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1.0 SUMMARY

Data-efficient machine learning (DEML) is critical to AF/DoD operations for the following
reasons. First, training machine learning algorithms generally requires a large and completely
labeled training dataset. Human labeling of raw data is an expensive and time-consuming process,
especially with a limited pool of expert analysts. Therefore, machine learning algorithms must
produce accurate predictive models from limited labeled training data. Moreover, mission
environments and objectives can be varied and rapidly changing, and so machine learning models
must be quickly adaptable to the situation at hand. The quality of the raw data available to a
machine learning system (and to human analysts) is also often unpredictable. It may often happen
that not all of the desired features for making predictions and decisions are available. Therefore,
machine learning algorithms must be robust to missing or partially unobserved data. The objective
of this effort is to develop new tools for DEML that address these challenges.

2.0 INTRODUCTION

The scope of this effort is to create new tools for DEML in the following key areas: 1) develop
data-efficient active learning algorithms for classification and search problems involving rich and
high-dimensional feature spaces; 2) develop new interactive tools that allow human analysts to
quickly and accurately label large datasets; 3) develop a new framework for enriched human an-
notation, where explanations and feature relevance feedback are provided in addition to labels; 4)
prototype algorithms in software. These goals will require basic mathematical research and analy-
sis of DEML problems, algorithmic development and prototyping, and testing and experimentation
with real and synthetic datasets.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

State-of-the-art ML methods can be extremely powerful, given a sufficiently large amount of la-
beled training data. However, in many applications it is prohibitive, costly, or simply impossible
(e.g., due to time constraints) to generate a large training dataset. For example, the best image
classification algorithms are trained on the Imagenet dataset http://www.image-net.org, which
consists of over 10 million hand-annotated images that required tens of thousands of hours of
human work, if not more. Enormous datasets like this are key to the success state-of-the-art
methods, but the very same methods can perform arbitrarily poorly if trained with a relatively
small dataset. There is a great need for new mathematical approaches to the design of ML
algorithms that can provide good performance from small training datasets. Addressing this
challenge is the focus of our effort.

End Results and Deliverables. Design DEML algorithms. Mathematical analyze and assess per-
formance of DEML algorithms. Prototype DEML algorithm in software.

Software Requirements. Engineer software prototypes in open-source software systems, Python
and NEXT (nextml.org).

Testing and Demonstrations. Test software and algorithms with real and synthetic datasets. Con-

duct a demonstration of the NEXT in order to verify the results of this effort.

Approved for Public Release; Distribution Unlimited.
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4.0 RESULTS AND DISCUSSION

The project produces the following results; more detailed technical descriptions appear in the
referenced papers. The papers included in the Appendix to this report.

1. Developed data-efficient active learning algorithms for classification and search problems
involving rich and high-dimensional feature spaces. Generating labeled training datasets has
become a major bottleneck in Machine Learning (ML) pipelines. Active ML aims to address this
issue by designing learning algorithms that automatically and adaptively select the most
informative examples for labeling so that human time is not wasted labeling irrelevant, redundant,
or trivial examples. This project developed a new approach to active ML with nonparametric or
overparameterized models such as kernel methods and neural networks. In the context of binary
classification, the new approach is shown to possess a variety of desirable properties that allow
active learning algorithms to automatically and efficiently identify decision boundaries and data
clusters. This work was published in the papers

Karzand, Mina, and Robert D. Nowak. "Maximin active learning in overparameterized model
classes." IEEE Journal on Selected Areas in Information Theory 1, no. 1 (2020): 167-177.

Karzand, Mina, and Robert D. Nowak. "Maximin Active Learning with Data-Dependent
Norms." In 2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 871-878. IEEE, 2019.

2. Developed new interactive tools that allow human analysts to quickly and accurately label large
datasets. This work focused on best-arm identification in multi-armed bandits with bounded
rewards. We developed an algorithm that is a fusion of lil-UCB and KL-LUCB, offering the best
qualities of the two algorithms in one method. This is achieved by proving a novel anytime
confidence bound for the mean of bounded distributions, which is the analogue of the LIL-type
bounds recently developed for sub-Gaussian distributions. We corroborated our theoretical results
with numerical experiments based on real data from human-machine interactions. This work was
reported in the publication

Tanczos, Ervin, Robert Nowak, and Bob Mankoff. "A KL-LUCB bandit algorithm for large-
scale crowdsourcing." In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 5896-5905. 2017.

3. Developed a new framework for enriched human annotation, where explanations and feature
relevance feedback are provided in addition to labels. This work developed a new form of the
linear bandit problem in which the algorithm receives the usual stochastic rewards as well as
stochastic feedback about which features are relevant to the rewards, the latter feedback being the
novel aspect. The focus was the development of new theory and algorithms for linear bandits with
feature feedback. We show that linear bandits with feature feedback can achieve regret over time
horizon T that scales like k sqrt(T), without prior knowledge of which features are relevant nor the
number k of relevant features. In comparison, the regret of traditional linear bandits is d sqrt(T),
where d is the total number of (relevant and irrelevant) features, so the improvement can be
dramatic if k <« d. The computational complexity of the new algorithm is proportional to k rather
than d, making it much more suitable for real-world applications compared to traditional linear

Approved for Public Release; Distribution Unlimited.
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bandits. We demonstrate the performance of the new algorithm with synthetic and real human-
labeled data. This work was reported in the paper

Oswal, U., Bhargava, A., & Nowak, R. (2020, April). Linear bandits with feature feedback.
In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5331-
5338).

4. Extended the capabilities of the NEXT system for interactive learning (nextml.org) to
incorporate the new tools and algorithms proposed above. In addition, a new system called Salmon
(https://docs.stsievert.com/salmon/) was developed that allows for streamlined, large-scale
interactive learning applications.

5. We investigated interactive learning in the realizable setting and developed a general
framework to handle problems ranging from best arm identification to active classification. We
begin our investigation with the observation that agnostic algorithms cannot be minimax-optimal
in the realizable setting. Hence, we design novel computationally efficient algorithms for the
realizable setting that match the minimax lower bound up to logarithmic factors and are general-
purpose, accommodating a wide variety of function classes including kernel methods, H{6}1der
smooth functions, and convex functions. The sample complexities of our algorithms can be
quantified in terms of well-known quantities like the extended teaching dimension and haystack
dimension. However, unlike algorithms based directly on those combinatorial quantities, our
algorithms are computationally efficient. To achieve computational efficiency, our algorithms
sample from the version space using Monte Carlo "hit-and-run" algorithms instead of
maintaining the version space explicitly. Our approach has two key strengths. First, it is simple,
consisting of two unifying, greedy algorithms. Second, our algorithms have the capability to
seamlessly leverage prior knowledge that is often available and useful in practice. In addition to
our new theoretical results, we demonstrate empirically that our algorithms are competitive with
Gaussian process UCB methods. This work was published in the paper

Katz-Samuels, Julian, Blake Mason, Kevin G. Jamieson, and Rob Nowak. "Practical, Provably-
Correct Interactive Learning in the Realizable Setting: The Power of True Believers." Advances
in Neural Information Processing Systems 34 (2021).

6. We considered the problem of learning the nearest neighbor graph of a dataset of n items. The
metric is unknown, but we can query an oracle to obtain a noisy estimate of the distance between
any pair of items. This framework applies to problem domains where one wants to learn people's
preferences from responses commonly modeled as noisy distance judgments. In this paper, we
propose an active algorithm to find the graph with high probability and analyze its query
complexity. In contrast to existing work that forces Euclidean structure, our method is valid for
general metrics, assuming only symmetry and the triangle inequality. Furthermore, we
demonstrate efficiency of our method empirically and theoretically, needing only O(n
log(n)Delta™-2) queries in favorable settings, where Delta”-2 accounts for the effect of noise.
Using crowd-sourced data collected for a subset of the UT Zappos50K dataset, we apply our
algorithm to learn which shoes people believe are most similar and show that it beats both an
active baseline and ordinal embedding. This work was published in the paper Mason, Blake,
Lalit Jain, and Robert Nowak. "Learning Nearest Neighbor Graphs from Noisy Distance
Samples." Advances in neural information processing systems 1, no. 1 (2019).

Approved for Public Release; Distribution Unlimited.
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7. We studied the problem of adaptively sampling from K distributions (arms) in order to
identify the largest gap between any two adjacent means. We call this the MaxGap-bandit
problem. This problem arises naturally in approximate ranking, noisy sorting, outlier detection,
and top-arm identification in bandits. The key novelty of the MaxGap-bandit problem is that it
aims to adaptively determine the natural partitioning of the distributions into a subset with larger
means and a subset with smaller means, where the split is determined by the largest gap rather
than a pre-specified rank or threshold. Estimating an arm's gap requires sampling its neighboring
arms in addition to itself, and this dependence results in a novel hardness parameter that
characterizes the sample complexity of the problem. We propose elimination and UCB-style
algorithms and show that they are minimax optimal. Our experiments show that the UCB-style
algorithms require 6-8x fewer samples than non-adaptive sampling to achieve the same error.
These results were published in the paper

Katariya, Sumeet, Ardhendu Tripathy, and Robert Nowak. "MaxGap Bandit: Adaptive
Algorithms for Approximate Ranking." Advances in Neural Information Processing Systems 32
(2019): 11047-11057.

8. We developed new concentration inequalities for the Kullback-Leibler (KL) divergence
between the empirical distribution and the true distribution. Applying a recursion technique, we
improve over the method of types bound uniformly in all regimes of sample size n and alphabet
size k, and the improvement becomes more significant when k is large. We discuss the
applications of our results in obtaining tighter concentration inequalities for L1 deviations of the
empirical distribution from the true distribution, and the difference between concentration around
the expectation or zero. We also obtain asymptotically tight bounds on the variance of the KL
divergence between the empirical and true distribution, and demonstrate their quantitatively
different behaviors between small and large sample sizes compared to the alphabet size. This
work was published in the paper

Mardia, Jay, Jiantao Jiao, Ervin Tanczos, Robert D. Nowak, and Tsachy Weissman.
"Concentration inequalities for the empirical distribution of discrete distributions: beyond the
method of types." Information and Inference: A Journal of the IMA 9, no. 4 (2020): 813-850.

9. Visual representations are prevalent in DoD applications and STEM instruction. To benefit
from visuals, students need representational competencies that enable them to see meaningful
information. Most research has focused on explicit conceptual representational competencies, but
implicit perceptual competencies might also allow students to efficiently see meaningful
information in visuals. Most common methods to assess students’ representational competencies
rely on verbal explanations or assume explicit attention. However, because perceptual
competencies are implicit and not necessarily verbally accessible, these methods are ill-equipped
to assess them. We address these shortcomings with a method that draws on similarity learning, a
machine learning technique that detects visual features that account for participants’ responses to
triplet comparisons of visuals. In Experiment 1, 614 chemistry students judged the similarity of
Lewis structures and in Experiment 2, 489 students judged the similarity of ball-and-stick
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models. Our results showed that our method can detect visual features that drive students’
perception and suggested that students’ conceptual knowledge about molecules informed
perceptual competencies through top-down processes. Furthermore, Experiment 2 tested whether
we can improve the efficiency of the method with active sampling. Results showed that random
sampling yielded higher accuracy than active sampling for small sample sizes. Together, the
experiments provide the first method to assess students’ perceptual competencies implicitly,
without requiring verbalization or assuming explicit visual attention. These findings have
implications for the design of instructional interventions that help students acquire perceptual
representational competencies. This work was published in the paper

Mason, Blake, Martina A. Rau, and Robert Nowak. "Cognitive Task Analysis for Implicit
Knowledge About Visual Representations With Similarity Learning Methods." Cognitive science
43, n0.9 (2019): e12744.

10. Trained a graduate student, one undergraduate students, and four postdoctoral researchers in
advanced AF/DoD-relevant machine learning.

5.0 CONCULSIONS

The research results and findings in this project demonstrate the potential of large-scale interactive
machine learning algorithms and systems for AF/DoD applications. The question of designing
active learning algorithms in the regime of nonparametric and overparameterized models become
more essential as we look at larger models which require bigger training sets. To reduce the human
cost of labeling all samples, we can use a pool-based active learning algorithm to avoid labeling
non-informative examples. An important direction for future work is generalization of the
algorithms developed in this project to multi-class settings and regression problems. The
computational complexity of some of the methods can also be a serious bottleneck in applications
with bigger datasets and should be addressed in future.
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APPENDIX — PUBLICATIONS

MaxiMin Active Learning in Overparameterized
Model Classes

Mina Karzand"™ and Robert D. Nowak

Abstraci—Generating labeled training dataseis has become a
major botileneck in Machine Learming (ML) pipelines. Aciive
ML aims o address this issue by designing learning alporithms
that automatically and adaptively select the most informative
examples for labeling so that human time is not wasted labeling
irrelevant, redundant, or trivial examples. This paper proposes a
new approach to active ML with nonparameiric or overparame-
terized models such as kernel methods and newral networks. In
ithe context of bimary classification, the new approach & shown o
possess & variely of desirable properties that allow active learn-
ing alporithms o aniomatically and efficiently identify decision
houndaries and data clusters.

Inder Terms—Active learning, overparameterized learning,
newral networks, reproducing Kemel Hilberl spaces, pool-based
learning.

[. INTRODUCTION

HE FIELD} of Machine Leaming (ML) has advanced

considerably in recent vears, but mostly in well-defined
domains using huge amounts of human-labeled training data.
Machines can recognize objects in images and translate text.
bui they must be trained with more images and text than a
person can see in nearly a lifetime. The computational com-
plexity of training has been offset by recent technological
advances, but the cost of training data is measured in lerms
of the human effort in labeling data. People are not getting
faster nor cheaper, so generafing labeled training dataseis has
become a major boitleneck in ML pipelines. Active ML aims
io address this issue by designing leaming algonthms that
automatically and adapiively select the most informative exam-
ples for labeling so that human time 15 not wasied labeling
irrelevant, redundant, or trivial examples. This paper explores
active ML with nonparameiric or overparameierized models
such as kernel methods and neuwral networks.

Digep neural networks {DMNMNs) have revolotionized machine
learning  applications, and theoreticiane have strugeled
o explain their surpising properties. DMNMNs are  highly
overparameierized and often fit perfectly to data, wvei

Manuscript received Oclober 16, 2019, revised April 23, 2020, accepled
April 26, M. Dete of publicalion April 30, 2000; daie of comrenl ver-
gon June &, D020. Thiz work wax supporisd in part by the Air Foroe
Machine Leoming Center of Excellence under Gront FADSS0CIE- 10166,
Fariz of this sriicle were presenied o the 5Tth Annmal Allerion Conference
on Communication, Contral, and Compating, 2019, {Correrponding auffor:
Mina Kargaed |

Mino Kmrrend iz with the Wisconsin Institule of Discovery, University of
Wisconsin-Medison, Medison, W1 53706 USA (e-medl: karcand @wisc.sdo).

Hobent I MNowak is with the Depamment of Electrical and Compuier
Enginzering. University of Wisconsin-Madison, Madison, W1 53706 U5A
(=-mail: mdnowsk @ wisc.edu).

Digilal Object [dentifier 1001 10VISATT 2020, 2291518

remarkably the learned models generalize well to new data.
A mathematical understanding of this phenomenom is begin-
ning to emerge [1]. 121, [3], 141, [5]. [6]. [7]. [E]. This work
suggests that among all the networks that could be fit to the
training data, the leaming algorithms wsed in Aiting favor
networks with smaller weighis, providing a sort of implicit
regularization. With this in mind, researchers have shown that
shallow (but wide) networks and classical kernel methods fit to
the data but regulanzed to have small weights (e_g., minimuom
norm fit i data) can generalize well [2], [8], [9], [10].

[espite the recent success and new understanding of these
systems, it still s a fact that leaming good nmeural nepaork
models can require an enormows number of labeled data. The
cost of obtaining labels can be prohibitive in many applica-
tions. This has prompled researchers o investigate active ML
for kernel methods and newral networks [11], [12], [13], [14],
[15]. [16]). Mone of this work, however, directly addresses over-
parameterized and interpolating regime, which is the focus
in this paper. Active ML algorithms have access to a large
bast unlabeled dataset of examples and sequentially select the
most “informative” examples for labeling [17], [18] . This can
reduce the total number of labeled examples needed to leam
an accurate model.

Broadly speaking, active ML algorithms adaptively select
examples for labeling based on two general strategies [19].
The first is to select examples that mle-owt as many {incom-
patibde) classifiers as possible at each step. In effect. this
leads to algorithmes that tend to label examples near decision
boundaries. The second strategy involves discovering cluster
structure in unlabeled data and labeling representative exam-
ples from each cluster. We show that our new MaxiMin active
leaming approach apiomatically exploits both these strategies,
85 depicied in Figure 1.

This paper builds on & new framework fior active learning
in the overparameterized and interpolationg regime, focus-
ing on kemel methods and two-layer newral networks in the
binary classification setting. The approach, called MaxiMin
Active Legrming, 15 based on mininum nomm interpolat-
ing models. Bowughly speaking, at each step of the leamn-
ing process the maximin criterion reguesis a label for the
ecxample that is most difficult o interpolate. A minimuom
norm interpolating model 15 constructed for each possible
example and the one vielding the largest norm indicates
which example to label next. The mtionale for the max-
imin criterion is that labeling the most challenging examples
first may eliminate the need to label many of the other
examples.
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Fig. 1. MexiMin Active Leaming striegically selects cxamples for Iaheling
{red poinis). (a) reduces io binary search in simple 1-d threshold problem
seiting: (b} laheling is focused near decision boundery in: multidimensional
seiting: (o) suiomatically discovers closiers and labels representative examples
from =ach.

The maximin selection criterion is studied through experi-
ments and mathematical analysis. We prove that the criterion
has a number of desirehle properties:

e It tends to label examples near the cument (estimated)
decision boundary and close to oppositely labeled exam-
ples, allowing the active leaming alporithm to focus on
leaming decision boundaries.

It reduces to optimal bisection in the one-dimensional
linear classifier setting.

A data-based form of the criterion also provably dis-
covers clusters and also automatically generates labeled
coverings of the dataset

Experimentally, we show that these propenies generalize in
several ways. For example, we find that in multiple dimensions
the maximin criterion leads o a multidimensional bisection-
like process that automatically finds a portion of the decision
boundary and then locally explores to efficiently identify
the complete boundary, We also show that MaxiMin Active
Leaming can learn hand-written digit classifiers with far fewer
labeled examples than traditional passive leaming based on
labeling a randomly selected subset of examples.

1. A NEW ACTIVE LEARKING CRITERION

At each iteration of the active leaming algorithm, looking at
the currently labeled set of samples, a new unlabeled point is
selected to be labeled. The criterion we are proposing o pick
the samples to be labeled is based on a ‘maximin’ operator. We
will deseribe the critericn in its most general form along with
the intuition behind this choice of criterion. In the remainder
of the paper, we will go through some theoretical results about
the properties of varations of this criterion in various setups
along with some additional descriptive numerical evaluations
and simulations.

A. Nonparametric Pool-Based Active Learning

At each time step, the algorithm has access to a pool of
labeled samples and a set of unlabaled samples. In other
words, we have a parially labeled training sef. Let & =
[fxp. %), - o, (xp.¥p)} be the set of labeled examples so far.
We sssume 1; & A where A is the inputffeature space and
binary valued labels 3 = [—1. +1]. Lat I © A be the s=t of
unlabeled samples.

In the interpolating repime, the poal is fo correctly label
all the points in I so that the training error is zen: Passive
l=arning generally requires labeling every point in . Active
leaming sequentially selects points in I for labeling with the
aim of leamning a correct classifier without necessarily labeling
all of Id. Our setting can be viewed as an instance of paosi-
based active leaming.

At each iteration, one unlabeled sample, 5* & I is selected,
labeled and added to the pool of labeled samples. The selec-
tion process is designed to pick the samples which are most
informative upon being labeled. The proposed notion of score
is the measure of informativencss of ecach sample u & I at
each time: the score of each unlabaled sample s computed,
and the sample with the largest score is selected to be labeled.

w* = argmax, ;50008 (u). i1}

If there are multiple maximizers, then one is sclected wni-
formly at random. Mote that for any unlabeled sample & = I,
the value of 3cor@(y) depends implicitly on the set of curment]ly
labeled points, £, That is, information gained by labeling w
depends on the current knowledge of the leamer. To define
our proposed notion of Score, we define minimum nomm
interpolating function and introduce some nodabions next.

8. Minimuem Norm Inferpodating Function

Let F be a class of functions mapping X to B, where X
i the input/feature space,. We assume the class F is rich
enough to interpolate the training data. For example, F could
be a nonparametric infinite dimensional Reproducing Kernel
Hilbert Space (RKHS) or an overparameterized neural network
representation.

Given the set of labeled samples, £, and a class of functions
F.leif = F be the interpolating function such that fix;) = ¥;
for all (x;. vi) = L. Note that there may be many functions that
interpolate a discrete set of points such as £, Among these,
we choose [ 1o be the minimum norm interpolator:

Fix) = agming.r [glF

plrg) = ¥ for all (x.¥) e £. (2

Clearly, the definition of § depends on the set of currently
labeled samples £ and the function norm ||-||r. although we
omit these dependencies for ease of noation. The choice of F
and the norm ||-| & is application dependent. In this paper, we
focus on (1) function classes represented by an overparame-
terized neural network representation with the £* norm of the
weight vectors and (2) reproducing kernel Hilbert spaces with
the corresponding Hilbert nomm.

For unlabeled points w = I and £ & [—1. +1}. define 7 (x)
iz the minimum norm interpolating function based on current
sei of labeled samples £ and the point u = I with label £:

5L

fiix) = argming. r [|gllF
st opixg) =¥, forall (g, v) el

i) = £ i

We use this definition in the next subsection to define the
notion of SCOra.
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. Definition af Proposed Nolion of ScOra

Roughly speaking, we want our selection criterion to pri-
ogitize labeling the most “informative™ examples. Since the
ultimate goal is to comectly label every example in [, we
design SCOM(u) to measure the how hard it is o interpolate
after adding o to the set of labeled points. The intuition is that
attacking the most challenging points in the input space first
may eliminate the need o labe] other “easier’ examples later.

Mote thai we necd to compuie SCOM ) withoui kmow-
ing the label of v To do so, we come up with an estimate
of label of uw, denoted by £lu) & {—1.41} and compute
scofe|u) assuming that upon labeling, w will be labeled £{u).
We propose the following criterion for choosing £(u):

£(u) *= argmingc;_1 1, UF (X1F- )

(perating in the interpolating regime, we estimate the label of
any unlabeled sample, w, 1o be the one that yields the minimom
norm interpolant (i, the “smoother™ of the two interpolants
among the two possible functions 7 (x) and ™ {x)).

Define

T = () (5)

to be the interpolating function after adding the sample o with
the label £(u), defined in (4).
We propose two notions of SC0M8. For o = U, define

scorer (u) = | i)
sCOe; () = |Fix) — x|, (7

where |- |x is the norm associated the function space F. The
function f is the minimum norm interpolator of the labeled
examples in £ (defined in (2)), and {x) is defined {5) as the
minimum nomm interpolator after adding @ with the estimated
label £{u) to the set of labeled points. Also, define

12l = J‘,; e dPy (o), (8
where Py is the distribution of x. In practice, Py is the empir-
ical distribution of I, We refer to the (6) as the funciion rorm
score and (7) as the data-based norm score.

The distinction between the two definitions of the 3Core
function is as follows. Scoring unlabeled points according to
the definition SCOM@x prictonizes labeling the examples which
result in minimum norm interpolating functions with larsest
norm. Since the nom of the function can be associated with
its smoothness, roughly speaking, this means that this crite-
rion picks the points which give the least smooth interpolating
functions. However, 30O r is insensitive to the distribution
of data. The data-based 300085, in contrast, is sensitive to
the distnbution of the data. Measuring the difference between

| perationally, 1o compuis the dats-based norm of sny function, the algo-
rithm mses the probehility mess function of 524 of unlahelsd points &= o proxy
for the input prohebility density funcion cwer the festure spece X. In par-
ticuler, the algorithm approximetes gl by the of the function over
the set of enlabeled points: gl = E“._,I. |piesl=. High density of =t
of unlebeled points end some mild regularity conditions guarantse thet this is
o gond spproaimation. Throughout the paper, we e (8) o prove theoretical
salements end ils approximetion in the nomenical Smulatons.

the new interpolation /@ and the previous one makes this also
sensitive 1o the structure of the function class.

With these definitions in place, we state the MaxiMin Active
Learning criterion as follows. Given labeled data £, the next
example u* & I to label is selected according to

i =HE1'=I}NT-:.1E'}UIIFI Wi = I

u* = mrg max SCOTE|u)
ucid

with either SCorar or SoOfao.

[T, MAXIMIN ACTIVE LEARNING WITH
MEURAL NETWORKS

A, therparameterized Newral Networks and Interpolation

Mewral networks are often highly overparameterized and
exactly At to training data, vet remarkably the learned models
generalize well to new data. A mathematical understanding of
thiz phenomenom is beginning to emerge [1], [2]. [3], [4]. [5].
[&]. [7]. [8]. This work suggesis that among all the networks
that could be fit to the training data, the learning algorithms
used in training favor networks with smaller weights, pro-
viding a sort of implicit regularization. 'With this in mind,
resgarchers have shown that even shallow networks and clas-
sical kernel methods fit to the data but regularized to have
small weights {e.g.. minimom norm fit to data) can generalize
well [2]. [8]. [9], [10]. The functional mappings generated by
wide, two-layer neural networks with Rectified Linear Uit
(Rel. Uy activation functions were studied in [30]. It s shown
that exactly fitting such networks (o training data subject to
minimizing the £2-norm of the network weights results in a
linzar spline interpolation. This result was extended to a broad
class of interpolating splines by appropriate choices of acti-
vation functions [21]. Our analysis of the MaxiMin active
learning with neural networks will leverage these connections.

B, Newral Network Regularization
It has been long understood that the size of newral network
weights, rather than simply the number of weightsineurons,
characterizes the complexity of newral metworks [22]. Here
we focus on two-layer newral networks with RellU activation
functions in the hidden layer If x = R is input o the network,
then the owiput s computed by the function
N
fubelx) =} vao (Upx +be) +c.

=]

()

where (-} max|0, -} is the RelLU activation, w =
{v,,.n,]f_l are the “weights” of the network, and & 1= {bg}
and ¢ are constant “bias™ terms. The “norm”™ of fe b c 15 defined
8 |[fepcll = lwllz. the f3-nom of the vector of network
weights. We wse the term norm in quotes becouse techni-
cally the weight norm does not comespond to a trug norm
on the function fp . since. for example. constant functions
Jo b = ¢ have ||w]z = 0. From now on we will drop the sub-
scripts and just write f for ease of notation. Let {[,r.'.}'j}]ﬂl b
a zet of training data. The minimuem “nomm’™ e
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interpodation of these data is the solution to the optimization
l'I']'i.I:I Jw ]z subject to Fig)l =vi, i=1, ..., M.

A solution exists if the number of newrons N is sufficiently
large (see [23, Th. 5105

In Section ¥V we explore the behavior of MaxiMin active
leaming through numerncal experiments using both the func-
tion “norm” score and the data-based norm score. In all our
experiments and theory, we assume the binary classification
setting where ¥; = %1. Broadly speaking, we observe the
following behaviors.

« With the function “nporm” score the MaxiMin active
learning alporithm tends 1o sample aggressively in the
vicinity of the boundary, prefering to gather new labels
between the closest oppositely labeled examples.

# The data-based nonm score is sensitive to the distribu-
tion of the data It strikes a balance between exploiting
regions between oppositely labeled examples {as in the
function-based case) and exploring regions further away
from labeled examples. Thus we see evidence that the
data-based norm can effectively seck out the decision
boundary and explore data clusters.

These behavioes are supported by a formal analysis of
MaxiMin active learning in one dimension, discussed next.

C. MaaMin Active Learning in One-Dimension

Our analysis of MaxiMin active leaming with newral
networks will focus on the behavior in one-dimension.
We show that MaxiMin active leaming with a two-layer
RelU netwok recovers optimal bisection leaming  strate-
gies. The following charactenzation of minimum “‘nom™
ncural  network  interpolation in one-dimension  follows
from [20]. [21] (see [21, Th 4.4 and Proposition &.1]).

Theorem I Let f - B — B be a two-layer newral network
with Rel.l activation functions and & hidden nodes as in (9).
Lt [{J,-,_ﬁ-]}ﬁl be a set of training data. If &N = M, then a
solution to the optimization

rrEnllu-ll: subject o fixy=w., i=1..... M

is a2 minimal knot lincar spline interpolation of the points
(G5, ¥)1M,.

In our analysis, we exploit the equivalence betwesn mini-
mum “norm” neural networks and linear splines. Specifically.
a solution to the optimization is an interpolating function that
is linzar between each pair of neighbonng points. This enswres
that given a pair of neighboring labeled points x; and xz and
any unlabeled point 11 = & < x2, adding & o the set of labeled
poinis can only potentially change the interpolating function
between x) and xp. To eliminate uncerainty in the bound-
ary conditions of the interpolation, we assume that the newral
network is initialized by labeling the lefimost and rightmost
poinis in the dataset and forced to have a constant extension
to the left and right of these points (this can be accomplished
by adding two anificial poinis to the left and right with the
same labels as the true endpoints).

The main message of our analvsis is that Maxibin active
learning with two-layer Rel.U networks recovers optimal

bisection {binary search) in one-dimension. This is summa-
rized by the next corollary which follows in a straightforward
fashion from Theorems 2 and 3.

Corollary I: Consider N points uniformly distributed in the
interval [0, 1] labeled according to a k-piecewise constant
function f so that vy = fixg) € [—-L+1}. i = L,.....N,
and length of the pieces are &{1/K). Then afier labeling
Ok log N} examples, the MaxiMin active learning with a two-
layer Rel.U network comectly labels all N examples {ie., the
training error is zemo).

The corollary follows from the fact that the MaxiMin criteria
(both function norm and data-based norm) selects the next
example to label at the midpoint between neighboring and
oppositely labeled examples (ie., at a bisection point). This is
characterized in the next two theorems. First we consider the
function “nomm”™ criterion. The proof of the following theorem
appears in Appendix A.l.

Theorem 2: Let £ be a set of labeled examples and let o
be an unlabeled example. Let f be the minimum “norm™
interpolator of £U{u, 41) and let  be the minimum “nom™
interpolator of £ {w, —1). Define the score of an unlabeled
example u as scorer(u) = min{LfEN, 2N} where I =
Jw ]z, the neural network weight nonm. Then, the selection
criterion based on SCOMAr has the following propertics

1y Let x1 and 12 be two oppositely labeled neighboring

points in £, ie., no other points between xp and 13 have
been labeled and vy # w. Then for all x; = & = 13,
sCOrey (=) = SCOMey(u).

2y Let x; = xp and x3 = xy be two pairs of oppositely

labeled neighboring points (ie., ¥p # ¥2 and ¥3 # ¥y)
such that xz — x) > x4 — x3. Then,

SCOMgr (#) = SCOfer (‘MTI"')

3 Let x5 and x; be two identically labeled neighboring
points in L, ie., ¥5 = vs. Then for all x5 < u < x5, the
function SCOrey(4) is constant.

4y For any pair of neighboring oppositely labeled points
x1 and x7, any pair of neighboring identically labeled
poinis x5 and xg, any x; <= o < xp and any 15 <= v < I,
we have

SCOMe (V) < SCorax(u).

MNow we turn to the data-based nomm. Here we observe the
effect of the data distmbution on the bisection properties. The
properties mirmor those in Theorem 2 except in the case of
the second property. The data-based nomm criterion tends o
sample in the larpest (most data-massive) interval between
oppositely labeled points, whereas the function-based norm
criterion favors points in the smallest interval.

Theorem 3; Let the distribution P(X) be uniform over an
interval. Let £ be a set of labeled examples and let u be
an unlabeled example. Let £ be the minimum “norm™ inter-
polator of £ U (w, +1) and let  be the minimum “norm™
interpolator of £ W (w, —1) and let ™ = ang,cype o) 21
consistent with nodations in (3) and (5). Then SCOMRen(u) =
T x) — Fix)|  dPyix). where [ is the minimum “nporm”
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interpodator based on the labeled data £ Then, the selection
criterion based on SCOMen has the following properties.

13 Let x; and x; be two oppositely labeled neighboring
points in £, ie. ¥ # ¥ Then for all 1 = & < o
SCofan (25=) > SCOMn(u).

Let xp = x; and 13 < xy be two pairs of oppositely
labeled neighboring labeled points (ie. ¥ # ¥2 and
¥ # ¥4) such that x2 — 11 > x4 — x3. If the unlabeled
points are uniformly distributed in each inkerval and the
number of points is in (x).x7) is less than the number

2

in {x4, 13}, then
smrau('n +n) > mmﬂ(n:n)_
33 Let x5 and xg be two identically labeled neighboring

points in £, e, v = vg. Then for all x5 < v < x5, we
harve SCOMEL(V) =

For any pair of neighboring oppositely labeled points
x; and x7, anv pair of neighboring identically labeled
poinis x5 and xg. any 1) < 0 < and any x5 < v X,
we have

4

SCOMEL (V) < SCOM8n ().
The proof appears in Appendix A2

IV, INTERPOLATING ACTIVE LEARNERS IN AN RKHS

In this section. we will focus on minimum nomm inter-
polating functions in a Reproducing Kemnel Hilbert Space
(REKHS). We present theoretical propertics for gencral RKHS
settings, detailed analytical results in the one-dimensional sst-
ting, and numerical studics in multiple dimensions. Broadly
speaking, we establish the following properies: the proposed
score functions

» tend to select examples near the decision boundary of f,
the current interpolator;

« the score is largest for unlabeled examples near the deci-
sion boundary and close to oppositely labeled examples, in
effect searching for the boundary in the most likely region of
the inpul space;

» in one dimension the interpolating active learner coincides
with an optimal binary search procedure;

» using data-hased function norms, rather than the RKHS
norm, the interpolating active leamer execules a tradeoff
between sampling near the current decision boundary and sam-
pling in regions far away from cumrently labeled examples, thus
exploiting cluster stmscture in the data.

A. Kernel Methods

A Hilbert space H is associated with an inner product:
if. gy for f, g & H. This induces a norm defined by |flly =
o - Fig- A symmetric bivariate function X : ¥ = X' — Ris
positive semidefinite if for all 7 > 1, and points )} ;. the
matrix K with clement Kij = Kixg, x;7) is positive semidefi-
nite (PSIY). These functions are called PSD kemel functions.
A PSD kernel constructs a Hilbert space, W of functions on
F:& — B Forany x € & and any f & H. the function

Ki-.x) & H and {f, K{-, x)}y =/ (x). Throughouwt this section,
we assume Kir, x) = 1.

For the set of labeled samples © = [{x.vqh ..., (o ¥ed}
with w; = [—1, +1}. let the function f(r) be decomposed as

L
fixy =3 aikxi, 1)
T=l

with o =Ky, (1)
where K = [Kijlij is the L by L matrix such that K;; =
kix;, ;) and ¥ = [¥1.....% ). Using reproducible kemnels
implies that f(x}) & M for the @ RKHS ‘N. Then, fix)
defined above is the minimum Hilberd norm interpolating func-
tion defined in (2). Using the property {K(xg -), K(x.-)) =
Kixi, 1), we have

2 T T -1
IFixily =" K=y K ¥

For w e I and £ £ |1, +1}, the minimum nom interpo-
lating unction ff'(x), defined in (3) (based on currently labeled
samples £ and sample & with label £) is derived similarly:

L
fim =Y Fikixi, x) + Gre1kin, x)
=1

with & =&, ¥, (11)

kixy.
L i ]
I p| ™= : LA ]
& Kixy., u)
and b = K(u, u). (1)

Throughout this paper, we use kernel such that Kir, x) = 1
forall x 2 X

whene

-

K; =

B. Properties of General Kernels for Active Leaming

We first show that using kemnel based function spaces for
interpolation, £{u) defined in (4) coincides with the sign of
value of curent interpolator at w.

Proposition - For we A and £ £ |—, 4], define fix) and
Ji'(x) according to (2) and (3) in Section I1. Then, £(u) defined
in (4) satisfies

_ | i fe =0
B =1_1 iffqu) < 0.
Proof: Let ¥ = Di...vd)’, a0 = [Kir,w),

___,K{_r,,_u]]T and b = K w) =_I. Let K be the kemel
matrix for the elements in £ and K, be the kernel matrix
for the elements in £ U [u), as defined in (12). Then, for
£el-1,41)
1 o, . ] -1
Vol =¥ K, 7 =" (K—a,a]
- ~1
% y—2€ ¥ (K—ay, ::-] 1I.+{|—I:-K_Ilu)
2
N (1—ey" K ')
T =
1 —al K 'a,
z
[l —f_i"lil-l]]

+ ——T

e
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where Schur's complement formula gives (a) and Woodbury
Identity with =ome algebra gives (h). We are using the property
that K{r,x} = | and the diagonal clements of matrix K, arc
equal to one. (c) uses (10} for the minimum norm interpolating
fumction based on C, ie., f{x). Hence, I ix)lly = I (x)lly
if and only if fiw) = 0 which gives the statement of
proposition. |

C. Radial Baxis Kernels

From here on, we will focus on minimum nonm interpolat-
ing functons with radial basis kemels. The kemel functicns
we use have the following form: For x, @' & B9 b = 0 and

=1, let

1
ki plr. X) = :r.p(—ﬁl.t _f|P). a3)
where |kl = (T2, :")F is the £p norm and Jx — 2] is
F = ] 4 P F

the Minkowski distance satisfying the tiangle inequality. For
P = 1. 2 this category of kemels construct Reproducing Kemel
Hilbert Spaces. When the parameters & and p are specified, we
denote the kemel function & p(x. ¥) by &lx, ¥).

v Laplace Kernel in One Dimension

To develop some intuition, we consider active leaming in
one-dimension. The sort of target function we have in mind
is a multiple threshold classifier. Optimal active learning in
this setting coincides with binary search. We now show that
the progosed selection criterion hased on SCOrey with Hilben
norm associated with the Laplace kernels result in an optimal
active leamning in one dimension (proof in Appendix B.1).

Proposition 2 {Madmin Criteria in One Dimension With
Laplace Kernel): Define Kir, x') = exp(—|r — x'|/h) to be
the Laplace kernel in one dimension and the minimum norm
interpodator function defined in Section IV-A. Let the selec-
tion criterion be based on SCorey(w) function defined in (6)
with the Laplace kemel Hilbert norm. Then the following
statements hold for any value of b = O:

1) Let xp and x; be two neighboring labeled points in £

Then scorey(A+2) = scorey(u) for all x) < u < x;.
2) Let x1 <= x2 and x3 <= x4 be two pairs of neighboring

&Y

14

1A

&Y

labeled points such that xp — x) > x4y — x3, then
« if ¥1 # ¥z and y3 = 4. Then soorey|23%)
SCOM2y (X ).
» if ¥y = y7 and y3 # ¥y. Then scomey(f3E)
SCOrEy (2.
« if ¥1 # ¥z and ¥3 # ya. Then SCOTey (272
scorey (224,
» if 1 = ¥z and ¥3 = ¥4 Then SCOTE, (3T
SCOMBy (E4H).

The key conclusion drawn from these properties is that the
midpoints between the closest oppositely labeled neighboring
examples have the highest score. If there are no oppositely
labeled neighbors, then the score is largest at the midpoint of
the largest gap beiween consecutive samples. Thus, the scome
resulis in a binary search for the thresholds definining the
classifier. Using the proposition above, it is casy to show the
following result, proved in the Appendix B3,

Corollary 2; Consider N points uniformly distribated in the
interval [0, 1] labeled according to a k-piscewise constant
function gir) so that v; = glrx;) € |—1. +1} and length of the
pieces are roughly on the order of @(1/K). Then by munning
the proposed active leaming algodithm with Laplace Kemel
and any bandwidth, after £k log &) queries the sign of the
resulting interpolant £ correctly labels all & examples (i,
the training error is zero).

This statement is e for & = 5/ The proof is provided
in Appendix B.3.

E. General Radial-Basis Kermnely in One Dimenrsion

In the next proposition, we look at the special case of
radial basiz kernels, defined in Equation(13) applied to one
dimensional functons with only three initial points. We show
how maximizing SCOM8y with the appropriate Hilberi norm
is eguivalent to picking the zero-crossing point of our current
interpolator.

Proposition 3 (One Dimensional Functions With Radial
Basis Kernels): Assume that for any pair of samples x, 2" € £
we have |t — x| = A. Assume AP > [ for o constant
vilue of D, let 1) = 172 = 3 € B, v = ¥2 = +1 and

vl = —|. For u such that x2 + A /2 < w < 33 — AS2, we have
SCOMBy () < SCOMey(n*) where u* is the point satisfving
flu*) =0

The proof i= rather tedious and appears in Appendiz C.1.
But the idea is based on showing that with small enough band-
width, |} ] is incressing in w in the interval [ + A /2. x3 —
A2 and | is decreasing in @ in the same interval. This
shows that max, minggy 1 .q) Uyl ocours at w* such that
1™ = L™|l. We showed that this is equivalent to the
condition fiu*y =0.

F Properties of Data Based-Norm Criterion

Intuitively, SCOMn measures the expected change in the
squared norm over all unlabeled examples if ¥ € I is selected
a5 the next point. This norm is sensitive to the particalar distri-
bution of the data, which is important if the data are clustered.
This behavior will be demonstrated in the moltidimensional
sefting discussed next.

In this section, we present tao theoretical resulis on the
properties of data-based norm selection criterion. To do so,
we will prove the properties of the selected examples based
on the data-based norm in the context of the clustered data. In
particular, if the suppont of the generative distribution Pyix)
iz composed of several dispoint clusters, the data-based norm
criterion prioritizes labeling samples from bigger clusters first.
Subsequently, it selects a sample from each cluster o be
labeled. IF the clustering in the dataset is aligned with their
labels (most of the samples in the same cluster are in the
same class), labeling one sample in each cluster ensures rapid
decay in the probahility of error of the classifier as a function
of number of labeled samples. This behavior is consistent with
numerical simulations presented in Section V.

The next theorem will show that if the clusters are well-
separaied (the distance between the clusters are sufficiently
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large), then the first example to be selected to for labeling is
in the biggest cluster.

Theorem 4 (First Point in Clustered Data); Fix p = 1 and
& = 0. Let the distribution P{X) be wniform over M disjoint
scls By, .... By such that 8; is an £ ball with radius 5 and
cenler o, ie.

Bi = Bapiriici) = {.r eRY: Jx— cillp = nI-. (14}

Withowt loss of generality, assume | = 13 = --- = ri. Define
D = mingy; [lci—cjllp—2r) 25 an upper bound for the minimum
distance between the clusters.

Assume £ = @ and let the interpolating functions [ be
defined in (10} with kpp (defined in (13)). The selection
criterion is based on the S3C0M8; function defined in (7). If

n:.;[mmr—tu{l—{n.fn]‘*]] and <= hy2

then the first point to be labeled is in the bigpest ball, 8.

The proof is presented in Appendix C_1.

The next theorem shows that if the distance between the
clusters are sufficiently large and the radius of the clusters are
not too large, then the active learning algorithm based on the
nition of Scorg with data-based nomm labels one sample from
cach cluster before zooming in inside the clusters,

Theorem 5 {Cluster Exploration): Let & be the support
of Py. Assume 5 = UM B where Bi's are £p-balls with
radii © and ceniers o Define D = mingg loy — glp —
2rp to be the minimum distance between the clusters. Let
L = {m.xm..... 1) be L = M lobeled points swch that
x] € B,m e By, ....xp & By, Let the selection criterion
be based on the Scoren function defined in (70 If F < &3
and I > 12k In(2M), then the next point o be labeled is in a
new ball (¥, ;) containing no labeled points.

As a corollary of the above theorem, one can see that if the
ratio of the distance between the clusters to the radius of clus-
ters is sufficiently large (D/r = 36in(2M)), then one can use
a kemel with proper bandwidth which picks one sample from
each cluster initially. The proof is presented in Appendix C_2.

V. MUMERICAL SIMULATIONS OF KERNEL BASED
Im this Section, we present the outcome of numencal simuo-
lations of the proposed selection criteria on synthetic and real
data In this section, S5C0M8y s used to denocted the S00M@
function defined in {6) with the Hilberl norm associated with

n e W

&
]
-

e O I - o e
i ot e

Uniform distribation of samples in onit imervol, meltipls thresholds hetween 1 lshels, and octive leaming, uxing Laplece Kemel, Bandwidth— 0.1.

ol 1t feh

Fig. 3. e slection of Laplece kernzl active leamer. (o} Magnitude of
oulpol map kemel machine rained to i four dote points as indicaled
({dark blue is 0 indicaling the leamsd decision boundery). (b) Max-Min EKHS
norm selection of next point 1o label. Brighiest yellow is location of highest
soore and selecied example. (ch Max-Min selection of newi poind 1o label
using dsts-based morm. Hoth select the poimt on the decision boundary, bat
the REHS norm favors points thal are closest w opposilely loheled examiples.

the Laplace Kernel. Similarly, scorey is the score function
defined in (7)) with the data-based norm.

A. Bizection in One DNmension

The bisection process is illustrated experimentally in the
Figure 2 below. scoreqy uses the RKHS norm. For compari-
son, we Also show the behavior of the alponthm using SC0Ma,
and the data-based normm. Data selection wsing either score
drves the error to zero faster than random sampling (2= shown
on the left). We clearly see the bisection behavior of S00T8yy,
locating one decision boundary/threshold and then another, as
the proof corollary above suggests. Also, we see that the data-
based noerm does more exploration away from the decision
boundaries. As a result, the data-based norm has a faster and
more graceful error decay, as shown on the mght of the Agure.
Similar behavior is observed in the multidimensional setting
shown in Figure 5.

B. Multidimensional Seifing With Smooth Bowndary

The properties and behavior found in the one dimensional
seifing cammy over to higher dimensions. In particular, the max-
min nonm criterion tends to select unlabeled examples near the
decision boundary and close to oppositely labeled examples,
This is illustrated in Figure 3 below. The inputs points {training
examples) are uniformly distributed in the square [—1, 1] =
[—1, 1]. We trained an Laplace kemnel machine o perfectly
interpolate four training points with locations and binary labels
as depicted in Figure 3{a). The color depicts the magnitude of
the learned interpolating function: dark blue is O indicating the
“decision boundary™ and bright yellow is approximately 3.5.
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Fag. 4. Dets selection of Laplece kemel active leamer. {a) Unlebeled exam.-
ples ore ooly aveilohle in mapenin shedsd regions. (b) Maox-Min slection
map using RKHS norm (61 (c) Max-Min selection mep wsing dais-besed
norm defined in Bgquation (7).
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Fig. 5. Uniform distribution of samples, smeoth boundary, Laplsce Kemel,

Handwidih = 0. On lef, sampling behavior of and SCOMeg ai
progressive steges (lefl to rght). On right, error probabilities e o function of
number of loheled examples.

Figure 3(b) denotes the score for selecting a point at each
location based on REHS norm criterion. Figure 3{c) denotes
the score for selecting a point at each location hased on data-
based norm criterion discussed above. Both critera select the
point on the decision boundary, st the RKHS norm favors
points that are closest to oppositely labeled examples whereas
the data-based norm favors points on the boundary further
from labeled examples.

Mext we present o modified scenario in which the exam-
ples are not uniformly distriboted over the input space, but
instead concentrated only in certain regions indicated by the
magenta highlights in Figure 4(a). In this sefting, the example
selection criteria differ more significantly for the two noms.
The weight norm selection criterion remains unchanged, b
is applied only 1o regions where there are examples. Arcas
with out examples to select are indicated by dark bluz in
Figure 4{b)-{c). The data-based norm is sensitive to the non-
uniform input distribwtion, and it scores examples near the
lower portion of the decision boundary highest.

The distinction between the max-min selection criterion
using the RKHS vs. data-based nomm is also apparent in the
experiment in which a curved decision boundary in two dimen-
sions is actively leamed wsing a Laplace kernel machine, as
depicted in Figure 5 below. sCOf@y is the max-min RKHS
norm criterion at progressive stages of the leaming process
(from left to right). The data-based norm is used in SCOME;
defined in Equation (7). Both dramatically outperform a pas-
sive (random sampling) scheme and both demonstrate how
active learning antomatically focuses sampling near the deci-
sion boundary between the oppositely labeled data (yellow
vs. blue). However, the data-based nonm does more exploration
away from the decision boundary. As a result, the data-based
nomm reguires slightly more labels to perfectly predict all
unlabeled examples, but has & more graceful emmor decay, as
shown on the right of the figure.
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Fig. 6. Unifom distribation of samples, smooth boundary, Leaplece Kemnel,
Hondwidth = O.1. On left, sumpling hehevior of SC0M8sy; and SCOER ol
progressive siages (lefi to righil. On righl. enmoe probebilities as & funcibon of
number of lebeled examples.

Fig. 7. Paints in blue and yellow clestzrs are labeled +1 and — 1, respectively.
The lefl figore uses SCOTEy 1o be the 5COrE function defined in (6) with
the Hilberi norm associsted with the Laplace Kemel Similedy. Scomey, is
the BCOM function defined in (7) with the data-based norm. The first 13
sumples =elecied by S00MB gy and 5C0MBn are depicisd as black dols. SC0MEn
hes labeled coe sample from esch clusier, bul 5C0rBgy has not labeled any
samples from 5 clusiers. Noie thol SC0M8yy; hos spent some of the sample
budget 10 disoriminale betweren nearby clusiers with opposile labels.

C. Multidimensional Setting With Clusiered Data

To capture the properties of the proposed selection criteria
in clustered data, we implemented the algorithm on synthetic
clustered data in Figures 6 and 7. We demonstrate how the
data-based norm also tends to awtomatically select represen-
tive examples from clusters when such structure exists in the
unlabeled dataset. Figure & compares the behavior of selec-
tion hased on Scoreyfn with the RKHS norm and Scorep
with data-based norm, when data are clesters and sach cluster
is homogeneously labeled. We see that the data-based norm
quickly identifies the clusters and labels a representative from
each, leading to faster error decay as shown on the right.

In the setup in Figure 7. the samples are generated based
on a uniform distibution on 13 clusters. Points in blue and
vellow clusters are labeled +1 and — 1. respectively. We run
the two variations of proposed active leaming algorithms and
compare their sampling strategy in this setup. The l=ft figure
uses SC0MEqy to be the S00Ore function defined in (6) with the
Hilbert norm associated with the Laplace Kernel. Similarly,
SC0ren is the SC0r8 function defined in (7) with the data-hased
RO,

The selection criterion based on SCOMSy prioftizes same-
pling on the decision boundary of the current classifier whene
the cumently oppositely labeled samples are close o each
other. This behavior of the algorthm based on SCOMSy in one
dimension is proved in Sections IV-D and IV-E. Alternatively,
sCOMey pricritizes labeling at least one sample from each
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Fig. 8. Probability of enoc for leaming, o classificalion tesk on MNIST

daln set. The performance of three selection criteria for lebeling the semples:
rendom selection, active selection besed on BCOME4y, end active selection
based on SCOME,. The first curve depicts the prohahility of error an the treining,
=l and the second curve is the probebility of error on the st seL

cluster. Hence, after labeling 13 samples, the active leaming
algorithm based on 3008 has one sample in each cluster, bt
the active leaming algorithm based on 008 has not labeled
any samples in 5 clusiers.

. MNIST Experiments

Here we illustrate the performance of the proposed active
leaming method on the MMNIST dataset. 'We ran algorithms
based on owr proposed selection critera for a hinary classifi-
cafion task on MMNIST dataset. The binary classification task
used in this experiment assigns a label —1 o any digit in set
[0,1,2, 3 4} and label +1 to [5.6,7, 8 9}. The goal of the
classifier is detecting whether an image belongs to the set of
numbers greater or equal io 5 or nof. We used Laplace kemnel
as defined in (13) with p = 2 and & = 10 on the vectonzed
version of a dataset of 1000 images. In Figures &, scongy is
the o008 function defined in {6) with the Hilbert nom asso-
ciated with the Laplace Kernel. Similarly, scorep is the scorg
function defined in (7) with the data-based norm.

To asses the guality of performance of each of the selection
criteria, we compare the probability of emor of the interpolator
at each iteration. In particular, we plot the probability of error
of the interpolator as a function of number of labeled samples,
using the 300rey and SCOrMen functions on the training set and
test set separately. For companizon, we also plot the probability
of error when the selection crteron for picking samples to be
labeled is random.

Figure 8 (a) shows the decay of probability of error in the
training set. When the number of labeled samples is egual
o the number of samples in the training set, it means that all
the samples in training set are labeled and wsed in constructing
the interpolator. Hence, the probability of ermor on the training
set for any selection criterion is zero when number of labeled
samples is equal io the number of samples in the training =et.
Figure & (b} shows the probability of error on the test set as a
function of the number of labeled =amples in the training sei
selected by each selection criterion.

1) Clustering in MNIST: The binary classification task wsed
in the MNIST experiment assigns a label —1 to any digit in
set {0, 1, 2. 3, 4) and label +1 to |5, 6. 7, 8, 9]. We expect that
the images are clustered where each cluster would comespond
to the images of a digit. We expect that the advantageouns
behavior of using data-based norm criterion in clustered data
is one of the reasons for faster decay of probability of error
of the SCOMe; in Figure &

Fig. 9. The histogram of the hendwritien digits associaled with the labeled
samples afier labeling 100 samples. The first hisbogram is for the selection cri-
lerion EC0ME gy and the second histngrem is for the seleciion oritsrion SCOMED.
Motmhly, 3C0M87; has not lsbeled any of the images of the digit 0.

To venfy this intuition, we look at the samples that were
chosen by each criterion and the digit corresponding (o that
sample. Note that this digit is the number represented in the
image and not the label of the sample since the label of each
sample 15 +1 or — | depending whether the number is greater
than 4 or not. After labeling 100 samples, we lock at histogram
of the digits associated with the labeled samples with each
criterion SCcorey and sScorep. If samples of each cluster are
chosen to be labeled uniformly among clusters, we would ses
abvout 10 labeled samples in each cluster. Figure 9 shows the
histogram described above for two vanations of the selection
criteria based on SC0M8y, or SC0M8C. We observe that selecting
samples based on SC0M; is much more uniform among the
clusters. On the contrary, selecting samples based on Scorey
gives much less uniform samples among clusters. In the partic-
ular example given in Figure 9, we see that even after selecting
100 zamiples to be labeled, no sample in the cluster of images
of number 0 has been labeled in this instance of execution of
the selection algorithm based on notion of SConRyy.

To quantify the uniformity of selecting samples in differ-
ent clusiers, we ran this experiment 20 times and estimated
the standard deviation of number of labeled samples in each
cluster after labeling 100 samples. Note that simce we have
10 clusters, the mean of the number of labeled samples in
cach cluster is 10 The standard deviabion using SCOMSy is
4.1 whereas standard deviation using SCoray is 2.7. This
shows that selection criterion based on 30008, samples more
uniformly among the clusters.

VI INTERPOLATING NEURAL NETWORE
ACTIVE LEARNERS

Here we briefly examine the extension of the max-min
criterion and its variants to newral network learners. Meuwral
network complexity or capacity can be controlled by limiting
magnitude of the network weights [24]. [25]. [26]. A num-
ber of weight norms and related measures have been recently
proposed in the literature [27], [28]. [29], [30], [31]. For exam-
ple, Rel.ll networks with a single hidden layer and minimuom
f7 norm weights coincide with linear spline interpolation [32].
With this in mind, we provide empincal evidence showing that
defining the max-min criterion with the norm of the network
weights yields a neural network active leaming algorithm with
properties analagous to those obtained in the RKHS setting.

Consider a single hidden layer network with Bel.U activa-
tion units trained wsing MSE loss. In Figure 10 we show the
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Fg. 10 Daia slection of newrs] network active leamer. (o) Muognibads
of oulpui mep of single hidden layer Relll network trained o imtespolsie
four daln. points as indicated (derk blue is O indicating the leamed decision
boundary). (B) Max-Min sclection of next paint to label using network weight
norm. (o) Mex-Min selection of next point 1o lohe]l uxing data-hesed norm.
HBath select the point on the decision boundary that is closest o oppositely

labeled examples.
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Fg. 1. Daia selection of neural network active learner. (o) Unlaheled exam-
ples arz only aveilable in magenis shaded regions. (h) Max-Min sslection map
using network weight norm. (o) Mex-Min slection mep wing daln-besed
NOETEL
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results of an experiment implemented in PyTorch in the same
seitings considered above for kemel machines in Figures 3
and 4. We trmined an overparameterized network with 100
hidden layver wnits to perfectly interpolate four training points
with locations and hinary labels ss depicted in Figure 104a).
The color depicts the magnitude of the leamed interpolating
function: dark blue is ¢ indicating the “decision boundary™
and bright vellow is approximately 3.5. Figure 10(b) denotes
the SCOMey with the weight norm (ie, the £ norm of the
resulting network weights when o new sample is selected at
that location). The brightest vellow indicates the highest scone
and the location of the next selection. Figure 10{c) denotes the
20008 with the data-based normm defined in Equation (7). In
both cases, the max occwrs at roughly the same location, which
is near the current decision boundary and closest to oppositely
labeled points. The data-based norm also places higher scores
on points furiher away from the labeled examples. Thus, the
data selection behavior of the newural network is analagous o
that of the kemnel-based active leamer (compare with Figure 3).

Mext we present a modified scenario in which the examples
are not wniformly distributed over the input space, but instead
concentrated only in certain regions indicated by the magenta
highlights in Figure 11{a). In this setting. the example selection
criteria differ more significantly for the two norms. The weight
norm selection criterion remains wnchanged, but is applied
oaly to regions where there are examples. Arcas without exam-
ples to select are indicated by dark blue in Figure 11{R)-{c).
The data-based norm is sensitive to the non-uniform input dis-
tribution, and it scores examples near the lower portion of the
decision boundary highest. Again, this is quite similar to the
behavior of the kernel active leamer {compare with Figure 4).

VII. COMNCLUSION AND FUTURE WORK

The question of designing active learning algorithms in
the regime of nonparametric and overparameterizzd models
become more cssential a5 we look at larger models which
require bigger training sets. To reduce the human cost of label-
ing allyl samples, we can use a pool-based active learning
algorithm to avoid lebeling non-informative examples.

Ower algorithm does not exploit any assumption about the
underlying classifier in selecting the samples to label. Yet, for
a wide range of classifiers, it performs well with provable
guarantees. It is designed for the extreme case of the nonpara-
mietric seiting in which no assumption about the smoothness of
the boundary between different classes is made by the leamer.

There are many interesting guestions remaining: the behay-
ior of our proposed criterion applied to other classifiers such
a5 kemnel SWM instead of minimum norm interpolators, gener-
alization of the criterion to multi-class settings and regression
algorithms. The computaiional complexity of our cnterion
can also be a serious botileneck in applications with bigger
data-sets and should be addressed in futwre, Additional nemer-
ical simulations, especially with more complex architecture of
Meural Networks can also be insightful.
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Abstract

This paper exploszs & new form of the linear bandit problem
in which the algorithm reoeives the uwswal stochastic rewards
as well & stochastic feedback about which featums am rel-
evan to the rewards, the later feedhack being the novel as-
pect The focus of this paper is the development of new theory
and algorithms for linear bandits with feature feedback which
can achieve @ gret over time horizon T that scales like kT,
without prior knowledge of which features are relevant nor
the number & of melevant fatures. In comparison, the megret
of iraditional limear bandits is d+/T, where d is the toial num-
her of (relevant and imelavant) features, so the improvement
can be dramatic if &« 4 The computational complexity
of the algonthm is proportional to k rather than <, making it
mich maore suitable for real-workd applications. conTpaned to
traditional linear bandits. We demonstraie the performance of
the algorithm with synthetic and real human-labeled data.

1 Introduction

Linear stochastic bandit algorithms ame used to seguentially
select actions to maximize rewards. For instance, {Desh-
pande and Montanari 2002) propose to mode] eoommen-
dation systems that help users navigate through a large col-
lection of items (products, videos, documents) wsing lin-
carly parameierzed multi-armed bandits. This model strikes
a balance by allowing the user to explore the space of avail-
able items and probing the wser's pefemnces. The linear
bandit model assumes that the expecied reward of each ac-
tion is an (unknown) lincar function of a (knoewn) finite-
dimensional feature associated with the action. Mathe mat-
ically, if x, £ R¥ is the feature associated with the action
chosen at time ¢, then the stochastic reward is

e =%, 0, + 1. (n
where @, is the unknown linear functional (repeesenting
the user's preferences) and ;. is a zero mean random vari-
able. The poal is to adaptively selact actions (o maximize

the mwards (comesponding to user's assessment of the cho-
sen iem’s value). This involves (approximately) leaming

*This reszarch was performed when U0 and A B. were at Uni-
versity of Wisonsin-Madizon.
Copyright (€ 2020, Association for the Advancement of A rtificial
Intellipence (www.aaaiong). Al rights reserved

i, and exploiting this know ledge. Linear bandit algorithms
that exploit this special structure have been exte nsively stud-
icd and applied (Rusmevichientong and Tsitsiklis 2010;
Abbasi-Yadkori, Pal, and Szepesvan 201 1)

Unfortunately, standard linear handit algonthms soffer
from the curse of dimensionality. The regret grows linearly
with the featur: dimension 4. The dimension d may be quite
large in modem applications (e g, 1000s of featunes in MLP
or image/vision applications). In the moommendations set-
ting, the existing bounds casily reguine T = 1005 of rat-
ings to be meaningful, which is not realistic. The high-
dimensionality also makes it challenging to employ state-
of-the-ant algorithms since it involves maintaining and up-
dating a 4 » d matrix at every stage. However, in many cases
the linear function may only involve a sparse subset of the
k = d feamres, and this can be exploied to partially mduce
dependence on 4. In such cases, the regret of sparse linear
bandit algorithms scales like +/dFk (A bbasi- Yadkori, Pal, and
Szepesvar 2012; Lattimore and Sacpesviri 2018)

We tackle the problem of linear bandits from a new per-
spective that incorporates feature feedback in addition to
mward feedback, mitigating the curse of dimensicnality.
Specifically, we consider situations in which the algorithm
moeives a stochastic reward and stochastic feedback indi-
cating which, if amy, feature-dimensions wepe reley ant to the
mward value For example, consider a situation in which
users rafe recommended fext documents and additionally
highlight keywords or phrases that infiuenced their ratings.
Figure 1{a} illustrates the idea Obviously, the additional
“feature feedback”™ may significantly improve an algonthm’s
ability to home-in on the elevant features, The focus of this
paper is the development of new theory and algonithms for
linear bandits with featune feedback. We show that the regret
of lincar bandits with feature feedback scales lincarly in k,
the mumber of relevant features, without prior knowledge of
which features ane relevant nor the value of k. This leads to
large improvements in theory and practice.

The simpk feedback model, where the wser directly se-
lects a subset of the relevant features, can be generalived
by allowing for an indirect form of feedback. For example,
the user can select a region of an image instead of a subsst
of the standard deep neural network features. This form of
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Figure 1: (a) (Left) Highlighted words for ext-based applications and (Right) Region-of-interest feature feedback for image-
based applications. (b) Comparison of the explome-then-commit straegy for different values of T and our new FE-OFUL
algorithm which combines exploration and exploitation steps (details of data generation in Section 5.1)

feedback could be used in differsnt ways. For instance, we
could use methods to map deep image featumres to image re-
gions, However, in this paper we focus on the processes and
bepefits of incorporating direct feature feedback, and defer
the development of indirect feedback models to future work.

Perhaps the most natural and simple way to leverage the
feature feedback 15 an explome-then-commit strategy. In the
first T, steps the algporithm selects actions at random and
receives rewards and feature feedback. If Th is sufficiently
large, then the algorithm will have leamed all or most of
the melevant fieatures and it can then switch to a standard lin-
car bandit algorithm operating in the lower-dimensional sub-
space defined by those features. There ar two major prob-
lems with such an approach:

1. The cormect choice of T depends on the prevalence of mel-
evant features in randomly selected actions, which gener-
ally is unknown. If T is too small, then many releyant
featunes will be missed and the long-run regret will scake
linearly with the time horizon. If T} is too large, then the
initial exploration pericd will sufferexcess regret. This is
depicted in Figure 1{b).

2. Regardless of the choice of T, the regret will grow lin-
carly for ¢t = T The new FF-OFUL algorithm that we
propose combines exploration and exploitation from the
stan and can lead to smaller megret initially and asymp-
totically as shown in Figure 1{h).

These observations maotivate our proposed approach that
dynamically adjusts the trade-off between exploration and
cxploitation A key aspoct of the approach is that it is auto-
matically adaptive to the unknown number of melevant fea-
tures k. Our theoretical analysis shows that its regret scales
like k+/T". Experimentally, we show the algorithm generally
outperforms traditional linear bandits and the explore-then-
commit straegy. This is due to the fact that the dynamic al-
gorithm exploits knowledge of mlevant features as soom as
they are identified, rather than waiting until all or most ane
found A key consequence is that our proposed algorithm
yields significantly better rewards at early stages of the pro-

cess, gs shown in Figure 1(b) and in more compre hensioe
experiments later in the paper. The intuition for this is that
estimating £, on a fraction of the relevant coordinate s can be
exploited to recower a fraction of the optimal reward. Simi-
lar ideas are ex plored in linear bandits (without featore feed-
back) in {Deshpande and Montanar 200 2).

L1 Definitions

For round, &, let A2 © BT be the set of actions'items pro-
vidied to the learmer. We assume the standard linear model
for rewards with a hidden weight vector 8, = B9 If the
leamer selects an action, x; © Ai, it mczives mward, 3, da-
fined in (1) where 17, s notse with a sub-Gaussian random
distribution with parameter /£ For the set of actions A, the
optimal action is given by, x; = a:gma:r.“,-,-.ITH.., which
iz unknown, We define regret as,

-
Ry = E (xi70, —x@,). (2
L=1

This is also called cumulative regret but, unless staed oth-
erwise, we will refer to it as regret. We mefer to the quantity
x;T8, — x @, as the instantancous regret which is the dif-
ferenoe between the optimal eward and the mward reoeived
at that instant. We make the standard assumption that the al-
gorithm is provided with an enommous action set which is
only changing slowly ower ime, for instance, from sampling
the actions without replacement (X = Ao

1.2 Related Work

The area of contextual bandits was introduced by (Ginebra
and Clayton 1995). The first algorithms for lincar bandits
appeared in (Abe and Long 1999} followed by those us-
ing the optimism in the face of uncenainty principle, (Auer
and Long 2002), (Dani, Hayes, and Kakade 2008). (Rus-
mevichientong and Tsitsiklis 200100 showed matching up-
per and lower bounds when the action (feature) set is 8 unit
hyperspherz. Finally, { Abbasi-Yadkori, Pal, and Szepesvari
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Algorithm 1 OFUL
fort—1.2,_._..7T— ldo

{II1EI.-] = Hﬁmu[x:g];_x.m-_—,_ﬂh &)
Sclect action 2 and receive reward g
Update V, =l{x“;' X, + AT}

adfy, =V, Xy

5 Updee ellipsoidal confidence set O as
Co={8: 3 — by,

= R, [2log (dﬂr‘?-l’-'*gn:wr-'”} + .11-"!.5'}
for

1:
x
EN
&

& emd

2011} gave a tight regret bound wsing new martingale tech-
nigues. We use their algonthm, OFUL, as a subrootine in
our work. In the area of sparse linear bandits, regret bounds
amr known to scale like +/kdT, (Abbasi-Yedkori. Pal, and
Szepesvari 2012 (Lattimor: and Szepesvan 20018), when
operating in a d dimensional feature space with k relevant
featurzs. The strong dependence on the ambient dimension
d is unavoidable without further {often strong and unmealis-
tic) assumptions. For instance, if the distnbution of featun:
vectors is isotropic or otherwize favorably distributed, then
the regret may scale like k log{d)/T, e.o . by using incoher-
ence based echnigues from compressed sensing (Carpentier
and Munos 2012). These results alzo assume know ledge of
sparsity parameter B and withowt it no algorithm can sat-
i5fy these regret bounds for all & simultancously. [n contrast,
we propose & new algorithm that automatically adapts to the
unknown sparsity level k and removes the dependence of re-
zret on d by exploiting additional feature feedback. In terms
of feature feedback in ext-based applications, {Croft and
ras 1989) have proposed a method o reorder documents
based on the mlative importance of words wsing feedback
from users. (Poulis and Dasgupta 2017) consider a similar
problem but for keaming a linear classifier. We wse a similar
feedback mode] but focus on the bandit setting where such
fezdback can be naturally collected along with rewards. The
idea of allowing user’s to provide richer forms of feedback
has been studied in the active learning literature {Eagha-
van, Madani, and Jones 2006), (Dnuck, Settles, and MoCal-
lum 2009} and also been considersd in other (inferactive)
learning tasks, such as cognitive science (Roads, Moger, and
Busey 2016}, machine teaching {Chen et al. 2001 8), and NLP
tasks (Yessenalina, Yoe, and Cardie 2010}

2 Maodel for Feature Feedback

The algorithm presents the user with an item {eg, docu-
ment) and the user provides feedback in terms of whether
they like the item or not (logistic model) or how much they
like it (inner product model). The user also selects a few fiza-
tures (e g, words), if they can find them. to belp orient the
search. We make the following assumptions.

Assumption 1 {Sparsity . The hidden weighr vecror @, €
B4 ix ke-sparse and k ix unknown. In arker words, 8, has ar
maosr k non-zere eruries o i supp(@) = [il@,, # 0} then

|supp(8,)| =k < d

Assumption 2 {Discoverability). For am acrion x € X se-
fecred wuniformly ar randomy, the probakiliy thar a relevans
Sfeqrure 15 prese ang 1y selecred iy ar leasr p = O uinknown

Assumption 3 (Moisel, Users may reporr frrelevans fea-
nires. The number of reported irrelevanr fearures (denoed
by D < k' < d — k) iy unknown in advance.

Assumption | ensuncs that thers are at most B relevant
features, however we stress that the value of k is unknown
{it is possible that all d features are relevant). A ssumption 2
ensumes that while every ifem may not hawe relevant fieatures,
we ame able to find them with a non-rero probahility when
searching through items at random. This assumption can be
viewed as a (possibly pessimistic) lower bound on the raie
at which melevant features are discovered. For example, it is
possible that exploitative actions may yield relevant featumes
at a higher rate {e.g., relevant feaures may be comelated with
higher rewards). We do not attempt to mode] such possibili-
ties since this would involve making additional assumptions
that may not hold in practice. Assumption 3 accounts for
ambiguous features that are imele vant bot wsers eming on the
side of marking as mlevant.

The sct up is as follows: we have a set of items, o' © R
that we can propose to the users. There iz a hidden weight
vector ), © BY that is k-sparse. We will further assume
that |@,] = 5 and the action vectors are bounded in
nome Yx £ X, |x|| = L. Besides the reward 5, (1), at
cach time-step the leamer gets T, © [d] which is the rel-
evance feedback information. The model further specifies
that 5 & supp{#.),Pr(j « I,;) = p. That is, the proba-
hility & mlevant feature is selected at random is at least @
We need this assumption to make sure that we can find all
the relevant featunes.

3 Algorithm

In this saction, we introduce an algorithm that wses featunes
melevance feedback by stanting with a small feature space
and gradually increasing the space over time without know]-
edge of k. We use the OFUL algorithm {stated 2= Algo. 1)
hased on the principle of optimism in face of uncertainty as a
subrouting. The algorithm constructs ellipsoidal confidence
sets centered around the ridge mgression e stimate, using ob-
served dafa such that the sets contain the unknown #, with
high probability, and selects the actionfitem that maximizes
the inner product with any # from the confidence set.

All updates are made only in the dimensions that have
been marked a5 relevant and the space is dynamically in-
creased as new melevant features are revealed. If nothing is
marked as relevant, then by default the actions ane selected at
random, podentially suffering the worst possible rew ard but,
at the same time, increasing our chances of getting relevance
feedback leading to a trade-off. Mote that the algorithm is
adaptive to the unknown number of relevant features k. IF
kwere known, we could stop looking for features when all
melevant ones have been selected. We find that in practice,
thiz algonthm has an additional benefit of being more ro-
bust to changes in the ridge parameter (A) due to its intrinsic
regularization of restricting the parameter space.
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Alporithm 2 Feature Feedback OFUL (FF-OFUL)

1: Let the set of mlevant indices, By, Iy = {1
2 while T, is empty do

%  Select action at random, Ty = { indices revealed }

4 end while

5 R] = Rﬂ UID

& Initialize Cp using actions sampled.

T fort=1,2.... T do

&  Let X, be the feature matrix restricted o &,

& Sete = 14T Draw by from bemoullife; )

i ifb — 1 then

i1 Pick an action x, uniformly at random from ;.

12 else i

1% Pick {x, 8] = AEMAR iy e v, x, 8}

14 endif

15  With action x; observe reward y, and indices, T,.

& Updae B, =R, |JIL,

7. T is empty then N

1% Rank one update to W, 8, 0, (see Algo. 1) using
(e %)

1% else

i |4 Update X, with feamres in K.

: Recompute W, #, £, with new feature set X .

I endif

1% end for

{Abbasi-Yadkori, Pal, and Szepesvari 2001} provide a
(3(d+/1) bound on the regret of OFUL stated as Alporithm |
by ignoring constants and logarithmic erms. We prove a
similar result but reduce the dependence on the dimension
from  to k In order to do so, we must discover the sup-
port of @,. The idea being that we apportion a set of ac-
tions, with a form of £-greedy alponthm due to {Sutton and
Barto 1998, to random plays in order to guarantes that we
find all the mlevant featums, otherwise we mun OFUL on
the identified relevant dimensions. Reducing the proportion
of random actions over time guaraniees that the megmet e-
mains sub-linear in time. We propose Algorithm 2 to ex-
ploit fieature feedback. Here, at each time ¢, with probability
proportional to 1/4/T. the alporithm selects an actionfitem
to present at random, otherwise it selects the ilem mecom-
mended by featume -restricted-OFUL.

4 Regret Analysis

In this section, we state regret bounds for the FF-OFUL al-
gorithm along with a skeich of the proof and discuss ap-
proaches to improve the bounds while defeming proof de-
tails to supplementary material.

4.1 Regret Bound for Algorithm 2 (FF-OFUL}

Recall that Wx € & ||x|| < L and ||#,]| = 5. Therefore,
for any action, the worst-case instantaneous megret can be

derived using Cauchy-Schwarz as follows:
lix*,8,) — (x.8.) = [(x*8,)+|x8.)
= [l 60 + [l ll, ]I
o
We prow ide the main result that bounds the regret (2) of Al-
gorithm 2 in the follow ing theorem
Theorem L Assume thar Ve = O and x = A, {x 8.} ¢
[—1.1] wirh the addirional assumprions !, 2 and 3 (k' = 0L
Then wirh probabilire = 1 — &, the comudarive regrer afrer T
sreps for Algorickm 2,
2
R B5SL ( lixgr e/ & )
— logcM /8 \log 1/(1 — p)

+ Lugf,% (3.5‘L1|."']' ]ug% ]

+ 4log, ;’/ %k log(A + nL/k) (.:.‘”5
+ Ry/2log(3M 8} 1 Elogll + TL,.-'{E.H:‘J‘J) i

where M = logy & A = 0 ische ridge regression paramerer
and bk is the (unknown) mamber of relevanr fearres.

In other words, with high probability, the regret of Algo-
rithm 2 (FF-OFUL) scales like ﬂ[kﬁ 4 :Flz-]., by ignoring
constants and logarithmic terms and using the taylor series
expansion of — log(1 — p). over time horizon T where k is
the number of relevant features and p is the probability with
which a relevant feature i= marked in an action selected wni-
formly at random.

Remark. The values of k and p are unknown and the algo-
rithm implicitly adapis to these problem-dependent parame-
ters. Since the gt of any algorithm is trivially boonded by
(T {for bounded rewards), our new megret bound is non-
trivial for T = meax(k*, p~?). In comparison, linear bandits
without feature fesdback have an Dfdu"’f]l regret, which is
non-trivial only when T = 2. So, our new algorithm en-
joys a better regret bound if p = d—!, which is a masonable
condition in high-dimensional settings (e g d = 10%)

The three terms in the total regret come from the follow-
ing events. Fegret due too (1) exploration to guarantes of-
serving all the relevant features (with high probability), (2)
exploration after ohserving all relevant features (due o lack
of knowledge of por k), and (3) exploitation and exploration
running OFUL {after having observed all relevant fieatures).

In practice, feature feedback may be noisy. Sometimes,

features that ape imelevant may be marked as relevant. To
account for this, we can relax our assumption to allow for
subset of &' imrelevant features that are mistakenly marked
as relevant. Including these features will increase the regret
but the theory goes through without much difficulty as stated
in the following corollary.
Corollary 1. With the same assonprions ax Theorem 1, if a
fived zer of k' irrelevans feanires were indicared by the wser
{Assumprion 3), then the regres of Alporihm 2 (FF-OFUL)
scales like O((k + BT + 5!_-,—}.
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The corollary follows since exploration is not affected by
this noize and the mgret of exploitation on the vector re-
stricted to k-+ k' dimensions scales like (k+%)+T. This ac-
counts for having some features being ambiguous and wsers
erming on the side of marking them as relevant. This only re-
sults in slightly higher regret so long as k4 & is still smaller
than 4. One could improve this regret by making assump-
tions on the probahilities of feature selection to weed out the
irmelevant foatures.

Proof Sketch of Main Result  We provide a sketch of the
proof here and defer details to supplementary material He-
call, the cumulative regret is summed over the instantaneous

regrets for ¢ = 1,...,T. We divide the cumulative gt
across epochs 8 = 0, ... M of doubling size T, = 2 for

This ensures that the last epoch dominates the regret and
it allows for the evolving featune space. For each epoch,
we bound the regret under bwo events, all relevant featunes
have been identified (via user feedback) up to that epoch or
not. First, we bound the regret conditioned on the event that
all the melevant featunes have been identified in Lemma 3.
Thi= is further, in ex pectation, broken down into the g por-
tion of random actions for pure exploration {Lemma 1) and
1 — &, mosdified OFUL actions on the k-dimensional featun
space for exploitation-exploration (Lemma 2). For pune ex-
plomation, we use the worst case regret bound but since £, is
decreasing this does not dominate the OFUL e Second,
we bound the probability that some of the elevant features
are not identified so far {Proposition 3), which is a constant
depending on k& and p since it becomes zero after enough
epochs have passed. Pure exploration ensures the probabil-
ity that some fizatures are not identified decreases with each
passing epoch. An issue of bounding regret of the actions
selected by OFUL subroutine in each epoch is that, unliks
OFUL, the confidence sets in our algorithm ane constmcted
uzing additional actions from exploration rounds and past
epochs. To accommuodate this we prove a regret bound for
this varigtion in Lemma 2. Putting all this topether gives us
the final result

Lower bound The arguments from (Dani, Hayes, and
Kakade 2008) (Rusmevichientong and Tsitsiklis 20100 can
be used get a lower bound of O{k+'T). Suppose we knew
the support, then any linear bandit algorithm that is run on
that support must incur an order kT regret. We don't know
the support but we estimate it with high probability and
therefore the lower bound also applies here. Our algorithm
15 optimal up to log factors in terms of the dimension.

4.1 Better Early-Regret Bounds

(ur analysis bounds the regret of early rounds, before ob-
serving all relevant features, with the worst case egret which
may be too pessimistic in practice. We present results to
support the idea of restricting the feature space in the
shori-term horizon and growing the featume space over
time. The mesults also suggest that an additional assumption
on the behavior of carly-regret could lead to better constants
in owr bounds, Any linear bandit algorithm mestricted to the

support of &, must incur an order kT memt s0 one can
only hope to improve the constants of the bound.

In Figum 2{a) it can be seen that the average linear regret
of pure exploration has a slope that is worse than OFUL ne-
siricied to a subset of the relevant features, The N = 1000
actions wene randomly sampled from the unit spher in
d = 40 dimensions and #, was generated with b = & spar-
sify. For a pure exploration algorithm that picks actions uni-
formly at random, independent of the problem instance, the
regret can only be bound by 25LT or O4T). Let Ry be
the expected regret of algorithm aly run on a subsct of rel-
evant features K C {1....,k},|K| = j = k For exam-
ple, alg could be the OFUL algorithm. Then Y, represents
the expected megret of OFUL mstricted to features in X2, To
discover relevant features (K we can employ an explomne-
then-commit strategy which first explones for ~ T time
followed by an exploitation stage such as OFUL mestricted
to features in K. The rewards in the later exploitation stage
can be divided in two pants,

(x,0.) = (==, 07 ) + (x0T ),

where x™ is the portion of x restricied to IC and KUK =
[d]. Similarly, the mgret R};JF can be divided in two parts.
Roughly the regret on K can be bounded by 54T under cer-
tain conditions using the OFUL regret bound. For the regret
on K®, suppose each relevant component of &, has a mean
square value of 52k (this can be achieved with a spamse
gaussian model such as those described in (Deshpande and
Montanari 2012)). This yields E||@ ||? = L1 5% whemr
j = |K|. The worst-case instantancous regret bound on C°
becomes 2,/ TE — 7)/ESL keading to an improvement in the
linzar et slope by a factor of +/(k — 7)/k over pure ex-
ploration (zse Figure 2).

Figure 2(b) shows average regnret of OFUL mstricted to
feature subsets of different sives with synthetic data (N =
1000 actions, d = 40 and & = 10). For j « {2,4,...,10},
we randomly picked 100 subsets of sime § from the support
of &_. We report the average egret of OFUL for a short hori-
zon, T = 2% mestricted to the 100 random subsets. We also
plot average regret of OFUL on the full 4 = 40 dimensional
data. Figure 2ic) depicts the same with real data from (Poulis
and Dasgupta 2007) with d = 408 and sparsity, & = 02,
we choose: 100 random subsets of sie § € {5, 10, ..., 25}
from the s=t of mlevant featunes marked by users (see Sec-
tion 5 for details) and eport the average meget of OFUL
mestricied to the fealur subsets for a relatively short time
horizon, T = 2''. The plots show that, in the short hori-
zom, it may be mone beneficial to use a subset of the relevant
features than using the total feature set which may include
many imelevant features. The intuition 15 that when OFLUL
has not seen many zamples, it does ot have enough infor-
mation to separate the imelevant dimensions from relevant
ones. As time goes on (Le., for longer horzons) OFUL's rel-
ative performance improves since it enjoys sublinear regret
but would ultimaiely be a factor of d/k worse than that of the
low -dimensional model that includes all k relevant features,
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Figure 2: {8} Regret of pum exploration versus ex plone-then-commit strategy (b.c) Average regret of OFUL restricted to feature
subsets (red dots) with 95% confidence regions (hlwe). The shon time horzon was chosen to make the case for restricting the
featur: space in carly rounds. In the long horizon, with more information, the relative performance of OFUL improsves, but
would ultimately be a factor of d/k worse than that of the low-dimensional mode] that includes all k relevant featunes.

3 Experiments

51 Resulis with Synthetic Data

For synthetic data, we simulabe a text categorz ation dataset
as follows. Each action comesponds to an article. Generally
an artick: contains only a small subset of the words from
the dictionary. Therzfore, to simulate documents we gener-
ate 1000 sparse actions in 40 dimensions. A S-sparse mew and
geperating vector, #,, 15 chosen at random. This represents
the fact that in reality a document category probably con-
tains only a few relevant words, The features represent word
counts and hence are abways positive. Here we have acoess
to &, thersfore for any action x, we use the standard lin-
ear model (1) for the mward g with i~ A0, [#%). The
support of #, is taken as the set of oracle mlevant words,
For every round, each word from the infersection of the
support of the action and oracle relevant words is marked
as relevant with probability (¢ = 0.1). Figur 3(a) shows
the msults averaged over 100 random trials for spamse &,
with B = 5,d = 40, and 1000 actions. As expecied, the
FF-OFUL algorithm outperforms standard OFUL signifi-
cantly. Figure 6(b) in supplement also shows that the feed-
back does not hurt the performance much for non-sparse &,
with k = d = 40. Figure 1{b) compares the performance of
FF-OFUL with an explome-then-commit strategy.

51 Results with 20Newsgroup Dataset

Wz use the 20Mewsgroup (20MNG) dataset from (Lang 1995).
It has 2 = 10F documents covering 20 topics such as pol-
itics, sports. We choose a subset of 5 topics {misc. forsale,
rec.autos, scimed, comp.graphics, talk.politics. mideast)
with approx imately 4800 documents posted under these top-
ics. For the word counts, we use the TF-IDF features for the
documents which give us approximately d = 47781 fea-
tures. For the sake of comparing our method with OFLUL,
we first report 500 and 1000 dimensional experiments and
then on the full 47, T8l dimensional data. To do this, we
u=e logistic rgression to train 2 high accuracy sparse clas-
sifier to select 153 features. Then select an additional 847

feamres at random in order to simulate high dimensional
features. W compared OFUL and FF-OFUL algorithms on
this data This is similar to the way (Poulis and Dasgupta
2007 ran experiments in the classification setting. We ran
only our algorithm on the full 47781 dimension data since
it was infeasible to mun OFUL. For the reward mode], we
pick one of the articles from the database at random as &,
and the linear reward mode] in 1) or use the labels to gen-
erafe binary, one vs many rewards to simolate search for
articles from a certain category. In order o come close to
simulating a noisy setting, we used the logistic model, with
g = 1/(1 — exp{—{x:, 8.)), Pl = +1) = ge.

Oracke Feedback. The suppont of one-vs-many sparse
logistic regression is wsed o get an “oracle set of rele-
want features” for each class. Each word from the inersec-
tion of the support of an action and oracle melevant words
was marked as relevant with probability p'(= 0.1} In our
theorem statements, p is the probability that the featurs
is present in & random action and it i marked relevant
This depends on the distribution of the words, but fypi-
cally p & (0,001, 0.01) and & < (30, 100} rckevant fea-
tures foreach category. Figure 3, compares OFUL, Explone-
then-commit and FF-OFUL on the 2080 dataset with ora-
cle feedback. In these simulations averaged over 100 random
&, FF-OFUL outperforms OFUL and Explore-the n-commit
sipnificantly. OFUL parameter was tuned to X = 25,

Human Feedback. (Pouliz and Dasgupta 2007) ook 50
J0MNewsgroup articles from & categones and had users an-
notate melevant words, These are the same categories that
we used above, This is closer to simulating human fieed-
hack since we are not using sparse logistic regression to es-
timate the sparse wectors. We take the user indicated rele-
wvant words instead as the relevance dimensions. There wemr
k = (30, 100) relevant featunes for each category. In Fig-
ure 4{a), we can sse that FF-OFUL 15 aleady outperform-
ing OFUL and Explore-the n-commit. This is despite the fact
that it is not A very sparse regime. Surprizsingly, we found
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Figure 3: {a) Synthetic data with sparse @, (d = 40, k = &), FF-OFUL outperforms OFUL significantly. See Figure 1(b) for
comparison with explore-then-commit strategy. Mewsgroup dataset with oracle feedback: (b) This plot shows that FF-OFUL
outperforms OFUL and Explore-then-commit when nunning in d = 1000 dimensions, sampling actions with replacement using
binary rewards model. () sampling actions without replacement and using the numerical reward model Smallest T selected
such that all mlevant featur=s are marked with high probability. Mot shorter ime honzon for without replacement sampling
since T must be less than the number of actions,
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Figure 4: Mewsgroup Dataset with Human Feedback: (Left) FF-OFUL outperforms OFUL and Ex plome-then-commit strate gy
in d = 500 dimensions. Both plots penerated by funing the parameter for OFUL. (Center) Sensitivity (o tuning parameter
A szen by the drastic difference in performance of OFUL. In contrast, our FF-OFUL has a relatively modest difference in
performance showing its robustness o the ridpe egression parameter A (Right) Our algorithm for d = 47781 and o = 500
with ridge parameter A = 1, showing its robusmess. to changes in dimensions and tuning.

that tuning had little effect on the performance of FF-OFUL A = 1. FF-OFUIL is robust to change s in the ambient dimen-
whemas it had a significant effect on OFUL (see Figure 4). sions and the parameter A, Recall that we do not compan:
Thi=s is possibly due to the implicit regulanzation provided with OFUL on 47781 dimensional data since it would ne-
by gradually growing the number of dimensions as we re- quire storing and updating a d x d matrix at each stage.
ceive new feedback. FF-OFUL also yields significantly bet-

ter rewards at early stages by exploiting knowledge of mle- Conclusion

vant features as soon as they are identified, rather than wait-

ing until all e are found, In this paper we provide an algorithm that incorporaies

feature feedback in addition to the standard reward feed-
Parameter Tuning.  For OFUL the ridge parameter (X) is hack. The framework is based on the following insight: In

tuned from {2'}1Y . to pick the one with best performance. the shor-term horizon, when the algorithm does not have
All the mned parameters selected for OFUL were simictly encugh feedback. it starts with a small subset of the dimen-
insice this range (ford = 40k = 5, A = 2% and for sions and gradually grows the number of dimensions as it
d = 10° (Newsgroup), A = oy Figure 4(h) demonstrates mceives new feedback. This has three benefits: (1) it makes
the sensitivity of OFUL to change in tuning parameter. For it possible to use the new algorithm in high-dimensional set-
FF-OFUL, the memarkable feature is that it does not require tings wher: conventional lincar bandits am impractical. (2)
parameter tuning so A = 1 for all experiments. it is more robust to choice of parameters becanse it grows the

feamre dimensions owver time which provides implicit regu-
Full dimension experiments. Remarkably the perfor- larzation, and (3) it leads to better carly-regret. The choice
mance of FE-OFUL barely drops in full (d = 47781) featune of the dimensions is based on feature feedback provided by
dimensions in Figure 4(c). Even though the ridge regression the user. This could be geperalized in a number of ways,
parameter (A) for all experiments was not tuned and set to using ideas from compressed sensing andfor dimensionality
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reduction, alleviating the need for feature feedback from the
wser in the future. The goal of this framework is o motivate
this idea of growing the featur space over fime.

Acknowled ts This work was partially supponted by
AF grant FAETS0-17-2-0262 and a grant from American
Family Insurance.

References

Abbasi-Yadkori, ¥.; Pal, [0.; and Szepesvari. C 2011, Im-
proved Algorithms for Linear Stochastic Bandits, Advances
in Nevral Informarion Processing Svaems (NIPE) 1-19.
Abbasi-Yadkori, Y. Pal. D.; and Srepesvar, C. 2012
Oinline-to-Confidence-5ct Conversions and Application to
Sparse Stochastic Bandits. In Proceedings of the fnrerna-
riomal Conference on Artificial fuellipence and Sranisics
{ATFTATE]

Abe, M. and Long, P M. 1999, Associative rinforcement
learning using lincar probabilistic concepts.  In Proceed
ings of the Invernarional Conference on Machine Learning
{(TCML). 3-11.

Auver, P, and Long, M. 2002. Using Confidence Bounds
for Exploitation-Ex ploration Trade-offs. Jowernal of Machine
Learning Research 3:2002.

Carpentier, A ., and Munos, B. 20012, Bandit theory meets
compressed sensing for high dimensional stochastic linear

bandit. In frrernarional Conference on Arrificial Inrelligence
and Sransics, 190198,

Chen. Y.; Mac Acdha, O.; Su. 5. Perona, P; and Yoe, Y.
2018, Near-optimal machine teaching viaexplanatory teach-
ing sets.  In fwrernarional Conference on Arnficial Tnrelli-
pence and Srarissics, 19701978,

Croft. W. B., and Das, B. 1989, Experiments with query ac-
quisition and wse in document retrieval systems. In Proceea-
ingx af the 1 3rh amnnal inrermarional ACM STGER conference
on Research and developmens in informarion rerieval, 349—
368 ACM.

Drani, V.; Hayes, T. P; and Kakade, 5. M. 2008 Stwochastic
line ar optimiz ation under bandit fieedback.

Deshpande, Y., and Montanari, A. 2012, Linear bandits
in high dimension and ecommendation systems. In 2002

Stk Anmial Allerron Conference en Commumicasion, Con-
rrao, and Compusing (Allerrom), 1750-1754. IEEE.

Dmuck, G.; Settles. B and MeCallum, A, 20090 Ac-
tive leaming by labeling features. In Proceedings of the
200% Conference on Empirical Merthods in Namral Lan-

plree Processing: Volume 1-Volwme 1, 81-90. Association
for Computational Linguistics.

Gincbra, 1., and Clayton, M. K. 1995, Response surface
bandits. Jowrnal of the Roval Sraristical Sociery Series B
{Merhodological ) 7T 1-T84.

Lang, E. 1995 Newsweeder Leaming to filter netnews. In
Mackine Learming Proceedings 1995, Elsevier. 331-339.

Lattimore, T., and Szepesyari, C. 2018. Bandit algorithms.

Poulis, 5., and Dasgupta, 5. 2007, Leaming with fieatume
feedback: from theory to practice. In Arrificial frelligence
and Srarisrics, 11041113,

Faghavan, H.; Madani, O.; and Jones, B 2006, Active leam-
ing with fieedback on features and instances. fowrnal of Mia-
chine Learning Research T{ Aug): 1655 1686,

Roads, B, Morer, M. C; and Busey, T. A, 2016, Us-
ing highlighting to train attentional expertise.  Plo8 one
111 el | 46266

Rusmevichientong, P, and Tsitsiklis, 1. M. 2010, Linearly
Parameterized Bandits,. Marh Oper Res. 35(2):395-411.
Suotton, B 5., and Barto, A. G. 1998, Reinforcemens learn-
ing: An iruroducrion, volume 1. MIT press Cambridas.
Yessenaling, A Yoe, Y and Cardie, C. 2000, Multi-level
structured models for document-level sentiment classifica-
tion. In Procesaings of the 20080 Conference on Empirical
Merhads in Namiral Language Processing, | 46— 1056 As-
spciation for Computational Linguistics.

Approved for Public Release; Distribution Unlimited.

25



MaxGap Bandit: Adaptive Algorithms for
Approximate Ranking

Sumeet Katariva ® Ardhenduw Tripathy © Robert Mowak
L' -Madison and Amazon LW -Bedadi=on 'V -M adison
sumeetskfgmail. com astripathy@wisc.edn rdnowaki@wisc.edu
Ahstract

This paper studics the problem of adaptively sampling from K distributions {arms)
in order to identify the largest gap bebaeen any bao adjacent means. We call
this the Max(Gap-bandit problem This problem anses naturally in approximate
ranking, noisy sorting, outlier detection, and top-arm identification in bandits. The
key novelty of the MaxGap bandit problem is that it aims to adaptively determine
the natural partitioning of the distributions into a subset with larger means and a
subset with smaller means, whene the split is determined by the largest gap rather
than a pre-specified rank or threshold. Estimating an arm’s gap reguires sampling
its neighboring arms in addition to itself, and this dependence results ina nowvel
hardness parameter that characierices the s=ample complexity of the problem. We
propose elimination and UCB-style algorithms and show that they are minimax
optimal. (bur ex periments show that the UCB-style algonithms require 6-8x fewer
samples than non-adaptive sampling to achieve the same emor.

1 Introduction

Consider an algorithm that can draw iLid. samples from K unknown distributions. The goal is
io partially rank the distributions according to their (unknean) means. This mode]l encompasses
many problems including best-armes identification (BAL in multi-armed bandits, noisy sorting and
ranking. and outlier detection. Partial ranking is often prefermed to complete ranking because comectly
ordering distributbons with nearly equal means is an expensive task (in terms of number of equired
samples). Mormover, in many applications it is arguably unnecessary to resolve the onder of such
close distributions. This observation motivates algorithms that aim to recover a partial ordering of
groups of distributions having similar means. This entails identifying large “gaps” in the ordered
sequence of means. The focus of this paper is the fundamental problem of finding the larges pap by
sampling adaptively. ldentification of the largest gap separaies the distributions into beo groops, and
recursive application can identify any desired number of groupings in a partial order.

As an illustration, consider a subset of images from the Chicago streetview dataset [[[7] shown in
Fig.m In this study, people were asked to judge how safe each scene looks [[TE], and a larger mean
indicates a safier looking scene. W hile each person has a different sense of how safe an image looks,
when aggregaied there are clear trends in the safety scomrs {denoded by ) of the images. FJg.lIl
schematically shows the distribution of scoms given by people as a bell curve below each image:
Assuming the sample means are close to their frue means, one can nominally classify them as “safie’,
‘maybe unsafe” and ‘unsafe” as indicated in Fig. Hem we have implicitly used the large gaps
[8yzy — My and fig gy — piigy o mark the boundarics. Mote that finding the saficst image (BAI) is hard as
we need a lot of human responses to decide the larger mean bebween the bvo rightmost distribotions;
it is also arguably unnecessary. A common way to address this problem is to specify a tolerance € [T].

= Authors contribuied equally and are listed alphabetically.

Approved for Public Release; Distribution Unlimited.
26



i!ﬂ ﬁ BP0 P

AN AN
I'I'rl1 |"1 I"m Hay E— Hz B safety
unsafe ! maybe unsafe ke ;afgm ACOTE

Figure 1: Six rmpresentative images from Chicago streetv iew dataset and their safety (Borda) scones.

and stop sampling if the means are less than € apart; however determining this can require {31/62)
samples. Distinguishing the top 2 distributions from the rest is casy and can be efficiently done
using top-me arm identification , however this requires the experimenier to prescribe the location
m = 2whem a large gap exists which is unknown. Auwomarically idenrifving narmral splits in rhe
ser of distribusions s the aim of the new theory and al gorithms we propose We call thiz problem of
adapiive sampling fo find the largest pap the MaoGap-bandis problem

L1 ™Notation and Problem Statement

We will use multi-armed bandit iermminology and notation throughout the paper. The K distributions
will be called army and drawing a sample from a distribution will be refered to as sampling the arm.
Let iy £ B denote the mean of the i-th amm, i € {1, 2, .. FI'.'}_[F.'] W:addnpar:nlh:sismund
the subscript § to indicate the j-th largest mean, ie. .I'-l[a'] = Biw-1y =00 = Py For the i-th arm,
we define its gap Ay to be the maximum of its keft and nglugnps iz,

Ay = mex{pg — By, By — Bl where po= pg. iy

We define jgp) = —oo and iy 1) = oo 0 account for the fact that extreme arms have only onc gap.
The goal of the MaxGap-bandit problem is to {adaptively ) sample the arms and retun two clusters

€y ={(1),(2),....(m)}} and Cy={(m+1),....(K)}
whem m is the rank of the arm with the largest gap between adjecens means, ic.,
= ACMEMAX () — Bif+1)- (2)
Jelr-1]
The mean values are unknown & is the ordering of the amms according to their means. A solution (o
the MaxGap-bandit problem is an algorithm which given a probability of ermor § = 0, samples the
arms and upon stopping partitions K] into two clusters Cy and Cz such that

P, #£Cy) < & 3

This setting is known as the fixed-confidence setting [10], and the goal is to achieve the probably
correct clustering using as fow samples as possible. In the sequel, we assume that mis anigueely
defined and ket Apyy = Ay where . = fijm)-

L2 Comparisen to a Nabve Algorithm: Sort then search for MaxGap

The Max Gap-bandit problem is not equivalent to BAT on (% ) gaps since the MaxGap-bandit problem
requires identifying the largest gap between adjacens arm means (BAI on {K] gaps would always
identify ppy — sy as the largest gap). This suggests a naive two-step algorithm: we first sample
the arms enough number of Gmes so as to identify all pairs of adjacent arms (ie., we sort the arms
according to their means). and then run a BAT bandit algorithm on the (K — 1) gaps between
adjaccnt arms to identify the largest gap (an unbiased sample of the gap can be obizined by taking the
difference of the samples of the two anms forming the gap).

W analyze the sample complexity of this naive algorithm in A ppendix |A), and discuss the resulis
hene for an example. Consider the amangement of means shown in Fig. E[w there is one larpe gap

Supgy and all the other gaps ane equal to Amin <€ Amax. The naive algorithm’s sample complexity is
QK /A2 ), as the first sorting siep requires these many samples, which can be very large.
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Is this sorting of the arm means necessary? For in- X4 X000 X LR
stance, we do not need to sort K real numbers in A T

order to cluster them according to the largest gaplﬂ

The algorithms we propose in this paper solve the Figure 2 Arm means with one large gap.
MaxGap-bandit problem without necessarily sorting

the arm means. For the configuration in Fi_g.m:jr require O(K /A2 ) samples, giving a saving of
approximately | Amax /Amin)* samples.

The analysis of our algorithms suggests a novel hardness parameter for the MaxGap-bandit problem
that we discuss next. We let Ay y = py — pgy forall i, j € [K]. We show in Section[5that the number
of samples taken from distribution 1 duee to its right gap is inversely proportional to the square of
N = J;Eﬁnmm {ﬂl,_'l » &max — ﬂu,_f} . 4
For the left gap of i we define *:.'{ analogously. The total number of samples drawn from distrnbution
i is inversely proportional to the square of 4 := min{+],7{}. The intuition for Eqg. is that
distribution 1 can be eliminated guickly if there is another distribution § that has a moderately large
gap from i (50 that this gap can be guickly detected), but not too large (50 that the gap is easy to
distinguish from Ao, ). and @ chooses the best j. We discuss () in detail in Section[5] where we
- -3 .
show 1.J'|a1uu.1'alg-.:mﬂ1rm s LE‘E'K:.’I{[m":I:m+1]r £ lug{H'f&':r.]] l.ampb:s to find the larpest
gap with probability at least 1 — & This sample complexity is minimax optimal

L3 Summary of Main Resulis and Paper Organization

In addition to motivating and formulating the Max(Gap-bandit problem, we make the following
contributions. First, we design elimination and UWCB-style algorithms as solutions to the MaxGap-
bandit problem that do not reguire sorting the arm means (Section Er These algorithms require
computing upper bounds on the gaps Ay which can be formulated as a mixed inte ger optimization
problem. We design a computationally efficient dynamic programming subroutine to solve this
optimization problem and this is our second contribution {E:a:'t'u:-uﬂl. Third, we analyze the sample
complexity of our proposed algorithms, and discover a novel problem-hardness parameter lS-r.-:I:innEﬁ.
This parameter arise s because of the armm ineractions in the MaxGap-bandit problem where, in order
to reduce uncertainty in the valee of an anm’s gap, we not only need to sample the said arm but also
its neighboring arms. Fourth, we show that this sample complexity is minimax optimal {Section
Finally, we evaluate the empirical performance of our algorithms on simulated and real datssets and
observe %al they requine G-8x fewer =amples than non-adaptive sampling to achieve the same emor
(Section |T).

2 Related Work

Omne line of related research is best-amm identification {BAT) in multi-armed bandits. A typical goal
in this seiting is to identify the top-m arms with largest means, where m is a prespecified number
5] [T&] [ E @ E 14 [7] FO). As explained in Section m|:u.r maotivation behind formulating the
MaxGap-bandit problem is to have an adaptive algorithm which finds the “natural” set of top arms as
delineated by the largest gap in consecutive mean values Our work can also be used to automatically
detect “outlier” arms [Z3].

The Max Gap-bandit problem is different from the standard multi-armed bandit because of the local
dependence of an arm's gap on other arms. Ciher best-arm settings where an arm'’s reward can
inform the quality of other arms include linsar bandits [23] and combinatorial bandits 5111}, In
these problems, the decision space is known to the keamer, ie., the vectors comesponding to the
arms in lincar bandits and the subsets of anms over which the objective function is to be optimized in
combinatorial bandits is known to the learner. However in our problem, we do not know the soried
order of the arm means, ie., the set of all valid gaps is unknown a priore. Owr problem does not
reduce to these settings.

'First find the smallest and largest numbers, say o and b respectively. Divide the interval [, B into K+ 1
equal-width bins and map each number to its comesponding bin, while maintaining the smallest and largest
numhber ineach bin. Since at keast one bin is empty by the pigeonhol: principle, the largest gap is betwean wo
numhers balonging to different bins. Calculate all gaps between bins and clasier based on the targest of those.
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Another related problem is noisy sorting and ranking. Here the bypical goal is to sort a list using noisy
pairw ise comparisons. Our framew ork encompasses noisy ranking based on Borda scores [I). The
Borda scome of an item is the probability that it is ranked higher in a pairwise comparison with another
item chosen uniformly at random. In our setting, the Borda scome is the mean of each distribution.
Much of the theomtical compuier science literature on this topic assumes a bounded noise model
fior comparisons (ie.. comparisons are probably cormect with a positive margin) [Bl[6] Z][Z1). This is
unrealistic in many real-world applications since nearequals or ouiright ties are not uncommon. The
largest gap problem we study can be used to (partially ) order ilems into two natural groups, one with
large means and one with small means. Previous related work considered a similar problem with
prescribed {non-adaptive) quantile growpings. [TE].

3 MaxGap Bandit Algorithms

We propose elimination [[7]] and UCE [[[3] style algorithms for the MaxGap-bandit problem. These
algorithms operate on the arm gaps instead of the arm means. The subroutine o construct confidence
intervals on the gaps {denoted by Ul () using confidence inkervals on the arm means (denoied
by [lalt), ra(t)]) is described in Algorithm[4]in Section[d] and this subroutine is used by all three
algorithms described in this section.

Al Elimination Algorithm: MaxGapElin

At cach ime siep, MazCapElin {A]gm‘iﬂmm samples all arms in an active set consisting of arms o
whose gap upper bound Ul, is larger than the global lower bound LA on the maximom gap, and stops
when there are only bao arms in the active set

Algorithm 1 MaxCapElim
I: Initialire active set A = [K)

L fore=1,2 ... do £ roumals
3 Vae A, sample arm @, compute [I;(t), ro(t)] using @l Sarm confidence fmrervaly
4 VYac A compuie DA (t) using Mgc-r]thmﬁ & wpper bowund on arm max pap
5  Compute LA(E) using {9). & lower bownd on max pap
& Yac A WUA () < LE(t), A = A o & Eliminarion
T: If |A| = 2, stop. Retum clusters using max gap in the empirical means. & Sropping condirion

i UCE algorithms: MaxGapUCE and MaxCGapTop2UCE

MaxCapllCE fA]gm'lthmE} i motivated from the principle of “optimizm in the face of uncertainty™.
It samiples ail arms with the highest gap upper bound. MNote that there are at least bwvo arms with the
highest gap upper bound because any gap is shared by at least bavo arms (one on the right and one on
the left). The stopping condition is akin to the stopping condition in Jamieson et al L

Algorithm 2 MaxGapUCE
I: Initialire I{ = [K].
L fore=1,2 ... do
% Va e U, sample a and updaie [la(t), ra(t)] using {5).
4:  ¥a e [K]. compute TAq(t) using Algorithm
5 Let My{t) = maxy ) Uby(t). Setld = {a:Ub(t) = My(t)}. & highess gap-UCB arms
& If 34, 7 such that ’E, () + ‘f_,{t:l =8 Ene‘lu‘] T,(t). stop. & mopping condirion

Alternatively, we can use an LUCH [T6]-type algorithm that samples armms which have the two highest
gap upper bounds, and stops when the second-largest gap upper bound is smaller than the global
lower bound LA() . We refer to this algorithm as MaxGapTop2UCE M]gcu‘lthm@].
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Algorithm 3 MaxCapTop2UCE
I: Initialize I4; Ul = [K].
Zfort=1,2 ... do
% Va el Ull, sample a and update [l(t), ry(t)] using (5).
4 Wa e [K], compute TAg(t) using Algorithm
5 LetMy(t) = meox. g Uby(t). Setldy = {a: U(t) = My{t)}. # highess gap-UCE arms
&
7

Let My(t) = maxy. gpey, Wy(t) Setlly = {a : Uby(t) = M3it)}. # 2nd highest gap-UCB
Compute LA(¢) using (9). If M={t) = LA{t). stop.

Alporithm 4 Procedurs to find U (t)

I: Set PT = [i: (1) € [I5(t), ralt)]]-
2 TAL(E) = s [G(L(t), 1)} where GR(z,t) is given by (7). & egn
3 Set P o= {i:wlt) € [La(e), ralt)]].
4 TaL(e) = i {GLiry(2), t) }, wheme Gi(z, ¢} is given by {(19). & eqn. [20)

5 return Ul (t) +— max{UAS(£), UAL ()]

4 Confidence Bounds for Gaps

In this section we explain how o constrect confidence bounds for the arm gaps (denoted by U8,
and L&) using confidence bounds for the arm means (denoted by [lg, ro]). These bounds ane key
ingredients for the algorithms described in S-.'.v.".t'u:u'JEr

Given Lid. samplks from arm o, an empirical mean j§, and confidence inkerval on the arm mean
can be constructed using standard methods. Let Ta(t) denote the number of samples from arm a
after ¢ ime steps of the algorthm Throughowt our analysis and experimentation we wse confidence
intzrvals on the mean of the form

) . [ ey
la(t) = fra(t) — ey o) and ra(t) = falt) + or gy, whem £s =4/ ﬂﬂ'm;;ml (5)
The confidence inkervals are chosen so that
P(Wte N Va e [K],pg € [la(t), ralt)]) = 1 - & (6)

Conceptually, the confidence iniervals on the armm means can be wsed to construct upper confide nce
bounds on the mean gaps { A, ]!F.IH'I in the following manner. Consider all possible configurations
of the arm means that satisfy the confidence interval constraints in EP Each configuration fixes
the gaps associsted with any arm a < [K]. Then the maximum gap value over all configurations
15 the upper confidence bound on arm a’s gap; we denode it as Uh;. The above procedure can be
formulated as a mixed integer linear program (see Appendix [B.T). In the algorithms in Section
this optimization problem needs to be solved at every time ¢ and for every arm o © [K] before
gquerying a new sample. which can be practically infieasible. In Mgc-r]lhmEl we give an efficient
(MK *) time dynamic programming algorithm to compuie UA;. We next explain the main ideas used
in this algorithm, and refer the reader to Appendix [BZ]for the proofs.

Each arm o has a right and left gap, Af := pp 1y — iy and Al = Bigy — Byes1y. whem £is the
rank of a, ie., fig = pigy)- We construct scparaie upper bounds UA7 () and UA; (t) for these gaps and
then define Thg () = masx{UAL(t), UAL(t) ). Hem we provide an intuitive description for how the
bounds are computed, focusing on TAL () as an example. To start, suppose the true mean of am a is
known ex actly, while the means of other arms are only known to lie within their confidence intervals,
If ther axist arms that cannot go to the left of arm a. one can ses that the larpest right gap for a is
obtained by placing all arms that can go to the left of @ at their lefimost positions, and all remaining
arms ai their rightmost positions, as shown in ﬁg.@a’:. If however all arms can go to the kefi of
arm 4, the configuration that gives the largest night gap for 2 is obtained by placing the amm with the
largest upper bound at its right boundary, and all other arms at their left boundaries, as illustrabed in
Flg.@b}. We define a function (5 (=, t) that takes as input a known position = for the mean of arm a
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Figure 3: Computing maximum right gap of blee arm when its troe mean is knoan (at position
indicated by blue x}, while the other means are known only o lie within their confidenoe intervals
(@} If there exist arms that cannod go to the left of blee (red, green, purple), the largest right gap for
blue is obtained by placing all arms that can go to the lefit of blue at their lk2fi boundaries and the
remaining arms at their rightmost positions. (b} If all arms can go to the kefit of blue, the largest right
gap for blue is obtained by placing the arm with the largest right confidence bound (purple) at its
right boundary and all other arms at their left boundaries.

and the confidence intervals of all other arms at time &, and retums the maximum right gap for amm a
using the above idea as follows.

Co(z.t) = {m“::f:trxn ri) —x W {00 >z} £ 0, .

MAXyq Fy(t) — T otherwise.

However, the true mean of arm a is not known exactly but only that it lies within its confidence
intzrval. The insight that helps here is that 5 (. ) must achiove its maximum when T is ab one of
the finite locations in {[,(t) : L(t) < I;(t) < ra(t)}. We define Py = {5 : L;(t) < [;(t) < ra(t)}
as the st of arms relevant for the right gap of @, and then the maximum possible right gap of a is

Uhg(t) = max{GL{ly(t),¢) - j € Fg}. (%)

An upper bound for the left gap UAL can be similarly obtained. We explain this and give a proof of
comectness in Appendix

The algorithms also use a single global lower bound on the maximum gap. To do so, we sort the iems
according o their empirical means, and find partitions of items that are clearly separaied in terms
of their confidence intervals. At time £, let (i), denote the arm with the :'“’-Ia:gﬁl. empirical mean,
ie., figgy, (t) < .. iy, (t) < fig), (t) (this can be different from the true ranking which is denoted
by (-) without the subscript t). We derear a nonzero gap at arm k if maxg: 1), 05 Talt) <
Wilge {(1),,...ck) } Lalt). Thus, alower bound on the largest gap is

LA&(t) = max ( min Iait) — ITAX ru{r,]J . (k]
BElH -1 yas {1}, k). ] aE (k41 (K B
5  Analysis

In this section, we first state the accuracy and sample complexity guarantees for MaxGapElim and
MaxCapllCE, and then discuss our results. The proofs can be found in the Suppleme ntary material

Theorem 1. Wirh probabiliry 1| — & MaxGapElim MaxGaplUCE and MaxGapTopZUCE cluser rhe

arms according ro the maximum gap, Le., they sarisfy (§)

The number of times arm a is sampled by both the algorithms depends on 4y = min{~%, +f] where
r_ in{Ag 4. - 1o

Ta = A min{Ag 5. (Amax — Bayll (10)

P .

T8 = o yn A min{ Ay (Amax — Agalk.- (n

The maxima is assumed to be oo in (T} and (TT] if there is no j that satisfies the constraint to account

for edge arms. The quantity e acts 85 a measure of hardness for arm a; Thmmst.al:.li that

MaxGapElim and MaxGaplICB sample arm o at most O 1 /2] number of times (up to log factors).
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Theorem 2. Woh probabilicy 1 — 4, the sample complexiy of MaxGapElin ard MaxGapUCE i
bonnded by

K /ovg)
o >

as |k [ {(m),{m+1)]
Next, we provide intuition for why the sample complexity depends on the parameters in (10) and (L))

In particular, we show that ({7 )~ (resp. Q{51 %)) is the number of samples of a required to
mule out armoa's right (resp. lefit) gap from being the largest gap.

Let us focus on the right gap for simplicity. To B Fe Wy K
understand how {10) naturally arises, consider - NI P
Fig.[#] which denoles the confidence intervals ‘ )

on the means at some time & A lower bound Lam T ualm

Eﬂﬁdgxh[;ﬂgigxuﬁ mm:} ET; ;J“'f Figure 4: Arm a = T is eliminated when a helper
11 respectively as shown. Consider the com- 2m J = 4 is found.

putation of the upper bound UAT(t) on the right gap of arm o = 7. Arm 4 lies to the rfght of
arm 7 with high probability {unlike the arms with dashed confidence intervals), so the upper bound
UAZ(t) < ry(t)—I;(t). Considering only the right gap for simplicity, as soon as UAT(t) < LA(t),arm 7
can be eliminaied as a candidate for the maximum gap. Thus, an amm @ is removed from consideration
&= soon a5 we find a kelper arm § (arm 4 in Fig@lhat safisfies bwo properties: (1) the confidence in-
terval of arm j is disjoint from that of arm a, and (2) the upper bound UAJ () = ry{t] —l5(t) < LA{t).
The first of these conditions gives rise to the term Ay 4 in (IT). and the second condition gives rise to
the term (Amay — g ). Since any arm j that satisfies these conditions can act as a helper for arm a.
we take the maximum over all arms § to yield the smallest sample complexity for am a.

This alsp shows that if all arms are either very close to g or at a distance approximately Ao from a,
then the upper bound UAZ(t) = ry(t) — I7(t) = LA(t) and arm 7 cannot be eliminated. Thus arm o
could have a small gap with respect to its adjacent arms, but if thene is a large gap in the vicinity of
arm 4, it canmot be eliminated quickly. This illustrates that the maximum gap identification problem
15 not equivalent to best-arm identification (BA L) on gaps. Section @funmlizcs thiz infuition.

Rey Differences compared to BAL Analysis: The analysis of MaxGapllCB is very different from
the standard UICH analysis. On a high-level, in BAL the number of samples of a sub-optimal arm 1 is
bounded by observing that
Amiis pulled =+ g + o0y = e+ By = By B By

=+ 2emy F By — By = Ay (12)
The last inequality direcriy bounds the number of samples Ty(t) of a sub-optimal arm 4. In MaxGaplUCE,
the gap upper bound is obtained wsing the confidence intervals of bwo anms, and the fact that a sub-
optimal gap (4, ) has the highest gap-UCE implics that

(pg + 2ep,00) — (0 — 2eqy00) = (g + oryn ) — (B — 2o7y0) = Amax
=+ oryy + oryg) = Amax — Agy.

Thus unlike the reasoning in . the number of samples from arm i is coupled to the numbser of
samples from arm §. and Ty{f}) — o if  is not sampled enough. We show in our analysis that this
carmoi happen in MaxGaplCR. Furthermore, any arm § is coupled with multiple other arms since
the ordering of the arms is unknown, and may have to be sampled even if its own gap is small - a
phenomenon absent in standard HAT analysis because of the independence of the arm means. In our
proof, we account for all samples of an arm by defining states the arm can belong to (called levels),
and arguing about the confidence infervals of the arms in unison.

6 Minimax Lower Bound

In this section, we demonstrate that the MaxGap problem is fundamentally different from best-arm
identification (BA L) on gaps. We constmact a problem instance and prove a lower bound om the number
of samples needed by any probably correct algorithm. The lower bound matches the upper bounds in
the previous section for this instance.
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Lemma 1. Consider @ model B wirh K = 4 normal disribuions Py = N, 1) where

-r"-1|=n: Hz = E, F2=H+EE1 I.I|_=2I-"+2E
Jor some ¥ % € = (L Then any algorihm thar iz correcy wich probabiliry ar leass 1 — 8 mus collec
£(1/*) sampies of arm 4 in ecpecarion

Proaf (hauline: The uses A standard change of P TP iz iy
measure argument |10). We construct another prob- I e B
lem instance B' which has a different max imom gap " ‘5..“_ v *
clustering compared to B (see Fig. |5] the maxgap & - -wf -- - -
clustering in B is {4,3} U {2, 1}, while the maxgap t Lle il Iyt 2

clustering in B is {4, 3,2} U {1}), and show that in  Figure 5: Changing the original bandit model
order to distinguish between B and B', any proba- B o B, juy is shified to the right by 216 As
bly correct algorithm must collect at least {3{1/6) 3 psult, the maximum gap in B is between
samples of arm 4 in expectation (see Appendix(B{for  green and purple.

details). From the definition of s using (TO).(TT). it

is easy to check that vy = & Therefore, for problem instance B our algorithms find the maxgap
clustering using at most O(log(e/§)/e?) samples of arm 4 {cf Theorem|2). This essentially matches
the lower bound above.

This example illustrates why the maximum gap identification problem is differsnt from a simple BAI
on gaps. Suppose an oracle told a BAT algorithm the ondering of the arm means. Using the ordering
it can convert the 4-arm maximum gap problem B to a BAT problem on 3 gaps, with distributions
Paa=N(g2)., Pz = N+ e2), and Poy = N1, 2). The BAT algorithm can le arms §
and i + 1 to get a sample of the gap (i + 1,1). We know from standard BAI analysis that the
gap (4, 3) can be eliminated from being the largest by sampling it (and hence arm 4) O(1 /1) times,
which can be arbitrarily lower than the 1/¢? lower bound in L:l:nmam Thus the ordering information
given to the BAI algorithm is crucial for it to quickly identify the larger gaps. The problem we solve
in thi= paper is identifying the maximum gap when the ordering information is mor available.

7 Experiments
We conduct three experiments.  First, we verify the validity of our sample complexity bounds
in Section We then study the performance of our adaptive algorithms on simulated data in

Section [J.2] and on the Streetview dataset in Section[7.3] The code for all experiments is publicly
available T19].

7.1 Samplke Complexity

mﬁg.ﬁh}mdFlg.Ec].wcp]ntrh:cmpiri- XAKKK  KAKKK W K

B

1 ()

cal stopping time against the theonetical samiple &
complexity (Theorm[2) for different arm con- !
figurations. We choose the arm configuration

in Fig.[5{a) containing K = 15 arms and three
unique gaps - 2 small gap As and two large gaps

By = Aq = Apge = (L4 The hardness param-

eter is changed by increasing Ay (from 0035 o (b)
(.39} and bringing it closer to A, The rewards

are normally distributed with o = (L05. We see

a lincar elationship in Fig. jib) which sugpests that the sample complexity expression in 'l'l:mtmEEils
cormect up o constants. In E.Ec}wc include random sampling and see that our adaptive algorithms
require up to Sx fewer samples when run until completion. Fig. [Bc) also shows that our adaptive
algorithms alway s outperform random sampling, and the gains increase with hardness. We used a
lower bound based stopping condition for Random, Elimination, Top2UCE, and set o = 5 in the
UCB stopping condition (value of ¢ chosen empirically as in [T3]).

A
=
T T M e

Figur &: Stopping time experiments.

=, ke b R

7.2 EBimulated Data

In the second experiment, we stady the performance on a simulated set of means containing two larpe
gaps. The mean distribution plotted in Flg.a]l has K = 24 arms (A(-, 1)}, with teo large mean
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Figure 7: (a) Two large gaps. (b} Clustering error probability for means shown in Flg.ma}. {c) The
profile of samples allocated by Max GapUCE tocach arm in (a) at different time seps.

gaps Ayp g = 0.98, Ayg 1y = 1.0, and emaining small gaps (A, ; = 0.2 ford ¢ {9, 18}). We
expect to see 2 big advantage for adaptive sampling in this example because almost every sub-optimal
arm has a helper arm (see Section[5) which can help eliminate it quickly, and adaptive algorithms can
then focus on distinguishing the two large gaps. A non-adaptive algorithm on the other hand would
continue sampling all arms. We plot the fraction of times O} # {1,..., 18} in 120 runs i.l'lFlg.EI]}]-
and see that the active algorithms identify the largest in §x fewer samples. To visoalize the
adaptive allocation of samples to the arms, we plot in Fig. [7[c) the number of samples queried for each
arm at different ime sieps by Max GapUCE. Initially, Max GapUCE  allocates samples uniformily
ower all the arms. A fier a few time sieps, we soe a bi-modal profile in the number of samples. Since
all arms that achieve the largest UA ar sampled. we see that several arms that are near the pairs (10, 9)
and (19, 18) are also sampled frequently. As time progresses, only the pairs (10, 9) and (19, 18) get
sampled, and eventually more samples are allocated to the larger gap (19, 18) among the two.

T.3 Sireetview Dataset

B
=

For our third experiment we study performance on the p;m-m:r -
Strectview dataset whose m:ama:l: plotted in Fig. [Ba). i)

Wi have K = 90 arms, whene each arm is a normeal distribution o T Randen
with mean equal to the Borda safety score of the image and stan- = g
dard deviation & = (.05, The largest gap of (L0 is betwesn %M —+ Tagauce
arms 2 and 3, and the second largest gap is (L024. In Flg.H_'b}, £
ucplulﬂ:ﬁ’anﬁunnftinﬁlj]gé{l,ﬂ}in 120 runs a5 & _%M

function of the number of samples, for four algorithms, viz., S

random {non-adaptive) sampling, MaxGapElie, MaxGapliCE, o

and MaxGapTop2UCE. The ermor bars denote standard deviation (b % st e gsas oo

. Fhavples
ower the runs. MaxGaplCB and MaxGapTop2UCE require G-Tx Figure & (1) Borda safety scoms

fewer samples than random sampling. for Streetview images. (b) Proba-
bility of rtuming a wrong cluster.
8 Conclusion

Ini this paper, we proposed the MaxGap-bandit problem: a novel max imum-gap identification problem
that can be used as a basic primitive for clustering and approximate ranking. Our analysis shows
a nowel hardness parameter for the problem, and our experiments show §-8x gains compared to
non-adaptive algorithms. We uwse simple Hoeffding based confidence inkervals in our analysis
fior simplicity, but better bounds can be obtained using tighter confidence intervals [13]. Several
extensions of this basic problem are possible. An e-relaxation of the MaxGap Bandit is wseful when
the largest and second-largest gaps ane close o cach other. Other possibilities include identifying
the largest gap within a top quantik of the arms, or clusiering with a consiraint that the retumed
clusters am of similar cardinality. All of these extensions will likely require new ideas, as it is unclear
how o obtain a lower bound for the gap associated with every amm. Finding an instance-dependent
lower bound for MaxGap-bandit is an intriguing problem. Finally, one way to cluster the distributions
into mone than tvo clusters is to apply the max-gap identification algorithms eoursieely; however it
wiould be inferesting o come up with algorithmes that can perform this clustering directly.
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