
FINAL REPORT 

Combining Mass Balance Modeling with Passive Sampling at 
Contaminated Sediment Sites to Evaluate Continuing Inputs and 

Food Web Responses to Remedial Actions 

SERDP Project ER-2429 

DECEMBER 2021 

Philip Gschwend 
E. Eric Adams
Massachusetts Institute of Technology

Mandy Michalsen 
U.S. Army Engineer Research 
Developmental Center 

Katherine von Stackelberg 
NEK Associates LLC, Harvard Center for 
Risk Analysis & Harvard School of Public 
Health 

Distribution Statement A 



This report was prepared under contract to the Department of Defense Strategic 
Environmental Research and Development Program (SERDP).  The publication of this 
report does not indicate endorsement by the Department of Defense, nor should the 
contents be construed as reflecting the official policy or position of the Department of 
Defense.  Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the Department of Defense. 
 



9/29/2014 - 3/28/2020

ER-2429

ER-2429

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

passive sampling, sediments, polychlorinated biphenyls, PCBs, inverse modeling, food web models, FWMs

This project has sought to address the very common situation in which contaminated sediments in an 
aquatic ecosystem do not “respond” well to efforts to clean them up as measured by improved health of 
the organisms living in that environment. This, of course, translates to increased risks for humans and 
other predators (e.g., birds) that capture food from those sites.

SERDP

17/12/2021 SERDP Final Report

UNCLASS UNCLASS UNCLASS UNCLASS 94
Philip Gschwend

617-253-1638



 

i 

FINAL REPORT 
Project: ER-2429 

 
TABLE OF CONTENTS 

Page 

ABSTRACT  ....................................................................................................................... X 

EXECUTIVE SUMMARY ...................................................................................................... ES-1 

SECTION 1  ESTIMATING THE DIFFUSIVE SEDIMENT-WATER FLUXES OF 
POLYCHLORINATED BIPHENYLS USING PASSIVE  
SAMPLING AND THEIR CONTRIBUTIONS TO  
ESTUARINE MASS BALANCES ....................................................................... 1 

1.1  BACKGROUND .......................................................................................................... 1 
1.2  MATERIAL AND METHODS .................................................................................... 2 

1.2.1  Passive Sampler Preparation and Analysis .................................................................... 2 
1.2.2  Passive Sampler Calculations ........................................................................................ 3 
1.2.3  Acoustic Doppler Current Profiler Measurements ......................................................... 4 
1.2.4  EFDC Model Development ........................................................................................... 4 
1.2.5  Error Analysis ................................................................................................................ 5 

1.3  RESULTS AND DISCUSSION ................................................................................... 6 
1.3.1  Sediment Porewater-Bottom Water Concentration Differences .................................... 6 
1.3.2  Estimation of Mass Transfer Rates ................................................................................ 7 
1.3.3  PCB Flux Distribution ................................................................................................... 8 
1.3.4  Diffusive Mass Input Rate ............................................................................................. 9 
1.3.5  The Diffusive Source from the Sediment Bed Hypothesis .......................................... 10 

1.4  LIMITATIONS AND FUTURE STUDIES ............................................................... 11 
1.5  LITERATURE CITED ............................................................................................... 12 

SECTION 2  INVERSE MODELING TO FIT PCB CONCENTRATION  
DISTRIBUTIONS FOUND BY PASSIVE SAMPLING IN  
THE SITE'S WATER COLUMN ......................................................................... 1 

2.1  BACKGROUND .......................................................................................................... 1 
2.1.1  The Inverse Model ......................................................................................................... 1 

2.2  METHODS ................................................................................................................... 2 
2.2.1  Choice of Sources .......................................................................................................... 4 
2.2.2  Fitting Schemes and Interpretation of Results ............................................................... 5 
2.2.3  Illustrative Example ....................................................................................................... 6 
2.2.4  Results with Potential Sources that Include the Original Sources ................................. 7 
2.2.5  Results with Potential Sources that Do Not Include the Original Sources .................... 7 
2.2.6  Results When Measurements Include Uncertainty ........................................................ 7 
2.2.7  Effect of Contaminant Decay ......................................................................................... 8 

2.3  RESULTS AND DISCUSSION ................................................................................... 9 



 
TABLE OF CONTENTS (Continued) 

 
Page 

ii 

2.3.1  Example Using the LDW Setup ..................................................................................... 9 
2.3.2  Using Passive Sampling Data ...................................................................................... 11 
2.3.3  Results of Applying the Inverse Model to the 2016 Field Campaign .......................... 13 
2.3.4  Influence of Measurement Uncertainty on Predicted Source Strengths ...................... 18 
2.3.5  Influence of Fitting Scheme on Predicted Source Strengths ........................................ 19 
2.3.6  Sensitivity of Inverse Model Results to EFDC Model Configuration and 

Parameterization .......................................................................................................... 22 
2.3.7  First Order Decay ......................................................................................................... 22 
2.3.8  Vertical Eddy Viscosity ............................................................................................... 23 
2.3.9  Horizontal Diffusivity .................................................................................................. 25 
2.3.10 Sub-grid Scale Sources ................................................................................................ 27 

2.4  CONCLUDING COMMENTS .................................................................................. 31 
2.4.1  Summary and Implications .......................................................................................... 31 
2.4.2  Key Conclusions .......................................................................................................... 35 

2.5  REFERENCES ........................................................................................................... 35 

SECTION 3  FOOD WEB MODELING TO ASSESS PCB CONCENTRATIONS  
IN BIOTA BASED ON PASSIVE SAMPLING OF A SITE'S  
SEDIMENT BED AND WATER COLUMN AND ASSUMING  
FUTURE REMEDIATED CONDITIONS ......................................................... 37 

3.1  BACKGROUND ........................................................................................................ 37 
3.2  METHODS ................................................................................................................. 38 

3.2.1  Modeling ...................................................................................................................... 38 
3.2.2  Model Testing .............................................................................................................. 39 

3.3  RESULTS AND DISCUSSION ................................................................................. 41 
3.3.1  Food Web Expectations for LDW Organisms ............................................................. 41 
3.3.2  Correspondence between Model Estimates and Measures .......................................... 42 
3.3.3  Impact of Remediation ................................................................................................. 43 

3.4  SUMMARY ................................................................................................................ 45 
3.5  REFERENCES ........................................................................................................... 45 

APPENDIX A  PE SAMPLER LOCATIONS, DEPLOYMENT TIMES AND  
SITE DEPTHS, IN THE LDW IN THE SUMMER OF 2014. ......................... A-1 

APPENDIX B  FRACTIONS OF PRC LOSSES MEASURED FROM SEDIMENT-SIDE  
(0-5 CM BELOW INTERFACE) PE PASSIVE SAMPLERS  
DEPLOYED IN THE SUMMER OF 2014. ..................................................... B-1 

APPENDIX C  FRACTIONS OF PRC LOSSES MEASURED FROM WATER-SIDE  
(0-5 CM ABOVE INTERFACE) PE PASSIVE SAMPLERS  
DEPLOYED IN THE SUMMER OF 2014. ..................................................... C-1 

APPENDIX D  FRACTIONS OF PRC LOSSES MEASURED FROM PE PASSIVE 
SAMPLERS DEPLOYED 1 METER ABOVE THE  
SEDIMENT-WATER INTERFACE IN THE SUMMER OF 2014. ................ D-1 



 
TABLE OF CONTENTS (Continued) 

 
Page 

iii 

APPENDIX E  SEDIMENT-SIDE (0-5 CM BELOW SEDIMENT-WATER  
INTERFACE) FREELY DISSOLVED CONCENTRATIONS (PG/L) 
INFERRED FROM PRC-CORRECTED PE SAMPLERS  
DEPLOYED IN THE SUMMER OF 2014. ...................................................... E-1 

APPENDIX F  BOTTOM WATER (0-5 CM ABOVE SEDIMENT-WATER  
INTERFACE) FREELY DISSOLVED CONCENTRATIONS  
(PG/L) OF 16 PCBS INFERRED FROM PRC-CORRECTED PE  
SAMPLERS DEPLOYED IN THE SUMMER OF 2014. ................................. F-1 

APPENDIX G  WATER COLUMN (1 M ABOVE SEDIMENT-WATER INTERFACE) 
FREELY DISSOLVED CONCENTRATIONS (PG/L) OF INDIVIDUAL  
PCB CONGENERS FOUND USING PE PASSIVE SAMPLERS. ................. G-1 

APPENDIX H  SAMPLER LOCATIONS AND OTHER SITE DETAILS  
FOR FIELD SAMPLING IN SUMMER, 2016. ............................................... H-1 

APPENDIX I  FRACTIONS OF PRCS LOST DURING THE SUMMER 2016 
DEPLOYMENT OF PE PASSIVE SAMPLERS IN THE  
LDW WATER COLUMN .................................................................................. I-1 

APPENDIX J  FREELY-DISSOLVED PRC-CORRECTED CONCENTRATIONS  
OF PCB CONGENERS MEASURED USING PE PASSIVE  
SAMPLERS IN THE WATER COLUMN OF THE LDW  
IN THE SUMMER OF 2016. ............................................................................. J-1 

APPENDIX K  FREELY-DISSOLVED PCB CONGENERS MEASURED  
USING “FAST” PE PASSIVE SAMPLERS IN THE WATER  
COLUMN OF HE LDW IN 2019 ...................................................................... K-1 

 

 



 

iv 

LIST OF FIGURES 

Page 

SECTION 1 
Figure 1.  Map of the LDW Study Area, with North Generally to the Left.2 ................................ 1 
Figure 2.  Map of the LDW with Red Squares Indicating Passive Sampler  

Stations, and Black Lines Showing the EFDC Grid Used in this Study. ...................... 3 
Figure 3.  Freely Dissolved PCB Concentrations in Bottom Water (Upper  

Panel, 0-5 cm Above Interface) and Sediment porewater (Lower Panel,  
0-5 cm Below Interface) as a Function of Position Indicated by River Mile. .............. 6 

Figure 4.  (a) Comparison of ADCP-determined Shear Velocities u* [cm/s] and  
EFDC-Inferred Shear Velocities at the Same locations and times. .............................. 7 

Figure 5.  Estimated Diffusive Fluxes of Selected Congeners as a Function of RM  
in the LDW. .................................................................................................................. 9 

Figure 6.  Freely Dissolved Concentrations of Four PCB Congeners Over  
Longitudinal River Distance. ...................................................................................... 11 
 
 

SECTION 2 
Figure 1.  Tracer Concentrations (Shown in Blue) Seen By Four Samplers and the Time-

Variable Vertical Location of the Samplers (Shown in Orange as  
Model Layers) at a Given Horizontal Location. ........................................................... 4 

Figure 2.  Concentrations from Unit Sources at Various Locations in a Rectangular  
Channel with Tidal Flow, no through Flow, and Decay at 0.1 Day-1. .......................... 6 

Figure 3.  Concentrations from Unit Sources at Various Locations in a Rectangular  
Channel with Tidal Flow, no through Flow, and Decay at 1 Day-1. ............................. 9 

Figure 4.  Potential Source Locations (Marked with Crosses) Supplied to the Inverse  
Model for Source Assessment Using the 2016 Campaign Data. ................................ 13 

Figure 5.  Comparison of Fitted Concentrations and Measurements for Three  
Modeled PCB Congeners. ........................................................................................... 15 

Figure 6.  Comparison of Measurements and Predicted Concentrations from Various Sources. 16 
Figure 7.  Predicted Longitudinal Concentration Profiles Along the Center  

Channel of the LDW. .................................................................................................. 17 
Figure 8.  Potential Source Locations (Marked with Crosses) Used for the Inverse  

Model Application to Test Sensitivity to Different Fitting Schemes. ........................ 19 
Figure 9.  Comparison of Fitted Concentrations and Measurements for PCB 28  

Using the Three Fitting Schemes Considered. ............................................................ 21 
Figure 10.  Potential Source Locations (Marked with Crosses) Used in Tests of  

Inverse Model Sensitivity to the Horizontal Diffusivity in EFDC. ............................ 25 
Figure 11.  Potential Source Locations (Marked with Crosses) with Dense  

Distribution between RM 1.0 and 3.0. ........................................................................ 27 
Figure 12.  Analytical Concentration Distribution at 𝒚 ൌ 𝟎 Resulting from Two Line  

Sources Located at 3000 m and 6000 m with Strengths of 8 and 20, Respectively. .. 28 



 
LIST OF FIGURES 

 
Page 

v 

Figure 13.  Comparison of Actual Concentration Distribution with Concentration  
Distributions Resulting from Sources Selected by the Inverse Model  
for the Coarse (Top) and Fine Grid (Bottom). ............................................................ 30 

Figure 14.  Predicted Longitudinal Concentration Profiles Along the Center  
Channel of the LDW after Hypothetical Removal of One Identified Source. ............ 33 

Figure 15.  Comparison of EFDC-inferred Water Concentrations of PCB101  
for Before (Left Panel) and After (Right Panel) Source Removal at RM 0.8. ........... 34 
 
 

SECTION 3 
Figure 1.   (left) Street Map Showing the Layout of the Approximately 4-mile-long  

LDW (in blue); (middle) Map Produced by the New FWM Showing  
Sampling Locations and Thiessen Polygons Around Each of These;  
and (Right) Areas of Each Thiessen Polygon if Surface Area-weighted  
Concentration Averages Are of Interest. .................................................................... 39 

Figure 2.  Testing Sensitivity of Model Output for PCB101 Bioaccumulation of  
English Sole to the Choice of Modeling Time Steps: (Upper Left)  
Monthly vs (Lower Left) Weekly, Showing Comparable Plateau  
Concentrations (near 250 ng/g) and Similar Means and Standard  
Deviations (Right Panels). .......................................................................................... 40 

Figure 3.  Comparison Showing Food Web-model-predicted Impacts of  
Changing Feeding Preferences for a Prominent Species, Softshell  
Clams, Often Eaten by Humans. ................................................................................. 41 

Figure 4.  (Upper) EFDC-based Estimates of Surface Water Concentrations  
of PCB101 (ug/L) Using Estimated Bed-water Fluxes and LDW  
Flushing. (lower) Passive Sampling Data for Porewater Concentrations  
of PCB101 (ug/L); NOTE: 1.00E-4 ug/L = 100 pg/L. ............................................... 41 

Figure 5.  FishRand Output File Showing Estimated Concentrations of Five  
PCB Congeners in Several Species Living in the LDW in 2014. ............................... 42 

Figure 6.  Comparisons of Measured Total PCB Concentrations in Two LDW  
Fish Species, Surfperch (Upper) and Flounder (Lower), with  
FishRand FWM Expectations. .................................................................................... 43 

Figure 7.  Comparison of Food Web Model Outputs Before Remediating  
(Lower Right Table) and After Remediation (Upper Left Table). ............................. 44 

 



 

vi 

LIST OF TABLES 

Page 

SECTION 1 
Table 1.  Mass Balances of Selected Congeners. ..................................................................... 10 

 
 

SECTION 2 

Table 1.  Source Strengths Calculated Using the Inverse Model Assuming  
True Inputs of Known Source Strengths from Only Two Sources ............................. 8 

Table 2.  Similar to Table 1, but with Higher Decay Rate of 1 Day-1. ....................................... 9 
Table 3.  Source Strengths Calculated Using the Inverse Model with  

“measurements” Generated from 5 Sources (at RM 1.0, 1.4, 1.7, 2.0  
and 2.3 with Strength of 20 mg/d each). ................................................................... 10 

Table 4.  Comparison of Concentrations Measured in 2019 to those  
Measured in 2016 at Similar Locations. .................................................................... 12 

Table 5.  Source Strengths and Average Mass Contribution for Sources  
Selected by the Inverse Model Using the 2016 Campaign Data with 1 
26 Potential Sources Simulated. ................................................................................ 14 

Table 6.  Average Source Strengths and Their Standard Deviation Calculated  
Using the inverse Model with Measurements Modified to Include Uncertainty. ..... 18 

Table 7a.  Source Strengths (in mg/d) Calculated for PCB 28 for Three  
Different Fitting Schemes Using the Inverse Model with 2016  
Measurements and the Potential Sources in Figure 8. ............................................... 19 

Table 7b.   Source Strengths (in mg/d) Calculated for PCB 52 for Three  
Different Fitting Schemes Using the Inverse Model with 2016  
Measurements and the Potential Sources in Figure 8. ............................................... 20 

Table 7c.  Source Strengths (in mg/d) Calculated for PCB 101 for Three  
Different Fitting Schemes Using the Inverse Model with 2016  
Measurements and the Potential Sources in Figure 8. ............................................... 20 

Table 8.  PCB 28 Error Measures for the Three Different Fitting Schemes ............................ 21 
Table 9a.  Comparison of Selected Source Locations, Their Strengths and  

the Goodness-of-fit of the Inverse Model Concentration Predictions  
for Different Values of a First Order Decay Rate for PCB 28. ................................. 22 

Table 9b.  Comparison of Selected Source Locations, Their Strengths and the  
Goodness-of-fit of the Inverse Model Concentration Predictions  
for Different Values of a First Order Decay Rate for PCB 52. ................................. 23 

Table 9c.  Comparison of Selected Source Locations, Their Strengths and the  
Goodness-of-fit of the Inverse Model Concentration Predictions for  
Different Values of a First Order Decay Rate for PCB 101. ..................................... 23 

Table 10a.  Source Strengths (in mg/d) Predicted for PCB 28 Using the Inverse Model  
with 2016 Measurements and Three Different EFDC Calibration Settings. ............. 24 

Table 10b.  Source Strengths (in mg/d) Predicted for PCB 52 Using the Inverse Model  
with 2016 Measurements and Three Different EFDC Calibration Settings. ............. 24 



 
LIST OF TABLES 

 
Page 

vii 

Table 10c.   Source Strengths (in mg/d) Predicted for PCB 101 Using the Inverse Model  
with 2016 Measurements and Three Different EFDC Calibration Settings. ............. 24 

Table 11a.  Comparison of Selected Source Locations, their Strengths and the  
Goodness-of-Fit of the Inverse Model Concentration Predictions  
for PCB 28 for Different Values of Horizontal Diffusivity in EFDC. ...................... 25 

Table 11b.  Comparison of Selected Source Locations, their Strengths and the  
Goodness-of-Fit of the Inverse Model Concentration Predictions  
for PCB 52 with Different Values of Horizontal Diffusivity in EFDC. .................... 26 

Table 11c.  Comparison of Selected Source Locations, their Strengths and the  
Goodness-of-Fit of the Inverse Model Concentration Predictions for 
PCB 101 with Different Values of Horizontal Diffusivity in EFDC. ....................... 26 

Table 12.  Source Strengths for Sources Selected by the Inverse Model  
Out of 138 Potential Sources with Horizontal Diffusivity of 0.4 m2/s. ..................... 27 

Table 13.  Inverse Model Results When Potential Sources with Spatial Averaging  
Are Used. The “Real Sources” Are Located at 3000 m and 6000 m. ....................... 29 

Table 14.  Inverse Model Results When Potential Sources with Spatial  
Averaging and Decay Used. ...................................................................................... 29 
 
 

SECTION 3 

Table 1.  Measures of Five PCB Congener Concentrations in Clams Collected  
in 2004 Versus Values Estimated Using the Food Web Model. ............................... 42 

 

 

 



 

viii 

ACRONYMS AND ABBREVIATIONS 

ACoE  U.S. Army Corps of Engineers 
ADCP  acoustic doppler current profiler 
AIC  akaike information criterion 
 
CTD  conductivity-temperature-depth profiler 
CV  coefficient of variation 
 
DoD  U.S. Department of Defense 
 
EFDC  environmental fluid dynamics code 
EPA  U.S. Environmental Protection Agency 
 
FWMs  food web models 
 
GCMS  gas chromatography-mass spectrometry 
 
HOCs  hydrophobic organic compounds 
 
LDW  Lower Duwamish Waterway 
 
MBM  mass balance model 
MC  Monte Carlo 
MIT  Massachusetts Institute of Technology 
MSS  Marine Sampling Systems, Inc. 
 
PAHs  polycyclic aromatic hydrocarbons 
PCBs  polychlorinated biphenyls 
PE  polyethylene 
PRC  performance reference compound 
PSU  practical salinity unit 
 
RI/FS  remedial investigation/feasibility study 
RM  river mile 
RMS  root mean square 
 
SERDP Strategic Environmental Research and Development Program 
 
WBL  water boundary layer 
 



 

ix 

ACKNOWLEDGEMENTS 

This research was funded by Strategic Environmental Research and Development Program 
(SERDP) under U.S. Army Corps of Engineers (ACoE) contract W912HQ-14-C-0034. Any 
opinion, findings, or conclusions or recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of the U.S. Department of Defense (DoD).  

Much of the research in this project was performed by an excellent group of students, postdocs, 
and research associates including: Jennifer Apell, Dan Prendergast, Megan Burke, Tanguy 
Raguenez, Catherine Sobchuk, Toby Harvey, Ishita Shrivastava, Peter Israelsson, and John 
MacFarlane. 

We also thank Sean Sheldrake and the U.S. Environmental Protection Agency (EPA) Region 10 
dive team, Bill Jaworski and Dale Dickinson of Marine Sampling Systems, Inc. (MSS), Tim 
Thompson, Mandy Michalsen (AcoE) and Kristen Kerns (AcoE) for their assistance in the field 
sampling. Cheronne Oreiro and Sue Dunnihoo also generously provided us with space to process 
newly recovered samples at ARI. Bruce Nairn and Earl Hayter for helped with the EFDC, and 
Rose Wang for helpful discussion on bed-water fluxes. 

 



 

x 

Combining Mass Balance Modeling with Passive Sampling 
at Contaminated Sediment Sites to Evaluate Continuing 

Inputs and Food Web Responses to Remedial Actions 

(Submitted in response to ERSON-14-03 Improved Understanding of the Impact of Ongoing, 
Low Level Contaminant Influx to Aquatic Sediment Site Restoration) 

Philip M. Gschwend, E. Eric Adams, Mandy M. Michalsen, and Katherine von Stackelberg 

date: April 2021 

ABSTRACT 

This project has sought to address the very common situation in which contaminated sediments in 
an aquatic ecosystem do not “respond” well to efforts to clean them up as measured by improved 
health of the organisms living in that environment. This, of course, translates to increased risks for 
humans and other predators (e.g., birds) that capture food from those sites. 

To improve our abilities to address such sites, we proposed a coordinated use of both measurement 
and modeling “tools” that can be applied to achieve better results. These tools include:  

(a) Using passive samplers to characterize the presence of contaminants like polycyclic aromatic 
hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and nonionic pesticides in all of the 
media including sediments. Such data allows comparison of “passive sampler concentrations” 
in adjacent media such that directions of fluxes can be discerned. Further, translation to 
corresponding concentrations in other media like water allow quantitative estimation of fluxes 
as well as a metric suited to calculating bioaccumulation. 

(b) Using mass balance modeling synthesis of the passive sampling results so as to develop whole-
ecosystem distributions of the chemicals evaluated by the passive samplers. Such whole-
ecosystem expectations can then be compared with direct measures of the chemicals in well 
mixed fluid (e.g., surface waters) and any significant mismatch implies ignorance of the 
chemical's sources or sinks (as was found in this project for the surface water in the Lower 
Duwamish Waterway (LDW). In the case of "missing" inputs, there should be a major effort 
to ascertain whether sediment beds are actually controlling exposures in overlying waters or 
some other discharge is responsible. Obviously, rectifying the dominant contaminant source is 
the most effective means for diminishing risks in those systems. 

(c) As found in this project, locating and quantifying important PCB sources in the LDW proved 
to be difficult for a variety of reasons (e.g., inability to access suspected source locations.) This 
led us to utilize inverse modeling so that our limited contaminant measures could be most 
effectively used to locate and quantify likely contaminant inputs. This approach appears to be 
an extremely effective means for guiding site investigations. 

 



 

xi 

(d) Since environmental sampling is always limited in spatial and temporal coverage, coupling 
measures with modeling facilitates interpolation of contaminant presence at unsampled 
locations and times. This synthesis of the measurements has the huge advantage of greatly 
improving our knowledge of exposures to organisms in the environment of interest. And, of 
course, such "exposure fields" are suited for food web modeling. 

(e) So the final "tool" used in this project was a food web model (FWM), FishRand.  This modeling 
tool allowed us to employ the measurement results, together with their synthesis via use of the 
mass balance modeling tool, the Environmental Fluid Dynamics Code (EFDC), to more fully 
drive the estimates of contaminant uptake by the various trophic levels present in the LDW. 
Establishing this bioaccumulation potential, not only permitted clearer connections to 
deliberations concerning risks due to contamination at the site, but also provided a tool to assess 
the degree of site improvement/risk reduction associated with particular remedial options. 

 

Keywords passive sampling, sediments, polychlorinated biphenyls, PCBs, inverse modeling, food 
web models, FWMs 

 

 



 

ES-1 

EXECUTIVE SUMMARY 

INTRODUCTION 

Despite efforts to remediate sediments contaminated with toxic organic compounds like polycyclic 
aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, project managers 
often remain uncertain about the value of their remedial choices and the likelihood of long term 
reduction in exposures to the contaminants. This is, at least in part, due to the presence of 
continuing unchecked inputs of the same contaminants from nearby sources such as combined 
sewer overflows, groundwater discharges, and temporally infrequent phenomena such as localized 
sediment resuspension events. The research described herein sought to clarify such situations. To 
this end, we assumed that successful cleanups result in reduced risks to aquatic life and other 
organisms (birds and humans) due to significantly decreasing the presence of contaminant 
exposures experienced by those organisms.  

Fortunately, food web models (FWMs) (Arnot and Gobas, 2004; Gobas and Arnot, 2010; von 
Stackelberg et al. 2017), are available to connect the concentrations of contaminants in a site's surface 
water, sediments, and pore waters to the body burdens of all the organisms making up the food web. 
As a result, risks to ecosystems and humans can be estimated as a function of the system's distribution 
of contaminants, as long as such distributions are understood as functions of space and time. 

However, knowledge of the spatially variable and temporally changing concentrations of 
contaminants of concern at a contaminated site's surface waters and pore waters, needed for such 
FWMs, is generally limited. Contaminant measures in pore waters are almost never made, and 
sediment concentration data do not readily reveal freely dissolved porewater concentrations of 
relatively insoluble compounds like individual PCB congeners. Moreover, chemical mass balance 
models (MBMs) that reveal a given site's changing surface water and pore water concentrations of 
these organic contaminants are rarely, if ever, developed at corresponding levels of detail.  

Two examples are revealing. First, Gobas and Arnot (2010) developed a complex FWM for PCBs 
in San Francisco Bay. To drive their model, they used PCB cycling calculations done by Davis 
(2004). This latter effort treated all of San Francisco Bay as a single, well-mixed body of water, 
and it assumed single values of rate coefficients to apply everywhere in the system (e.g., 
degradation rate of PCBs at 0.000034 d-1). While Davis' mass balance modeling effort was a 
valuable starting point to identify data needs and a few important conclusions (notably, only 10 kg 
PCB inputs leaking into the entire bay each year was enough to delay food web "depuration" of 
PCBs in this ecosystem), the resultant model was clearly too simple to exploit for site-specific 
understanding of PCB concentration changes and how they would change in response to local 
sediment cleanup efforts.  

In a second example, as part of the Lower Duwamish Waterway (LDW) Remedial 
Investigation (Windward 2010), the Gobas FWM was employed again. But this time, the PCBs 
in the system were modeled by Nairn (2009) using a site-calibrated version of the 
Environmental Fluid Dynamics Code (EFDC). In this case, the modeler considered exchanges 
of water with upstream (river flow) and downstream (tides). He also assumed diffusive fluxes 
from the bed to the overlying bottom water, where the Duwamish sediments were characterized 
using surface area weighted averages of measured PCB concentrations in the bed over four regions. 
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Unfortunately, the model treated all the PCBs as a single entity (∑PCBs) with singular properties 
(for example, an aerially constant Kd value of 140,000 L/kg used to calculate porewater 
concentrations everywhere). In this case, the mass balance model (MBM) results may have showed 
the right trends (e.g., salty bottom water entering with the tides from Elliott Bay were expected to 
have lower PCB concentrations than the overlying freshwater flowing out of the LDW at the same 
stations, although in this project we found evidence of PCB sources located near the bottom 
entering the estuary from the direction of Elliott Bay!) Finally, the previous model was calibrated 
by adjusting a mass transfer coefficient for fluxes of PCBs from the bed sediments to allow 
matching the few measured water column ∑PCB concentrations (King County, 2006). 
Unfortunately, this approach does not truly identify the most important times and places from 
which the PCB contamination emanates. Hence, efforts to impact the system are inhibited since 
where to start is not clear! 

In using this approach, the average water column and porewater concentrations of ∑PCB 
concentrations were estimated and used in the Gobas FWM (LDW Remedial Investigation, 
Appendix D, 2010). The resultant FWM also unfortunately run with the ∑PCBs treated as a 
singular compound with singular properties (despite the fact the PCB congener log Kow values 
range over about 3 orders of magnitude), was also calibrated to fit observed tissue concentrations. 
Unfortunately, this type of modeling does not currently allow us to answer a question like, "how 
will PCB pore water and surface water concentrations, and hence aquatic organism tissue 
concentrations, change if we do …?"  

Hence, it was the overarching purpose of this research to develop chemical MBMs suited to 
addressing questions about what will happen if certain chemical sources are removed, while others 
are left untouched. We also pursued this integrative modeling effort in conjunction with the use of 
passive samplers to make measures of contaminant chemical gradients between pore waters and 
overly bottom water (and also surface water vs air), thereby permitting estimated fluxes in the 
relevant environmental compartments. In addition, we explored the use of inverse mass balance 
modeling to ascertain the locations and strengths of contaminant sources needed to fit distributions 
of those chemicals in the tested ecosystem. Finally, we utilized the mass balance modeling to 
estimate how changing inferred sources would diminish the presence of contaminants at the site, 
and then used this modeling estimate as an input to the site's FWM to ascertain the impact of such 
source removals. 

OBJECTIVES 

Given the need for tools to guide site assessments and to make informed remedial designs for 
contaminated sediment sites, we pursued the following coordinated modeling and passive 
sampling measurement objectives seeking: 

1. To develop a contaminated-sediment-site MBM that calculates the expected water column 
concentrations assuming a particular set of sources (e.g., diffusion from sediment in 
particular regions) and at least one quantifiable sink (e.g., flushing of the contaminants of 
concern from the aquatic site of interest). Hydrodynamic information was used to estimate 
bottom boundary layer thicknesses, and a polyethylene (PE) passive sampling-based 
method was used to characterize bed-to-water contaminant concentration gradients. 
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2. To develop PE passive sampler-based methods suited to quantifying the freely dissolved 
concentrations of low-solubility contaminants like PCBs in the overlying water column, 
thereby allowing assessment of the accuracy of the water column concentration estimates 
using our MBM, the EFDC.   

3. To extend our understandings of the study site's set of PCB sources by using an Inverse 
Modeling approach that utilizes the known hydrodynamics (mixing, flushing) of the LDW 
and measures of the PCB distributions in the water column to locate and quantify the 
sources needed to explain the distribution of PCBs in that estuary. 

4. To integrate the use of a FWM with the PCB concentration fields produced using passive 
sampling measures and synthesized using the EFDC to demonstrate the impacts of PCB 
bioaccumulation from surface water, pore water, and sediment solids.   

5. To exercise the mass balance and FWMs together to assess the impacts of "what if" 
scenarios resulting from continuing low-level contaminant inputs after targeted sediment 
hot spots are remediated.  

TECHNICAL APPROACHES 

Passive Sampling and Mass Balance Modeling Approaches 

To begin, we sought to quantify the diffusive fluxes of individual PCB congeners from the 
sediment beds into the overlying waters of the LDW. We did this by deploying PE passive 
samplers, pre-loaded with a set of 13C-labelled PCB congeners as performance reference 
compounds (PRCs), across the sediment-water interface at about 20 sites in the LDW. Upon 
sampler recovery, we measured the PCBs and PRCs, used that data and our PRC correction 
program (Tcaciuc et al.) to calculate the equilibrium PCB concentrations in the PE. And with these 
estimates of PCB equilibrium concentrations in the PE, we could use the PE-water partition 
coefficients, KPEw, of each congener to solve for its concentration in the porewater for PE in the 
bed or in the water column for PE suspended above the bed. 

This effort was augmented by special use of an acoustic Doppler current profiler (ADCP) which 
we deployed on a tripod to sample water velocities as a function of height above the sediment bed. 
These data were processed to reveal the diffusive boundary layer thickness above the bed at each 
passive sampling site. Together with the PCB concentration gradients, this boundary layer 
information allowed us to make upper-limit estimates of each PCB's diffusive flux out (or in to) 
the sediment bed. 

Combining all these results enable us to estimate the spatially varying diffusive fluxes from bed to 
water column. Integrating these fluxes over the entire LDW bottom yielded a total source strength 
for PCBs entering the water column from the bed.  

Finally, using this spatially varying source strength for the 20 congeners we specifically measured 
as inputs to the EFDC which had been tuned to match tidal amplitudes, we could solve for the 
resulting distributions of each PCB in the LDW water column. It is important to note that passive 
sampling of the riverine influx of PCBs to the LDW was also performed to account for that PCB 
input source too. Combining these, we could not explain the presence of most of the PCB load in 
the LDW water column. 
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In a subsequent effort, we sought to ascertain whether bioirrigation might account for the necessary 
additional PCB fluxes (Apell et al. 2018). This one done by measuring Rn222/Ra226 profiles at 
the same locations where passive samplers were deployed to quantify PCBs in the porewater. 
Using radon-radium disequilibria, we found the bioirrigation rates. Coupling this information to 
the PCB concentrations in the irrigated porewater still did not get close to explaining the "missing" 
PCB source. 

And in still another effort, we considered the possibility that the atmosphere might be the "missing 
source" (Apell and Gschwend, 2017). PE samplers were used to measure if PCBs truly dissolved 
in surface waters AND occurring as vapors in the lower atmosphere. These gradients proved to be 
from the water to the atmosphere, so clearly the air was not the "missing source." 

Inverse Modeling  

In light of this "missing source" problem, we decided to employ inverse modeling to locate the 
missing PCB sources. The strategy was that the locations of key sources would be key to helping 
us identify sources, often underwater, such as outfalls or seeps.  

To perform this "inverse modeling," we ran the EFDC with singular sources to generate a 
concentration profile that was unique to each putative source location. Then combining these 
concentration profiles using a least root mean square (RMS) error fitting approach such that the total 
PCB distributions in the water column could be explained by only a few sources, we located a series 
of likely places in the estuary where PCBs were probably being introduced. The weightings of these 
inputs clearly indicated the relative importance for each of the PCB congeners that were fit.  

Food Web Modeling 

Finally, we employed our PCB concentration data for sediments, porewater, and surface water to 
drive a new version of the food web FWM, FishRand. This model was parameterized for the 
organisms living in the LDW. Operation of the model yielded biota concentrations that were 
consistent with past measures of PCBs in those organisms.  

Having established this linkage with the passive sampler measures and the EFDC modeling, we 
showed that the FWM could be exercised to change PCB concentration conditions that might result 
from various remediation efforts. This effort clearly revealed the degree of biota response to 
particular changes in PCB exposures due to investments in clean up. 
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SECTION 1 ESTIMATING THE DIFFUSIVE SEDIMENT-WATER 
FLUXES OF POLYCHLORINATED BIPHENYLS USING 
PASSIVE SAMPLING AND THEIR CONTRIBUTIONS TO 
ESTUARINE MASS BALANCES 

1.1 BACKGROUND 

Hydrophobic organic compounds (HOCs)—at levels deemed to be hazardous—contaminate a 
significant portion of the sediment underlying US surface waters.1 Such deposits of legacy 
pollutants may act as a continuing source to overlying water for decades or longer. Knowledge of 
these contaminants’ potential for continuously dosing the aquatic ecosystem is needed to estimate 
food web exposures and to design the most effective remediation approaches to protect the health 
of humans and the environment.  

The sediments of the Lower Duwamish Waterway (LDW) Superfund site are extensively 
contaminated with polychlorinated biphenyls (PCBs) (Figure 1).2 Continuing releases from such 
sediment deposits are commonly assumed to be important sources of HOC contamination to the 
overlying aquatic ecosystem.3, 4,5,6 Known sedimentary hotspots in the LDW are being remediated; 
but like many sites, there is concern that other continuing PCB inputs into the waterbody may 
prevent substantial improvement of this complex urban estuary.  

 

Figure 1. Map of the LDW Study Area, with North Generally to the Left.2  

Numbered ticks indicate the distance [miles] from the downstream edge of the study area. Colors 
represent sediment concentration of total PCBs determined by the U.S. Environmental Protection Agency 
(EPA) remedial investigation/feasibility study (RI/FS) in 2006, prior to remediation.2 Gray indicates the 
detection limit (ca. 30 µg ΣPCBs/kg), and yellow/red indicates the legal benchmarks for investigation 

(yellow, >240 µg ΣPCBs/kg) and action (red, >1,300 µg ΣPCBs/kg). 

Historically, estimating the fluxes of PCBs between sediment beds and the overlying water column 
in the field was difficult to accomplish, largely due to inadequate techniques for measuring truly 
dissolved HOCs in both pore water and overlying water.5,6,7 Thus, modelers would estimate the 
diffusive gradients assuming the porewater concentrations were given by the sediment 
concentrations, normalized by sorption coefficient, Kd = focKoc,4,8,9 and the overlying water column 
concentrations could be accurately determined using filtered water samples. We now knows that 
(a) accurate estimation of HOC sorption to sediments often requires more complex Kd formulations 
(e.g. considering black carbons)10,11,12,13 and (b) filtered water samples always contain colloids, 
often at levels sufficient to cause measurements of dissolved levels to be inaccurate.9,14  
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The sediment-water mass transfer parameters of Fickian models of sediment-water fluxes that 
were ‘tuned’ to match concentrations measured in the water column4,15 had to compensate for 
inaccuracies in the diffusion gradients and so may have suffered from the assumption that HOC 
fluxes from the sediment bed were the primary source to the water column. 

This study tested the hypothesis that the primary sources of PCBs to the water column of the LDW 
were molecular diffusive fluxes from the contaminated sediment bed. Direct, in-situ estimation of 
the concentration gradients (ΔC) across the sediment-water interface were obtained by using low-
density PE passive samplers. Such passive samplers have been used at many sites contaminated 
with HOCs,5,6,7,16 and 17 and refs therein due to their ability to infer the freely dissolved concentrations in 
both the sediment porewater and the near-bed water column, thereby revealing bed-to-water 
concentration gradients. We also sought to estimate an upper limit of the bed-to-water fluxes 
assuming they were only set by the diffusive water boundary layer (WBL) thickness above the bed 
�W, and the compounds’ molecular diffusivities in water Dw: 

F = (Dw/δW)(Cpw-Cw) = kf(Cpw-Cw) = kf ΔC      (1) 
 
where Cw and Cpw are concentrations directly above the bed and in the uppermost porewater, 
respectively, and kf is the mass transfer coefficient. We estimated the WBL thickness (δw) using 
measurements from an ADCP. By combining these two measurements, we estimated the directions 
and magnitudes of the specific PCB congeners’ diffusive fluxes at many sampling stations 
distributed through the LDW (Figure 2). We then used these flux estimates as inputs to the 
Environmental Fluid Dynamics Code (EFDC)18,19 to calculate the steady state PCB concentrations 
in the water column solely due to the estimated bed-to-water diffusive fluxes. These results were 
then compared to dissolved PCB concentrations measured in the LDW water column using 
additional passive samplers, thereby enabling us to evaluate the hypothesis that PCB diffusion 
from the sediments was the dominant source of these HOCs to the water of the LDW. 

1.2 MATERIAL AND METHODS 

1.2.1 Passive Sampler Preparation and Analysis 

Details regarding the preparation, recovery, and analysis of the passive samplers can be found 
in previous publications, notably by Fernandez et al.7 and Apell and Gschwend.21 Briefly, 25 µm 
thick PE was cut into 8 cm wide strips, solvent cleaned, and loaded with performance reference 
compounds (PRCs) (13C-labeled PCB congeners 28, 54, 47, 97, 111, 153, 178), prior to 
deployment. Two days before deployment, the PE sheets were mounted into aluminum frames, 
exposing the PE in an 8 cm × 50 cm window, then these sediment bed samplers were tightly 
wrapped in aluminum foil and stored in a cooler for shipping and transport. For water column 
samplers, PE sheets were cut into approximately 1 g strips (8 cm wide × 32 cm long × 51 µm 
thick), cleaned with solvents, loaded with PRCs, sealed inside aluminum mesh, tightly wrapped 
in aluminum foil, and stored with the framed samplers. At the time of sampler assembly, 
subsamples were taken from the PE sheets to quantify initial PRC concentrations before sampler 
deployments. 

Samplers in aluminum frames were deployed in the LDW at 19 stations (Figure 2) by inserting 
them into the sediment bed such that about one third of the PE window was above the bed. 
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Deployments occurred during July 21-23, 2014 by EPA Region 10 divers and August 18-19, 2014 
by Marine Sampling Systems, Inc. (MSS) via hydraulic insertion operating from a lowered 
platform. Insertions were confirmed either visually (divers) or through a video camera (MSS). At 
five stations, a water column sampler and buoy were attached to the top of the frame by a 1 m line. 
All samplers were recovered October 6-8, 2014. Deployment and recovery specifics can be found 
in Appendix A. Within 12 h of recovery, all samplers were taken to Analytical Resources, Inc. 
Laboratory (Tukwila, WA) for processing. The bed-water interface was clearly visible from 
discoloration on the PE and sampler frame. Samplers were wiped clean with Kimwipes® and cut 
into 5 cm segments starting at the sediment-water interface. PE segments were stored for shipping 
in 40 mL amber vials with a few drops of deionized water added to maintain 100% relative 
humidity in the vials. Four field blanks, consisting of PE strips identical to deployed strips, were 
exposed on the vessel as if being handled in samplers during both deployment and retrieval 
activities. 

 

Figure 2. Map of the LDW with Red Squares Indicating Passive Sampler Stations, and 
Black Lines Showing the EFDC Grid Used in this Study. 

Upon return to the Massachusetts Institute of Technology (MIT), each PE sample in its 40 mL vial 
was spiked with surrogate recovery standards (13C-labelled PCB congeners 19, 52, 105, 167, and 
194), extracted three times with dichloromethane, and those extracts were combined. Combined 
extracts were concentrated to about 50 µL, dosed with injection standards, and analyzed via 
capillary gas chromatography-mass spectrometry (GCMS) using a 60 m long x 0.25 mm ID 
Agilent DB-5MS column in a JEOL GCmate (JEOL Ltd., Tokyo, Japan) operating in the selected 
ion monitoring mode. PCB congener concentrations were corrected for each sample using 
surrogate recoveries of identical or nearest chlorination levels. Surrogate recoveries were all 
between 70-120%, except for the trichlorobiphenyl surrogate which averaged 67±9% (ranged from 
46 to 90%). Repeated measurements of surrogates gave a method precision of better than or equal 
to ±14%. 

1.2.2 Passive Sampler Calculations 

PRC losses showed the varying extent of PE equilibration (Appendix B for sediments, Appendix 
C for bottom water, and Appendix D for water 1 meter above the sediment bed) for the range of 
target PCB congeners.20,21 To adjust the measured target PCB values to equilibrated PE 
concentrations, PRC losses were fit using mass transfer models for samples in the sediment20,22 or 
water,5,23 according to the medium in which the PE had been deployed. After adjusting to 
equilibrium levels, the concentrations in the freely dissolved phase were calculated using PE-water 
partition coefficients, KPEW. Values used in this study, were corrected for temperature and salinity. 
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Notably, we judged the statistical significance of a PCB’s concentration gradient using the fugacity 
ratio of PE segments taken just above the interface, fW, to that just below it, fS. This ratio is 
equivalent to the ratio of the corresponding equilibrium PE concentrations (ng/g). Testing whether 
concentration gradients were significantly different from zero (before converting to freely 
dissolved concentrations) avoided a calculation step using literature KPEW values that have 
relatively large uncertainties,17,24 thereby improving confidence in sediment locations that are 
identified as PCB sources to the overlying waters. 

1.2.3 Acoustic Doppler Current Profiler Measurements 

The diffusive boundary layer along the bottom of the LDW was characterized using an ADCP. 
A three-beam ADCP (Aquadopp HR-Profiler, Nortek USA, Boston, MA) was operated in pulse-
coherent mode at 2 MHz with a 1.5 cm bin size. The ADCP was mounted in a frame facing 
downward, and held 1.25 m above the bed for 15-30 min at each station. Tilt sensors included 
in the ADCP confirmed the vertical orientation of the measured profile. The distance between 
sensor and sediment bed was determined using the amplitude of the acoustic signal, with a strong 
echo occurring at the interface. The velocity profiles generated by the ADCP ranged from 0.015 
to 1.15 m above the sediment bed. Profiles were recorded every 30 s, representing the average 
of 30 measurements (1 Hz sampling). Data processing removed velocity ambiguities, and 
discarded data with auto-covariance less than 0.7. Within the LDW, seven stations were 
measured that met data quality standards, providing snapshots of a range of locations and times 
in the tidal cycle (Table S15). 

Due to bottom shear stress, the near-bed velocities, u(x), follow a logarithmic profile 

 𝑢ሺ𝑥ሻ ൌ ௨∗

௞
ln (x/zo)        (2) 

where u* is the shear velocity, = 0.4 is von Karman’s constant, x is elevation above the bottom, 
and zo is a characteristic roughness height where the extrapolated velocity goes to zero.25 The shear 
velocity, in turn, can be used to estimate the thickness of the laminar boundary layer, δW: 

 𝛿ௐ ൌ 10 𝜈 𝑆𝑐ିଵ/ଷ 𝑢∗⁄          (3) 

where ν is the kinematic viscosity of the water, and 𝑆𝑐 ൌ 𝜈/𝐷ௐ.26 Subsequently, Schmidt numbers 
(Sc) were used to deduce the thickness of the laminar boundary layer, δW, for the PCBs. 

1.2.4 EFDC Model Development 

Freshwater enters the 5-mi long LDW from the south and is eventually transported to the saline 
Elliott Bay located to the north. The LDW is a vertically stratified estuary with 3 m semi-diurnal 
tides and an average depth of 8 m. The saline water of the bay causes a salt wedge to push upriver 
with every flood tide, reversing the direction of the current when river discharge is low and 
inhibiting vertical mixing. These characteristics invalidate simple hydrodynamic models of the 
estuary and so require advanced techniques to determine the transport of contaminants in the 
estuary’s water column. Previous transport modeling for the LDW estuary has been accomplished 
using the EFDC, tuned to this site’s geometry, tidal amplitudes, and varying river discharge.19 
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Hence, we used the EFDC, a finite difference numerical model, to simulate the three-dimensional 
estuarine water flows and the transport of PCBs in the LDW. The EFDC was originally set up and 
validated for the site by King County, WA in 1999.27 The model was updated in 2006 by King 
County and used in the RI/FS phase of Superfund remediation.2 Site bathymetry was based on 
surveys conducted in 2003.2 A curvilinear-orthogonal horizontal grid was used to represent the 
LDW study area (Figure 2), as well as Elliott Bay and an upriver section 7 mi in length. The LDW 
was represented by 35 cells longitudinally, and at least three cells laterally, giving an average cell 
size of 240 m long by 60 m wide for 115 total cells. Vertically, the water column was represented 
by 20 evenly spaced layers, allowing layer thickness to vary with total depth (stretched sigma). 
Courant number constraints, quantified during model development, necessitated a time step of 2 
s. The model simulation began 1 month before the passive sampler deployment date, which was 
confirmed to be a sufficient warm-up period to “forget” initial conditions. For this work, we 
updated the boundary conditions for the summer of 2014. This included tidal forcing at the west 
end of Elliott Bay,28 Green River discharge measured approximately 18 km and 2 km south of the 
river mile 5 of the LDW site,29 and flow from storm water outfalls calibrated to rainfall data 
through a runoff model.19 

The only calibration step involved matching water levels and their tidal timing to observations at 
a gauge located at Seattle Pier, Elliott Bay. Model validation was done using field measurements 
taken during sampler deployment and recovery. These included: conductivity, temperature, and 
depth measurements (conductivity-temperature-depth profiler (CTD)-Diver, Van Essen, Delft, 
Netherlands), as well as ADCP profiles of the entire water column (WorkHorse Sentinel, Teledyne 
Marine, Boston, MA). Depths were accurate to within 0.5 m (Table S15), and velocities to within 
0.4 cm/s (Table S16). Salinity values matched within 0.3 practical salinity unit (PSU) for most 
areas, but measured vertical profiles tended to have a sharper halocline than the EFDC model 
estimates. This issue arose from insufficient resolution of the vertical grid through the estuary’s 
halocline. However, in this paper all our water column samples were located within 1 m of the 
sediment bed, well within the salt wedge for all but the most upriver samples. 

The impacts of PCB fluxes from the sediment bed were modelled in the water column by assuming 
the PCBs behaved as conservative, dissolved-phase tracers introduced in the model to the bottom 
layer of the water column grid. We note that the typical particulate organic carbon concentration 
in the LDW is about 0.3 mg/L30; this implies PCB congeners with Koc values less than 106.6 (i.e., 
most heptachlorobiphenyls and less chlorinated congeners based on Koc values of Hansen et al.31) 
are mostly dissolved. Input locations were based on PE sampler stations, and Thiessen polygons 
were used to interpolate between stations. Thiessen polygons are appropriate for sparse data where 
a semivariogram cannot be developed and are well suited for EFDC’s curvilinear grid. The 
magnitudes of simulated PCB inputs were set to match the sampler-estimated fluxes, including 
their confidence intervals deduced using Monte Carlo (MC) methods (see below). 

1.2.5 Error Analysis 

Propagation of uncertainty was calculated using MC methods, where each input was randomly 
varied based on a normal distribution with a standard deviation equal to its literature uncertainty 
or observed variance. These iterations (N=104) created an empirical distribution, which was used 
to judge the significance of results based on percentiles corresponding to typical confidence 
intervals. MC error distributions have been successfully applied to passive sampling elsewhere.24,32  
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1.3 RESULTS AND DISCUSSION 

1.3.1 Sediment Porewater-Bottom Water Concentration Differences 

Freely dissolved concentrations of individual PCBs were readily measured in both LDW porewater 
and the water column at picogram per liter levels (Figure 3 and Appendix E for porewater, 
Appendix F for bottom water, and Appendix G for water 1 m above the sediment bed) using the 
PE passive samplers as we have reported previously for a small number of stations.24, 33 
Aggregating, we found “total measured” PCBs (= Σ18 NOAA congeners34 plus two dioxin-like 
congeners 77 and 126 and henceforth referred to here as Σ20PCB) in the porewater of the uppermost 
sediment across 19 stations ranged from 350-1800 pg/L, with an arithmetic mean of 850 pg/L. 
Across all stations, bottom water concentrations tended to be lower, with a range of 380-900 pg/L 
and average value of 640 pg/L. Porewater concentrations were also much more variable 
(coefficient of variation (CV) of 48%) than the bottom water concentrations (26% CV), including 
larger differences between stations (Figure 3). The lower degree of variation in the water was likely 
due to better homogenization in the water column than in the sediment bed. Three ‘hotspots’ were 
detected at sediment stations near river miles 0.5, 2.2, and 3.6 (Figure 3), corresponding to known 
hotspots previously reported2 (Figure 1). 

  

Figure 3. Freely Dissolved PCB Concentrations in Bottom Water (Upper Panel, 0-5 cm 
Above Interface) and Sediment porewater (Lower Panel, 0-5 cm Below Interface) as a 

Function of Position Indicated by River Mile.  

Colors correspond to individual PCB congeners, ordered by congener number, and color-grouped by 
degree of chlorination (e.g., reds all trichloro, blues all tetrachloro, etc.) Congener 126 was not detected. 
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Individual PCB congeners showed unique behaviors. Lighter congeners (congener #s 8 to 77 with 
2 to 4 chlorines) make up a majority of the mass of freely dissolved PCBs, and tended to have net 
fluxes out of the sediment. Congeners with a higher degree of chlorination (congener #101 and 
higher with 5 to 7 chlorines) tended to have either a net flux into the sediment or showed no 
statistically significant bed-to-water gradient. Our minimum (statistically significant) ΔC was 
about 15 pg/L. Most of the stations with negative fluxes (i.e., negative ΔC values implying 
transport into the bed) were located upstream of river mile (RM) 2.8, although positive flux 
locations could be found throughout the LDW, especially for smaller congeners.  

1.3.2 Estimation of Mass Transfer Rates 

Having estimated the freely dissolved concentration gradients using passive samplers, the 
remaining parameter in diffusive flux calculations is the diffusive boundary layer thickness, δW 
(Eq. 3). The ADCP velocity profiles gave fitted shear velocities, u*, between 0.33-1.15 cm/s, with 
coefficients of variation of 16-38%. These observed shear velocities were similar to results 
reported by others for shallow, tidal environments35,36,37. The observed shear velocities implied the 
diffusive boundary layer, δW, was typically between 100 and 300 μm.  

In order to compute the diffusive WBL thicknesses (δW) over the entire waterway, the EFDC was 
used to find u(EFDC) for the seven times/places where we got ADCP results. Then using a 
logarithmic interpolation of the bottom cell’s top and bottom interfacial velocities, u*(EFDC) was 
found in a manner consistent with how the source code calculates bottom shear stress38. Finally, 
these seven specific EFDC-inferred u* results were correlated with shear velocities derived from 
the ADCP measurements (Figure 4a). This correlation was then used to compute the EFDC-
estimated u* for use in Equation (3) at all the passive sampling sites.  

 

 

 

 

 

Figure 4. (a) Comparison of ADCP-determined Shear Velocities u* [cm/s] and EFDC-
Inferred Shear Velocities at the Same locations and times. The Solid Line Is the Linear 
Least Squares Best Fit with a Zero Intercept (r2=0.77). (b) Frequency Distribution of 
Time-averaged EFDC Predictions, Using the Fit from (a), Plotted on a Log Scale. (c) 

Frequency Distribution of δW [µm], converted from values in (b) Using Equation 3 and a 
Congener-average Aqueous Diffusivity, Dw. 

The usefulness of EFDC-predicted shear velocities was demonstrated by examining their spatial 
distribution across the entire LDW site. The majority of u* values fall between 0.3-1 cm/s, with a 
median of 0.5 cm/s and a longer tail toward lower values (Figure 4b). The corresponding δW values 
(Equation 3) fall between 60-500 µm with a median value of 140 µm (Figure 4c).  
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Unsurprisingly, maps of δW across the LDW showed that the largest values occur in stagnant areas: 
the slips that jut laterally from the main channel, the tidal flats to the west of the RM 0.5 island, 
and upstream corners where the channel was artificially widened. The lowest values, and thus the 
largest mass transfer coefficients (=DW/ δW), occurred in the narrow upstream portion of the study 
site, and at RM 1.3 and RM 2.5, where active storm water outfalls introduce water to a relatively 
narrow point of the LDW. During deployment, a rainfall event caused these outfall discharges to 
be comparable to the river discharge, increasing local velocities. Overall, the spatial variation of 
δW was comparable to the between-station variation in ΔC. Thus, both factors significantly affect 
between-station PCB flux estimates, and reinforce the necessity of using a model to capture the 
spatial distribution of bed-to-water inputs. 

1.3.3 PCB Flux Distribution 

PCB fluxes were calculated for each congener at each of the 19 stations. Of the 380 possibilities 
(19 stations times 20 congeners), 297 paired samples had concentrations above detection limits 
both above and below the bed-water interface. Four congeners, 126, 195, 206, and 209, accounted 
for 76 of the 83 undetected cases. Of the 297 ΔC values calculated, 67% indicated a net flux into 
the water column, although only 11% were significantly different from zero at the 2σ significance 
level, and 37% at the 1σ level. The largest concentration gradients, ΔC, occurred at river miles 0.5, 
2.3, and 3.6, and these translated to the largest fluxes (Figure 5). The uncertainties associated with 
the ΔC results were logarithmic, with a larger uncertainty in the positive flux direction (caused by 
uncertainties in the sediment porewater concentration). Thus, the largest flux (PCB 28 at RM 3.6) 
has a median value of 100 ng/m2/d, but a ±1σ confidence interval of 23-260 ng/m2/d. In general, 
most of the upward fluxes were composed of lighter PCBs, especially congeners 18, 28, 44 and 
52. Conversely, the largest fluxes into the bed were on the order of -30 ng/m2/d for 
pentachlorinated congeners (e.g., #101) and some tetra- and hexa- chlorinated congeners. Larger 
congeners showed near equilibration across the study area, with absolute fluxes of less than 6 
ng/m2/d. 

The congener-specific fluxes were dominated by the same three hotspots identified by ΔC 
measurements. These hotspots had much larger fluxes (18-100 ng/m2/d for individual congeners) 
than the other stations. Outside of the hotspots, nearly all of the congeners showed a net positive 
flux into the water column for RM 0 to 2.5, with the reverse occurring upstream. This suggests a 
portion of the mobilized PCBs are being reintroduced to the upstream sediment bed after 
downstream mobilization, likely assisted by the reverse current imposed by the advancing salt 
wedge during flood tides. We noted that the EFDC model, running with the river discharge 
condition at the time of the sampling, showed that the salt wedge extends to about RM 2 at low 
tide, but then goes past RM 4.5 at the high tide. Hence, calculating the extent of this upstream PCB 
transport contribution requires a mass balance that incorporates such complex hydrodynamic 
transport. 
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Figure 5. Estimated Diffusive Fluxes of Selected Congeners as a Function of RM in the 
LDW.  

Filled symbols indicate the fugacity ratio was more than two standard deviations from unity. All 
confidence intervals can be found in Table S17. Lines are included for visual aid only. 

1.3.4 Diffusive Mass Input Rate 

Fluxes for each PCB congener from the 19 stations were summed, after weighting with Thiessen 
polygon areas, across the entire study area to calculate the overall diffusive mass input into the 
LDW. The time-averaged values of u* from EFDC-ADCP modeling and ΔC from passive sampler 
measurements were used to calculate time-averaged fluxes. We expected a time-invariant value to 
represent the fluxes accurately over the deployment time because there was only a single 
significant rain event to change upstream discharge (average value of 19.0 m3/s with rain event, 
18.3 m3/s without). In addition, contaminant fluxes based on tidal-average shear velocities differed 
only slightly from integrating tidally varying fluxes over a tidal cycle.39 

Sediment-source diffusive inputs of specific PCBs, once integrated across the study area, ranged 
from 0.6 mg/d (PCB 77) to 52 mg/d (PCB 28), with a Σ20PCB value of 240 [200,320] mg/d. The 
MC-derived flux uncertainties were carried into the site-wide integrations, allowing for 
propagation of passive sampler and ADCP data uncertainties. Notably, the Thiessen polygon 
weighting technique caused the spatially integrated PCB source strengths to have a normal 
distribution, likely due to its similarity to arithmetic averaging. However, the spatial distribution 
is heterogeneous. For example, the polygon corresponding to RM 0.5 contributed 11% of the total 
diffusive mass input of Σ20PCBs, despite only covering 2.2% of the total area, making it a prime 
target for remediation. At the same time, 43% of the diffusive mass input occurred in areas not 
identified as hotspots, making complete remediation difficult if diffusive inputs from the sediment 
bed are an important ongoing input. 
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1.3.5 The Diffusive Source from the Sediment Bed Hypothesis 

The hypothesis that PCB diffusion from the sediment is the most important source to the LDW 
water column was first tested using a direct comparison of simulated and observed water column 
PCB concentrations. EFDC-inferred water column concentrations were calculated assuming 
diffusive inputs from the sediment bed, as determined by interfacial passive samplers and 
ADCP/EFDC WBL estimates, were the only PCB source fluxes. The resultant EFDC-simulated 
PCB congener concentrations were all near 1 pg/L. However, PE-determined water column 
concentrations of PCB congeners were much larger (10-100 pg/L), even at the 95% confidence 
limits (Figure 6). Thus, the concentration gap indicates that diffusive flux from the sediment bed 
is not sufficient to account for the concentrations seen in the water column. Lower limit estimates 
of the size(s) of the missing source(s) can be estimated by taking the difference between the LDW-
wide estimates of diffusion from the sediments minus the overall flushing of PCBs assuming only 
river flow flushing (i.e., neglecting tidal dispersion of PCBs into Elliott Bay) (Table 1). These 
calculations, with associated error bounds, strongly suggest other important sources or bed-to-
water transfer mechanisms are present at this site and/or time. 

Table 1. Mass Balances of Selected Congeners.  

Total diffusive inputs were obtained using an LDW sediment surface area of 1.8x106 m2. Flushing rates 
assumed an average discharge of 1.7x106 m3/day. Brackets indicate the 1σ confidence limits, [lower 

upper] from error propagation. The negative net mass balances indicate missing source(s). 

 
PCB 28 PCB 52 PCB 101 PCB 153 Σ20 PCBs 

Area-weighted Diffusive Fluxes 
[ng/m2/d] 

29 
[19 49] 

20 
[8.5 41] 

5 
[-2 18] 

6 
[2 15] 

130 
[110 180] 

Diffusive Mass Inputs  
[mg/d] 

52 
[32 90] 

35 
[15 75] 

8 
[-4 33] 

11 
[3 27] 

240 
[200 320] 

Average Water Concentrations 
[ng/m3] 

99 
[59 170] 

130 
[82 220] 

84 
[54 130] 

37 
[22 60] 

660 
[510 860] 

Flushing Rates 
[mg/d] 

160 
[97 280] 

220 
[130 370] 

140 
[89 220] 

60 
[37 99] 

1100 
[520 1400] 

Net Mass Balances  
[mg/d] (In-Out) 

-110 
[-190 -74] 

-180 
[-290 -140] 

-130 
[-180 -100] 

-49 
[-76 -33] 

-840 
[-1000 -720] 

 

The varying gap between modeled and measured water column concentrations of individual PCB 
congeners speaks to the nature of the missing source. While the averaging metric, Σ20PCB, would 
need to have a 14-fold increase in fluxes for EFDC modeling to match the water column 
concentrations, the missing source strength needs to be elevated by only about a factor or 10 for 
PCB trichloro- and heptachloro-congeners, but by a much larger factor of about 60 for the 
pentachloro- congeners. As the diffusive source strength goes down moving through the series 
#28: #52: #101: #153 (Table 1), uniformly amplifying the diffusion source of all congeners will 
not explain the water column congener presence found. Hence, the missing source/mechanism(s) 
must mostly enhance the pentachlorinated congener fluxes, while affecting both lighter and heavier 
congeners to less extent. We note that active mechanisms, such as bioirrigation, are best suited to 
transferring lighter congeners,40 while mechanisms such as colloid-assisted diffusion from the bed 
or desorption from resuspended sediment particles would favor the heavier congeners.9 Hence, 
further work is needed to identify these missing source(s)/mechanism(s). 
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Figure 6. Freely Dissolved Concentrations of Four PCB Congeners Over Longitudinal 
River Distance.  

Black circles are passive sampler-estimated concentrations measured 1 m above the sediment bed with 
±1σ uncertainty. The black lines are time-averaged EFDC concentration predictions at 1 m above the bed 

in the water column. Dashed lines are the upper and lower uncertainty bounds on unscaled EFDC 
predictions. 

1.4 LIMITATIONS AND FUTURE STUDIES 

Most of the steps taken in this work to quantify the PCBs’ diffusive fluxes from the sediment bed 
erred on the side of over-estimating their magnitudes. For example, given the ADCP-based 
boundary layer thickness and assuming that only molecular diffusion across a WBL limited overall 
PCB fluxes from the bed for the LDW, this site’s bed-water diffusive mass transfer coefficient, kf, 
should have been about 20-60 cm/d for the weighted average PCB. This is larger than what has 
been found necessary to fit PCB data at other sites such as the Hudson River 4,15. 

Despite using assumptions that maximized the flux estimates, our results imply the PCB inputs 
necessary to generate observed concentrations in the water column have to be substantially larger 
than our diffusive flux estimates. It is theoretically possible that the 19 stations distributed across 
a 4.7-mile-long site missed hotspots. However, the ‘missing hotspot’ would have to be about 20 
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times larger than the hotspot at RM 0.5 in either gradient magnitude (total Σ20PCB input of 990 
mg/d) or bottom area (covering more than three times the 1.8 km2 study area), which are both 
unlikely. In addition, considering the spatial distributions of the RI/FS sediment concentration data 
(Figure 1), the sampler locations should have had higher sediment concentrations than the site as 
a whole, leading to a positive bias for overall diffusive flux estimates.  

We note that inputs from upstream were insufficient to explain the water column concentrations 
that was found. Also, bioturbation of the sediment does not appear sufficient to cause the needed 
PCB inputs.40 Either other bed-to-water transfer mechanisms (e.g., colloid-mediated diffusive 
transfers or repeated sediment resuspensions of PCB-contaminated sediment with associated PCB 
desorption)9 or other inputs (e.g., outfalls with PCB-contaminated effluents) must be important 
contributors. This implies dredging of quiescent, contaminated sediments may not be an effective 
approach for lowering the chemical activities of pollutants in the waters overlying such a site.   

We suggest further, spatially distributed; water column measurements can be used to obtain a more 
accurate understanding of the PCB’s sources at such a complex site. In particular, passive sampling 
taken both below and above the salt wedge would be especially valuable, as they may reveal PCB 
sources such as storm water runoff and groundwater seeps. For other dynamic, aqueous 
environments, a combination of passive sampler measurements with hydrodynamic modelling will 
likely produce the detailed spatial concentration map necessary for source determination and 
contaminant exposure. 
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SECTION 2 INVERSE MODELING TO FIT PCB CONCENTRATION 
DISTRIBUTIONS FOUND BY PASSIVE SAMPLING IN THE 
SITE'S WATER COLUMN 

2.1 BACKGROUND 

In waterbodies where pollution sources have distinguishable signatures depending on their 
location, an inverse model can in principle be used to infer source locations and strengths from 
measured dissolved phase concentrations. This approach does not require an initial hypothesis of 
source locations or types and can begin to provide insights with a relatively small number of 
measurements. 

Dissolved phase PCB concentrations measured during the three passive sampling campaigns show 
widespread contamination in the LDW, which was used as a test bed for the inverse modeling 
approach. There are various ways in which these PCBs could have been introduced to the water 
column. Possible sources of dissolved PCB contamination to the water column include, but are not 
limited to, (a) the sediment bed within the domain, which may act as a source to the water column 
via diffusion or advection processes (e.g., sediment mixing, bio-irrigation, hyporheic flow or 
groundwater flow) or by desorption from sediments resuspended by natural currents or human 
activity (e.g., tug boats); (b) the upstream freshwater input or the tidal exchange with Elliott Bay 
at the downstream boundary; (c) lateral sources such as combined-sewer overflows, stormwater 
outfalls, and direct runoff; and (d) atmospheric inputs (air-water exchange or atmospheric 
deposition). In order to guide further site characterization and remediation efforts, it is desirable 
to assess the type and location of sources of pollution.  

2.1.1 The Inverse Model 

An inverse problem generally involves using measurements to infer the parameters that generated 
them, contextualized by a physical model (Tarantola, 2005). Inverse problems have been used in 
many fields, including heat transfer (Ozisik, 2018), electromagnetism (McCormick, 1992), 
geophysics (Wiggins, 1972), and groundwater transport (Yeh, 1986). Research in atmospheric 
transport has also used this approach to locate pollution sources by coupling reaction-transport 
models to inverse model solutions (Foy et al., 2012; Henze et al., 2009; Stohl et al., 2009); with 
prior estimates of ground source emissions, these models can be used to estimate source strengths 
from a large grid of potential sources.  

For the present application of assessing water column PCB contamination in the LDW, we are 
interested in using measurements of dissolved phase PCB concentrations to help identify the likely 
location of the sources that resulted in the measured concentrations. By the principle of super-
position, the concentration measured at a given location will reflect the sum of concentrations at 
that location contributed by a multitude of sources. In this framework, the contribution from a 
particular source location to a particular measurement location may be expressed as the 
contribution of a source with unit strength multiplied by a weighting factor to estimate the actual 
strength of that source. Therefore, the measured concentration (𝐶௟) at any sampling location 𝑙 can 
be represented by a sum of contributions from a multitude of different unit sources (𝑠) weighted 
by their relative strengths (𝑤௦), i.e., 
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𝐶௟ ൌ 𝑤௦ୀଵ𝑏௟,௦ୀଵ ൅ 𝑤ଶ𝑏௟,ଶ ൅ 𝑤ଷ𝑏௟,ଷ ൅ ⋯ ൌ෍𝑤௦𝑏௟,௦

ௌ

௦ୀଵ

                     ሺ1ሻ 

Here, 𝑏௟,௦ is the concentration at the sampling location 𝑙 from a unit source of contamination at 
location, 𝑠. The inverse model uses concentration measurements to infer source strengths. The 
inverse model allows the user to: 

 Assess the potential location of sources of contamination and source strengths that are 
consistent with field measurements. 

 Predict contaminant concentrations throughout the domain of interest which are generated 
by the sources identified by the method. 

 Assess potential benefits of removing the sources identified by the method. 

2.2 METHODS 

Eq. (1) shows how the concentration measured by a sampler depends on the response from various 
sources and their strengths. For a total 𝐿 sampler locations and 𝑆 potential sources, this relationship 
can be represented as a linear system of equations. In matrix form, the system is represented as: 

൦

𝐶ଵ
𝐶ଶ
⋮
𝐶௅

൪ ൌ ൦

𝑏ଵଵ 𝑏ଵଶ … 𝑏ଵௌ
𝑏ଶଵ
⋮

𝑏ଶଶ ⋯
⋮ ⋱

𝑏ଶௌ
⋮

𝑏௅ଵ 𝑏௅ଶ … 𝑏௅ௌ

൪ ൦

𝑤ଵ
𝑤ଶ
⋮
𝑤௅

൪                             ሺ2𝑎ሻ 

or equivalently 

                                         𝑪𝑳 ൌ 𝒃𝑳,𝑺𝒘𝑺                                      ሺ2𝑏ሻ 

The matrix 𝒃𝑳,𝑺 represents the “fingerprints” of each potential source at the sampler locations, 
which depend on the transport characteristics of the waterbody and the contaminant of interest. 

The inverse model simultaneously solves the system of equations for source strength (𝑤ௌ) of 
each potential source, given the sampler measurements (𝐶௅), and the fingerprint matrix (𝒃𝑳,𝑺). 
For this application of the inverse model to assess source locations, we have constrained the 
fitted source strengths to be non-negative, i.e., the model does not allow for a contaminant sink 
in fitting the solution. We note that the passive sampling measures across the bed-water 
interface (Section 1 of this report) sometimes identified locations, especially at up-river 
stations, where gradients would imply some PCB congeners would be diffusing from the water 
column into the bed. The inverse model was also tested without this constraint but these results 
are not reported as they were characterized by unrealistically large sources and offsetting sinks 
in the domain. 
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The fingerprint matrix is quantified using numerical simulations of tracers in the water column. 
For each potential source location, a unique tracer is introduced to the system at the location 
of the source, and its influence on the domain is simulated for the period of interest. In the 
present application, this was done using the hydrodynamic model, EFDC, developed by the 
EPA, to simulate passive tracers, i.e., substances assumed to undergo no transformations. All 
tracer inputs were set to the same magnitude (1 mg/s) and, as passive tracers, they do not interact 
with water column organic matter, the sediment bed, or the atmosphere1. The value of each source 
“fingerprint” (𝑏௟,௦) is calculated by averaging the model-predicted tracer concentrations of the unit 
sources over the deployment period. 

Because the LDW is a tidal system with significant changes in water surface elevation over the 
measurement period, it was necessary to account for the time-varying vertical position of a fixed 
passive sampler within the model grid (EFDC). For example, if a sampler is located 2 ft below the 
water surface and the instantaneous water depth at that location is 10 ft, then the sampler will be 
located in the 17th vertical layer in the EFDC implementation applied herein (EFDC was here set 
up to have 20 vertical layers of equal thickness2 at each horizontal location and the first layer is at 
the bottom of the water column). As the water depth at a given horizontal location changes with 
time (due to the tides), the vertical layer in which this sampler resides also changes with time. 
Figure 1 shows the tracer concentrations resulting from one source and the vertical position (in 
terms of layer index) of 4 samplers deployed at one horizontal location, but at 4 different depths 
(2 and 5 ft below the surface and 2 and 5 ft above the sediment bed). 

 
1 Simulating dissolved contaminant concentration using passive tracers means that hydrodynamic advection and 
dispersion are the only transport processes accounted for, which ignores several processes that may influence 
concentration dynamics and the mass balance in a contaminant-specific fashion. This was judged to be an acceptable 
simplification because the focus of the present effort was on exploring an inverse modeling approach that may be used 
in combination with passive samplers to assess source dynamics. The inverse modeling technique described herein is 
generally compatible with any predictive transport model, and future efforts could evaluate how inclusion of chemical-
specific transformation and transport processes influence the inverse model’s source assessment. The EFDC model 
used herein is equipped to represent sediment transport and chemical fate and transport processes, but these were not 
parametrized or calibrated in the LDW configuration adopted and it was beyond the scope of the present investigation 
to incorporate them.  

2 EFDC uses a sigma-coordinate system, meaning that the vertical layers are always of equal thickness and they 
expand and contract in response to changes in the water surface elevation. 
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Figure 1. Tracer Concentrations (Shown in Blue) Seen By Four Samplers and the Time-
Variable Vertical Location of the Samplers (Shown in Orange as Model Layers) at a Given 

Horizontal Location.  

The samplers are deployed to measure a vertical profile of concentrations. 

The time-variable uptake of the passive samplers can in principle also be accounted for in 
averaging concentrations over the sampling period. The concentrations measured by a sampler 
reflect exponentially declining exposures from previous times, and consequently an exponential 
filter can be applied to calculate 𝑏௟,௦. The characteristic time period for the exponential filter would 
be different for different congeners. Our analysis showed that the use of an exponential filter results 
in a small difference as compared to a straight arithmetic average. Thus, we have used a straight 
arithmetic average to generate fingerprints illustrated below. 

2.2.1 Choice of Sources 

An important factor in the inverse model implementation is the choice of potential sources 
modeled. Because no prior information is assumed about source location, sources need to be 
chosen to provide adequate spatial coverage within the area of interest. The EFDC model used 
herein has 115 horizontal cells within the LDW, each with 20 vertical layers, resulting in 2300 
potential source locations. However, since each chosen source requires a unique tracer simulation, 
representing all potentiation source locations within the LDW would mean 2,300 tracer 
simulations. To reduce the number of simulations, potential tracer sources were chosen to be at 
the surface (20th vertical layer) and on the sediment bed (1st vertical layer), but not in the middle 
of the water column. For most cases illustrated below, sources were introduced along the center 
channel, roughly every 0.3 miles (every other longitudinal cell). Sources on the banks and at every 
longitudinal cell along the center channel are also considered in a subset of the evaluations. 
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2.2.2 Fitting Schemes and Interpretation of Results 

Another choice in the inverse model implementation is the choice of fitting schemes. If the number 
of potential sources is more than the number of measurements, then the system of equations [Eq. 
(2)] is over-determined. The most common way of solving an over-determined system is to use 
the least square approximation. Here, we try three different variants: 

 Minimizing sum of squared error in absolute concentrations ቂ∑൫𝑐௙௜௧ െ 𝑐௠௘௔௦൯
ଶ
ቃ 

 Minimizing sum of squared error in natural log of concentrations ቂ∑ൣln 𝑐௙௜௧ െ ln 𝑐௠௘௔௦൧
ଶ
ቃ 

 Minimizing sum of squared error in normalized concentrations 

ቂ∑൛൫𝑐௙௜௧ െ 𝑐௠௘௔௦൯ 𝑐௠௘௔௦⁄ ൟ
ଶ
ቃ 

These three fitting schemes allow the user to consider different forms of uncertainty and result in 
somewhat different source distributions and strengths identified by the inverse model. The first 
scheme assigns greater importance to larger measured concentrations, whereas the second and third 
schemes reduce the influence of these concentrations to more heavily weight smaller measured 
concentrations. Unless specified otherwise, results were calculated by minimizing the squared error 
in absolute concentrations (the first approach) because its heavier weighting of the larger measured 
concentrations is consistent with these being of greater importance from a risk perspective. 

When the number of potential sources considered exceeds the number of measurements (which is 
expected to be true typically), it is theoretically possible that the fit of the inverse model will 
continue to improve as the number of selected sources is increased. If the modeler believes that 
this is not realistic (e.g., if sources are known to be localized instead of distributed), then one can 
introduce a penalty applied to model complexity. The Akaike Information Criterion (AIC) (Akaike, 
1974) provides one approach of doing this. For a linear system with relatively small number of 
measurements (𝑛 𝑝⁄ ൏ 40), the AIC can be expressed as (Burnham and Anderson, 2004): 

𝐴𝐼𝐶 ൌ 𝑛 ln ൬
𝑅𝑆𝑆
𝑛
൰ ൅ 2𝑝 ൅

2𝑝ሺ𝑝 ൅ 1ሻ
𝑛 െ 𝑝 െ 1

                            ሺ3ሻ 

where 𝑅𝑆𝑆 is the residual sum of squares of the fit, 𝑛 is the number of measurements and 𝑝 is the 
number of sources. The first term in Eq. (3) represents the usual log-likelihood function of a linear 
system, the second term is the penalty applied to the model complexity, and the third term is a 
correction factor for small number of measurements (Sugiura, 1978). 𝐴𝐼𝐶 is defined such that the 
objective is to find the minimum value among candidate models.  

To use 𝐴𝐼𝐶, one starts with all possible choices of a single source and calculates the fit and the 
AIC values for these choices. Next, the user considers all possible choices of two sources and 
calculates the best fit and AIC values. If the minimum 𝐴𝐼𝐶 value with 2 sources is less than the 
minimum value with one source, then the optimum number of sources is 2 or more. In that case, 
the user considers all possible choices of 3 sources, and so on. For a certain number of sources, 
the improvement in the fit will be marginal and insufficient to offset the AIC penalty for adding 
another source. When that happens, the 𝐴𝐼𝐶 score will be higher than in the previous iteration, and 
the optimum number of sources is the number of sources considered in the previous iteration. 
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In principle, using 𝐴𝐼𝐶 provides a reasonable way of controlling the number of sources. However, 
when evaluating the PCB concentrations measured in the LDW, the number of sources identified 
by the inverse model was generally small (typically, 4-6 sources were chosen in test cases with 34 
potential sources). Thus, the 𝐴𝐼𝐶 criterion was not used to limit the number of sources further in 
the applications described below. 

2.2.3 Illustrative Example 

To illustrate the behavior of the inverse model approach, it was also applied here to a simpler setup 
for which the concentration field was specified analytically: a vertically well-mixed rectangular 
channel with tidal flow and no through flow. In such a setting, the tidal excursion made to be 
proportional to the distance downstream from the head (𝑥), and the longitudinal dispersion 
coefficient is 𝐸௅ ൌ 𝛼𝑥ଶ. The concentration distribution from a continuous plane source (located at 
𝑥 ൌ 𝑥ௗ) was calculated analytically as: 

𝑐ሺ𝑥ሻ െ 𝑐௅ ൌ
𝑞ᇱᇱ

𝛼𝜅
ቈ
𝑥ିଵ ଶ⁄ ି఑ ଶ⁄

𝑥ௗଵ ଶ⁄ ି఑ ଶ⁄ െ
𝑥ିଵ ଶ⁄ ା఑ ଶ⁄

𝐿఑𝑥ௗଵ ଶ⁄ ି఑ ଶ⁄ ቉  for 𝑥 ൐ 𝑥ௗ                     ሺ4ሻ 

𝑐ሺ𝑥ሻ െ 𝑐௅ ൌ
𝑞ᇱᇱ

𝛼𝜅
ቈ
𝑥ିଵ ଶ⁄ ା఑ ଶ⁄

𝑥ௗଵ ଶ⁄ ା఑ ଶ⁄ െ
𝑥ିଵ ଶ⁄ ା఑ ଶ⁄

𝐿఑𝑥ௗଵ ଶ⁄ ି఑ ଶ⁄ ቉  for 𝑥 ൏ 𝑥ௗ 

where 𝜅 ൌ ඥ1 ൅ 4 𝑘 𝛼⁄ , 𝑘 is the first order decay rate for the contaminant (e.g., by water-to-air 
exchanges averaged over the entire water depth_, 𝑞ᇱᇱ is the mass injection rate per unit area for the 
source, 𝐿 is the length of the channel, and 𝑐௅ is the concentration at 𝑥 ൌ 𝐿. Figure 2 shows the 
response from unit sources at various locations. 

 

Figure 2. Concentrations from Unit Sources at Various Locations in a Rectangular 
Channel with Tidal Flow, no through Flow, and Decay at 0.1 Day-1.  

(Channel dimensions: 2000 m long, 5 m deep, 200 m wide; 𝑘 = 0.1 day-1, 𝛼 ൌ 9 ൈ 10ି଻ s-1 and 𝑐௅ ൌ 0). 
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The setup of a vertically well-mixed rectangular channel with no through flow and first order decay 
of contaminants is not intended to be a simplified version of the LDW (which has a freshwater 
input and is vertically stratified). Rather, this setup is used to test the inverse model’s ability to 
identify sources in a one-dimensional case where concentration distributions for various source 
configurations can be calculated analytically [using Eq. (4)].  

For this example, “measurements” at six locations (𝑥 = 300, 600, 900, 1200, 1500 and 1800 m) 
were generated [using Eq. (4)] by considering two sources – located at 600 m and 1200 m with 
strengths equal to 8 and 20, respectively. The source strengths were calculated by minimizing the 
squared error in absolute concentrations, using the approach described previously. 

2.2.4 Results with Potential Sources that Include the Original Sources 

Potential sources were chosen to be located every 100 m between 𝑥 = 100 and 1900 m. Note that 
this choice of potential sources includes the original sources at 600 m and 1200 m. When the 
inverse model is used to calculate the source strengths, the following sources are identified: at 600 
m with strength of 8.00, at 1200 m with strength of 19.99, at 1800 m with strength of 0.03. Thus, 
the inverse model is able to accurately identify the correct sources in this case. 

2.2.5 Results with Potential Sources that Do Not Include the Original Sources 

Next, 33 potential sources were chosen to be located between 100 and 1900 m (located every 56.25 
m). In this case, the original sources at 600 and 1200 m are not included as possible options. When 
the inverse model is used for this case, the following sources were identified: at 550 m with 
strength of 0.15, at 606.25 m with strength of 7.98, at 1168.75 m with strength of 5.24, and at 1225 
m with strength of 15.24 (corresponding to a total loading of 28.61). Because the actual sources 
are not part of the set of potential sources, the model picks sources near the actual ones. In doing 
so, it reproduces the correct solution as closely as is possible with the sources with which it was 
provided. 

2.2.6 Results When Measurements Include Uncertainty 

The measurements used for the case above were modified to include uncertainty. 1000 realizations 
each were considered with the concentrations modified randomly to include 10% and 30% 
uncertainty. 33 potential sources between 100 and 1900 m (located every 56.25 m) were 
considered. The average source strengths (from 1000 realizations) are shown in Table 1. Only 
sources with average strength greater than 1 are listed, i.e., trace sources are here ignored. 
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Table 1. Source Strengths Calculated Using the Inverse Model Assuming True Inputs of 
Known Source Strengths from Only Two Sources (at 600 m with Strength of 8 and at 1200 

m with Strength of 20) that Were then Used as Inputs the EFDC to Generate PCB 
Concentrations at All Positions in the LDW (Referred to as "Measurements" Below).  

Then, 33 equally spaced potential sources between 100 and 1900 m located every 0.25 m were considered 
by the inverse model. Model results include cases where "EFDC-inferred measurements" are modified to 
include uncertainty, typical of real world sample analyses. Only sources with average strength greater 

than 1 are listed for cases when results from multiple realizations are averaged. 

Source locations 
(m) 

Fitted source strengths 
(using measurements 
with no uncertainty) 

Fitted average source 
strength (using 

measurements with 10% 
uncertainty) 

Fitted Average source 
strength (using 

measurements with 30% 
uncertainty) 

550  1.2 1.2 

606.25 8.0 5.2 4.1 

662.5  1.1  

831.25   1.5 

887.5   1.1 

943.75   1.3 

1168.75 5.2 7.5 5.1 

1225 15.2 9.6 7.0 

1337.5   1.0 

1450  1.0 1.5 

1506.25   1.7 

1900   1.2 

Total loadings  28.6 25.6 26.7 

 

It can be seen from Table 1 that the largest sources picked by the inverse model correspond to the 
locations of the actual sources, even when "reasonable" measurement uncertainty is added. 
However, with increasing uncertainty, the model picks more small sources, i.e., it tends toward a 
more distributed solution. It follows that, in general, an inverse model’s ability to correctly identify 
sources is limited by the precisions of the measurements. 

2.2.7 Effect of Contaminant Decay 

For the above examples, the PCBs were assumed to have a first order decay rate of 0.1 day-1. We 
note that Apell and Gschwend (2017) estimated the water-to-air exchanges of PCB congeners, 
normalized by the average LDW depth, were about 0.04 d-1. With a higher decay rate (1 day-1), 
the source signatures are more distinct (Figure 3) and consequently the model performs better even 
when the measurements include uncertainty. This is demonstrated in Table 2, where the actual 
source locations are more correctly identified than in the lower decay case. 
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Figure 3. Concentrations from Unit Sources at Various Locations in a Rectangular 
Channel with Tidal Flow, no through Flow, and Decay at 1 Day-1.  

(Channel dimensions: 2000 m long, 5 m deep, 200 m wide; 𝑘 = 1 day-1, 𝛼 ൌ 9 ൈ 10ି଻ s-1, and 𝑐௅ ൌ 0). 

Table 2. Similar to Table 1, but with Higher Decay Rate of 1 Day-1.  

Source strengths calculated using the inverse model with measurements from 2 sources (at 600 m with 
strength of 8 and at 1200 m with strength of 20). As above, 33 equally spaced potential sources between 

100 and 1900 m are considered. Results include cases when measurements are modified to include 
measurement uncertainty. Only sources with average strength greater than 1 are listed for cases with 

measurement uncertainty (where results from multiple realizations are averaged). 

Source 
Location (m) 

Source strength (using 
measurements with no 

uncertainty) 

Average strength 
(using measurements 

with 10% uncertainty) 

Average strength (using 
measurements with 
30% uncertainty) 

550 0.5  1.6 
606.25 7.9 7.5 6.6 
1112.5   1.2 
1168.75 6.4 7.2 7.5 
1225 14.8 13.2 10.5 
1450   1.2 
Total Load 29.6 27.9 28.6 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Example Using the LDW Setup 

Next, an illustrative example with the EFDC setup for the LDW is considered with the 26 sampler 
locations from the 2016 measurement campaign (Appendix H). “Measurements” for these 26 
locations were generated using the EFDC-predicted concentration field produced by 5 bottom sources 
(at RM 1.0, 1.4, 1.7, 2.0 and 2.3) with strengths equal to 20 mg/d each (i.e., the fingerprints calculated 
for the 2016 sampler locations from these 5 sources were used to generate “measured” values). 
Potential sources chosen were located at the surface and the bottom of 17 longitudinal locations along 
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the center channel (located roughly every 0.3 miles). Using the “measurements” specified with 4 
decimal places (for a mean concentration of 46), the inverse model was able to identify the 5 original 
sources and did not identify any additional source. When the measurements were rounded off to the 
nearest integer, the inverse model still identified the five original sources (with strengths equal to 21.0, 
17.2, 21.0, 18.8 and 20.9), but also identified four additional sources (two surface sources and two 
bottom sources) with smaller strengths (Table 3). Thus, the inverse model’s source assessment is 
somewhat susceptible to spurious results if insufficient numerical precision is used. 

The “measurements” were also modified to include uncertainty (10%, 30%, 50% and 100%) with 
1000 realizations each and the inverse model was used to calculate source strengths (using 4 
decimal precision). The average source strengths are listed in Table 3. 

Table 3. Source Strengths Calculated Using the Inverse Model with “measurements” 
Generated from 5 Sources (at RM 1.0, 1.4, 1.7, 2.0 and 2.3 with Strength of 20 mg/d each).  

34 potential sources are considered – at the surface and bottom of 17 longitudinal locations. Results 
include cases when measurements are modified to include uncertainty. Only sources with average 

strength greater than 1 are listed for cases with measurement uncertainty (where results from multiple 
realizations are averaged). 

Source 
location 
(RM) 

Source strength using EFDC-
inferred measurements without 

uncertainty 

Average source strength using 
measurements with uncertainty 

Concentrations 
specified with 4 
decimal places 

Concentrations 
rounded off to 
nearest integer 

With 
10% 

uncer-
tainty 

With 
30% 

uncer-
tainty 

With 
50% 

uncer-
tainty 

With 
100% 
uncer-
tainty 

0.1 Bot  0.1 1.6 2.9 3.9 4.4 
0.4 Bot  0.4     
0.8 Bot   1.4 2.5 2.5 1.8 
1.0 Bot 20.0 21.0 21.3 17.6 15.9 14.3 
1.4 Bot 20.0 17.2 8.3 6.1 3.6 1.7 
1.7 Bot 20.0 21.0 26.2 29.7 31.3 30.4 
2.0 Bot 20.0 18.8 17.8 13.5 12.8 11.2 
2.3 Bot 20.0 20.9 17.3 18.0 16.4 16.3 
2.9 Bot     1.4 2.2 
3.2 Bot   1.8 4.1 7.4 12.9 
3.8 Bot   1.1 2.5 4.2 6.3 
4.1 Bot     1.6 2.4 
0.1 Surf   2.8 5.4 8.7 13.5 
0.4 Surf  1.0  1.1 1.5 2.9 
0.8 Surf    1.8 2.6 5.3 
2.3 Surf      1.6 
3.8 Surf     1.3 2.6 
4.1 Surf  0.1    1.8 
Total load 100.0 100.5 99.6 105.2 115.1 131.6 

Table 3 indicates that the model is able to pick the original sources even when the measurements 
include uncertainty, but the strengths deviate from original values as the uncertainty increases (in 
particular, the strength of the bottom source at RM 1.4 decreases significantly). In addition, more 
sources are incorrectly identified by the inverse model as the measurement uncertainty increases. 
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The original sources chosen to generate the measurements in this example are located relatively 
close to each other and can be considered representative of a distributed source. Since the inverse 
model is able to identify all of these sources instead of selecting just one larger central source (in 
particular, when the measurements do not include uncertainty), it should in principle be able to 
identify distributed sources with real measurements as well, provided the measurement uncertainty 
is relatively small. 

2.3.2 Using Passive Sampling Data 

Ultimately, we are interested in using the inverse model with concentrations measured in the LDW 
using passive samplers. The 2016 sampling campaign represents an initial, large-scale survey 
conducted with “slow samplers” (spanning most of the extent of the LDW but at a fairly coarse 
resolution, see Appendix H), whereas the 2019 campaign represents a more focused, smaller scale 
survey with “fast samplers” (spanning an approximately 1-mile reach within the LDW). This is 
not unlike other studies in which investigators often return to a site to collect additional data, where 
measurement campaigns are independent and may be widely separated in time. Because the 
inverse model source assessment will be better constrained with more data, an investigator would 
ideally like to use the inverse model to infer sources by combining multiple measurement 
campaigns. For the LDW application, we are interested in combining 2019 measurements taken 
between RM 1.5 and 2.5 with 2016 measurements spread over the full 5 miles of the LDW. Again, 
at this site, combining data sets from different times may be complicated due to changing sources 
in response to local clean-up efforts during this period. 

Certain assumptions need to be made in order to combine measurements from different sampling 
campaigns. The most important assumption is that the different sets of measurements are 
influenced by the same set of sources and that their relative strengths are also similar. In other 
words, no significant source reduction (e.g., via in-river or upland remediation) has taken place 
and no new sources have been introduced in the interim between different campaigns, and there is 
no significant difference in any of the processes that are not modeled such as sediment 
resuspension. Other assumptions are that any differences in the hydrodynamic conditions (tides 
and freshwater flow) between different campaigns can be correctly represented by the 
hydrodynamic model. Similarly, measured concentrations can be different (e.g., due to difference 
in hydrodynamics), but should be accurately measured. 

In order to combine measurements from different sampling campaigns, unique tracer simulations 
need to be run for each potential source and for each sampling campaign (with corresponding 
hydrodynamic conditions and simulation period). The tracer concentrations from these runs then 
need to be averaged separately to generate fingerprints from each source location for each field 
campaign. Using these fingerprints and the measured concentrations, the inverse model can be 
used to assess source configurations and strengths. For example, if there were 2 sampling 
campaigns with 25 measurements each and 100 potential sources are considered, then the 
fingerprint matrix (variable b in Equation 2) has 100 columns with 50 entries each (25+25 
corresponding to the locations in the two sampling surveys). The measured concentrations would 
in this case be combined similarly to give a column with 50 measurements (variable C in Equation 
2). The inverse model can then be used to calculate source strengths for the 100 potential sources 
that best fit measurements across both campaigns. 
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In principle, we can integrate measurements with different deployment periods or made with 
different techniques and increase the robustness of the inverse model source assessment. However, 
the concentrations measured in 2019 are significantly higher than measurements made in 2016. 
Comparing concentrations measured at similar horizontal and vertical locations for three PCB 
congeners, the 2019 concentrations are on average higher by a factor of about 2 to 9 (Table 4). 
This suggests that the sources at the site and/or their strengths differed between the two campaigns, 
or that the measurement techniques are not consistent. In theory it is possible that the observed 
differences are due to inconsistencies in the tidal and freshwater forcings during the two periods, 
but modeling tests indicated that such hydrodynamic differences are unlikely to explain the 
observed difference in concentrations. For example, a comparison of EFDC simulated 
concentrations seen by four samplers on the west bank at RM 2.0 (at four different vertical 
locations) resulting from a single source on the bottom of the west bank at RM 1.7 indicated 
concentrations with 2016 hydrodynamic conditions to be higher than concentrations with 2019 
conditions by approximately 25% on average. 

We conclude that the prerequisite assumptions for combining the datasets are not valid. 
Consequently, the results presented below do not combine the two sets of measurements in 
assessing source strengths. We note that it is possible, in principle, to run the inverse model using 
just the 2019 model. This was attempted, but the results were unsatisfactory due to the fact that 
the measurements covered only a small portion of the domain, leaving concentrations in the 
remainder of the domain unconstrained. In view of these considerations, only the measurements 
taken in the 2016 campaign are used with the inverse model in the results presented below, as their 
larger spatial coverage provided a better constrained dataset than the more focused 2019 campaign. 

Table 4. Comparison of Concentrations Measured in 2019 to those Measured in 2016 at 
Similar Locations. 

Sam-
pling 
year 

Horizontal 
location 
(RM) 

Average 
depth of 
measure-
ment (m) 

Measured 
Concentrations 
(pg/L) 

Averaged 
concentrations 
(pg/L) 

2019/2016 average 
concentration 
ratio 

PCB 
28 

PCB 
52 

PCB 
101 

PCB 
28 

PCB 
52 

PCB 
101 

PC
B 28 

PCB 
52 

PCB 
101 

2016 1.4 East 5.9 23 22 16    
3.1 2.3 2.1 

2019 1.4 West 4.7 70 50 34    

2016 2.3 West 0.5 14 14 10    
3.4 2.3 2.4 

2019 2.4 West 0.6 48 33 23    

2016 2.3 West 1.9 20 21 17    

8.7 6.0 3.8 
2019 

2.4 West 1.5 86 50 21 
173 123 66 

2.4 West 1.9 259 196 110 

2016 
2.2 West 3.6 65 56 36 101 76 34 1.8 1.7 2.0 

2.2 West 4.4 138 96 33    

   
2019 

2.2 West 3.6 207 167 92 
181 132 68 

2.3 West 3.6 154 97 44 
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2.3.3 Results of Applying the Inverse Model to the 2016 Field Campaign 

The inverse model source assessment was run using the passive sampling data from the 2016 
survey with 126 potential sources (Figure 4), including sources in the surface and bottom layers at 
each EFDC model grid cell along the channel and at every other cell along the banks (roughly 
every 0.3 miles). Table 5 presents the inverse model results in terms of the identified sources and 
their strengths (dissolved mass loadings). For a given PCB congener, the average (over the 
deployment period) mass contributed by each identified source to the average mass in the domain 
(5-mile stretch of the LDW) is also reported in Table 5. This characterizes the fractional 
contribution of each identified source to the average dissolved concentration in the LDW over the 
deployment period. For example, for PCB 28, the source at RM 0.1 on the east bank (with a 
strength of 22 mg/d) contributes 64 mg of the 243 mg that was predicted to reside on average 
within the water column of the LDW (i.e., it contributes 26% of the mass contributed by all 
identified sources). This value can be calculated by integrating the tracer mass (concentration ൈ 
volume) across all EFDC model cells within the LDW. Alternatively, the mass can be calculated 
by multiplying the source strength by the residence time of tracer originating from the source. Note 
that the fractional contribution of a source to the LDW average concentration differs is not equal 
to the fractional loading of that source to the total loading from all sources because PCB mass is 
lost to Elliot Bay and the residence time varies by source location. 

 

Figure 4. Potential Source Locations (Marked with Crosses) Supplied to the Inverse Model 
for Source Assessment Using the 2016 Campaign Data.  

Potential sources were simulated at the surface and bottom model grid layers at each of the marked 
locations. 
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Table 5. Source Strengths and Average Mass Contribution for Sources Selected by the 
Inverse Model Using the 2016 Campaign Data with 126 Potential Sources Simulated. 

Source 
location 
(RM) 

Congener 

Bottom Sources Surface sources 

0.1 
East 
Bank 

0.4 
East 
Bank 

0.8 
West 
Bank 

1.7 
West 
Bank 

3.8 
East 
Bank 

0.4 
East 
Bank 

3.8 
East 
Bank 

4.1 
East 
Bank 

Source 
strength 
(mg/d) 

PCB 28 22 4  30 0.1 23 0.4  

PCB 52 27 3 9 19 0.5 3 1  

PCB 101 27 2 21 0.5 0.5  1 0.2 

          

Average 
mass 
contribution 
(mg) 

PCB 28 
64 16  147 0.2 16 0.5  

26% 7%  61% 0.1% 6% 0.2%  

PCB 52 
78 12 42 93 1 2 1  

34% 5% 18% 41% 0.5% 0.9% 0.6%  

PCB 101 
78 8 97 2 1  1 0.4 

41% 4% 51% 1% 0.6%  0.7%  
 

The results in Table 5 suggest that for the three PCB congeners modeled, the major contribution 
of dissolved PCB mass comes from the downstream portion of the estuary (between RM 0 and 2) 
from sources along the bottom of the water column. The main sources identified by the inverse 
model are located on the west bank between RM 0.8 and 1.7 and on the east bank near the 
downstream boundary of the study region (RM 0.1). The latter identified source could also indicate 
sources beyond the mouth of the estuary (the inverse model was not supplied with potential sources 
in Elliot Bay). 

The fitted concentrations are plotted against measurements in Figure 5. This figure demonstrates 
that the concentrations predicted by the inverse model agree moderately well with measurements 
on average, with predictions that are mostly within a factor of 2 of the measured concentration and 
all within a factor of 5. The RMS errors in absolute concentrations, natural log of concentrations 
and relative concentrations are 17.0 pg/L, 0.56 and 0.93, respectively, for PCB 28.  
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Figure 5. Comparison of Fitted Concentrations and Measurements for Three Modeled 
PCB Congeners.  

The solid line is the 1:1 line, while the dashed and dotted lines indicate factors of 2 and 5 difference, 
respectively. 

Figure 6 provides an additional comparison of fitted and measured concentrations, which also 
shows the longitudinal and vertical location of the measurements and the inferred contribution 
from each source identified by the inverse model. The longitudinal and vertical position (time-
averaged) of the samplers are shown with black dots. The length of the black line segment 
extending upward from the black dot indicates the concentration measured by that sampler. The 
total congener concentration prediction at each sampler location is shown by stacking the 
contributions from individual sources (using line segments of different colors with their lengths 
indicating the concentration contributions from each source). At any given sampler location, the 
concentration contribution from the bottom source at RM 0.1 East Bank is shown using a red line 
segment starting at the black dot and extending upward. Next, the contribution from the bottom 
source at RM 0.8 West Bank is shown by a blue line segment, which starts where the red segment 
ends. Next, the green line segment, which starts where the blue segment ends, shows the 
contribution from the bottom source at RM 1.7 West Bank. The contributions from remaining 
sources identified by the inverse model are shown using the magenta line segment, which starts 
where the green line segment ends. 

For congeners 28 and 52, the concentrations measured at RM 2.2 are high relative to measurements 
at other locations. Therefore, it makes sense that for these congeners, the inverse model assigns 
the biggest contribution of concentration as coming from a nearby source (bottom source at RM 
1.7 on the west bank [green line segments]). On the other hand, for PCB 101, for which the 
measurements are more spatially uniform, the large contributors are at the bottom and close to the 
mouth of the estuary (RM 0.1 and 0.8). These inferred sources contribute concentration to most of 
the sampler locations (blue and green line segments). 
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Figure 6. Comparison of Measurements and Predicted Concentrations from Various 
Sources. 

Using the sources identified by the inverse model, one can use those results at inputs to the EFDC 
and generate the spatial distribution of PCB concentrations throughout the estuary (Figure 7).  
The concentrations shown are average concentrations over the 2016 deployment period.  
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Because most of the major inferred sources are along the bottom (Table 5), the concentrations are 
also highest close to the bottom and there is a vertical gradient of predicted concentrations. For all 
three congeners, the highest concentrations are near the bottom close to RM 1.7, even for PCB 101 
where the dominant source loadings are predicted to be downstream of this location. 

 

 

 

Figure 7. Predicted Longitudinal Concentration Profiles Along the Center Channel of the 
LDW. 
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2.3.4 Influence of Measurement Uncertainty on Predicted Source Strengths 

The uncertainty in the strengths and locations of sources selected by the inverse model can in part 
be characterized by considering the uncertainty in measured concentrations. Using 1000 
realizations, we generated the "measured" concentrations modified to reflect an uncertainty of 30% 
(see Apell and Gschwend, 2017). A random variable (𝑥) drawn from a unit normal distribution 
with a mean of 0 was used to simulate uncertainty in the measurements as follows: 

𝑐ᇱ ൌ  𝑐௠௘௔௦ ൅ 0.3𝑐௠௘௔௦𝑥                                  ሺ5ሻ 

where 𝑐ᇱ is the modified concentration and 𝑐௠௘௔௦ is the measured concentration.  

The distribution of 𝑥 was truncated to exclude values below -2 and above +2 (i.e., excluding 
approximately the upper and lower 2% of the distribution) in order to avoid generating negative 
concentrations. For each source location, the average source strength and standard deviation across 
1000 realizations are listed in Table 6 for three congeners. It should be noted that the calculated 
strengths are constrained to be non-negative, as discussed in Section 3, which causes the 
distributions of source strengths to not be normally distributed. 

It is also noted that there are other sources of uncertainty to the inverse model results that are not 
captured in Table 6, such as the approach used to fitting the data and uncertainty in the numerical 
model transport predictions. The sensitivity of the inverse model to some of these factors is 
considered in the sections that follow. 

Table 6. Average Source Strengths and Their Standard Deviation Calculated Using the 
inverse Model with Measurements Modified to Include Uncertainty.  

Only the locations for which the mean source strength was higher than 0.1 mg/d are listed. 

Source location (RM) 

Source strengths (mg/d) 
PCB 28 PCB 52 PCB 101 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Bottom 
sources 

0.1 Center     0.4 2.6 
0.1 East 19.3 10.2 26.0 9.3 25.8 8.8 
0.4 East 3.8 2.3 2.8 2.0 2.6 1.8 
0.8 West 2.9 5.1 9.9 9.1 18.0 8.1 
0.8 East   0.1 0.6 0.3 0.9 
1.7 West 29.2 8.2 18.4 7.1 1.8 2.4 
2.0 West    0.2   
2.1 Center   0.1 0.8   
3.3 Center   0.1 0.5 0.6 1.0 
3.8 East 0.2 0.2 0.6 0.4 0.5 0.3 

Surface 
sources 

0.4 East 23.0 9.8 3.8 3.9   
3.8 East 0.5 0.5 1.1 0.7 1.1 0.6 
4.1 East 0.1 0.2 0.1 0.2 0.2 0.2 
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2.3.5 Influence of Fitting Scheme on Predicted Source Strengths 

The influence of the three different fitting schemes discussed in Section 3.2 on the inverse model’s 
predictions of source locations and strengths was also evaluated. For this test, the inverse model 
was run using the passive sampling data from the 2016 survey with 34 potential source locations 
(i.e., with a coarser configuration than the one for the base case assessment described earlier in 
this section). Here the potential sources were limited to the center channel, specifically the surface 
and bottom of every other longitudinal cell (roughly 0.3 miles apart, see Figure 8). The effects of 
varying selected sources and their strengths for each of the three fitting schemes is about a factor 
of 2 (Table 7 comparing a, b, and c). A comparison of fitted concentrations vs. model input 
"measurements" for PCB 28 for each scheme shows a small shift (Figure 9). 

 

Figure 8. Potential Source Locations (Marked with Crosses) Used for the Inverse Model 
Application to Test Sensitivity to Different Fitting Schemes.  

Sources were chosen to be at the surface and the bottom at each of the marked locations. 

 

Table 7a. Source Strengths (in mg/d) Calculated for PCB 28 for Three Different Fitting 
Schemes Using the Inverse Model with 2016 Measurements and the Potential Sources in 

Figure 8. 

Source location 
(RM) 

Scheme 1 (minimizing 
squared error in 
absolute concentrations) 

Scheme 2 (minimizing 
squared error in natural 
log of concentrations) 

Scheme 3 (minimizing 
squared error in relative 
concentrations) 

0.1 Bottom 25 44 15 

0.4 Bottom  7 23 

1.7 Bottom 33 11 5 

4.8 Bottom   4 

0.4 Surface 39 5  

3.8 Surface  9  

4.1 Surface   1 
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Table 7b.  Source Strengths (in mg/d) Calculated for PCB 52 for Three Different Fitting 
Schemes Using the Inverse Model with 2016 Measurements and the Potential Sources in 

Figure 8. 

Source location 
(RM) 

Scheme 1 (minimizing 
squared error in 

absolute concentrations) 

Scheme 2 (minimizing 
squared error in natural 

log of concentrations) 

Scheme 3 (minimizing 
squared error in relative 

concentrations) 

0.1 Bottom 42 45 15 

0.4 Bottom  6 15 

1.7 Bottom 22 10 9 

4.8 Bottom  4 1 

3.8 Surface 3 1  

4.1 Surface   1 

 

 

Table 7c. Source Strengths (in mg/d) Calculated for PCB 101 for Three Different Fitting 
Schemes Using the Inverse Model with 2016 Measurements and the Potential Sources in 

Figure 8. 

Source location 
(RM) 

Scheme 1 (minimizing 
squared error in 

absolute concentrations) 

Scheme 2 (minimizing 
squared error in natural 

log of concentrations) 

Scheme 3 (minimizing 
squared error in relative 

concentrations) 

0.1 Bottom 55 44 18 

0.4 Bottom  6 11 

1.7 Bottom 2 1 6 

3.8 Bottom 2   

4.8 Bottom 1 4  

3.8 Surface 1   

4.1 Surface   1 

 

As seen in Figure 5, schemes 2 and 3 perform better for small measured concentrations whereas 
scheme 1 fits the large measurements better. By design, the three schemes minimize different error 
measures (Section 3.2). This is demonstrated in Table 8 for PCB 28. 
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Figure 9. Comparison of Fitted Concentrations and Measurements for PCB 28 Using the 
Three Fitting Schemes Considered.  

(Left: linear scale; right: log scale.) 

 

The results in Table 7 demonstrate that the fitting scheme affects the sources that are identified 
and their relative strengths. However, looking at the comparisons in Figure 9 and Table 8, no one 
scheme clearly outperforms the other schemes in goodness-of-fit. As noted in Section 3.2, fitting 
scheme 1 (minimizing the sum of squared error in absolute concentrations) was used for most of 
the results reported herein because it yields better agreement at high measured concentrations, 
which are the most important ones from a risk perspective. 

Table 8. PCB 28 Error Measures for the Three Different Fitting Schemes  

(n = number of measurements) 

Error measure Expression Scheme 1 Scheme 2 Scheme 3 

RMS error in absolute 
concentration ඨ

1
𝑛
෍൫𝑐௙௜௧ െ 𝑐௠௘௔௦൯

ଶ
 20.0 pg/L 22.8 pg/L 26.5 pg/L 

RMS error in natural log 
of concentration ඨ

1
𝑛
෍ൣln 𝑐௙௜௧ െ ln 𝑐௠௘௔௦൧

ଶ
 0.65 0.55 0.67 

RMS error in relative 
concentration ඨ

1
𝑛
෍ൣ൫𝑐௙௜௧ െ 𝑐௠௘௔௦൯ 𝑐௠௘௔௦⁄ ൧

ଶ
 0.99 0.62 0.43 
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2.3.6 Sensitivity of Inverse Model Results to EFDC Model Configuration and 
Parameterization 

The numerical model predictions by EFDC may be sensitive to the model configuration and 
parameterization, which introduces uncertainty into the inverse model’s identified source locations 
and strengths and may contribute to differences between predicted and measured concentration 
(Figure 7). In this section, we test the potential sensitivity of inverse model results to several EFDC 
settings, including representing mass loss processes, vertical and horizontal mixing, and model 
grid resolution. 

Another reason for the difference between predictions and measurements could be the presence of 
sub-grid scale sources in the real world.  

2.3.7 First Order Decay 

The inverse model’s ability to correctly identify source locations and strengths and to predict 
concentrations that are consistent with measurements may be limited by unmodeled transformation 
and transport processes (e.g., sediment dynamics and sorption processes, air-water exchange, etc.). 
For example, mass loss processes can lead to more distinct source signatures and yield a better fit 
between predicted and measured concentrations, as discussed in Section 4. To test whether 
including such processes could potentially improve the agreement of inverse model concentration 
predictions with data, a first order decay of the tracer mass was added to the EFDC tracer 
simulations used to generate the fingerprints used by the inverse model. Sources selected by the 
inverse model and their calculated strengths are expected to change with the decay rate for two 
main reasons. First, as the decay rate increases, larger source strengths will be needed to reach the 
average concentrations of the measured data. Second, more sources are likely to be identified with 
faster decay because the source fingerprints become increasingly local, i.e., for a fast decay, 
sources will mainly affect concentrations close to them. The potential improvement of representing 
such processes was judged by evaluating the goodness-of-fit of the predicted concentrations for 
first order decay rates of 1/day and 4/day (i.e., reflecting characteristic timescales of 1 day and 6 
hours). The inverse model was run with the simplified potential source configuration described in 
Section 7.2 and shown in Figure 8 (i.e., with 34 potential sources along the center channel). Table 
9 shows inverse model results with and without decay for three PCB congeners. Only source 
locations that are identified with any of the decay rates are listed in the table. 

Table 9a. Comparison of Selected Source Locations, Their Strengths and the Goodness-of-
fit of the Inverse Model Concentration Predictions for Different Values of a First Order 

Decay Rate for PCB 28. 

Decay 
rate 

Source locations (river mile) and strengths (mg/d) 
RMS 
error 
(pg/L) 

Bottom sources 
Surface 
sources 

0.1 0.4 0.8 1.0 1.7 2.0 3.2 3.8 4.1 4.4 4.8 0.4 0.8 3.8 

No decay 27    33        32  20.1 

1 day-1 204 27   153   9   4  59 22 16.5 

4 day-1 1089 30 91 105  307 14 38 7 65 4 124 36  15.7 



 

23 

Table 9b. Comparison of Selected Source Locations, Their Strengths and the Goodness-of-
fit of the Inverse Model Concentration Predictions for Different Values of a First Order 

Decay Rate for PCB 52. 

Decay 
rate 

Source locations (river mile) and strengths (mg/d) RMS 
error 
(pg/L) 

Bottom sources Surface sources 

0.1 0.4 0.8 1.0 1.7 2.0 3.2 3.8 4.1 4.4 0.4 2.3 3.5 3.8 

No decay 42    22         3 13.3 

1 day-1 227 19 8  114  3 22      30 10.2 

4 day-1 1069 3 168 51 207 153 21 58 2 27 44 3 1 54 9.4 

 

Table 9c. Comparison of Selected Source Locations, Their Strengths and the Goodness-of-
fit of the Inverse Model Concentration Predictions for Different Values of a First Order 

Decay Rate for PCB 101. 

Decay 
rate 

Source locations (river mile) and strengths (mg/d) RMS 
error 
(pg/L) 

Bottom sources Surface sources 

0.1 0.4 0.8 1.7 2.6 3.2 3.8 4.1 4.4 4.8 0.4 2.3 3.5 3.8 

No decay 55   2   2   1    1 7.8 

1 day-1 224 5 33 45  8 18   2    17 5.7 

4 day-1 1006  202 270 33 17 43 3 1 2 4 4 9 49 5.4 

 

As expected, the inverse model identifies more sources close to the measurement locations with 
faster decay, and the RMS error (in absolute concentrations) decreases. However, the error is still 
considerable even with a relatively fast decay rate of 4/day. The reduction in RMS error when the 
decay rate is increased from 1/day to 4/day is small, and the RMS error is not expected to decrease 
much with further increase in the decay rate. 

2.3.8 Vertical Eddy Viscosity 

Three different EFDC calibrations were considered based on model-data comparisons of measured 
salinity profiles and data-based estimates of salt wedge location as a function of flow. The three 
calibration settings differed in the choice of background vertical eddy viscosity. To assess the 
impact of this uncertainty in calibration settings on the inverse model’s source assessment, we 
calculated source strengths using EFDC runs with each of the three calibration settings. As in 
preceding sensitivity tests, only potential sources along the center channel were considered for this 
exercise (34 potential sources at the horizontal locations shown in Figure 8). The source locations 
and strengths identified by the inverse model are shown in Table 10 for each case. Only source 
locations that are identified with any of the three calibrations are listed in the table. 
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Table 10a. Source Strengths (in mg/d) Predicted for PCB 28 Using the Inverse Model with 
2016 Measurements and Three Different EFDC Calibration Settings. 

Source location (RM) 
Calibration 1 
(vertical eddy viscosity 
= 1E-3.5 m2/s) 

Calibration 2 
(vertical eddy viscosity 
= 1E-5 m2/s) 

Calibration 3 
(vertical eddy viscosity 
= 1E-7 m2/s) 

0.1 Bottom 37 25 25 

1.7 Bottom 39 33 32 

0.4 Surface 32 39  

0.8 Surface   32 

4.1 Surface 1   

 

Table 10b. Source Strengths (in mg/d) Predicted for PCB 52 Using the Inverse Model with 
2016 Measurements and Three Different EFDC Calibration Settings. 

Source location (RM) 
Calibration 1 
(vertical eddy viscosity 
= 1E-3.5 m2/s) 

Calibration 2 
(vertical eddy viscosity 
= 1E-5 m2/s) 

Calibration 3 
(vertical eddy viscosity 
= 1E-7 m2/s) 

0.1 Bottom 50 42 41 
1.7 Bottom 26 22 22 
4.8 Bottom 4   
3.8 Surface  3  
4.1 Surface 1   

 

Table 10c.  Source Strengths (in mg/d) Predicted for PCB 101 Using the Inverse Model 
with 2016 Measurements and Three Different EFDC Calibration Settings. 

Source location (RM) 
Calibration 1 
(vertical eddy viscosity 
= 1E-3.5 m2/s) 

Calibration 2 
(vertical eddy viscosity 
= 1E-5 m2/s) 

Calibration 3 
(vertical eddy viscosity 
= 1E-7 m2/s) 

0.1 Bottom 61 55 54 

1.7 Bottom 1 2 2 

3.5 Bottom 5   

3.8 Bottom  2 3 

4.8 Bottom 5 1 2 

3.8 Surface  1  

 

Table 10 indicates that, for a given congener, the model chooses 2-5 sources (out of 34 potential 
sources) and similar sources are chosen for each calibration, i.e., the choice of this calibration 
setting does not strongly affect the predicted source location. However, the source strengths are 
somewhat different for the three calibrations. Note that for all other inverse model results presented 
herein, EFDC simulations were based on the calibration 2 settings of vertical eddy viscosity. 
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2.3.9 Horizontal Diffusivity 

The horizontal diffusivity of tracers is another EFDC setting for which the sensitivity of inverse 
model predictions was tested. All inverse model results presented thus far are based on EFDC runs 
with horizontal diffusivity set to 40 m2/s. To test the sensitivity of inverse model results to this 
parameter, a set of EFDC tracer simulations were run with a much lower horizontal diffusivity of 
0.4 m2/s. A reduced diffusivity may improve model predictions by reducing the horizontal impact 
of a given source and making its impact more localized. For this sensitivity test, potential sources 
were located at every other cell longitudinally with sources on the east and west banks as well as 
along the center channel (90 potential sources at the horizontal locations shown in Figure 10). 
Table 11 shows a comparison of inverse model results for the two values of horizontal diffusivity. 

 

Figure 10. Potential Source Locations (Marked with Crosses) Used in Tests of Inverse 
Model Sensitivity to the Horizontal Diffusivity in EFDC.  

Potential sources were simulated at the surface and the bottom at each of the marked locations. 

 

Table 11a. Comparison of Selected Source Locations, their Strengths and the Goodness-of-
Fit of the Inverse Model Concentration Predictions for PCB 28 for Different Values of 

Horizontal Diffusivity in EFDC. 

Horizontal 
diffusivity 
(m2/s) 

Source locations (river mile) and strengths (mg/d) 
RMS 
error 
(pg/L) 

Bottom sources Surface sources 

0.1 
East 

0.4 
East 

0.8 
West 

1.7 
West 

2.0 
West 

3.8 
East 

0.4 
East 

3.8 
East 

40 22 4  30  0.1 23 0.4 17.0 

0.4 66 6 21  44  34 0.1 16.5 
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Table 11b. Comparison of Selected Source Locations, their Strengths and the Goodness-of-
Fit of the Inverse Model Concentration Predictions for PCB 52 with Different Values of 

Horizontal Diffusivity in EFDC. 

Horizontal 
diffusivity 
(m2/s) 

Source locations (river mile) and strengths (mg/d) 
RMS 
error 
(pg/L) 

Bottom sources Surface sources 

0.1 
East 

0.4 
East 

0.8 
West 

1.7 
West 

2.0 
West 

3.8 
East 

0.4 
East 

3.8 
East 

40 27 3 9 19  0.5 3 1 11.0 

0.4 62 6 33  30 0.6 5 0.9 10.1 

Table 11c. Comparison of Selected Source Locations, their Strengths and the Goodness-of-
Fit of the Inverse Model Concentration Predictions forPCB 101 with Different Values of 

Horizontal Diffusivity in EFDC. 

Horizontal 
diffusivity 
(m2/s) 

Source locations (river mile) and strengths (mg/d) 
RMS 
error 
(pg/L) 

Bottom sources Surface sources 

0.1 
Center 

0.1 
East 

0.4 
East 

0.8 
West 

1.7 
West 

2.0 
West 

3.8 
East 

3.8 
East 

4.1 
East 

40  27 2 21 0.5  0.5 1 0.2 5.6 

0.4 16 49 7 39  7 0.6 1  4.6 

 

Table 11 indicates that although the source distribution shifts somewhat in response to reducing 
the horizontal diffusivity by a factor of 100, the goodness-of-fit does not improve much meaning 
that other factors must dominate the discrepancies between model and data.  

To test whether the goodness-of-fit for the low horizontal diffusivity case is sensitive to the 
longitudinal density of potential sources, the inverse model was also run with a denser distribution 
of potential sources between RM 1.0 and RM 3.0 (138 potential sources at the horizontal locations 
shown in Figure 11) using the smaller horizontal diffusivity (0.4 m2/s). The denser distribution of 
potential sources yielded inverse model results that are in better agreement with measured 
concentrations (Table 12), suggesting that using a denser coverage of potential candidate sources 
may be a valuable refinement when the horizontal diffusivity is small enough to keep nearby 
sources distinct. 

The improvement of the inverse model’s goodness-of-fit to the measured data with a denser spatial 
coverage also raises the possibility that the inverse model’s performance may be limited by EFDC 
grid resolution, to the extent that the real sources are of a sub-grid scale. Representing a highly 
localized source with a much coarser EFCC grid cell means that unrealistic initial mixing will 
occur when the source’s loading is effectively distributed uniformly over the grid cell in which it 
is introduced (regardless of the horizontal diffusivity setting). The potential impact of sub-grid 
scale effects is considered in the next section. 
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Figure 11. Potential Source Locations (Marked with Crosses) with Dense Distribution 
between RM 1.0 and 3.0.  

Potential sources were simulated at the surface and the bottom at each of the marked locations with 
horizontal diffusivity of 0.4 m2/s. 

 

Table 12. Source Strengths for Sources Selected by the Inverse Model Out of 138 Potential 
Sources with Horizontal Diffusivity of 0.4 m2/s. 

Congener Source locations (river mile) and strengths (mg/d) RMS 
error Bottom Sources Surface sources 

0.1 
Center 

0.1 
East 

0.4 
East 

0.8 
West 

2.1 
West 

3.8 
East 

0.4 
East 

3.8 
East 

PCB 28  69 7 26 19 0.4 42 0.8 11.4 

PCB 52  64 7 37 13 0.9 10 1.3 6.7 

PCB 101 30 44 6 38 3 0.6  1.2 4.3 

 

2.3.10 Sub-grid Scale Sources 

To test the potential impact of sub-grid scale sources on inverse model results, we used a simpler 
setup in which the concentration field can be specified analytically: a vertically well-mixed 
rectangular channel with uniform flow and homogenous diffusion. In such a setting, the 
concentration field resulting from a continuous line source (at longitudinal location 𝑥 ൌ 𝑥ௗ) can 
be calculated analytically as: 

𝑐ሺ𝑥, 𝑦ሻ ൌ
𝑞′

2൛𝜋𝑢𝐸௬ሺ𝑥 െ 𝑥ௗሻൟ
ଵ ଶ⁄ exp ቈെ

𝑦ଶ𝑢
4𝐸௬ሺ𝑥 െ 𝑥ௗሻ

െ
𝑘ሺ𝑥 െ 𝑥ௗሻ

𝑢
቉                ሺ6ሻ 

where 𝑞′ is the mass injection rate per unit depth of the source, 𝑢 is the longitudinal flow velocity, 
𝐸௬ is the lateral diffusion coefficient, 𝑦 is the lateral distance away from the source, and 𝑘 is the 
first order decay rate for the contaminant. 
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For this test, concentration “measurements” for the inverse model are generated by considering 
two line sources with strengths of 8 and 20, located at 𝑥 ൌ 3000 m and 𝑥 ൌ 6000 m, respectively, 
in a 9840 m long, 180 m wide rectangular channel. The two sources are assumed to be discharging 
a conservative contaminant (decay rate of zero). Eight evenly spaced measurement locations are 
chosen between 𝑥 ൌ 840 m and 9240 m. The velocity in the channel (𝑢) and the lateral diffusion 
coefficient (𝐸௬) are chosen to be 0.1 m/s and 0.02 m2/s, respectively. Figure 12 shows the resulting 
concentration distribution at 𝑦 ൌ 0 along with the “measured” concentrations. 

 

Figure 12. Analytical Concentration Distribution at 𝒚 ൌ 𝟎 Resulting from Two Line 
Sources Located at 3000 m and 6000 m with Strengths of 8 and 20, Respectively.  

Also shown are the 8 measured concentrations used in this test, which are evenly spaced at locations 
between 840 m and 9240 m. 

To assess the impact of applying the inverse model to a grid of finite resolution, two different grid 
sizes (over which the inverse model fingerprints would be averaged) are considered: a coarser grid 
with ∆𝑥 ൌ 240 m and ∆𝑦 ൌ 60 m, and a finer grid with ∆𝑥 ൌ 80 m and ∆𝑦 ൌ 36 m (the grid sizes 
and measurement locations are chosen such that the measurement locations are at grid cell centers). 
19 potential equally-spaced source locations between 𝑥 ൌ 500 m and 𝑥 ൌ 9500 m are specified, 
and the inverse model fingerprints are the concentrations resulting from these sources after 
spatially averaging the analytical solution concentrations over the grid cells. 

Table 13 shows inverse model results for the two grid sizes. The “real” measured concentrations 
from sub-grid scale sources (as specified by the analytical solution) cannot be exactly explained 
using spatially averaged concentrations (averaged over grid cells) as evidenced by the non-zero 
error between measured and predicted concentration. As expected, the agreement with real 
concentrations gets better as the grid size is reduced. 
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Table 13. Inverse Model Results When Potential Sources with Spatial Averaging Are Used. 
The “Real Sources” Are Located at 3000 m and 6000 m. 

Grid size 
Source locations (m) and strengths 

RMS error 
3000 6500 7500 8500 

Coarse grid 
(∆𝒙 ൌ 𝟐𝟒𝟎 m, ∆𝒚 ൌ 𝟔𝟎 m) 

13.9 20.3   0.45 

Fine grid 
(∆𝒙 ൌ 𝟖𝟎 m, ∆𝒚 ൌ 𝟑𝟔 m) 

10.4 15.0 0.9 0.4 0.18 

 

The test was repeated using potential sources that released tracer undergoing a first order decay, 
to check whether better agreement with real concentrations can be achieved. Decay rates of 1/(24 
hours), 1/(6 hours) and 1/(1 hour) were used (Table 14). Figure 13 shows the concentration 
distributions resulting from the sources selected by the inverse model. Using a fast decay rate can 
result in good agreement between measured and predicted concentrations at the measurement 
locations (small or zero RMS error) but the predicted concentration distributions are very different 
from the “real” concentration distribution generated by the sub-grid scale sources. With faster 
decay, the inverse model selects more sources to fit concentrations at the measurement locations, 
but the improvement in goodness-of-fit is artificial in that the inverse model and the selected 
sources do not help in locating the real sources. 

Table 14. Inverse Model Results When Potential Sources with Spatial Averaging and 
Decay Used. 

Grid 
size 

Decay 
rate 

Source locations (m) and strengths RMS 
error 2500 3000 4000 5000 5500 6500 7500 8000 8500 9000 

Coarse 
grid 

(24 h)-1 18.6     25.6    1.5 0.26 

(6 h)-1 28.2    2.0 32.8 9.4   8.2 0.02 

(1 h)-1  35.8 25.2  8.2 77.6  39.6 30.7  0 

             

Fine 
grid 

(24 h)-1  11.2    16.5 3.0  2.6  0.08 

(6 h)-1  12.3 1.3 2.4  18.7 8.1  8.2  0 

(1 h)-1  17.7 12.6  9.2 29.7 35.2   20.8 0 
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Figure 13. Comparison of Actual Concentration Distribution with Concentration 
Distributions Resulting from Sources Selected by the Inverse Model for the Coarse (Top) 

and Fine Grid (Bottom). 
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It can be seen from this exercise that the ability of the inverse model to locate sources depends 
strongly on the grid resolution. The model cannot identify sources if the concentrations are not 
well resolved. Better resolution can be obtained by using a finer grid or by using Lagrangian 
particle tracking. 

The exercise also demonstrates that introducing additional processes such as decay can improve 
the goodness-of-fit of the inverse model without necessarily improving the accuracy of the source 
location; the processes must be physically realistic in order to yield useful results. 

2.4 CONCLUDING COMMENTS 

2.4.1 Summary and Implications 

The inverse model provides a way to infer potential sources of contamination using concentration 
measurements. This is demonstrated conceptually with a simple setup of a vertically well-mixed 
rectangular tidal channel and applied to the more complex LDW domain using the 2016 passive 
sampler measurements. An important result from the conceptual model, and reinforced with the 
LDW numerical model, is that the accuracy of the inverse model source identification depends 
strongly on the precision of the measurements. In the LDW, the inverse model results suggest that 
concentrations measured in 2016 are consistent with bottom sources of dissolved concentration in 
the downstream region (RM 0-2) for PCB 28, 52 and 101. Multiple hydrodynamic model calibration 
settings (with different vertical and horizontal mixing settings) were considered and this finding was 
not highly sensitive to the choice of calibration. Other tests demonstrate that the inferred source 
distribution may be sensitive to factors such as the density of candidate source locations considered, 
modeled fate and transport processes, and the numerical model grid’s resolution. 

The dissolved concentrations predicted by the inverse model agree moderately well with the 
measurements on average, with predictions that are mostly within a factor of two of the measured 
concentration and all within a factor of 5 (Figure 5). Potential contributors to such differences 
includes transformation and transport processes that are not modeled in the EFDC simulations 
(e.g., sediment dynamics and sorption processes, air-water exchange, etc.) or the presence of sub-
grid scale sources in the real world which cannot be resolved by the EFDC grid. The sensitivity of 
inverse model results to uniform first order decay (e.g., depth-averaged water-to-air exchanges, 
Apell and Gschwend, 2017) and changes to the horizontal diffusivity are evaluated, but the 
goodness-of-fit was not strongly affected. For example, regardless of the horizontal diffusivities 
input to the model, each source is effectively distributed uniformly over the grid cell in which it is 
introduced, resulting in unrealistic initial mixing. Such spurious mixing is particularly detrimental 
to the model’s ability to distinguish local sources. Other approximations, such as the use of a 
straight arithmetic average (instead of the exponential filter) to calculate tracer concentrations for 
samplers, and the use of average concentrations for the vertical layer in which the sampler resides 
(instead of an interpolated value), could also lead to some divergence between measurements and 
predictions. However, these differences are shown to be small. 

Using the sources identified by the inverse model, dissolved water column contaminant 
concentrations within the study area can be predicted (as shown in Figure 9). These predictions 
can then be used as input to the FWM which determines exposure to marine life. This is  
done by identifying horizontal cells that belong to each of the larger cells of the FWM.  
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For example, in the application described in Section 1 of this document, the volume-weighted 
concentrations from EFDC simulations (which represent variation in time and space) for each cell 
of the FWM were approximated by a log-normal distribution and the corresponding values of mean 
and standard deviation for the distribution are calculated and used to assign dissolved phase 
concentrations in the FWM. We note that pelagic organisms swim over large portions of the LDW 
and hence sample spatial variability in concentrations. The accuracy of the EFDC-predicted 
concentrations may be limited by unresolved processes as described above, but the large-scale 
predicted concentration distribution is constrained by mass conservation in the LDW, thus 
rendering the model forgiving for related the food web calculations. 

Identification of source locations by inverse modeling is evaluated as a potentially helpful 
approach to inform further site investigations and remediation efforts. However, the sources 
identified by the inverse model in the LDW application are all point sources and do not include 
any adjacent sources, which could indicate a distributed source (i.e., one that reflects the 
combined inputs from nearby locations). Perhaps, sources in the real world seem are, in fact, 
likely to be distributed (at least, the ones on the bottom to the extent they represent a sediment 
source). The absence of identified adjacent sources makes it difficult to determine the spatial 
extent of the sources identified. Obviously, the ability of the inverse model to identify a 
distributed source is in part limited by the resolution of the EFDC grid and the density of 
potential sources with which the inverse model is supplied. If the size of a distributed source is 
large compared to the grid cell size and the inverse model is provided with a sufficiently dense 
grid of potential source locations, the inverse model approach would in principle be able to 
identify it as shown in Section 5 above. 

With the sources identified by the inverse model, potential effects of source removal or reduction 
can in principle be assessed at a high level. To demonstrate the potential effects of source removal, 
concentration heat maps are plotted in Figure 14 after the removal of one source for each of the 
three congeners (PCB 28, 52 and 101; see Figure 7 for the concentrations without source removal). 
The source here chosen to be removed is the one with the largest contribution to the average mass 
of that PCB congener (Table 5) – a source at RM 1.7 west bottom for PCB 28 and 52, and a source 
at RM 0.8 west bottom for PCB 101.  
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Figure 14. Predicted Longitudinal Concentration Profiles Along the Center Channel of 
the LDW after Hypothetical Removal of One Identified Source.  

For PCB 28 and 52, the source removed is the bottom source at RM 1.7 on the west bank. For PCB 101, 
the bottom source at RM 0.8 on the west bank is removed. 

PCB 28 

PCB 52 

PCB 101 
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Comparing heat maps in Figure 14 to those in Figure 7 suggests the removal of said sources 
could lead to a significant reduction in dissolved phase concentrations (e.g., about a factor of 2 for 
PCB 101, see Figure 15). However, the importance of such a change, especially relative to some 
cost associated with removal of such a source, may only be gaged by coupling these results with a 
FWM. 

 

  

Figure 15. Comparison of EFDC-inferred Water Concentrations of PCB101 for Before 
(Left Panel) and After (Right Panel) Source Removal at RM 0.8.  

Note the overall scale for the left panel is a factor of 2 greater. 

However, it should be noted that the source removal exercise makes several simplifying 
assumptions which limits its robustness in regard to evaluating remedial benefit. Most notably, it 
considers the hypothetical removal of the dissolved phase concentration contributions from a 
source without assuming anything about the type of source, its size and how it relates to bulk PCB 
contamination in the system. For example, in the real world, remediation of a sediment bed source 
usually involves dredging and/or capping, but the source area can be re-contaminated and continue 
to act as a source if its PCB levels reflect the influence of other sources (e.g., via intermittent 
loading from an outfall or upstream source). But for this exercise, it is assumed that a removed 
source results in complete removal of the dissolved concentrations contributed by it. As such, 
remedial benefit inferred from this exercise is likely to be an upper bound. Also, the spatial extent 
and nature of the source is not known, which would be required further evaluation of remediation 
options for the source (e.g., by dredging/capping for sediment sources) and to be able to 
characterize their impacts on the food web and contributions to risk. The latter is required to assess 
remedial benefits beyond the reduction in dissolved water column concentration. 

Nevertheless, even if the nature of a source cannot be inferred from the inverse modeling, having 
some estimate of its size and extent can help guide future sampling to investigate the source and 
potential remedial strategies. An identified point source can be considered as occurring over the 
area between the identified source and adjacent unidentified sources. For example, in results 
presented above, the model identifies a source at RM 1.7 on the west bank for PCB 28, but does 
not identify the adjacent sources longitudinally (at RM 1.4 and 2.0 on the west bank) or laterally 
(at RM 1.7 along the center channel), suggesting a source area on the order of 480 m ൈ 60 m or 
less (an average grid cell is 240 m long and 60 m wide).  
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2.4.2 Key Conclusions 

 The accuracy of source assessment would likely be more robust through use of a more 
comprehensive fate and transport model that modeled total chemical (rather than just 
dissolved) and included processes such as sediment transport and contaminant sorption and 
desorption. 

 The ability of the inverse model to distinguish among closely spaced potential sources 
depends in part on near source resolution. This ability would in principle improve through 
either increased grid refinement, or the use of Lagrangian particle tracking to handle 
transport near sources. 

 Inverse model results depend strongly on the precision of measured concentration; less 
accurate measurements adversely impacts source identification. 

 Related to above, if “fast” passive samplers are deemed to be accurate and precise, they 
open up the possibility of sequential sampling over shorter temporal timescales—i.e., 
combine an initial set of measurements with the inverse model to generate an approximate 
source distribution, then return to the site to make an iteration.  

 While the above considerations limit the accuracy of the model to identify precise source 
locations and magnitudes, the model-predicted distributions are constrained by mass-
conservation to give results that are on-average consistent with the data on a LDW-wide 
basis, which may be adequate for specifying the water column exposure of pelagic 
organisms in food web calculations.  

 Although the inverse model findings can in principle be used to estimate an upper bound 
remedial benefit of source removal to reduce dissolved phase concentrations, such an 
exercise makes several simplifying assumptions which limits its robustness and it cannot 
be reliably extended to estimate a risk reduction without additional information because 
the nature and extent of the inferred dissolved concentration source and its relationship to 
bulk contaminant concentration is unknown. 

Finally, this inverse modeling methodology certainly fits in the “toolkit” of current contaminated 
sediment investigations. 
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SECTION 3 FOOD WEB MODELING TO ASSESS PCB 
CONCENTRATIONS IN BIOTA BASED ON PASSIVE 
SAMPLING OF A SITE'S SEDIMENT BED AND WATER 
COLUMN AND ASSUMING FUTURE REMEDIATED 
CONDITIONS 

3.1 BACKGROUND 

 If the cleanups of sediment-contaminated sites are driven by reducing risks to aquatic life and 
other organisms (birds and humans), then we need to be able relate the changing presence of 
contaminants to exposures experienced by those organisms. Recently, a great step forward has 
been taken in this regard by the development of FWMs (FWMs, Arnot and Gobas, 2004; Gobas 
and Arnot, 2010). These models connect the concentrations of contaminants in a site's surface 
water, sediments, and pore waters to the body burdens of all the organisms comprising the food 
web. As a result, risks to organisms, including humans, can be estimated if environmental 
exposures are known. 

 But until recently, combining tools to characterize exposures of organisms with understanding 
of the combinations of uptake and depuration processes dictating those biota's concentrations has 
been lacking. As an example, as part of the LDW Remedial Investigation (Windward 2010), the 
Gobas FWM was employed. In this case, the PCBs in the system were modeled by Nairn (2009) 
using a site-calibrated version of the EFDC. Nairn allowed diffusive fluxes from the bed to the 
overlying bottom water, where the Duwamish sediments were characterized using surface-area-
weighted-averages of measured PCB concentrations in the bed over four regions. Unfortunately, 
the model treated all the PCBs as a single entity with singular properties (e.g., a really constant Kd 
value of 140,000 L/kg used to calculate porewater concentrations everywhere). Finally, the model 
was calibrated by adjusting the mass transfer coefficient quantifying the rates of PCBs exiting the 
bed sediments to match the few reported water column ∑PCB concentrations (King County, 2006). 
In so doing, average water column and porewater concentrations could be found and used in the 
Gobas FWM (LDW Remedial Investigation, Appendix D, 2010). The resultant FWM, also 
unfortunately run with the ∑PCBs treated as a singular compound, was also calibrated to fit 
observed tissue concentrations (which it could do to within about a factor of only 1.2 after 
calibration.)   

 Given this “state of the art," we sought to combine the "tools" of (a) passive sampling to measure 
porewater and surface water concentrations of PCBs in the LDW, (b) mass balance modeling to 
synthesize those site- and media-specific data to establish the spatially varying exposure field, and 
(c) utilize that measurement/modeling understanding to estimate the corresponding biota 
concentrations with previously established coefficients in the Gobas and Arnot and Gobas FWMs 
AND the spatially varying conditions from site-to-site via the statistical sampling of such subareas 
by biota according to their lifestyles. In so doing, we expect to demonstrate how such tools can be 
used to assess risks, and changing risks, for organisms interacting with particular contaminated 
ecosystems like the PCBs in the LDW estuary.   
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3.2 METHODS 

3.2.1 Modeling  

The FWMis based on the biological modeling expressions of Arnot and Gobas (2004) and assess 
the importance of spatial contamination heterogeneity as done by von Stackelberg et al. (2017) 
with several important flexibilities added: 

1. The user can run the model for sets of specific nonionic contaminants (e.g. 20 specific PCB 
congeners) to find each compound's accumulation in each species modeled; 

2. Species modeled that may be included are (a) widely roaming and even migrating species 
like bass, (b) limited range carnivorous and/or herbivorous species; (c) benthic 
invertebrates like mussels and oligochaetes, (d) fixed macroalgal/plant species; (e) 
zooplankton, and (f) phytoplankton. 

3. The user may employ direct porewater measures from passive sampling OR estimates of 
porewater concentrations from sediment concentrations and estimates of sorption 
coefficients (e.g., Kd = foc Koc); 

4. The user may input Kow values to estimate Koc, Klip-water, and Knonlip-water coefficients with 
default relationships from Arnot and Gobas (2004) or may input partition coefficient values 
directly from the literature of the user's experience (e.g. adjusted for site temperatures); 

5. The user can solve for bioaccumulation from the ecosystem from a time course calculation 
or simply via a steady state deterministic approach.   

6. The time course output can provide propagated "uncertainty" that has arisen from uncertain 
inputs such as a species lipid content or from the variable positioning and feeding of widely 
roaming species sampling a heterogeneously contaminated site; 
Additionally, several practical improvements have been made: 

7. The code has been transformed from Fortran to Python to facilitate future modeling 
improvements; 

8. Excel spreadsheets are used to upload relevant site, contaminant, and biota data; 
explanatory comments are included on each tab to assist users to recognize "necessary" 
entries as opposed to others that will be used if no information is input (e.g., if no porewater 
concentrations are entered, then sediment concentrations, sediment organic contents, and 
Kow information will be used in a default calculation); 

9. The latest version of the code can be downloaded for free from 
https://github.com/totorotoby/ 
FishRand and a User's Manual describing installation on either Mac's or PC's (Windows) 
and all aspects of operating the model. Sample input sheets are also provided to insure the 
user can run the model with a correctly prepared input file. 
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3.2.2 Model Testing 

As a primary goal of our related ESTCP project (ER-201431 Integrated Passive Sampler-Food 
Web Modeling Framework for Monitoring Remedy Effectiveness), we have been exercising and 
improving the FWM using a site with contemporaneous measures of water and sediment and biota 
concentrations of specific PCB congeners. This effort has allowed us to demonstrate the model's 
ability to operate and to identify key information for users.  

With respect to the LDW, we have successfully performed the following modeling efforts: 

1. Using the latitudes and longitudes of site locations from a field campaign in which 
porewater, bottom water, and water column concentrations were measured using PE 
passive samplers, the new model successfully produces a site map with Thiessen polygons 
drawn and areas calculated for the site and that particular sampling effort (Figure 1). 

 

 

Comparison of map created by 
(python) FishRand using 2014 
sampling station lat' x long's to 
road map (shown left panel) 

 

Thiessen polygon 
areas calculated by 
(python) FishRand 
for map in middle 
panel. 

  

Figure 1.  (left) Street Map Showing the Layout of the Approximately 4-mile-long LDW (in 
blue); (middle) Map Produced by the New FWM Showing Sampling Locations and 

Thiessen Polygons Around Each of These; and (Right) Areas of Each Thiessen Polygon if 
Surface Area-weighted Concentration Averages Are of Interest. 

2. We have examined the impact of various time-step choices on model outputs (Figure 2). 
Further, such outputs revealed the times needed for bioaccumulation to reach steady state 
levels for various organisms, both for uptake (shown in Figure 2) and for depuration (not 
shown) after a remedial effort. 
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Figure 2. Testing Sensitivity of Model Output for PCB101 Bioaccumulation of English Sole 
to the Choice of Modeling Time Steps: (Upper Left) Monthly vs (Lower Left) Weekly, 
Showing Comparable Plateau Concentrations (near 250 ng/g) and Similar Means and 

Standard Deviations (Right Panels). 

Likewise, the FWM proved to be sensitive to biological factors such as the set of food preferences 
consumed by each species. For example, comparing the PCB congener bioaccumulation in 
(softshell) clams between the case where they are assumed to only consume plankton with the case 
where the intake a substantial fraction (40% of their diet) of resuspended bottom sediment, one 
sees the PCB concentrations in the clams are about a factor of 4 greater if they include this much 
sediment intake in their diet, using the concentrations of PCBs in the LDW sediments (Figure 3). 
Note that the standard deviations (std in the table) associated with each modeling calculation imply 
this dietary impact is significant. 
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Figure 3. Comparison Showing Food Web-model-predicted Impacts of Changing Feeding 
Preferences for a Prominent Species, Softshell Clams, Often Eaten by Humans. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Food Web Expectations for LDW Organisms 

Using our most spatially complete data set obtained via passive samplers deployed at 19 stations 
in the LDW (2014), we employed the EFDC model to estimate the resultant surface water 
concentrations (PCB101 in Figure 4). Not surprisingly, the porewater concentrations were higher 
than the surface water levels by about a factor of 5. 

 

 

Figure 4. (Upper) EFDC-based Estimates of Surface Water Concentrations of PCB101 
(ug/L) Using Estimated Bed-water Fluxes and LDW Flushing. (lower) Passive Sampling 
Data for Porewater Concentrations of PCB101 (ug/L); NOTE: 1.00E-4 ug/L = 100 pg/L. 
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With these (and sediment concentration) exposure fields, the FishRand FWM was then employed 
to estimate biota concentrations of several PCB congeners (Figure 5 for #28, #52, #101< #153, an 
#180 PCBs, a trichloro, a tetrachloro, and pentachloro, a hexachloro, and a heptachloro, 
respectively). Given the model used much lower surface water concentrations (about a factor of 5) 
than porewater concentrations, it is not surprising that the model predicts plankton concentrations 
that are much lower than those of benthic fauna (e.g., about 1 ng PCB101/gww for plankton, but 
about 10 to 20 ng PCB101/gww for benthic invertebrates and (softshell) clams). Further, based on 
the food web model, higher trophic level species like shiner surfperch and English sole are 
expected to accumulate PCB101 to levels near 100 ng/gww.  

Figure 5. FishRand Output File Showing Estimated Concentrations of Five PCB 
Congeners in Several Species Living in the LDW in 2014. 

3.3.2 Correspondence between Model Estimates and Measures 

Next, we sought to examine the reasonableness of such food web model estimates. Previous 
investigators had collected shellfish and finfish samples and analyzed those for PCBs. For example, 
in 2004 (softshell) clams were obtained at several stations between river mile 0.2 and 4 from eight 
stations. The PCB contents measured in these were similar to the model output (Table 1).  

Table 1. Measures of Five PCB Congener Concentrations in Clams Collected in 2004 
Versus Values Estimated Using the Food Web Model. 

Clam concentrations (ng/gww) PCB28 PCB52 PCB101 PCB153 PCB180 

Measures in 2004 clam samples 2 ± 3 19 ± 38 11 ± 15 11 ± 11 5 ± 7 

Food web model estimates 5 ± 1 5 ± 1 9 ± 2 18 ± 5 12 ± 3 

 

Lower Food Web Mean 

Concentrations and Standard 

Deviations Weighted by Regional 

Area (ng/g ww) PCB 28 PCB 52 PCB 101 PCB 153 PCB 180

All Regions mean std mean std mean std mean std mean std

Phytoplankton 0.19 0.08 0.32 0.12 0.67 0.22 0.91 0.30 0.52 0.18

Zooplankton 0.24 0.11 0.37 0.15 1.11 0.42 2.28 0.86 2.17 0.82

Benthic Invertebrate 14 4 12 2 22 5 48 15 31 8

Clam 5 1 5 1 9 2 18 5 12 3

Juvenile Fish 8 2 9 2 31 8 77 24 37 10

Slender Crab 13 4 14 3 43 11 107 33 53 14

Dungeness Crab 13 4 16 4 60 17 144 48 47 13

Upper Food Web Concentrations 

(ng/g ww) (Mean, Standard 

Deviation)
PCB 28 PCB 52 PCB 101 PCB 153 PCB 180

mean std mean std mean std mean std mean std

Pacific Staghorn Sculpin 14 1 15 1 55 5 136 14 56 5

Shiner Surfperch 26 3 28 2 87 8 194 17 73 6

English Sole 48 4 49 3 136 9 264 18 83 7
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Likewise, when we contrasted FishRand modeling estimates of PCBs in two common LDW fish 
species, shiner surfperch and starry flounder, we found reported measured total PCB contents were 
statistically indistinguishable from the modeled expectations. This is particularly true when one 
includes both the variations in measured results and the expected impacts of using uncertain inputs 
in the food web model (Figure 6). Hence, these comparisons support the conclusion that the food 
web modeling using FishRand in the LDW is providing reasonably accurate estimates. 

 

Figure 6. Comparisons of Measured Total PCB Concentrations in Two LDW Fish Species, 
Surfperch (Upper) and Flounder (Lower), with FishRand FWM Expectations.  

The bars are show with measurement uncertainty near ±20% and propagated errors in the modeling 
derived from uncertainties in key biological parameters like fish weights and lipid contents (±2σ errors 

plotted). 

3.3.3 Impact of Remediation 

One of the primary motivations for combining the food web modeling tool with the passive 
sampling/mass balance modeling tools, it to explore effectiveness of proposed remedial 
approaches. Here we examine the case in which a site is cleaned up (e.g., capping) so as to remove 
a source/bed flux from a particular subregion of a site like the LDW.  In this context, we can use 
the EFDC tool which has been set up with both site mixing/flushing information AND quantitation 
and spatial knowledge of PCB inputs (e.g., as described in sections 1 and 2 of this report, bed-to-
water column fluxes or estimates of source strengths from the inverse modeling tool) to generate 
the distribution of surface water concentrations for rest of site. Having this "baseline" condition, 
we use this information to drive the initial FishRand model. 
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Subsequently, one may consider the impact of removing any particular PCB source without 
necessarily knowing how this will be done. But this change causes the EFDC model to recalculate 
the distribution of PCBs in the surface water, thereby making a key change to the FishRand inputs. 
Rerunning the model with everything else held the same (e.g., porewater concentrations at the rest 
of the site, feeding preferences...) allows the investigator to evaluate the expected impacts with 
respect to lowering shellfish and finfish tissue concentrations. 

As an example, we have considered a hypothetical case in which a primary source of PCBs 28 and 
52 (i.e., near RM 2) is remediated or a primary source of PCB 101 (i.e., near RM 0.8) is fully 
remediated. With such changes, the EFDC is rerun with these inputs set to zero and a new 
distribution of these PCB congeners in the waters of the LDW is produced. Uploading this new 
concentration information to the FishRand input file, the food web model is rerun and the results 
compared with the case before remediation. 

Focusing on Dungeness crabs, the combination of EFDC modeling tool and the FishRand 
modeling indicate one should expect a decreased PCB52 and PCB 101 concentrations between 10 
to 20% (Figure 7). This, of course, allows the regulator to evaluate the change in risk for people 
eating such crab, and thereby judge the worthiness of the cleanup investment. 

Figure 7. Comparison of Food Web Model Outputs Before Remediating (Lower Right 
Table) and After Remediation (Upper Left Table). 
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3.4 SUMMARY 

While passive samplers may yield very useful insights regarding the spatially heterogeneous 
presence of contaminants of interest like PCBs, their use without a means to synthesize those 
observations via fate/source modeling (i.e., via tools like EFDC or Inverse Models) is limited. This 
is particularly true with respect to assessing the contaminant exposures at sites of interest. 
Moreover, judging the extent of expect changes with time (e.g., monitored natural recovery) or in 
response to employing particular clean up strategies (e.g., capping, dredging, or employing 
activated carbon) requires all three "tools": measures, contaminant fate modeling, and food web 
modeling. 

An important aspect of food web modeling involves the need to capture the certainty with which 
one knows the result. This is particularly important as the inputs to such models are necessarily 
uncertain. All chemical measurements are uncertain. Key properties like food preferences and 
organism sizes within a single population are variable. And, of course, all environmental settings 
are heterogeneous in space and time. Hence, we must seek to understand the impacts of such 
factors on the bottom line: risks to ecosystems and human populations. The FishRand tool is a 
good beginning in this regard! 
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APPENDIX A PE SAMPLER LOCATIONS, DEPLOYMENT TIMES AND 
SITE DEPTHS, IN THE LDW IN THE SUMMER OF 2014. 

Designations for corresponding EFDC cells ae shown. And locations of sites with water samplers 
deployed are identified. (Prendergast and Apell et al. in prep.) 
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APPENDIX B FRACTIONS OF PRC LOSSES MEASURED FROM 
SEDIMENT-SIDE (0-5 CM BELOW INTERFACE) PE 
PASSIVE SAMPLERS DEPLOYED IN THE SUMMER OF 
2014. 

(Prendergast and Apell et al. in prep.) 
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APPENDIX C FRACTIONS OF PRC LOSSES MEASURED FROM 
WATER-SIDE (0-5 CM ABOVE INTERFACE) PE PASSIVE 
SAMPLERS DEPLOYED IN THE SUMMER OF 2014. 

(Prendergast and Apell et al. in prep.) 
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APPENDIX D FRACTIONS OF PRC LOSSES MEASURED FROM PE 
PASSIVE SAMPLERS DEPLOYED 1 METER ABOVE THE 
SEDIMENT-WATER INTERFACE IN THE SUMMER OF 
2014. 

(Prendergast and Apell et al. in prep.) 
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APPENDIX E SEDIMENT-SIDE (0-5 CM BELOW SEDIMENT-WATER 
INTERFACE) FREELY DISSOLVED CONCENTRATIONS 
(PG/L) INFERRED FROM PRC-CORRECTED PE 
SAMPLERS DEPLOYED IN THE SUMMER OF 2014. 

Brackets indicates ±2σ uncertainty found via error propagation. NC means not calculated because 
congener was not detected in the PE. (Prendergast and Apell et al. in prep.) 
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APPENDIX E (cont'd) 
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APPENDIX E (contd.) 
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APPENDIX F BOTTOM WATER (0-5 CM ABOVE SEDIMENT-WATER 
INTERFACE) FREELY DISSOLVED CONCENTRATIONS 
(PG/L) OF 16 PCBS INFERRED FROM PRC-CORRECTED 
PE SAMPLERS DEPLOYED IN THE SUMMER OF 2014. 

Brackets indicates ±2σ uncertainty found via error propagation. NC means not calculated because 
congener was not detected in the PE. (Prendergast and Apell et al. in prep.) 
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APPENDIX F (cont'd) 
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APPENDIX F (cont'd) 
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APPENDIX G WATER COLUMN (1 M ABOVE SEDIMENT-WATER 
INTERFACE) FREELY DISSOLVED CONCENTRATIONS 
(PG/L) OF INDIVIDUAL PCB CONGENERS FOUND 
USING PE PASSIVE SAMPLERS. 

Brackets indicates ±2σ uncertainty. NC means not calculated due to non-detections in the PE 
samplers. (Prendergast and Apell et al. in prep.) 
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APPENDIX H SAMPLER LOCATIONS AND OTHER SITE DETAILS 
FOR FIELD SAMPLING IN SUMMER, 2016. 

(Prendergast). 
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APPENDIX I FRACTIONS OF PRCS LOST DURING THE SUMMER 
2016 DEPLOYMENT OF PE PASSIVE SAMPLERS IN THE 
LDW WATER COLUMN 

(Prendergast). 
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APPENDIX J FREELY-DISSOLVED PRC-CORRECTED 
CONCENTRATIONS OF PCB CONGENERS MEASURED 
USING PE PASSIVE SAMPLERS IN THE WATER 
COLUMN OF THE LDW IN THE SUMMER OF 2016. 

KPEW values are site-specific based on average salinity estimated by EFDC (Appendix H) and an 
average measured temperature of 18.4 °C (Prendergast). 

 

  



 

J-2 

APPENDIX J (cont'd) 
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APPENDIX K FREELY-DISSOLVED PCB CONGENERS MEASURED 
USING “FAST” PE PASSIVE SAMPLERS IN THE WATER 
COLUMN OF HE LDW IN 2019 

Freely-dissolved, PRC-corrected concentrations (pg/L) of three PCB congeners measured using 
PE passive samplers deployed for only 2 days in the water column at 4 depths (usually 2 feet and 
five feet below the water surface 2 feet and 5 feet above the sediment bed) at locations near the 
west bank (W) or east bank (E) aboout every 0.1 mile between river mile 1.4 and river mile 2.5 of 
the LDW in the summer of 2019.  

 

 


	A918lywq9_qnewk7_6d8.tmp
	/teams/DoD_SERDP/3Enterprise/Forms/AllItems.aspx?viewpath=%2Fteams%2FDoD%5FSERDP%2F3Enterprise%2FForms%2FAllItems%2Easpx&newTargetListUrl=%2Fteams%2FDoD%5FSERDP%2F3Enterprise&id=%2Fteams%2FDoD%5FSERDP%2F3Enterprise%2FDocuments%2FReport%20Covers&viewid=6cdde932%2Dd8c3%2D4769%2D9d86%2D07be87e05ccf
	sharepoint.com
	https://noblisinc.sharepoint.com/teams/DoD_SERDP/3Enterprise/Forms/AllItems.aspx?viewpath=%2Fteams%2FDoD%5FSERDP%2F3Enterprise%2FForms%2FAllItems%2Easpx&newTargetListUrl=%2Fteams%2FDoD%5FSERDP%2F3Enterprise&id=%2Fteams%2FDoD%5FSERDP%2F3Enterprise%2FDocuments%2FReport%20Covers&viewid=6cdde932%2Dd8c3%2D4769%2D9d86%2D07be87e05ccf






