## FINAL REPORT

Development of Toxicity Reference Values (TRVs) for Birds Exposed to PFOS, PFOA and Associated Mixtures of Fluorinated Compounds

SERDP Project ER-2624

#### AUGUST 2021

Matt Simcik, Ph.D. University of Minnesota

Steven J. Bursian, Ph.D. Michigan State University

> Distribution Statement A This document has been cleared for public release



This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense.

|                                                                                                                                                                         | REPC                                                                                                                                                                                                                         | Form Approved<br>OMB No. 0704-0188                                                                                                                |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| The public reporting<br>sources, gathering<br>aspect of this collec<br>Operations and Re<br>provision of law, no<br>PLEASE DO NOT F                                     | g burden for this colle<br>and maintaining the<br>tion of information, in<br>ports (0704-0188), 1<br>person shall be subje<br>RETURN YOUR FOR                                                                                | ection of informatio<br>data needed, and o<br>icluding suggestion<br>215 Jefferson Dav<br>ect to any penalty for<br><b>M TO THE ABOVE</b>         | n is estimated to average 1<br>completing and reviewing th<br>is for reducing the burden, t<br>is Highway, Suite 1204, Ai<br>or failing to comply with a co<br>E ADDRESS.                           | hour per respons<br>ne collection of info<br>o Department of D<br>rlington, VA 22202<br>llection of informat                      | e, including the<br>ormation. Send<br>lefense, Washing<br>2-4302. Respond<br>ion if it does not                          | time for reviewing instructions, searching existing data<br>comments regarding this burden estimate or any other<br>gton Headquarters Services, Directorate for Information<br>dents should be aware that notwithstanding any other<br>display a currently valid OMB control number. |  |  |
| 1. REPORT DA<br>05/08/2021                                                                                                                                              | TE (DD-MM-YYY)                                                                                                                                                                                                               | () 2. REPOR<br>SERDP Fir                                                                                                                          |                                                                                                                                                                                                     | 3. DATES COVERED (From - To)<br>9/30/2016 - 9/30/2021                                                                             |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| 4. TITLE AND SUBTITLE    5a      Development of Toxicity Reference Values (TRVs) for Birds Exposed to PFOS, PFOA and Associated Mixtures of Fluorinated Compounds    16 |                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                     | <b>5a. CO</b><br>16-C-00                                                                                                          | 5a. CONTRACT NUMBER<br>16-C-0027                                                                                         |                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                     | 5b. GR                                                                                                                            | ANT NUMBER                                                                                                               |                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                         |                                                                                                                                                                                                                              | 5c. PR                                                                                                                                            | OGRAM ELEMENT NUMBER                                                                                                                                                                                |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| 6. AUTHOR(S)                                                                                                                                                            |                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   | 5d. PR                                                                                                                   |                                                                                                                                                                                                                                                                                      |  |  |
| Matt F. Simcik, F                                                                                                                                                       | Ph.D., University of                                                                                                                                                                                                         | f Minnesota                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                   | ER-2024                                                                                                                  | 4                                                                                                                                                                                                                                                                                    |  |  |
| Steven J. Bursia                                                                                                                                                        | an, Ph.D., Michigan                                                                                                                                                                                                          | State University                                                                                                                                  | 1                                                                                                                                                                                                   |                                                                                                                                   | 5e. TA                                                                                                                   | SK NUMBER                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   | 5f. WO                                                                                                                   | RK UNIT NUMBER                                                                                                                                                                                                                                                                       |  |  |
| 7. PERFORMIN                                                                                                                                                            | G ORGANIZATIO                                                                                                                                                                                                                | N NAME(S) AND                                                                                                                                     | DADDRESS(ES)                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                          | 8. PERFORMING ORGANIZATION                                                                                                                                                                                                                                                           |  |  |
| University of Min<br>420 Delaware St                                                                                                                                    | inesota<br>treet SE, MMC 807                                                                                                                                                                                                 | ,                                                                                                                                                 |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          | REPORT NUMBER                                                                                                                                                                                                                                                                        |  |  |
| Minneapolis, MN                                                                                                                                                         | 1 55455                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| 9. SPONSORIN<br>Strategic Enviror<br>4800 Mark Cente                                                                                                                    | 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)    10. SPONSOR/MONITOR'S ACRONYM(S)      Strategic Environmental Research and Development Program (SERDP)    SERDP      4800 Mark Center Drive, Suite 16F16    SERDP |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| Alexandria, VA 22350-3605                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          | 11. SPONSOR/MONITOR'S REPORT<br>NUMBER(S)<br>ER-2624                                                                                                                                                                                                                                 |  |  |
| 12. DISTRIBUTION/AVAILABILITY STATEMENT                                                                                                                                 |                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| DISTRIBUTION                                                                                                                                                            | STATEMENT A. A                                                                                                                                                                                                               | pproved for publi                                                                                                                                 | ic release: distribution ur                                                                                                                                                                         | nlimited.                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| 13. SUPPLEME                                                                                                                                                            | NTARY NOTES                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| 14. ABSTRACT<br>Per- and polyflu<br>aqueous film for<br>emergency resp<br>subsequently Al<br>storage, release<br>contaminated w<br>meeting the crite                    | r<br>oroalkyl substance<br>ming foams (AFFF<br>oonse. Two manufa<br>FFF, using electroc<br>of these chemical<br>ith AFFF. However<br>eria for developme                                                                      | es (PFAS) are ub<br>F). The Departme<br>acturing techniqu<br>chemical fluorina<br>s to the environn<br>r, to date, there a<br>nt of toxicity refe | iquitous contaminants in<br>ent of Defense used thes<br>es for PFAS produced vi-<br>tion while Ansul produce<br>nent is significant. In the<br>are few studies that have<br>rence values (TRVs) use | the environmen<br>e AFFF formula<br>arying individual<br>d AFFF using D<br>environment, ex<br>examined the e<br>ed to evaluate er | t. They were u<br>tions since app<br>components.<br>uPont's fluorot<br>posure to PFA<br>ffects of PFAS<br>wironmental ri | used extensively in the formulation of<br>proximately 1970 for fire-training and<br>The 3M company produced PFAS, and<br>relomer based PFAS. Due to their use and<br>AS from wildlife is probable in areas<br>is in avian species that provide data<br>sks posed by AFFF use.        |  |  |
| 15. SUBJECT 1<br>Toxicity Referen                                                                                                                                       | r <b>ERMS</b><br>ce Values, TRVs,                                                                                                                                                                                            | Birds, PFOS, PF                                                                                                                                   | OA, PFAS, Fluorinated (                                                                                                                                                                             | Compounds                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
| 16. SECURITY                                                                                                                                                            |                                                                                                                                                                                                                              | OF:                                                                                                                                               | 17. LIMITATION OF<br>ABSTRACT                                                                                                                                                                       | 18. NUMBER<br>OF                                                                                                                  | 19a. NAME<br>Matt F. Simc                                                                                                | OF RESPONSIBLE PERSON<br>ik                                                                                                                                                                                                                                                          |  |  |
| a. REPORT                                                                                                                                                               | D. ABSTRACT<br>UNCLASS                                                                                                                                                                                                       | TRACT  c. THIS PAGE  ABSTRACT  OF    SS  UNCLASS  UNCLASS  128    128  128  128                                                                   |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                          |                                                                                                                                                                                                                                                                                      |  |  |

## TABLE OF CONTENTS

| TABLE OF CONTENTS                             | i    |
|-----------------------------------------------|------|
| List of Tables                                | v    |
| List of Figures                               | vii  |
| List of Acronyms                              | viii |
| Acknowledgements                              | viii |
| Abstract                                      | ix   |
| Introduction                                  | ix   |
| Technical Approach                            | ix   |
| Results                                       | ix   |
| Benefits                                      | ix   |
| Publications                                  | ix   |
| Executive Summary                             | xi   |
| Introduction                                  | xi   |
| Objectives                                    | xii  |
| Technical Approach                            | xii  |
| Results and Discussion                        | xiv  |
| Acute Exposure Study                          | xiv  |
| Chronic Exposure Study                        | XV   |
| Implications for Future Research and Benefits | xvii |
| Acute Exposure Study                          | xvii |
| Chronic Exposure Study                        | xvii |
| 1. Objective                                  | 1    |
| 2. Background                                 | 2    |
| 3. Materials and Methods                      | 5    |
| 3.1 Acute Study                               | 5    |
| 3.1.1 PFOS Diet preparation                   | 5    |
| 3.1.2 PFOA Diet preparation                   | 5    |
| 3.1.3 PFOS +PFOA Diet preparation.            | 5    |
| 3.1.4 3M Lightwater AFFF Diet preparation.    | 5    |
| 3.1.5 Ansul Ansulite AFFF Diet preparation    | 6    |
| 3.1.6 Birds, housing, and sample collection   | 6    |
| 3.1.7 PFAS analyses                           | 7    |

|    | 3.1.8 Endpoints and statistical analysis                                    | 8  |
|----|-----------------------------------------------------------------------------|----|
| 3  | 3.2 Chronic Exposure Study                                                  | 8  |
|    | 3.2.1 PFOS                                                                  | 8  |
|    | 3.1.2 3M Lightwater AFFF                                                    | 9  |
|    | 3.1.3 Birds and housing                                                     | 9  |
|    | 3.1.4 Reproduction                                                          | 10 |
|    | 3.1.5 Embryo mortality                                                      | 11 |
|    | 3.1.6 Offspring rearing                                                     | 11 |
|    | 3.1.7 Offspring necropsies                                                  | 11 |
|    | 3.1.8 Adult necropsies                                                      | 11 |
|    | 3.1.9 Pathology                                                             | 11 |
|    | 3.1.10 PFAS analyses                                                        | 12 |
|    | 3.1.11 Spike Recoveries                                                     | 13 |
|    | 3.1.12 Endpoints and statistical analysis                                   | 14 |
| 4. | Results and Discussion                                                      | 15 |
| 4  | 4.1 Acute Exposure Study                                                    | 15 |
|    | 4.1.1 Dietary concentrations and average daily dose                         | 15 |
|    | 4.1.2 LD50s, LC50s, LT50s                                                   | 15 |
|    | 4.1.3 Feed intake and body weight                                           | 20 |
|    | 4.1.5 Feed intake from d 6 to d 23                                          | 20 |
|    | 4.1.6 Body weights                                                          | 21 |
|    | 4.1.7 Liver weight                                                          | 21 |
|    | 4.1.8 PFOS trial                                                            | 24 |
|    | 4.1.9 PFOA trial                                                            | 24 |
|    | 4.1.10 PFOS + PFOS trial                                                    | 24 |
|    | 4.1.11 3M AFFF trial                                                        | 24 |
|    | 4.1.12 Serum and liver concentrations                                       | 24 |
|    | 4.1.17 Discussion                                                           |    |
| 4  | 4.2 Chronic Exposure Study                                                  |    |
|    | 4.2.1 Dietary concentrations and average daily dose                         |    |
|    | 4.2.2 Adult mortality and clinical observations                             |    |
|    | 4.2.3 Adult feed consumption, body weight gain and body weights at necropsy |    |
|    | 4.2.4 Egg production and hatchability                                       |    |
|    | 4.2.5 Embryo mortality                                                      |    |

|    | 4.2.6 Chick survivability through 7 and 14 d of age                      | 37 |
|----|--------------------------------------------------------------------------|----|
|    | 4.2.7 Chick body weights                                                 | 37 |
|    | 4.2.8 Liver weights                                                      |    |
|    | 4.2.9 Pathology                                                          |    |
|    | 4.2.10 Liver                                                             |    |
|    | 4.2.11 Kidney                                                            |    |
|    | 4.2.12 Serum, liver and egg concentrations                               | 43 |
|    | 4.2.13 Discussion                                                        | 49 |
| 5. | Internal Dose Investigation                                              | 57 |
| 5  | .1 Results                                                               | 57 |
| 5  | .2 Conclusions                                                           | 60 |
| 6. | Conclusions and Implications for Future Research                         | 60 |
| 6  | .1 Acute Exposure Study                                                  | 60 |
| 6  | .2 Chronic Exposure Study                                                | 60 |
| 7. | Literature Cited                                                         | 62 |
| 8. | Appendices                                                               | 67 |
| 8  | .1 Supporting Data                                                       | 67 |
|    | 8.1.1 Acute PFOS Exposure Feed Concentration Analysis                    | 67 |
|    | 8.1.2 Acute PFOS Exposure Concentrations                                 | 67 |
|    | 8.1.3 Acute PFOA Exposure Feed Concentration Analysis                    | 69 |
|    | 8.1.4 Acute PFOA Exposure Concentrations                                 | 69 |
|    | 8.1.5 Acute PFOS + PFOA Exposure Feed Concentration Analysis             | 71 |
|    | 8.1.6 Acute PFOS + PFOA Exposure Liver and Serum Concentration Analysis  | 72 |
|    | 8.1.7 Acute 3M AFFF Exposure Liver and Serum PFOS Concentration Analysis | 77 |
|    | 8.1.8 3M AFFF Analysis                                                   | 81 |
|    | 8.1.9 Ansul AFFF Analysis                                                | 81 |
|    | 8.1.10 Chronic PFOS Exposure Feed Concentration Analysis                 | 82 |
|    | 8.1.11 Chronic AFFF Exposure Feed Concentration Analysis                 | 83 |
|    | 8.1.12 Chronic PFOS Adult Serum and Liver Concentrations                 | 83 |
|    | 8.1.13 Chronic PFOS Chick Serum and Liver Concentrations                 | 87 |
|    | 8.1.14 Chronic PFOS Egg White and Yolk Concentrations                    | 92 |
|    | 8.1.15 Chronic 3M AFFF Adult Serum Concentrations                        | 93 |
|    | 8.1.16 Chronic 3M AFFF Adult Liver Concentrations                        | 95 |
|    | 8.1.17 Chronic 3M AFFF Chick Serum and Liver Concentrations              | 98 |

| 8.1.18 Chronic 3M AFFF Egg White and Yolk Concentrations                         | 104 |
|----------------------------------------------------------------------------------|-----|
| 8.1.19 Spike recoveries of PFOS, AFFF PFOS and AFFF PFHxS in liver, egg yolk and |     |
| serum samples                                                                    | 105 |

## List of Tables

| Table 1. Guaranteed Analysis of Purina Gamebird and Turkey Startena <sup>®</sup> and Gamebird Chow -      Gamebird Breeder Layena <sup>®a</sup>                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Method Detection limits for feed, adult and chick serum and livers and egg yolk and albumin      13                                                                              |
| Table 3. Number of live Japanese quail ( <i>Coturnix japonica</i> ) exposed to dietary PFOS, PFOA,PFOS + PFOA, 3M AFFF or Ansul AFFF for 5 d at benchmark periods during the 23-d studies |
| Table 4. Estimates of ADD50 and LC50 for Japanese quail chicks exposed to dietary PFOS, PFOA, PFOS + PFOA, or AFFF for 5 d                                                                |
| Table 5. LT50 in Japanese quail (Coturnix japonica) chicks exposed to dietary PFOS, PFOA,PFOS + PFOA, or AFFF for 5 d                                                                     |
| Table 6. Feed intake and mean body and liver weight of Japanese quail (Coturnix japonica)chicks exposed to dietary PFOS, PFOA, PFOS + PFOA, 3M AFFF or Ansul AFFF                         |
| Table 7. Day 23 serum of liver concentration as a percent of day 8 concentration and serum toliver raio on days 8 and 23                                                                  |
| Table 8. Total feed consumed and cumulative PFOS intake in female and male Japanese quailfed PFOS or 3M AFFF from 0 to 20 weeks of age                                                    |
| Table 9. Body weight gain and body weight at necropsy of female and male Japanese quail fedPFOS or 3M AFFF from 0 to 20 weeks of age                                                      |
| Table 10. Number of viable eggs laid by female Japanese quail and percent chicks hatchedduring weeks 10 to 20 of dietary exposure to PFOS or 3M AFFF                                      |
| Table 11. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF on stage ofembryo mortality and incidence of deformities in their offspring                               |
| Table 12. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF on offspringsurvivability from 0 to 7 and 8 to 14 d of age                                                |
| Table 13. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF on offspringbody weight from 0 to 14 d of age                                                             |
| Table 14. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF on chick(females and males combined) liver weight and liver weight relative to body weight at 14-d ofage  |
| Table 15. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF from 0 to 20weeks of age on liver and kidney histological lesion scores by sex <sup>a</sup>               |
| Table 16. Effect of dietary PFOS or 3M AFFF on adult Japanese quail serum and liver PFOSand PFHxS concentrations after 20 wk of exposure                                                  |
| Table 17. NOAELs, LOAELs and TRVs for Japanese quail and northern bobwhites based on avian reproduction studies assessing the effects of PFOS administered in the feed or drinking water  |
| Table 18. PFOS Liver Concentrations of Dead Quail 58                                                                                                                                      |

| Table 19. LR50 | ) values in Ja | panese quail from | acute exposure to I | PFAS | ) |
|----------------|----------------|-------------------|---------------------|------|---|
|                |                | 1 1               | 1                   |      |   |

## List of Figures

| Figure 1. Effect of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), PFOS + PFOA, and 3M aqueous film-forming foam (AFFF) on offspring survivability at day 8 following a 5-d dietary exposure                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Effect of Dietary PFOS exposure on Serum and Liver Concentations25                                                                                                                                                                                                                                                                |
| Figure 3. Effect of dietary PFOA exposure on serum and liver PFOA concentrations26                                                                                                                                                                                                                                                          |
| Figure 4. Effect of dietary PFOS + PFOA exposure on serum and liver PFOS concentrations27                                                                                                                                                                                                                                                   |
| Figure 5. Effect of dietary PFOS + PFOA exposure on serum and liver PFOA concentrations27                                                                                                                                                                                                                                                   |
| Figure 6. Effect of dietary 3M AFFF exposure on serum and liver PFOS concentrations                                                                                                                                                                                                                                                         |
| Figure 7. Percent of viable eggs that experienced embryo mortality                                                                                                                                                                                                                                                                          |
| Figure 8. Serum PFOS Concentration in Adult Quail from Chronic PFOS Trial46                                                                                                                                                                                                                                                                 |
| Figure 9. Liver PFOS Concentrations in Adult Quail from Chronic PFOS Trial46                                                                                                                                                                                                                                                                |
| Figure 10. Liver and Serum PFOS Concentrations in Adult Quail from 3M AFFF Chronic Trial                                                                                                                                                                                                                                                    |
| Figure 11. Liver and Serum PFOS Concentrations in Quail Chicks from PFOS Chronic Trial47                                                                                                                                                                                                                                                    |
| Figure 12. Liver and Serum PFHxS Concentrations in Adult Quail from 3M AFFF Chronic Trial                                                                                                                                                                                                                                                   |
| Figure 13. Liver and Serum PFOA Concentrations in Adult Quail from 3M AFFF Chronic Trial                                                                                                                                                                                                                                                    |
| Figure 14. Liver and Serum PFHxS Concentrations in Quail Chicks from 3M AFFF Chronic<br>Trial                                                                                                                                                                                                                                               |
| Figure 15. PFOS or PFOA liver concentrations from acute exposures (values are average concentrations of PFAS in dead quail livers)                                                                                                                                                                                                          |
| Figure 16. 14-Day old Japanese quail chick body weight as a function of liver PFOS concentration. Blue symbols indicate liver concentrations less than $5.5 \ \mu g/g$ and showed no correlation of body weight to concentration. Red symbols indicate liver concentrations greater than $5.5 \ \mu g/g$ and are included in the regression |
| Figure 17. Yolk PFOS Concentrations ( $\mu g/g$ ) from PFOS and AFFF Chronic Trials60                                                                                                                                                                                                                                                       |

### List of Acronyms

| 3M         | Minnesota Mining and Manufacturing Company                          |
|------------|---------------------------------------------------------------------|
| 6:2 FtTAoS | 6:2 fluorotelomer thioamido sulfonate                               |
| 6:2 FTS    | 6:2 fluorotelomer sulfonate                                         |
| 8:2 FTS    | 8:2 fluorotelomer sulfonate                                         |
| ADI        | average daily intake                                                |
| AFFF       | aqueous film forming foam                                           |
| ANOVA      | analysis of variance                                                |
| BMCx       | benchmark dietary concentration at the x% response level            |
| BMCLx      | lower 95% confidence limit of BMCx                                  |
| BMDx       | benchmark dose at the x% response level                             |
| BMDLx      | lower 95% confidence limit of BMDx                                  |
| bw         | body weight                                                         |
| DOD        | Department of Defense                                               |
| EDx        | effective dose for x % of the population                            |
| FTA        | fire training activities                                            |
| h          | hours                                                               |
| LC/MS/MS   | liquid chromatography tandem mass spectrometry                      |
| LOAEL      | lowest observed adverse effect level                                |
| LC50       | lethal dietary concentration for 50% of the experimental population |
| LD50       | lethal dose for 50% of experimental population                      |
| LT50       | lethal time for 50% of experimental population                      |
| MSU        | Michigan State University                                           |
| NOAEL      | no observed adverse effect level                                    |
| PFAS       | perfluoroalkyl substances                                           |
| PFHxS      | perfluorohexane sulfonate                                           |
| PFOA       | perfluorooctanoic acid                                              |
| PFOS       | perfluorooctane sulfonate                                           |
| SAS        | Statistical Analysis System                                         |
| TRV        | toxicity reference value                                            |
| USACHPPM   | US Army Center for Health Promotion and Preventative Medicine       |

## Acknowledgements

Drs. Simcik and Bursian would like to thank Jane Link and Michael McCarty for their tireless work in the laboratory analyzing samples, data and results. We would also like to thank the Michigan State Poultry Teaching and Research Center for housing the quail during the study. In particular, we'd like to thank farm manager, Angelo Napolitano.

#### Abstract

#### Introduction

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous contaminants in the environment. They were used extensively in the formulation of aqueous film forming foams (AFFF). The Department of Defense used these AFFF formulations since approximately 1970 for fire-training and emergency response. Two manufacturing techniques for PFAS produced varying individual components. The 3M company produced PFAS, and subsequently AFFF, using electrochemical fluorination while Ansul produced AFFF using DuPont's fluorotelomer based PFAS. Due to their use and storage, release of these chemicals to the environment is significant. In the environment, exposure to PFAS from wildlife is probable in areas contaminated with AFFF. However, to date, there are few studies that have examined the effects of PFAS in avian species that provide data meeting the criteria for development of toxicity reference values (TRVs) used to evaluate environmental risks posed by AFFF use.

#### **Technical Approach**

This study assessed the acute toxicity of two PFAS, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), individually and in combination as well as two AFFF formulations in Japanese quail (*Coturnix japonica*). Additionally, this project determined the chronic toxicity of PFOS and one AFFF formulation, and developed a TRV for Japanese quail. Acute studies involved feeding 10-day old quail feed dosed with 9 dietary treatments of PFOS, PFOA, PFOS + PFOA, 3M AFFF and Ansul AFFF. For the chronic exposure juvenile quail were fed 6 dietary treatments of either PFOS or 3M AFFF contaminated feed. Those quail were paired and reproductive effects observed.

#### Results

From the acute exposure average daily doses resulting in 50% mortality at day 5 were 38 (34–43), 68 (63–74), 55 (51–59), and 130 (103–164) mg PFOS, PFOA, PFOS + PFOA, and PFOS in 3M AFFF kg body weight<sup>-1</sup> d<sup>-1</sup>. Ansul AFFF did not result in any mortalities. Dietary concentrations resulting in 50% mortality at day 5 were 351(275-450), 496 (427–575), 398 (339–468), and 467 (390–559) mg PFOS, PFOA, PFOS + PFOA, and PFOS in 3M AFFF kg feed<sup>-1</sup>. From the chronic exposure PFOS or AFFF PFOS did not have a significant effect on egg production and had a variable effect on hatchability and chick body weight. Chick survivability, considered the critical effect, was significantly decreased beginning at 8.7 mg PFOS and 11 mg AFFF PFOS kg<sup>-1</sup> feed.

#### Benefits

The no observed adverse effect level (NOAEL) for PFOS was 4.1 mg kg feed<sup>-1</sup> (0.55 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and 5.0 mg AFFF PFOS kg feed<sup>-1</sup> (0.66 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) resulting in average toxicity reference values (TRVs) of 0.25 mg kg feed<sup>-1</sup> and 0.034 mg kg bw<sup>-1</sup> d<sup>-1</sup>.

#### Publications

Bursian, S. J., Roberts, J., Harr, K., Link, J.E., McCarty, M., Simcik, M.F. Dietary Exposure of Japanese Quail (Coturnix japonica) to Perfluorooctane Sulfonate (PFOS) and a Legacy Aqueous Film Forming Foam Containing PFOS: Effects on Reproduction and Chick Survivability and Growth. *Environmental Toxicology and Chemistry* **2021** https://doi.org/10.1002/etc.5138.

Bursian, S. J., Link, J.E., McCarty, M., Simcik, M.F. The Subacute Toxicity of PFOS and/or PFOA and Legacy Aqueous Film Forming Foams to Japanese Quail (*Coturnix japonica*) chicks. *Environmental Toxicology and Chemistry*. **2020** doi:10.1002/etc.4684

#### **Executive Summary**

#### Introduction

Perfluoroalkyl substances (PFAS) are a broad chemical class consisting of a fully fluorinated carbon chain and several different end groups including sulfonate, carboxylate, sulfonamidoalkyls and alcohols. These compounds were used in mixtures of AFFF as fire extinguishing agents both as an emergency measure as well as for fire training activities (FTA) by the US military at many installations around the country. The US military has the largest stockpile of AFFF, accounting for approximately 29% in 2004 (Place and Field 2012). The AFFF formulations sold by 3M, which account for 75% of the total AFFF stockpiled on military bases, contain fluorochemicals synthesized by electrochemical fluorination while the remaining stockpiled AFFF contain telomerization-based fluorochemicals (Place and Field, 2012). PFOS was an active ingredient utilized in the 3M AFFF formulations until the phase-out of PFOS and related chemicals in 2000 through 2002. Current AFFF formulations are based on telomer fluorosurfactants that do not contain PFOS (Place and Field 2012, Gewurtz, Bhavsar et al. 2014). As a result of their use in AFFF, PFAS have been released into the environment during firefighting activities. Subsequent contamination of biota, surface water and groundwater proximate to these installations has since been widely reported (Moody and Field 1999, Moody and Field 2000, Gewurtz, Bhavsar et al. 2014, Arias E, Mallavarapu et al. 2015). Despite the documentation of PFAS as environmental contaminants, relatively few studies dealing with their ecotoxicity have been conducted and to date, most of these studies have focused on single compounds (PFOS and/or PFOA), rather than commercial formulations containing other PFAS (Backe, Day et al. 2013).

Effluents of AFFF resulting from fire emergency responses, firefighting training activities and equipment maintenance typically were not contained or pre-treated prior to release into waste-water treatment systems or the environment (Moody et al. 2003). These effluents are considered a primary source of poly- and perfluoroalkyl substances (PFAS) in biota, surface water and ground water at specific Department of Defense facilities (Moody and Field 1999, Moody and Field 2000, Moody et al. 2003, Gerwurtz et al. 2014, Arias et al. 2015, Anderson et al. 2016). The presence of the long chain perfluoroalkyl acids PFOS and PFOA are of particular concern in terms of both human health as well as health of the environment because they are persistent, bioaccumulate, and have induced toxic effects in laboratory animals (Giesy and Kannan 2002, Kannan 2011).

There are few studies that have examined the effects of PFAS in avian species that provide data meeting the criteria for development of toxicity reference values (TRVs) (US Army Center for Health Promotion and Preventative Medicine 2000) used to evaluate environmental risks posed by use of chemicals, including military-related chemicals such as PFAS associated with AFFF. Data from studies utilizing an ecologically relevant exposure scenario, exposure to the chemical via the feed or water, are preferred for development of TRVs to be used in ecological risk assessments. Japanese quail (*Coturnix japonica*) administered PFOA via the drinking water had suppression of T cell-mediated immunity, which however did not translate into compromised disease resistance (Smits and Nain 2013), a relevant endpoint for development of TRVs. The reproductive effects of dietary PFOS were examined in mallards (*Anus platyrhynchos*) and northern bobwhites (*Colinus virginianus*) by Newsted et al. (2007). The lowest dietary concentration used was the lowest observed adverse effect level (LOAEL) for northern bobwhites and there were no treatment-related effects, other than adult mortality at the greatest dietary concentrations, for mallards. Using data from this reproduction study (Newsted

et al. 2007), an avian TRV for PFOS (Newsted et al. 2005) was published prior to publication of the reproduction study. The authors of the TRV publication stated that a more accurate estimate of potential risk could be achieved if more toxicity data were available. Most recently, the reproductive effects of a 1.2:1 mixture of PFOS and perfluorohexane sulfonate (PFHxS) administered to northern bobwhites via the drinking water were evaluated by Dennis et al. (2020).

#### **Objectives**

The overall objective of this project was to develop avian ecotoxicity information for compounds associated with aqueous film forming foam (AFFF) in birds. Our specific objectives were to determine the acute toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) separately and in combination, in Japanese quail and to determine the acute toxicity of other perfluoroalkyl substances relative to PFOS in Japanese quail using two historic formulations of AFFF, notably 3M and Ansul formulations, which represent electrochemical fluorination and fluorotelomer technologies. Our final objective was to develop toxicity reference values (TRVs) for PFOS and AFFF in Japanese quail based on chronic feeding studies.

#### **Technical Approach**

The objectives were accomplished by performing three tasks: **Task 1: ACUTE EXPOSURE TO PFOS, PFOA, PFOS + PFOA** 

**Hypothesis:** Acute dietary exposure of Japanese quail to PFOS, PFOA or a combination of PFOS plus PFOA for five days will have an adverse effect on survivability allowing derivation of LD50, LC50 and LT50 values.

Japanese quail eggs were incubated at the Michigan State University (MSU) Poultry Science Research and Teaching Center (East Lansing, MI). Resulting hatchlings were raised in a brooder battery until 10 days of age at which time birds were sorted by weight and randomly assigned from each weight class to one of nine treatment groups (20 birds per group). Once assigned to treatment groups, birds were individually identified. Groups were housed in separate compartments of a second brooder battery in an environmentally controlled room with a photoperiod of 17 hours (h) light:7 h dark. Feed and water were available ad libitum. Ten-dayold birds were fed PFOS (0, 8.7, 17.6, 35.1, 70.3, 141, 281, 562, or 1125 µg/g feed), PFOA (0, 43.5, 88, 175, 350, 700, 1400, 2810, or 5625 µg/g feed), or PFOS plus PFOA (at the same concentrations used for the individual compounds) in their diet for five days and then placed on clean feed. Treatment groups were housed such that birds fed lower concentrations of PFOS, PFOA or PFOS plus PFOA were maintained above birds fed higher concentrations to prevent cross-contamination of feed. The three trials were run sequentially. On day 8, half of the birds (if there were enough survivors) in each group were euthanized by cervical dislocation, sampled for blood by cardiac puncture and the liver removed and weighed. The remaining birds were continued on clean feed for an additional 14 days at which time surviving birds were euthanized by cervical dislocation, sampled for blood by cardiac puncture and the liver removed and weighed as before. Serum samples for each dietary concentration of PFOS, PFOA and PFOS plus PFOA at day 8 and day 22 were analyzed for PFOS and/or PFOA by LC/MS/MS at the University of Minnesota. Individual body weights and feed consumption for each compartment were determined on days 5, 8, 15 and 22.

Endpoints included LC50 (dietary concentration that results in 50% mortality of a population for a given exposure time), LD50 and LT50 (the exposure time that results in 50% mortality of a population for a given dose). Other endpoints included body weight gain, feed consumption, liver weight and PFOS and/or PFOA concentrations in serum.

#### Task 2: ACUTE EXPOSURE TO 3M or ANSUL AFFF

**Hypothesis:** Acute dietary exposure of Japanese quail to 3M or Ansul aqueous film forming foam for five days will have an adverse effect on survivability allowing derivation of LD50, LC50 and LT50 values.

We had previously obtained historical formulations of both 3M and Ansul AFFF from local fire departments and selected those that were also used for military applications. Ten-dayold Japanese quail were fed nine dietary treatments of either 3M or Ansul AFFF. Dosage of 3M AFFF was based on the PFOS and PFOA concentration in the AFFF. Targeted concentrations of PFOS/PFOA based on analysis of the AFFF were 0/0, 70/0.88, 144/1.8, 192/2.4, 240/3.0, 280/3.5, 420/5.3, 560/7.0, and 1120/14 mg PFOS/PFOA kg feed<sup>-1</sup>. Dosage of Ansul AFFF was based on the 6:2 fluorotelomer thioamido sulfonate (6:2 FtTAoS) concentration in the AFFF. Nine dietary treatments were formulated to contain Ansul AFFF at 0, 1.5, 2.9, 5.8, 12, 23, 46, 92, and 184 mL/kg feed given a concentration of 6100mg 6:2 FtTAoS/L AFFF. Other PFAS analyzed in the Ansul were present at levels orders of magnitude lower, with only 6:2 fluorotelomer sulfonate (6:2FTS), PFOA, and 8:2 fluorotelomer sulfonate (8:2FTS), showing any significant concentration at 7.3, 5.5 and 4.3  $\mu$ g/mL, respectively (Appendix). Endpoints were the same as for Task 1.

#### Task 3: CHRONIC EXPOSURE OF JAPANESE QUAIL TO PFOS OR AFFF

**Hypothesis:** *Dietary exposure of breeding pairs of Japanese quail to PFOS or AFF for a total of 18 weeks will have an adverse effect on reproduction and survivability of offspring.* 

Japanese quail eggs were obtained from the Michigan State University (MSU) Poultry Teaching and Research Center (East Lansing, MI) breeding flock. Eggs were incubated and hatched at the facility. At hatching, quail were moved to a brooder battery. Birds were fed experimental diets for 4 weeks. Treatment groups were arranged in the brooder so that the lowest concentrations of PFOS were at the top of the battery and the highest concentrations were at the bottom to avoid cross contamination of the feed. At 4 weeks of age, birds were sorted by sex within treatment and then randomly paired (male/female), individually identified with a plastic wing tag, weighed and moved to breeder/layer pens. Birds were maintained on 8 h light and 16 h dark until 8 weeks of age when photoperiod was increased over 2 weeks to 17 h light and 7 h dark to induce egg laying at 10 weeks of age. Light intensity in the room was approximately 20 lux.

Birds were weighed every 2 weeks and feed consumption was measured weekly for each breeding pair. When egg laying began at 10 weeks of age, eggs were collected daily between 0800 and 0900. Individual eggs were labeled using non-toxic felt tip surgical markers with hen identification number, date and dietary concentration and then placed in an egg cooler. Eggs in

the egg cooler were set in a rotary incubator at 1-week intervals. Eggs with damaged shells were considered non-viable and excluded from hatchability calculations. Weekly, the yolk and albumin from these eggs were separated and frozen for subsequent PFAS analysis. On day 14 of incubation, eggs were placed in hatching baskets by hen number and transferred to a hatcher. Beginning on day 17, hatchlings with dry feathers were removed from the hatcher, weighed and transferred to the brooder battery by dietary concentration twice a day. Eggs remaining on the afternoon of day 18 were considered unhatched. All unhatched eggs were opened on the afternoon of day 18 and stage of embryo development was determined and recorded. Embryo age at death was categorized as less than 4 days, 4 to 7 days, 8 to 10 days, 11 to 14 days, greater than 14 days, dead pip or live pip. Embryos that were developed enough to visualize anatomical structures were examined for abnormalities. Unhatched eggs with no gross indication of embryo development were assumed to be infertile and were not included in hatchability calculations. Live hatchlings were raised in the same brooder unit and under the same conditions used to raise the parental birds. Offspring were raised for 14 days on non-contaminated Game Bird and Turkey Startena<sup>®</sup> crumbles that had been ground to reduce particle size. Birds were checked twice daily and weighed at hatch and on days 7 and 14. On day 14, a subsample of 10 chicks per dose group were randomly selected for necropsy. Chicks were euthanized by cervical dislocation and blood was immediately obtained by cardiac puncture. Livers were removed, weighed and frozen (-20° C) in glass vials for subsequent PFAS analysis. Blood was allowed to clot prior to centrifugation at 2000 x g for 10 min at room temperature. Serum was separated and frozen at -20° C. These procedures were repeated for each of the 10 hatches.

At 20 weeks of age, surviving adult birds were weighed, euthanized by cervical dislocation and blood immediately collected by cardiac puncture. Birds were necropsied and half of the liver and the kidneys were removed, weighed and placed in 10% neutral buffered formalin for subsequent histological examination. The remaining half of the liver and serum were frozen at -20°C for subsequent PFAS analysis. At least 2 sections of liver and 2 sections of kidney were placed in a single cassette for each quail. If whole kidneys were available, cranial and caudal lobes were sampled. Samples were sent to URIKA Pathology for processing and evaluation. Hepatic and renal tissues were examined by a board certified pathologist and lesions were graded on a severity scale of 0 to 4 according to the following criteria: 0 = no lesion recognized; 1 = minimal lesions, 1 to 3 foci or small foci of a few cells; 2 = mild lesions, increased number of foci or more of the lesion; 3 = moderate lesions, more lesions (2-3 per 10x field of vision); 4 = severe lesions, the majority of cells and/or extensive regions involved with the lesions.

#### **Results and Discussion**

#### Acute Exposure Study

There was a distinct dose-response relationship between PFOS, PFOA, PFOS + PFOA and 3M AFFF exposure and both feed intake and body weight for adult quail. No significant decrease in feed consumption or body weight occurred in the Ansul AFFF exposed quail. There was also significant mortality of adult quail exposed to PFOS, PFOA, PFOS + PFOA and 3M AFFF starting as early as day 3 and at levels as low as 152 µg PFOS g feed<sup>-1</sup>. No mortality occurred at any exposure level for Ansul AFFF in this study. When comparing the levels of exposure PFOS was more toxic than PFOA, PFOS and PFOA toxicity appeared additive and AFFF exposure was less toxic than equivalent levels of PFOS. But when considering internal dose, AFFF and PFOS showed similar toxicity.



Effect of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), PFOS + PFOA, and 3M aqueous film-forming foam (AFFF) on offspring survivability at day 8 following a 5-d dietary exposure.

(A) Day 8 survivability of Japanese quail (Coturnix japonica) chicks at each concentration of dietary PFOS after a 5-d dietary exposure. (B) Day 8 survivability of Japanese quail chicks at each concentration of dietary PFOA after a 5-d dietary exposure. (C) Day 8 survivability of Japanese quail chicks at each concentration of dietary PFOS + PFOA after a 5-d dietary exposure. (D) Day 8 survivability of Japanese quail chicks at each concentration of PFOS provided by 3M AFFF after a 5-d dietary exposure.

Doses of PFOS, PFOA, PFOS + PFOA and AFFF PFOS that resulted in 50% lethality ranged from 38 to 145 mg kg body weight<sup>-1</sup> d<sup>-1</sup> and dietary concentrations that resulted in 50% lethality ranged from 389 to 550 mg kg feed<sup>-1</sup>. The time required for 50% mortality (LT50) on day 8 across dietary concentrations was similar for each treatment (PFOS: 5.7 to 3.4 d; PFOA: 5.9 to 3.8 d; PFOS + PFOA: 7.4 to 4.0 d; AFFF PFOS: 7.6 to 4.3 d).

#### Chronic Exposure Study

No adult mortality occurred as a result of exposure to PFOS or 3M AFFF in the chronic exposures.

When exposed to chronic levels of PFOS and 3M AFFF quail feed intake was variable. Females had significantly higher feed consumption than males, and it was unaffected by exposure levels. Male quail exhibited significantly less consumption starting at the 18 mg PFOS kg feed<sup>-1</sup> and 27 mg kg feed<sup>-1</sup> levels when compared to controls. Like the acute exposure, this feed consumption had a commensurate effect on body weight. Females showed no effect on body weight either during growth or at necropsy. Males showed significant decreased weight gain with chronic PFOS exposure starting at 19 mg AFFF PFOS kg feed<sup>-1</sup> and significantly lower body weight at necropsy starting at 14 mg PFOS kg feed<sup>-1</sup> and 11 mg AFFF PFOS kg feed<sup>-1</sup>.

The chronic exposure had no effect on egg production, but did correspond to a significant reduction in hatchability at 18 mg PFOS kg feed<sup>-1</sup>. The greatest reproductive effect observed was on embryo mortality. In general, there was a dose-related increase in embryo mortality for both PFOS and AFFF PFOS. In the PFOS trial, the greatest mortality occurred after day 14 of incubation across all groups with the proportions being similar (31.7 - 38.8%). In the 3M AFFF trial, embryo mortality occurred primarily in the first 7 d of incubation across treatment groups with exception of the greatest feed concentration that had the greatest proportion of embryos dying after 14 d of incubation. There was a significant increase in the number of embryos dying after day 14, dead pips and live pips at 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 3.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) compared to controls.



#### Percent of viable eggs that experienced embryo mortality

Chronic exposure to PFOS and AFFF also had significant effects on chick survivability, chick body weights, chick liver weights and adult liver and kidney pathology. There was reduced survivability through the first 7 days at feed concentrations of 8.7 and 18 mg PFOS kg feed<sup>-1</sup> and beginning at 11 mg AFFF PFOS kg feed<sup>-1</sup>. Chick body weights showed a significant decrease compared to controls at feed concentrations as low as 2.1 mg PFOS and 2.1 mg AFFF PFOS kg feed<sup>-1</sup>. The only effect on adult liver weights were observed at 27 mg AFFF PFOS kg feed<sup>-1</sup> where liver weight was significantly larger than controls. For 14-day old chicks absolute and relative liver weights increased for PFOS exposed groups, but no significant changes were observed in 3M AFFF exposed groups. Liver pathology results indicated extramedullary hematopoesis in males from the PFOS trial and females from the AFFF trial, but canalicular cholestasis, myofibroblast proliferation and heterophilic inflammation were not observed.

Kidney pathology results indicated tubular regeneration severity in females exposed to PFOS, glomerulopathy in both males and females exposed to PFOS, and significant tubular degeneration in females exposed to AFFF PFOS.

Benchmark modeling using the US Environmental Protection Agency benchmark dose (BMD) software (version 3.1.1; <u>http://www.epa.gov/ncea/bmds</u>) was attempted to derive the lower 95% confidence limit of the BMD (BMDL) for a 20% decrease in chick survivability for PFOA and AFFF PFOS. However, all models were judged by the BMD software as "questionable". For this reason, it was decided that the no adverse effect levels (NOAELs) for the critical effect of chick survivability would be used. No Adverse Effect Levels (NOAELs) associated with chick survivability were determined to be 4.1 mg PFOS kg feed<sup>-1</sup> (0.55 mg PFOS kg body weight<sup>-1</sup> day<sup>-1</sup>) and 5.0 mg AFFF PFOS kg feed<sup>-1</sup> (0.66 mg AFFF PFOS kg body weight<sup>-1</sup> day<sup>-1</sup>). Toxicity Reference Values (TRVs) were averaged for PFOS and AFFF and determined to be 0.25 mg PFOS kg feed<sup>-1</sup> and 0.034 mg PFOS kg body weight<sup>-1</sup> day<sup>-1</sup>. These values are similar to TRV values reported by Newsted et al (2005) for bobwhite quail.

#### **Implications for Future Research and Benefits**

#### Acute Exposure Study

Based on dietary concentrations related to mortality, feed consumption and body and organ weight endpoints, the results of the present study indicate that PFOS is acutely more toxic to Japanese quail than PFOA. Results also suggest that the acute toxicities of PFOS and PFOA are additive. AFFF PFOS was less toxic than PFOS and PFOA based on dietary concentrations and 6:2 FtTAoS provided by Ansul AFFF was not toxic at concentrations fed. However, examination of hepatic concentrations of PFOS, AFFF PFOS and PFOA in birds that died on trial suggests there is a tissue threshold for mortality and the threshold for AFFF PFOS is less than the thresholds for PFOS and PFOA and equivalent to PFOS + PFOA.

#### Chronic Exposure Study

Examination of the effects of dietary PFOS and a legacy AFFF containing PFOS AFFF PFOS on reproduction and chick survivability and growth in Japanese quail determined that the NOAELs associated with chick survivability, which is considered the critical effect, were 4.1 mg PFOS kg feed<sup>-1</sup> (0.55 mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>) and 5.0 mg AFFF PFOS kg feed<sup>-1</sup> (0.66 mg AFFF PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>). Toxicity reference values were calculated by averaging the PFOS and AFFF PFOS values and dividing by a total uncertainty factor of 18. Resulting TRVs are 0.25 mg kg feed<sup>-1</sup> and 0.034 mg kg bw<sup>-1</sup> d<sup>-1</sup>, which are similar to TRVs reported by Newsted et al. (2005) for northern bobwhites.

# NOAELs, LOAELs and TRVs for Japanese quail and northern bobwhites based on avian reproduction studies assessing the effects of PFOS administered in the feed or drinking water

| Measure of<br>PFOS<br>exposure                                                    | Japanese quail – dietary <sup>a</sup> |        | Northern bobwhite –<br>dietary <sup>b</sup> |       |       | Northern bobwhite –<br>drinking water <sup>c</sup> |                         |                         |
|-----------------------------------------------------------------------------------|---------------------------------------|--------|---------------------------------------------|-------|-------|----------------------------------------------------|-------------------------|-------------------------|
| •                                                                                 | NOAEL <sup>d</sup>                    | LOAELd | TRV <sup>d,e</sup>                          | NOAEL | LOAEL | TRV <sup>f</sup>                                   | NOAEL                   | LOAEL                   |
| Feed or water<br>concentration<br>(mg kg <sup>-1</sup> or<br>mg L <sup>-1</sup> ) | 4.6                                   | 9.9    | 0.26                                        | -     | 10    | 0.27                                               | 18.7 x 10 <sup>-3</sup> | 5.96 x 10 <sup>-4</sup> |

| ADD (mg kg<br>bw <sup>-1</sup> d <sup>-1</sup> | 0.61 | 1.3 | 0.034 | - | 0.77 | 0.021 | 8.50 x 10 <sup>-5</sup> | 2.45 x 10 <sup>-3</sup> |
|------------------------------------------------|------|-----|-------|---|------|-------|-------------------------|-------------------------|
| Adult female<br>serum (mg L <sup>-1</sup> )    | 18   | 35  | 1.0   | - | 8.7  | 0.24  | -                       | -                       |
| Adult female<br>liver (mg kg <sup>-1</sup> )   | 10   | 18  | 0.56  | - | 4.9  | 0.14  | -                       | -                       |
| Chick serum<br>(mg L <sup>-1</sup> )           | 5.3  | 13  | 0.30  | - | -    | -     | -                       | -                       |
| Chick liver<br>(mg kg <sup>-1</sup> )          | 3.1  | 6.0 | 0.17  | - | -    | -     | -                       | -                       |
| Egg (mg kg <sup>-1</sup> ) <sup>g</sup>        | 33   | 63  | 1.8   | - | 62   | 1.7   | -                       | -                       |

<sup>a</sup>Present study.

<sup>b</sup>Newsted et al. (2005, 2007).

<sup>c</sup>Dennis et al. (2020).

<sup>d</sup>Values are based on the average of PFOS and AFFF PFOS values.

<sup>d</sup>TRVs calculated by dividing NOAEL values by a total uncertainty factor of 18.

<sup>f</sup>TRVs calculated by dividing LOAEL values by a total uncertainty factor of 36.

<sup>g</sup>Based on concentrations in eggs layed during week 10.

NOAEL = no observed adverse effect level; LOAEL = lowest observed adverse effect level; TRV = toxicity reference value; PFOS = perfluorooctane sulfonate; AFFF = aqueous film forming foam; PFHxS = perfluorohexanesulfonate; ADD = average daily dose; bw = body weight

#### Development of Toxicity Reference Values (TRVs) for Birds Exposed to PFOS, PFOA and Associated Mixtures of Fluorinated Compounds

#### 1. Objective

The overall objective of this project was to develop avian ecotoxicity information for compounds associated with aqueous film forming foam (AFFF) in birds. Our specific objectives were to determine the acute toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) separately and in combination, in Japanese quail and to determine the acute toxicity of other perfluoroalkyl substances relative to PFOS in Japanese quail using two historic formulations of AFFF, notably 3M and Ansul formulations, which represent electrochemical fluorination and fluorotelomer technologies. Our final objective was to develop toxicity reference values (TRVs) for PFOS and AFFF in Japanese quail based on chronic feeding studies.

#### 2. Background

Aqueous film forming foam (AFFF) formulations, developed by the U.S. Navy and 3M Company in the mid-1960s to extinguish hydrocarbon-fuel fires resulting from fire-training and fire emergency situations (Moody and Field 1999), are mixtures of fluorinated surfactants. The characteristics of these fluorinated surfactants are dictated by the process used to generate them. Electrochemical fluorination was used by 3M through the early 2000s for their formulations. This process results in fully fluorinated perfluoroalkyl sulfonic acids (PFSAs), such as perfluorooctane sulfonate (PFOS) and other CF<sub>2</sub> homologues, such as perfluorooctanoic acid (PFOA), as well as various perfluoroalkyl sulfonamides and their derivatives (Buck, Franklin et al. 2011, Anderson, Long et al. 2016). Seventy-five percent of the total supply of AFFF on military installations consist of products resulting from electrochemical fluorination (Place and Field 2012). The remaining 25% of AFFF belonging to the military consist of telomerizationbased fluorochemicals composed of carbon chains that are not fully fluorinated, having homologues of varying C<sub>2</sub>F<sub>4</sub> units (Place and Field 2012, Anderson et al. 2016). The fluorotelomers exclusively degrade to PFOA and other perfluoroalkyl carboxylic acids (PFCAs) while perfluoroalkyl sulfonamides and their derivatives can degrade to PFOS and other PFSAs (Anderson et al. 2016).

Effluents of AFFF resulting from fire emergency responses, firefighting training activities and equipment maintenance typically were not contained or pre-treated prior to release into waste-water treatment systems or the environment (Moody, Hebert et al. 2003). These effluents are considered a primary source of poly- and perfluoroalkyl substances (PFAS) in biota, surface water and ground water at specific Department of Defense facilities (Moody and Field 1999, Moody and Field 2000, Moody et al. 2003, Gerwurtz et al. 2014, Arias et al. 2015, Anderson et al. 2016). The presence of the long chain perfluoroalkyl acids PFOS and PFOA are of particular concern in terms of both human health as well as health of the environment because they are persistent, bioaccumulate, and have induced toxic effects in laboratory animals (Giesy and Kannan 2002, Kannan 2011).

Toxicity reference values are used in the evaluation of environmental risks posed by use of chemicals, including military-related chemicals such as PFAS associated with AFFF. These values are measures of toxicity that evaluate the likelihood of effects in individual organisms that may be relevant to a population of organisms (US Army Health Promotion and Preventive Medicine: USACHPPM 2000). According to USACHPPM Technical guide 254: Standard Practice for Wildlife Toxicity Reference Values, criteria used to select toxicity data relevant to development of TRVs include: (1) the critical effects chosen should be clearly linked to factors that influence population sustainability, such as mortality, reproduction, development, growth, behavior relevant to reproduction, feeding and predator avoidance and decrease resistance to disease; (2) exposure duration should be defined and the effect level should be expressed as a no observed adverse effect level (NOAEL), lowest observed adverse effect level (LOAEL) or effective dose x (EDx) where x is less than 50% of the experimental population; (3) the exposure pathway should closely match the pathway that contributes most to exposure in the field; (4) the study design relative to appropriate exposure pathways in the environment must be valid; (5) the quality of the study must be such that the variability in response is relevant, the bioavailability of the substance in the field and the substance used in the study must be comparable, doses administered are appropriately quantified with minimal variability, sufficient information is provided to repeat the study and data corroborate with other similar data (USACHPPM 2000).

Relatively few studies have examined the effects of PFAS in avian species, and even fewer studies provide data that meet the criteria listed above for development of TRVs. Custer et al (2012) reported that reduced hatching of tree swallow (Tachycineta bicolor) eggs in east central Minnesota was associated with egg PFOS concentrations as low as 150 ng/g. While reduced hatchability reported in this field study is a relevant effect, field studies typically do not provide appropriate cause and effect data that can be used to develop TRVs (USACHPPM 2000). Many of the studies evaluating the effects of PFAS in birds have involved injection of PFOS and/or related compounds into eggs with an assessment of hatchability and survivability or changes in biochemical endpoints (Molina Elizabeth, Balander et al. 2006, O'Brien, Carew et al. 2009, Peden-Adams, Stuckey et al. 2009, O'Brien, Kennedy et al. 2010, Norden, Westman et al. 2012, Stroemqvist, Olsson et al. 2012, Norden, Berger et al. 2016). In those egg injection studies assessing the effects of PFOS on hatchability and survivability, which are both relevant endpoints for development of TRVs, there was considerable variation in the effective doses between studies. Molina et al. (2006) injected chicken (Gallus gallus domesticus) eggs with 0.1, 1.0, 10 or 20 µg PFOS/g egg via the air cell prior to incubation, reporting a lethal dose for 50% of experimental population (LD50) of 4.9 µg PFOS/g egg and a LOAEL of 0.1 µg PFOS/g egg. based on hatchability. Pathological changes in the liver characterized by bile duct hyperplasia, periportal inflammation and hepatic cell necrosis occurred at doses as low as 1.0 µg PFOS/g egg. A dose-dependent decrease in the number of embryos pipping and an LD50 of 93  $\mu$ g/g egg were reported for chicken eggs injected with 0.1, 5.0 or 100 µg PFOS/g egg via the air cell prior to incubation (O'Brien et al. 2009a). This LD50 value is approximately 20 times greater than the LD50 value reported by Molina et al. (2006). Contrary to the Molina et al. (2006) study, hatchability was not affected in chicken eggs injected with 1.0, 2.5 or 5.0 µg PFOS/g egg via the air cell prior to incubation, but there were increases in spleen (all doses) and liver (2.5 and 5.0 µg PFOS/g egg) masses and immunological effects (all doses) in 14-day-old hatchlings (Peden-Adams et al. 2009). Strömqvist et al. (2012) injected chicken eggs via the air cell with 20 µg PFOS or 20 µg PFOA/g egg at 15 days of incubation, which induced mortality. It is not possible to compare the results of this study with the studies referenced above because of the differences in study design. Injection of chicken eggs with 5, 20 or 40 µg PFOA/g egg (site of injection and stage of incubation were not specified) resulted in a significant decrease in hatchability and an increase in developmental defects (splayed legs) at all doses (Yanai, Dotan et al. 2008). However, the authors did not report an LD50 value and only a LOAEL is available because of study design.

While egg injection studies can be used to assess the relevant endpoints of mortality, development and growth, and data can be used to identify NOAELs, LOAELs and EDs, this exposure pathway does not mimic what occurs in the wild, the transfer of chemical from the adult female to the egg. Development of accurate TRVs to be used in ecological risk assessments requires data from studies utilizing an ecologically relevant exposure scenario, exposure to the chemical via the feed or water.

There are three studies that employed oral exposure of birds to PFOS or PFOA and examined endpoints relevant to development of TRVs. Smits and Nain (2013)exposed Japanese quail to 1 or 10  $\mu$ g PFOA/ml via drinking water for eight weeks to assess effects on T cell, B cell and innate immunity. Daily intake was estimated to be 0.2 and 2.1  $\mu$ g PFOA/g body weight (bw). The authors reported that there were no clinical signs of toxicity and no effects on feed and water intake, but there was T cell immunosuppression at the high dose. However, the PFOA-induced suppression of T cell-mediated immunity did not translate into compromised

disease resistance, which is a relevant endpoint for development of TRVs. Newsted *et al.* (2006) evaluated the acute oral toxicity of PFOS in juvenile mallards (*Anus platyrhynchos*) and northern bobwhites (*Colinus virginianus*). Ten-day-old birds were provided feed containing PFOS (8.7 to 1125  $\mu$ g PFOS/g feed) for five days and then clean feed for 17 days. The LD50 was determined to be 150  $\mu$ g/g bw/day (cumulative dose of 750  $\mu$ g/g bw over the 5-day period) for mallards and 61  $\mu$ g/g bw/day (cumulative dose of 305  $\mu$ g/g bw) for bobwhites. It was stated that the hepatic concentration of PFOS associated with mortality was at least 50 times greater than PFOS concentrations in the livers of wild birds. In a subsequent chronic study by Newsted *et al.* (2007), mallard and northern bobwhites were administered 0, 10, 50 or 150  $\mu$ g PFOS/g feed for a total of 21 weeks, including at least seven weeks prior to initiation of egg laying. Eggs were incubated and hatchlings were maintained on clean feed for 14 days. The two highest dietary concentrations resulted in significant adult mortality within seven weeks and were discontinued. The lowest feed concentration (10  $\mu$ g PFOS/g feed) was identified as the LOAEL for northern bobwhites based on decreased survivability of 14-day-old chicks. There were no treatment-related effects, other than adult mortality, reported for the mallards.

Of the studies cited, the Newsted *et al.* (2007) study is the most appropriate for development of TRVs. Newsted *et al.* (2005) derived an avian toxicity reference value for PFOS based on the LOAEL of 10  $\mu$ g PFOS/g feed and an overall uncertainty factor of 36. The individual uncertainty factors used for the calculation of a generic trophic level IV avian predator TRV for PFOS consisted of an intertaxon extrapolation factor of 6, an uncertainty factor of 2 to account for the fact that a LOAEL was used instead of a NOAEL and an exposure duration uncertainty factor of 3. The authors stated that as additional toxicity data became available, it was anticipated that the magnitude of uncertainty factors would decrease and a more accurate estimate of potential risk would be achieved.

We conducted a series of toxicity trials designed to generate avian ecotoxicity information for compounds associated with AFFF in birds. The subacute toxicities of PFOS, PFOA, PFOS plus PFOA and two legacy AFFF formulations manufactured by 3M and Ansul representing electrochemical fluorination and fluorotelomer technologies, were initially determined in Japanese quail, which is recognized as a surrogate for wild avian species (Bursian et al. 2020). Subsequently, two reproduction trials were conducted following the design used by Newsted et al. (2007) to assess the effects of PFOS and PFOS provided by the legacy 3M AFFF (AFFF PFOS) on egg production, hatchability and chick survivability for development of TRVs. The design used is similar to the US Environmental Protection Agency's (USEPA) Avian Reproduction Test (OCSPP 850.2300) (US Environmental Protection Agency 2012) and the Organisation for Economic Co-operation and Development's (OECD) Avian Reproduction Test (OECD 206) (Organisation for Economic Co-operation and Development 1984). The results of the acute and reproduction trials are reported here.

#### 3. Materials and Methods

#### 3.1 Acute Study

#### 3.1.1 PFOS Diet preparation.

Nine dietary treatments were formulated to contain 0, 70, 141, 281, 562, 843, 1125, 1687, or 2250 mg of heptadecafluorooctanesulfonic acid (PFOS) kg<sup>-1</sup> feed (PFOS potassium salt,  $\geq$ 98%, Sigma-Aldrich). Feed used throughout the trial was Home Fresh Multi-Flock Turkev N Game Starter (Kent Nutrition Group). A stock suspension of PFOS was made by adding 2250 mg to 150 mL anhydrous ethanol (Koptec) and placing in an ultrasonic water bath (Branson 2200) to break up PFOS particles. After sonicating for 6 h, the suspension was mixed on a magnetic stir-plate for approximately 15 h. To prepare PFOS suspensions for the different treatment diets, appropriate volumes of the stock PFOS suspension and anhydrous ethanol were combined resulting in the desired concentration of PFOS kg<sup>-1</sup> feed in a volume of 150 mL kg<sup>-1</sup> feed. The control diet contained only anhydrous ethanol. To distribute the PFOS suspension evenly throughout the feed, the appropriate volume of the suspension for each treatment was removed while stirring on a magnetic stir-plate and immediately dribbled into a stainless steel mixing bowl (4.26 L) of a stand mixer (KitchenAid) containing the appropriate amount of feed while the feed was mixing. The PFOS-containing feed was mixed with a paddle-type flat beater for 10 min at the lowest speed. After mixing, the diet was poured on to a methanol-cleaned stainless steel or porcelain tray at a depth of approximately 1 cm and allowed to dry overnight in a fume hood to evaporate the ethanol. Feed samples were collected from various locations on the trays into 14 mL polypropylene tubes (Corning) and sent to the University of Minnesota for chemical analysis. Each diet was transferred to an open 9.5 L polypropylene bucket that was placed in a fume hood for an additional 24 h. Buckets were then sealed until the beginning of the trial.

#### 3.1.2 PFOA Diet preparation.

Diets containing perfluorooctanoic acid (PFOA, 95%, Sigma-Aldrich) were prepared in a manner similar to the PFOS trial, except the solubility of PFOA in anhydrous ethanol eliminated the need to sonicate and mix prior to addition of the PFOA solution to the feed. The nominal dietary concentrations for the PFOA trial were 0, 200, 350, 500, 625, 750, 1000, 1250, and 1500 mg kg<sup>-1</sup> feed.

#### 3.1.3 PFOS +PFOA Diet preparation.

Diets containing both PFOS and PFOA had nominal concentrations of 0 + 0, 50 + 50, 75 + 75, 100 + 100, 135 + 135, 150 + 150, 175 + 175, 200 + 200 and 400 + 400 mg PFOS + PFOA kg<sup>-1</sup> feed. A stock solution of PFOS was prepared by adding 400 mg PFOS to 150 mL anhydrous ethanol and sonicating and mixing as described for the PFOS trial above. The concentration of PFOS was low enough that it dissolved after mixing overnight. PFOA (400 mg) was then added to the PFOS stock solution resulting in a PFOS + PFOA solution. Treatment diets were prepared as described for the PFOS trial.

#### 3.1.4 3M Lightwater AFFF Diet preparation.

Nine dietary treatments were formulated to contain 3M Lightwater 6% AFFF (manufactured April, 1990, lot #98-0211-1393-5) at 0, 8.8, 18, 24, 30, 35, 53, 70, or 140 mL kg feed<sup>-1</sup>. Targeted concentrations of PFOS/PFOA based on analysis of the AFFF were 0/0, 70/0.88, 144/1.8, 192/2.4, 240/3.0, 280/3.5, 420/5.25, 560/7.0, 1120/14 mg PFOS/PFOA kg feed<sup>-1</sup>

<sup>1</sup>. The AFFF concentrate was mixed with double deionized water to provide the concentrations needed. Treatment diets were prepared as described for the PFOS trial.

#### 3.1.5 Ansul Ansulite AFFF Diet preparation.

The Ansulite AFFF (packaged September, 2002; log #4219) is a telomerization-based product and thus consists of shorter perfluorinated carbon chains. Therefore, diet formulations for this product were based on the 6:2 fluorotelomer thioamido sulfonate (FtTAoS) concentration assuming that the Ansul AFFF contained 6,100 mg 6:2 FtTAoS/L (Backe, Day et al. 2013). Nine dietary treatments were formulated to contain Ansul AFFF at 0, 1.5, 2.9, 5.8, 12, 23, 46, 92, and 184 mL/kg feed. Targeted concentrations of 6:2 FtTAoS were 0, 9, 18, 35, 73, 140, 279, 559, and 1118 mg kg feed<sup>-1</sup>. Diets were mixed and stored as described for the PFOS trial.

#### 3.1.6 Birds, housing, and sample collection

Ten-d-old Japanese quail, raised at the Michigan State University Poultry Teaching and Research Center (Lansing, Michigan USA), were randomly assigned to the 9 dietary treatments in the PFOS, PFOA, PFOS + PFOA, 3M AFFF and Ansul AFFF trials described in *Diet Preparation*. Birds were individually tagged, weighed, and placed in a chick brooder (Petersime). Chicks were housed in pens (100.3 x 68.6 x 25.4 cm) constructed of 1 cm<sup>2</sup> stainless steel mesh, 20 chicks per pen and 1 pen per treatment. Allotment of chicks to treatments was rotated between treatments to avoid any selection bias. Pre-weighed plastic feeders (33 x 8.9 x 5 cm) were filled with treatment feed to approximately 1.27 cm below the rim of the feeder and the weight of the container with feed was recorded. To control wastage, feed was covered with a 1.27 x 1.27 cm grid of galvanized wire that sank with the level of feed in the feeder as the chicks ate. Feeders were placed in the appropriate brooder pens so that the lowest concentrations were at the top of the battery and the highest concentrations were at the bottom to avoid cross contamination of feed. Water nipples (4 per pen) were adjusted initially to a height of 6.5 cm from the floor of the pen and then raised appropriately as the quail grew. Birds were checked at 0800 and 1600 each day. Moribund birds were euthanized by cervical dislocation. Euthanized birds and those found dead were necropsied at each observation time with the liver being collected, weighed and frozen in a glass scintillation vial with a foil lined lid for chemical analysis.

Chicks were fed their respective treatment diets for 5 d and then switched to control feed contained in  $63.5 \times 10 \times 6$  cm stainless steel feeders that hung on the outside of the brooder pen for an additional 18 d. On d 5 when diets were changed, feed and birds were weighed in order to calculate feed intake and bird body weight gain. Feed and birds were weighed again on d 8, 15 and 23.

Ten birds from each treatment were euthanized on d 8 unless the group had suffered mortalities during the first 8 d of the study. In treatments with mortalities, half of the remaining live birds were necropsied on d 8 and the remaining birds were necropsied on d 23. Birds were euthanized by cervical dislocation and blood was collected from the heart using a 1-mL tuberculin syringe with a 22-gauge 2.54-cm needle. Livers were removed, weighed and frozen (-20°C) for subsequent chemical analysis. Blood was allowed to clot and then centrifuged at 1500 x g for 10 minutes (Heraeus Biofuge Pico microcentrifuge) at room temperature. Serum was separated and frozen at -20°C for subsequent chemical analysis. Liver and serum samples were shipped overnight on dry ice to the University of Minnesota for analysis.

#### 3.1.7 PFAS analyses

Feed and bird livers were extracted, and serum was directly injected onto the HPLC/MS/MS for PFAS determination. Triplicate 2 g feed subsamples were placed in 50 mL polypropylene centrifuge tubes (Corning) and spiked with PFHxS as a surrogate of analytical recovery. Approximately 20 mL of Optima grade methanol (Fisher Scientific) was added to each tube, and the tubes were shaken at maximum deflection on a Burrell Model 75 Wrist-Action Shaker for 30 minutes. Samples were then centrifuged at approximately 904 RCF on a Dynac Centrifuge (Clay-Adams) for 20 minutes. This process was repeated three times. The eluates were combined and brought to dryness under a gentle stream of pre-purified N<sub>2</sub> gas using a OA-SYS heating system (setting 5) and N-EVAP 111 nitrogen evaporator (Organomation Associates, Inc.). The samples were reconstituted in 2 mL Optima grade methanol using a Fisher vortexer at 1000 rpms. The reconstituted samples were centrifuged again as described before to remove any remaining solids and transferred by Pasteur pipet to 2.0 mL SafeSeal polypropylene microcentrifuge tubes (BioScience, Inc.) for storage at -20° C before analysis.

Livers were weighed, and approximately 100 mg subsamples were taken for analysis. Livers were added to 15 mL conical polypropylene centrifuge tubes containing 10mL of methanol and an additional 100 ng PFHxS surrogate standard in the PFOS acute trial. Samples were homogenized at 30,000 rpms using a PRO 250 and PRO SC-250 homogenizer and motor (Pro Scientific, Oxford CT, USA) equipped with Multi-Gen adapter and a Multi-Gen 7XL generator probe. Samples were sonicated for 30 minutes in a Mettler Ultrasonic Cleaner and centrifuged at 904 RCF for 20 minutes. Eluate was collected and diluted to 100 mL using 70 mL HPLC water and brought to volume with methanol.

All samples/extracts were spiked with known amounts of internal standards. For PFOS determination, <sup>13</sup>C mass labeled PFOS (<sup>13</sup>C<sub>4</sub>PFOS) was added. For PFOA analysis <sup>13</sup>C mass labeled PFOA (13C4PFOA). Samples were injected onto an Agilent 1200 HPLC (Hewlett-Packard, Palo Alto, CA) equipped with a 4 x 2.0 mm C<sub>18</sub> guard column (Phenomenex, Torrance, CA) and 50 x 2.1 mm, 3 mm Betasil C<sub>18</sub> analytical column (Thermo Fisher Scientific, Waltham, MA). The column temperature was kept constant at 20°C. The flowrate was 200 µL min<sup>-1</sup>, and the injection volume was 10 µL. Mobile phase A consisted of 90:10 HPLC water:Optima methanol (v/v) and mobile phase B of Optima methanol. The aqueous and organic phases both phases both contained 2mM ammonium acetate. Sample matrix consisted of a 70:30 water: methanol (v/v) mixture matching initial HPLC conditions to prevent peak splitting for both liver and serum samples. An API 4000 (AB Sciex, Concord, ON, Canada) triple guadrupole mass spectrometer with an electrospray ionization source (negative) was used for PFAS determination. The instrument was operated with a declustering potential of -70 for PFOS and -27 for PFOA, and a collision energy of -80 for PFOS and -14 for PFOA. Each analyte was determined using multiple reaction monitoring with transitions of 499 to 99 and 413 to 169 for PFOS and PFOA, respectively. The masses were determined using the relative response factor method on triplicate calibration standards run every 6 samples. This is a one point calibration, which was determined to be sufficient after determining the linearity of response of the instrument. Surrogate recoveries of feed samples randed form 70-105% and average  $83 \pm 7\%$ . No correction for surrogate recoveries was made. Because liver samples required orders of magnitude dilution prior to instrumental analysis, no surrogate was feasible.

#### 3.1.8 Endpoints and statistical analysis

Endpoints included feed intake, body weight, lethal dose for 50% of the population (LD50), feed concentration resulting in 50% mortality (LC50), time required to result in 50% mortality (LT50), survivability through the first 8 d of the trial, absolute and relative (as a percent of body weight) liver weight, and serum and hepatic concentrations of PFOS and/or PFOA. For feed intake, the sample unit was pen and there was 1 pen per treatment. Feed intake was calculated as average daily feed intake based on feed disappearance and number of birds in the pen each day. The statistical unit for body weight, organ weight and tissue contaminant concentration was individual bird. Feed intake, body weight and body weight gain data were checked for normal distribution utilizing PROC UNIVARIATE in SAS (SAS Institute). If data were not normally distributed, they were log transformed before statistical analysis using PROC MIXED in SAS. Some body weight gain data were negative values and could not be log transformed. In this case, data were transformed using log-modulus transformation described by Wicklin (2011) based on the method of John and Draper (1980). The average daily dose (ADD) of treatment chemical expressed as mg kg body weight<sup>-1</sup> d<sup>-1</sup> was calculated as described by Newsted et al. (2006) using the following formula (Equation 1):

(1) ADD (mg kg body weight<sup>-1</sup> d<sup>-1</sup>) = [mean feed consumption (g) ÷ mean body weight (g)] x dietary concentration (mg kg feed<sup>-1</sup>)

The dose resulting in 50% lethality (LD50) after 5 d, the feed concentration resulting in 50% lethality (LC50) after 5 d, and time required to result in 50% lethality (LT50) after 8 d at each feed concentration were calculated using probit analysis (Finney 1952). Lethal dose and LC values were based on mortality occurring within the first 5 d of the trial. Survivability was calculated as the percent of live birds at the end of the first 8 d of each trial. Percent survivability and relative liver weight (liver weight expressed as percent of body weight) were arcsine transformed prior to PROC MIXED analysis. Liver weights had a non-normal distribution and thus were log transformed prior to PROC MIXED analysis in SAS. All means were compared to the control utilizing Dunnett's multiple comparison test. Means presented are back transformed with a 95% confidence interval.

The protocol for this study was approved by the Michigan State University Institutional Animal Care and Use Committee.

#### **3.2 Chronic Exposure Study**

#### 3.2.1 PFOS Diet preparation.

Six dietary treatments were formulated to contain 0, 2.5, 5.0, 10, 15, or 20 mg heptadecafluorooctanesulfonic acid (PFOS) kg feed<sup>-1</sup> (PFOS potassium salt,  $\ge$  98%, Sigma-Aldrich), accounting for chemical purity. Feed for the initial 10 weeks of the study was Purina Game Bird and Turkey Startena<sup>®</sup> crumbles. The composition of the basal diet is given in Table 1. For inclusion in the feed, PFOS was added to the appropriate volume of anhydrous ethanol (Koptec) and mixed on a magnetic stir plate until completely dissolved. Sufficient feed to last 10 weeks was weighed and placed in a 113 kg capacity, methanol cleaned, stainless steel paddle mixer (Wenger). While feed was mixing, the PFOS/ethanol solution was sprayed onto the feed using a hand-held pump-mist plant sprayer (Chapin). After the PFOS/ethanol solution was applied, the feed was mixed for an additional 10 min. Experimental diets were mixed from lowest to highest concentration. Diets were spread out to a depth of approximately 3.2 cm on tables lined with plastic sheeting and allowed to dry for 92 h, being turned midway through the drying period. When dry, feed was sampled for chemical analysis and then stored in labeled, color-coded plastic storage barrels until fed. After approximately 8 weeks, treatment diets were prepared as described above but feed was changed to Purina Game Bird Breeder Layena<sup>®</sup> crumbles to accommodate egg laying. The composition of this feed is given in Supplemental Table 1. The layer ration was fed from 10 to 20 weeks of age. On average, the test substance was incorporated into the feed 11.5 d prior to the beginning of the trial. Feed samples were not evaluated for stability of the test substance because PFAS are resistant to oxidative and reductive stresses. There were no predefined acceptability criteria for percent recovery or homogeneity.

| <b>_</b>                     | Gamebird and Turkey | Gamebird Breeder |
|------------------------------|---------------------|------------------|
|                              | Startena®           | Layena®          |
| Nutrient                     | Analyzed            | amount           |
| Crude protein, minimum (%)   | 30.0                | 20.0             |
| Crude fat, minimum (%)       | 2.5                 | 2.5              |
| Crude fiber, maximum (%)     | 6.5                 | 7.0              |
| Lysine, minimum (%)          | 1.5                 | 0.9              |
| Methionine, minimum (%)      | 0.5                 | 0.3              |
| Calcium (Ca), minimum (%)    | 1.0                 | 2.8              |
| Calcium (Ca), maximum (%)    | 1.5                 | 3.2              |
| Phosphorus (P), minimum (%)  | 0.8                 | 0.8              |
| Salt (NaCl), minimum (%)     | 0.25                | 0.3              |
| Salt (NaCl), maximum (%)     | 0.75                | 0.7              |
| Selenium (Se), minimum (ppm) | 0.65                | b                |

# Table 1. Guaranteed Analysis of Purina Gamebird and Turkey Startena<sup>®</sup> and Gamebird Chow - Gamebird Breeder Layena<sup>®a</sup>

<sup>a</sup>Purina Animal Nutrition.

<sup>b</sup>Not given.

#### 3.1.2 3M Lightwater AFFF Diet preparation.

Diet preparation was essentially the same as described in *Dietary preparation PFOS*. However, the AFFF formulation (3M Lightwater 6% AFFF manufactured April 1990, lot #98-0211-1393-5), unlike PFOS, was a liquid and thus was diluted with water to make the 6 solutions that were added to the feed. Concentrations of 3M AFFF were calculated based on previous analysis of the product and were intended to provide PFOS at concentrations similar to dietary PFOS concentrations presented in *Dietary preparation PFOS*. The nominal concentrations of AFFF PFOS were 0, 2.5, 5.0, 10, 15, and 20 mg PFOS kg feed<sup>-1</sup>.

#### 3.1.3 Birds and housing

Japanese quail eggs were obtained from the Michigan State University (MSU) Poultry Teaching and Research Center (East Lansing, MI) breeding flock. Eggs were incubated and hatched at the facility. At hatching quail were moved to a brooder battery (Petersime) with 12 pens arranged in 6 levels (2 pens per level). Hatchlings were housed 27 birds per pen (100 x 69 x 25 cm constructed of 1 cm<sup>2</sup> stainless steel mesh) with 2 pens per treatment. The 256 cm<sup>2</sup> of floor space per bird in the present trial was slightly less than the recommendation of 300 cm<sup>2</sup> for this species. Approximately 33% of the floor area of each pen was heated by an incandescent bulb regulated by a wafer thermostat. Temperature within this semi-enclosed area ranged between 32.2 and 38.7° C. The remaining floor area did not have a heat source. Chicks could move freely between the 2 areas and the twice-daily observations indicated uniform spacing of the birds throughout the pen. The temperature in the study room was maintained at 21.1° C. Humidity in the room was not monitored.

Birds were fed the experimental diets for 4 weeks. Treatment groups were arranged in the brooder so that the lowest concentrations of PFOS were at the top of the battery and the highest concentrations were at the bottom to avoid cross contamination of the feed. When initially placed in the brooder, chicks were introduced to water from the drinker nipple and provided feed scattered on the floor of the brooder pen. Additionally, a plastic feed trough ( $33 \times 8.9 \times 5$  cm) covered with a 1.27 x 1.27 cm grid of galvanized wire (to control feed wastage) was provided in the pen for the first week. Subsequently, birds were fed from stainless steel trough-type feeders ( $63.5 \times 10 \times 6$  cm) containing a grid that were attached to the outside of the pens. Initially water nipple (4 per pen) height was set to 6.5 cm from the floor of the pen and then raised accordingly as the chicks grew.

Birds were checked daily at 0800 and 1600 as were water nipples and temperature at each level of the brooder. The photoperiod was maintained at 8 h light and 16 h dark. Light intensity measured in the brooder was 25 lux. Cannibalism, foot pecking or aggression among chicks was not observed.

At 4 weeks of age, birds were sorted by sex within treatment and then randomly paired (male/female), individually identified with a plastic wing tag (Ketchum; 25 x 18 mm), weighed and moved to breeder/layer pens. Birds were housed in a single room in 2 64-cage batteries (Alternative Design). Cages in each battery were arranged in 4 levels of 8 cages per level totaling 32 cages per side. Each cage (28 x 30 x 25 cm) was equipped with 1 poultry water nipple and housed 1 pair of birds (16 pairs per dose). A stainless-steel trough-type feeder was attached to the outside of the cage. The floor of the pen was sloped so that eggs laid rolled to the front and outside the cage. Treatments were arranged in the battery similar to the brooder battery with lower dietary concentrations above higher concentrations. Birds were maintained on 8 h light and 16 h dark until 8 weeks of age when photoperiod was increased over 2 weeks to 17 h light and 7 h dark to induce egg laying at 10 weeks of age. Light intensity in the room was approximately 20 lux.

#### 3.1.4 Reproduction

Birds were weighed every 2 weeks and feed consumption was measured weekly for each breeding pair. When egg laying began at 10 weeks of age, eggs were collected daily between 0800 and 0900. Individual eggs were labeled using non-toxic felt tip surgical markers with hen identification number, date and dietary concentration and then placed in an egg cooler (15-17°C). Eggs in the egg cooler were set in a rotary incubator (Petersime) at 1-weeks intervals. The incubator was maintained at 37.6° C and 51.9% relative humidity. Eggs with damaged shells were considered non-viable and excluded from hatchability calculations. Weekly, the yolk and albumin from these eggs were separated and frozen for subsequent PFAS analysis. On day 14 of incubation, eggs were placed in hatching baskets by hen number and transferred to a Surepip

hatcher (Agro Environmental Systems) maintained at 37.6° C and 62.6% relative humidity. Beginning on day 17, hatchlings with dry feathers were removed from the hatcher, weighed and transferred to the brooder battery by dietary concentration twice a day. Eggs remaining on the afternoon of day 18 were considered unhatched.

#### 3.1.5 Embryo mortality

All unhatched eggs were opened in the afternoon of day 18 and stage of embryo development was determined and recorded. Embryo age at death was categorized as less than 4 d, 4 to 7 d, 8 to 10 d, 11 to 14 d, greater than 14 d, dead pip or live pip. Embryos that were developed enough to visualize anatomical structures were examined for abnormalities. Unhatched eggs with no gross indication of embryo development were assumed to be infertile and were not included in hatchability calculations.

#### 3.1.6 Offspring rearing

Live hatchlings were raised in the same brooder unit and under the same conditions used to raise the parental birds. Offspring were raised for 14 d on non-contaminated Game Bird and Turkey Startena<sup>®</sup> crumbles that had been ground to reduce particle size. Birds were checked twice daily and weighed at hatch and on days 7 and 14.

#### 3.1.7 Offspring necropsies

On day 14, a subsample of 10 chicks per dose group were randomly selected for necropsy. Chicks were euthanized by cervical dislocation and blood was immediately obtained by cardiac puncture (1-mL syringe, 22-gauge, 2.54-cm needle). Livers were removed, weighed and frozen (-20° C) in glass vials for subsequent PFAS analysis. Blood was allowed to clot prior to centrifugation at 2000 x g for 10 min (Heraeus Instruments) at room temperature. Serum was separated and frozen at -20° C. These procedures were repeated for each of the 10 hatches.

#### 3.1.8 Adult necropsies

At 20 weeks of age, surviving adult birds were weighed, euthanized by cervical dislocation and blood immediately collected by cardiac puncture (1-mL syringe, 22-gauge, 2.54-cm needle). Birds were necropsied and half of the liver and the kidneys were removed, weighed and placed in 10% neutral buffered formalin for subsequent histological examination (Urika LLC). The remaining half of the liver and serum were frozen at -20°C for subsequent PFAS analysis.

#### 3.1.9 Pathology

At least 2 sections of liver and 2 sections of kidney were placed in a single cassette for each quail. If whole kidneys were available, cranial and caudal lobes were sampled. Samples were sent to URIKA Pathology for prosessing and evaluation. Hepatic and renal tissues were examined by a board certified pathologist and lesions were graded on a severity scale of 0 to 4 according to the following criteria: 0 = no lesion recognized; 1 = minimal lesions, 1 to 3 foci or small foci of a few cells; 2 = mild lesions, increased number of foci or more of the lesion; 3 = moderate lesions, more lesions (2-3 per 10x field of vision); 4 = severe lesions, the majority of cells and/or extensive regions involved with the lesions.

#### 3.1.10 PFAS analyses

Feed, livers, yolks and albumin were extracted, and serum was directly injected onto a high performance liquid chromatography-tandem mass spectromter (HPLC/MS/MS) for PFAS determination. Feed extraction was performed as described in previous assessment of subacute effects (Bursian, Link et al. 2020). Using mass-labeled surrogate standards was cost prohibitive given the high PFAS content of livers. High extractability of PFOS, however, was demonstrated in the subacute study using PFHxS as a surrogate standard (Bursian et al 2020). It was not feasible to use PFHxS in this manner in the present study given its presence in the 3M AFFF mixture. Whole livers were weighed and placed in conical polypropylene centrifuge tubes containing 10 mL methanol and homogenized at 30,000 revolutions per minute (rpm) using a PRO 250 and PRO SC-250 homogenizer and motor (Pro Scientific) equipped with Multi-Gen adapter and a Multi-Gen 7XL generator probe. Homogenates were sonicated for 30 min in a Model 5800 CPXH Series heated ultrasonic cleaning bath (Fisher) at 115° C and centrifuged at 4,500 relative centrifugal force (rcf) for 15 min in an Eppendorf 5804 centrifuge. The entire eluate was collected and brought to 25 mL using HPLC water. All samples/extracts were spiked with known amounts of internal standards. For PFOS determination, <sup>13</sup>C mass labeled PFOS (<sup>13</sup>C<sub>4</sub>PFOS) was added. For PFHxS analysis <sup>13</sup>C mass labeled PFHxS (<sup>13</sup>C<sub>3</sub>PFHxS) was used.

Yolk samples were weighed in scintillation vials, 5 mL of HPLC water was added and the samples were homogenized as described for livers. The sample was then transferred to a 50 mL conical polypropylene centrifuge tube. The scintillation vial was rinsed with an additional 5 mL of HPLC water, and the rinsate was collected. The scintillation vials were allowed to dry and then weighed. Yolk mass was considered the difference between the two measures. Approximately 35 mL of Optima methanol was added to the centrifuge tubes, and the tubes were sonicated at 115° C for 30 min. The samples were centrifuged at 4,500 rcf for 15 minutes, and the supernatant was brought to 50 mL using HPLC water.

Albumin samples were weighed in 15 mL polypropylene centrifuge tubes. Internal standard was spiked into the sample, and approximately 10 mL methanol was added. The samples were homogenized and centrifuged as previously described and evaporated to approximately 1 mL under a gentle stream of pre-purified N<sub>2</sub> gas using an OA-SYS heating system (setting 5) and N-EVAP 111 nitrogen evaporator (Organomation Associates). It was not necessary to correct for extraction efficiency since the internal standard was added before the extraction process. Extraction efficiency in the 3M AFFF trial, however, was calculated for quality control purposes by adding <sup>13</sup>C<sub>8</sub>PFOS before extraction and <sup>13</sup>C<sub>4</sub>PFOS before compound analysis:  $62 \pm 27\%$  (average ± relative standard deviation).

Samples were injected onto an Agilent 1200 HPLC (Hewlett-Packard) equipped with a 4 x 2.0 mm  $C_{18}$  guard column (Phenomenex) and 50 x 2.1 mm, 3 mm Betasil  $C_{18}$  analytical column (Thermo Fisher Scientific). The column temperature was kept constant at 20°C. The flowrate was 200 µL min<sup>-1</sup>, and the injection volume was 10 µL. Mobile phase A consisted of 90:10 HPLC water:Optima methanol (v/v) and mobile phase B of Optima methanol. The aqueous and organic phases both contained 2mM ammonium acetate. Sample matrix consisted of a 70:30 water:methanol (v/v) mixture matching initial HPLC conditions to prevent peak splitting for both liver and serum samples. An API 4000 (AB Sciex) triple quadrupole mass spectrometer with an electrospray ionization source (negative) was used for PFAS determination. The instrument was

operated with a declustering potential of -70 for PFOS and -PFHxS, and a collision energy of -80 for PFOS and PFHxS. Each analyte was determined using multiple reaction monitoring with transitions of 499 to 99 and 399 to 99 for PFOS and PFHxS, respectively. The masses were determined using the relative response factor method on triplicate calibration standards run every 6 samples. This is a one-point calibration that was determined to be sufficient after determining the linearity of response of the instrument.

The method detection limit (MDL) was determined according to 40 CFR 136 Appendix B (Federal Code of Regulations 2019) in which at least 7 subsamples of a matrix are spiked with a low-level standard and the MDL is taken as 3 times the standard deviation of the mean concentration determined. Since there was background PFOS and PFHxS in all of the samples, 3 times the standard deviation of the mean of the control samples was used as a conservative estimate of the MDL. The method detection limits are presented in Table 2.

Table 2. Method Detection limits for feed, adult and chick serum and livers and egg yolk and albumin

|                                        | PFOS | AFFF PFOS | AFFF PFHxS |
|----------------------------------------|------|-----------|------------|
| Feed ( $\mu g g^{-1}$ )                | -    | 0.008     | -          |
| Adult serum (µg mL <sup>-1</sup> )     | 0.3  | 0.5       | 0.03       |
| Adult liver ( $\mu g g^{-1}$ )         | 0.6  | 0.4       | 0.03       |
| Offspring serum (µg mL <sup>-1</sup> ) | 0.05 | 0.10      | 0.008      |
| Offspring liver (µg g <sup>-1</sup> )  | 0.30 | 0.20      | 0.01       |
| Egg yolk ( $\mu g g^{-1}$ )            | 0.05 | 0.40      | 0.04       |
| Egg albumin ( $\mu g g^{-1}$ )         | 0.02 | 0.001     | 0.0002     |

#### 3.1.11 Spike Recoveries

For quality assurance, control liver, control yolk and control serum composite were spiked with known amounts of PFOS, and AFFF to determine analytical recovery of our methods. Control liver samples were spiked in triplicate with PFOS or 3M AFFF at 6 levels to obtain nominal concentrations of 0, 18, 36, 65, 95, and 84 µgg-1 PFOS or 0 + 0, 2.0 + 25, 4.0 + 50, 8.1 + 100, 12 + 150, and  $16 + 200 \mu gg-1$  AFFF PFHxS + AFFF PFOS. These concentrations are representative of those determined for males in both chronic trials but encompass the same order of magnitude as those determined for females. The individual recovery ranges for PFOS, AFFF PFHxS, and AFFF PFOS were 75 to 103%, 81 to 106%, and 86 to 118%, respectively. Mean recoveries were 88% (10% relative standard deviation [RSD]), 94% (8% RSD), and 100% (10% RSD). control yolk samples were spiked in triplicate with PFOS at 6 levels to obtain nominal concentrations of 0, 19, 32, 54, 76, and 98 µgg-1 PFOS. These concentrations are representative of those determined in both chronic trials. The individual recovery range for PFOS was 51 to 109%. Mean recovery was 66% (21% RSD). Likewise, 8 control yolk samples were spiked with AFFF to obtain nominal concentrations 0 + 0, 2.9 + 36, 4.6 + 57, 6.9 + 86, 9.2 + 114, 11.5 + 143, 13.8 + 171, and 16.1 + 200 µgg-1 AFFF PFHxS + AFFF PFOS. The recovery range was 75 to 112% and 72 to 115%, and the mean recovery was 91% (14% RSD) and 91% (14% RSD) for AFFF PFHxS and AFFF PFOS, respectively. A composite control serum sample consisting of serum from 32 quail was divided into 0.33-mL subsamples and spiked with PFOS in triplicate to achieve nominal concentrations of 0, 27, 54, 108, 162, and 216 µgmL-1. The recovery range for PFOS was 61 to 113%, and the mean recovery was 97% (15% RSD). A composite sample of

serum was similarly taken from 60 quail and dosed with AFFF to achieve nominal concentrations of 0 + 0, 2.1 + 25, 4.1 + 50, 8.2 + 100, 16.4 + 200, and  $24.6 + 300 \mu gmL-1$  AFFF PFHxS and AFFF PFOS, respectively. The recovery range was 68 to 107% and 78 to 117%, and the mean recovery was 83% (16% RSD) and 99% (14% RSD) for AFFF PFHxS and AFFF PFOS, respectively (Supplemental Data, Table S2). One AFFF PFHxS sample (129%) and 2 AFFF PFOS samples fell outside of the acceptability criterion range of 50 to 120%. A table of the results are provided in Appendix

#### 3.1.12 Endpoints and statistical analysis

End points included feed intake, adult body weight, adult body weight gain, egg production, hatchability, embryo mortality, chick survivability, chick body weights, chick and adult liver weights, liver and kidney pathology and serum, liver and egg PFOS concentrations. Analysis of variance (ANOVA) and Dunnett's multiple comparison procedure were used to evaluate differences between treatment and control groups for most endpoints. Non-normal data were log transformed for analysis and then back-transformed for table presentation. Statements of significance are based on p < 0.05. Feed consumption and reproduction parameters were evaluated on a cage basis while embryo mortality, chick survivability, body and organ weights, pathology and PFOS concentrations were evaluated on an individual bird basis. Percentage data (reproduction data and relative organ weight expressed as percent of body weight) were evaluated using Dunnett's adjustment after arcsine square root transformation. Since quail were group housed for the first 4 weeks of the study, daily feed intake was estimated based on feed disappearance of the pen and the number of birds in the pen. From week 4 to 20 when birds were housed as pairs, feed intake for the pair was calculated by feed disappearance in the pen and then adjusted to estimate feed intake per bird. Body weights of male and female birds were similar until the end of week 9 so during this period the feed disappearance of the pen was divided by two to estimate feed intake per bird. After week 9, females gained more weight than males and it was assumed they were also consuming more feed. To estimate feed intake per bird from week 10 to 20, the body weight ratio of male to female within each pen was calculated and applied to the amount of feed that disappeared. Average daily dose (ADD) of PFOS or AFFF PFOS (mg PFOS or AFFF PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>) for each treatment group was calculated by dividing average daily feed intake by body weight (Bursian et al. 2020). Adult body weight gains were averaged over the duration of the exposure at each dietary concentration. The nonparametric Kruskal-Wallis test was used to test for differences in liver and kidney lesion severity scores among treatment groups.

#### 4. Results and Discussion

#### 4.1 Acute Exposure Study

4.1.1 Dietary concentrations and average daily dose

The ADDs through the first 5 d of the trial for PFOS, PFOA, and the combination as well as the 3M AFFF trial were based on analyzed feed concentrations (see Equation 1), whereas the ADDs for the Ansul AFFF trial were based on nominal concentrations of 6:2 FtTAoS as reported by Backe et al. (2013). Analyzed dietary concentrations in the PFOS trial were 0, 62, 91, 216, 471, 654, 866, 920, and 1955mgkg feed<sup>-1</sup> and ranged from 55 to 89% of nominal concentrations. Corresponding ADDs were 0, 11, 17, 36, 57, 49, 58, 45, and 102mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>. Analyzed concentrations in the PFOA trial were 0, 162, 262, 368, 447, 590, 814, 926, and 1208mg kg feed<sup>-1</sup>, ranging from 72 to 81% of nominal concentrations. Corresponding ADDs were 0, 30, 52, 66, 59, 77, 95, and 74mg PFOA kg body weight<sup>-1</sup> d<sup>-1</sup>. It was not possible to calculate an ADD for the greatest feed concentration because all birds died prior to day 5. In the PFOS + PFOA trial, analyzed concentrations were 0 + 0, 43 + 45, 58 + 62, 74 + 79, 92 + 90, 104+ 102, 134 + 145, 155 + 164, and 296 + 292mg PFOS + PFOA kg feed<sup>-1</sup> and ranged from 68 to 88% of nominal concentrations. Corresponding ADDs were 0 + 0, 8.5 + 8.7, 11 + 12, 15 + 16, 22 $+22, 20 + 19, 20 + 22, 25 + 27, and 32 + 31 mg PFOS + PFOA kg body weight^{-1} d^{-1}$ . Analyzed concentrations of PFOS in the 3M AFFF trial (referred to as AFFF PFOS) were 0, 73, 164, 213, 325, 465, 499, 634, and 1399mg kg feed-1, ranging from 104 to 166% of nominal concentrations. Corresponding ADDs were 0, 15, 38, 50, 75, 125, 156, and 186mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>. An ADD for the greatest feed concentration was not calculated because all birds died prior to day 5. Components of the 3M AFFF and their relative proportions were PFOS (91%), PFHxS (7%), perfluorobutane sulfonate (1%), and PFOA (1%). Feed containing the Ansul AFFF was analyzed for the presence of 6:2 FtTAoS, but because an authentic standard is not available, the concentration could not be determined (Hites and Jobst 2018). The ADDs of 6:2 FtTAoS corresponding to the nominal dietary concentrations of 0, 1.5, 2.9, 5.8, 12, 23, 46, 92, and 184mg 6:2 FtTAoS kg feed<sup>-1</sup> were 0, 1.9, 3.3, 6.8, 14, 27, 52, 100, and 192mg kg body weight<sup>-1</sup> d<sup>-1</sup>.

#### 4.1.2 LD50s, LC50s, LT50s

Exposure of Japanese quail to PFOS and PFOA singly or in combination in the feed for 5 d resulted in mortality as did exposure to AFFF PFOS. Exposure to Ansul AFFF did not result in any mortalities. The greatest dietary concentration resulting in no mortalities through d 8 in the PFOS trial was 91 mg kg feed<sup>-1</sup>, 162 mg kg feed<sup>-1</sup> for PFOA, 74 + 79 mg kg feed<sup>-1</sup> for the PFOS + PFOA trial and 73 mg PFOS kg feed<sup>-1</sup> for the 3M AFFF trial. At greater concentrations in each trial, typical clinical signs included lethargy, drooped wings, incoordination, and recumbency. The number of live birds at the different dietary concentrations of PFOS, PFOA, PFOS + PFOA, and AFFF PFOS at 5, 8, 15, and 23 d are presented in Table 3, with mortality curves in Figure 1. After day 8 (3 d after being switched to clean feed), there were only 2 treatment related mortalities recorded, both in the PFOS + PFOA trial. One bird in the 155 + 164mg PFOS + PFOAkg feed-1 group died on day 11 and one bird in the 74 mg + 79 mg PFOS + PFOA kg feed<sup>-1</sup> group died on day 15. The lowest feed concentrations resulting in no survivors were 471 mg PFOS kg feed<sup>-1</sup>, 590 mg PFOA kg feed<sup>-1</sup>, 296 + 292 mg PFOS + PFOA kg feed<sup>-1</sup> and 634 mg AFFF PFOS kg feed<sup>-1</sup>. Doses of PFOS, PFOA, PFOS + PFOA and AFFF PFOS that resulted in 50% lethality (Table 4) ranged from 38 to 145 mg kg body weight<sup>-1</sup> d<sup>-1</sup> and dietary concentrations that resulted in 50% lethality ranged from 389 to 550 mg kg feed<sup>-1</sup>. The time
required for 50% (based on both day 5 and day 8 values) in days (LT50) at each dietary concentration of PFOS, PFOA, PFOS + PFOA and AFFF PFOS is presented in Table 5. The range of LT values on day 8 across dietary concentrations was similar for each treatment (PFOS: 5.7 to 3.4 d; PFOA: 5.9 to 3.8 d; PFOS + PFOA: 7.4 to 4.0 d; AFFF PFOS: 7.6 to 4.3 d).

| <u>at benefinark periods u</u> | Dav o    | f study | uics |     |     |
|--------------------------------|----------|---------|------|-----|-----|
| Analyzed dietary               | <u> </u> |         |      |     |     |
| concentration (mg kg           |          |         |      |     |     |
| feed <sup>-1</sup> )           | 0        | 5       | 8    | 15* | 23* |
| PFOS                           |          |         |      |     |     |
| 0                              | 20       | 20      | 20   | 10  | 10  |
| 62                             | 20       | 20      | 20   | 9   | 9   |
| 91                             | 20       | 20      | 20   | 10  | 10  |
| 216                            | 20       | 16      | 3    | 3   | 3   |
| 471                            | 20       | 7       | 0    | 0   | 0   |
| 654                            | 20       | 2       | 0    | 0   | 0   |
| 866                            | 20       | 1       | 0    | 0   | 0   |
| 920                            | 20       | 1       | 0    | 0   | 0   |
| 1955                           | 20       | 0       | 0    | 0   | 0   |
| PFOA                           |          |         |      |     |     |
| 0                              | 20       | 20      | 20   | 10  | 10  |
| 162                            | 20       | 20      | 20   | 10  | 10  |
| 262                            | 20       | 19      | 17   | 8   | 8   |
| 368                            | 20       | 17      | 7    | 3   | 3   |
| 447                            | 20       | 10      | 3    | 0   | 0   |
| 590                            | 20       | 5       | 0    | 0   | 0   |
| 814                            | 20       | 3       | 1    | 0   | 0   |
| 926                            | 20       | 1       | 1    | 0   | 0   |
| 1208                           | 20       | 0       | 0    | 0   | 0   |
| PFOS + PFOA <sup>a</sup>       |          |         |      |     |     |
| 0 + 0                          | 20       | 20      | 20   | 10  | 10  |
| 43 + 45                        | 20       | 20      | 20   | 10  | 10  |
| 58 + 62                        | 20       | 20      | 20   | 10  | 10  |
| 74 + 79                        | 20       | 20      | 20   | 10  | 9   |
| 92 + 90                        | 20       | 20      | 18   | 9   | 9   |
| 104 + 102                      | 20       | 19      | 13   | 6   | 6   |
| 134 + 145                      | 20       | 19      | 2    | 2   | 2   |
| 155 + 164                      | 20       | 19      | 5    | 2   | 2   |
| 296 + 292                      | 20       | 2       | 0    | 0   | 0   |
| 3M AFFF <sup>b</sup>           |          |         |      |     |     |
| 0                              | 20       | 20      | 20   | 10  | 10  |
| 73                             | 20       | 20      | 20   | 9   | 9   |
| 164                            | 20       | 20      | 13   | 7   | 7   |

Table 3. Number of live Japanese quail (*Coturnix japonica*) exposed to dietary PFOS, PFOA, PFOS + PFOA, 3M AFFF or Ansul AFFF for 5 d at benchmark periods during the 23-d studies

| 213                     | 20 | 18 | 10 | 4  | 4  |
|-------------------------|----|----|----|----|----|
| 325                     | 20 | 16 | 5  | 2  | 2  |
| 465                     | 20 | 15 | 2  | 1  | 1  |
| 499                     | 20 | 9  | 1  | 1  | 1  |
| 634                     | 20 | 2  | 0  | 0  | 0  |
| 1399                    | 20 | 0  | 0  | 0  | 0  |
| Ansul AFFF <sup>c</sup> |    |    |    |    |    |
| 0                       | 20 | 20 | 20 | 10 | 10 |
| 9                       | 20 | 20 | 20 | 10 | 10 |
| 18                      | 20 | 20 | 20 | 10 | 10 |
| 35                      | 20 | 20 | 20 | 10 | 10 |
| 73                      | 20 | 20 | 20 | 10 | 10 |
| 140                     | 20 | 20 | 20 | 10 | 10 |
| 279                     | 20 | 20 | 20 | 10 | 10 |
| 559                     | 20 | 20 | 20 | 10 | 10 |
| 1118                    | 20 | 20 | 20 | 10 | 10 |

\*Half of the birds were sacrificed at day 15, so the maximum number of birds would be 10.

<sup>a</sup>Dietary concentrations are expressed as the sum of PFOS and PFOA.

<sup>b</sup>Dietary concentrations are based on PFOS concentrations (analysis indicated that 3M AFFF was 91% PFOS).

<sup>c</sup>Dietary concentrations are nominal concentrations of 6:2 fluorotelomer thioamido sulfonate (FtTAoS).

PFOS = perfluorooctane sulfonate; PFOA = perfluorooctanoic acid; AFFF = aqueous film forming foam.



# Figure 1. Effect of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), PFOS + PFOA, and 3M aqueous film-forming foam (AFFF) on offspring survivability at day 8 following a 5-d dietary exposure.

(A) Day 8 survivability of Japanese quail (Coturnix japonica) chicks at each concentration of dietary PFOS after a 5-d dietary exposure. (B) Day 8 survivability of Japanese quail chicks at each concentration of dietary PFOA after a 5-d dietary exposure. (C) Day 8 survivability of Japanese quail chicks at each concentration of dietary PFOS + PFOA after a 5-d dietary exposure. (D) Day 8 survivability of Japanese quail chicks at each concentration of PFOS provided by 3M AFFF after a 5-d dietary exposure.

|      | Effect Metric                                        | Day | Estimated<br>LC50 | 95% CI  | Slope |
|------|------------------------------------------------------|-----|-------------------|---------|-------|
|      | ADD50 (mg kg body wt <sup>-1</sup> d <sup>-1</sup> ) | 5   | 38                | 34-43   | 7.7   |
| PEOS |                                                      | 8   | <sup>a</sup>      |         |       |
| 1105 | $IC50 (mg kg feed^{-1})$                             | 5   | 351               | 275-450 | 4.1   |
|      | LC50 (llig kg lccd )                                 | 8   |                   |         |       |
| PFOA | $\Delta DD50 (mg kg hody wt^{-1} d^{-1})$            | 5   | 68                | 63-74   | 11    |
|      | ADD30 (ilig kg body wi d)                            | 8   | 49                | 49-50   | 525   |
|      | $LC50 (mg kg food^{-1})$                             | 5   | 496               | 427-575 | 5.9   |
|      | LC30 (mg kg leed )                                   | 8   | 323               | 294-355 | 18    |

Table 4. Estimates of ADD50 and LC50 for Japanese quail chicks exposed to dietary PFOS,PFOA, PFOS + PFOA, or AFFF for 5 d

| PFOS              | $\Delta DD50 (m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m = 1 m $ | 5 | 55  | 51-59   | 14   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---------|------|
| +                 | ADD30 (mg kg body wt $^{2}$ d $^{2}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 | 68  | 45-105  | -1.9 |
| PFOA <sup>b</sup> | I C 50 (mg leg food-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 | 398 | 339-468 | 14   |
|                   | LC30 (llig kg leed )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 | 159 | 130-190 | 4.2  |
| 3M                | $\Delta DD50 (mg lig hody wt^{-1} d^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 | 130 | 103-164 | 3.8  |
| AFFF <sup>c</sup> | ADD30 (llig kg body wr d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 | 39  | 28-53   | 2.8  |
|                   | I C 50 (mg leg food)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 | 467 | 390-559 | 4.8  |
|                   | LC30 (IIIg kg leed )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 | 109 | 78-154  | 2.6  |

<sup>a</sup> Insufficient data to calculate

<sup>b</sup> Concentration and dose are expressed as the sum of PFOS and PFOA.

<sup>c</sup> Concentration and dose are based on PFOS concentration in the diet (analysis indicated that 3M AFFF was 91% PFOS).

ADD50 = average daily dose resulting in 50% lethality; AFFF = aqueous film-forming foam; CI = confidence interval; LC50 = dietary concentration resulting in 50% lethality; PFOA = perfluorooctanoic acid; PFOS = perfluorooctane sulfonate.

| Table 5. LT50 in Japanese quail ( | (Coturnix japonica) chicks ex | <b>xposed to dietary PFOS,</b> |
|-----------------------------------|-------------------------------|--------------------------------|
| <b>PFOA, PFOS + PFOA, or AFFF</b> | for 5 d                       |                                |

| Analyzed                    | ADD                   |              |         |       |       |         |       |
|-----------------------------|-----------------------|--------------|---------|-------|-------|---------|-------|
| dietary                     | (mg kg                | Day 5        | 95% CI  | Slope | Day 8 | 05% CI  | Slope |
| concentration               | body wt <sup>-1</sup> | LT50         | 9370 CI | Slope | LT50  | 9370 CI | Slope |
| (mg kg feed <sup>-1</sup> ) | d <sup>-1</sup> )     |              |         |       |       |         |       |
| PFOS                        |                       |              |         |       |       |         |       |
| 0                           | 0                     | <sup>a</sup> |         |       |       |         |       |
| 62                          | 11                    |              |         |       |       |         |       |
| 91                          | 17                    |              |         |       |       |         |       |
| 216                         | 36                    | 6.4          | 5.2-7.8 | 8.3   | 6.1   | 5.6-6.8 | 9.2   |
| 471                         | 57                    | 4.6          | 4.3-5.0 | 20    | 4.6   | 4.3-5.0 | 20    |
| 654                         | 49                    | 4.1          | 3.7-4.5 | 13    | 4.1   | 3.7-4.5 | 13    |
| 866                         | 58                    | 4.0          | 3.6-4.4 | 15    | 4.0   | 3.6-4.4 | 15    |
| 920                         | 45                    | 3.8          | 3.5-4.3 | 13    | 3.8   | 3.5-4.2 | 13    |
| 1955                        | 102                   | 3.4          | 2.9-3.9 | 7.7   | 3.4   | 2.9-3.8 | 7.7   |
| PFOA                        |                       |              |         |       |       |         |       |
| 0                           | 0                     |              |         |       |       |         |       |
| 162                         | 30                    |              |         |       |       |         |       |
| 262                         | 52                    |              |         |       |       |         |       |
| 368                         | 66                    |              |         |       | 6.3   | 5.7-6.9 | 10    |
| 447                         | 59                    | 5.0          | 4.3-5.8 | 8.69  | 5.1   | 4.5-5.7 | 7.9   |
| 590                         | 77                    | 4.6          | 4.3-5.0 | 21    | 4.6   | 4.3-5.0 | 21    |
| 814                         | 95                    | 4.2          | 3.8-4.6 | 13    | 4.2   | 3.8-4.6 | 11    |
| 926                         | 74                    | 3.8          | 3.4-4.2 | 12    | 3.8   | 3.4-4.2 | 12    |
| 1208                        |                       | 3.8          | 3.5-4.1 | 17    | 3.8   | 3.5-4.1 | 17    |
| PFOS +                      |                       |              |         |       |       |         |       |
| PFOA <sup>b</sup>           |                       |              |         |       |       |         |       |
| 0/0                         | 0 + 0                 |              |         |       |       |         |       |
| 43/45                       | 8.5 + 8.7             |              |         |       |       |         |       |

| 58/62                | 11 + 12 |     |         |     |     |         |     |
|----------------------|---------|-----|---------|-----|-----|---------|-----|
| 74/79                | 15 + 16 |     |         |     |     |         |     |
| 92/90                | 22 + 22 |     |         |     |     |         |     |
| 104/102              | 20 + 19 |     |         |     | 7.5 | 6.7-8.3 | 11  |
| 134/145              | 20 + 22 |     |         |     | 6.1 | 5.7-6.6 | 15  |
| 155/164              | 25 + 27 |     |         |     | 6.4 | 5.9-7.0 | 13  |
| 296/292              | 32 + 31 | 4.0 | 3.6-4.4 | 15  | 4.0 | 3.6-4.4 | 15  |
| 3M AFFF <sup>c</sup> |         |     |         |     |     |         |     |
| 0                    | 0       |     |         |     |     |         |     |
| 73                   | 15      |     |         |     |     |         |     |
| 164                  | 38      |     |         |     | 7.7 | 7.1-8.3 | 16  |
| 213                  | 50      |     |         |     | 6.8 | 6.2-7.5 | 10  |
| 325                  | 75      |     |         |     | 5.9 | 5.4-6.5 | 10  |
| 465                  | 125     |     |         |     | 5.5 | 5.0-6.0 | 11  |
| 499                  | 156     | 4.9 | 4.3-5.5 | 10  | 4.7 | 4.2-5.3 | 9.0 |
| 634                  | 186     | 4.3 | 4.0-4.7 | 20  | 4.3 | 4.0-4.7 | 20  |
| 1399                 |         | 4.4 | 3.6-5.3 | 5.5 | 4.4 | 3.8-5.1 | 5.5 |

<sup>a</sup> Insufficient data to calculate.

<sup>b</sup> Concentration and dose are expressed as the sum of PFOS plus PFOA.

<sup>c</sup> Concentration and dose are based on PFOS concentration in the diet (analysis indicated that 3M AFFF was 91% PFOS).

ADD = average daily dose (mg kg body wt<sup>-1</sup> d<sup>-1</sup>); AFFF = aqueous film-forming foam; CI = confidence interval; LT50 = time (days) at which 50% of the subjects died

#### 4.1.3 Feed intake and body weight

Consumption of treated feed in the PFOS, PFOA, and PFOS + PFOA trials decreased numerically in a dose-related manner as did body weights while in the AFFF trials, feed intake was numerically less in birds exposed to AFFF PFOS, but not related to dose and only marginally reduced at higher feed concentrations of 6:2 FtTAoS provided by Ansul AFFF (Table 6).

# 4.1.4 Feed intake during the 5-d exposure period.

For the 5 d that birds were on treated feed, intake ranged from 90 to 11% of control intake for birds exposed to PFOS, from 94 to 15% for birds fed diets containing PFOA, 99 to 18% for birds fed diets containing PFOS + PFOA, 86 to 51% for birds exposed to AFFF PFOS and 103 to 86% for fed diets containing 6:2 FtTAoS provided by Ansul AFFF (Table 6).

# 4.1.5 Feed intake from d 6 to d 23.

After birds were provided control feed at the end of d 5, feed intake increased in surviving birds from d 6 to d 23 but generally continued to be less than intake of the control group in a dose-related manner in the PFOS, PFOA and PFOS + PFOA trials, less than control intake in the 3M AFFF trial, but not related to dose, and generally greater than control intake in the Ansul AFFF trial. In the PFOS trial, feed intake from d 6 to d 23 ranged from 90 to 64% of control intake, 98 to 59% for the PFOA trial, 102 to 61% for the PFOS + PFOA trial, 96 to 73% for the 3M AFFF trial and 118 to 99% for the Ansul AFFF trial (Table 6).

#### 4.1.6 Body weights.

Mean body weights were significantly lower compared to controls at the end of d 5 beginning at feed concentrations of 62 mg PFOS kg feed<sup>-1</sup>, 262 mg PFOA kg feed<sup>-1</sup>, 43 + 45 mg PFOS + PFOA kg feed<sup>-1</sup> and 73 mg AFFF PFOS kg<sup>-1</sup>. Body weights were not significantly affected by consumption of feed containing 6:2 FtTAoS provided by Ansul AFFF. On d 23, body weights of surviving birds were significantly lower compared to controls at 91 mg PFOS kg feed<sup>-1</sup> and greater, 262 mg PFOA kg feed<sup>-1</sup> and greater, 155 + 164 mg PFOS + PFOA kg feed<sup>-1</sup> and 164 mg AFFF PFOS kg feed<sup>-1</sup> and greater (Table 6).

# 4.1.7 Liver weight

Exposure to PFOS and/or PFOA and AFFF PFOS induced changes in absolute and relative liver weights while exposure to 6:2 FtTAoS provided by Ansul AFFF had no effect on liver weight (Table 6).

# Table 6. Feed intake and mean body and liver weight of Japanese quail (*Coturnix japonica*) chicks exposed to dietary PFOS, PFOA, PFOS + PFOA, 3M AFFF or Ansul AFFF

| Analyzed<br>dietary<br>concentration<br>(mg kg <sup>-1</sup> )<br>PFOS | ADD<br>(d 5)<br>(mg kg<br>bw <sup>-1</sup> d <sup>-1</sup> ) | Treated<br>feed intake <sup>a</sup><br>(g bird <sup>-1</sup> d <sup>-1</sup> )<br>d 0 - 5 | Untreated<br>feed intake <sup>a</sup><br>(g bird <sup>-1</sup> d <sup>-1</sup> )<br>d 6 - 23 | Mean body<br>weight <sup>b</sup> (g)<br>day 8 (SE) | Mean body<br>weight <sup>b</sup> (g)<br>d 23 (SE) | Liver weight<br>(g) d8<br>(95%CI) | Liver weight<br>(g) d23<br>(95%CI)   | Relative Liver<br>weight (g) d8<br>(95%CI) | Relative Liver<br>weight (g) d23<br>(95%CI) |
|------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------|---------------------------------------------|
|                                                                        |                                                              |                                                                                           |                                                                                              |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 0                                                                      | 0                                                            | 11.4                                                                                      | 16.5                                                                                         | 80 (1.14)                                          | 129 (3.53)                                        | 2.05 (1.90-2.20)                  | 3.03 (2.68-3.38)                     | 2.59 (2.48-2.70)                           | 2.35 (2.15-2.55)                            |
| 62                                                                     | 11                                                           | 10.3                                                                                      | 14.9                                                                                         | 70** (1.12)                                        | 125 (3.81)                                        | 1.70**(1.52-1.89)                 | 2.92 (2.56-3.29)                     | 2.48 (2.31-2.65)                           | 2.32 (2.17-2.47)                            |
| 91                                                                     | 17                                                           | 8.31                                                                                      | 13.8                                                                                         | 53** (1.79)                                        | $116^{**}(0.875)$                                 | 1.31**(1.25-1.37)                 | 2.80 (2.57-3.03)                     | 2.41 (2.17-2.65)                           | 2.42 (2.23-2.61)                            |
| 216                                                                    | 36                                                           | 4.55                                                                                      | 10.5                                                                                         | 33** (1.67)                                        | $102^{**}(3.21)$                                  |                                   | 2.38 (1.43-3.33)                     |                                            | 2.32 (1.51-3.13)                            |
| 471                                                                    | 57                                                           | 2.76                                                                                      | 0                                                                                            |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 654                                                                    | 49                                                           | 1.75                                                                                      | 0                                                                                            |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 866                                                                    | 58                                                           | 1.56                                                                                      | 0                                                                                            |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 920                                                                    | 45                                                           | 1.23                                                                                      | 0                                                                                            |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 1955                                                                   | 102                                                          | 1.21                                                                                      | 0                                                                                            |                                                    |                                                   |                                   |                                      |                                            |                                             |
|                                                                        | NOAEL                                                        |                                                                                           |                                                                                              |                                                    |                                                   |                                   | 36                                   | 17                                         | 36                                          |
|                                                                        | LOAEL                                                        |                                                                                           |                                                                                              | 11                                                 | 17                                                | 11                                |                                      |                                            |                                             |
| PFOA                                                                   |                                                              |                                                                                           |                                                                                              |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 0                                                                      | 0                                                            | 11.3                                                                                      | 17.0                                                                                         | 78 (3.18)                                          | 127 (2.43)                                        | 2.06 (1.92-2.21)                  | 2.99 (2.52-3.46)                     | 2.68 (2.56-2.79)                           | 2.34 (2.02–2.65)                            |
| 162                                                                    | 30                                                           | 10.6                                                                                      | 16.7                                                                                         | 73 (3.18)                                          | 127(2.13)<br>121(2.27)                            | 2.19 (2.00-2.38)                  | 2.81 (2.62-3.00)                     | 2 97 (2 75-3 20)                           | 2.33 (2.22–2.44)                            |
| 262                                                                    | 52                                                           | 934                                                                                       | 14.6                                                                                         | 53** (3.26)                                        | 115*(2.27)                                        | 2.46(1.99-2.93)                   | 2.70 (2.34–3.06)                     | $4.20^{**}$ (3.80–4.60)                    | 2.35 (2.01–2.69)                            |
| 368                                                                    | 66                                                           | 6.07                                                                                      | 13.5                                                                                         | $49^{**}(5.03)$                                    | $113^{\circ}(2.77)$<br>$112^{\circ}(7.51)$        | 2 11 (1 38-2 85)                  | 3 16 (2 28–6 10)                     | 4 53** (2 30-6 76)                         | 2 79 (0 905-4 68)                           |
| 508<br>447                                                             | 59                                                           | 3 78                                                                                      | 8 60 <sup>d</sup>                                                                            | 54* (8 21)                                         | 112 (7.51)                                        | 2.33(0.867 - 3.80)                | 5.10 (2.20 0.10)                     | $4\ 28^{**}\ (3\ 55-5\ 02)$                | 2.79 (0.903 1.00)                           |
| 447<br>500                                                             | 39<br>77                                                     | 3.76                                                                                      | 0.09                                                                                         | 50 (14 2)                                          |                                                   | 2.55 (0.007 5.00)                 |                                      | 4.20 (5.55 5.02)                           |                                             |
| 230<br>914                                                             | 05                                                           | 3.10                                                                                      | 10.04                                                                                        | 34 * (14.2)                                        |                                                   | 1 78                              |                                      | 2 57                                       |                                             |
| 014                                                                    | 93                                                           | 5.12                                                                                      | 10.0                                                                                         | 54 (14.2)                                          |                                                   | 1.70                              |                                      | 5.57                                       |                                             |
| 920                                                                    | /4                                                           | 1.78                                                                                      | 0                                                                                            |                                                    |                                                   |                                   |                                      | 4.49                                       |                                             |
| 1208                                                                   |                                                              | 1.68°                                                                                     | 0                                                                                            |                                                    |                                                   |                                   |                                      |                                            |                                             |
|                                                                        | NOAEL                                                        |                                                                                           |                                                                                              | 30                                                 | 30                                                | 00                                | 66                                   | 30                                         | 66                                          |
| PEGG : PEG I                                                           | LOAEL                                                        |                                                                                           |                                                                                              | 52                                                 | 52                                                |                                   |                                      | 52                                         |                                             |
| $PFOS + PFOA^{4}$                                                      |                                                              |                                                                                           |                                                                                              |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 0/0                                                                    | 0 + 0                                                        | 11.1                                                                                      | 16.3                                                                                         | 77 (1.66)                                          | 123 (1.86)                                        | 2.01 (1.88–2.14)                  | 2.75 (2.35–3.16)                     | 2.63 (2.52-2.74)                           | 2.23 (1.92–2.53)                            |
| 43/45                                                                  | 8.5 + 8.7                                                    | 11.0                                                                                      | 16.6                                                                                         | 70* (1.66)                                         | 123 (1.98)                                        | 1.80 (1.68–1.92)                  | 2.92 (2.64–3.20)                     | 2.62 (2.55–2.69)                           | 2.37 (2.15–2.59)                            |
| 58/62                                                                  | 11 + 12                                                      | 9.77                                                                                      | 15.6                                                                                         | 66** (1.66)                                        | 121 (3.44)                                        | 1.74 (1.56–1.92)                  | 2.82 (2.46–3.17)                     | 2.64 (2.44–2.85)                           | 2.31 (2.12–2.51)                            |
| 74/79                                                                  | 15 + 16                                                      | 8.43                                                                                      | 14.5                                                                                         | 54** (1.66)                                        | 116 (3.34)                                        | 1.56** (1.36-1.76)                | 2.79 (2.62–2.96)                     | 3.03 (2.63-3.43)                           | 2.40 (2.29–2.51)                            |
| 92/90                                                                  | 22 + 22                                                      | 8.75                                                                                      | 13.3                                                                                         | 48** (1.75)                                        | 118 (2.51)                                        | 1.46** (1.19-1.73)                | 2.99 (2.71-3.27)                     | 3.22* (2.64-3.80)                          | 2.54 (2.31–2.77)                            |
| 104/102                                                                | 20 + 19                                                      | 5.96                                                                                      | 12.7                                                                                         | 43** (2.06)                                        | 114 (1.25)                                        | 1.57* (1.36–1.78)                 | 2.64 (2.34–2.94)                     | 3.78** (3.17-4.39)                         | 2.32 (2.10-2.55)                            |
| 134/145                                                                | 20 + 22                                                      | 3.91                                                                                      | 12.5                                                                                         | 48** (5.25)                                        | 111 (2.85)                                        | _                                 | 2.59 (0.00-7.14)                     | _                                          | 2.33 (0.00-5.67)                            |
| 155/164                                                                | 25 + 27                                                      | 4.24                                                                                      | 10.0                                                                                         | 39** (3.71)                                        | 103* (8.45)                                       | 1.80 (0.000-6.17)                 | 2.66 (0.080-5.24)                    | 4.03** (3.05-5.00)                         | 2.58 (2.39-2.77)                            |
| 296/292                                                                | 32 + 31                                                      | 2.02                                                                                      | 0                                                                                            |                                                    | Ò                                                 |                                   |                                      |                                            |                                             |
|                                                                        | NOAEL                                                        |                                                                                           |                                                                                              |                                                    | 20 + 22                                           | 11 + 12                           | 25 + 27                              | 15 + 16                                    | 25 + 27                                     |
|                                                                        | LOAEL                                                        |                                                                                           |                                                                                              | 8.5 + 8.7                                          | 25 + 27                                           | 15 + 16                           |                                      | 22 + 22                                    |                                             |
| 3M AFFF <sup>g</sup>                                                   |                                                              |                                                                                           |                                                                                              |                                                    |                                                   |                                   |                                      |                                            |                                             |
| 0                                                                      | 0                                                            | 12.5                                                                                      | 174                                                                                          | 81 (1.59)                                          | 128 (2 59)                                        | 2.02 (0.100)i                     | 2 74 (0 141)h                        | 2 40 (2 21 2 79)                           | 212(182242)                                 |
| 72                                                                     | 15                                                           | 10.9                                                                                      | 167                                                                                          | 67** (1.50)                                        | 125(2.5)                                          | 2.02(0.109)                       | $2.74(0.141)^{\circ}$<br>2.99(0.140) | 2.49(2.21-2.78)<br>2 64 (2 30-2 80)        | 2.13(1.03-2.43)<br>2 39 (2 19_2 50)         |
| 15                                                                     | 15                                                           | 10.0                                                                                      | 10.7                                                                                         | 50**(1.59)                                         | 123(2.73)<br>116*(2.10)                           | 1.17                              | 2.75(0.179)                          | 2.07 (2.37 - 2.09)                         | 2.37(2.1)-2.37)                             |
| 104                                                                    | 38                                                           | 8.22                                                                                      | 14.5                                                                                         | SU*** (1.97)                                       | $110^{*}(3.10)$                                   | 1.14                              | 2.40 (0.109)                         | 2.11                                       | 2.11 (1.90–2.24)                            |

22

ER-2624 Final Report Version 3

| 213                     | 50    | 7.09 | 13.6 | 39** (2.69)   | 109** (4.10)  | 1.30* (0.198)    | 2.20 (0.223)     | 3.41** (3.29-3.52) | 2.03 (1.65-2.40) |
|-------------------------|-------|------|------|---------------|---------------|------------------|------------------|--------------------|------------------|
| 325                     | 75    | 6.31 | 16.2 | 31** (3.56)   | 99.5** (5.80) | 1.05** (0.243)   | 2.24 (0.316)     | 3.40* (0.00-8.29)  | 2.27 (0.00-4.87) |
| 465                     | 125   | 6.51 | 12.7 | 33** (5.03)   | 96.7** (8.20) | 1.18             | 2.23             | 3.22               | 2.31             |
| 499                     | 156   | 7.09 | 13.2 | 26** (7.11)   | 98.5* (8.20)  |                  | 2.66             |                    | 2.70             |
| 634                     | 186   | 6.54 |      | 22.4** (2.94) |               |                  |                  |                    |                  |
| 1399                    |       | 5.52 |      |               |               |                  |                  |                    |                  |
|                         | NOAEL |      |      |               | 15            | 15               | 75               | 15                 | 75               |
|                         | LOAEL |      |      | 15            | 38            | 50               |                  | 50                 |                  |
| Ansul AFFF <sup>h</sup> |       |      |      |               |               |                  |                  |                    |                  |
| 0                       | 0     | 12.4 | 15.7 | 79 (1.26)     | 121 (3.49)    | 2.03 (1.89–2.17) | 2.50 (2.07-2.93) | 2.53 (2.41–2.64)   | 2.06 (1.78–2.34) |
| 9                       | 1.9   | 12.8 | 16.4 | 78 (1.26)     | 130 (3.49)    | 1.89 (1.74–2.04) | 3.15 (2.64–3.66) | 2.46 (2.34–2.58)   | 2.41 (2.08–2.74) |
| 18                      | 3.3   | 12.0 | 16.4 | 80 (1.26)     | 129 (3.49)    | 2.00 (1.86–2.14) | 3.00 (2.18-3.82) | 2.57 (2.41–2.72)   | 2.30 (1.73-2.87) |
| 35                      | 6.8   | 12.0 | 16.2 | 77 (1.26)     | 122 (3.49)    | 2.01 (1.87-2.14) | 2.47 (2.26–2.67) | 2.62 (2.49–2.74)   | 2.02 (1.86-2.18) |
| 73                      | 14    | 11.9 | 18.6 | 79 (1.26)     | 124 (3.49)    | 2.13 (1.95–2.32) | 2.81 (2.42-3.20) | 2.64 (2.55–2.74)   | 2.26 (2.00-2.51) |
| 140                     | 27    | 11.9 | 16.5 | 78 (1.26)     | 126 (3.49)    | 2.15 (2.00–2.31) | 3.05 (2.23-3.86) | 2.73 (2.53–2.92)   | 2.38 (1.85-2.90) |
| 279                     | 52    | 11.8 | 16.8 | 80 (1.26)     | 133 (3.49)    | 2.17 (1.99–2.35) | 2.62 (2.20-3.03) | 2.75 (2.46-3.04)   | 1.97 (1.69–2.25) |
| 559                     | 100   | 11.3 | 15.5 | 79 (1.26)     | 127 (3.49)    | 2.14 (1.98–2.31) | 2.90 (2.37–3.43) | 2.72 (2.58–2.85)   | 2.25 (1.97-2.54) |
| 1118                    | 192   | 10.7 | 15.7 | 79 (1.26)     | 127 (3.49)    | 2.18 (2.02–2.35) | 2.85 (2.48-3.22) | 2.76 (2.61-2.90)   | 2.24 (2.02–2.46) |
|                         | NOAEL |      |      | 192           | 192           | 192              | 192              | 192                | 192              |
|                         | LOAEL |      |      |               |               |                  |                  |                    |                  |

<sup>a</sup>No statistical analysis for feed intake because n = 1 (all birds in a treatment were housed in a single pen and were eating from the same feeder).

<sup>b</sup>Data expressed as mean with standard error below in parentheses.

<sup>c</sup>Half of the surviving birds were euthanized on d 8 for serum and liver analysis.

<sup>d</sup>Feed consumption through day 8 when all chicks had died.

<sup>e</sup>All birds were dead by day 5 at the morning check.

<sup>f</sup>Dietary concentrations and ADDs are for PFOS/PFOA.

<sup>g</sup>Dietary concentrations and ADDs are based on PFOS concentration in the diet (analysis indicated that 3M AFFF was 91% PFOS).

23

<sup>h</sup>Dietary concentrations and ADDs are based on nominal 6:2 FtTAoS concentrations.

<sup>j</sup>Absolute liver weights in the 3M AFFF were normally distributed; thus, data are expressed as mean and SE (in parentheses) \*p < 0.05.

\*\* *p* < 0.01.

#### 4.1.8 PFOS trial.

Absolute liver weight of birds exposed to PFOS that were necropsied on d 8 were significantly less than liver weights of controls beginning at 62 mg kg feed<sup>-1</sup>, but there were no differences in relative liver weights. Because of mortalities, no birds were necropsied at d 8 in dose groups exposed to greater concentrations of PFOS. There were no differences in absolute or relative liver weights in birds that were necropsied on d 23.

# 4.1.9 PFOA trial.

In birds exposed to PFOA, there were no differences in absolute liver weight at d 8 or d 23. Relative liver weights were significantly greater compared to controls at dietary concentrations of beginning at 262 mg kg feed<sup>-1</sup> in birds necropsied on d 8 but there were no differences in birds necropsied on d 23.

# 4.1.10 PFOS + PFOS trial.

Absolute and relative liver weights in birds exposed to a combination of PFOS and PFOA were different compared to controls only at d 8. Absolute liver weights were significantly less compared to controls beginning at dietary concentrations of 74 + 79 mg PFOS + PFOA kg feed<sup>-1</sup> (ADD = 15 + 16 mg kg body weight<sup>-1</sup> d<sup>-1</sup>), and relative liver weights were significantly greater compared to controls beginning at dietary concentrations of 92 + 90 mg PFOS + PFOA kg feed<sup>-1</sup>.

# 4.1.11 3M AFFF trial.

In birds exposed to AFFF PFOS, absolute liver weights were significantly less, and relative weights were significantly greater compared to controls beginning at dietary concentrations of 213 mg kg<sup>-1</sup> on d 8. There were no differences in absolute or relative liver weights on d 23.

# 4.1.12 Serum and liver concentrations

Serum and hepatic concentrations of PFOS, AFFF PFOS and PFOA in birds necropsied on d 8 generally tended to increase with feed concentration to a point, while d 23 concentrations, with some exceptions, were considerably less compared to d 8 concentrations and did not appear to be related to initial feed concentration (Figure 2).

# 4.1.13 PFOS trial.

In the PFOS trial, the average concentration of PFOS at d 23 in serum and liver was approximately 21% of the concentration at d 8 (Table 7 and Figure 2). The serum to liver ratio of PFOS was approximately 2.2:1 at both d 8 and d 23. The hepatic concentration of PFOS in mortalities averaged  $233 \pm 11 \text{ mg kg}^{-1}$  wet weight.



**Figure 2. Effect of Dietary PFOS exposure on Serum and Liver Concentations** The solid line within each box is the median value of the data points. The x within the box locates the mean. The bottom line of the box is the median of the first quartile of the data, whereas the top line of the box is the median of the third quartile. Whiskers extend to the minimum and maximum values. Circles outside of whiskers represent outliers.

|                      | Day 23 concer<br>day 8 con | ntration as % of acentration | Serum to lic<br>concentration | ver<br>ratio |
|----------------------|----------------------------|------------------------------|-------------------------------|--------------|
| Study                | Serum (range)              | Liver (range)                | Day 8 (range) Day             | 23 (range)   |
| PFOS                 | 22 (20–23)                 | 22 (20–25)                   | 2.0 (1.8–2.2) 1.9             | (1.8–2.0)    |
| PFOA                 | 1.9 (0.75-3.7)             | 3.5 (0.59-8.3)               | 2.1 (1.4-3.6) 1.2             | (0.017-1.8)  |
| PFOS + PFOA          |                            |                              |                               |              |
| PFOS                 | 19 (14-23)                 | 15 (10-22)                   | 1.3 (1.0-1.4) 1.6             | 6 (1.4-1.9)  |
| PFOA                 | 1.9 (0.30-5.0)             | 1.6 (0.20-5.6)               | 3.1 (0.30-8.3) 2.2            | 2 (1.7-3.4)  |
| 3M AFFF <sup>a</sup> | 21 (18-24)                 | 15 (7.9-19)                  | 1.3 (0.9-1.6) 2.0             | (1.4-2.7)    |

Table 7. Day 23 serum of liver concentration as a percent of day 8 concentration and serumto liver raio on days 8 and 23.

<sup>a</sup>Serum and liver concentrations are PFOS (analysis indicated that 3M AFFF was 91% PFOS).

#### 4.1.14 PFOA trial.

In the PFOA trial, there was considerable variability in both serum and liver concentrations. On d 8, serum concentrations of PFOA were the same across feed concentrations except for a 2-fold increase at 368 mg kg feed<sup>-1</sup> and hepatic concentrations of PFOA increased with feed concentration until a decrease at 447 mg kg<sup>-1</sup> feed. On d 23, serum concentrations ranged from 365% of d 8 concentrations at 162 mg kg<sup>-1</sup> feed to 76% at 368 mg kg<sup>-1</sup> feed. Hepatic concentrations varied from 0.6% to 8.3% of d 8 concentrations over the same range of feed concentrations (Figure 3). Similarly, the serum to liver ratio of PFOA varied by feed

concentration at both d 8 (1.4:1 to 3.6:1) and d 23 (1.7:1 to 159:1). The hepatic concentration of PFOA in mortalities averaged  $442 \pm 15$  mg kg<sup>-1</sup> wet weight.



**Figure 3. Effect of dietary PFOA exposure on serum and liver PFOA concentrations** The solid line within each box is the median value of the data points. The x within the box locates the mean. The bottom line of the box is the median of the first quartile of the data, whereas the top line of the box is the median of the third quartile. Whiskers extend to the minimum and maximum values. Circles outside of whiskers represent outliers.

### 4.1.15 PFOS + PFOA trial.

In the PFOS + PFOA trial, serum and hepatic concentrations of both PFOS and PFOA generally increased with increasing feed concentration at d 8 with considerably lower concentrations at d 23 that were not related to feed concentration (Figure 4). On d 23, serum concentrations of PFOS were 19% of d 8 concentrations and hepatic concentrations were 15% of d 8 concentrations while serum and hepatic concentrations of PFOA at d 23 were 1.9 and 1.6% of d 8 concentrations (Table 7 and Figures 4 and 5). The average ratio of PFOS to PFOA in serum at d 8 was 2.3:1 and 45:1 at d 23. In the liver, the ratio of PFOS to PFOA at d 8 was 4.6:1 and 60:1 at d 23. The serum to liver ratio of PFOS at d 8 was 1.3:1 and 1.6:1 at d 23. The serum to liver ratio for PFOA was 3.1:1 at d 8 and 2.2:1 at d 23. The hepatic concentration of PFOS + PFOA in mortalities average  $206 \pm 12.1 + 120 \pm 5.7$  mg kg<sup>-1</sup> wet weight.



Figure 4. Effect of dietary PFOS + PFOA exposure on serum and liver PFOS concentrations

The solid line within each box is the median value of the data points. The x within the box locates the mean. The bottom line of the box is the median of the first quartile of the data, whereas the top line of the box is the median of the third quartile. Whiskers extend to the minimum and maximum values. Circles outside of whiskers represent outliers. PFAS = polyand perfluoroalkyl substances.



Figure 5. Effect of dietary PFOS + PFOA exposure on serum and liver PFOA concentrations

The solid line within each box is the median value of the data points. The x within the box locates the mean. The bottom line of the box is the median of the first quartile of the data, whereas the top line of the box is the median of the third quartile. Whiskers extend to the

minimum and maximum values. Circles outside of whiskers represent outliers. PFAS = poly- and perfluoroalkyl substances.

# 4.1.16 3M AFFF Trial.

In the 3M AFFF trial, the concentration of PFOS at d 23 was 21% of the concentration at d 8 in the serum and 15% in the liver (Table 7 and Figure 6). The serum to liver ratio of PFOS was 1.3 at d 8 and 2.0 at d 23. The hepatic concentrations of PFOS in mortalities average  $169 \pm 7.7 \text{ mg kg}^{-1}$  wet weight.



**Figure 6. Effect of dietary 3M AFFF exposure on serum and liver PFOS concentrations** The solid line within each box is the median value of the data points. The x within the box locates the mean. The bottom line of the box is the median of the first quartile of the data, whereas the top line of the box is the median of the third quartile. Whiskers extend to the minimum and maximum values. Circles outside of whiskers represent outliers. PFAS = poly- and perfluoroalkyl substances.

# 4.1.17 Discussion

The design of the present study is similar to the USEPA and OECD avian dietary toxicity test guidelines OCSPP 850.2200 (USEPA 2012) and OECD 205 (1991) and mimics the design of the Newsted et al. (2006) study because the latter was the only published study assessing the subacute effects of PFOS in birds that could be used for comparative purposes. The pri- mary difference between the present study design and that of Newsted et al. (2006) is the use of Japanese quail rather than the northern bobwhite and mallard. The OCSPP guidelines state use of the mallard and northern bobwhite is preferred, but the Japanese quail is one of the additional species that may be used (USEPA 2012). The OECD 205 guidelines indicate Japanese quail as one of the recommended species (OECD 1991). We chose to use the Japanese quail because of the existing breeding colony at Michigan State University and because we have had experience using this species in other avian toxicity studies (Cohen-Barnhouse, Zwiernik et al. 2011, Cohen-Barnhouse, Zwiernik et al. 2011). The design of the present study and of the study by Newsted et al. (2006) differs from the OCSPP 850.2200 and OECD 205 guidelines by extending the duration

of the test period to 23 d (5 d ex- posure plus 18 d on clean feed). The extended period on clean feed allowed assessment of reversals in feed con- sumption and body weight change. In addition, in both the present study and the study by Newsted et al. (2006), sam- ples of birds were necropsied on days 8 and 23 and tissues were taken for chemical analysis that allowed assessment of accumulation and depuration of the test compounds. In a recent evaluation of the avian acute oral and subacute dietary toxicity tests for use in regulatory decisions, Hilton et al. (2019) report that results from the subacute dietary toxicity test for 119 pesticides registered with the USEPA between 1998 and 2017 did not identify risks not identified by the acute test, bringing into question its utility. However, the authors state that the subacute test does have utility for compounds with a high potential to bioaccumulate, as is the case for PFOS and, to a lesser extent, PFOA.

Examination of ADD50s and LC50s and other endpoints related to mortality for PFOS, PFOA, and PFOS + PFOA indicated that PFOS was more subacutely toxic than PFOA to Japanese quail. In addition, the toxicities of PFOS and PFOA appeared to be additive; AFFF PFOS was generally less toxic than PFOS and PFOA based on dietary concentrations, and 6:2 FtTAoS provided by Ansul AFFF was not toxic at the concentrations fed. Based on day 5 ADD50 values for PFOS and PFOA (38 mg kg body wt<sup>-1</sup> d<sup>-1</sup> for PFOS and 68 mg kg body wt<sup>-1</sup> d<sup>-1</sup> for PFOA), the relative potency of PFOA compared to PFOS is 0.56 (Table 4). The day 5 ADD50 value for PFOS + PFOA was approximately 28 mg PFOS + 28 mg PFOA kg body weight<sup>-1</sup> d<sup>-1</sup>. If it is assumed that the relative toxicity of PFOA is approximately half of PFOS in Japanese quail, then the combination of 28 mg PFOS and 28 mg PFOA kg body weight<sup>-1</sup> d<sup>-1</sup> would be equivalent to 28 + 14 or  $42 \text{ mg PFOS kg body weight}^{-1} \text{ d}^{-1}$ , which is close to the PFOS day 5 ADD50 value of 38 mg kg body weight<sup>-1</sup> d<sup>-1</sup>. The day 5 LC50 for PFOS (351 mg kg feed<sup>-1</sup>) was 0.71 the value for PFOA (496 mg kg feed<sup>-1</sup>; Table 4). The day 5 LC50 value for PFOS + PFOA was 199 mg PFOS + 199 mg PFOA kg body weight<sup>-1</sup> d<sup>-1</sup>. If the concentration of PFOA is multiplied by 0.7, the combination of PFOS + PFOA would be equivalent to 199 + 139 or 338 mg PFOS kg feed<sup>-1</sup>, which approximates the day 5 LC50 value for PFOS of 351 mg kg feed<sup>-1</sup>. The ADDs for the greatest dietary concentrations resulting in no mortalities show the same rela- tionships: 17 mg PFOS, 30 mg PFOA, and 15 + 16 mg PFOS + PFOA kg body weight<sup>-1</sup> d<sup>-1</sup> (equivalent to approximately 23 mg PFOS kg body wt<sup>-1</sup> d<sup>-1</sup>). Comparing the toxicity of PFOS, PFOA, and AFFF PFOS, the ADDs for the greatest concentrations re- sulting in no mortalities were equivalent for PFOS and AFFF PFOS (17 and 15 mg kg body wt<sup>-1</sup> d<sup>-1</sup>) and less than the ADD for PFOA (30 mg PFOA kg body wt<sup>-1</sup>  $d^{-1}$ ). However, the day 5 ADD50 for AFFF PFOS (130 mg kg body wt<sup>-1</sup> d<sup>-1</sup>) was >3-fold greater than the day 5 ADD50 for PFOS  $(38 \text{ mg kg body wt}^{-1} \text{ d}^{-1})$  and approximately 2-fold greater than the ADD50 for PFOA (68 mg kg body wt<sup>-1</sup> d<sup>-1</sup>). Although these data suggest that AFFF PFOS is less toxic than PFOS as well as PFOA, these discrepancies in doses are in part due to the greater feed consumption of 3M AFFF birds compared with PFOS and PFOA birds at similar di- etary concentrations. If average daily feed consumption at the concentrations resulting in mortality for the 3 trials through day 5 is compared, birds exposed to AFFF PFOS had an average daily feed intake that was >3-fold greater compared to PFOS birds and approximately 2-fold greater compared to PFOA birds (2.2, 4.1, and 7.0 g d<sup>-1</sup>). Feed palatability may have been a factor contributing to differences in feed intake between the 3 trials.

As with mortality endpoints, comparison of ADDs corresponding to changes in feed consumption and body weight indicated PFOS was more toxic than PFOA, the toxicities of PFOS and PFOA were additive, AFFF PFOS was less toxic than PFOS and 6:2 FtTAoS provided by Ansul AFFF was not toxic at the concentrations fed (Table 3). The decreases in feed consumption and body weight caused by exposure to PFOS and PFOA were dose-related while the decreases caused by exposure to AFFF PFOS were not. The lowest observed adverse effect levels (LOAELs) for decrease in body weight at d 5 were lowest for PFOS (62 mg kg feed<sup>-1</sup>;  $ADD = 11 \text{ mg kg body weight}^{-1} \text{ d}^{-1}$ , greatest for PFOA (262 mg kg feed -1; ADD = 52 mg kg) body weight<sup>-1</sup> d<sup>-1</sup>) and intermediate for the combination of PFOS and PFOA (43 + 45 mg kg)feed<sup>-1</sup>; ADD = 8.5 + 8.7 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and AFFF PFOS (73 mg kg feed<sup>-1</sup>; ADD = 15 mg kg body weight<sup>-1</sup> d<sup>-1</sup>). Based on body weight on d 23, birds in the PFOS trial continued to be more adversely affected compared to birds exposed to PFOA while birds in the combination and 3M AFFF trials had LOAELs that were intermediate. The LOAEL for PFOS was 91 mg kg feed-<sup>1</sup> (ADD = 17 mg kg body weight<sup>-1</sup> d<sup>-1</sup>), 262 mg kg feed<sup>-1</sup> (ADD = 52 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) for PFOA,  $155 + 164 \text{ mg kg feed}^{-1}$  (ADD =  $25 + 27 \text{ mg kg body weight}^{-1} \text{ d}^{-1}$ ) for PFOS + PFOA and 164 mg kg feed<sup>-1</sup> (ADD = 38 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) for AFFF PFOS. As with mortality endpoints, average feed consumption at concentrations that resulted in significant decreases in body weight in birds exposed to PFOS or PFOA was approximately half of that of birds exposed to PFOS + PFOA or AFFF PFOS.

There were decreases in absolute liver weight and increases in relative liver weight in Japanese quail exposed to PFOS, AFFF PFOS, and/or PFOA only at day 8 (Table 6). Although the range in percentage decreases and increases in weight (in excess of 10%) suggests biological significance, because the tissues were not examined for pathology, a definitive statement is not possible. As with other endpoints, PFOS was most potent at inducing the decrease in absolute liver weight (LOAEL = 11 mg kg body wt<sup>-1</sup> d<sup>-1</sup>) compared to PFOS + PFOA (LOAEL = 15 + 16 mg kg body wt<sup>-1</sup> d<sup>-1</sup>) and AFFF PFOS (LOAEL = 50 mg kg body wt<sup>-1</sup> d<sup>-1</sup>). Dietary concentrations of PFOA were not sufficient to cause a decrease in absolute liver weights. Exposure to PFOS did not cause an increase in relative liver weights as did the other treatments, indicating that the weight loss induced by PFOS was severe enough to cause a proportional decrease in liver weight. The lowest ADD associated with an increase in relative liver weight was 22 mg PFOS + 22 mg PFOA kg body weight<sup>-1</sup> d<sup>-1</sup>. The ADDs for increased relative liver weight were equivalent for PFOA and AFFF PFOS (52 and 50 mg kg body wt<sup>-1</sup> d<sup>-1</sup>).

In general, both PFOS (PFOS trial and AFFF PFOS) and PFOA accumulated in both serum and liver of exposed Japanese quail as feed concentration increased through d 5 (Figures 2 – 6). It has been shown that the tissue distribution of both PFOS and PFOA is determined by their ability to bind to proteins and that serum/plasma, kidney and liver are the predominant sites of accumulation in a variety of species (Han, Snow et al. 2003, Jones, Hu et al. 2003, Kennedy, Butenhoff et al. 2004, Conder, Hoke et al. 2008, Yeung, Loi et al. 2009, Yoo, Guruge et al. 2009, Huang, Dzierlenga et al. 2019). From d 8 to d 23, PFOS and AFFF PFOS concentrations in both serum and liver decreased by approximately 80% and PFOA concentrations decreased by 97%, with the exception of serum PFOA concentrations in the PFOA trial that generally increased during depuration (Figures 2, 3, and 6). It is not surprising that the general decline in PFOA concentrations from d 8 to d 23 (98%) was greater than the decline in PFOS (80%) over the same time period in that there are numerous reports of greater retention of PFOS compared to PFOA in both avian and mammalian species (Butenhoff, Kennedy et al. 2004, Lau, Butenhoff et al. 2004,

Conder, Hoke et al. 2008, Yeung, Loi et al. 2009, Yoo, Guruge et al. 2009). Examination of serum and liver PFOS and PFOA concentrations from the PFOS + PFOA trial in the present study support the greater retention of PFOS compared to PFOA in that despite the equal concentrations of the two chemicals in the feed, concentrations of PFOS at d 8 were nearly double the concentration of PFOA in the serum and almost 5-fold greater in the liver. At d 23, the ratios of PFOS to PFOA in the serum and liver were 44:1 and 64:1. The concentrations of PFOS in the serum was consistently greater than hepatic concentrations resulting in serum to liver ratios ranging from 1.2:1 to 2.1:1. The serum to liver ratios for PFOA were quite variable and generally greater than serum to liver ratios for PFOS, indicating preferential accumulation of PFOA in the serum compared to the liver. Yeung et al (2009) reported that PFOA accumulated more in blood and kidney compared to the liver during both the exposure and depuration periods in chickens dosed with a mixture of PFOS, perfluorodecanoate (PFDA) and PFOA.

In a study very similar to the present study, Newsted et al. (2006) evaluated the acute oral toxicity of a 3M production lot of potassium perfluorooctane sulfonate PFOS (86.9%) in juvenile mallards (Anus platvrhvnchos) and northern bobwhites (Colinus virginianus). Ten-d-old birds were provided feed containing PFOS (8.7 to 1125 mg PFOS kg feed<sup>-1</sup>) for 5 d and then untreated feed for 17 d. The LD50 was determined to be 150 mg kg body weight<sup>-1</sup> d<sup>-1</sup> (cumulative dose of 750 mg kg body weight<sup>-1</sup> over the 5-d period) for mallards and 61 mg kg body weight<sup>-1</sup> d<sup>-1</sup> (cumulative dose of 305 mg kg body weight<sup>-1</sup>) for bobwhites. The LD50s for PFOS and AFFF PFOS in Japanese quail in the present study (37.6 and 149 mg kg body weight<sup>-1</sup> d<sup>-1</sup>; cumulative doses of 188 and 745 mg kg body weight<sup>-1</sup>) are approximately 0.6 and 2.4-fold the LD50 reported for northern bobwhites. While dependent on experimental design, the greatest dietary concentrations of PFOS and AFFF PFOS) that resulted in no mortalities were similar for Japanese quail (91 and 73 mg kg feed<sup>-1</sup>; cumulative doses of 85 and 75 mg kg body weight<sup>-1</sup>) and northern bobwhites (70 mg PFOS kg feed<sup>-1</sup>; cumulative dose of 119 mg kg body weight<sup>-1</sup>). The d 5 LC50 reported by Newsted et al. (2006) for mallards was 1002 mg PFOS kg feed<sup>-1</sup> and 319 mg PFOS kg feed<sup>-1</sup> for northern bobwhites, which is similar to the LC50 values of 389 mg PFOS and 506 mg AFFF PFOS kg feed<sup>-1</sup> calculated for Japanese quail. The lowest LT50 values reported by Newsted at al. (2006) for mallards and northern bobwhites were 4.97 and 3.06 d at a dietary concentration of 1125 mg PFOS kg feed<sup>-1</sup>. In the present study, LT50s for PFOS at dietary concentrations of 920 and 1955 mg kg feed<sup>-1</sup>, which bracket the greatest concentration used by Newsted et al. (2006) were 3.83 and 3.35 d. For AFFF PFOS, LT50 values at dietary concentrations of 634 and 1399 mg kg feed<sup>-1</sup> were 4.32 and 4.36 d. The LOAELs for significant decreases in body weight of mallards and northern bobwhites at d 5 occurred at dietary concentrations of 281 mg PFOS kg feed<sup>-1</sup> (74.2 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and 141 mg PFOS kg feed<sup>-1</sup> (44.7 mg kg body weight<sup>-1</sup> d<sup>-1</sup>). In the present study, the PFOS LOAEL based on 5-d body weight was 62 mg kg feed<sup>-1</sup> (11 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and the LOAEL for PFOS- 3M was 73 mg kg feed<sup>-1</sup> (15 mg kg body weight<sup>-1</sup> d<sup>-1</sup>). These comparisons suggest that the Japanese quail and northern bobwhite are similar in sensitivity to PFOS.

As has been demonstrated for mallards (Newsted et al. 2006), the concentrations of PFOS and AFFF PFOS at both 8 and 23 d were greater in the serum compared to the liver in Japanese quail with serum to liver ratios of ranging from 1.3:1 to 2.3:1. The ratios of serum to liver concentrations in mallards averaged 1.7:1. In northern bobwhites, hepatic PFOS concentrations were greater than serum concentrations at d 8, but less than serum concentrations on d 22 with

serum to liver ratios of 0.52 and 2.4. In the present study, decreases in serum and liver PFOS and AFFF PFOS from d 8 to d 23 in Japanese quail averaged 80%. In comparison, Newsted et al. (2006) reported liver and serum half-lives of 17.5 and 6.86 days for PFOS in mallards and a liver half-life of 12.8 days for northern bobwhites. Hepatic concentrations associated with mortality in mallards and northern bobwhites approximated 166 and 159 mg PFOS kg<sup>-1</sup> wet weight while in the present study, the average concentrations of PFOS and AFFF PFOS in mortalities was 240 and 169 mg kg<sup>-1</sup> wet weight. The similarity in average hepatic concentrations of PFOS in mortalities across three different avian species is striking and suggests that this endpoint is a more consistent indicator of toxicity than endpoints related to dietary concentration and dose.

#### 4.2 Chronic Exposure Study

#### 4.2.1 Dietary concentrations and average daily dose

Analyzed dietary concentrations in the PFOS trial were 0, 2.1, 4.0, 8.6, 14 and 18 mg kg feed<sup>-1</sup> and analyzed concentrations of AFFF PFOS in the 3M AFFF trial were 0, 2.1, 5.0, 11, 19 and 27 mg kg feed<sup>-1</sup>. Components of the 3M AFFF and their relative proportions were PFOS (91%), PFHxS (7%), perfluorobutane sulfonate (1%) and PFOA (1%). Analyzed concentrations of PFOS were on average 87% of nominal concentrations for the PFOS trial (range 80 to 93%) and 111% (range 84 to 135%) for the 3M AFFF trial. The ADDs for the PFOS trial were 0, 0.28, 0.55, 1.1, 1.8 and 2.4 mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup> and 0, 0.27, 0.66, 1.4, 2.5 and 3.4 mg AFFF PFOS kg body weight<sup>-1</sup> d<sup>-1</sup> for the 3M AFFF trial

#### 4.2.2 Adult mortality and clinical observations

One adult male and 6 adult females died or were euthanized during the course of the 20week PFOS trial. The male was in the control group and died accidentally. Two females in the 8.7 mg kg feed<sup>-1</sup>, 1 in the 14 mg kg feed<sup>-1</sup>, and 3 in the 18 mg kg feed<sup>-1</sup> treatment groups died or were euthanized due to excessive aggression (pecking) by their male mate. In the AFFF PFOS trial 5 males and 10 females died or were euthanized. Distribution of mortalities was 4 in the control group and 2 in the 2.1 mg kg feed<sup>-1</sup>, 3 in the 5.0 mg kg feed<sup>-1</sup>, 3 in the 11 mg kg feed<sup>-1</sup>, 2 in the 19 mg kg feed<sup>-1</sup> and 1 in the 27 mg kg feed<sup>-1</sup> groups. None of these mortalities was considered to be treatment related but rather due to accidental injury or aggression between specific breeding pairs. There were no clinical signs observed in the adult birds suggestive of exposure to PFOS.

#### 4.2.3 Adult feed consumption, body weight gain and body weights at necropsy

Feed consumption of adult female birds from 0 to 20 weeks of age was unaffected by exposure to PFOS or AFFF PFOS, but total feed consumed by males in the 18 mg PFOS kg feed<sup>-1</sup> (ADD = 2.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 3.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) groups was significantly less compared to controls (Table 8). Body weight gains of adult female quail from 4 to 20 weeks of age were not significantly affected by exposure to PFOS or AFFF PFOS but there were significant effects on body weight gains of adult males. The dietary concentration of 19 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 2.5 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) resulted in a significantly lower body weight gain when compared to controls (Table 9). Similarly, body weights of females at necropsy were not affected by exposure to PFOS or AFFF PFOS but male body weights were significantly less compared to controls at 14 mg PFOS kg

feed<sup>-1</sup> (ADD = 1.8 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and greater and 11 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 1.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and greater (Table 9).

| -                    |                                       | Total feed consumption (g)<br>from 0 to 20 weeks of age |            | Cumulative PF | OS intake (mg) |
|----------------------|---------------------------------------|---------------------------------------------------------|------------|---------------|----------------|
| Dietary              |                                       |                                                         | -          |               |                |
| concentration        |                                       |                                                         |            |               |                |
| (mg kg <sup>-1</sup> | ADD (mg                               |                                                         |            |               |                |
| feed)                | kg bw <sup>-1</sup> d <sup>-1</sup> ) | Female                                                  | Male       | Female        | Male           |
| · · · · ·            |                                       | Р                                                       | FOS        |               |                |
| 0                    | 0                                     | 2704 (51) <sup>a</sup>                                  | 2252 (48)  | 0 (1.2)       | 0 (0.4)        |
| 2.1                  | 0.28                                  | 2549 (51)                                               | 2185 (47)  | 5.4* (1.2)    | 4.6** (0.4)    |
| 4.1                  | 0.55                                  | 2715 (51)                                               | 2198 (47)  | 11** (1.2)    | 9.0** (0.4)    |
| 8.7                  | 1.1                                   | 2602 (55)                                               | 2118(47)   | 23** (1.2)    | 18** (0.4)     |
| 14                   | 1.8                                   | 2665 (53)                                               | 2086 (47)  | 37** (1.2)    | 29** (0.4)     |
| 18                   | 2.4                                   | 2616 (57)                                               | 2062* (47) | 47** (1.2)    | 37** (0.4)     |
|                      |                                       | AFF                                                     | F PFOS     |               | · · ·          |
| 0                    | 0                                     | 2714 (87)                                               | 2166 (51)  | 0(1.4)        | 0 (0.7)        |
| 2.1                  | 0.27                                  | 2627 (84)                                               | 2188 (55)  | 5.6* (1.4)    | 4.6** (0.7)    |
| 5.0                  | 0.66                                  | 2671 (84)                                               | 2070 (55)  | 13** (1.4)    | 10** (0.7)     |
| 11                   | 1.4                                   | 2528 (84)                                               | 2133 (53)  | 28** (1.3)    | 24** (0.7)     |
| 19                   | 2.5                                   | 2678 (84)                                               | 2001 (53)  | 51** (1.3)    | 38** (0.7)     |
| 27                   | 3.4                                   | 2532 (81)                                               | 1979* (51) | 68** (1.3)    | 53** (0.6)     |

Table 8. Total feed consumed and cumulative PFOS intake in female and male Japanese quail fed PFOS or 3M AFFF from 0 to 20 weeks of age

Data are presented as mean with standard error in parentheses.

\*Means within column are significantly different from control mean (p < 0.05).

\*\*Means within column are significantly different from control mean (p < 0.01).

| Table 9.  | Body weight gain and body weight at necropsy of female and male Japanese |
|-----------|--------------------------------------------------------------------------|
| quail fee | d PFOS or 3M AFFF from 0 to 20 weeks of age                              |

|                                                  |                                       | Mean body weight gain (g) |            | Mean body weights at necropsy (g) |           |  |
|--------------------------------------------------|---------------------------------------|---------------------------|------------|-----------------------------------|-----------|--|
| Dietary<br>concentration<br>(mg kg <sup>-1</sup> | ADD (mg                               |                           |            |                                   |           |  |
| feed)                                            | kg bw <sup>-1</sup> d <sup>-1</sup> ) | Female                    | Male       | Female                            | Male      |  |
| £                                                |                                       | Р                         | FOS        |                                   |           |  |
| 0                                                | 0                                     | 68.8 (3.5)                | 46.5 (2.3) | 173 (4)                           | 150 (3)   |  |
| 2.1                                              | 0.28                                  | 62.4 (3.5)                | 50.1 (2.4) | 161 (4)                           | 146 (3)   |  |
| 4.1                                              | 0.55                                  | 62.9 (3.5)                | 38.4 (2.4) | 168 (4)                           | 142 (3)   |  |
| 8.7                                              | 1.1                                   | 67.6 (3.7)                | 41.1 (2.4) | 172 (4)                           | 142 (3)   |  |
| 14                                               | 1.8                                   | 66.5 (3.6)                | 38.3 (2.4) | 170 (4)                           | 136** (3) |  |
| 18                                               | 2.4                                   | 59.8 (3.9)                | 36.0 (2.4) | 161 (4)                           | 137** (3) |  |
|                                                  |                                       | AFF                       | F PFOS     |                                   |           |  |
| 0                                                | 0                                     | 61.5 (2.7)                | 34.4 (1.9) | 173 (3)                           | 144 (2)   |  |
| 2.1                                              | 0.27                                  | 60.0 (2.5)                | 38.0 (1.9) | 170 (3)                           | 145 (2)   |  |

| 5.0 | 0.66 | 63.0 (2.5) | 35.1 (1.9)  | 175 (3) | 143 (2)   |
|-----|------|------------|-------------|---------|-----------|
| 11  | 1.4  | 59.8 (2.7) | 33.1 (1.8)  | 167 (3) | 135* (2)  |
| 19  | 2.5  | 57.7 (2.5) | 26.9* (1.9) | 164 (3) | 129** (2) |
| 27  | 3.4  | 57.6 (2.5) | 27.9 (1.8)  | 166 (3) | 131** (2) |

Data are presented as mean with standard error in parentheses.

\*Means within column are significantly different from control mean (p < 0.05).

\*\*Means within column are significantly different from control mean (p < 0.01).

#### 4.2.4 Egg production and hatchability

Exposure to PFOS or AFFF PFOS did not have a significant effect on the mean number of viable eggs laid per hen but exposure to PFOS resulted in a significant decrease in hatchability at a dietary concentration of 18 mg kg feed<sup>-1</sup> (ADD = 2.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) (Table 10).

| Dietary              |                                    |                  |         |                  |     |
|----------------------|------------------------------------|------------------|---------|------------------|-----|
| concentration        | ADD                                | Mean viable      |         |                  |     |
| (mg kg <sup>-1</sup> | (mg kg                             | eggs laid per    |         | % Chicks hatched |     |
| feed)                | bw <sup>-1</sup> d <sup>-1</sup> ) | hen <sup>a</sup> | 95% CI  | from viable eggs | SE  |
|                      |                                    | PFOS             | S       |                  |     |
| 0                    | 0                                  | 49               | 45 - 54 | 72.9             | 4.2 |
| 2.1                  | 0.28                               | 42               | 32 - 52 | 77.4             | 3.7 |
| 4.1                  | 0.55                               | 45               | 40 - 49 | 71.7             | 3.3 |
| 8.7                  | 1.1                                | 38               | 29 - 47 | 68.9             | 4.0 |
| 14                   | 1.8                                | 43               | 35 - 52 | 66.3             | 4.9 |
| 18                   | 2.4                                | 40               | 33 - 47 | 57.5*            | 6.0 |
|                      |                                    | AFFF P           | FOS     |                  |     |
| 0                    | 0                                  | 49               | 39 - 59 | 88.9             | 0.8 |
| 2.1                  | 0.27                               | 48               | 40 - 56 | 84.8             | 1.8 |
| 5.0                  | 0.66                               | 43               | 33 - 52 | 84.4             | 1.2 |
| 11                   | 1.4                                | 53               | 49 - 58 | 88.3             | 2.4 |
| 19                   | 2.5                                | 45               | 37 - 53 | 78.5             | 8.4 |
| 27                   | 3.4                                | 45               | 39 - 52 | 62.8             | 7.1 |

Table 10. Number of viable eggs laid by female Japanese quail and percentchicks hatched during weeks 10 to 20 of dietary exposure to PFOS or 3M AFFF

<sup>a</sup>Viable eggs laid per hen were not normally distributed so data were log transformed for statistical analysis.

\*Means within column are significantly different from control mean (p < 0.05).

PFOS = perfluorooctane sulfonate; AFFF = aqueous film forming foam; ADD = average daily dose; bw = body weight; CI = confidence interval; SE = standard error

# 4.2.5 Embryo mortality

In general, there was a dose-related increase in embryo mortality for both PFOS and AFFF PFOS (Figure 7). In the PFOS trial, the greatest mortality occurred after day 14 of incubation across all groups with the proportions being similar (31.7 - 38.8%). In the 3M AFFF trial, embryo mortality occurred primarily in the first 7 d of incubation across treatment groups with exception of the greatest feed concentration that had the greatest proportion of embryos dying after 14 d of incubation. There was a significant increase in the number of embryos dying

after day 14, dead pips and live pips at 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 3.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) compared to controls (Table 11).



Figure 7. Percent of viable eggs that experienced embryo mortality

|      | Stage of embryo mortality <sup>a</sup> |     |               |     |                 |     |                 |     |                 |     | # of deformities | # viable<br>eggs | # of live<br>hatches <sup>b</sup> |
|------|----------------------------------------|-----|---------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|------------------|------------------|-----------------------------------|
|      | $0-7 \ d$                              | SE  | 8 – 14 d      | SE  | >14 d           | SE  | Dead pip        | SE  | Live pip        | SE  |                  |                  |                                   |
| ADD  |                                        |     |               |     |                 |     | PFC             | OS  |                 |     |                  |                  |                                   |
| 0    | 5.0<br>(23.4)                          | 1.2 | 2.8<br>(13.1) | 1.0 | 8.2<br>(38.3)   | 1.7 | 2.3<br>(10.7)   | 0.5 | 3.1<br>(14.5)   | 0.9 | 6                | 789              | 575<br>(72.9)                     |
| 0.28 | 4.6<br>(30.3)                          | 1.2 | 2.2 (14.5)    | 1.0 | 5.9<br>(38.8)   | 1.7 | 0.5<br>(3.29)   | 0.5 | 2.0<br>(13.2)   | 0.9 | 1                | 672              | 520<br>(77.4)                     |
| 0.55 | 4.8<br>(23.6)                          | 1.2 | 5.0<br>(24.6) | 1.0 | 6.6<br>(32.5)   | 1.7 | 1.0<br>(4.93)   | 0.5 | 2.9<br>(14.3)   | 0.9 | 4                | 717              | 514<br>(71.7)                     |
| 1.1  | 4.8<br>(28.7)                          | 1.2 | 3.1 (18.6)    | 1.0 | 5.7<br>(34.1)   | 1.7 | 0.8<br>(4.79)   | 0.5 | 2.3 (13.8)      | 0.9 | 6                | 537              | 370<br>(68.9)                     |
| 1.8  | 3.7<br>(16.7)                          | 1.2 | 4.7<br>(21.3) | 1.0 | 8.2<br>(37.1)   | 1.7 | 2.0<br>(9.05)   | 0.5 | 3.5 (15.8)      | 0.9 | 4                | 655              | 434 (66.3)                        |
| 2.4  | 5.0<br>(22.6)                          | 1.2 | 4.6<br>(20.8) | 1.0 | 7.0 (31.7)      | 1.7 | 1.8<br>(8.14)   | 0.5 | 3.7 (16.7)      | 0.9 | 1                | 520              | 299<br>(57.5)*                    |
|      |                                        |     |               |     | /               |     | AFFF PFC        | )S  |                 |     |                  |                  |                                   |
| 0    | 2.7<br>(37.0)                          | 0.9 | 1.4<br>(19.2) | 0.5 | 1.6<br>(21.9)   | 0.8 | 0.8<br>(11.0)   | 0.6 | 0.8<br>(11.0)   | 0.8 | 0                | 655              | 582<br>(88.9)                     |
| 0.27 | 5.2<br>(47.3)                          | 0.9 | 2.3<br>(20.9) | 0.5 | 2.0<br>(18.2)   | 0.8 | 0.5<br>(4.55)   | 0.6 | 1.0<br>(9.09)   | 0.8 | 1                | 723              | 613<br>(84.8)                     |
| 0.66 | 5.4<br>(52.9)                          | 0.9 | 1.8<br>(17.6) | 0.5 | 1.7<br>(16.7)   | 0.8 | 0.2<br>(1.96)   | 0.6 | 1.1<br>(10.8)   | 0.8 | 2                | 654              | 552<br>(84.4)                     |
| 1.4  | 4.1<br>(47.7)                          | 0.9 | 1.2<br>(14.0) | 0.5 | 1.4<br>(16.3)   | 0.8 | 0.6<br>(7.0)    | 0.6 | 1.3<br>(15.1)   | 0.8 | 6                | 736              | 650<br>(88.3)                     |
| 2.5  | 2.8<br>(20.0)                          | 0.9 | 2.4<br>(17.1) | 0.5 | 3.8<br>(27.1)   | 0.8 | 1.5<br>(10.7)   | 0.6 | 3.5<br>(25.0)   | 0.8 | 3                | 651              | 511<br>(78.5)                     |
| 3.4  | 2.9<br>(11.4)                          | 0.9 | 2.4<br>(9.45) | 0.5 | 6.9**<br>(27.2) | 0.8 | 5.4**<br>(21.3) | 0.6 | 7.8**<br>(30.7) | 0.8 | 1                | 683              | 429<br>(62.8)                     |

Table 11. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF on stage of embryo mortality and incidence of deformities in their offspring

<sup>a</sup>Data presented as mean and standard error. Numbers in parentheses are percent of embryos at a particular stage of development. <sup>b</sup>Numbers in parentheses refer to percent hatchability.

\*Means within column are significantly different from control mean (p < 0.05).

\*\*Means within column are significantly different from control mean (p < 0.01).

# 4.2.6 Chick survivability through 7 and 14 d of age

Survivability of chicks raised on clean feed was affected by in ovo exposure to PFOS or AFFF PFOS (Table 12). Chicks in the PFOS trial had significantly reduced survivability through the first 7 d at feed concentrations of 8.7 and 18 mg kg feed<sup>-1</sup> (ADDs = 1.1 and 2.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) but not 14 mg kg feed<sup>-1</sup> (ADD =  $1.8 \text{ mg kg body weight}^{-1} \text{ d}^{-1}$ ). Chicks in the 3M AFFF trial had a dose-dependent decrease in survivability that was significant beginning at feed concentrations of 11 mg AFFF PFOS kg feed (ADDs  $\geq$  1.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) over the same period.. At 7 d of age, the number of chicks was reduced to 50 in those groups that exceeded that number and survivability was assessed over the subsequent 7 d. There were no significant differences in chick survivability compared to controls for both PFOS and AFFF PFOS. Percent survivability during this period ranged from 95.3 to 99.4 % in the PFOS trial and from 85.1 to 98.8 % in the 3M AFFF trial.

| on offspring s                                            | on offspring survivability from 0 to 7 and 8 to 14 d of age |                                              |             |                                               |             |  |  |  |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-------------|-----------------------------------------------|-------------|--|--|--|--|--|
| Dietary<br>concentration<br>(mg kg <sup>-1</sup><br>feed) | ADD (mg<br>kg bw <sup>-1</sup> d <sup>-1</sup> )            | %<br>Survivability <sup>a</sup><br>day 0 – 7 | 95% CI      | %<br>Survivability <sup>a</sup><br>day 8 – 14 | 95% CI      |  |  |  |  |  |
| PFOS                                                      |                                                             |                                              |             |                                               |             |  |  |  |  |  |
| 0                                                         | 0                                                           | 93.9                                         | 91.9 - 95.8 | 98.0                                          | 96.2 - 99.8 |  |  |  |  |  |
| 2.1                                                       | 0.28                                                        | 87.4                                         | 80.6 - 94.1 | 96.8                                          | 91.0 - 100  |  |  |  |  |  |
| 4.1                                                       | 0.55                                                        | 90.4                                         | 86.9 - 93.9 | 95.3                                          | 90.5 - 100  |  |  |  |  |  |
| 8.7                                                       | 1.1                                                         | 72.9**                                       | 56.6 - 89.1 | 97.6                                          | 95.2 - 100  |  |  |  |  |  |
| 14                                                        | 1.8                                                         | 84.3                                         | 79.1 - 89.4 | 99.4                                          | 98.4 - 100  |  |  |  |  |  |
| 18                                                        | 2.4                                                         | 79.0**                                       | 71.2 - 86.8 | 96.0                                          | 92.5 - 99.5 |  |  |  |  |  |
|                                                           |                                                             | AFFF F                                       | PFOS        |                                               |             |  |  |  |  |  |
| 0                                                         | 0                                                           | 95.6                                         | 93.3 - 97.8 | 98.8                                          | 97.0 - 100  |  |  |  |  |  |
| 2.1                                                       | 0.27                                                        | 90.5                                         | 86.0 - 94.9 | 93.6                                          | 84.2 - 100  |  |  |  |  |  |
| 5.0                                                       | 0.66                                                        | 91.3                                         | 86.3 - 96.4 | 98.5                                          | 96.5 - 100  |  |  |  |  |  |
| 11                                                        | 1.4                                                         | 71.6**                                       | 61.9 - 81.3 | 96.8                                          | 94.2 - 99.4 |  |  |  |  |  |
| 19                                                        | 2.5                                                         | 57.2**                                       | 42.1 - 72.3 | 85.1                                          | 63.6 - 100  |  |  |  |  |  |
| 27                                                        | 3.4                                                         | 44.3**                                       | 30.2 - 58.5 | 86.0                                          | 64.0 - 100  |  |  |  |  |  |

Table 12. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF

<sup>a</sup>Percent survivability data were arc sin transformed for statistical analysis and then backtransformed for presentation.

\*Means within column are significantly different from control mean (p < 0.05).

\*\*Means within column are significantly different from control mean (p < 0.01).

# 4.2.7 Chick body weights

Chick body weights at hatch and 7 and 14 d of age were variably affected by in ovo exposure to PFOS or AFFF PFOS (Table 13). Body weight of chicks in the PFOS group were significantly less compared to controls at adult feed concentrations as low as 2.1 mg kg feed<sup>-1</sup>  $(ADDs \ge 0.28 \text{ mg kg body weight}^{-1} \text{ d}^{-1})$  at hatch, 4.1 mg kg feed (ADD = 0.55 mg kg body)weight<sup>-1</sup> d<sup>-1</sup>) at 7 d of age and 8.7 mg kg feed<sup>-1</sup> (ADD = 1.1 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) at 14 d of age. Chicks in the 3M AFFF trial had significantly lower body weights compared to controls at adult feed concentrations as low as 2.1 mg AFFF PFOS kg feed<sup>-1</sup> (ADDs  $\ge$  0.27 mg kg body

weight<sup>-1</sup> d<sup>-1</sup>) at hatch, At 7 d of age, only chicks in the 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 3.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) group had significantly lower body weights compared to controls and body weights were not significantly affected at 14 d of age.

| Dietary<br>concentration<br>(mg kg <sup>-1</sup><br>feed) | ADD<br>(mg kg<br>bw <sup>-1</sup> d <sup>-1</sup> ) | Chick body weights (g) |         |        |     |        |     |  |  |
|-----------------------------------------------------------|-----------------------------------------------------|------------------------|---------|--------|-----|--------|-----|--|--|
|                                                           |                                                     | Hatch                  | SE      | day 7  | SE  | day 14 | SE  |  |  |
|                                                           |                                                     |                        | PFOS    |        |     |        | _   |  |  |
| 0                                                         | 0                                                   | 6.9                    | 0.02    | 17.5   | 0.2 | 47.6   | 0.3 |  |  |
| 2.1                                                       | 0.28                                                | 6.5**                  | 0.03    | 17.4   | 0.2 | 46.7   | 0.3 |  |  |
| 4.1                                                       | 0.55                                                | 6.8                    | 0.03    | 18.6** | 0.2 | 47.2   | 0.3 |  |  |
| 8.7                                                       | 1.1                                                 | 6.9                    | 0.03    | 18.8** | 0.2 | 49.0*  | 0.4 |  |  |
| 14                                                        | 1.8                                                 | 6.7**                  | 0.03    | 16.7** | 0.2 | 46.1** | 0.3 |  |  |
| 18                                                        | 2.4                                                 | 6.7*                   | 0.03    | 16.6** | 0.2 | 45.9** | 0.4 |  |  |
|                                                           |                                                     | А                      | FFF PFC | S      |     |        |     |  |  |
| 0                                                         | 0                                                   | 6.9                    | 0.1     | 19.4   | 0.4 | 48.8   | 0.8 |  |  |
| 2.1                                                       | 0.27                                                | 6.5**                  | 0.1     | 18.8   | 0.4 | 48.3   | 0.8 |  |  |
| 5.0                                                       | 0.66                                                | 6.6**                  | 0.1     | 18.1   | 0.4 | 47.7   | 0.8 |  |  |
| 11                                                        | 1.4                                                 | 6.8                    | 0.1     | 18.8   | 0.4 | 48.5   | 0.8 |  |  |
| 19                                                        | 2.5                                                 | 6.8                    | 0.1     | 17.7   | 0.5 | 47.8   | 0.9 |  |  |
| 27                                                        | 3.4                                                 | 6.5**                  | 0.1     | 16.3** | 0.5 | 45.7   | 0.9 |  |  |

Table 13. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF on offspring body weight from 0 to 14 d of age

\*Means within column are significantly different from control mean (p < 0.05).

\*\*Means within column are significantly different from control mean (p < 0.01).

# 4.2.8 Liver weights

Exposure to PFOS or AFFF PFOS had a variable effect on absolute and relative liver weights. There was no effect on absolute or relative liver weight in adult quail exposed to PFOS (Table 14), but 14-d-old chicks (males and females combined) had increased absolute liver weight at 18 mg kg feed<sup>-1</sup> (ADD = 2.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and increased relative weight at 14 and 18 mg kg feed<sup>-1</sup> (ADDs = 1.8 and 2.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) compared to controls (Table 14). In adult birds fed diets containing 3M AFFF, the only significant effect was an increase in absolute liver weight in adult females at 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 3.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) (Table 14). There were no significant changes in absolute or relative liver weights in 14-d-old chicks in the 3M AFFF trial (Table 14).

# Table 14. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF on chick (females and males combined) liver weight and liver weight relative to body weight at 14-d of age

| concentration (mg kg <sup>-1</sup> feed) $bw^{-1} d^{-1}$ ) weight (g) SE veight relative to $bw (\%)^a$ | Dietary<br>concentration<br>mg kg <sup>-1</sup> feed) | ADD (mg kg<br>bw <sup>-1</sup> d <sup>-1</sup> ) Chick liver<br>weight (g) | SE Chick liver<br>weight<br>relative to<br>bw (%) <sup>a</sup> | 95% CI |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|--------|
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|--------|

|     |      | PFOS    |      |        |             |
|-----|------|---------|------|--------|-------------|
| 0   | 0    | 1.47    | 0.02 | 2.94   | 2.84 - 3.03 |
| 2.1 | 0.28 | 1.39    | 0.02 | 2.94   | 2.82 - 3.06 |
| 4.1 | 0.55 | 1.47    | 0.02 | 2.97   | 2.87 - 3.08 |
| 8.7 | 1.1  | 1.54    | 0.03 | 2.97   | 2.85 - 3.08 |
| 14  | 1.8  | 1.50    | 0.02 | 3.10*  | 3.01 - 3.19 |
| 18  | 2.4  | 1.58**  | 0.03 | 3.22** | 3.11 - 3.33 |
|     |      | AFFF PF | OS   |        |             |
| 0   | 0    | 1.56    | 0.02 | 3.07   | 2.99 - 3.16 |
| 2.1 | 0.27 | 1.61    | 0.02 | 3.13   | 3.05 - 3.21 |
| 5.0 | 0.66 | 1.59    | 0.02 | 3.14   | 3.04 - 3.21 |
| 11  | 1.4  | 1.65    | 0.02 | 3.15   | 3.07 - 3.24 |
| 19  | 2.5  | 1.71    | 0.02 | 3.35   | 3.27 - 3.44 |
| 27  | 3.4  | 1.70    | 0.03 | 3.42   | 3.34 - 3.51 |

<sup>a</sup>Relative liver weights were arc sin transformed for data analysis. Means presented are back-transformed means with 95% confidence interval.

\*Means within column are significantly different from control mean (p < 0.05).

\*\*Means within column are significantly different from control mean (p < 0.01).

#### 4.2.9 Pathology

The same pathologist was not available to evaluate tissues from both trials. As a result, some of the evaluation criteria are slightly different between the two trials. A summary of the significant results for each trial by sex is provided in Table 15. A summary of all the lesions by sex in each trial is in the Appendix.

#### 4.2.10 Liver.

The severity of extramedullary hematopoesis was significant for males in the PFOS trial and females in the AFFF PFOS trial. Twenty-five percent of the males in the 18 mg PFOS kg feed<sup>-1</sup> (ADD = 2.4 mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>) group had the lesion whereas in the AFFF PFOS trial, the lesion occurred in 25 % of the males and 25, 56 and 81% of the females in the 3 greatest trearment groups. Canalicular cholestasis, myofibroblast proliferation and heterophilic inflammation were assessed in the AFFF PFOS trial only and lesion severity was significant for males, males and females, and males, respectively. However, neither the percentage of birds having the lesion or the severity of the lesion corresponded to dose.

#### 4.2.11 Kidney.

Tubular regeneration was assessed in PFOS trial and severity was significant for females with 25% of the birds in the 14 mg kg feed<sup>-1</sup> (ADD = 1.8 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) group having the lesion. Glomerulopathy was also assessed only in the PFOS trial with severity for both sexes being significant. With the exception of one control female, the lesion was restricted to the 2.1 mg kg feed<sup>-1</sup> (ADD = 0.28 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) group. Tubular degeneration was assessed in the AFFF PFOS trial only and severity was significant for females. Lesions occurred in the two greatest treatment groups, although the incidence and severity did not correspond to dose.

|                                      | LIVER                 |                   |                        |               |                                      |            |                      |            |                      |  |  |  |  |
|--------------------------------------|-----------------------|-------------------|------------------------|---------------|--------------------------------------|------------|----------------------|------------|----------------------|--|--|--|--|
|                                      |                       |                   |                        | Extramedullar | y hematopoie                         | sis        |                      |            |                      |  |  |  |  |
|                                      |                       | PFOS les          | ion scores             |               | AFFF PFOS lesion scores              |            |                      |            |                      |  |  |  |  |
| Dose (mg                             | % of                  | Score (KW         | % of                   | Score (KW     | Dose (mg                             | % of       | Score (KW <i>p</i> - | % of       | Score (KW <i>p</i> - |  |  |  |  |
| PFOS kg                              | females               | <i>p</i> -value = | males                  | p-value =     | PFOS kg                              | female     | value =              | males      | value =              |  |  |  |  |
| $bw^{-1} day^{-1}$                   | affected <sup>b</sup> | 0.4159)           | affected               | 0.0066)       | $bw^{-1} day^{-1}$                   | affected   | 0.0002)              | affected   | 0.0847)              |  |  |  |  |
| 0.00                                 | 0                     | 0.00              | 0                      | 0.00          | 0.00                                 | 19         | 0.31                 | 0          | 0.00                 |  |  |  |  |
| 0.28                                 | 0                     | 0.00              | 0                      | 0.00          | 0.27                                 | 44         | 0.56                 | 13         | 0.13                 |  |  |  |  |
| 0.55                                 | 0                     | 0.00              | 6.3                    | 0.06          | 0.66                                 | 19         | 0.19                 | 0          | 0.00                 |  |  |  |  |
| 1.1                                  | 0                     | 0.00              | 0                      | 0.00          | 1.4                                  | 25         | 0.31                 | 25         | 0.31                 |  |  |  |  |
| 1.8                                  | 0                     | 0.00              | 0                      | 0.00          | 2.5                                  | 56         | 0.94                 | 25         | 0.31                 |  |  |  |  |
| 2.4                                  | 6.3                   | 0.06              | 25                     | 0.25          | 3.4                                  | 81         | 1.44                 | 25         | 0.31                 |  |  |  |  |
|                                      |                       |                   |                        | Canalicula    | r cholestasis                        |            |                      |            |                      |  |  |  |  |
|                                      | PFOS lesi             |                   |                        |               | AFFF PFOS                            | lesion sco | res                  |            |                      |  |  |  |  |
| Dose (mg                             | % of                  |                   | % of                   |               | Dose (mg                             | % of       | Score (KW <i>p</i> - | % of       | Score (KW <i>p</i> - |  |  |  |  |
| PFOS kg                              | females               | Score             | males                  | Score         | PFOS kg                              | females    | value =              | males      | value =              |  |  |  |  |
| bw <sup>-1</sup> day <sup>-1</sup> ) | affected <sup>b</sup> |                   | affected               |               | $bw^{-1} day^{-1}$                   | affected   | 0.3096)              | affected   | 0.0237)              |  |  |  |  |
| 0.00                                 |                       |                   |                        |               | 0.00                                 | 6.3        | 0.06                 | 6.3        | 0.06                 |  |  |  |  |
| 0.28                                 |                       |                   |                        |               | 0.27                                 | 0          | 0.00                 | 38         | 0.44                 |  |  |  |  |
| 0.55                                 |                       |                   |                        |               | 0.66                                 | 13         | 0.13                 | 38         | 0.50                 |  |  |  |  |
| 1.1                                  |                       |                   |                        |               | 1.4                                  | 19         | 0.19                 | 56         | 0.56                 |  |  |  |  |
| 1.8                                  |                       |                   |                        |               | 2.5                                  | 13         | 0.19                 | 44         | 0.75                 |  |  |  |  |
| 2.4                                  |                       |                   |                        |               | 3.4                                  | 0          | 0.00                 | 13         | 0.13                 |  |  |  |  |
|                                      |                       |                   |                        | Myofibroblas  | t proliferation                      | 1          |                      |            |                      |  |  |  |  |
|                                      |                       | PFOS lesi         | on scores <sup>c</sup> |               |                                      |            | AFFF PFOS            | lesion sco | res                  |  |  |  |  |
| Dose (mg                             | % of                  |                   | % of                   |               | Dose (mg                             | % of       | Score (KW <i>p</i> - | % of       | Score (KW <i>p</i> - |  |  |  |  |
| PFOS kg                              | females               | Score             | males                  | Score         | PFOS kg                              | females    | value =              | males      | value =              |  |  |  |  |
| bw <sup>-1</sup> day <sup>-1</sup> ) | affected <sup>b</sup> |                   | affected               |               | bw <sup>-1</sup> day <sup>-1</sup> ) | affected   | 0.0400)              | affected   | 0.0119)              |  |  |  |  |
| 0.00                                 |                       |                   |                        |               | 0.00                                 | 31         | 0.38                 | 19         | 0.19                 |  |  |  |  |
| 0.28                                 |                       |                   |                        |               | 0.27                                 | 69         | 0.88                 | 63         | 0.63                 |  |  |  |  |
| 0.55                                 |                       |                   |                        |               | 0.66                                 | 56         | 0.56                 | 25         | 0.31                 |  |  |  |  |

40

# Table 15. Effect of dietary exposure of adult Japanese quail to PFOS or 3M AFFF from 0 to 20 weeks of age on liver and kidney histological lesion scores by sex<sup>a</sup>

ER-2624 Final Report Version 3

08/05/2021

| 1.8 2.5 81 1.06 6.                                                                                                                 | 44 0.50                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                                                                                    | 63 0.81                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| - 2.4 3.4 - 69 - 0.94 - 7.5                                                                                                        | 75 0.75                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Heterophilic inflammation                                                                                                          |                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| PFOS lesion scores <sup>c</sup> AFFF PFOS lesio                                                                                    | on scores                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| Dose (mg% ofM ofDose (mg% ofScore (KW p-%                                                                                          | of Score (KW p-                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| PFOS kg females Score males Score PFOS kg females value = ma                                                                       | ales value =                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| bw <sup>-1</sup> day <sup>-1</sup> ) affected <sup>b</sup> affected bw <sup>-1</sup> day <sup>-1</sup> ) affected 0.2330) affected | ected 0.0426)                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| 0.00 0.00 31 0.31 0                                                                                                                | 0 0.00                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| 0.28 0.27 31 0.38 3                                                                                                                | 31 0.31                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| 0.55 0.66 6.3 0.06 6.                                                                                                              | 5.3 0.06                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| 1.1 1.4 19 0.19 1.                                                                                                                 | 13 0.13                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| 1.8 2.5 31 0.31 1                                                                                                                  | 19 0.19                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| 2.4 3.4 6.3 0.13 0                                                                                                                 | 0 0.00                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| KIDNEY                                                                                                                             |                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| Tubular regeneration                                                                                                               |                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| PFOS lesion scores AFFF PFOS lesion                                                                                                | on scores <sup>d</sup>                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| Dose (mg% ofScore (KWDose (mg% of%                                                                                                 | ó of                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| PFOS kg females $p$ -value = males $p$ -value = PFOS kg females Score ma                                                           |                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                    | ales Score                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| $bw^{-1} day^{-1}$ ) affected <sup>b</sup> 0.0082) affected 0.1200) $bw^{-1} day^{-1}$ ) affected affected                         | ales Score                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             | ected                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | ales Score<br>ected<br>                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | ales Score<br><u>ected</u>                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | ales Score<br>ected                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | ales Score<br><u>ected</u>                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | ales Score<br>ected                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | ales Score<br>ected                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | vales     Score       Yected                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | vales         Score           Sected                                                        on scores <sup>d</sup>                                       |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | alles         Score           ected                                                on scores <sup>d</sup> 6 of         ales           ales         Score |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              | alles         Score           iected                                        on scores <sup>d</sup> of         ales         Score           ected         |  |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             | talesScore $ected$ $on scores^d$ $of$ alesscoreected                                                                                                     |  |  |  |  |  |  |  |  |  |  |

41

ER-2624 Final Report Version 3

08/05/2021

| 0.55               | 0                     | 0.00  | 0        | 0.00      | 0.66               |            |                      |          |                      |
|--------------------|-----------------------|-------|----------|-----------|--------------------|------------|----------------------|----------|----------------------|
| 1.1                | 0                     | 0.00  | 0        | 0.00      | 1.4                |            |                      |          |                      |
| 1.8                | 0                     | 0.00  | 0        | 0.00      | 2.5                |            |                      |          |                      |
| 2.4                | 0                     | 0.00  | 0        | 0.00      | 3.4                |            |                      |          |                      |
|                    |                       |       |          | Tubular ( | degeneration       |            |                      |          |                      |
|                    | PFOS les              |       | 0        |           | AFFF PFOS          | lesion sco | res                  |          |                      |
| Dose (mg           | % of                  |       | % of     |           | Dose (mg           | % of       | Score (KW <i>p</i> - | % of     | Score (KW <i>p</i> - |
| PFOS kg            | females               | Score | males    | Score     | PFOS kg            | females    | value =              | males    | value =              |
| $bw^{-1} day^{-1}$ | affected <sup>b</sup> |       | affected |           | $bw^{-1} day^{-1}$ | affected   | 0.0003)              | affected | 0.6900)              |
| 0.00               |                       |       |          |           | 0.00               | 0          | 0.00                 | 0        | 0.00                 |
| 0.28               |                       |       |          |           | 0.27               | 0          | 0.00                 | 0        | 0.00                 |
| 0.55               |                       |       |          |           | 0.66               | 0          | 0.00                 | 6.3      | 0.06                 |
| 1.1                |                       |       |          |           | 1.4                | 0          | 0.00                 | 6.3      | 0.06                 |
| 1.8                |                       |       |          |           | 2.5                | 38         | 0.38                 | 6.3      | 0.06                 |
| 2.4                |                       |       |          |           | 3.4                | 25         | 0.31                 | 0        | 0.00                 |

<sup>a</sup>Lesions were graded on a severity scale of 0 to 4 according to the following criteria: 0 = no lesion recognized; 1 = minimal lesions, 1 to 3 foci or small foci of a few cells; 2 = mild lesions, increased number of foci or more of the lesion; 3 = moderate lesions, more lesions (2-3 per 10x field of vision); 4 = severe lesions, the majority of cells and/or extensive regions involved with the lesions
<sup>b</sup>n for all dose groups was 16 birds.

42

°Not assessed in the PFOS trial.

<sup>d</sup>Not assessed in the PFOS AFFF trial.

#### 4.2.12 Serum, liver and egg concentrations

In general, there was a dose-related increase in serum and liver concentrations of PFOS or AFFF PFOS in adult quail exposed to PFOS or 3M AFFF via the feed (Table 16 Figures 8-10) and in chicks exposed in ovo (Figure 11). Adults in the 3M AFFF trial also had dose-related increases in serum and liver PFHxS and PFOA (Table 16 Figures 12,13), but the chicks showed an increase in PFHxS until the 20 ug/g experimental group where there was a drop off (Figure 14). In both the PFOS and 3M AFFF trials, the concentrations of serum and liver PFOS in males exceeded concentrations in females. In the PFOS trial serum concentrations were on average 6.6fold greater and hepatic concentrations were 5.5-fold greater compared to females, whereas in the 3M AFFF trial serum and liver PFOS concentrations were 8.8- and 4.2-fold greater in males compared to females. Serum to liver ratios for PFOS were 3.4:1 for males and 2.9:1 for females and for males and females in the 3M AFFF trial 1.9:1 and 0.95:1. In chicks, serum and hepatic concentrations of PFOS and AFFF PFOS approximated 37% of adult female concentrations. The chick serum to liver ratio was 1.7:1 for both PFOS and AFFF PFOS. In the 3M AFFF trial, serum and liver PFHxS concentrations were 11 and 5% of PFOS concentrations in adult males, 37 and 12% in adult females and 15 and 5.3% in chicks. Concentrations of PFOS and AFFF PFOS generally increased in the yolks of eggs with increases in feed concentrations (Appendix). Concentrations of PFOS and AFFF PFOS also increased in the albumen with increasing feed concentrations (data not presented), but were only 0.29 and 0.045% of corresponding yolk concentrations. Concentrations of PFOS in eggs laid during week 10 were on average 41% of concentrations in eggs laid during weeks 1 and 2 and AFFF PFOS concentrations at week 10 were 64% of week 1 and 2 concentrations. The ratio of PFOS in the volk of eggs laid during week 10 to the concentration of PFOS in the serum of adult females at necropsy was 1.4:1 and for AFFF PFOS the ratio was 3.41:1.

| after 20 wk of       | exposure                           |                       |               |                    |             |                   |              |                    |           |
|----------------------|------------------------------------|-----------------------|---------------|--------------------|-------------|-------------------|--------------|--------------------|-----------|
| Dietary              |                                    |                       |               |                    |             |                   |              |                    |           |
| concentration        | ADD                                | Serum                 |               | Serum              |             | Liver             |              | Liver              |           |
| (mg kg <sup>-1</sup> | (mg kg                             | PFOS <sup>a</sup>     |               | PFHxS <sup>a</sup> |             | PFOS <sup>a</sup> |              | PFHxS <sup>a</sup> |           |
| feed)                | bw <sup>-1</sup> d <sup>-1</sup> ) | (mg L <sup>-1</sup> ) | 95% CI        | $(mg L^{-1})$      | 95% CI      | $(mg kg^{-1})$    | 95% CI       | $(mg kg^{-1})$     | 95% CI    |
|                      |                                    |                       |               | PH                 | FOS         |                   |              |                    |           |
|                      |                                    | Females               |               |                    |             |                   |              |                    |           |
| 0                    | 0                                  | 0.40                  | 0.28-0.53     |                    |             | 0.16              | 0.00-0.44    |                    |           |
| 2.1                  | 0.28                               | 14.06**               | 0.00-42.74    |                    |             | 7.12**            | 0.00-14.95   |                    |           |
| 4.1                  | 0.55                               | 25.43**               | 1.04-49.81    |                    |             | 6.29**            | 2.90-9.68    |                    |           |
| 8.7                  | 1.1                                | 48.96**               | 0.00-114.28   |                    |             | 12.07**           | 7.25-16.89   |                    |           |
| 14                   | 1.8                                | 28.66**               | 14.56-42.76   |                    |             | 12.07**           | 9.96-14.18   |                    |           |
| 18                   | 2.4                                | 35.51**               | 3.74-67.28    |                    |             | 16.85**           | 12.29-21.41  |                    |           |
|                      |                                    | Males                 |               |                    |             |                   |              |                    |           |
| 0                    | 0                                  | 0.57                  | 0.33-0.80     |                    |             | 0.14              | 0.00-0.29    |                    |           |
| 2.1                  | 0.28                               | 54.16**               | 31.09-77.23   |                    |             | 18.23**           | 15.54-20.92  |                    |           |
| 4.1                  | 0.55                               | 178.72**              | 78.60-278.84  |                    |             | 36.45**           | 27.80-45.09  |                    |           |
| 8.7                  | 1.1                                | 223.76**              | 117.28-330.25 |                    |             | 65.35**           | 54.15-76.54  |                    |           |
| 14                   | 1.8                                | 244.02**              | 151.01-337.02 |                    |             | 95.52**           | 72.48-118.56 |                    |           |
| 18                   | 2.4                                | 322.14**              | 215.72-428.56 |                    |             | 98.87**           | 57.75-140.00 |                    |           |
|                      |                                    |                       |               | AFFF               | FPFOS       |                   |              |                    |           |
|                      |                                    | Females               |               |                    |             |                   |              |                    |           |
| 0                    | 0                                  | 0.10                  | 0.09-0.10     | 0.03               | 0.03-0.04   | 0.24              | 0.12-0.37    | 0.02               | 0.01-0.04 |
| 2.1                  | 0.27                               | 6.41**                | 1.46-11.35    | 2.46**             | 1.36-3.55   | 8.23**            | 3.19-13.27   | 1.04**             | 0.51-1.56 |
| 5.0                  | 0.66                               | 9.67**                | 5.84-13.49    | 4.25**             | 3.21-5.28   | 12.97**           | 5.06-20.89   | 1.43**             | 0.44-2.42 |
| 11                   | 1.4                                | 21.42**               | 12.71-30.12   | 8.35**             | 5.81-10.88  | 24.42**           | 19.24-29.60  | 2.78**             | 1.99-3.56 |
| 19                   | 2.5                                | 44.70**               | 26.97-62.43   | 13.95**            | 11.67-16.23 | 41.08**           | 14.47-67.68  | 4.84**             | 3.61-6.06 |
| 27                   | 3.4                                | 52.41**               | 31.29-73.53   | 16.23**            | 11.30-21.17 | 42.28**           | 30.55-54.02  | 5.05**             | 3.47-6.64 |
|                      |                                    | Males                 |               |                    |             |                   |              |                    |           |
| 0                    | 0                                  | 0.33                  | 0.16-0.50     | 0.05               | 0.03-0.06   | 0.32              | 0.16-0.47    | 0.02               | 0.00-0.05 |
| 2.1                  | 0.27                               | 61.74**               | 52.53-70.96   | 5.51**             | 4.52-6.50   | 24.70**           | 19.12-30.28  | 0.87**             | 0.66-1.07 |

44

Table 16. Effect of dietary PFOS or 3M AFFF on adult Japanese quail serum and liver PFOS and PFHxS concentrations

ER-2624 Final Report Version 3

| 5.0 | 0.66 | 141.99** | 124.61-159.37 | 13.44** | 8.35-18.53  | 52.05**  | 40.03-64.07  | 2.27**  | 1.09-3.44 |
|-----|------|----------|---------------|---------|-------------|----------|--------------|---------|-----------|
| 11  | 1.4  | 189.76** | 153.31-226.21 | 16.28** | 8.29-24.27  | 113.00** | 58.93-167.07 | 2.50**  | 0.92-4.08 |
|     |      |          |               |         |             |          | 108.11-      |         | 0.00-     |
| 19  | 2.5  | 237.43** | 185.48-289.38 | 30.91** | 10.67-51.16 | 156.37** | 204.64       | 9.52**  | 20.39     |
|     |      |          |               |         |             |          | 178.17-      |         | 10.98-    |
| 27  | 3.4  | 278.93** | 235.46-322.41 | 42.67** | 25.07-60.27 | 230.51** | 282.84       | 16.39** | 21.81     |

<sup>a</sup>PFOS and PFHxS concentrations in serum and liver were not normally distributed. The data were log-transformed for analysis and the results shown are back-transformed means with 95% confidence intervals.

\*\*Means within columns are significantly different from control mean (p < 0.01).

PFOS = perfluorooctane sulfonate; AFFF = aqueous film forming foam; PFHxS = perfluorohexanesulfonate; ADD = average daily dose; bw = body weight; CI = confidence interval

45



Figure 8. Serum PFOS Concentration in Adult Quail from Chronic PFOS Trial



Figure 9. Liver PFOS Concentrations in Adult Quail from Chronic PFOS Trial



Figure 10. Liver and Serum PFOS Concentrations in Adult Quail from 3M AFFF Chronic Trial



Figure 11. Liver and Serum PFOS Concentrations in Quail Chicks from PFOS Chronic Trial



Figure 12. Liver and Serum PFHxS Concentrations in Adult Quail from 3M AFFF Chronic Trial



Figure 13. Liver and Serum PFOA Concentrations in Adult Quail from 3M AFFF Chronic Trial



Figure 14. Liver and Serum PFHxS Concentrations in Quail Chicks from 3M AFFF Chronic Trial

#### 4.2.13 Discussion

#### 4.2.13.1 Adult mortality and clinical observations

There were no mortalities or clinical signs in adult Japanese quail that were considered related to exposure to PFOS or AFFF PFOS. The 7 adults (0.96% mortality) in the PFOS trial and 15 adults (7.8% mortality) in the 3M AFFF trial that died or were euthanized during the 20-weeks trials experienced accidental injuries or injuries as a result of aggression between breeding pairs during the egg-laying phase despite the relatively low light intensity. Typically, feathers were stripped from the head and neck region of the female by the male during copulation and in some cases, sores developed that were treated twice daily with antibiotic ointment. If treatment of the wound did not promote healing and severity increased, the bird was euthanized. In some cases, the female was the aggressor.

In a study very similar to the present study, Newsted et al. (2007) evaluated the chronic toxicity of a 3M production lot of potassium PFOS (86.9%) in mallards (*Anus platyrhynchos*) and northern bobwhites (*Colinus virginianus*) at feed concentrations ranging from 10 to 150 mg kg feed<sup>-1</sup>. In that study, treatment-related mortalities of adult quail and mallards occurred in the 50 (ADD = 2.6 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) and 150 mg kg feed<sup>-1</sup> (ADD = 7.3 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) groups. Clinical signs of toxicity were commonly observed and included reduced reaction stimuli, wing droop, loss of coordination, thin appearance, lacrimation, loss of righting reflex, lower limb rigidity, convulsions, shallow and rapid respiration, ruffled appearance, lower limb weakness, lethargy, gasping, prostrate posture and spasms. In the 50 mg kg feed<sup>-1</sup> group there were 5 treatment-related deaths and 3 incidental deaths among the northern bobwhites. No mention was made of injuries resulting from aggressive behavior between breeding pairs. The ADD for the northern bobwhites in the 50 mg kg feed<sup>-1</sup> group (2.6 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) approximated ADDs for Japanese quail in the greater treatment groups in the present study that did not result in treatment-related deaths or clinical signs of toxicity. The difference in the

incidence of adult mortality and clinical signs between the two studies could be due to species differences between the northern bobwhite and Japanese quail and/or the age of the birds at the beginning of exposure (24-week-old in the Newsted et al. [2007] study and 1-d-old in the present study). Newsted et al. (2007) reported that adult northern bobwhites in the 10 mg kg feed<sup>-1</sup> (ADD = 0.77 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) group did not experience mortality but they did display clinical signs attributed to PFOS that included reduced reaction to external stimuli, ruffled appearance and lethargy beginning at 5 weeks of exposure.

In another avian reproductive toxicity study that involved exposure of northern bobwhites to PFOS at drinking water concentrations ranging from 0.216 to 18.7 ng mL<sup>-1</sup> (ADDs = 2.99 x  $10^{-5} - 2.45 \times 10^{-3}$  mg kg body weight<sup>-1</sup> day<sup>-1</sup>) or a 1.2:1 mixture of PFOS:PFHxS at concentrations ranging from 0.375 to 22.9 ng mL<sup>-1</sup> (ADDs = 5.04 x  $10^{-5} - 3.10 \times 10^{-3}$  mg kg body weight<sup>-1</sup> day<sup>-1</sup>), Dennis et al. (2020) stated that adult survival was 92% over the course of the 90-d study and only 1 death of 4 could possibly be attributed to PFOS exposure (0.596 ng mL water<sup>-1</sup>) It was observed that birds became increasingly aggressive during photostimulation. During the egg laying phase of the trial feather stripping and sores that required treatment were common.

#### 4.2.13.2 Adult feed consumption, body weight gain and body weights at necropsy

In the present study only males had significantly depressed feed consumption and that was at the greatest feed concentrations of PFOS and AFFF PFOS. Similarly, body weight gain of males only was significantly depressed (23%) and only in the 19 mg AFFF PFOS kg feed<sup>-1</sup> group (ADD = 2.5 mg AFFF PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>). Despite the lack of significance, body weight gains of adult males exposed to AFFF PFOS at 27 mg kg feed<sup>-1</sup> (ADD = 3.4 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) and PFOS beginning at a feed concentration of 4.1 mg kg feed<sup>-1</sup> (ADD = 0.55 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) ranged from 12 to 23% less than controls. Adult females in the 18 mg PFOS kg feed<sup>-1</sup> group (ADD = 2.4 mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>) had an average body weight gain that was 13% less compared to controls whereas body weight gain in the group exposed to the greatest concentration of AFFF PFOS (27 mg kg feed<sup>-1</sup>; ADD = 3.4 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) was only 6% less compared to controls. As with feed consumption and body weight gain, body weight at necropsy was significantly lower compared to controls in males only, but these difference were less than 10 %. The lesser effect of PFOS and AFFF PFOS on female body weight gain and body weights at necropsy compared to males could be due to compartmentalization and periodic elimination of the chemical via the egg by the laying female.

Newsted et al. (2007) reported no significant effect of 10 mg PFOS kg feed<sup>-1</sup> (ADD = 0.77 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) on feed consumption or body weights of northern bobwhites or mallards but exposure to 50 (quail ADD = 2.6 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) and 150 mg PFOS kg feed<sup>-1</sup> (quail ADD = 7.3 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) resulted in significant decreases in feed consumption and body weights beginning at 1 and 2 weeks of exposure, respectively. The ADD of 2.6 mg kg body weight<sup>-1</sup> day<sup>-1</sup> approximates the ADDs for Japanese quail in the greater treatment groups in the present study that resulted in significant or numerical decreases in adult male body weight gain. Body weight gain of northern bobwhite females exposed to 22.9 ng PFOS:PFHxS mL water<sup>-1</sup> (ADD = 3.10 x 10<sup>-3</sup> mg kg body weight<sup>-1</sup> day<sup>-1</sup>) was significantly

reduced at the end of the 90-d trial (Dennis, Karnjanapiboonwong et al. 2020). This ADD is more than a factor of 3 less than the ADDs in the present and Newsted et al. (2007) studies, suggesting greater bioavailability of PFOS in drinking water compared to feed.

#### 4.2.13.3 Egg production and hatchability

Exposure of Japanese quail to PFOS or AFFF PFOS had no significant effect on egg production but there was an effect on hatchability. Exposure to  $18 \text{ mg PFOS kg feed}^{-1}$  (ADD = 2.4 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) resulted in a significant decrease in hatchability (21% less than control hatchability) and exposure to 19 and 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADDs = 2.5 and 3.4mg kg body weight<sup>-1</sup> day<sup>-1</sup>) resulted in numerical decreases in hatchability ranging from 12 to 29% less than control hatchability. These results are similar to those reported by Newsted et al. (2007) in that northern bobwhites exposed to 10 mg PFOS kg feed<sup>-1</sup> (ADD = 0.77 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) had no significant decreases in egg production or hatchability, although there was a numerical decrease in hatchability (13%). In the Newsted et al. (2007) study, birds in the 50 and 150 mg kg feed<sup>-1</sup> groups were removed from the trial at weeks 6 and 4 prior to egg laying because of excessive treatment-related mortality. In northern bobwhites exposed to PFOS or PFOS:PFHxS via the drinking water there were no significant differences in egg production among treatment groups. There was, however, an increase in hatchability compared to controls in the 0.958 (ADD =  $1.31 \times 10^{-4}$  mg kg body weight<sup>-1</sup> day<sup>-1</sup>) and 22.9 (ADD =  $3.10 \times 10^{-3}$  mg kg body weight<sup>-1</sup> day<sup>-1</sup>) ng PFOS/PFHxS mL water<sup>-1</sup> groups. The only numerical decrease in hatchability compared to controls (13%) occurred in the 0.596 ng PFOS mL water<sup>-1</sup> (ADD =  $8.50 \ge 10^{-5} \text{ mg kg body weight}^{-1} \text{ day}^{-1}$  group.

# 4.2.13.4 Embryo mortality

In the present study, the greatest proportion of Japanese quail embryos that died prior to hatching, which was generally dose-dependent, did so after 14 d of incubation in the PFOS trial regardless of feed concentration, whereas in the 3M AFFF trial, embryo mortality occurred predominantly during the first 7 d of incubation with the exception of the greatest feed concentration that had a significant increase in the number of embryos dying after day 14, dead pips and live pips. Newsted et al. (2007) did not comment on embryo mortality, but data show a 2% decrease in northern bobwhite hatchlings compared to live 3-week embryos for controls and a 10% decrease for the 10 mg PFOS kg feed<sup>-1</sup> group (ADD = 0.77 mg kg body weight<sup>-1</sup> day<sup>-1</sup>), which implies late mortality of embryos related to exposure to PFOS. Dennis et al. (2020) analyzed arrested embryo development in northern bobwhites exposed to PFOS and PFOS/PFHxS in drinking water. They reported earlier arrested embryo development in the 0.596 ng PFOS mL water<sup>-1</sup> (ADD =  $8.50 \times 10^{-5}$  mg kg body weight<sup>-1</sup> day<sup>-1</sup>) group and later arrested development in the 18.7 ng PFOS mL water<sup>-1</sup> group (ADD =  $2.45 \times 10^{-3}$  mg kg body weight<sup>-1</sup> d<sup>-1</sup> <sup>1</sup>) compared to controls. Furthermore, the proportion of pipped eggs that did not hatch was significantly greater in the 18.7 ng PFOS mL water<sup>-1</sup> group (ADD =  $2.45 \times 10^{-3}$  mg kg body weight<sup>-1</sup> d<sup>-1</sup>) compared to controls. The inability of an egg to hatch once pipping begins implies that the potential hatchling is too weak to complete the process.
#### 4.2.13.5 Chick survivability through 7 and 14 d of age

Survivability of chicks raised on clean feed through 7 d of age was affected by in ovo exposure to PFOS at feed concentrations of 8.7 and 18 mg kg feed<sup>-1</sup> (ADDs =1.1 and 2.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) but not 14 mg kg feed<sup>-1</sup> (ADD = 1.8 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and at feed concentrations of AFFF PFOS beginning at 11 mg kg feed<sup>-1</sup> (ADDs  $\ge$  1.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>). The percent decrease in survivability was not related to PFOS dose and ranged from 4 to 22% less than control hatchability. There was a dose-related decrease in survivability for AFFF PFOS, which ranged from 5 to 54% less than control survivability. Although there were no significant differences in chick survivability from day 8 to 14, survivability. Similar to the results of the present study, Newsted et al. (2007) reported a 17% decrease in survivability of 14-d-old northern bobwhite chicks exposed in ovo to 10 mg PFOS kg feed<sup>-1</sup> (ADD = 0.77 mg kg body weight<sup>-1</sup> day<sup>-1</sup>). Survivability of northern bobwhite chicks through 21 d of age was not adversely affected by in ovo exposure to drinking water concentrations as high as 18.7 ng PFOS mL water<sup>-1</sup> (ADD = 2.45 x 10<sup>-3</sup> mg kg body weight<sup>-1</sup> d<sup>-1</sup>).

#### 4.2.13.6 Chick body weights

In ovo exposure to PFOS or AFFF PFOS had a variable effect on chick body weights at hatch and 7 and 14 d of age. With one exception the differences between body weight of exposed chicks compared to controls (less or greater) did not exceed 7%. The exception was average body weight of 7-d-old chicks in the 27 mg AFFF PFOS kg feed<sup>-1</sup> group (ADD = 3.4 mg kg body weight<sup>-1</sup> day<sup>-1</sup>) that was 16% less than average control body weight and that difference decreased to 6% at 14 d of age. Newsted et a. (2007) did not report body weights of northern bobwhites chicks exposed in ovo to 10 mg PFOS kg feed<sup>-1</sup> (ADD = 0.77 mg kg body weight<sup>-1</sup> day<sup>-1</sup>). The effect of PFOS or PFOS/PFHxS in drinking water on body weights of northern bobwhite chicks exposed in ovo (Dennis et al. 2020) was similar to the results of the present study in that weights were either less or greater than control body weights with no relation to dose.

#### 4.2.13.7 Liver weights

Exposure to PFOS or AFFF PFOS caused an increase in absolute and/or relative liver weights in adult and/or juvenile Japanese quail at greater feed concentrations. In adults, there was a significant increase (26%) in absolute liver weight of females exposed to 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADD = 3.4 mg kg<sup>-1</sup> d<sup>-1</sup>). Although not significant, the increase in relative liver weight in the same group was 25% compared to controls. In ovo exposure to 18 mg PFOS kg feed<sup>-1</sup> (ADD = 2.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) caused a significant increase in absolute (7%) and relative (10%) liver weights of 14-d-old chicks. Newsted et al. (2007) reported an increase in adult female absolute and relative liver weights that occurred at a concentration of 10 mg PFOS kg feed<sup>-1</sup> (ADD = 0.77 mg kg<sup>-1</sup> d<sup>-1</sup>). The authors stated that the increase in liver weight was considered to be adaptive because there was an absence of liver pathology. In contrast, in the

present study there was hepatic pathology in adults exposed to AFFF PFOS that suggests that the increase in liver weights of adult females in the 27 mg AFFF PFOS kg feed<sup>-1</sup> (ADD =  $3.4 \text{ mg kg}^{-1} \text{ d}^{-1}$ ) group reflects a toxic response.

### 4.2.13.8 Histopathology

The only significant pathology that could be related to exposure to PFOS or AFFF PFOS was hepatic extramedullary hematopoiesis that was most predominant in females in the AFFF PFOS trial at dietary concentrations of 11, 19 and 27 mg kg feed<sup>-1</sup> (ADDs = 1.4, 2.5 and 3.4 mg kg body weight<sup>-1</sup> d<sup>-1</sup> with the incidence increasing with dose from 25 to 81% and average severity scores increasing from 0.31 to 1.44. The lesion also occurred in 25% of the males in the same treatment groups. Hematopoiesis occurs in the bone marrow of healthy adult birds. Extramedullary hematopoiesis after reproductive activity is the result of pathology in the animal and is induced by specific cytokines and growth factors when decreased production in the bone marrow does not meet the need for circulating erythrocytes and/or leukocytes. In contrast to the present study, Newsted et al. (2007) did not detect pathological changes in the liver or kidneys of adult northern bobwhites exposed to 10 mg PFOS kg feed<sup>-1</sup> (ADD = 0.77 mg kg<sup>-1</sup> d<sup>-1</sup>).

### 4.2.13.9 Serum, liver and egg concentrations

Serum and liver concentrations of PFOS in adult and juvenile quail exposed to PFOS or AFFF PFOS generally increased with dose as did serum and liver PFHxS in adults and juveniles in the 3M AFFF trial. It has been shown that the tissue distribution of PFOS is determined by its ability to bind to proteins and that serum/plasma, kidney and liver are the predominant sites of accumulation in a variety of species (Han et al. 2003, Jones et al. 2003, Conder et al. 2008, Yeung et al. 2009, Yoo et al. 2009, Huang et al. 2019). The greater concentrations of PFOS, AFFF PFOS and PFHxS in males compared to females is due to deposition of the chemicals into the egg by the female. In the present study, serum and liver concentrations of PFOS and AFFF PFOS in males were approximately 6-fold greater compared to females. Newsted et al. (2007) also reported sex differences in serum and hepatic PFOS concentrations in adult northern bobwhites and mallards with concentrations being approximately 17-fold greater in male northern bobwhites and 6-fold greater in male mallards compared to females. Newsted et al. (2007) stated that despite the sex differences in serum and liver PFOS concentrations, serum:liver PFOS ratios were similar between sexes (approximately 1.7:1 for northern bobwhites and 1.5:1 for mallards). In the present study, serum:liver ratios for PFOS and AFFF PFOS were also similar between sexes (approximately 3.2:1 for PFOS and 1.4:1 for AFFF PFOS).

Serum and liver concentrations of PFOS and AFFF PFOS in 14-d-old Japanese quail chicks were approximately 37% of adult female concentrations. In the Newsted et al. study (2007) serum and liver concentrations in northern bobwhite chicks approximated adult female concentrations.

Adult females transferred PFOS and AFFF PFOS consumed via the feed into the yolk of eggs in a generally dosed-related manner with greater concentrations occurring during the first 2

weeks of the 10-week egg laying period compared to the last week. Concentrations of PFOS and AFFF PFOS in week 10 eggs were 41 and 64% of week 1 and 2 eggs. A similar phenomenon has been reported for the great tit (*Parus major*) and Audouin's gull (*Larus audouinii*) environmentally exposed to PFAS in that egg yolk PFOS concentrations decreased with the laying order of the clutch (Vicente, Sanpera et al. 2015, Lasters, Groffen et al. 2019). The concentration of PFOS in northern bobwhite eggs at a dietary concentration of 10 mg kg feed (Newsted et al. 2007) is similar to the average concentration of PFOS and AFFF PFOs at equivalent ADDs in the present study (62 versus 64 mg kg<sup>-1</sup>).

#### 4.2.13.10 Critical effect, NOAELs, ADDs, tissue concentrations

Of the endpoints examined in the present study that were significantly different compared to controls, chick survivability was considered to be the most ecologically relevant to inform development of TRVs. Benchmark modeling using the US Environmental Protection Agency benchmark dose (BMD) software (version 3.1.1; <u>http://www.epa.gov/ncea/bmds</u>) was attempted to derive the lower 95% confidence limit of the BMD (BMDL) for a 20% decrease in chick survivability for PFOA and AFFF PFOS. However, all models were judged by the BMD software as "questionable". For this reason, it was decided that the no adverse effect levels (NOAELs) for the critical effect of chick survivability would be used.

The chick survivability NOAEL for PFOS is 4.1 mg kg feed<sup>-1</sup> (ADD = 0.55 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) and 5.0 mg kg feed<sup>-1</sup> (ADD = 0.66 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) for AFFF PFOS. These values are close to the chick survivability LOAEL (no NOAEL) reported by Newsted et al. (2007) of 10 mg kg feed<sup>-1</sup> (ADD = 0.77 mg kg body weight<sup>-1</sup> d<sup>-1</sup>) for PFOS in northern bobwhite. Serum, liver and egg concentrations corresponding to the chick survivability NOAELs (values for PFOS and AFFF PFOS are averaged to provide single values) in the present study as well PFOS concentrations in the same tissues corresponding to the LOAEL for northern bobwhite chick survivability in the Newsted et al. (2007) study are given in Table 17. Values between the two studies, particularly the ADDs, are in good agreement.

In the study by Dennis et al. (2020), northern bobwhites showed some effects of exposure to PFOS and PFOS:PFHxS by drinking water. The authors reported an adverse effect on adult female body weight gain at an ADD of  $3.1 \times 10^{-3}$  mg PFOS:PFHxS kg body weight<sup>-1</sup> d<sup>-1</sup> and the inability of pipped chicks to hatch at an ADD of  $2.45 \times 10^{-3}$  mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>. Of the two effects, it would seem that the effect on hatching is more ecologically relevant in terms of a population effect and should be considered the key effect. The corresponding NOAEL is  $8.50 \times 10^{-5}$  mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup> (Table 17). This ADD based on drinking water exposure is approximately 8000-fold less than the ADDs based on exposure to PFOS via the feed. Dennis et al. (2020) state that PFAS in water are likely 100% bioaccessible in water compared to food, which may account for the almost 4-factor difference in NOAELs between the two feeding studies and the drinking water study. It will be important to determine the bioavailability of PFOS in water compared to feed to inform which type of ADD should be used for risk assessment purposes. Determination of tissue concentrations of PFOS resulting from exposure via drinking water should help answer this question. It would also be valuable to

establish the concentration of PFOS in drinking water that results in a significant effect on chick survivability for better comparison to feed exposure studies.

## 4.2.13.11 Toxicity reference values

Avian TRVs for PFOS were published by Newsted et al. (2005) using the chick survivability LOAEL reported by Newsted et al. (2007) and dividing by a total uncertainty factor of 36 based on US Environmental Protection Agency Great Lakes Initiative methodology (US Environmental Protection Agency, 1995). The total uncertainty factor of 36 was comprised of a factor of 6 for interspecies extrapolation, a factor of 6 associated with exposure duration and a factor of 2 to account for use of a LOAEL instead of a NOAEL. In the present study, the total uncertainty factor would be 18 because a NOAEL is available. Using the average of the PFOS and AFFF PFOS NOAELs for chick survivability, this uncertainty factor results in TRVs of 0.26 mg kg feed<sup>-1</sup> and 0.034 mg kg bw<sup>-1</sup> d<sup>-1</sup>. TRVs based on serum and liver concentrations in adult females and chicks and yolk concentrations at the NOAEL for chick survivability are given in Table 17 as are the TRVs from the Newsted et al. (2005) report.

| Measure of<br>PFOS                                                                | Japane             | nese quail – dietary <sup>a</sup> |                    | Northern bobwhite – dietary <sup>b</sup> |       |                  | Northern bobwhite –<br>drinking water <sup>c</sup> |                         |
|-----------------------------------------------------------------------------------|--------------------|-----------------------------------|--------------------|------------------------------------------|-------|------------------|----------------------------------------------------|-------------------------|
| exposure                                                                          |                    |                                   |                    |                                          |       |                  |                                                    |                         |
|                                                                                   | NOAEL <sup>d</sup> | LOAEL <sup>d</sup>                | TRV <sup>d,e</sup> | NOAEL                                    | LOAEL | TRV <sup>f</sup> | NOAEL                                              | LOAEL                   |
| Feed or water<br>concentration<br>(mg kg <sup>-1</sup> or<br>mg L <sup>-1</sup> ) | 4.6                | 9.9                               | 0.26               | -                                        | 10    | 0.27             | 18.7 x 10 <sup>-3</sup>                            | 5.96 x 10 <sup>-4</sup> |
| ADD (mg kg<br>bw <sup>-1</sup> d <sup>-1</sup>                                    | 0.61               | 1.3                               | 0.034              | -                                        | 0.77  | 0.021            | 8.50 x 10 <sup>-5</sup>                            | 2.45 x 10 <sup>-3</sup> |
| Adult female<br>serum (mg L <sup>-1</sup> )                                       | 18                 | 35                                | 1.0                | -                                        | 8.7   | 0.24             | -                                                  | -                       |
| Adult female<br>liver (mg kg <sup>-1</sup> )                                      | 10                 | 18                                | 0.56               | -                                        | 4.9   | 0.14             | -                                                  | -                       |
| Chick serum<br>(mg L <sup>-1</sup> )                                              | 5.3                | 13                                | 0.30               | -                                        | -     | -                | -                                                  | -                       |
| Chick liver<br>(mg kg <sup>-1</sup> )                                             | 3.1                | 6.0                               | 0.17               | -                                        | -     | -                | -                                                  | -                       |
| Egg (mg kg <sup>-1</sup> ) <sup>g</sup>                                           | 33                 | 63                                | 1.8                | -                                        | 62    | 1.7              | -                                                  | -                       |

Table 17. NOAELs, LOAELs and TRVs for Japanese quail and northern bobwhites based on avian reproduction studies assessing the effects of PFOS administered in the feed or drinking water

<sup>a</sup>Present study.

<sup>b</sup>Newsted et al. (2005, 2007).

<sup>c</sup>Dennis et al. (2020).

<sup>d</sup>Values are based on the average of PFOS and AFFF PFOS values.

<sup>d</sup>TRVs calculated by dividing NOAEL values by a total uncertainty factor of 18.

<sup>f</sup>TRVs calculated by dividing LOAEL values by a total uncertainty factor of 36.

<sup>g</sup>Based on concentrations in eggs layed during week 10.

NOAEL = no observed adverse effect level; LOAEL = lowest observed adverse effect level; TRV = toxicity reference value; PFOS = perfluorooctane sulfonate; AFFF = aqueous film forming foam; PFHxS = perfluorohexanesulfonate; ADD = average daily dose; bw = body weight

56

# 5. Internal Dose Investigation

Because of the apparent reduced toxicity of PFOS+PFOA and AFFF exposure when considering the feed concentrations and subsequent calculated doses, further work was performed on the data collected during the acute trials, looking at internal concentrations and comparing for many of the outcomes. This included calculating the average liver PFOS concentration of quail that died and comparing liver concentrations for the first necropsy to lethality within exposure groups. We limited our analysis to the first necropsy because there was significant depuration of PFOS by the second necropsy (Figure 15). The PFOS liver concentrations for first necropsy and dead quail were then also used to calculate a residue liver concentration resulting in 50% lethality (LR50). The LR50 is calculated in the same manner as the LD50 and LT50 where a probit is calculated and regressed against the log of the concentration.

During the chronic trials quail were exposed through feed to either PFOS or 3M AFFF at PFOS concentrations of 0, 2.1, 4.0, 8.6, 14 and 18 mg PFOS kg feed<sup>-1</sup> and 0, 2.1, 5.0, 11, 19 and 27 mg AFFF PFOS kg feed<sup>-1</sup> for a total of 4 weeks. At 4 weeks, quail were sorted by sex and randomly paired (male/female) and tagged. Egg laying began at 10 weeks of age and eggs were collected for the next 10 weeks. Endpoints of exposure observed were feed intake, adult and chick body weight and weight gain, egg production, hatchability, embryo mortality, liver weight and liver and kidney pathology.

# 5.1 Results

While LC50s and ADD50s resulted in greatest apparent toxicity of PFOS alone, when one looks at the liver concentrations of PFOS in quail exposed to PFOS, PFOS+PFOA and 3M AFFF, there is little variability in the level of PFOS and the lethality of the internal dose (Figure 15). Furthermore, the PFOS liver concentrations are much lower than the PFOA liver concentrations, indicating that PFOS is much more toxic than PFOA to Japanese quail. The PFOS concentrations from the PFOS+PFOA and 3M AFFF exposures are lower than the PFOS alone, indicating that both PFOA and the other PFAS present in AFFF contribute to toxicity. The average liver concentration of PFOS in dead quail are shown in Table 18 and show no significant difference among doses within each trial with one exception. The exception is that the liver concentration of the 1399 µg/g dose of AFFF is significantly lower than for the 164, 499, and  $634 \mu g/g$  doses ( $\alpha$ <0.05). However, when we consider the different trials, the PFOS liver concentration in dead quail from the PFOS+PFOA trial is significantly lower than the liver concentration from the PFOS trial (p = 0.04) and the PFOS liver concentration in the AFFF trial is significantly lower than both the PFOS+PFOA trial (p = 0.009) and the PFOS trial (p = 1.8 x  $10^{-6}$ ).

| PFC                  | S Acute 7   | Frial | PFOS                 | S + PFOA    | Trial  | I                    | AFFF Trial  |      |  |
|----------------------|-------------|-------|----------------------|-------------|--------|----------------------|-------------|------|--|
| PFOS                 | Liver       |       | PFOS                 | Liver       |        | AFFF                 | Liver       |      |  |
| Dose                 | PFOS        | Std.  | Dose                 | PFOS        | Std.   | Dose                 | PFOS        | Std. |  |
| (mg kg               | conc.       | Dev.  | (mg kg               | conc.       | Dev.   | (mg kg               | conc.       | Dev. |  |
| feed <sup>-1</sup> ) | $(\mu g/g)$ |       | feed <sup>-1</sup> ) | $(\mu g/g)$ |        | feed <sup>-1</sup> ) | $(\mu g/g)$ |      |  |
| 216                  | 205         | 68    | 92                   | 230         | $NA^*$ | 164                  | 208         | 33   |  |
| 471                  | 274         | 81    | 104                  | 210         | 90     | 213                  | 170         | 75   |  |
| 654                  | 234         | 107   | 134                  | 181         | 32     | 325                  | 132         | 28   |  |
| 866                  | 236         | 85    | 155                  | 210         | 86     | 465                  | 185         | 81   |  |
| 920                  | 248         | 101   | 296                  | 232         | 107    | 499                  | 188         | 79   |  |
| 1955                 | 258         | 104   |                      |             |        | 634                  | 198         | 65   |  |
|                      |             |       |                      |             |        | 1399                 | 120         | 36   |  |



\*Only two values



# Figure 15. PFOS or PFOA liver concentrations from acute exposures (values are average concentrations of PFAS in dead quail livers)

The LR50 values from these data also show a different interpretation of toxicity than the feed-based LC50s and ADD50s (Table 2). The lowest LR50 is for 3M AFFF, consistent with the liver concentrations from dead quail, but none of the LR50s are statistically different. This lack of significance could be a result of the low numbers of probit values we have in each of the

LR50 plots. Given more data points would allow for more statistical power. Unfortunately, the jump from no death to 100% die off appears to be quite steep causing the low power.

| Exposure   | LR50 (µg/g) | 95% C.I. | r <sup>2</sup> |
|------------|-------------|----------|----------------|
| PFOS       | 155         | 143-169  | 0.217          |
| PFOA       | 279         | 230-338  | 0.766          |
| PFOS+PFOA* | 149         | 132-168  | 0.500          |
| 3MAFFF*    | 140         | 130-152  | 0.862          |

Table 19. LR50 values in Japanese quail from acute exposure to PFAS

\*vales are for PFOS

As with the dead quail liver concentrations and the LC50s and ADD50s, the LR50s for PFOA are much higher than PFOS, supporting the argument that PFOA is less toxic in Japanese quail than PFOS.

Of the endpoints for the chronic trial, the only significant effect on reproduction was chick survivability. The survivability was significantly decreased at a PFOS feed concentration of 8.7 mg kg feed<sup>-1</sup> and AFFF PFOS of 11 mg kg feed<sup>-1</sup>. These were translated into Toxic Reference Values (TRVs) of 0.25 mg kg feed<sup>-1</sup> and 0.034 mg kg bw<sup>-1</sup> d<sup>-1</sup>. The ability to combine the PFOS and AFFF exposure data into single TRVs was an indication that the differences seen in the acute exposure between PFOS and AFFF exposure was not indicative of differences in internal doses. Unfortunately, the dead chicks were not labeled, so their individual livers could not be analyzed as unique. However, the chicks that were sacrificed at day 14 and weighed were labeled and their livers analyzed for PFOS. Ignoring feed concentration and plotting 14-day body weight vs. liver PFOS concentration indicates a significant negative correlation at liver concentrations greater than 5.5  $\mu$ g/g (slope = -0.58; CI = -0.81 – -0.35; p = 1.73 x 10<sup>-6</sup> Figure 16).



Figure 16. 14-Day old Japanese quail chick body weight as a function of liver PFOS concentration. Blue symbols indicate liver concentrations less than 5.5  $\mu$ g/g and showed no correlation of body weight to concentration. Red symbols indicate liver concentrations greater than 5.5  $\mu$ g/g and are included in the regression.

The egg yolk PFOS concentrations from the chronic trials also showed great variability in within and between doses. While, as mentioned above, they generally increased with increasing dose, there were certainly outliers and the variability increased with increasing dose (Figure 17).



Figure 17. Yolk PFOS Concentrations (µg/g) from PFOS and AFFF Chronic Trials

The AFFF chronic trial values appear to be lower than for the PFOS chronic trial for similar doses. However, only the 15 mg kg feed<sup>-1</sup> dose is significant (p = 0.049). This is certainly because of the great variability within each dose. What is notable is that the vales for yolk concentrations are comparable to the values observed in dead quail liver from the acute trials. This indicates that the hen passes a considerable burden of PFOS to their offspring.

### **5.2** Conclusions

The data presented on health effects of PFAS on outcomes in both the acute and chronic trials when correlated with feed concentraitons and/or doses does not tell the complete picture of the effects observed in Japanese quail. There is evidence from both the acute and chronic exposures that the internal dose removes some variability seen when considering feed concentration and resulting average daily dose. Furthermore, it appears that PFOS is the dominant PFAS in AFFF with respect to toxicity and that PFOA is much less toxic. Future toxicity studies should prioritize internal doses when considering PFAS toxicity.

# 6. Conclusions and Implications for Future Research

## 6.1 Acute Exposure Study

Based on dietary concentrations related to mortality, feed consumption and body and organ weight endpoints, the results of the present study indicate that PFOS is acutely more toxic to Japanese quail than PFOA. Results also suggest that the acute toxicities of PFOS and PFOA are additive. AFFF PFOS was less toxic than PFOS and PFOA based on dietary concentrations and 6:2 FtTAoS provided by Ansul AFFF was not toxic at concentrations fed. However, examination of hepatic concentrations of PFOS, AFFF PFOS and PFOA in birds that died on trial suggests there is a tissue threshold for mortality and the threshold for AFFF PFOS is less than the thresholds for PFOS and PFOA and equivalent to PFOS + PFOA.

## 6.2 Chronic Exposure Study

Examination of the effects of dietary PFOS and a legacy AFFF containing PFOS AFFF PFOS on reproduction and chick survivability and growth in Japanese quail determined that the

NOAELs associated with chick survivability, which is considered the critical effect, were 4.1 mg PFOS kg feed<sup>-1</sup> (0.55 mg PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>) and 5.0 mg AFFF PFOS kg feed<sup>-1</sup> (0.66 mg AFFF PFOS kg body weight<sup>-1</sup> d<sup>-1</sup>). Toxicity reference values were calculated by averaging the PFOS and AFFF PFOS values and dividing by a total uncertainty factor of 18. Resulting TRVs are 0.25 mg kg feed<sup>-1</sup> and 0.034 mg kg bw<sup>-1</sup> d<sup>-1</sup>, which are similar to TRVs reported by Newsted et al. (2005) for northern bobwhites.

### 7. Literature Cited

Anderson, R. H., G. C. Long, R. C. Porter and J. K. Anderson (2016). "Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties." <u>Chemosphere</u> **150**: 678-685.

Arias E, V. A., M. Mallavarapu and R. Naidu (2015). "Identification of the source of PFOS and PFOA contamination at a military air base site." <u>Environ. Monit. Assess.</u> **187**(1): 1-8.

Backe, W. J., T. C. Day and J. A. Field (2013). "Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS." <u>Environ. Sci. Technol.</u> **47**(10): 5226-5234.

Buck, R. C., J. Franklin, U. Berger, J. M. Conder, I. T. Cousins, P. de Voogt, A. A. Jensen, K. Kannan, S. A. Mabury and S. P. J. van Leeuwen (2011). "Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins." <u>Integr. Environ.</u> <u>Assess. Manage.</u> 7(4): 513-541.

Bursian, S. J., J. E. Link, M. McCarty and M. F. Simcik (2020). "The Subacute Toxicity of Perfluorooctane Sulfonate and/or Perfluorooctanoic Acid and Legacy Aqueous Film-Forming Foams to Japanese Quail (Coturnix japonica) Chicks." <u>Environ. Toxicol. Chem.</u>: Ahead of Print.

Butenhoff, J. L., G. L. Kennedy, Jr., P. M. Hinderliter, P. H. Lieder, R. Jung, K. J. Hansen, G. S. Gorman, P. E. Noker and P. J. Thomford (2004). "Pharmacokinetics of Perfluorooctanoate in Cynomolgus Monkeys." <u>Toxicol. Sci.</u> **82**(2): 394-406.

Cohen-Barnhouse, A. M., M. J. Zwiernik, J. E. Link, S. D. Fitzgerald, S. W. Kennedy, J. P. Giesy, S. Wiseman, P. D. Jones, J. L. Newsted, D. Kay and S. J. Bursian (2011). "Developmental and posthatch effects of in ovo exposure to 2,3,7,8-TCDD, 2,3,4,7,8-PECDF, and 2,3,7,8-TCDF in Japanese quail (Coturnix japonica), common pheasant (Phasianus colchicus), and white leghorn chicken (Gallus gallus domesticus) embryos." <u>Environ. Toxicol. Chem.</u> **30**(7): 1659-1668.

Cohen-Barnhouse, A. M., M. J. Zwiernik, J. E. Link, S. D. Fitzgerald, S. W. Kennedy, J. C. Herve, J. P. Giesy, S. Wiseman, Y. Yang, P. D. Jones, Y. Wan, B. Collins, J. L. Newsted, D. Kay and S. J. Bursian (2011). "Sensitivity of Japanese Quail (Coturnix japonica), Common Pheasant (Phasianus colchicus), and White Leghorn Chicken (Gallus gallus domesticus) Embryos to In Ovo Exposure to TCDD, PeCDF, and TCDF." <u>Toxicol. Sci.</u> **119**(1): 93-103.

Conder, J. M., R. A. Hoke, W. de Wolf, M. H. Russell and R. C. Buck (2008). "Are PFCAs Bioaccumulative? A Critical Review and Comparison with Regulatory Criteria and Persistent Lipophilic Compounds." <u>Environ. Sci. Technol.</u> **42**(4): 995-1003.

Custer, C. M., T. W. Custer, H. L. Schoenfuss, B. H. Poganski and L. Solem (2012). "Exposure and effects of perfluoroalkyl compounds on tree swallows nesting at Lake Johanna in east central Minnesota, USA." <u>Reprod. Toxicol.</u> **33**(4): 556-562.

Dennis, N. M., A. Karnjanapiboonwong, S. Subbiah, J. N. Rewerts, J. A. Field, C. McCarthy, C. J. Salice and T. A. Anderson (2020). "Chronic Reproductive Toxicity of Perfluorooctane Sulfonic Acid and a Simple Mixture of Perfluorooctane Sulfonic Acid and Perfluorohexane Sulfonic Acid to Northern Bobwhite Quail (Colinus virginianus)." <u>Environ. Toxicol. Chem.</u> 39(5): 1101-1111.

Finney, D. J. (1952). <u>Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve</u>. NY, NY USA, Cambridge University Press.

Gewurtz, S. B., S. P. Bhavsar, S. Petro, C. G. Mahon, X. Zhao, D. Morse, E. J. Reiner, S. A. Tittlemier, E. Braekevelt and K. Drouillard (2014). "High levels of perfluoroalkyl acids in sport fish species downstream of a firefighting training facility at Hamilton International Airport, Ontario, Canada." <u>Environ. Int.</u> **67**: 1-11.

Giesy, J. P. and K. Kannan (2002). "Perfluorochemical surfactants in the environment." <u>Environmental Science and Technology</u> **36**(7): 146A-152A.

Han, X., T. A. Snow, R. A. Kemper and G. W. Jepson (2003). "Binding of Perfluorooctanoic Acid to Rat and Human Plasma Proteins." <u>Chem. Res. Toxicol.</u> **16**(6): 775-781.

Hilton, G. M., E. Odenkirchen, M. Panger, G. Waleko, A. Lowit and A. J. Clippinger (2019). "Evaluation of the avian acute oral and sub-acute dietary toxicity test for pesticide registration." <u>Regul. Toxicol. Pharmacol.</u> **105**: 30-35.

Hites, R. A. and K. J. Jobst (2018). "Is Nontargeted Screening Reproducible?" <u>Environ. Sci.</u> <u>Technol.</u> **52**(21): 11975-11976.

Huang, M. C., A. L. Dzierlenga, V. G. Robinson, S. Waidyanatha, M. J. DeVito, M. A. Eifrid, C.
A. Granville, S. T. Gibbs and C. R. Blystone (2019). "Toxicokinetics of perfluorobutane sulfonate (PFBS), perfluorohexane-1-sulphonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) in male and female Hsd:Sprague Dawley SD rats after intravenous and gavage administration." <u>Toxicol. Rep.</u> 6: 645-655.

John, J. and N. Draper (1980). "An alternative family of transformations." Journal of the Royal Statistical Society: Series C (Applied Statistics) **29**: 190–197.

Jones, P. D., W. Hu, W. De Coen, J. L. Newsted and J. P. Giesy (2003). "Binding of perfluorinated fatty acids to serum proteins." <u>Environ. Toxicol. Chem.</u> **22**(11): 2639-2649.

Kannan, K. (2011). "Perfluoroalkyl and polyfluoroalkyl substances: current and future perspectives." <u>Environ. Chem.</u> **8**(4): 333-338.

Kennedy, G. L., Jr., J. L. Butenhoff, G. W. Olsen, J. C. O'Connor, A. M. Seacat, R. G. Perkins, L. B. Biegel, S. R. Murphy and D. G. Farrar (2004). "The Toxicology of Perfluorooctanoate." <u>Crit. Rev. Toxicol.</u> **34**(4): 351-384.

Lasters, R., T. Groffen, A. Lopez-Antia, L. Bervoets and M. Eens (2019). "Variation in PFAA concentrations and egg parameters throughout the egg-laying sequence in a free-living songbird

(the great tit, Parus major): Implications for biomonitoring studies." <u>Environ. Pollut. (Oxford, U.</u> <u>K.)</u> **246**: 237-248.

Lau, C., J. L. Butenhoff and J. M. Rogers (2004). "The developmental toxicity of perfluoroalkyl acids and their derivatives." <u>Toxicology and Applied Pharmacology</u> **198**(2): 231-241.

Molina Elizabeth, D., R. Balander, D. Fitzgerald Scott, P. Giesy John, K. Kannan, R. Mitchell and J. Bursian Steven (2006). "Effects of air cell injection of perfluorooctane sulfonate before incubation on development of the white leghorn chicken (Gallus domesticus) embryo." <u>Environ Toxicol Chem</u> **25**(1): 227-232.

Moody, C. A. and J. A. Field (1999). "Determination of Perfluorocarboxylates in Groundwater Impacted by Fire-Fighting Activity." <u>Environ. Sci. Technol.</u> **33**(16): 2800-2806.

Moody, C. A. and J. A. Field (2000). "Perfluorinated Surfactants and the Environmental Implications of Their Use in Fire-Fighting Foams." <u>Environmental Science & Technology</u> **34**(18): 3864-3870.

Moody, C. A., G. N. Hebert, S. H. Strauss and J. A. Field (2003). "Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA." J. Environ. Monit. **5**(2): 341-345.

Newsted, J. L., S. A. Beach, S. P. Gallagher and J. P. Giesy (2006). "Pharmacokinetics and acute lethality of perfluorooctanesulfonate (PFOS) to juvenile mallard and northern bobwhite." <u>Arch.</u> <u>Environ. Contam. Toxicol.</u> **50**(3): 411-420.

Newsted, J. L., K. K. Coady, S. A. Beach, J. L. Butenhoff, S. Gallagher and J. P. Giesy (2007). "Effects of perfluorooctane sulfonate on mallard and northern bobwhite quail exposed chronically via the diet." <u>Environ. Toxicol. Pharmacol.</u> **23**(1): 1-9.

Newsted, J. L., P. D. Jones, K. Coady and J. P. Giesy (2005). "Avian Toxicity Reference Values for Perfluorooctane Sulfonate." <u>Environ. Sci. Technol.</u> **39**(23): 9357-9362.

Norden, M., U. Berger and M. Engwall (2016). "Developmental toxicity of PFOS and PFOA in great cormorant (Phalacrocorax carbo sinensis), herring gull (Larus argentatus) and chicken (Gallus gallus domesticus)." <u>Environ. Sci. Pollut. Res.</u> **23**(11): 10855-10862.

Norden, M., O. Westman, N. Venizelos and M. Engwall (2012). "Perfluorooctane sulfonate increases  $\beta$ -oxidation of palmitic acid in chicken liver." <u>Environ. Sci. Pollut. Res.</u> **19**(5): 1859-1863.

O'Brien, J. M., A. C. Carew, S. Chu, R. J. Letcher and S. W. Kennedy (2009). "Perfluorooctane sulfonate (PFOS) toxicity in domestic chicken (Gallus gallus domesticus) embryos in the absence of effects on peroxisome proliferator activated receptor alpha (PPAR $\alpha$ )-regulated genes." <u>Comp. Biochem. Physiol., Part C Toxicol. Pharmacol.</u> **149C**(4): 524-530.

O'Brien, J. M., S. W. Kennedy, S. Chu and R. J. Letcher (2010). "Isomer-specific accumulation of perfluorooctane sulfonate in the liver of chicken embryos exposed in ovo to a technical mixture." <u>Environ. Toxicol. Chem.</u> **30**(1): 226-231.

OECD (1991). <u>OECD Guidelines for Testing of Chemicals</u>. Tokyo, Japan, Yakugyojiho Co., Ltd.

Peden-Adams, M. M., J. E. Stuckey, K. M. Gaworecki, J. Berger-Ritchie, K. Bryant, P. G. Jodice, T. R. Scott, J. B. Ferrario, B. Guan, C. Vigo, J. S. Boone, W. D. McGuinn, J. C. DeWitt and D. E. Keil (2009). "Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS)." <u>Reprod. Toxicol.</u> **27**(3-4): 307-318.

Place, B. J. and J. A. Field (2012). "Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military [Erratum to document cited in CA157:137539]." <u>Environ. Sci. Technol.</u> **46**(19): 10859.

Smits Judit, E. G. and S. Nain (2013). "Immunomodulation and hormonal disruption without compromised disease resistance in perfluorooctanoic acid (PFOA) exposed Japanese quail." <u>Environ Pollut</u> **179**: 13-18.

Stroemqvist, M., J. A. Olsson, A. Kaerrman and B. Brunstroem (2012). "Transcription of genes involved in fat metabolism in chicken embryos exposed to the peroxisome proliferator-activated receptor alpha (PPAR $\alpha$ ) agonist GW7647 or to perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA)." <u>Comp. Biochem. Physiol., Part C Toxicol. Pharmacol.</u> **156**(1): 29-36.

USACHPPM (2000). Standard practice for wildlife toxicity reference values. Technical Guide 254. M. Aberdeen Proving Ground.

USEPA (2012). Ecological effects test guidelines. OCSPP 850.2200: Avian dietary toxicity test.

Vicente, J., C. Sanpera, M. Garcia-Tarrason, A. Perez and S. Lacorte (2015). "Perfluoroalkyl and polyfluoroalkyl substances in entire clutches of Audouin's gulls from the ebro delta." <u>Chemosphere</u> **119**(Suppl.): S62-S68.

Wicklin, R. (2011). "Log transformations: How to handle negative data values?" <u>SAS Blogs https://blogs.sas.com/content/iml/2011/04/27/log</u>-transformations-how-tohandle-negative-data-values.html 2019.

Yanai, J., S. Dotan, R. Goz, A. Pinkas, F. J. Seidler, T. A. Slotkin and F. Zimmerman (2008). "Exposure of Developing Chicks to Perfluorooctanoic Acid Induces Defects in Prehatch and Early Posthatch Development." <u>J. Toxicol. Environ. Health, Part A</u> **71**(2): 131-133.

Yeung, L. W. Y., E. I. H. Loi, V. Y. Y. Wong, K. S. Guruge, N. Yamanaka, N. Tanimura, J. Hasegawa, N. Yamashita, S. Miyazaki and P. K. S. Lam (2009). "Biochemical Responses and Accumulation Properties of Long-Chain Perfluorinated Compounds (PFOS/PFDA/PFOA) in Juvenile Chickens (Gallus gallus)." <u>Arch. Environ. Contam. Toxicol.</u> **57**(2): 377-386.

Yoo, H., K. S. Guruge, N. Yamanaka, C. Sato, O. Mikami, S. Miyazaki, N. Yamashita and J. P. Giesy (2009). "Depuration kinetics and tissue disposition of PFOA and PFOS in white leghorn chickens (Gallus gallus) administered by subcutaneous implantation." <u>Ecotoxicol. Environ. Saf.</u> **72**(1): 26-36.

# 8. Appendices

# 8.1 Supporting Data

All effects data is housed in a single Excel Spreadsheet, as that is a much more easily digestible form.

| Nominal          | Measured         | Nominal          | Measured         | Nominal          | Measured         |
|------------------|------------------|------------------|------------------|------------------|------------------|
| Dose             | Concentration    | Dose             | Concentration    | Dose             | Concentration    |
| $(\mu g g^{-1})$ |
| Control          | 0.20             | 281              | 216              | 1125             | 852              |
| Control          | 0.18             | 281              | 175              | 1125             | 946              |
| Control          | 0.22             | 281              | 257              | 1125             | 801              |
| 70               | 66.7             | 561              | 390              | 1687             | 1039             |
| 70               | 67.2             | 561              | 357              | 1687             | 617              |
| 70               | 52.5             | 561              | 666              | 1687             | 1104             |
| 140              | 95.4             | 841              | 608              | 2250             | 1632             |
| 140              | 97.6             | 841              | 715              | 2250             | 2137             |
| 140              | 80.4             | 841              | 640              | 2250             | 2096             |

8.1.1 Acute PFOS Exposure Feed Concentration Analysis

# 8.1.2 Acute PFOS Exposure Concentrations

|         | Contro           | ol Quail         |                 | 62 μg g <sup>-1</sup> Feed Concentration |                  |                  |                 |
|---------|------------------|------------------|-----------------|------------------------------------------|------------------|------------------|-----------------|
|         | Liver            | Serum            |                 |                                          | Liver            | Serum            |                 |
| Quail # | Conc             | Conc             | Necropsy        | Quail #                                  | Conc             | Conc             | Necropsy        |
|         | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |                 |                                          | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |                 |
| 21      | 0.69             | 0.24             | 1 <sup>st</sup> | 1341                                     | 13.1             | 31.5             | $2^{nd}$        |
| 22      | 0.70             | 0.41             | $2^{nd}$        | 1342                                     | 16.7             | 52.3             | $2^{nd}$        |
| 23      | 0.72             | 0.35             | $2^{nd}$        | 1343                                     | 132              | 148              | $1^{st}$        |
| 24      | 0.65             | 0.47             | $2^{nd}$        | 1344                                     | 13.4             | 30.0             | $2^{nd}$        |
| 25      | 1.17             | 0.32             | $2^{nd}$        | 1345                                     | 17.9             | 9.91             | $2^{nd}$        |
| 26      | 0.88             | 0.36             | $2^{nd}$        | 1346                                     | 11.5             | 27.1             | $2^{nd}$        |
| 27      | 1.00             |                  | 1 <sup>st</sup> | 1347                                     | 65.0             | 114              | 1 <sup>st</sup> |
| 28      | 1.28             | 0.30             | 1 <sup>st</sup> | 1348                                     |                  | 139              | 1 <sup>st</sup> |
| 29      |                  | 0.27             | 1 <sup>st</sup> | 1350                                     | 52.6             | 112              | $1^{st}$        |
| 30      | 0.78             | 0.32             | $2^{nd}$        | 1351                                     | 13.7             | 21.6             | $2^{nd}$        |
| 31      | 1.14             | 0.22             | 1 <sup>st</sup> | 1352                                     | 52.3             | 59.1             | $1^{st}$        |
| 32      |                  | 0.34             | 1 <sup>st</sup> | 1353                                     | 17.2             |                  | $2^{nd}$        |
| 33      | 0.87             |                  | 1 <sup>st</sup> | 1354                                     | 65.2             | 146              | $1^{st}$        |
| 34      | 0.63             | 0.48             | $2^{nd}$        | 1355                                     | 69.1             | 131              | $1^{st}$        |
| 35      | 3.83             | 0.25             | 1 <sup>st</sup> | 1356                                     | 18.5             | 42.8             | $2^{nd}$        |
| 36      | 1.05             | 0.35             | $2^{nd}$        | 1357                                     | 64.9             | 126              | $1^{st}$        |
| 37      | 1.07             | 0.24             | $1^{st}$        | 1358                                     | 51.3             | 142              | 1 <sup>st</sup> |
| 38      | 1.10             | 0.24             | 1 <sup>st</sup> | 1359                                     | 70.5             |                  | 1 <sup>st</sup> |
| 39      | 0.62             | 0.32             | 2 <sup>nd</sup> | 1360                                     | 17.3             | 30.3             | 2 <sup>nd</sup> |

| 91      | μg g <sup>-1</sup> Feed | d Concentra      | ntion           | 216 µg g <sup>-1</sup> Feed Concentration |                  |                  |                 |
|---------|-------------------------|------------------|-----------------|-------------------------------------------|------------------|------------------|-----------------|
|         | Liver                   | Serum            |                 |                                           | Liver            | Serum            |                 |
| Quail # | Conc                    | Conc             | Necropsy        | Quail #                                   | Conc             | Conc             | Necropsy        |
|         | $(\mu g g^{-1})$        | $(\mu g g^{-1})$ |                 |                                           | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |                 |
| 2741    | 38.4                    | 54.8             | 2 <sup>nd</sup> | 4141                                      | 121              |                  | Dead            |
| 2742    | 31.9                    |                  | 2 <sup>nd</sup> | 4142                                      | 120              |                  | Dead            |
| 2743    | 24.6                    | 48.5             | 2 <sup>nd</sup> | 4145                                      | 327              |                  | Dead            |
| 2744    | 15.4                    | 54.6             | 2 <sup>nd</sup> | 4146                                      | 21.4             | 34.0             | 2 <sup>nd</sup> |
| 2745    | 22.4                    | 37.9             | 2 <sup>nd</sup> | 4147                                      | 214              |                  | Dead            |
| 2746    | 222                     | 600              | 1 <sup>st</sup> | 4150                                      | 209              |                  | Dead            |
| 2747    | 132                     | 236              | 1 <sup>st</sup> | 4153                                      | 230              |                  | Dead            |
| 2748    | 118                     | 214              | 1 <sup>st</sup> | 4154                                      | 176              |                  | Dead            |
| 2749    | 112                     | 247              | 1 <sup>st</sup> | 4155                                      | 23.2             | 44.9             | $2^{nd}$        |
| 2750    | 13.0                    | 25.3             | $2^{nd}$        | 4159                                      | 241              |                  | Dead            |
| 2751    | 108                     |                  | 1 <sup>st</sup> | 4160                                      | 16.9             | 31.7             | $2^{nd}$        |
| 2753    | 28.6                    | 59.2             | $2^{nd}$        |                                           |                  |                  |                 |
| 2754    | 18.5                    | 33.4             | 2 <sup>nd</sup> |                                           |                  |                  |                 |
| 2755    | 137                     | 263              | 1 <sup>st</sup> |                                           |                  |                  |                 |
| 2756    | 120                     | 214              | 1 <sup>st</sup> |                                           |                  |                  |                 |
| 2757    | 18.0                    | 27.7             | 2 <sup>nd</sup> |                                           |                  |                  |                 |
| 2758    | 117                     | 151              | 1 <sup>st</sup> |                                           |                  |                  |                 |
| 2760    | 116                     | 156              | 1 <sup>st</sup> |                                           |                  |                  |                 |

\*Serum could not be collected from dead quail.

| 471        | μg g <sup>-1</sup> | 654        | μg g <sup>-1</sup> | 866        | μg g <sup>-1</sup> | 920        | μg g <sup>-1</sup> | 1955       | μg g <sup>-1</sup> |
|------------|--------------------|------------|--------------------|------------|--------------------|------------|--------------------|------------|--------------------|
| Quail<br># | Liver<br>Conc      |
|            | $(\mu g g^{+})$    |            | $(\mu g g^{-})$    |
| 5521       | 261                | 6821       | 472                | 1361       | 336                | 2761       | 203                | 4146       | 386                |
| 5527       | 299                | 6824       | 315                | 1362       | 289                | 2763       | 259                | 4163       | 379                |
| 5528       | 486                | 6825       | 374                | 1363       | 183                | 2769       | 95.1               | 4164       | 84.4               |
| 5530       | 240                | 6829       | 223                | 1364       | 135                | 2773       | 306                | 4165       | 89.4               |
| 5531       | 173                | 6833       | 196                | 1365       | 257                | 2774       | 178                | 4167       | 354                |
| 5532       | 264                | 6835       | 138                | 1366       | 209                | 2775       | 185                | 4168       | 239                |
| 5533       | 237                | 6836       | 138                | 1367       | 278                | 2776       | 160                | 4169       | 298                |
| 5535       | 205                | 6838       | 179                | 1368       | 198                | 2777       | 320                | 4172       | 194                |
| 5536       | 253                | 6839       | 189                | 1369       | 131                | 2778       | 306                | 4176       | 254                |
| 5537       | 302                | 6840       | 171                | 1375       | 404                | 2779       | 468                | 4177       | 314                |
| 5540       | 293                | 6843       | 180                | 1376       | 178                | 2780       | 247                | 4180       | 243                |

\*Serum could not be collected from dead quail.

| Nominal          | Measured         | Nominal          | Measured         | Nominal          | Measured           |
|------------------|------------------|------------------|------------------|------------------|--------------------|
| Dose             | Concentration    | Dose             | Concentration    | Dose             | Concentration      |
| $(\mu g g^{-1})$ | $(\mu g \ g^{-1})$ |
| Control          | 4.29             | 500              | 424              | 1250             | 1267               |
| Control          | 1.74             | 500              | 431              | 1250             | 1064               |
| Control          | 1.91             | 500              | 370              | 1250             | 1284               |
| 200              | 154              | 750              | 452              | 1500             | 1236               |
| 200              | 163              | 750              | 649              | 1500             | 1504               |
| 200              | 163              | 750              | 525              | 1500             | 1446               |
| 350              | 282              | 1000             | 612              |                  |                    |
| 350              | 235              | 1000             | 660              |                  |                    |
| 350              | 143              | 1000             | 769              |                  |                    |

8.1.3 Acute PFOA Exposure Feed Concentration Analysis

8.1.4 Acute PFOA Exposure Concentrations

|         | Contro           | ol Quail         |                 | 162 μg g <sup>-1</sup> Feed Concentration |                  |                  |                 |
|---------|------------------|------------------|-----------------|-------------------------------------------|------------------|------------------|-----------------|
|         | Liver            | Serum            |                 |                                           | Liver            | Serum            |                 |
| Quail # | Conc             | Conc             | Necropsy        | Quail #                                   | Conc             | Conc             | Necropsy        |
|         | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |                 |                                           | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |                 |
| 41      | 0.60             | 3.67             | 1 <sup>st</sup> | 1381                                      | 41.1             | 173              | 1 <sup>st</sup> |
| 42      | 0.36             | 0.09             | 2 <sup>nd</sup> | 1383                                      | 25.3             | 97.5             | 1 <sup>st</sup> |
| 43      | 0.40             | 0.24             | 2 <sup>nd</sup> | 1384                                      | 18.2             | 70.2             |                 |
| 44      | 0.39             | 0.09             | $2^{nd}$        | 1385                                      | 0.56             | 1.25             | $2^{nd}$        |
| 45      | 0.41             | 3.96             | 1 <sup>st</sup> | 1386                                      | 25.2             | 77.1             | 1 <sup>st</sup> |
| 46      | 0.38             | 4.54             | 1 <sup>st</sup> | 1387                                      | 0.52             | 0.62             | $2^{nd}$        |
| 47      | 0.41             | 0.20             | 2 <sup>nd</sup> | 1388                                      | 0.85             | 1.05             | $2^{nd}$        |
| 48      | 0.48             | 0.14             | 2 <sup>nd</sup> | 1389                                      | 35.4             | 85.8             | 1 <sup>st</sup> |
| 49      | 0.69             | 5.44             | 1 <sup>st</sup> | 1390                                      | 4.13             | 11.5             | $2^{nd}$        |
| 50      | 0.48             | 0.06             | 2 <sup>nd</sup> | 1391                                      | 0.40             | 0.86             | $2^{nd}$        |
| 51      | 0.47             | 4.16             | 1 <sup>st</sup> | 1392                                      | 37.3             | 7.72             | $2^{nd}$        |
| 52      | 0.44             | 3.46             | 1 <sup>st</sup> | 1393                                      | 17.3             |                  | 1 <sup>st</sup> |
| 53      | 0.53             | 4.22             | 1 <sup>st</sup> | 1394                                      | 0.70             | 0.49             | $2^{nd}$        |
| 54      | 0.45             | 0.21             | $2^{nd}$        | 1395                                      | 0.56             | 0.84             | $2^{nd}$        |
| 55      | 0.44             | 0.19             | $2^{nd}$        | 1396                                      | 16.0             | 62.4             | 1 <sup>st</sup> |
| 56      | 0.60             | 0.09             | 2 <sup>nd</sup> | 1397                                      | 15.6             | 374              | 1 <sup>st</sup> |
| 57      | 0.21             | 4.28             | 1 <sup>st</sup> | 1398                                      | 9.06             | 5.66             | $2^{nd}$        |
| 58      | 0.74             | 0.27             | 2 <sup>nd</sup> | 1399                                      | 8.86             | 24.9             | 1 st            |
| 59      | 0.50             | 4.32             | 1 <sup>st</sup> | 1400                                      | 0.54             | 0.79             | 2 <sup>nd</sup> |
| 60      | 0.49             | 3.99             | 1 <sup>st</sup> |                                           |                  |                  |                 |

| 262     | 2 μg g <sup>-1</sup> Fee | d Concentr       | ation           | 368     | μg g <sup>-1</sup> Fee | d Concentr       | ation           |
|---------|--------------------------|------------------|-----------------|---------|------------------------|------------------|-----------------|
|         | Liver                    | Serum            |                 |         | Liver                  | Serum            |                 |
| Quail # | Conc                     | Conc             | Necropsy        | Quail # | Conc                   | Conc             | Necropsy        |
|         | $(\mu g g^{-1})$         | $(\mu g g^{-1})$ |                 |         | $(\mu g g^{-1})$       | $(\mu g g^{-1})$ |                 |
| 2781    | 1.62                     | 3.58             | $2^{nd}$        | 4181    | 212                    | 272              | 1 <sup>st</sup> |
| 2784    | 26.8                     | 68.6             | 1 <sup>st</sup> | 4182    | 488                    |                  | Dead            |
| 2785    | 549                      |                  | 1 <sup>st</sup> | 4184    | 0.40                   | 0.64             | $2^{nd}$        |
| 2787    | 15.8                     | 66.7             | 1 <sup>st</sup> | 4186    | 461                    |                  | Dead            |
| 2788    | 4.27                     | 10.4             | $2^{nd}$        | 4187    | 320                    |                  | Dead            |
| 2789    | 284                      | 270              | 1 <sup>st</sup> | 4190    | 476                    |                  | Dead            |
| 2790    | 0.81                     | 0.42             | $2^{nd}$        | 4191    | 527                    |                  | Dead            |
| 2791    | 128                      | 370              | 1 <sup>st</sup> | 4192    | 0.65                   | 1.03             | $2^{nd}$        |
| 2792    | 128                      | 1.39             | $2^{nd}$        | 4195    | 304                    |                  | Dead            |
| 2793    | 192                      | 173              | 1 <sup>st</sup> | 4196    | 16.9                   | 43.8             | 1 <sup>st</sup> |
| 2794    | 0.69                     | 0.68             | 2 <sup>nd</sup> | 4199    | 0.95                   | 1.91             | $2^{nd}$        |
| 2795    | 88.4                     | 3.86             | 1 <sup>st</sup> |         |                        |                  |                 |
| 2796    | 1.49                     | 3.98             | 2 <sup>nd</sup> |         |                        |                  |                 |
| 2798    | 23.9                     | 93.1             | 1 <sup>st</sup> |         |                        |                  |                 |
| 2799    | 0.47                     | 0.88             | 2 <sup>nd</sup> |         |                        |                  |                 |
| 2800    | 0.63                     | 1.58             | 2 <sup>nd</sup> |         |                        |                  |                 |

| 447   | μg g <sup>-1</sup> Fee | ed Concent       | tration         | 590 µ   | ug g <sup>-1</sup> | 814     | ug g <sup>-1</sup> |
|-------|------------------------|------------------|-----------------|---------|--------------------|---------|--------------------|
| Quail | Liver                  | Serum            |                 |         | Liver              |         | Liver              |
|       | Conc                   | Conc             | Necropsy        | Quail # | Conc               | Quail # | Conc               |
| #     | $(\mu g g^{-1})$       | $(\mu g g^{-1})$ |                 |         | $(\mu g g^{-1})$   |         | $(\mu g g^{-1})$   |
| 5542  | 369                    |                  | Dead            | 6841    | 496                | 1504    | 620                |
| 5546  | 314                    |                  | Dead            | 6842    | 491                | 1505    | 383                |
| 5547  | 359                    |                  | Dead            | 6843    | 481                | 1506    | 441                |
| 5549  | 348                    |                  | Dead            | 6846    | 504                | 1507    | 584                |
| 5550  | 582                    |                  | Dead            | 6847    | 464                | 1509    | 392                |
| 5551  | 328                    |                  | Dead            | 6850    | 739                | 1512    | 21                 |
| 5554  | 894                    |                  | Dead            | 6851    | 439                | 1514    | 387                |
| 5555  | 455                    |                  | Dead            | 6852    | 607                | 1515    | 385                |
| 5556  | 380                    |                  | Dead            | 6856    | 425                | 1518    | 395                |
| 5557  | 31.6                   | 79.6             | 1 <sup>st</sup> | 6857    | 428                | 1519    | 387                |
| 5558  | 85.7                   | 87.5             | 1 <sup>st</sup> | 6860    | 503                | 1520    | 488                |

| 926        | ug g <sup>-1</sup>                     | 1208       | β μg g <sup>-1</sup>                   |
|------------|----------------------------------------|------------|----------------------------------------|
| Quail<br># | Liver<br>Conc<br>(µg g <sup>-1</sup> ) | Quail<br># | Liver<br>Conc<br>(µg g <sup>-1</sup> ) |
| 2901       | 665                                    | 4301       | 303                                    |
| 2902       | 401                                    | 4302       | 544                                    |
| 2903       | 538                                    | 4303       | 669                                    |
| 2904       | 354                                    | 4304       | 657                                    |
| 2905       | 181                                    | 4305       | 529                                    |
| 2908       | 292                                    | 4306       | 296                                    |
| 2909       | 301                                    | 4307       | 459                                    |
| 2912       | 409                                    | 4309       | 634                                    |
| 2913       | 381                                    | 4310       | 451                                    |
| 2916       | 443                                    | 4311       | 397                                    |
| 2917       | 505                                    | 4315       | 378                                    |

8.1.5 Acute PFOS + PFOA Exposure Feed Concentration Analysis

| Nominal          | Measured         | Measured         | Nominal          | Measured         | Measured         |
|------------------|------------------|------------------|------------------|------------------|------------------|
| Dose             | PFOS             | PFOA             | Dose Each        | PFOS             | PFOA             |
| Each             | Concentration    | Concentration    | $(\mu g g^{-1})$ | Concentration    | Concentration    |
| $(\mu g g^{-1})$ | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |                  | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| Control          | 0.71             | 1.14             | 150              | 113              | 95.78            |
| Control          | 0.70             | 1.20             | 150              | 65.0             | 58.35            |
| Control          | 0.73             | 1.25             | 150              | 256              | 191.09           |
| 50               | 42.8             | 36.22            | 175              | 194              | 114.16           |
| 50               | 41.5             | 36.72            | 175              | 148              | 132.97           |
| 50               | 38.4             | 33.70            | 175              | 153              | 156.09           |
| 75               | 62.1             | 49.12            | 200              | 188              | 166.23           |
| 75               | 60.9             | 50.45            | 200              | 174              | 140.41           |
| 75               | 70.0             | 60.51            | 200              | 178              | 146.30           |
| 100              | 64.5             | 56.75            | 400              | 330              | 241.75           |
| 100              | 120              | 101.34           | 400              | 325              | 266.68           |
| 100              | 76.7             | 65.83            | 400              | 291              | 238.01           |
| 135              | 97.2             | 91.75            |                  |                  |                  |
| 135              | 116              | 98.58            |                  |                  |                  |
| 135              | 113              | 102.72           |                  |                  |                  |

|         | Control Quail   |                         |                         |                         |                         |  |
|---------|-----------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| Oueil # | Noorongu        | Liver PFOS              | Liver PFOA              | Serum PFOS              | Serum PFOA              |  |
| Quall # | Necropsy        | Conc ( $\mu g g^{-1}$ ) |  |
| 61      | 2 <sup>nd</sup> |                         |                         | 0.060                   | 0.061                   |  |
| 62      | $2^{nd}$        |                         |                         | 0.075                   | 0.083                   |  |
| 63      | 2 <sup>nd</sup> |                         |                         | 0.069                   | 0.161                   |  |
| 64      | $2^{nd}$        | 0.281                   | 0.091                   | 0.076                   | 0.075                   |  |
| 65      | 2 <sup>nd</sup> |                         |                         | 0.059                   | 0.041                   |  |
| 66      | 1 <sup>st</sup> | 0.323                   | 0.033                   | 5.081                   | 4.475                   |  |
| 67      | 1 <sup>st</sup> | 0.637                   | 0.838                   | 4.929                   | 4.065                   |  |
| 68      | 1 <sup>st</sup> | 0.276                   | 0.330                   | 5.485                   | 3.795                   |  |
| 69      | 2 <sup>nd</sup> |                         |                         | 0.055                   | 0.116                   |  |
| 70      | 1 <sup>st</sup> | 0.363                   | 0.193                   | 4.07                    | 3.823                   |  |
| 71      | 1 <sup>st</sup> | 0.320                   | 0.314                   | 4.24                    | 4.355                   |  |
| 72      | 1 <sup>st</sup> | 0.586                   | 0.687                   | 3.66                    | 3.925                   |  |
| 73      | 1 <sup>st</sup> | 0.383                   | 0.514                   | 4.63                    | 4.493                   |  |
| 75      | 2 <sup>nd</sup> | 0.775                   | 0.092                   | 0.05                    | 0.038                   |  |
| 76      | 2 <sup>nd</sup> | 0.343                   | 0.110                   | 0.06                    | 0.278                   |  |
| 78      | 2 <sup>nd</sup> | 0.323                   | 0.064                   | 0.25                    | 0.048                   |  |
| 79      | 1 <sup>st</sup> | 0.882                   | 0.918                   | 4.51                    | 4.116                   |  |
| 80      | 2 <sup>nd</sup> |                         |                         | 0.07                    | 0.165                   |  |

8.1.6 Acute PFOS + PFOA Exposure Liver and Serum Concentration Analysis

|         | 43/45 μg g <sup>-1</sup> Feed Concentration |                         |                         |                         |                         |  |
|---------|---------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| Quail # | Noorongu                                    | Liver PFOS              | Liver PFOA              | Serum PFOS              | Serum PFOA              |  |
| Quall # | necropsy                                    | Conc ( $\mu g g^{-1}$ ) |  |
| 1401    | $2^{nd}$                                    |                         |                         | 19.7                    | 0.115                   |  |
| 1402    | 1 <sup>st</sup>                             | 83.5                    | 17.2                    | 435                     | 213                     |  |
| 1403    | $2^{nd}$                                    | 9.38                    | 0.101                   | 13.6                    | 0.110                   |  |
| 1404    | $2^{nd}$                                    | 20.6                    | 0.059                   | 26.1                    | 0.081                   |  |
| 1405    | 1 <sup>st</sup>                             | 49.9                    | 0.578                   | 429                     | 14.7                    |  |
| 1406    | $2^{nd}$                                    | 11.1                    | 0.107                   | 21.3                    | 0.073                   |  |
| 1407    | 2 <sup>nd</sup>                             |                         | 5.40                    | 42.4                    | 0.073                   |  |
| 1408    | 2 <sup>nd</sup>                             |                         | 2.62                    | 21.9                    | 0.977                   |  |
| 1409    | 1 <sup>st</sup>                             | 58.2                    | 5.08                    | 98.1                    | 27.2                    |  |
| 1411    | 1 <sup>st</sup>                             | 62.3                    | 0.672                   | 88.6                    | 22.8                    |  |
| 1412    | 1 <sup>st</sup>                             | 44.8                    | 11.3                    | 107                     | 7.641                   |  |
| 1413    | 1 <sup>st</sup>                             |                         | 1.06                    | 16.7                    | 0.096                   |  |
| 1414    | 1 <sup>st</sup>                             | 61.1                    | 3.57                    | 91.7                    | 45.1                    |  |
| 1415    | $2^{nd}$                                    |                         | 14.2                    | 20.1                    | 0.487                   |  |
| 1417    | 2 <sup>nd</sup>                             | 59.1                    | 17.2                    | 72.0                    | 14.8                    |  |
| 1418    | $2^{nd}$                                    | 71.8                    | 0.101                   | 24.8                    | 0.286                   |  |
| 1419    | 1 <sup>st</sup>                             | 67.7                    | 0.059                   | 76.2                    | 134.4                   |  |
| 1420    | 2 <sup>nd</sup>                             |                         |                         | 19.9                    | 0.050                   |  |

|         |                 | 58/62 μg g <sup>-</sup> | <sup>1</sup> Feed Concentra | ation                   |                         |
|---------|-----------------|-------------------------|-----------------------------|-------------------------|-------------------------|
| Quail # | Noorongu        | Liver PFOS              | Liver PFOA                  | Serum PFOS              | Serum PFOA              |
| Quall # | Necropsy        | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ )     | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |
| 2801    | $2^{nd}$        |                         |                             | 35.6                    | 4.49                    |
| 2802    | 2 <sup>nd</sup> |                         |                             | 25.5                    | 0.060                   |
| 2803    | 1 <sup>st</sup> | 86.6                    | 4.51                        | 154                     | 26.0                    |
| 2804    | 2 <sup>nd</sup> | 14.2                    | 0.310                       | 23.8                    | 0.290                   |
| 2806    | 1 <sup>st</sup> | 82.2                    | 26.7                        | 109                     | 83.6                    |
| 2807    | $2^{nd}$        |                         |                             | 38.2                    | 0.659                   |
| 2808    | 2 <sup>nd</sup> |                         |                             | 84.1                    | 0.261                   |
| 2809    | 1 <sup>st</sup> | 67.0                    | 35.8                        | 116                     | 119                     |
| 2810    | 1 <sup>st</sup> | 141.6                   | 41.2                        | 109                     | 91.05                   |
| 2812    | $2^{nd}$        |                         |                             | 30.7                    | 0.072                   |
| 2813    | 1 <sup>st</sup> | 71.1                    | 1.95                        | 139                     | 13.7                    |
| 2814    | $2^{nd}$        | 14.9                    | 0.449                       | 20.2                    | 0.511                   |
| 2815    | $2^{nd}$        |                         | 8.49                        | 33.4                    | 2.43                    |
| 2816    | 1 <sup>st</sup> | 82.8                    | 7.93                        | 105                     | 33.0                    |
| 2817    | 1 <sup>st</sup> | 131                     | 6.02                        | 102                     | 22.6                    |
| 2818    | 1 <sup>st</sup> | 78.0                    |                             | 156                     | 31.4                    |
| 2819    | 2 <sup>nd</sup> |                         |                             | 15.6                    | 0.086                   |
| 2820    | 2 <sup>nd</sup> | 16.6                    | 0.095                       | 22.6                    | 0.079                   |

|         | 74/79 µg g <sup>-1</sup> Feed Concentration |                         |                         |                         |                         |  |
|---------|---------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| Quail # | Noorongu                                    | Liver PFOS              | Liver PFOA              | Serum PFOS              | Serum PFOA              |  |
| Quall # | Necropsy                                    | Conc ( $\mu g g^{-1}$ ) |  |
| 4201    | $2^{nd}$                                    | 0.140                   | 21.3                    | 39.9                    | 0.190                   |  |
| 4202    | 1 <sup>st</sup>                             | 13.8                    | 108                     | 138                     | 48.94                   |  |
| 4203    | $2^{nd}$                                    | 0.600                   | 19.3                    | 25.1                    | 1.73                    |  |
| 4204    | 1 <sup>st</sup>                             | 52.2                    | 95.7                    | 169                     | 26.76                   |  |
| 4205    | 1 <sup>st</sup>                             | 38.8                    | 130                     | 225                     | 173.5                   |  |
| 4206    | 1 <sup>st</sup>                             | 54.0                    | 250                     | 203                     | 111.4                   |  |
| 4207    | 2 <sup>nd</sup>                             |                         |                         | 33.0                    | 0.451                   |  |
| 4209    | 2 <sup>nd</sup>                             | 0.560                   | 17.7                    | 24.8                    | 1.52                    |  |
| 4210    | 2 <sup>nd</sup>                             | 0.261                   | 15.4                    | 21.2                    | 0.834                   |  |
| 4212    | 2 <sup>nd</sup>                             |                         |                         | 22.8                    | 0.177                   |  |
| 4214    | 2 <sup>nd</sup>                             | 0.658                   | 13.0                    | 23.3                    | 2.45                    |  |
| 4215    | $2^{nd}$                                    | 0.344                   | 14.0                    | 21.4                    | 0.957                   |  |
| 4216    | 1 <sup>st</sup>                             | 10.1                    | 67.9                    | 109                     | 34.67                   |  |
| 4217    | 1 <sup>st</sup>                             | 4.98                    | 141                     | 159                     | 15.81                   |  |
| 4218    | 1 <sup>st</sup>                             | 7.89                    | 125                     | 206                     | 41.18                   |  |
| 4219    | 1 <sup>st</sup>                             | 52.6                    | 143                     | 120                     | 131.9                   |  |
| 4220    | 2 <sup>nd</sup>                             |                         |                         | 27.3                    | 0.086                   |  |

|         | 92/90 μg g <sup>-1</sup> Feed Concentration |                         |                         |                         |                         |  |
|---------|---------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| Quail # | Noorongu                                    | Liver PFOS              | Liver PFOA              | Serum PFOS              | Serum PFOA              |  |
| Quall # | Necropsy                                    | Conc ( $\mu g g^{-1}$ ) |  |
| 5561    | 1 <sup>st</sup>                             | 111                     | 9.42                    |                         |                         |  |
| 5562    | 2 <sup>nd</sup>                             | 17.7                    | 6.02                    | 21.1                    | 16.2                    |  |
| 5563    | Died                                        | 263                     | 143                     |                         |                         |  |
| 5564    | 2 <sup>nd</sup>                             | 20.2                    | 0.27                    | 57.3                    | 0.787                   |  |
| 5565    | 1 <sup>st</sup>                             | 120                     | 14.9                    | 195                     | 55.2                    |  |
| 5566    | $2^{nd}$                                    | 18.8                    | 1.35                    | 29.0                    | 5.08                    |  |
| 5567    | 1 <sup>st</sup>                             | 355                     | 177                     | 132                     | 158                     |  |
| 5568    | Died                                        | 197                     | 154                     |                         |                         |  |
| 5570    | $2^{nd}$                                    | 12.2                    | 3.50                    | 16.8                    | 11.0                    |  |
| 5571    | $2^{nd}$                                    | 17.9                    | 5.03                    | 34.3                    | 15.3                    |  |
| 5572    | 1 <sup>st</sup>                             | 116                     | 22.0                    | 175                     | 79.5                    |  |
| 5573    | $2^{nd}$                                    |                         |                         | 32.4                    | 0.166                   |  |
| 5574    | $2^{nd}$                                    |                         |                         | 35.7                    | 0.091                   |  |
| 5575    | 1 <sup>st</sup>                             | 114                     | 63.1                    |                         |                         |  |
| 5576    | 1 <sup>st</sup>                             | 182                     | 80.3                    |                         |                         |  |
| 5577    | 1 <sup>st</sup>                             | 167                     | 57.0                    | 173                     | 177                     |  |
| 5578    | $2^{nd}$                                    | 20.3                    | 1.11                    | 44.6                    | 5.09                    |  |
| 5579    | 1 <sup>st</sup>                             | 76.3                    | 32.5                    |                         |                         |  |
| 5580    | 1 <sup>st</sup>                             | 137                     | 79.7                    | 118                     | 199                     |  |

|         |                 | 104/102 µg ;            | g <sup>-1</sup> Feed Concent | ration                  |                         |
|---------|-----------------|-------------------------|------------------------------|-------------------------|-------------------------|
| Quail # | Noorongu        | Liver PFOS              | Liver PFOA                   | Serum PFOS              | Serum PFOA              |
| Quall # | necropsy        | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ )      | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |
| 6861    | 1 <sup>st</sup> | 129                     | 63.7                         | 150                     | 165                     |
| 6862    | Died            | 364                     | 171.4                        |                         |                         |
| 6863    | Died            |                         |                              | 28.4                    | 1.13                    |
| 6864    | 2 <sup>nd</sup> | 24.6                    | 0.164                        | 30.8                    | 0.318                   |
| 6865    | 2 <sup>nd</sup> | 7.11                    | 0.118                        | 14.0                    | 0.120                   |
| 6866    | 1 <sup>st</sup> | 233                     | 119                          | 288                     | 297                     |
| 6867    | 1 <sup>st</sup> |                         |                              | 19.9                    | 0.148                   |
| 6868    | 1 <sup>st</sup> | 117                     | 7.34                         |                         |                         |
| 6869    | Died            | 171                     | 135                          |                         |                         |
| 6870    | 2 <sup>nd</sup> | 16.7                    | 0.360                        | 24.0                    | 0.374                   |
| 6871    | Died            | 163                     | 95.9                         |                         |                         |
| 6872    | 2 <sup>nd</sup> | 19.7                    | 0.336                        | 25.5                    | 0.796                   |
| 6873    | Died            | 275                     | 125                          |                         |                         |
| 6874    | 1 <sup>st</sup> | 125                     | 105                          | 133                     | 150                     |
| 6875    | $1^{st}$        | 141                     | 81.2                         |                         |                         |
| 6876    | Died            | 155                     | 124                          |                         |                         |
| 6877    | Died            | 135                     | 90.0                         |                         |                         |
| 6878    | Died            | 166                     | 94.4                         |                         |                         |
| 6879    | 1 <sup>st</sup> | 154                     | 8.00                         | 131                     | 19.3                    |
| 6880    | 1 <sup>st</sup> | 149                     | 53.4                         |                         |                         |

|         | 134/145 μg g <sup>-1</sup> Feed Concentration |                         |                         |                         |                         |  |
|---------|-----------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| 0 1 //  | Name                                          | Liver PFOS              | Liver PFOA              | Serum PFOS              | Serum PFOA              |  |
| Quall # | Necropsy                                      | Conc ( $\mu g g^{-1}$ ) |  |
| 1521    | 2 <sup>nd</sup>                               | 21.4                    | 1.03                    | 31.0                    | 3.92                    |  |
| 1522    | Died                                          | 159                     | 79.5                    |                         |                         |  |
| 1523    | Died                                          | 224                     | 167.1                   |                         |                         |  |
| 1524    | Died                                          | 137                     | 140.8                   |                         |                         |  |
| 1525    | Died                                          | 160                     | 90.7                    |                         |                         |  |
| 1526    | Died                                          | 182                     | 97.4                    |                         |                         |  |
| 1527    | Died                                          | 153                     | 65.7                    |                         |                         |  |
| 1528    | Died                                          | 212                     | 116.6                   |                         |                         |  |
| 1529    | Died                                          | 221                     | 146.1                   |                         |                         |  |
| 1530    | Died                                          | 208                     | 122.6                   |                         |                         |  |
| 1531    | Died                                          | 188                     | 78.4                    |                         |                         |  |
| 1532    | Died                                          | 165                     | 108.5                   |                         |                         |  |
| 1534    | Died                                          | 217                     | 120.1                   |                         |                         |  |
| 1535    | Died                                          | 143                     | 77.2                    |                         |                         |  |
| 1539    | 2 <sup>nd</sup>                               | 21.8                    | 0.152                   | 39.0                    | 0.336                   |  |

|         | 155/164 μg g <sup>-1</sup> Feed Concentration |                         |                         |                         |                         |  |
|---------|-----------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| 0       | Name                                          | Liver PFOS              | Liver PFOA              | Serum PFOS              | Serum PFOA              |  |
| Quall # | Necropsy                                      | Conc ( $\mu g g^{-1}$ ) |  |
| 2921    | Died                                          | 286                     | 134                     |                         |                         |  |
| 2922    | Died                                          | 218                     | 106                     |                         |                         |  |
| 2923    | Died                                          | 174                     | 93.6                    |                         |                         |  |
| 2924    | Died                                          | 214                     | 111                     |                         |                         |  |
| 2925    | Died                                          | 133                     | 106                     |                         |                         |  |
| 2926    | Died                                          | 159                     | 96.9                    |                         |                         |  |
| 2927    | 2 <sup>nd</sup>                               | 19.4                    | 0.469                   | 26.4                    | 1.77                    |  |
| 2928    | Died                                          | 158                     | 131                     |                         |                         |  |
| 2929    | Died                                          | 384                     | 242                     |                         |                         |  |
| 2930    | 1 <sup>st</sup>                               | 159                     | 10.7                    | 147                     | 28.0                    |  |
| 2931    | Died                                          | 141                     | 108                     |                         |                         |  |
| 2932    | Died                                          | 114                     | 96.6                    |                         |                         |  |
| 2936    | Died                                          | 188                     | 118                     |                         |                         |  |
| 2938    | Died                                          | 287                     | 195                     |                         |                         |  |
| 2939    | 2 <sup>nd</sup>                               | 14.7                    | 0.121                   | 25.0                    | 0.183                   |  |
| 2940    | Died                                          | 319                     | 177                     |                         |                         |  |

| 296/292 μg g <sup>-1</sup> Feed Concentration |          |                         |                         |  |  |
|-----------------------------------------------|----------|-------------------------|-------------------------|--|--|
| Quail #                                       | N        | Liver PFOS              | Liver PFOA              |  |  |
| Quall #                                       | Necropsy | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |  |
| 4321                                          | Died     | 377                     | 173                     |  |  |
| 4322                                          | Died     | 165                     | 75.3                    |  |  |
| 4323                                          | Died     | 257                     | 180                     |  |  |
| 4324                                          | Died     | 408                     | 180                     |  |  |
| 4325                                          | Died     | 124                     | 112                     |  |  |
| 4326                                          | Died     | 242                     | 109                     |  |  |
| 4327                                          | Died     | 134                     | 133                     |  |  |
| 4331                                          | Died     | 209                     | 167                     |  |  |
| 4336                                          | Died     | 239                     | 175                     |  |  |
| 4337                                          | Died     | 103                     | 83.2                    |  |  |
| 4338                                          | Died     | 144                     | 95.5                    |  |  |
| 4339                                          | Died     | 325                     | 205                     |  |  |
| 4340                                          | Died     | 379                     | 190                     |  |  |

|         | Control         |                         |                         |  |  |  |
|---------|-----------------|-------------------------|-------------------------|--|--|--|
| Oueil # | Namera          | Liver PFOS              | Serum PFOS              |  |  |  |
| Quail # | Necropsy        | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |  |  |
| 81      | 1 <sup>st</sup> | 0.239                   | 0.145                   |  |  |  |
| 82      | 2 <sup>nd</sup> | 0.097                   | 0.133                   |  |  |  |
| 83      | 1 st            | 0.331                   |                         |  |  |  |
| 84      | 1 st            | 0.099                   | 0.134                   |  |  |  |
| 85      | 2 <sup>nd</sup> | 0.152                   | 0.094                   |  |  |  |
| 86      | 2 <sup>nd</sup> | 0.128                   | 0.080                   |  |  |  |
| 87      | 2 <sup>nd</sup> |                         | 0.086                   |  |  |  |
| 88      | 2 <sup>nd</sup> | 0.145                   | 0.103                   |  |  |  |
| 89      | 1 st            | 0.160                   | 0.275                   |  |  |  |
| 90      | 1 st            | 0.168                   | 0.161                   |  |  |  |
| 91      | 1 <sup>st</sup> | 0.248                   | 0.099                   |  |  |  |
| 92      | 2 <sup>nd</sup> | 0.267                   | 0.076                   |  |  |  |
| 93      | 2 <sup>nd</sup> |                         | 0.922                   |  |  |  |
| 94      | 2 <sup>nd</sup> | 0.166                   | 0.094                   |  |  |  |
| 95      | 1 <sup>st</sup> |                         | 0.121                   |  |  |  |
| 96      | 2 <sup>nd</sup> |                         | 0.089                   |  |  |  |
| 97      | 1 <sup>st</sup> | 0.383                   | 0.141                   |  |  |  |
| 98      | 1 <sup>st</sup> | 0.290                   | 0.122                   |  |  |  |
| 99      | 1 <sup>st</sup> | 0.267                   | 0.151                   |  |  |  |
| 100     | 2 <sup>nd</sup> |                         | 0.092                   |  |  |  |

8.1.7 Acute 3M AFFF Exposure Liver and Serum PFOS Concentration Analysis

|         | 8.8 μL g <sup>-1</sup> |                         |                         |  |  |  |
|---------|------------------------|-------------------------|-------------------------|--|--|--|
| Quail # | N                      | Liver PFOS              | Serum PFOS              |  |  |  |
| Quall # | Necropsy               | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |  |  |
| 2821    | $2^{nd}$               | 9.86                    | 35.6                    |  |  |  |
| 2822    | 1 <sup>st</sup>        | 41.6                    | 96.1                    |  |  |  |
| 2823    | 1 <sup>st</sup>        | 73.4                    | 80.9                    |  |  |  |
| 2824    | $2^{nd}$               | 9.68                    | 25.8                    |  |  |  |
| 2825    | $2^{nd}$               | 16.8                    | 40.0                    |  |  |  |
| 2826    | 1 <sup>st</sup>        | 61.3                    | 94.8                    |  |  |  |
| 2827    | 1 <sup>st</sup>        | 79.1                    | 142                     |  |  |  |
| 2829    | 2 <sup>nd</sup>        | 8.98                    | 27.9                    |  |  |  |
| 2830    | 2 <sup>nd</sup>        | 14.0                    | 22.2                    |  |  |  |
| 2831    | 2 <sup>nd</sup>        | 17.6                    | 27.1                    |  |  |  |
| 2832    | 2 <sup>nd</sup>        |                         | 16.5                    |  |  |  |
| 2833    | 1 <sup>st</sup>        | 106                     | 108                     |  |  |  |
| 2834    | 1 <sup>st</sup>        | 71.1                    | 107                     |  |  |  |
| 2835    | 1 <sup>st</sup>        | 78.7                    | 118                     |  |  |  |
| 2836    | 1 <sup>st</sup>        | 88.8                    |                         |  |  |  |
| 2837    | 1 st                   | 72.4                    |                         |  |  |  |
| 2838    |                        |                         | 11.3                    |  |  |  |
| 2839    |                        |                         | 15.9                    |  |  |  |
| 2840    | 1 <sup>st</sup>        | 57.9                    | 106                     |  |  |  |

| 18 μL g <sup>-1</sup> |                 |                         |                         |  |
|-----------------------|-----------------|-------------------------|-------------------------|--|
| 0                     | N               | Liver PFOS              | Serum PFOS              |  |
| Quall #               | Necropsy        | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 1422                  | Died            | 243                     |                         |  |
| 1423                  | 1 <sup>st</sup> | 139                     | 113                     |  |
| 1424                  | Died            | 176                     |                         |  |
| 1425                  | 2 <sup>nd</sup> | 19.4                    | 21.6                    |  |
| 1428                  | Died            | 122                     |                         |  |
| 1429                  | Died            | 192                     |                         |  |
| 1430                  | Died            | 206                     |                         |  |
| 1431                  | 2 <sup>nd</sup> | 20.4                    | 23.3                    |  |
| 1432                  | 2 <sup>nd</sup> | 22.8                    | 27.4                    |  |
| 1433                  | 2 <sup>nd</sup> | 13.9                    | 35.6                    |  |
| 1434                  | 1 <sup>st</sup> | 73.0                    | 148                     |  |
| 1435                  | 1 <sup>st</sup> | 93.7                    | 122                     |  |
| 1436                  | 1 <sup>st</sup> | 23.4                    | 50.6                    |  |
| 1437                  | 1 <sup>st</sup> | 90.8                    | 131                     |  |
| 1438                  | 1 <sup>st</sup> | 120                     | 132                     |  |
| 1439                  | 1 <sup>st</sup> | 131                     | 148                     |  |
| 1440                  | 2 <sup>nd</sup> | 18.9                    | 30.9                    |  |

| 24 μL g <sup>-1</sup> |                 |                         |                         |  |
|-----------------------|-----------------|-------------------------|-------------------------|--|
| Oue:1#                | Noorongu        | Liver PFOS              | Serum PFOS              |  |
| Quall #               | Necropsy        | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 4221                  | Died            | 138                     |                         |  |
| 4223                  | $2^{nd}$        | 18.2                    | 31.3                    |  |
| 4224                  | Died            | 133                     |                         |  |
| 4225                  | $2^{nd}$        | 14.2                    | 42.3                    |  |
| 4226                  | Died            | 223                     |                         |  |
| 4227                  | Died            | 121                     |                         |  |
| 4228                  | 1 <sup>st</sup> | 67.4                    | 130                     |  |
| 4229                  | Died            | 184                     |                         |  |
| 4230                  | 1 <sup>st</sup> | 145                     | 215                     |  |
| 4234                  | Died            | 76.6                    |                         |  |
| 4235                  | 2 <sup>nd</sup> | 12.7                    | 33.4                    |  |
| 4236                  | Died            | 142                     |                         |  |
| 4237                  | Died            | 233                     |                         |  |
| 4238                  | Died            | 279                     |                         |  |
| 4239                  | 1 <sup>st</sup> | 103                     |                         |  |
| 4240                  | 2 <sup>nd</sup> | 10.3                    | 18.6                    |  |

| 30 μL g <sup>-1</sup> |                 |                         |                         |  |
|-----------------------|-----------------|-------------------------|-------------------------|--|
| One:1#                | Nacronau        | Liver PFOS              | Serum PFOS              |  |
| Quall #               | necropsy        | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 5581                  | Died            | 190                     |                         |  |
| 5582                  | 2 <sup>nd</sup> | 22.6                    | 31.6                    |  |
| 5583                  | Died            | 208                     |                         |  |
| 5585                  | Died            | 114                     |                         |  |
| 5586                  | Died            | 176                     |                         |  |
| 5587                  | Died            | 143                     |                         |  |
| 5590                  | $2^{nd}$        | 35.6                    | 48.6                    |  |
| 5591                  | Died            | 109                     |                         |  |
| 5594                  | Died            | 95.5                    |                         |  |
| 5595                  | Died            | 178                     |                         |  |
| 5596                  | Died            | 153                     |                         |  |
| 5597                  | Died            | 118                     |                         |  |
| 5598                  | Died            | 252                     |                         |  |
| 5599                  | Died            | 234                     |                         |  |
| 5600                  | Died            | 126                     |                         |  |

| 35 μL g <sup>-1</sup> |                 |                         |                         |  |
|-----------------------|-----------------|-------------------------|-------------------------|--|
| 011#                  | Necropsy        | Liver PFOS              | Serum PFOS              |  |
| Quall #               |                 | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 2941                  | Died            | 134                     |                         |  |
| 2944                  | Died            | 186                     |                         |  |
| 2945                  | 1 <sup>st</sup> | 204                     | 181                     |  |
| 2948                  | Died            | 160                     |                         |  |
| 2949                  | Died            | 126                     |                         |  |
| 2952                  | $2^{nd}$        | 16.1                    | 37.3                    |  |
| 2953                  | Died            | 239                     |                         |  |
| 2954                  | Died            | 117                     |                         |  |
| 2955                  | Died            | 178                     |                         |  |
| 2956                  | Died            | 283                     |                         |  |
| 2957                  | Died            | 138                     |                         |  |
| 2958                  | Died            | 124                     |                         |  |
| 2959                  | Died            | 340                     |                         |  |

| 52.5 μL g <sup>-1</sup> |                 |                         |                         |  |  |
|-------------------------|-----------------|-------------------------|-------------------------|--|--|
| 0 11                    | N               | Liver PFOS              | Serum PFOS              |  |  |
| Quall #                 | Necropsy        | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |  |
| 1541                    | Died            | 258                     |                         |  |  |
| 1542                    | Died            | 98.6                    |                         |  |  |
| 1545                    | Died            | 220                     |                         |  |  |
| 1546                    | Died            | 76.4                    |                         |  |  |
| 1547                    | 2 <sup>nd</sup> | 14.6                    | 39.0                    |  |  |
| 1550                    | Died            | 301                     |                         |  |  |
| 1551                    | Died            | 133                     |                         |  |  |
| 1553                    | Died            | 205                     |                         |  |  |
| 1554                    | Died            | 221                     |                         |  |  |
| 1555                    | Died            | 199                     |                         |  |  |
| 1558                    | Died            | 187                     |                         |  |  |
| 1559                    | Died            | 98.2                    |                         |  |  |

| 70 μL g <sup>-1</sup> |          |                         |         | 140 µL g | -1                      |
|-----------------------|----------|-------------------------|---------|----------|-------------------------|
| Quail #               | Noorongu | Liver PFOS              | Quail # | Noorongu | Liver PFOS              |
| Quall #               | Necropsy | Conc ( $\mu g g^{-1}$ ) | Quall # | Necropsy | Conc ( $\mu g g^{-1}$ ) |
| 4341                  | Died     | 259                     | 5601    | Died     | 89.5                    |
| 4342                  | Died     | 257                     | 5602    | Died     | 115                     |
| 4344                  | Died     | 129                     | 5603    | Died     | 184                     |
| 4345                  | Died     | 199                     | 5609    | Died     | 135                     |
| 4346                  | Died     | 153                     | 5610    | Died     | 78.3                    |
| 4347                  | Died     | 277                     | 5611    | Died     | 65.8                    |
| 4348                  | Died     | 106                     | 5613    | Died     | 114                     |
| 4349                  | Died     | 210                     | 5615    | Died     | 110                     |
| 4350                  | Died     | 271                     | 5617    | Died     | 145                     |
| 4351                  | Died     | 182                     | 5619    | Died     | 105                     |
| 4353                  | Died     | 99.8                    | 5620    | Died     | 192                     |

# 8.1.8 3M AFFF Analysis

| Sample: | 1             | 4             | 7             |
|---------|---------------|---------------|---------------|
|         | Concentration | Concentration | Concentration |
| Analyte | $(\mu g/mL)$  | (µg/mL)       | (µg/mL)       |
| PFBS    | 212           | 225           | 244           |
| PFHxS   | 647           | 681           | 734           |
| PFOS    | 9464          | 9985          | 9754          |
| PFHpA   | 65            | 55            | 52            |
| PFOA    | 344           | 377           | 324           |
| PFNA    | 19            | 20            | 17            |

# 8.1.9 Ansul AFFF Analysis

| Analyte | Concentration<br>(µg/mL) | Analyte  | Concentration<br>(µg/mL) |
|---------|--------------------------|----------|--------------------------|
| PFBA    | 0.697                    | PFHpS    | 0.084                    |
| PFPeA   | 0.737                    | PFDA     | 0.292                    |
| 4:2 FTS | 0.032                    | PFOS     | 0.125                    |
| PFHxA   | 0.000                    | PFUnA    | 0.036                    |
| PFBS    | 0.131                    | PFNS     | 0.105                    |
| PFHpA   | 0.295                    | PFDoA    | 0.117                    |
| PFPeS   | 0.028                    | NMeFOSAA | 0.055                    |
| 6:2 FTS | 7.334                    | PFDS     | 0.090                    |
| PFOA    | 5.507                    | NEtFOSAA | 0.021                    |
| PFHxS   | 0.040                    | PFTriA   | 0.045                    |
| PFNA    | 0.081                    | PFTetA   | 0.070                    |
| 8:2 FTS | 4.276                    | FOSA     | 0.050                    |

| PFOS Starter I   | Diet - mixed 13  | PFOS Second      | Starter Diet -             | PFOS Layer Diet - mixed 2 |                  |
|------------------|------------------|------------------|----------------------------|---------------------------|------------------|
| Oct              | 2017             | mixed 16         | mixed 16 Jan 2018 Feb 2018 |                           | 2018             |
| Nominal          | PFOS             | Nominal          | PFOS                       | Nominal                   | PFOS             |
| Concentraiton    | Concentration    | Concentraiton    | Concentration              | Concentraiton             | Concentration    |
| $(\mu g g^{-1})$ | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ | $(\mu g g^{-1})$           | $(\mu g g^{-1})$          | $(\mu g g^{-1})$ |
| Control          | 0                | Control          | 0                          | Control                   | 0                |
| Control          | 0                | Control          | 0                          | Control                   | 0                |
| Control          | 0                | Control          | 0                          | Control                   | 0                |
| 2.5              | 1.75             | 2.5              | 1.91                       | 2.5                       | 2.33             |
| 2.5              | 2.07             | 2.5              | 2.40                       | 2.5                       | 3.98             |
| 2.5              | 2.26             | 2.5              | 2.14                       | 2.5                       | 4.29             |
| 5                | 3.61             | 5                | 4.79                       | 5                         | 8.21             |
| 5                | 3.94             | 5                | 4.76                       | 5                         | 8.31             |
| 5                | 3.68             | 5                | 5.23                       | 5                         | 9.12             |
| 10               | 7.53             | 10               | 9.55                       | 10                        | 11.4             |
| 10               | 7.62             | 10               | 11.1                       | 10                        | 13.9             |
| 10               | 9.5              | 10               | 9.61                       | 10                        | 11.3             |
| 15               | 12.6             | 15               | 12.8                       | 15                        | 16.9             |
| 15               | 18.4             | 15               | 14.3                       | 15                        | 15.3             |
| 15               | 13.6             | 15               | 13.8                       | 15                        | 15.8             |
| 20               | 17.7             | 20               | 17.0                       | 20                        | 0                |
| 20               | 19.0             | 20               | 19.9                       | 20                        |                  |
| 20               | 16.5             | 20               | 23.7                       | 20                        |                  |

# 8.1.10 Chronic PFOS Exposure Feed Concentration Analysis

| June 6, 2        | 018 Feed         | August 2, 2018 Feed |                  |
|------------------|------------------|---------------------|------------------|
| Nominal          | PFOS             | Nominal             | PFOS             |
| Concentraiton    | Concentration    | Concentraiton       | Concentration    |
| $(\mu g g^{-1})$ | $(\mu g g^{-1})$ | $(\mu g g^{-1})$    | $(\mu g g^{-1})$ |
| Control          | 0.011            | Control             | 0.006            |
| Control          | 0.008            | Control             | 0.004            |
| Control          | 0.008            | Control             | 0.000            |
| 2.5              | 1.71             | 2.5                 | 2.51             |
| 2.5              | 2.37             | 2.5                 | 2.43             |
| 2.5              | 2.24             | 2.5                 | 1.61             |
| 5                | 3.70             | 5                   | 4.83             |
| 5                | 11.5             | 5                   | 2.07             |
| 5                | 4.84             | 5                   | 3.06             |
| 10               | 9.66             | 10                  | 10.9             |
| 10               | 11.2             | 10                  | 9.88             |
| 10               | 12.8             | 10                  | 10.0             |
| 15               | 11.3             | 15                  | 16.0             |
| 15               | 19.6             | 15                  | 21.8             |
| 15               | 26.0             | 15                  | 16.8             |
| 20               | 20.8             | 20                  | 21.9             |
| 20               | 37.9             | 20                  | 23.8             |
| 20               | 26.3             | 20                  | 28.4             |

8.1.11 Chronic AFFF Exposure Feed Concentration Analysis

8.1.12 Chronic PFOS Adult Serum and Liver Concentrations

| Control |        |                                     |                                     |  |  |
|---------|--------|-------------------------------------|-------------------------------------|--|--|
| Quail   | Gender | Serum Conc<br>(µg g <sup>-1</sup> ) | Liver Conc<br>(µg g <sup>-1</sup> ) |  |  |
| 153     | Male   | 0.407                               | 0.026                               |  |  |
| 154     | Female | 0.335                               | 0.011                               |  |  |
| 155     | Male   | 0.354                               | 0.063                               |  |  |
| 156     | Female | 0.421                               | 0.107                               |  |  |
| 157     | Male   | 0.621                               | 0.354                               |  |  |
| 158     | Female | 0.582                               | 0.693                               |  |  |
| 167     | Male   | 0.809                               | 0.124                               |  |  |
| 168     | Female | 0.342                               | 0.093                               |  |  |
| 169     | Male   | 0.692                               | 0.120                               |  |  |
| 170     | Female | 0.391                               | 0.030                               |  |  |
| 172     | Female | 0.043                               | 0.027                               |  |  |

| 2.5 μg g <sup>-1</sup> |        |                  |                  |  |
|------------------------|--------|------------------|------------------|--|
| Oneil                  | Condon | Serum Conc       | Liver Conc       |  |
| Quali                  | Gender | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |  |
| 4381                   | Male   | 61.2             | 17.1             |  |
| 4382                   | Female | 7.16             |                  |  |
| 4383                   | Male   | 41.5             |                  |  |
| 4385                   | Male   | 32.0             | 18.1             |  |
| 4387                   | Male   | 93.6             |                  |  |
| 4388                   | Female | 4.70             | 2.64             |  |
| 4389                   | Male   | 57.8             |                  |  |
| 4390                   | Female | 41.8             | 17.4             |  |
| 4392                   | Female | 3.34             | 1.78             |  |
| 4394                   | Female | 4.00             | 2.32             |  |
| 4398                   | Female | 3.68             |                  |  |
| 4399                   | Male   | 78.5             | 21.6             |  |
| 4401                   | Male   | 57.5             | 18.6             |  |
| 4405                   | Male   | 45.0             | 16.1             |  |
| 4406                   | Female | 46.8             | 15.8             |  |
| 4409                   | Male   | 40.7             | 2.54             |  |
| 4410                   | Female | 3.96             | 17.1             |  |

| 5 μg g <sup>-1</sup> |        |                  |                  |
|----------------------|--------|------------------|------------------|
| Quail                | Gender | Serum Conc       | Liver Conc       |
|                      |        | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 2941                 | Male   | 110              |                  |
| 2961                 | Male   | 254              |                  |
| 2962                 | Female | 43.5             | 6.49             |
| 2963                 | Male   | 99.3             | 28.2             |
| 2964                 | Female | 11.7             | 4.09             |
| 2965                 | Male   | 200              |                  |
| 2966                 | Female | 14.8             | 3.41             |
| 2967                 | Male   | 176              | 44.6             |
| 2968                 | Female | 11.0             | 4.71             |
| 2969                 | Male   | 93.2             | 39.1             |
| 2970                 | Female | 7.59             | 4.15             |
| 2973                 | Male   | 100              | 40.2             |
| 2974                 | Female | 17.5             | 7.16             |
| 2975                 | Male   | 71.3             | 30.3             |
| 2976                 | Female | 8.30             |                  |
| 2978                 | Female | 66.4             | 14.0             |

| 10 μg g <sup>-1</sup> |        |                                     |                                     |
|-----------------------|--------|-------------------------------------|-------------------------------------|
| Quail                 | Gender | Serum Conc<br>(µg g <sup>-1</sup> ) | Liver Conc<br>(µg g <sup>-1</sup> ) |
| 1582                  | Female | 179                                 | 20.9                                |
| 1583                  | Male   | 207                                 | 67.2                                |
| 1584                  | Female | 18.4                                |                                     |
| 1586                  | Female | 34.6                                |                                     |
| 1587                  | Male   | 141                                 | 74.5                                |
| 1588                  | Female | 18.8                                |                                     |
| 1589                  | Male   | 277                                 |                                     |
| 1596                  | Female | 25.7                                | 8.69                                |
| 1597                  | Male   | 288                                 | 60.0                                |
| 1598                  | Female | 23.2                                | 12.4                                |
| 1599                  | Male   | 164                                 | 59.6                                |
| 1600                  | Female | 24.9                                | 10.5                                |
| 1602                  | Female | 16.9                                | 11.4                                |
| 1604                  | Female | 15.2                                | 8.50                                |
| 1605                  | Male   | 145                                 |                                     |

| 15 μg g <sup>-1</sup> |        |                                     |                                     |
|-----------------------|--------|-------------------------------------|-------------------------------------|
| Quail                 | Gender | Serum Conc<br>(µg g <sup>-1</sup> ) | Liver Conc<br>(µg g <sup>-1</sup> ) |
| 6933                  | Male   | 182                                 | 89.8                                |
| 6934                  | Female | 29.2                                | 12.8                                |
| 6935                  | Male   | 377                                 | 103                                 |
| 6936                  | Female | 20.7                                | 12.5                                |
| 6937                  | Male   | 242                                 | 65.8                                |
| 6940                  | Female | 18.9                                | 10.9                                |
| 6941                  | Male   | 242                                 | 112                                 |
| 6942                  | Female | 29.2                                | 9.1                                 |
| 6950                  | Female | 48.1                                | 9.9                                 |
| 6951                  | Male   | 201                                 | 108                                 |
| 6958                  | Female | 26.9                                | 13.4                                |

| 20 μg g <sup>-1</sup> |        |                  |                  |
|-----------------------|--------|------------------|------------------|
| Quail                 | Gender | Serum Conc       | Liver Conc       |
|                       |        | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 5673                  | Male   | 235              | 87.4             |
| 5674                  | Female | 56.0             | 22.4             |
| 5675                  | Male   | 369              | 144              |
| 5678                  | Female | 46.3             | 14.7             |
| 5679                  | Male   | 302              | 90.8             |
| 5681                  | Male   | 519              |                  |
| 5682                  | Female | 33.7             | 15.5             |
| 5683                  | Male   | 270              |                  |
| 5690                  | Female | 26.8             | 13.3             |
| 5691                  | Male   | 221              | 56.0             |
| 5692                  | Female | 8.90             |                  |
| 5693                  | Male   | 277              |                  |
| 5694                  | Female | 37.8             | 22.2             |
| 5695                  | Male   | 275              | 116              |
| 5696                  | Female | 26.1             | 12.9             |
| 5698                  | Female | 38.5             |                  |

| Hatch | Dose | Serum Conc       | Liver Conc       |
|-------|------|------------------|------------------|
|       |      | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 1     | 0    | 0.056            | 0.26             |
| 1     | 0    | 0.097            | 0.21             |
| 1     | 2.5  | 5.15             | 4.15             |
| 2     | 0    | 0.011            | 0.15             |
| 2     | 0    | 0.014            | 0.12             |
| 2     | 0    | 0.011            | 0.11             |
| 2     | 0    | 0.012            | 0.17             |
| 2     | 2.5  | 2.85             | 2.06             |
| 2     | 2.5  | 1.70             | 1.29             |
| 2     | 2.5  | 2.98             | 2.47             |
| 2     | 2.5  | 1.62             | 1.20             |
| 2     | 5    | 9.14             | 7.31             |
| 2     | 5    | 4.35             | 3.93             |
| 2     | 5    | 5.16             | 4.25             |
| 2     | 5    | 3.37             | 2.74             |
| 2     | 10   | 9.60             | 5.77             |
| 2     | 10   | 15.8             | 9.50             |
| 2     | 15   | 6.89             | 6.66             |
| 2     | 15   | 8.70             | 5.34             |
| 2     | 15   | 8.95             | 4.56             |
| 2     | 15   | 9.57             | 6.52             |
| 2     | 20   | 13.6             | 9.49             |
| 2     | 20   | 17.9             | 7.27             |
| 3     | 0    | 0.013            | 0.42             |
| 3     | 0    | 0.012            | 0.26             |
| 3     | 0    | 0.020            | 0.25             |
| 3     | 0    | 0.013            | 0.14             |
| 3     | 2.5  | 1.83             | 1.47             |
| 3     | 2.5  | 1.59             | 1.74             |
| 3     | 2.5  | 1.91             | 0.88             |
| 3     | 2.5  | 2.11             | 1.83             |
| 3     | 5    | 8.55             | 5.63             |
| 3     | 5    | 3.21             | 2.48             |
| 3     | 5    | 2.20             | 1.83             |
| 3     | 5    | 2.65             | 1.71             |
| 3     | 10   | 9.42             | 4.68             |
| 3     | 10   | 5.87             | 3.70             |
| 3     | 10   | 6.50             | 4.45             |
| 3     | 10   | 10.3             | 4.87             |
| 3     | 15   | 9.98             | 7.42             |
| 3     | 15   | 6.39             | 6.66             |

8.1.13 Chronic PFOS Chick Serum and Liver Concentrations
|       |      | Serum Conc       | Liver Conc       |
|-------|------|------------------|------------------|
| Hatch | Dose | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 3     | 15   | 9.70             | 9.21             |
| 3     | 15   | 14.2             | 10.20            |
| 3     | 20   | 15.5             | 7.58             |
| 3     | 20   | 12.6             | 8.59             |
| 3     | 20   | 17.0             | 7.86             |
| 3     | 20   | 13.2             | 7.02             |
| 4     | 0    | 0.020            | 0.03             |
| 4     | 0    | 0.009            | 0.03             |
| 4     | 0    | 0.007            | 0.02             |
| 4     | 0    | 0.024            | 0.02             |
| 4     | 2.5  | 1.23             | 0.94             |
| 4     | 2.5  | 2.08             | 1.22             |
| 4     | 2.5  | 2.91             | 1.97             |
| 4     | 2.5  | 3.75             | 2.85             |
| 4     | 5    | 2.32             | 1.72             |
| 4     | 5    | 3.22             | 2.23             |
| 4     | 5    | 3.24             | 2.36             |
| 4     | 5    | 4.36             | 2.14             |
| 4     | 10   | 8.72             | 7.30             |
| 4     | 10   | 5.17             | 3.08             |
| 4     | 10   | 7.62             | 4.95             |
| 4     | 10   | 8.97             | 6.64             |
| 4     | 15   | 5.90             | 4.15             |
| 4     | 15   | 11.5             | 8.14             |
| 4     | 15   | 11.5             | 9.87             |
| 4     | 15   | 9.10             | 7.94             |
| 4     | 20   | 15.7             | 10.68            |
| 4     | 20   | 10.5             | 6.66             |
| 4     | 20   | 12.4             | 8.50             |
| 4     | 20   | 22.1             | 12.74            |
| 5     | 0    | 0.010            | 0.03             |
| 5     | 0    | 0.007            | 0.02             |
| 5     | 0    | 0.022            | 0.02             |
| 5     | 0    | 0.010            | 0.02             |
| 5     | 2.5  | 1.96             | 1.77             |
| 5     | 2.5  | 1.35             | 0.76             |
| 5     | 2.5  | 2.04             | 1.13             |
| 5     | 2.5  | 1.55             | 0.90             |
| 5     | 5    | 3.38             | 1.39             |
| 5     | 5    | 2.85             | 1.69             |
| 5     | 5    | 2.89             | 2.72             |

| Hatal | Dere | Serum Conc       | Liver Conc       |
|-------|------|------------------|------------------|
| Hatch | Dose | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 5     | 5    | 4.34             | 2.27             |
| 5     | 10   | 5.74             | 4.27             |
| 5     | 10   | 8.54             | 5.53             |
| 5     | 10   | 9.76             | 6.93             |
| 5     | 10   | 8.16             | 7.75             |
| 5     | 15   | 7.63             | 6.01             |
| 5     | 15   | 10.7             | 7.34             |
| 5     | 15   | 8.65             | 7.58             |
| 5     | 15   | 15.5             | 11.75            |
| 5     | 20   | 12.6             | 6.63             |
| 5     | 20   | 17.3             | 11.37            |
| 5     | 20   | 28.5             | 11.67            |
| 5     | 20   | 13.5             | 6.19             |
| 6     | 0    | 0.023            | 0.03             |
| 6     | 0    | 0.016            | 0.33             |
| 6     | 0    | 0.026            | 0.38             |
| 6     | 0    | 0.034            | 0.03             |
| 6     | 2.5  | 1.83             | 1.13             |
| 6     | 2.5  | 1.52             | 1.24             |
| 6     | 2.5  | 1.08             | 0.69             |
| 6     | 2.5  | 2.67             | 1.17             |
| 6     | 5    | 3.79             | 1.96             |
| 6     | 5    | 4.60             | 2.35             |
| 6     | 5    | 3.83             | 2.94             |
| 6     | 5    | 5.58             | 2.59             |
| 6     | 10   | 8.95             | 5.25             |
| 6     | 10   | 13.2             | 5.94             |
| 6     | 10   | 10.1             | 6.47             |
| 6     | 10   | 9.06             | 6.71             |
| 6     | 15   | 13.2             | 10.64            |
| 6     | 15   | 13.8             | 8.93             |
| 6     | 15   | 15.6             | 10.16            |
| 6     | 15   | 14.2             | 5.78             |
| 6     | 20   | 18.8             | 10.54            |
| 6     | 20   | 13.5             | 15.78            |
| 6     | 20   | 23.5             | 7.21             |
| 6     | 20   | 11.3             | 12.28            |
| 7     | 0    | 0.027            | 0.05             |
| 7     | 0    | 0.034            | 0.03             |
| 7     | 0    | 0.020            | 0.03             |
| 7     | 0    | 0.019            | 0.04             |

| II    |      |                  | Liver Conc       |
|-------|------|------------------|------------------|
| Hatch | Dose | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 7     | 2.5  | 1.87             | 0.71             |
| 7     | 2.5  | 3.67             | 1.76             |
| 7     | 2.5  | 1.72             | 0.81             |
| 7     | 2.5  | 2.07             | 0.99             |
| 7     | 5    | 6.37             | 3.37             |
| 7     | 5    | 5.11             | 2.57             |
| 7     | 5    | 7.53             | 2.51             |
| 7     | 5    | 4.01             | 1.56             |
| 7     | 10   | 8.79             | 6.76             |
| 7     | 10   | 8.39             | 5.78             |
| 7     | 10   | 9.82             | 2.86             |
| 7     | 10   | 10.5             | 5.09             |
| 7     | 15   | 17.0             | 9.00             |
| 7     | 15   | 20.3             | 7.97             |
| 7     | 15   | 17.2             | 5.75             |
| 7     | 15   | 11.3             | 10.37            |
| 7     | 20   | 20.2             | 9.10             |
| 7     | 20   | 28.4             | 13.02            |
| 7     | 20   | 8.15             | 5.17             |
| 7     | 20   | 23.4             | 5.97             |
| 8     | 0    | 0.032            | 0.03             |
| 8     | 0    | 0.020            | 0.05             |
| 8     | 0    | 0.030            | 0.03             |
| 8     | 0    | 0.024            | 0.03             |
| 8     | 2.5  | 2.14             | 1.59             |
| 8     | 2.5  | 1.94             | 1.30             |
| 8     | 2.5  | 2.23             | 1.25             |
| 8     | 2.5  | 2.16             | 1.43             |
| 8     | 5    | 5.14             | 2.17             |
| 8     | 5    | 6.44             | 2.76             |
| 8     | 5    | 6.19             | 1.98             |
| 8     | 5    | 3.49             | 2.23             |
| 8     | 10   | 7.96             | 4.67             |
| 8     | 10   | 11.4             | 8.99             |
| 8     | 10   | 12.3             | 5.10             |
| 8     | 10   | 10.6             | 4.16             |
| 8     | 15   | 20.6             | 10.78            |
| 8     | 15   | 14.1             | 8.18             |
| 8     | 15   | 20.0             | 13.46            |
| 8     | 15   | 21.4             | 5.72             |
| 8     | 20   | 19.0             | 14.23            |

| Hatch | Dose | Serum Conc       | Liver Conc       |  |
|-------|------|------------------|------------------|--|
|       | Dose | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |  |
| 8     | 20   | 14.2             | 11.23            |  |
| 8     | 20   | 17.8             | 9.49             |  |
| 8     | 20   | 24.9             | 10.23            |  |
| 9     | 0    | 0.016            | 0.015            |  |
| 9     | 0    | 0.022            | 0.033            |  |
| 9     | 0    | 0.029            | 0.014            |  |
| 9     | 0    | 0.015            | 0.013            |  |
| 9     | 2.5  | 2.30             | 1.61             |  |
| 9     | 2.5  | 1.44             | 1.16             |  |
| 9     | 2.5  | 1.93             | 1.27             |  |
| 9     | 2.5  | 3.41             | 2.32             |  |
| 9     | 5    | 4.05             | 2.60             |  |
| 9     | 5    | 3.38             | 1.98             |  |
| 9     | 5    | 3.07             | 2.01             |  |
| 9     | 5    | 5.93             | 3.49             |  |
| 9     | 10   | 8.82             | 4.32             |  |
| 9     | 10   | 10.6             | 5.89             |  |
| 9     | 10   | 6.62             | 4.53             |  |
| 9     | 10   | 9.53             | 5.16             |  |
| 9     | 15   | 17.3             | 7.22             |  |
| 9     | 15   | 11.6             | 7.27             |  |
| 9     | 15   | 11.2             | 7.41             |  |
| 9     | 15   | 11.4             | 7.13             |  |
| 9     | 20   | 13.6             | 6.89             |  |
| 9     | 20   | 13.0             | 8.39             |  |
| 9     | 20   | 22.2             | 11.51            |  |
| 9     | 20   | 18.7             | 10.97            |  |
| 10    | 0    | 0.031            | 0.022            |  |
| 10    | 0    | 0.020            | 0.015            |  |
| 10    | 0    | 0.028            | 0.019            |  |
| 10    | 0    | 0.027            | 0.027            |  |
| 10    | 2.5  | 3.07             | 0.972            |  |
| 10    | 2.5  | 1.92             | 0.885            |  |
| 10    | 2.5  | 1.25             | 0.752            |  |
| 10    | 2.5  | 4.41             | 1.40             |  |
| 10    | 5    | 4.60             | 2.46             |  |
| 10    | 5    | 4.75             | 2.89             |  |
| 10    | 5    | 7.23             | 2.36             |  |
| 10    | 5    | 5.86             | 2.02             |  |
| 10    | 10   | 8.14             | 4.42             |  |
| 10    | 10   | 9.39             | 4.46             |  |

| Hatch | Dose | Serum Conc<br>(µg g <sup>-1</sup> ) | Liver Conc<br>(ug g <sup>-1</sup> ) |
|-------|------|-------------------------------------|-------------------------------------|
| 10    | 10   | 11.2                                | 5.68                                |
| 10    | 10   | 14.6                                | 5.56                                |
| 10    | 15   | 27.1                                | 13.7                                |
| 10    | 15   | 15.8                                | 8.27                                |
| 10    | 15   | 15.1                                | 6.05                                |
| 10    | 15   | 16.3                                | 9.96                                |
| 10    | 20   | 15.9                                | 7.84                                |
| 10    | 20   | 14.6                                | 6.89                                |
| 10    | 20   | 16.4                                | 6.59                                |
| 10    | 20   | 17.9                                | 8.79                                |

8.1.14 Chronic PFOS Egg White and Yolk Concentrations

|      |           |      | Yolk             | White            |      |           |      | Yolk             | White            |
|------|-----------|------|------------------|------------------|------|-----------|------|------------------|------------------|
| ID   | Date      | Dose | Conc             | Conc             | ID   | Date      | Dose | Conc             | Conc             |
|      | Collected |      | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |      | Collected |      | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 158  | 5/1/18    | 0    | 0.057            | 0.001            | 2964 | 3/17/18   | 5    | 15.1             |                  |
| 166  | 5/1/18    | 0    | 0.023            |                  | 2964 | 3/25/18   | 5    | 22.9             |                  |
| 172  | 2/23/18   | 0    | 0.076            | 0.001            | 2964 | 4/19/18   | 5    | 19.4             |                  |
| 172  | 3/3/18    | 0    | 0.032            |                  | 2970 | 5/1/18    | 5    | 22.4             | 0.016            |
| 172  | 3/7/18    | 0    | 0.028            |                  | 2972 | 2/23/18   | 5    |                  | 0.021            |
| 172  | 4/15/18   | 0    | 0.030            |                  | 2972 | 2/26/18   | 5    | 73.7             |                  |
| 172  | 4/24/18   | 0    | 0.047            |                  | 2974 | 2/24/18   | 5    | 127              | 0.044            |
| 172  | 4/26/18   | 0    | 0.056            | 0.015            | 2976 | 5/1/18    | 5    | 27.7             | 0.041            |
| 174  | 2/25/18   | 0    | 0.045            | 0.001            | 2982 | 5/1/18    | 5    | 28.9             | 0.016            |
| 176  | 2/22/18   | 0    | 0.068            | 0.001            | 2982 | 3/5/19    | 5    | 73.7             |                  |
| 178  | 2/20/18   | 0    | 0.089            | 0.002            | 2986 | 2/26/18   | 5    | 66.4             | 0.015            |
| 180  | 5/1/18    | 0    | 0.044            | 0.001            | 2988 | 3/1/18    | 5    | 29.6             | 0.017            |
| 1584 | 3/2/18    | 10   | 250              | 2.74             | 2988 | 4/24/18   | 5    | 31.2             | 0.042            |
| 1594 | 2/26/18   | 10   | 225              | 0.144            | 2992 | 4/25/18   | 5    | 30.2             | 0.019            |
| 1594 | 5/1/18    | 10   | 45.0             | 0.024            | 4382 | 2/20/18   | 2.5  | 51.2             | 0.033            |
| 1598 | 3/4/19    | 10   | 274              | 0.137            | 4382 | 2/22/18   | 2.5  | 39.0             | 0.007            |
| 1600 | 5/1/18    | 10   | 52.8             | 0.020            | 4382 | 2/23/18   | 2.5  | 32.7             | 0.020            |
| 1604 | 3/4/18    | 10   | 69.2             | 6.36             | 4382 | 2/24/18   | 2.5  | 23.4             | 0.010            |
| 1604 | 3/9/18    | 10   | 54.2             |                  | 4386 | 3/3/18    | 2.5  | 18.0             |                  |
| 1604 | 3/11/18   | 10   | 39.6             |                  | 4390 | 2/25/18   | 2.5  | 33.1             |                  |
| 1604 | 3/16/18   | 10   | 39.3             |                  | 4396 | 2/27/18   | 2.5  |                  | 0.366            |
| 1604 | 3/25/18   | 10   | 63.4             |                  | 4402 | 2/25/18   | 2.5  |                  | 0.518            |
| 1604 | 4/8/18    | 10   | 55.4             |                  | 4392 | 2/27/18   | 2.5  | 17.9             | 0.007            |
| 1604 | 4/12/18   | 10   | 77.7             |                  | 4392 | 4/30/18   | 2.5  | 13.5             | 0.016            |
| 1606 | 4/25/18   | 10   | 59.7             | 0.033            | 4392 | 5/1/18    | 2.5  | 15.2             | 0.174            |
| 1610 | 5/1/18    | 10   | 54.8             | 0.082            | 4392 | 2/25/19   | 2.5  | 55.4             |                  |
| 2964 | 3/6/18    | 5    | 38.2             |                  | 4394 | 2/22/18   | 2.5  | 50.4             | 0.010            |

|      | Date      | Dose | Yolk             | White            | ID   | Date      | Dose | Yolk             | White            |
|------|-----------|------|------------------|------------------|------|-----------|------|------------------|------------------|
|      | Collected | Dose | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ | ID   | Collected | Dose | $(\mu g g^{-1})$ | $(\mu g g^{-1})$ |
| 4394 | 2/23/18   | 2.5  | 34.7             | 0.027            | 5696 | 3/5/18    | 20   | 70.4             | 0.090            |
| 4394 | 2/26/18   | 2.5  | 20.9             | 0.334            | 5696 | 4/29/18   | 20   | 89.0             |                  |
| 4394 | 3/8/18    | 2.5  | 8.52             |                  | 5696 | 4/30/18   | 20   | 80.8             | 1.20             |
| 4394 | 3/22/18   | 2.5  | 12.9             |                  | 5702 | 5/1/18    | 20   | 101              | 0.051            |
| 4394 | 4/1/18    | 2.5  | 10.1             |                  | 6942 | 5/1/18    | 20   | 61.3             | 0.282            |
| 4394 | 4/12/18   | 2.5  | 16.7             |                  | 6944 | 2/24/18   | 15   | 269              | 0.084            |
| 4396 | 4/27/18   | 2.5  | 19.1             | 0.128            | 6944 | 3/2/18    | 15   | 55.9             | 0.046            |
| 4402 | 2/24/18   | 2.5  |                  | 0.008            | 6950 | 3/1/18    | 15   | 134              |                  |
| 4402 | 2/26/18   | 2.5  | 32.9             |                  | 6950 | 3/6/19    | 15   | 80.7             |                  |
| 4404 | 5/1/18    | 2.5  | 17.5             | 0.077            | 6952 | 2/25/18   | 15   | 100              | 0.039            |
| 4412 | 5/1/18    | 2.5  | 3.97             |                  | 6954 | 5/1/18    | 15   | 76.5             | 0.067            |
| 5674 | 5/1/18    | 2.5  | 109              | 0.082            | 6958 | 3/12/18   | 15   | 66.0             |                  |
| 5694 | 2/28/18   | 20   | 250              | 0.255            | 6958 | 3/17/18   | 15   | 90.6             |                  |
| 5694 | 5/1/18    | 20   | 124              | 0.082            | 6958 | 3/28/18   | 15   | 49.6             |                  |
| 5696 | 2/23/18   | 20   | 422              | 0.186            | 6958 | 4/8/18    | 15   | 78.1             |                  |
| 5696 | 3/2/18    | 20   | 110              |                  | 6958 | 4/9/18    | 15   | 94.6             |                  |
| 5696 | 3/7/18    | 20   | 90.3             |                  | 6958 | 5/1/18    | 15   | 74.3             | 0.041            |
| 5696 | 4/4/18    | 20   | 93.6             |                  | 6964 | 2/28/18   | 15   | 112              | 0.041            |
| 5696 | 4/10/18   | 20   | 75.2             |                  |      |           |      |                  |                  |

8.1.15 Chronic 3M AFFF Adult Serum Concentrations

| Control |        |                                              |                                          |                                          |  |  |
|---------|--------|----------------------------------------------|------------------------------------------|------------------------------------------|--|--|
| Quail   | Gender | Serum<br>PFHxS Conc<br>(µg g <sup>-1</sup> ) | Serum PFOS<br>Conc (µg g <sup>-1</sup> ) | Serum PFOA<br>Conc (µg g <sup>-1</sup> ) |  |  |
| 202     | Female | 0.064                                        | 0.531                                    | 0.127                                    |  |  |
| 204     | Female | 0.037                                        | 0.326                                    | 0.111                                    |  |  |
| 206     | Female | 0.046                                        | 0.329                                    | 0.108                                    |  |  |
| 207     | Male   | 0.039                                        | 0.259                                    | 0.107                                    |  |  |
| 208     | Female | 0.036                                        | 0.172                                    | 0.119                                    |  |  |
| 210     | Female | 0.032                                        | 0.092                                    | 0.127                                    |  |  |
| 211     | Male   | 0.036                                        | 0.088                                    | 0.128                                    |  |  |
| 217     | Male   | 0.033                                        | 0.100                                    | 0.131                                    |  |  |
| 227     | Male   | 0.035                                        | 0.101                                    | 0.113                                    |  |  |
| 231     | Male   | 0.032                                        | 0.096                                    | 0.076                                    |  |  |

| 2.5 μg g <sup>-1</sup> PFOS from AFFF Dose |        |                                              |                                          |                                          |  |  |
|--------------------------------------------|--------|----------------------------------------------|------------------------------------------|------------------------------------------|--|--|
| Quail                                      | Gender | Serum<br>PFHxS Conc<br>(µg g <sup>-1</sup> ) | Serum PFOS<br>Conc (µg g <sup>-1</sup> ) | Serum PFOA<br>Conc (µg g <sup>-1</sup> ) |  |  |
| 4502                                       | Female | 3.87                                         | 13.07                                    | 0.313                                    |  |  |
| 4503                                       | Male   | 5.55                                         | 65.10                                    | 0.198                                    |  |  |
| 4506                                       | Female | 1.74                                         | 5.88                                     | 0.175                                    |  |  |
| 4507                                       | Male   | 5.52                                         | 64.85                                    | 0.258                                    |  |  |
| 4508                                       | Female | 2.50                                         | 4.35                                     | 0.201                                    |  |  |
| 4509                                       | Male   | 5.46                                         | 50.69                                    | 0.182                                    |  |  |
| 4511                                       | Male   | 4.15                                         | 54.90                                    | 0.070                                    |  |  |
| 4512                                       | Female | 1.99                                         | 4.78                                     | 0.180                                    |  |  |
| 4513                                       | Male   | 6.32                                         | 67.13                                    | 0.156                                    |  |  |
| 4514                                       | Female | 1.94                                         | 3.32                                     | 0.171                                    |  |  |

| 5 μg g <sup>-1</sup> PFOS from AFFF Dose |        |                                              |                                          |                                          |  |  |
|------------------------------------------|--------|----------------------------------------------|------------------------------------------|------------------------------------------|--|--|
| Quail                                    | Gender | Serum<br>PFHxS Conc<br>(µg g <sup>-1</sup> ) | Serum PFOS<br>Conc (µg g <sup>-1</sup> ) | Serum PFOA<br>Conc (µg g <sup>-1</sup> ) |  |  |
| 3002                                     | Female | 4.95                                         | 14.41                                    | 0.415                                    |  |  |
| 3005                                     | Male   | 9.56                                         | 142                                      | 0.236                                    |  |  |
| 3006                                     | Female | 3.85                                         | 9.87                                     | 0.398                                    |  |  |
| 3008                                     | Female | 3.52                                         | 8.95                                     | 0.376                                    |  |  |
| 3009                                     | Male   | 15.9                                         | 161                                      | 0.417                                    |  |  |
| 3010                                     | Female | 5.12                                         | 7.42                                     | 0.403                                    |  |  |
| 3013                                     | Male   | 13.9                                         | 135                                      | 0.288                                    |  |  |
| 3016                                     | Female | 3.36                                         | 6.73                                     | 0.253                                    |  |  |
| 3019                                     | Male   | 17.9                                         | 135                                      | 0.389                                    |  |  |
| 3025                                     | Male   | 8.61                                         | 124                                      | 0.195                                    |  |  |

| 10 μg g <sup>-1</sup> PFOS from AFFF Dose |        |                                              |                                          |                                          |  |  |
|-------------------------------------------|--------|----------------------------------------------|------------------------------------------|------------------------------------------|--|--|
| Quail                                     | Gender | Serum<br>PFHxS Conc<br>(µg g <sup>-1</sup> ) | Serum PFOS<br>Conc (µg g <sup>-1</sup> ) | Serum PFOA<br>Conc (µg g <sup>-1</sup> ) |  |  |
| 1613                                      | Male   | 24.5                                         | 188                                      | 0.389                                    |  |  |
| 1614                                      | Female | 11.5                                         | 28.84                                    | 0.963                                    |  |  |
| 1615                                      | Male   | 20.1                                         | 189                                      | 0.463                                    |  |  |
| 1616                                      | Female | 7.15                                         | 15.24                                    | 0.557                                    |  |  |
| 1617                                      | Male   | 14.8                                         | 211                                      | 0.269                                    |  |  |
| 1618                                      | Female | 8.64                                         | 27.48                                    | 0.562                                    |  |  |
| 1619                                      | Male   | 9.25                                         | 204                                      | 0.175                                    |  |  |
| 1620                                      | Female | 6.91                                         | 19.48                                    | 0.445                                    |  |  |
| 1621                                      | Male   | 11.2                                         | 138                                      | 0.231                                    |  |  |
| 1624                                      | Female | 6.72                                         | 13.93                                    | 0.357                                    |  |  |

| 15 μg g <sup>-1</sup> PFOS from AFFF Dose |        |                                              |                                          |                                          |  |  |
|-------------------------------------------|--------|----------------------------------------------|------------------------------------------|------------------------------------------|--|--|
| Quail                                     | Gender | Serum<br>PFHxS Conc<br>(µg g <sup>-1</sup> ) | Serum PFOS<br>Conc (µg g <sup>-1</sup> ) | Serum PFOA<br>Conc (µg g <sup>-1</sup> ) |  |  |
| 6967                                      | Male   | 21.0                                         | 209                                      | 0.367                                    |  |  |
| 6968                                      | Female | 13.4                                         | 67.8                                     | 0.479                                    |  |  |
| 6969                                      | Male   | 54.7                                         | 209                                      | 1.15                                     |  |  |
| 6971                                      | Male   | 17.2                                         | 232                                      | 0.373                                    |  |  |
| 6972                                      | Female | 10.7                                         | 30.7                                     | 0.558                                    |  |  |
| 6973                                      | Male   | 38.5                                         | 304                                      | 0.897                                    |  |  |
| 6975                                      | Male   | 20.1                                         | 210                                      | 0.369                                    |  |  |
| 6976                                      | Female | 14.0                                         | 40.1                                     | 0.791                                    |  |  |
| 6978                                      | Female | 15.3                                         | 40.0                                     | 1.02                                     |  |  |
| 6982                                      | Female | 15.0                                         | 40.5                                     | 0.995                                    |  |  |

|       | 20 μg g <sup>-1</sup> PFOS from AFFF Dose |                                              |                                          |                                          |  |  |  |
|-------|-------------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|--|--|--|
| Quail | Gender                                    | Serum<br>PFHxS Conc<br>(µg g <sup>-1</sup> ) | Serum PFOS<br>Conc (µg g <sup>-1</sup> ) | Serum PFOA<br>Conc (µg g <sup>-1</sup> ) |  |  |  |
| 5901  | Male                                      | 48.4                                         | 273                                      | 1.11                                     |  |  |  |
| 5902  | Female                                    | 19.3                                         | 68.1                                     | 1.30                                     |  |  |  |
| 5903  | Male                                      | 42.6                                         | 253                                      | 1.05                                     |  |  |  |
| 5905  | Male                                      | 25.5                                         | 229                                      | 0.454                                    |  |  |  |
| 5907  | Male                                      | 31.9                                         | 296                                      | 0.658                                    |  |  |  |
| 5908  | Female                                    | 11.9                                         | 48.0                                     | 0.766                                    |  |  |  |
| 5909  | Male                                      | 60.9                                         | 316                                      | 1.37                                     |  |  |  |
| 5912  | Female                                    | 20.2                                         | 65.5                                     | 1.05                                     |  |  |  |
| 5914  | Female                                    | 16.1                                         | 48.8                                     | 0.817                                    |  |  |  |
| 5916  | Female                                    | 12.1                                         | 26.5                                     | 0.535                                    |  |  |  |

8.1.16 Chronic 3M AFFF Adult Liver Concentrations

| Control |        |                         |                         |                         |  |
|---------|--------|-------------------------|-------------------------|-------------------------|--|
| 0 '1    | C 1    | Liver PFHxS             | Liver PFOS              | Liver PFOA              |  |
| Quali   | Gender | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 202     | Female | 0.012                   | 0.157                   | 0.033                   |  |
| 204     | Female | 0.029                   | 0.351                   | 0.034                   |  |
| 206     | Female | 0.040                   | 0.359                   | 0.045                   |  |
| 207     | Male   | 0.022                   | 0.395                   | 0.053                   |  |
| 208     | Female | 0.015                   | 0.202                   | 0.042                   |  |
| 210     | Female | 0.016                   | 0.150                   | 0.038                   |  |
| 211     | Male   |                         | 0.364                   | 0.050                   |  |
| 217     | Male   | 0.034                   | 0.455                   | 0.045                   |  |
| 227     | Male   | 0.012                   | 0.188                   | 0.044                   |  |
| 231     | Male   |                         | 0.175                   | 0.051                   |  |
| 202     | Female | 0.012                   | 0.157                   | 0.033                   |  |

-- Chromatography issues, unable to quantify

| 2.5 μg g <sup>-1</sup> PFOS from AFFF Dose |        |                         |                         |                         |  |
|--------------------------------------------|--------|-------------------------|-------------------------|-------------------------|--|
| Quail                                      | Condor | Liver PFHxS             | Liver PFOS              | Liver PFOA              |  |
| Quali                                      | Gender | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 4502                                       | Female | 1.70                    | 14.9                    | 0.150                   |  |
| 4503                                       | Male   | 0.984                   | 24.9                    | 0.059                   |  |
| 4506                                       | Female | 0.898                   | 8.839                   | 0.107                   |  |
| 4507                                       | Male   |                         | 30.0                    | 0.059                   |  |
| 4508                                       | Female | 1.12                    | 6.541                   | 0.115                   |  |
| 4509                                       | Male   | 0.842                   | 17.7                    | 0.035                   |  |
| 4511                                       | Male   | 0.698                   | 24.4                    | 0.044                   |  |
| 4512                                       | Female | 0.920                   | 6.785                   | 0.105                   |  |
| 4513                                       | Male   | 0.944                   | 26.6                    | 0.039                   |  |
| 4514                                       | Female | 0.544                   | 4.146                   | 0.067                   |  |

-- Chromatography issues, unable to quantify

| 5 µg g <sup>-1</sup> PFOS from AFFF Dose |        |                         |                         |                         |  |
|------------------------------------------|--------|-------------------------|-------------------------|-------------------------|--|
| 0 1                                      | 0 1    | Liver PFHxS             | Liver PFOS              | Liver PFOA              |  |
| Quali                                    | Gender | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 3002                                     | Female | 2.27                    | 22.5                    | 0.200                   |  |
| 3005                                     | Male   | 1.66                    | 58.1                    | 0.064                   |  |
| 3006                                     | Female | 1.50                    | 15.5                    | 0.236                   |  |
| 3008                                     | Female | 0.839                   | 9.686                   | 0.101                   |  |
| 3009                                     | Male   | 3.41                    | 59.0                    | 0.125                   |  |
| 3010                                     | Female |                         | 11.4                    | 0.202                   |  |
| 3013                                     | Male   | 2.08                    | 39.8                    | 0.062                   |  |
| 3016                                     | Female | 1.10                    | 5.758                   | 0.086                   |  |
| 3019                                     | Male   | 3.03                    | 60.1                    | 0.087                   |  |
| 3025                                     | Male   | 1.14                    | 43.3                    | 0.036                   |  |

-- Chromatography issues, unable to quantify

| 10 μg g <sup>-1</sup> PFOS from AFFF Dose |         |                         |                         |                         |  |
|-------------------------------------------|---------|-------------------------|-------------------------|-------------------------|--|
| 0 1                                       | Canalan | Liver PFHxS             | Liver PFOS              | Liver PFOA              |  |
| Quali                                     | Gender  | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 1613                                      | Male    | 3.98                    | 96.5                    | 0.142                   |  |
| 1614                                      | Female  | 3.48                    | 26.5                    | 0.361                   |  |
| 1615                                      | Male    |                         | 180                     | 0.200                   |  |
| 1616                                      | Female  | 1.88                    | 17.8                    | 0.208                   |  |
| 1617                                      | Male    | 2.12                    | 80.6                    | 0.062                   |  |
| 1618                                      | Female  | 3.18                    | 26.7                    | 0.208                   |  |
| 1619                                      | Male    | 2.03                    | 132                     | 0.057                   |  |
| 1620                                      | Female  | 2.42                    | 28.2                    | 0.247                   |  |
| 1621                                      | Male    | 1.87                    | 75.6                    | 0.070                   |  |
| 1624                                      | Female  | 2.92                    | 22.9                    | 0.375                   |  |

-- Chromatography issues, unable to quantify

| 15 μg g <sup>-1</sup> PFOS from AFFF Dose |        |                         |                         |                         |  |
|-------------------------------------------|--------|-------------------------|-------------------------|-------------------------|--|
| Quail                                     | C 1    | Liver PFHxS             | Liver PFOS              | Liver PFOA              |  |
| Quali                                     | Gender | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 6967                                      | Male   | 8.90                    | 147                     | 0.279                   |  |
| 6968                                      | Female | 6.73                    | 212                     | 0.193                   |  |
| 6969                                      | Male   | 4.99                    | 65.1                    | 0.275                   |  |
| 6971                                      | Male   | 24.6                    | 173                     | 0.674                   |  |
| 6972                                      | Female | 3.44                    | 32.8                    | 0.402                   |  |
| 6973                                      | Male   | 2.46                    | 107                     | 0.280                   |  |
| 6975                                      | Male   | 4.00                    | 26.4                    | 0.303                   |  |
| 6976                                      | Female | 4.92                    | 143                     | 0.153                   |  |
| 6978                                      | Female | 4.34                    | 35.5                    | 0.411                   |  |
| 6982                                      | Female | 5.82                    | 37.2                    | 0.639                   |  |

| 20 µg g <sup>-1</sup> PFOS from AFFF Dose |        |                         |                         |                         |  |
|-------------------------------------------|--------|-------------------------|-------------------------|-------------------------|--|
| Quail                                     | Condor | Liver PFHxS             | Liver PFOS              | Liver PFOA              |  |
| Quali                                     | Gender | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) | Conc ( $\mu g g^{-1}$ ) |  |
| 5901                                      | Male   | 20.6                    | 213                     | 0.539                   |  |
| 5902                                      | Female | 4.67                    | 43.3                    | 0.538                   |  |
| 5903                                      | Male   | 17.6                    | 236                     | 0.669                   |  |
| 5905                                      | Male   | 0.035                   |                         |                         |  |
| 5907                                      | Male   | 12.9                    | 274                     | 0.390                   |  |
| 5908                                      | Female | 3.65                    | 32.1                    | 0.316                   |  |
| 5909                                      | Male   | 14.4                    | 199                     | 0.592                   |  |
| 5912                                      | Female | 6.70                    | 55.0                    | 0.538                   |  |
| 5914                                      | Female | 6.03                    | 47.0                    | 0.565                   |  |
| 5916                                      | Female | 4.22                    | 34.1                    | 0.405                   |  |

-- Chromatography issues, unable to quantify

| Hatah | Daga | Serum PFOS              | Serum PFHxS             | Liver PFOS              | Liver PFHxS             |
|-------|------|-------------------------|-------------------------|-------------------------|-------------------------|
| пассп | Dose | Conc ( $\mu g g^{-1}$ ) |
| 1     | 0    | 0.244                   | 0.015                   | 0.035                   | 0.002                   |
| 1     | 0    | 0.123                   | 0.010                   | 0.029                   | 0.001                   |
| 1     | 0    | 0.128                   | 0.008                   | 0.027                   | 0.002                   |
| 1     | 0    | 0.119                   | 0.008                   | 0.025                   | 0.001                   |
| 1     | 2.5  | 3.91                    | 0.754                   | 3.66                    | 0.126                   |
| 1     | 2.5  | 1.87                    | 0.567                   | 1.33                    | 0.103                   |
| 1     | 2.5  | 2.84                    | 0.270                   | 2.21                    | 0.055                   |
| 1     | 2.5  | 2.00                    | 0.322                   | 1.54                    | 0.048                   |
| 1     | 5    | 6.08                    | 1.33                    | 3.60                    | 0.248                   |
| 1     | 5    | 4.43                    | 2.09                    | 2.52                    | 0.293                   |
| 1     | 5    | 13.3                    | 1.32                    | 8.07                    | 0.201                   |
| 1     | 5    | 5.37                    | 1.38                    | 3.99                    | 0.299                   |
| 1     | 10   | 12.4                    | 4.30                    | 5.74                    | 0.483                   |
| 1     | 10   | 19.4                    | 1.31                    | 12.6                    | 0.199                   |
| 2     | 0    | 0.104                   | 0.007                   | 0.035                   | 0.002                   |
| 2     | 0    | 0.115                   | 0.008                   | 0.030                   | 0.001                   |
| 2     | 0    | 0.114                   | 0.009                   | 0.025                   | 0.002                   |
| 2     | 0    | 0.103                   | 0.009                   | 0.034                   | 0.001                   |
| 2     | 2.5  | 2.24                    | 0.345                   | 1.05                    | 0.045                   |
| 2     | 2.5  | 1.45                    | 0.418                   | 1.24                    | 0.091                   |
| 2     | 2.5  | 2.09                    | 0.758                   | 1.25                    | 0.081                   |
| 2     | 2.5  | 3.55                    | 0.664                   | 1.98                    | 0.113                   |
| 2     | 5    | 3.78                    | 0.928                   | 2.38                    | 0.185                   |
| 2     | 5    | 6.45                    | 1.69                    | 5.42                    | 0.366                   |
| 2     | 5    | 6.67                    | 1.36                    | 3.89                    | 0.230                   |
| 2     | 5    | 5.55                    | 1.71                    | 5.55                    | 0.299                   |
| 2     | 10   | 10.6                    | 2.10                    | 9.28                    | 0.518                   |
| 2     | 10   | 10.0                    | 1.68                    | 7.92                    | 0.314                   |
| 2     | 10   | 14.8                    | 3.88                    | 12.9                    | 0.846                   |
| 2     | 10   | 7.53                    | 1.81                    | 4.86                    | 0.330                   |
| 2     | 15   | 16.8                    | 4.44                    | 12.9                    | 1.08                    |
| 2     | 15   | 19.1                    | 4.58                    | 12.9                    | 1.10                    |
| 2     | 15   | 9.04                    | 2.72                    | 4.26                    | 0.510                   |
| 2     | 15   | 13.1                    | 2.33                    | 7.94                    | 0.451                   |
| 2     | 20   | 28.2                    | 1.56                    | 15.1                    | 0.342                   |
| 2     | 20   | 15.1                    | 1.71                    | 8.33                    | 0.349                   |
| 2     | 20   | 20.9                    | 3.22                    | 12.7                    | 0.655                   |
| 2     | 20   | 21.5                    | 2.28                    | 11.1                    | 0.466                   |

8.1.17 Chronic 3M AFFF Chick Serum and Liver Concentrations

| Hatab | Daga | Serum PFOS              | Serum PFHxS             | Liver PFOS              | Liver PFHxS             |
|-------|------|-------------------------|-------------------------|-------------------------|-------------------------|
| match | Dose | Conc ( $\mu g g^{-1}$ ) |
| 3     | 0    | 0.105                   | 0.007                   | 0.026                   | 0.004                   |
| 3     | 0    | 0.105                   | 0.007                   | 0.028                   | 0.004                   |
| 3     | 0    | 0.104                   | 0.008                   | 0.025                   | 0.004                   |
| 3     | 0    | 0.115                   | 0.008                   | 0.023                   | 0.004                   |
| 3     | 2.5  | 1.85                    | 0.323                   | 1.53                    | 0.084                   |
| 3     | 2.5  | 1.64                    | 0.217                   | 0.980                   | 0.043                   |
| 3     | 2.5  | 2.42                    | 0.332                   | 1.35                    | 0.065                   |
| 3     | 2.5  | 3.61                    | 0.484                   | 3.30                    | 0.118                   |
| 3     | 5    | 4.94                    | 1.30                    | 3.81                    | 0.243                   |
| 3     | 5    | 5.09                    | 0.911                   | 3.62                    | 0.147                   |
| 3     | 5    | 3.40                    | 0.595                   | 2.40                    | 0.101                   |
| 3     | 5    | 5.31                    | 1.11                    | 4.44                    | 0.180                   |
| 3     | 10   | 9.03                    | 1.59                    | 6.19                    | 0.264                   |
| 3     | 10   | 9.59                    | 1.32                    | 6.38                    | 0.228                   |
| 3     | 10   | 9.64                    | 1.52                    | 5.30                    | 0.286                   |
| 3     | 10   | 8.20                    | 1.21                    | 4.52                    | 0.214                   |
| 3     | 15   | 18.0                    | 1.98                    | 10.9                    | 0.351                   |
| 3     | 15   | 14.4                    | 2.87                    | 7.74                    | 0.524                   |
| 3     | 15   | 19.5                    | 2.57                    | 10.0                    | 0.386                   |
| 3     | 15   | 16.1                    | 2.86                    | 9.82                    | 0.563                   |
| 3     | 20   | 23.5                    | 1.67                    | 12.9                    | 0.294                   |
| 3     | 20   | 15.0                    | 1.73                    | 12.6                    | 0.385                   |
| 3     | 20   | 28.9                    | 2.60                    | 13.9                    | 0.394                   |
| 3     | 20   | 22.2                    | 2.34                    | 9.62                    | 0.359                   |
| 4     | 0    | 0.035                   | 0.007                   | 0.307                   | 0.012                   |
| 4     | 0    | 0.030                   | 0.005                   | 0.024                   | 0.003                   |
| 4     | 0    | 0.029                   | 0.005                   | 0.034                   | 0.003                   |
| 4     | 0    | 0.030                   | 0.005                   | 0.022                   | 0.002                   |
| 4     | 2.5  | 4.22                    | 0.722                   | 3.04                    | 0.143                   |
| 4     | 2.5  | 2.07                    | 0.403                   | 1.00                    | 0.076                   |
| 4     | 2.5  | 4.09                    | 0.597                   | 2.30                    | 0.106                   |
| 4     | 2.5  | 4.55                    | 0.550                   | 1.93                    | 0.074                   |
| 4     | 5    | 7.20                    | 1.07                    | 3.69                    | 0.186                   |
| 4     | 5    | 5.85                    | 0.975                   | 2.84                    | 0.174                   |
| 4     | 5    | 7.26                    | 0.926                   | 2.83                    | 0.195                   |
| 4     | 5    | 4.37                    | 0.528                   | 2.59                    | 0.101                   |
| 4     | 10   | 7.01                    | 1.11                    | 3.02                    | 0.196                   |
| 4     | 10   | 9.13                    | 1.62                    | 4.86                    | 0.316                   |
| 4     | 10   | 9.13                    | 1.21                    | 3.66                    | 0.190                   |
| 4     | 10   | 9.32                    | 1.40                    | 4.44                    | 0.318                   |
| 4     | 15   | 13.0                    | 1.29                    | 7.84                    | 0.291                   |
| 4     | 15   | 18.2                    | 2.17                    | 8.29                    | 0.396                   |

| Hatah | Daga | Serum PFOS              | Serum PFHxS             | Liver PFOS              | Liver PFHxS             |
|-------|------|-------------------------|-------------------------|-------------------------|-------------------------|
| пассп | Dose | Conc ( $\mu g g^{-1}$ ) |
| 4     | 15   | 18.0                    | 1.48                    | 9.65                    | 0.271                   |
| 4     | 15   | 28.3                    | 2.22                    | 9.35                    | 0.348                   |
| 4     | 20   | 30.9                    | 2.53                    | 11.2                    | 0.422                   |
| 4     | 20   | 28.4                    | 2.82                    | 11.4                    | 0.443                   |
| 4     | 20   | 19.7                    | 1.77                    | 8.98                    | 0.440                   |
| 4     | 20   | 31.2                    | 2.52                    | 13.9                    | 0.605                   |
| 5     | 0    | 0.030                   | 0.007                   | 0.039                   | 0.004                   |
| 5     | 0    | 0.033                   | 0.005                   | 0.021                   | 0.003                   |
| 5     | 0    | 0.033                   | 0.011                   | 0.029                   | 0.004                   |
| 5     | 0    | 0.034                   | 0.005                   | 0.041                   | 0.005                   |
| 5     | 2.5  | 2.87                    | 0.347                   | 1.44                    | 0.059                   |
| 5     | 2.5  | 4.40                    | 0.749                   | 1.96                    | 0.106                   |
| 5     | 2.5  | 2.69                    | 0.386                   | 1.50                    | 0.063                   |
| 5     | 2.5  | 3.05                    | 0.363                   | 4.97                    | 0.208                   |
| 5     | 5    | 5.65                    | 0.872                   | 5.55                    | 0.344                   |
| 5     | 5    | 6.81                    | 1.10                    | 5.66                    | 0.310                   |
| 5     | 5    | 8.19                    | 1.36                    | 5.86                    | 0.235                   |
| 5     | 5    | 6.27                    | 0.970                   | 4.63                    | 0.283                   |
| 5     | 10   | 15.6                    | 1.80                    | 8.17                    | 0.539                   |
| 5     | 10   | 16.5                    | 2.50                    | 7.38                    | 0.456                   |
| 5     | 10   | 15.4                    | 2.03                    | 8.95                    | 0.621                   |
| 5     | 10   | 11.5                    | 0.596                   | 5.00                    | 0.136                   |
| 5     | 15   | 13.9                    | 1.27                    | 5.56                    | 0.320                   |
| 5     | 15   | 9.9                     | 1.60                    | 10.1                    | 0.573                   |
| 5     | 15   | 15.8                    | 1.48                    | 7.18                    | 0.315                   |
| 5     | 15   | 16.0                    | 2.10                    | 7.52                    | 0.504                   |
| 5     | 20   | 17.7                    | 2.14                    | 10.2                    | 0.622                   |
| 5     | 20   | 18.2                    | 1.83                    | 11.1                    | 0.391                   |
| 5     | 20   | 17.9                    | 2.77                    | 15.2                    | 1.01                    |
| 5     | 20   | 24.0                    | 2.58                    | 16.7                    | 0.540                   |
| 6     | 0    |                         |                         | 0.155                   | 0.008                   |
| 6     | 0    |                         |                         | 0.095                   | 0.009                   |
| 6     | 0    |                         |                         | 0.088                   | 0.008                   |
| 6     | 0    |                         |                         | 0.070                   | 0.005                   |
| 6     | 2.5  | 3.62                    | 0.500                   | 2.53                    | 0.105                   |
| 6     | 2.5  | 3.45                    | 0.533                   | 2.00                    | 0.107                   |
| 6     | 2.5  | 3.45                    | 0.479                   | 2.26                    | 0.049                   |
| 6     | 2.5  | 2.15                    | 0.315                   | 1.47                    | 0.078                   |
| 6     | 5    | 7.73                    | 1.47                    | 5.56                    | 0.326                   |
| 6     | 5    | 6.55                    | 0.956                   | 4.44                    | 0.220                   |
| 6     | 5    | 6.07                    | 1.05                    | 5.34                    | 0.306                   |
| 6     | 5    | 5.72                    | 1.07                    | 7.25                    | 0.392                   |

--Analytical issues, unable to quantify

| Hatab | Daga | Serum PFOS              | Serum PFHxS             | Liver PFOS              | Liver PFHxS             |
|-------|------|-------------------------|-------------------------|-------------------------|-------------------------|
| пассп | Dose | Conc ( $\mu g g^{-1}$ ) |
| 6     | 10   | 7.11                    | 1.10                    | 6.16                    | 0.308                   |
| 6     | 10   | 7.47                    | 1.14                    |                         |                         |
| 6     | 10   | 7.86                    | 1.27                    |                         |                         |
| 6     | 10   | 7.96                    | 1.26                    |                         |                         |
| 6     | 15   | 13.0                    | 1.94                    | 7.966                   | 0.590                   |
| 6     | 15   | 17.2                    | 2.77                    | 8.932                   | 0.713                   |
| 6     | 15   | 26.9                    | 2.20                    | 13.846                  | 0.527                   |
| 6     | 15   | 20.0                    | 3.60                    | 8.32                    | 0.573                   |
| 6     | 20   | 15.5                    | 0.753                   | 7.93                    | 0.221                   |
| 6     | 20   | 26.6                    | 3.23                    | 11.152                  | 0.737                   |
| 6     | 20   | 21.5                    | 3.88                    | 14.174                  | 1.15                    |
| 6     | 20   | 13.9                    | 2.30                    |                         |                         |
| 7     | 0    | 0.033                   | 0.005                   | 0.063                   | 0.006                   |
| 7     | 0    | 0.032                   | 0.005                   | 0.081                   | 0.005                   |
| 7     | 0    | 0.031                   | 0.004                   | 0.066                   | 0.004                   |
| 7     | 0    | 0.031                   | 0.004                   | 0.069                   | 0.004                   |
| 7     | 2.5  | 3.04                    | 0.462                   | 1.61                    | 0.081                   |
| 7     | 2.5  | 2.67                    | 0.310                   | 1.57                    | 0.093                   |
| 7     | 2.5  | 4.45                    | 0.450                   | 1.62                    | 0.671                   |
| 7     | 2.5  | 1.60                    | 0.384                   | 2.57                    | 0.193                   |
| 7     | 5    | 3.51                    | 0.676                   | 2.18                    | 1.53                    |
| 7     | 5    | 4.25                    | 0.758                   | 2.51                    | 1.56                    |
| 7     | 5    | 3.41                    | 0.617                   | 0.825                   | 1.47                    |
| 7     | 5    | 6.22                    | 1.23                    | 1.99                    | 1.56                    |
| 7     | 10   | 5.63                    | 0.590                   | 5.39                    | 2.73                    |
| 7     | 10   | 9.9                     | 1.66                    | 7.46                    | 3.01                    |
| 7     | 10   | 6.75                    | 1.48                    | 1.99                    | 1.52                    |
| 7     | 10   | 11.6                    | 2.04                    | 2.12                    | 1.91                    |
| 7     | 15   | 14.0                    | 2.31                    | 10.2                    | 4.09                    |
| 7     | 15   | 13.2                    | 3.68                    | 6.48                    | 2.95                    |
| 7     | 15   | 17.9                    | 2.56                    | 7.86                    | 3.29                    |
| 7     | 15   | 15.0                    | 2.57                    | 5.97                    | 2.89                    |
| 7     | 20   | 11.1                    | 1.86                    | 6.40                    | 3.07                    |
| 7     | 20   | 15.4                    | 2.15                    | 8.23                    | 3.48                    |
| 7     | 20   | 13.8                    | 2.13                    | 7.02                    | 2.77                    |
| 7     | 20   | 13.1                    | 3.04                    | 9.90                    | 4.26                    |
| 8     | 0    | 0.033                   | 0.004                   |                         | 1.07                    |
| 8     | 0    | 0.030                   | 0.004                   |                         | 0.585                   |
| 8     | 0    | 0.036                   | 0.004                   |                         | 0.771                   |
| 8     | 0    | 0.032                   | 0.004                   |                         | 0.879                   |
| 8     | 2.5  | 2.24                    | 0.325                   |                         | 1.60                    |
| 8     | 2.5  | 2.61                    | 0.475                   | 0.660                   | 1.07                    |

--Analytical issues, unable to quantify

| Uatab | Daga | Serum PFOS              | Serum PFHxS             | Liver PFOS              | Liver PFHxS             |
|-------|------|-------------------------|-------------------------|-------------------------|-------------------------|
| пассп | Dose | Conc ( $\mu g g^{-1}$ ) |
| 8     | 2.5  | 2.68                    | 0.379                   | 1.29                    | 1.45                    |
| 8     | 2.5  | 2.38                    | 0.375                   |                         | 0.755                   |
| 8     | 5    | 6.20                    | 0.860                   | 4.10                    | 0.230                   |
| 8     | 5    | 5.25                    | 0.466                   | 2.47                    | 0.128                   |
| 8     | 5    | 4.30                    | 0.604                   | 5.39                    | 0.180                   |
| 8     | 5    | 8.13                    | 1.13                    | 9.99                    | 0.417                   |
| 8     | 10   | 12.7                    | 1.62                    | 8.94                    | 0.286                   |
| 8     | 10   | 9.8                     | 1.23                    | 6.56                    | 0.226                   |
| 8     | 10   | 8.87                    | 1.06                    | 6.74                    | 0.302                   |
| 8     | 10   | 5.50                    | 0.766                   | 10.9                    | 0.352                   |
| 8     | 15   | 17.9                    | 2.34                    | 14.7                    | 0.492                   |
| 8     | 15   | 10.6                    | 2.09                    | 11.4                    | 0.441                   |
| 8     | 15   | 16.0                    | 2.29                    | 7.94                    | 0.437                   |
| 8     | 15   | 15.9                    | 2.46                    | 11.6                    | 0.516                   |
| 8     | 20   | 13.9                    | 2.50                    | 19.9                    | 0.574                   |
| 8     | 20   | 12.3                    | 1.70                    | 10.3                    | 0.564                   |
| 8     | 20   | 21.9                    | 2.24                    | 8.57                    | 0.379                   |
| 8     | 20   | 13.5                    | 2.88                    | 9.56                    | 0.498                   |
| 9     | 0    | 0.029                   | 0.005                   | 0.060                   | 0.017                   |
| 9     | 0    | 0.037                   | 0.004                   | 0.068                   | 0.007                   |
| 9     | 0    | 0.026                   | 0.005                   | 0.086                   | 0.016                   |
| 9     | 0    | 0.026                   | 0.004                   | 0.089                   | 0.016                   |
| 9     | 2.5  | 1.38                    | 0.178                   | 2.74                    | 0.138                   |
| 9     | 2.5  | 1.54                    | 0.410                   | 1.24                    |                         |
| 9     | 2.5  | 2.85                    | 0.357                   | 1.18                    | 0.125                   |
| 9     | 2.5  | 4.03                    | 0.539                   | 2.19                    | 0.113                   |
| 9     | 5    | 6.40                    | 0.774                   | 3.02                    | 0.206                   |
| 9     | 5    | 6.61                    | 1.26                    | 5.35                    | 0.283                   |
| 9     | 5    | 4.85                    | 0.901                   | 4.67                    | 0.247                   |
| 9     | 5    | 6.21                    | 1.04                    | 3.12                    | 0.164                   |
| 9     | 10   | 8.72                    | 1.62                    | 4.51                    | 0.147                   |
| 9     | 10   | 9.04                    | 1.78                    | 4.52                    | 0.267                   |
| 9     | 10   | 4.16                    | 0.733                   | 6.71                    | 0.480                   |
| 9     | 10   | 7.48                    | 0.724                   | 4.75                    | 0.332                   |
| 9     | 15   | 15.0                    | 2.54                    | 12.5                    | 0.632                   |
| 9     | 15   | 16.1                    | 2.46                    | 10.1                    | 0.571                   |
| 9     | 15   | 15.8                    | 1.61                    | 11.8                    | 0.639                   |
| 9     | 15   | 13.7                    | 1.27                    | 11.0                    | 0.522                   |
| 9     | 20   | 28.9                    | 1.48                    | 7.75                    | 0.512                   |
| 9     | 20   | 19.3                    | 1.55                    | 23.0                    | 0.916                   |
| 9     | 20   | 14.6                    | 1.14                    | 16.3                    | 0.881                   |

--Analytical issues, unable to quantify

| Hatch | Dose | Serum PFOS              | Serum PFHxS             | Liver PFOS              | Liver PFHxS             |
|-------|------|-------------------------|-------------------------|-------------------------|-------------------------|
|       |      | Conc ( $\mu g g^{-1}$ ) |
| 10    | 0    | 0.031                   | 0.002                   | 0.059                   | 0.012                   |
| 10    | 0    | 0.032                   | 0.003                   | 0.041                   | 0.014                   |
| 10    | 0    | 0.032                   | 0.003                   | 0.046                   | 0.010                   |
| 10    | 0    | 0.030                   | 0.003                   | 0.066                   | 0.016                   |
| 10    | 2.5  | 1.43                    | 0.129                   | 1.47                    | 0.046                   |
| 10    | 2.5  | 1.95                    | 0.306                   | 1.81                    | 0.112                   |
| 10    | 2.5  | 2.80                    | 0.548                   | 1.10                    | 0.060                   |
| 10    | 2.5  | 3.44                    | 0.901                   | 2.63                    | 0.181                   |
| 10    | 5    | 4.48                    | 1.09                    | 2.76                    | 0.179                   |
| 10    | 5    | 3.30                    | 0.520                   | 2.39                    | 0.149                   |
| 10    | 5    | 4.75                    | 1.20                    | 2.99                    | 0.188                   |
| 10    | 5    | 6.99                    | 1.12                    | 3.98                    | 0.264                   |
| 10    | 10   | 9.37                    | 1.42                    | 16.5                    | 0.940                   |
| 10    | 10   | 8.75                    | 1.44                    | 10.1                    | 0.371                   |
| 10    | 10   | 19.0                    | 2.91                    | 6.64                    | 0.363                   |
| 10    | 10   | 18.0                    | 1.94                    | 5.22                    | 0.205                   |
| 10    | 15   | 17.6                    | 3.73                    | 12.7                    | 0.724                   |
| 10    | 15   | 17.7                    | 3.05                    | 9.35                    | 0.642                   |
| 10    | 15   | 24.0                    | 5.36                    | 9.68                    | 0.732                   |
| 10    | 15   | 22.4                    | 3.54                    | 10.2                    | 0.584                   |
| 10    | 20   | 25.5                    | 1.53                    | 12.8                    | 0.220                   |
| 10    | 20   | 23.2                    | 2.36                    | 18.5                    | 0.829                   |
| 10    | 20   | 16.7                    | 0.803                   | 14.9                    | 0.668                   |
| 10    | 20   | 19.0                    | 3.80                    | 20.6                    | 0.483                   |

| 8.1.18 Chronic 3M AFFF Egg White and Yolk Concentration | ns |
|---------------------------------------------------------|----|
|---------------------------------------------------------|----|

| Doca | Hen  | Necropsy | Egg Yolk          | Egg White             | Egg Yolk<br>PFHxS | Egg White<br>PFHxS |
|------|------|----------|-------------------|-----------------------|-------------------|--------------------|
| Dose | ID   | Date     | $(u \sim x^{-1})$ | $(u_{\alpha} \sim 1)$ | Conc              | Conc               |
|      |      |          | $(\mu g g^{-})$   | (µg g <sup>-</sup> )  | $(\mu g g^{-1})$  | $(\mu g g^{-1})$   |
| 0    | 202  | 10/30/18 | 0.109             | 0.000                 | 0.017             | 0.000              |
| 0    | 210  | 8/26/18  | 0.375             | 0.001                 | 0.043             | 0.000              |
| 0    | 210  | 10/30/18 | 0.258             | 0.001                 | 8.65              | 0.000              |
| 0    | 224  | 8/28/18  | 230               | 0.065                 | 10.2              | 0.015              |
| 0    | 228  | 8/28/18  | 0.056             | 0.000                 | 0.016             | 0.000              |
| 0    | 230  | 8/21/18  | 0.119             | 0.001                 | 0.015             | 0.000              |
| 0    | 232  | 10/30/18 | 0.376             | 0.000                 | 0.03              | 0.000              |
| 2    | 4504 | 8/31/18  | 16.9              | 0.006                 | 1.81              | 0.003              |
| 2    | 4505 | 10/30/18 | 21.5              | 0.004                 | 1.74              | 0.002              |
| 2    | 4512 | 8/23/18  | 57.8              | 0.009                 | 3.27              | 0.003              |
| 2    | 4514 | 10/30/18 | 20.7              | 0.006                 | 1.66              | 0.004              |
| 2    | 4522 | 10/30/18 | 25.1              | 0.006                 | 1.53              | 0.003              |
| 2    | 4524 | 8/27/18  | 100               | 0.019                 | 3.83              | 0.005              |
| 2    | 4528 | 8/28/18  | 82.8              | 0.014                 | 4.21              | 0.005              |
| 5    | 3004 | 10/30/18 | 32.8              | 0.013                 | 3.14              | 0.006              |
| 5    | 3008 | 8/27/18  | 44.5              | 0.136                 | 6.77              | 0.037              |
| 5    | 3012 | 8/28/18  | 42.3              | 0.012                 | 7.15              | 0.010              |
| 5    | 3016 | 10/30/18 | 38.5              | 0.006                 | 3.22              | 0.004              |
| 5    | 3020 | 8/26/18  | 102               | 0.023                 | 6.07              | 0.009              |
| 5    | 3024 | 10/30/18 | 42.7              | 0.013                 | 1.81              | 0.006              |
| 5    | 3028 | 8/27/18  | 103               | 0.014                 | 10.3              | 0.007              |
| 10   | 1620 | 8/29/18  | 74.8              | 0.017                 | 7.11              | 0.010              |
| 10   | 1622 | 10/30/18 | 64.3              | 0.034                 | 5.53              | 0.019              |
| 10   | 1630 | 8/22/18  | 326               | 0.066                 | 22.9              | 0.022              |
| 10   | 1630 | 8/24/18  | 178               | 0.042                 | 21.4              | 0.027              |
| 10   | 1632 | 10/30/18 | 89.8              | 0.016                 | 7.69              | 0.009              |
| 10   | 1634 | 8/31/18  | 53.7              | 0.009                 | 6.01              | 0.006              |
| 10   | 1642 | 10/30/18 | 61.6              | 0.016                 | 5.79              | 0.006              |
| 15   | 6976 | 10/30/18 | 118               | 0.079                 | 17.8              | 0.031              |
| 15   | 6982 | 10/30/18 | 140               | 0.040                 | 18.7              | 0.030              |
| 15   | 6984 | 9/1/18   | 99.3              | 0.018                 | 7.88              | 0.013              |
| 15   | 6984 | 9/10/18  | 141               | 0.019                 | 11.1              | 0.007              |
| 15   | 6988 | 8/31/18  | 205               | 0.025                 | 15.8              | 0.012              |
| 15   | 6988 | 9/1/18   | 167               | 0.015                 | 13.9              | 0.011              |
| 15   | 6988 | 10/30/18 | 103               | 0.042                 | 23.8              | 0.034              |
| 20   | 5906 | 10/30/18 | 179               | 0.087                 | 12.4              | 0.031              |
| 20   | 5918 | 10/30/18 | 190               | 0.062                 | 11.9              | 0.018              |
| 20   | 5928 | 8/27/18  | 279               | 0.032                 | 29.2              | 0.017              |
| 20   | 5928 | 8/31/18  | 140               | 0.037                 | 14.8              | 0.018              |
| 20   | 5928 | 9/1/18   | 105               | 0.036                 | 13.0              | 0.010              |
| 20   | 5928 | 10/30/18 | 207               | 0.156                 | 10.1              | 0.013              |

| <i>_</i>   | Concentration (mg kg <sup>-1</sup> ) |         |              |    |  |
|------------|--------------------------------------|---------|--------------|----|--|
| Compound   | Nominal                              | Average | Recovery (%) | SD |  |
| Liver      |                                      | 8       |              |    |  |
| PFOS       | 0                                    | 0       |              |    |  |
|            | 18                                   | 16      | 86           | 12 |  |
|            | 36                                   | 33      | 90           | 12 |  |
|            | 65                                   | 59      | 90           | 8  |  |
|            | 95                                   | 77      | 80           | 3  |  |
|            | 84                                   | 79      | 93           | 5  |  |
| AFFF PFOS  | 0                                    | 0       |              |    |  |
|            | 25                                   | 29      | 115          | 3  |  |
|            | 50                                   | 51      | 103          | 5  |  |
|            | 100                                  | 92      | 92           | 2  |  |
|            | 150                                  | 147     | 98           | 4  |  |
|            | 200                                  | 181     | 90           | 4  |  |
| AFFF PFHxS | 0                                    | 0       |              |    |  |
|            | 2.0                                  | 1.9     | 95           | 8  |  |
|            | 4.0                                  | 3.6     | 90           | 6  |  |
|            | 8.1                                  | 7.8     | 97           | 3  |  |
|            | 12                                   | 12      | 99           | 8  |  |
|            | 16                                   | 15      | 91           | 10 |  |
| Egg Yolk   |                                      |         |              |    |  |
| PFOS       | 0                                    | 0.07    |              |    |  |
|            | 19                                   | 13      | 66           | 8  |  |
|            | 32                                   | 19      | 59           | 7  |  |
|            | 54                                   | 32      | 58           | 8  |  |
|            | 76                                   | 60      | 68           | 13 |  |
|            | 98                                   | 63      | 69           | 11 |  |
| AFFF PFOS  | 0                                    | 0.1     |              |    |  |
|            | 36                                   | 36      | 99           | a  |  |
|            | 57                                   | 66      | 115          |    |  |
|            | 86                                   | 79      | 92           |    |  |
|            | 114                                  | 99      | 87           |    |  |
|            | 143                                  | 128     | 89           |    |  |
|            | 171                                  | 148     | 86           |    |  |
|            | 200                                  | 144     | 72           |    |  |
| AFFF PFHxS | 0                                    | 0.0     |              |    |  |
|            | 2.9                                  | 3.0     | 102          |    |  |
|            | 4.6                                  | 5.1     | 112          |    |  |
|            | 6.9                                  | 5.9     | 86           |    |  |
|            | 9.2                                  | 7.6     | 82           |    |  |
|            | 12                                   | 11      | 92           |    |  |
|            | 14                                   | 12      | 86           |    |  |
|            | 16                                   | 12      | 75           |    |  |

8.1.19 Spike recoveries of PFOS, AFFF PFOS and AFFF PFHxS in liver, egg yolk and serum samples

| Serum      |     |      |     |    |
|------------|-----|------|-----|----|
| PFOS       | 0   | 0.9  |     |    |
|            | 27  | 23   | 85  | 24 |
|            | 54  | 50   | 93  | 13 |
|            | 108 | 108  | 100 | 12 |
|            | 162 | 160  | 99  | 13 |
|            | 216 | 230  | 106 | 10 |
| AFFF PFOS  | 0   | 0.3  |     |    |
|            | 25  | 25   | 102 | 9  |
|            | 50  | 47   | 95  | 16 |
|            | 100 | 89   | 89  | 4  |
|            | 200 | 246  | 123 | 9  |
|            | 300 | 315  | 105 | 14 |
| AFFF PFHxS | 0   | 0.02 |     |    |
|            | 2   | 1.7  | 84  | 12 |
|            | 4   | 3.0  | 73  | 3  |
|            | 8   | 6.0  | 73  | 4  |
|            | 16  | 18   | 110 | 17 |
|            | 24  | 22   | 90  | 17 |

<sup>a</sup>A single sample was analyzed, thus there is no standard deviation.

8.2 List of Scientific/Technical Publications

Bursian, S. J., Link, J.E., McCarty, M., Harr, K., Simcik, M.F. Dietary Exposure of Japanese Quail (*Coturnix japonica*) to Perfluorooctane Sulfonate (PFOS) and a Legacy Aqueous Film Forming Foam (AFFF) Containing PFOS: Effects on Reproduction and Chick Survivability and Growth. *In preparation* 

Bursian, S. J., Link, J.E., McCarty, M., Simcik, M.F. The Subacute Toxicity of PFOS and/or PFOA and Legacy Aqueous Film Forming Foams to Japanese Quail (*Coturnix japonica*) chicks. *Environmental Toxicology and Chemistry*. **2020** doi:10.1002/etc.4684