversational adequacy [Perlis ot al., 1998]
than other current dialog systems.

5.1 Active logic

Active logics [Flgot-Drapkin and Perlis, 1990, Gurney et al., 1997, Perlis et
al., 1999] were developed as a means of combining the best of two worlds -
inference and reactivity — without giving up much of cither. This requires
a special evolving-during-inference model of time. The maotivations for this
wore twofold: all physically realizable agents must deal with resource limita-
tions the world presents, including time limitations; and people in particular
Liave limiled memories [Baddeley, 1990] and processing speeds, so (hat in-
forence goes step by step rather than instantanconsly as in many theoretical
moadels of rationality. A consequence of such a resource-limited approach is
that agents are not (even weakly) omniscient: there is no one moment al
which an agent has acquired all logical consequences of its heliefs. This 18
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not only a restriction for real agents (and henee for humans) but it is also an
advantage when the agent has contradictory beliefs {(as real agents will often
have, if only because their information sources are too complex to check for
consistency). In this case, an omniscient and logically complete reasoner is
by delinition swamped wilh all sentences of ils language as beliels, with no
way to distinguish safc subscts to work with. By contrast, active logics, like
human reasoners, have at any time only a finite belief set, and can reason
aboul their present and past beliels, [orming new beliels (and possibly giv-
ing up old cncs) as they do so; and this cccurs even when their belicfs may
be inconsistent. {See [Miller, 1993] for details.)

Active logies can be seen either as formalisms per se, or as inference
engines that implement formalisms. Thiz dual-role aspect is not accidental:
it 18 inherent to the conception of an active logic that it have a behavior,
i.¢., the notion of theoremhood depends divectly on two things that arc not
part of traditional logics: (i) what is in the current evolving belief set, and
(it} what the current evolving time is. Our view of active logic here is as an
on-board agent tool, not as an external specification for an agent.

5.1.1 Formalism

The formal changes to move from a first order logic to an active logic are,
in some respects, quite modest. The principal change is that inference rules
become time-sensitive. The most obvious case 1s that of reasoning about
time itself, ag in the rule:

i Now(1i)

i+1: WNow (i+1)

The above indicales thal [rom the beliel (al time i) thal the current Lime
1s in fact 7, onc concludes that it now 1s the later time ¢ + 1. That 1s, time
does not stand still as one reasons,

Nole thal temporal logics [Allen and Ferguson, 1994, McDermotl, 1982,
Rescher and Urquhart, 1971] also have a notion of past, present and future,
but these do not change as theorems are derived. These are specification
logics external to the reasoner. This contrasts strongly with the agent-based
on hoard character of active logic.

Technically, an active logic consists of a first-order language, a set of
time-scnsitive inference rules, and an obscrvation-function that specifics an
environment in which the logic “runs”. Thus an active logic is not purc
formalism but 18 a hybmd of farmal system and emhedded inferenee engine,
where the Tormal behavior is tied o Lhe environment via the observalions
and the internal monitoring of time-passage (sce [Elgot-Drapkin and Perlis,
1990] for a detailed deseription). Further formal details are given helow.

5.1.2 Properties of active logic

Active logics are able to react to incoming information while reasoning is
ongoing, blending new inputs into its inferences without having to start up a
new theorem-proving effort. Thus, any helpful communications of a partner
(or user) — whether as new initiatives, or in response to system requests
can be [ully integraied wilh the syslem’s evolving reasoning. Similarly,
external observations of actions or events can be made during the reasoning
process and also factored into that process.
Thus the notion of theorem for active logics is a bil dilferent [rom thal
of more traditional logics, in several respects:
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1.

5.2

Time sensitivity. Theorems come and go; that is, a proposition once
proved remaing praved but only in the sense of it being a historical fact
that 1t was once proved. That historical fact is recorded for potential
usc, but the proposition itsclf nced not continue to be avallable for use
in fulure inferences; it mighl nol even be reprovable il the “axioms”
(belicf) sct has changed sufficiently. As a trivial cxample, supposc
Now(noon) — Lunchtime is an axiom. At time t=noon, Now(noon)
will be inflerred [rom the rule given earlier, and Lunchiime will be in-
forred a step later. But then Now{noon+1) is inferred, and Lunchtime
is na longer inferable sinee its premise Now(ncon) is no lenger in the
beliet set. Lunchtime will remain in the beliof set nntil it is no longer
“inherited”; the rules for inheritance are themselves inference rules.
One such 1nvolves contradiction; see next 1tem.

. Contradictions. If a direct contradiction (P and —P) eccurs in the

helief set at time t, that fact is noted at time t+1 hy means of the
wlerence rule

t+1: Contra(t+1,P, “P)

See [Miller, 1993] for delails on handling contradictions

Truth maintenance systems [Doyle, 1979] also tolerate contradictions
and resolve them typically using justification information. This hap-
pens in a separale process which runs while the reasoning engine is
waiting. We do not think that this will work in gencral since the
reasoning needed ta resolve the contradiction will depend on the very
information that generated thal contradiclion. Resolution of contra-
dictions i itsclf, in general, a reasoning process much like any other.

. Meotarcasoning

In active logie, there is a gsingle stream of reasoning, which can monitor
itgelf hy looking hackwards at one moment to see what it has heen
doing in the past, including the very recent past.

All of this 1s carricd out in the same inferential process, without the
need for level upon level of meta-reasoners. 'This 18 not to say that
there i1s no metareasoning here, but rather that it is “in-line” metar-
casoning, all at one level. The advantages of this arc (1) simplicity of
design, (ii) no infinite regress, and (iii) no reasoning time at higher
levels unaccounted for at lower levels. A potential disadvantage is the
possibility of vicious sclf-reference. This matter 18 a topic of current
investigation. However the contradiction handling capability sheould
he a powerful tool cven there.

Alma/Carne

Alma i1s our implementation of active logic. It generally conforms to the
description of active logic given above, with some variations for greater
efficiency or eage of implementation. Alma is written in Prolog and has a
Java user interface. Although Alma cannot currently be run across the web,
reasoning episodes (saved in history files) can be viewed with the interface
on our web-site (http://www.cs.umd.cdu/projects/active/demos).
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At cach step, the inference rules arce applicd to the formulas in the KB
at that step and the resulting set of formulas is the KB for the next step.
Application of the inference rules can result in formulas being added or
removed from the KB, By default though, all formulas are inherited from
one sbep Lo the nexl (an exceplion being now). Some leatures of Alma are:

® The current step number, T, is represented in the KB as now(T) and
changes as the program executes. One can reason about the current
time by using now(T) in the axioms.

e Three variants of the conditional are available in Alma for better can-
trol of the reasoning:

if This acts like the familiar material conditional.

fif It fif(d,conclusion(¢)) and ¢ are in the KB, then ' is asserted.
This does not allow cantraposition: if = is in the KB, we do not
obtain —&. Anothcr featurc of fif 1s that the antccedent must be
in the KB before the fif is used. T, for example, ¢ is o A 7 and
a is in the KB, we cannot dervive fif(3, conclusion(4)). Only if
both @ and 3 arc in the KB at the same time will « be derived.
fif formulas can only be used in forward chaining proofs.

bif" This 18 used to mark conditionals for nse cxclusively in backward
chaining proofs. Tt can be used rather than ¢f or fif to avoid
generating large amounts of true but uninteresting facts, while
still allowing the ability to prove interesting mformation on de-
mand.

o If there s a direct contradiction (c.g., ¢, 7¢) in the KB, the formulas
are made unavailable for use in further inference and distrusted(a)
is asscrted, where ¢ stands for cach of the contradicting formulas
(e.g., ¢ and —¢) and their conscquences. The fact that there is a
contradiction is asserted: condra{N1, N2 T) where N1 and N2 are
the names of the contradictands (c.g., ¢ and —d) and T is the time at
which the contradiction was detected.

Asserting reinstate(N) for a formula N that has been in a contradic-
tion results in a now formula similar to N being added to the databasc.
This can be used to resolve contradictions. The choice of which for-
mula to reingtate i3 not determined by Alma inference rules, however
Alma can usc uscr-specified axioms to reason about how to make this
choice.

¢ Some computations may be more easily. conveniently or efficiently
done through procedures rather than as logical inference. The reserved
predicate eval_bownd is used (o execule Prolog programs in the Alma
process. This form allows onc to specify that some variables need
to be hound before excenting the program. cval_bound{p(X, ¥), [X])
will execute program p(X,Y) only il X is bound.

* Programs that arc more complex or requre longer asynchronous run-
time are executed in Carne (soo details below ). Carne also allows Alma
to interface wilth external processes enabling Alina lo be emnbedded in
larger systems, such as the TRAINS-96 systemn [Allen ot af., 1996].
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5.2.1 Carne

Carne ig a process that communicates with Alma but runs independently.
The main purpose of Carne is to run complex non-logical computations
agynchrononsly from Alma steps. ‘These can include input-output, interfac-
ing with olher running systems and long-running computations thal lake
too long to run within a step.

Alma requests actions from Carne by asserting formulas of the form
call( X, Y, 7) in the KB. A Jormula of this type is the premise of an inlerence
rule which causes Carne to execute program X. Y is used to pass relevant
information to Carne and Z is an identifier that links the call to assertions
about the status of the call. The status of the exceution: doing (X, Z),
done(X, Z) ar error{ X, 7} is asserted in the Alma KB based on information
provided by Carne. As the call is executed, doing(X, Z) is first asserted.
When the program has completed in Carne, doing(X, Z) 13 replaced with
done(X,Z) in Alma. I the program [ails, error{X, Z) is asseried instead.
This cnables Alma to reason about actions it has requested.

Carne can add and delete formulas in the Alma KB. This is used to
modily the KB as a result of computations and [or external inpul to be
added to the KB. Carnc also has a KQML parscr which facilitates connection
of Alma/Carne to other systems.

5.3 Maryland version of TRAINS-96

ACDM is a dialogue manager built nsing ATLMA and Carne. Tt is integrated
within the TR AINS-96 system from the University of Rochester [Allen =t al..
1996], replacing their discourse manager. The TRAINS-96 system consists
of a set of heterogeneous modules communicating through a central hub
using messages in KQML [External Interfaces Working Group, 1993]. This
architecture 18 well snited for swapping in different components to do the
same or similar job and assecssing the results. As well as the architecturce
itself, we have boen using the parser, domain problem solver, and display
madules, replacing the discourse manager component with our own dialogue
manager and multi-modal generator. The functions of the modules in the
Maryland versicn of the system are summarized in (18).

(18) Speech Recognizer: produces a word stream from spoken utterance
(using Microsoft's Whisper Engine).

Parser: produces inferpretation of senfence input, as shown in Figure
3 (source for T-req).

Problem Solver: answera queries for problem state, also does plan-
ning requests {(helps produce P-act from D-req).

Display Muanager: shows objecls on screen.

Dialogne manager: uses Active Logic to maintain a logical repre-
sentation of dialog state and act appropriately.

Output Manager: provides multimodal presentations of system out-
put, including calls to display manager, printed text, and speech.

Speech Output: converts text messages to output speech (using the

Festival system).

For purposcs of illustration, we will consider a scenario of the same type
as that shown in (12). In this scenario there are 3 trains in the domain:
Metroliner, Bullet and Northstar, and Metroliner and Bullet are al Toronto.
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(TELL :CONTENT
(SA-REQUEST :FOCUS :V11916 :0OBJECTS
{ (:DESCRIPTION (:STATUS :NAME) (:VAR :V11868) (:CLASS :CITY)
(:LEX :TORONTO) (:SORT :INDIVIDUAL))
(:DESCRIPTION {:STATUS :DEFINITE) (:VAR :V11879)
(:CLASS :TRAIN) (:SORT :INDIVIDUAL)
(:CONSTRAINT (:ASSOC-WITH :V11879 :V11868)))
(:DESCRIPTION {:STATUS :NAME) (:VAR :V11916) (:CLASS :CITY)
(:LEX :MONTREAL) (:SORT :INDIVIDUAL}))
:PATHS ({:PATH (:VAR :V11908)
{ :CONSTRAINT (:TO :V11908 :V11916))))
:DEFS NIL :SEMANTICS
{:PROP (:VAR :V11855) (:CLASS :MOVE)
( : CONSTRAINT
(:AND (:LSUBJ :V11855 :*YOU#) (:LOBJ :V11855 :V11879)
(:LCOMP :V11855 :¥11908))))
:NOISE NIL :SOCIAL-CONTEXT NIL :RELIABILITY 100 :MODE KEYBOARD
:SYNTAX {(:SUBJECT . :*YOUx) (:0BJECT . :V11879)) :SETTING NIL
+INPUT {SEND THE TORONTO TRAIN TO MONTREAL))
:RE 3)

Tigure 3: Parser Qutput for “Send the Toronto train to Montreal”

The initial user utterance will be : “Send the Toronto train to Montreal”.
The output from the parser for this utterance (see Figure 3) includes the
uttcrance type (sa-request), the objects mentioned in the utterance {1 train
and 2 citics), and the propertics of the objects (name, type cte.). The parser
parscs Toronto train as the train that is associated with Taronto.

5.4 KQML message processing

ACDM receives the message from the parser in KQML format which, when
translated by Carne, canses formulas that represent the information content
of the message to be asserted as axioms in the Alma database. For the
current scenario, some of the assertions made to represent the information
content are shown helow. The nunber belore the colon is an identifier lTor the
formula that appears after the colon. The formulas represent information
imcluding the message number(kqml294), sender (parser), message type (sa-
request] ete.

2732: kqml_expr(kgml296, [kqml297, kqml203, ...1))
2761: kqml_kv(kqml2%4, [content, kgml295])

2763: kqml_kv(kqml294, [sender, parser]}

2765: kqul_head(kgqml29%5, sa-request)

2767 : kqwl_kv(kqml295, [objects, kqul296])

2780: kqml_kv (kqml297, [var, v11868])

2781: kqml_kv(kquml297, [class, cityl)

2782: kqml_kv(kqml297, [lex, toronto])

2806: new_message_kv(kqnl294)
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5.5 L-req level

When it receives a message from the parser, Alma determines that the mes-
sage content is a user utterance and hence asscrts this fact in the databasc
as shown below (2808). In addition, it realizes that the syntax of the ut-
Lerance exists in its dalabase as kgrel kv and kgl _head asserlions.? Alma
updates the list of utterances that it maintains to include the new message
ag an utterance. As a result, kqml294 gets added to the list of utterances
as shown below(2814).

2808: lreq(utterance(kqml294), kqml294)
2814: utt_list ([kgml2%4, kqml200, kqml98, ...]1))

Once L-req level processing is completed, Alina reasons thal the I-reg
level processing has to be carried out. The specific axiom that causcs this
reasoning is shown in (19). This uses the fif construction, which means
that a new computeireq lormula will be triggered [or each new ullerance.
Having this formula in the database will also (under normal circumstances)
trigger a call to carne to produce the ireq representation.

{(19) rir(lreq{utierance{IN),1D],
conclusion(compute_ireq(1D))).

5.6 I-reqlevel

At the I-req lovel, Alma reguests from Carne an initial interpretation of the
utterance. Carne nses the parser output represented in logic as kgmil_kv
and kgml_head assertions, to produce the initial interpretation. Some of the
asserbions thal Carne makes in the Alma dalabase during the processing al
this level are listed below.

2823: ireq(type(kqml294, sa-request), kqmlZ294)
2825: ireq(obj(kgqml294, v11868), kqml294)
2830: ireq(lex(v11868, toronto), kqml294)
2832: ireq(class(v11863, city), kqul294)

2834: ireqobj (kqml294, v11879), kqml294)
2837: ireqat-loc(v11879, v11868), kqml294)
2841: ireq(class(v11879, train), kqml294)
2843: ireq(obj (kqml294, v11916), kqml294)
2848: ireq(lex(v11916, montreal), kqul294)
2850: ireq(class(v11916, city), kqml294)

2852: ireq(path(kqml294, v11908), kqml294)
2853: ireq(to(v11908, v11916), kqul294)

2855: ireq(eem(kqml294, v11855), kqml294)
2860: ireq(1f (v11855, [move, v11879, v11916]), kqml294)
2861: ireq(lex(v11879, null), kqml294)

2867: done(compute_ireq(kqml294))

Some examples of the kind of information in this interpretation include:
¢ identifying the speech act type of the uttcrance (cg., 2823)

o identifying the different objects (cg., 2843) and paths (cg., 2852) men-
tioned in the utterance

¢ associating the properties mentioned in the utterance to their corre-
sponding objects/paths (eg., 2830, 2832, 2853)

2These are syntactic operators rapresenting frame-type objects with a head and mul-
tiple keyword-value pairs.

17



e identifying the scmantics of the utterance (cg., 2855, 2860)

Note in particular assertion (2837). Currently, the system autornatically
translates assoc-with (in the parser message) into at-loc {at location)
when moving from the parser message to the I-Req level. Thisis a temporary
shorteut in the implementation — once we have enhanced Alma to reason
about other interpretations of ‘associated with’, Carne will be modificd to
pass hack assoc-with at the T-Req level, to be disamhiguated at the D-Req
level.

In the present scenario, the semantics of the utterance represented ns-
ing 2865 and 2860 is move ©11879 to v11916 where 11916 is known to be
montreal from 2818, However, v11879 has a lex value of null. All objects
that have a null value for lex, are considered underspecified, since the ref-
erents [or such objects are not direcily available [rom the parser oulput. In
the seenario under consideration, v11879 refers to the object designated by
the user as Toronto train. In order to find the referent for such ohjects, ad-
ditional background information is required (e.g., [rom the knowledge base
in the domain prablem solver) .

Once the imitial interpretation is done, 2867 gets asserted and hence
Alma reasons that D-req level processing has to be done to disambignate
all ambigueous objects. The axiom that triggers this reasoning is shown in

(20).

(20) fif(done(compute_ireq(1D)),
conclusion{compute_dreg(112))).

5.7 D-req level

At thig level, ambiguous ohjects get disambiguated and the user intention
i1s determined. In the present scenario. we would like object 211879 to be
disambiguated as cither metroliner or bullct as appropriate since those are
the two trains at Toronto. We would also wish the user intention to be
determined as: “move the object v11879 to Montreal”.

"T'he first step in the disambignation process requires binding all inten-
sional objects n IREQ (o wternally known object names. This is casy [or
names, since we assume a unique, fixed binding. For more complex refer-
ring expressions, this involves getting enough domain information to disam-
biguate the objects. In the current scenario, Alma requests that Carne find
the current position of the trains in the system to determine the candidate
set for the unbound cbject variable (¢11879). Carne respands by asserting
this sct n the Alma database as follows:

2985: dreq(candidate=(v11879, [metroliner, bullet]), kgml254)

The choice of candidate i1s determined by coherence with previous infor-
mation about uscr intentions. In the simple case, where no such information
exists, ACDM simply picks the first item, and asserts that as the identifica-
tion of the variable as shown below (29941). This now leads to an ascription
of the disambiguated scmantics of the request as the intention of the uscr,
represented in 2007, We will return to the mare general issue of reference
resolution and user intentions in scction 5.13 below, when considering the
correction case.

2994: dreq(lex(v11879, [metroliner]), kqml294)
2997: move([metroliner], montreal)
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When the D-req has been fully specified, Alma proceeds to P-act pro-
cessing using the role in (21).

(21) fif{done{compute_dreq{11})),

conclusion{compute_pact(1D)]).

5.8 P-act level

The response strategy is detormined at this level. If the user intention in-
volves changing the state of the world, then Alma requests Carne to obtain a
plan to cause the required change of stale. Carne consults with the problem
solver and asscrts the plan in the Alma databasc as a scrics of asscrtions as
shown below. Carne also asserts the state in which the problem solver will
be, il the plan were Lo be implemented (3205).

3176: pact(plan(plané79), kgml294)

3200: pact(action(kgml294, plan679, go709), kqml294)
3201: pact(type(go709, go), kqml294)

3202: pact(from(ge709, torente), kqml29%4)

3203: pact(to(go709, montreal), kquml294)

3204: pact(track(go709, montreal-toronto), kqml294)
3205: pact(pzatate(kqml294, pz2s879), kqml294)

3207: done(compute_pact{kqml294))

The completion of the P-act level processing would cause the asscrtion
of 3207, which in tum would trigger the axiom in (22).

(22) fif(done(compute_pact(ID)),

conclusion{compute_eact(I1))).

5.9 E-act level

Changing the problem solver {domain) state by cxccuting the plan specified
at the previons level and providing a response to the user are done at this
level. Alma instruets carne to send messages to hoth the domain problem
solver, to execute the above plan, and also to send a message to the output
manager, to communicate this change of state ta the user. The output
manager currently has thiree choices of modality 1 which Lo express this
information:

¢ NT. Speech {via a call to the speech output madule)
¢ NL Text (by displaying the text on the display window)

s Ciraphical Display (via a call to the Display manager to move or high-
light trains, or draw ar highlight paths)

Currently, for an exccution like maoving a train, the output manager
chooses Lo use all three modalities, simultaneously speaking and displaying
the mossage indicating the path to be used, while drawing and highlighting
the path on the map.

Other kinds ol output include coordinated use of maodalities (such as
highlighting a train or city to indicatc refercnec), or usc of only verbal
madalities, such ag for a clarification request.

Once Alma requests Carne to provide the natural language response
and change the problem solver state if required, E-act level processing is
complete. Hence, the following formula (3275) is asserfed.

3275: done(compute_eact (kqml254))
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5.10 O-act level

This level keeps track of domain changes; particularly it deals with con-
firming that the actions that the system initiated to causc a change in the
domain state have been performed correctly. For instance, if a plan is suce-
cessfully execuled, then Alma makes a nole of that [acl.

In this scenario, the system is waiting for positive feedback from the user
to deduce suceessful execution. In onur example, instead of receiving such
conlirmation, the user provides a correction, “No, Send the Toronlo Train
to Montreal.”

5.11 Handling rejection utterances

The parser output for the “no” utlerance can be seen in Tigure 4.

(TELL :CONTENT

(SA-REJECT :FOCUS NIL :0BJECTS NIL :PATHS NIL :DEFS NIL
:SEMANTICS :NO :NOISE NIL :SO0CIAL-CONTEXT NIL
:RELIABILITY 100 :MODE KEYBOARD
:SYNTAX ((:SUBJECT) (:0BJECT)) :SETTING NIL :INPUT (NO))

:RE 4)

Figure 41: Parser Qutput for “No”

"I'hig rejection goes through the previously mentioned levels of process-
ing, and when 1t reaches the D-req lovel, the details of the previous utterance
processing are examined to determine the intention behind the current utter-
ance. (Although we plan to implement a more intelligent version of context
scnsitivity in the future, in our current implementation, we assume that the
rejection implied in the statement “No.” applies to the immediately pre-
ceding user utterance or system response.) [ the preceding ntterance was a
request lype ullerance then we represent the intention hehind the current,
utterance as the negation of the intention that has been aseribed to the
previous utterance. In the current case, this causes the following asscrtion
Lo be made in the Alina database, which in turn causes a contradiction in
the systemn’s belicfs.

3448;: not(move([metroliner], montreal))

The contradiction detection inference rufe will now be applied, causing
both 2997 and 3448 to be distrusted and 3450 te be asserted. Here 1194
denates the time at which the contradiction was detected and the ather
nurmbers are all formula identifiers.

3450: contra(3448, 2997, 1494)
3451: distrusted(2997, 1494)
3452: distrusted(3443, 1494)

Assertion 3450 triggers the rule shown in Figure 5 which causes the most
recently added of the contradicting formulas to be reinstated resulting in
the following new assertion.?

FThis is just coe of many contradiction resolution stralegies we are considering. This
onc is appropriate in the case of new information that is assumed to take precedence over
prior information. In other cascs, however, once would prefer more entrenched information,
or other, perhaps perceptually-guided resolution strategies. Active logic and the Alma
implementation give the expressive power needed to reason about these possibilities and
consider which is best for which purposes).
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fif(and(contra(X,Y,Z),
and(eval_bound{name_to_time(X,T1), [X]),
and(eval_bound{name_to_time(Y,T2), [Y]),
eval_bound{({ T2 > Tl -> ReForm = X; ReForm=Y), [T1, T2,X,Y]1)))),
conclusion(reinstate(ReForm))).

Tigure 5: Recency-based Conbradiction handling axiom

3455: not{move ([metroliner], montreal))

Thus the system, will now beliove that “metroliner™ should not be sent
to Montreal and this information will he nsed in interpreting the next ut-
Lerances especially i cases of relerence resolutlon.

5.12 Interpreting the correction

Now the user repeats “Send the Toronto train to Montreal”. Initial pro-
cessing 1s the same as for the first ntterance. When calenlating D-req, when
disambiguating “the Toronto train” we again have two choices: Bullet and
Mectraliner. But since Metroliner has hoen proscribed from moving to Mon-
treal in the cancellation above, the disambiguation procedure picks Bullet:

3934: dreq(lex(v11992, [bullet]), kqml418)

This then results in the disambiguated user intention: Send Bullet to
Montreal. 'T'he same steps arve carried out for P-act and E-act. However,
we assume Lhial this time Lhe user gives posilive [sedback, e.g., by going on
to another instruction, or acknowledging, and we get at the O-act level:

3287: cact(plan_confirmed (kqml294, kqml390), kqul294)

But what if the user rojects that too and again repeats the original
request? Given Lhe stale of the system, there will be no unrejeclted possi-
Lilitics left. In this casc, ACDM initiates a clarification subdialog with the
user, by issuing the request: “Please specify the train by name” to find ont
exaclly which Lrain is lo he senl. A specilic train name will over-ride 1he
previous intention information.

5.13 Intention-based Reference Resolution

Now let us re-consider the more general case of reference resolution, cspe-
cially with congideration of the intentional constraints in (23) and (24).

(23) not{move([bullet],Mantreal))
(21) not{move([metroliner],Montreal))

‘T'here are three relevant cases for using this information in gmiding rof-
erence resolution in a case like formula 2983, with two plausible candidates.
We take these in turn:

Without (23) and (24) in Alma database If ncither of constraints
(23) and (24) are present in the Alma database, hoth “Bullet” and “Metro-
liner” are equally likely candidates to resolve the contradiction, Therelore,
as in the original sentence, ACDM chooses the firat item in the list.
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With (24) in Alma database If wc only know (24), as in the correction
case, above, the only likely possibility to resolve the reference for object
v11879 1s bullet and hence the system asserts the following intention in the
Alma databasc.

3937: move([bullet], montreal)

With both (23) and (24) in Alma database If both (23) and {24)
are pregent in the database, none of the candidates can be used to resolve
the reference for object v11879. Hence. it would be advisable to get help
from the user, by asking a clarifying question about the user’s intention. In
order to denole thal the system has nol been able lo resolve the relerence,
ACDM asscrts 5082 in its databasc. This will lead to a clarification request,
ag mentioned ahove.

B5082: ref_confusion{kqml294, v11879, [bullet, metroliner]))

5.14 Ewvaluation

We have yot to undergo detailed user evaluations with the Maryland Trains
system. Ilowever informal tests, such as the one described in this section,
indicate important improvements over a purcly object-level dialogue sys-
temn, such as the original Rochester TRATNS-96 system. Given repetitions
of “send the Toronto Train to Montreal”, .... “No,...”, the liochester sys-
tem will keep sending Metroliner (or whichever cngine its scparate reference
resclution component sclects) to Montreal. Tt nover realizes that there is a
miscommunication and thercfore can’t correct it, secoing cach cancellation
and achion directive as sequential changes ol the user’s plan, regardless ol the
lack of overall coherence. ACDM, on the other hand. as described above,
will recogmize the contradiction and usc this information to act differently
on subsequent intepretabion: clarilying il necessary, or simply performing a
revised resolution if possible. This difference is a result of the deliberation
ACDM daes about its own reasoning and in particular abont its previous
conclusions regarding the user’s intentions, which are understood to be rel-
cvant to understanding the nser’s current recuests.

6 Related work and Discussion

There have been a numbcer of multi-level approaches to dialogue. Grosz
and Sidner presented a three-level structure composed of Linguistic Struc-
lure, in which ullerances are conjoined inlo segments, Inlenlional Struc-
ture, in which the dominance and satisfaction-precedence relations of dis-
course segment purposes are rtelated, and atfentional state, in which fo-
cus spaces were stacked, for use in refercnce resolution [Grosz and Sid-
ner, 1986]. Litman and Allen lacked at discourse-level and daormain-level
plans, seeing the former as a class of meta-plans [Litman and Allen, 1987,
Litman and Allen, 1990]. Tambert and Carberry generalized this to also
include a layer of problem solving plans [Lambert and Carberry, 1991]. Lu-
perfoy looked at three types of structure relevant for reference: lingmistic
structure (the words mentioned), discourse pegs (the entities of the con-
versation, independent of the words used to refer to them, or the “real”
objects they refer to), and belief (the actnal entities) [LuperFoy, 1991], with
different rates of decay for the ability to refer to previous entities in these
gtructurcs.



Whilc these works were influential, they do not directly address the 1ssucs
we have been concerned with here, of reasoning about the internal asgpects of
sub-dialogues, and in particular, supporting reascning about contradictions.

Other systems have computed somcething like the six levels prosented
here, as part of their process of engaging in dialogue (e.g., the Tnderspeci-
fied Logical form and CRT representations in the TRAINS-93 system cor-
respond to some degree to l-req and D-req [Poesio, 1004, Traum et ol.,
1996]). Where we are dilfereni [rom most researchers is in claiming the
utility of keeping these levels as distinet representations for use as context
in processing further uiterances. Something like this is clearly necessary
to deal appropriately with the examples we presented in Section 3. The
Rochester system would do the same thing in each case: undao the previous
action and interpret the second request in the restored context before the
original request was fulfilled, with whatever train it decided upen for “the
Boston Train™ in (12). The ability to use the incoherence as a resource for
recomputing a referential anchaor or repairing is not available, nor is there
an option of complaining about the seeming incoherence itself.

Keeping the Hevel and D-level distinet is also important for sending
appropriate messages back to the user. The T-level should be clase ta the
linguistic structure of the user interaction, while the D-level should be close
to what domain reasoncrs actually use, Conflating the two can lead to
an inability to provide comprehensible feedback to the nser. For example,
the MIT Galaxy system [Senell ef of., 1996] has several demain special-
ists, cach used for a diffcrent kind of task. These domain reasoners usc
different ontolegies, and thus, in their discourse representation (essentially
the D-level), “Boston” is ambiguous between a TOWN in the CityGuide do-
main and a CITY in the AirTravel domain. The system may not be able
to resolve which ontology object is being referred to, but surely a user not
mtimately famihar with the system internals would be very confused by a
disambiguating query such as, “Do you mean Boston the city, or Boston
the town”. Fleshing this out with descriptions of the ontology types, such
as “Bostan the geographical area or Boston the point location” is not likely
to help. Tlere, al the ontology of natural conversalion (I-level), “Boston™ is
unambiguously the kind of entity that one could fly to or from, and which
can contain restanrants, so any query would have to attack a different av-
enue [or disambigualion, relaling to the aclivities such as restaurant linding
or flight booking, rather than to the kind of entity.

The approach that we are closest to, is perhaps [McRoy et al., 1997].
who also cxploit the utility of maintaining multiple levels of represcntation
ag context. While there are some differences in the particular levels and
type of structure assumed, a larger difference in approach is the uniformity
of the representation langnage. McRoy, Haller, and Al use a uniform ap-
proach, representing all aspects of processing in the same representation
langnage, SNcPS [Shapiro, 1979]. This does allow uniform reasoning and
very powerlul access 1o all paris of the representation, but also places linnts
on the kinds of language and domain subsystems that can be casily added
to the system. Our approach is rather to treat the internals of the other
subsystems more or less as black-boxes, interpreting only the final products
within the logic.
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