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EXECUTIVE SUMMARY

Physics insight gained from computational modeling and simulation (CMS) of additive manufacturing
(AM) processes can help facilitate effective multiscale/multifunctional tailoring of AM parts. However,
accurately capturing the physics of AM with traditional CMS can be costly with respect to resources and
time. The main objective of the work described in this document is to explore projection-based reduced-
order modeling (PROM) as a means to reduce CMS resources and time of the heat-deposition additive
manufacturing physics. The presented PROM framework can be deployed to accelerate multi-query settings,
as seen in design optimization frameworks for the multiscale/multifunctional tailoring of AM-based parts.

E-1E-1
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MULTISCALE/MULTIFUNCTIONAL TAILORING OF PARTS PRODUCED BY
POWDER-BASED ADDITIVE MANUFACTURING VIA DESIGN

OPTIMIZATION INCORPORATING HYPER-REDUCED-ORDER MODELING

1. RESEARCH SUMMARY

The research effort objective of this Karles Fellowship programwas to leverage projection-based reduced-
order modeling (PROM) to reduce computational costs and associated compute time to simulate additive
manufacturing heat-deposition processes. The efforts under this fellowship resulted in two major contribu-
tions: 1) the development of a novel mathematical framework, the projection-tree reduce-order modeling
(PTROM) methodology, that drastically reduces cost and compute-time of computational modeling and
simulations (CMS) in nonlocal meshless frameworks; and 2) the first reported application of PROM with
smoothed particle hydrodynamics for additive manufacturing CMS. This report is structured as follows.
Section 2 introduces the smoothed particle hydrodynamics method from an overhead perspective and within
the physics context of additive manufacturing. Next, Section 3 introduces the PROM mathematical frame-
work employed under the current fellowship, namely the least-squares Petrov–Galerkin method equipped
with hyper-reduction. Section 4 showcases the deployment of the PROM on four separate heat-deposition
numerical experiments under a reproducible setting. Section 5 provides conclusions and outlook of the
research developments under the current Karles Fellowship program. Finally, it is important to highlight that
the PTROM was an auxiliary development and its details are out of the scope of this report. However, the
PTROM is briefly discussed in Appendix A.

2. SMOOTHED PARTICLE HYDRODYNAMICS

Smoothed particle hydrodynamics (SPH) has recently been adopted by several disciplines in the sciences
and engineering. Recent works have employed SPH to model dark-matter halos, free-surface fluid-structure
interactions, and additive manufacturing, among many other applications [1]. The SPH framework is based
on a nonlocal meshless formulation used to discretize a continuum with a set of discrete particles [2, 3]. A
brief overview of the method is now introduced.

2.1 Smoothed particle hydrodynamics formulation

The SPH formulation relies on the following representation of a function in integral form,

f (r) =
∫
Ω

f (r ′)δ (r − r ′) dV ′ (1)

such that r, r ′ ∈ R3, dV ′ ∈ R+ is a differential volume element, Ω is the volume of the integral in Eq. 1
containing r , a position vector in Cartesian space with coordinates x, y, z ∈ R, and where

δ(r − r ′) =

{
1, r = r ′

0, r , r ′
(2)

Manuscript approved January 23, 2022.
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2 Steven N. Rodriguez

is the Dirac delta function. The SPH framework approximates Eq. 1 by the following expression,

f (r) ≈ 〈 f (r)〉 :=
∫
ΩS

f (r ′)W (r − r ′, h) dV ′, (3)

with a smoothing kernel W (r − r ′, h) ∈ R, that exists over a finite domain ΩS , where h ∈ R+ is defined as
the smoothing length of the kernel (i.e., the radius of the finite domainΩS), and where the brackers 〈〉 denote
an approximation of a function by SPH convention. A specific kernel will be introduced later in Section
2.2. Next, the SPH framework approximates Eq. 3 by a summation of Lagrangian particles, such that the
differential volume element can be represented over a collection of infinitesimal particle volumes Vj =

m j

ρ j
,

where mj, ρj ∈ R+, and the resulting approximation is expressed by

〈 f (r)〉 ≈
Ni∑
j=1

f (r j)W
(
r − r j, h

)
Vj . (4)

Here, Ni ∈ N is the number of neighboring particles in the finite domain ΩS of the ith particle of interest.
Neighboring particles are denoted with the subscript j. Also, the set of Ni neighboring particles is defined
by Ni ≡ N(Ni) where N(Ni) := {1 . . . Ni}, such that j ∈ Ni. Note that Ni ⊆ N , where N ≡ N(N) and
N ∈ N is the total number of particles, and i, j ∈ N . Finally, differentiation of a function within the SPH
formulation is represented as follows [2, 3]:

〈∇ f (r)〉 ≈ −
Ni∑
j=1

f (r j)∇W
(
r − r j, h

)
Vj, (5)

where ∇ := { ∂∂x ,
∂
∂y ,

∂
∂z } is the three-dimensional Cartesian gradient operator.

2.2 Modeling and simulating additive manufacturing

The work performed under the Karles Fellowship program concerned a heat-deposition problem emu-
lating AM processes, and modeled the heat equation with temperature-dependent density ρ(u), temperature-
dependent conductivity k(u), and temperature-dependent specific heat cν(u)

ρ(u)cν(u)
du
dt
= ∇ · (k(u)∇u) +Q, (6)

where u ∈ R denotes temperature. Temperature dependence of material properties is implied for notational
simplicity throughout the remainder of this paper, and so the temperature argument is suppressed, such that
ρ ≡ ρ(u), cv ≡ cv(u), k ≡ k(u), and heat diffusivity α := k/ρcν. Here, t ∈ [0,Tf ] corresponds to time, where
Tf ∈ R+ is the final time considered and Q is internally generated heat density source term.

Equation 6 can be represented in the SPH formulation by employing the approximations introduced in
Section 2. The resulting temperature-dependent heat equation in SPH form, as presented in [4], is expressed
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as follows:

ρicν,i
dui
dt
=

Ni∑
j=1

mj

ρj

4kik j(
ki + k j

) (ui − u j)
ri j

r2
i j

· ∇Wi j + ρi
qiAi

mi
. (7)

In this work, the Wendland smoothing kernel [2] is employed and is expressed as

Wi j(s, h) :=
1
πh3


1 − 3

2 s2 + 3
4 s3, 0 ≤ s ≤ 1

1
4 (2 − s)3 , 1 ≤ s ≤ 2
0, otherwise.

(8)

Here, ri j := ri − r j , ri j := ‖ri, j ‖2, where ri and r j ∈ R
3 are defined as the position vectors of a particle i

and j, respectively, in Cartesian space; and s := ri j/h. The mass of particle i is defined by mi := (ρV) /Np,
where V ∈ R+ is the total volume of the numerical domain under consideration. Next, Ai represents the
fixed square area that is encompassed by the particle, i. In the current work, the heat flux is applied on
the x − y plane and so the particle area is also in the x − y plane. The resulting particle area definition is
Ai := ∆x∆y, where ∆x,∆y ∈ R+ are predefined distances between the center of particles in the x and y

directions for the current work [4]. Note that for boundary particles Ai := 1
2∆x∆y and for corner particles

Ai := 1
4∆x∆y. The definition of the area encompassed by a particle is simplistic but sufficient for the current

work, as the particle positions remain fixed and result in simple geometries of AM components. However, a
more general approach for complex geometries with deforming domains could be adopted to define the areas
encompassed by particles as presented in [4]. Finally, the heat-flux, qi ∈ R+, applied on particle i is defined
by the following spatial Gaussian distribution,

qi :=
q0

2πσ2 e
−(x̄2

i
+ȳ2

i
)

2πσ2 , (9)

where q0 ∈ R+ is the heat deposition power, andσ ∈ R+ is a width distribution parameter. Here, x̄i := xi+tvx
and ȳi := yi + tvy correspond to the surface location of the heat-deposition, where vx, vy ∈ R are the velocity
components of the heat-deposition path. An illustration of the heat-deposition problem discretized with SPH
is presented in Fig. 1.

Laser

MeltpoolSolidified layer

Powder layer

Scan direction

Fig. 1—Two-dimensional illustration of a heat-deposition process over a stainless steel
powder-bed
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The governing SPH equations are now restructured in semi-discrete vector form, which is an important
structure to appropriately define PROM operations in the next section. Here, Eq. 7 is reorganized such that

dui
dt
= fi (10)

where

fi :=
1

ρicν,i

N∑
j=1

mj

ρj

4kik j(
ki + k j

) (ui − u j)
ri j

r2
i j

· ∇Wi j +
qiAi

cν,imi
. (11)

Then, the collection of SPH particles and their temperature dynamics can be expressed by the following
ordinary differential equation (ODE)

du
dt
= f (u, t; µ), u (0, µ) = u0(µ), (12)

where u := {u1,u2, . . . uN }
T , f := { f1, f2, . . . fNp }

T , and where T is the transpose operator. Here, u :
[0,TF ] × D → RN denotes the time-dependent parameterized state, which is implicitly defined as the
solution to the SPH transient heat ODE presented in Eq. 12, with parameters µ ∈ D. Here, D ⊆ Rnµ
denotes the parameter space of nµ parameters, and x0 : D → RN is the parameterized initial condition.
Here, f : RN × [0,Tf ] × D → R

N , which denotes the temperature-rate vector that includes heat diffusion
and applied heat deposition. Note that the parametric vector, µ, in the current work denotes heat-deposition
power (q0) and path velocity vx and vy .

Remark 2.2.1 The current application of the SPH framework depends on a static particle domain, i.e., a
Lagrangian domain that does not deform. The fixed particle domain allows the gradient of the kernel and
a list of neighbors for each particle within the smoothing length to be precomputed. The precomputed
neighbor list is stored in a data structure Ξ, such that Ξi ≡ Ni and |Ξi | = Ni. Furthermore, the precomputed
smoothing kernel gradient is denoted by ∇W(Ξ), such that ∇W(Ξi) ≡ ∇Wi j(s, h).

The semi-discrete SPH ODE in Eq. 12 can be discretized in time by a linear multistep scheme, where in
residual form it could be stated as:

rn (un; µ) = 0, n = 1 . . . Nt (13)

where the superscript n designates the value of a variable at time step n ∈ N(Nt ), Nt ∈ N denotes the final
number of time steps taken, and N(Nt ) := {1 . . . Nt }. The time-discrete residual r : RNp × D → RNp is
defined as

rn : (ξn; ν) 7→ α0ξ
n − ∆tβ0 f (ξ

n, tn; ν) +
k̆∑
j=1

αju
n−j − ∆t

k̆∑
j=1

βj f (u
n−j, tn−j,ν), (14)

where k̆ ∈ N denotes the number of steps in the multistep scheme. The current work employs backward
Euler integration, such that k̆ = 1; α0 = β0 = 1, α1 = −1, β1 = 0. Furthermore, the time step is denoted
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by ∆t ∈ R+ and is considered uniform. Here, uk̆ denotes the numerical approximation to u(k̆∆t; µ), and
ξn ∈ RNp is the unknown state vector that is implicitly solved to explicitly update the state, i.e. un ← ξn.
Finally, the implicit trapezoidal integration employed herein is solved via an inexact Newton method, such
that the Jacobian is updated every pit time-steps, where pit := cn and c ∈ N. It is also important to note
that the current work introduces an inexact temperature rate Jacobian, to compute the residual Jacobian,
where only the diagonal block entries are computed, i.e., ∂ f /∂ξ . This inexact approach is performed to
avoid incurring the additional expense of computing off-diagonal blocks of the temperature-rate Jacobian
that provide negligible contributions to the Jacobian of the residual.

2.2.1 Implementing temperature-dependent material properties

The current work considers 316L stainless-steel temperature-dependent density, heat-conduction, specific
heat, and corresponding heat diffusivity. Equations 15-17 define the expressions for temperature-dependent
behaviors where umelt = 1660.5 K and uboil = 3090 K as presented in [5]. Figure 2 illustrates the corre-
sponding trends of properties as functions of temperature.

k(u) =


9.248 + 1.571 · 10−2u, u < umelt,

12.41 + 3.279 · 10−3u, umelt ≤ u ≤ uboil, W/mK
21.6465, uboil ≤ u.

(15)

cν(u) =

{
458.984 + 0.1328u, u ≤ umelt,

769.855, umelt ≤ u, J/kgK
(16)

ρ(u) =


8084.2 − 0.4209u − 3.8942 · 10−5u2, u ≤ umelt,

7432.7 + 3.9338 · 10−2u − 1.8007 ·−4 u2, umelt ≤ u ≤ uboil, kg/m3

6124.72, uboil ≤ u.

(17)

Even though explicit temperature-dependent functions are defined, the current work implements material
property approximation via linear interpolation of the data generated from Eqs. 15-17 to enable a simplistic
computational architecture to solve the resulting nonlinear SPH temperature-dependent heat equation in Eq. 7.
The material property approximation is performed by a table look-up operation to perform interpolation,
such that

k̄(u) := aku + bk, (18)
c̄ν(u) := aνu + bν, (19)
ρ̄(u) := aρu + bρ, (20)

are the expressions that define the linear interpolation and are the resulting properties substituted into Eq.7.
In other words, k̄(u) ≈ k(u), c̄ν(u) ≈ cν(u), ρ̄(u) ≈ ρ(u), and the coefficients a(·) and b(·) correspond to
coefficients computed via table look-up linear interpolation.
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Fig. 2—Temperature-dependent material properties for 316L stainless-steel.

3. PROJECTION-BASED REDUCED-ORDER MODELING

A review of the projection-based reduced order modeling approach is now presented, where the approach
presented in Refs. [1, 6, 7] is adopted in this work. To enable rapid computations of the nonlinear temperature-
dependent SPH equation, i.e., Eq. 7 or equivalently Eq. 12, the current work projects the high-dimensional
dynamical systems onto a low-dimensional embedding. Here, the projection seeks for an approximate
solution, ũ ≈ u, of the form

ũ(t; µ) = uref(µ) + g(û(t; µ)) (21)

where ũ : R+×D → uref+X andX := {g(ξ̂) | ξ̂ ∈ RM } denotes some trial manifold. Here xref : D → RNp

denotes some parameterized reference state and g : ξ̂ 7→ g(ξ̂) with g : RM → RNp and M ≤ N
denotes a parameterization function that projects or maps the low-dimensional generalized coordinates
û : R+ × D → RM to the high-dimensional approximation, ũ.

The currentwork focuses only on constructing an affine trialmanifold that exist in the Stiefelmanifold, i.e.,
for a full-column-rank matrix,A ∈ Rq×d, the Stiefel manifold is defined byVd(R

q) ≡ {A ∈ Rq×d |ATA =
I}. This affine manifold is expressed as g : ξ̂ 7→ Φξ̂ , where Φ ∈ VM (R

Np ), where the current work
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constructs a POD basis matrix as the mapping operator,Φ. Finally, for the current POD basis, the reference
state can be set as uref = u0(µ), and so the full-order model state vector can be approximated as

ũ = u0 +Φû. (22)

The work presented herein only considers affine trial manifolds. However, future work will look into
implementing nonlinear trial manifolds due to their potential benefits in improving robustness within the
current AM PROM context. In fact, work by Lee and Carlberg [8] suggests that nonlinear manifold LSPG
projection can improve the efficiency and robustness of advection-dominated flows, or transport phenomena,
to overcome Kolmogorov N−width limitations posed by affine projections. Therefore, given that AM is
driven by an advecting heat-source (via heat deposition), it is fitting to incorporate these nonlinear trial
manifolds within a PROM AM setting.

3.1 Dimensionality reduction via proper-orthogonal decomposition

The projection operator, Φ, considered in the current investigation is based on constructing a low-
dimensional basis via the proper orthogonal decomposition (POD). To build Φ, the method of snapshots
is employed, where the singular-value decomposition (SVD) is used to factor the snapshot data matrix
S ∈ RNp×Nt , where

S =
[
u1, u2, . . . , uNt−1, uNt

]
, (23)

and where columns of S represent the time history of the state vector, u. By factoring the snapshot matrix
via the SVD, we obtain

S = UΣVT , (24)

where the left-singular matrix U ∈ VNp (R
Np ), the singular-value matrix Σ ≡ diag(σi) ∈ R

Np×Nt has
diagonal entries that follow a monotonic decrease such that, σ1 ≥ . . . ≥ σNp ≥ 0, and the right-singular
matrix V ∈ VNt (R

Nt ). The POD basis used to build the low-dimensional subspace is constructed by taking
the M left singular vectors of U , such that M � min (Nd,Nt ) where Φ ≡

[
U1, . . . ,UM

]
. Constructing this

POD basis is performed as a training step a priori, before any online simulations are performed.

3.2 Least-Squares Petrov–Galerkin projection

The current work employs a least-squares Petrov–Galerkin (LSPG) projection procedure to evolve the
SPH system of equations in a low-dimensional embedding [6]. The LSPG approach is a time-discrete
residual minimization framework, where the projected state approximation of Eq. 22 is substituted into
the time-discrete residual, Eq. 14, and cast into a nonlinear least-squares formulation. The LSPG method
provides discrete optimality of the residual, rn(ũ, µ), at every time-step [7], such that

ûn = arg min
z∈RM

‖r(u0 +Φz)‖22 . (25)

The solution to Eq. 25 yields the following iterative linear least-squares formulation via the Gauss-Newton
method:

ûn(k) = arg min
z∈RM



Jn(u0 +Φzn(k); µ)Φz + rn(k)(u0 +Φzn(k); µ)


2

2 (26)
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and updates to the iterative solution are given by

ũn(k+1) = ũn(k) + αn(k)Φ∆ûn(k) (27)

for k = 0, . . . ,K , where K ∈ N is the final iteration count, and where αn(k) ∈ R denotes a step length in the
search direction, ∆ûn(k) ≡ un(k) − un(k−1), that can be computed to ensure global convergence (e.g., satisfy
the strong Wolfe conditions [9]). Here, the initial guesses ûn(0) for the iterative problem are taken as ûn−1.

3.3 Hyper-reduction via Gauss–Newton with approximated tensors

Despite the evolution of the SPH system of equations in a low-dimensional sub-space, for all time steps,
the LSPG method requires the evaluation of O(kNp) residual minimization operations. Therefore, a layer of
reduction is required to reduce the OCC of the residual minimization counts in Eq. 26 and 27. The current
work employs hyper-reduction to perform sparse residual minimization by way of the Gauss–Newton with
approximated tensors approach [7]. The GNAT hyper-reduction approach enables sparse LSPG residual
minimization via a weighted l2-norm,

ûn = arg min
x̃∈RM

‖Θr(ũ)‖22 . (28)

Here, the weighting matrix, Θ, is constructed by a gappy POD approach [10], where the time-discrete
residual is approximated and minimized over a sparse set of entries. The residual approximation, r̃ ≈ r , is
constructed by way of a time-discrete residual POD basis employing the offline training procedure discussed
in Section 3.1, where r̃ = Φr r̂ , such thatΦr ∈ VMr (R

Np ), r̂ ∈ RMr , and Mr � N is the number of retained
SVD singular vectors in Ur . Next, the residual minimization over a sparse set of entries is performed by the
following linear least-squares problem,

r̂ = arg min
zr ∈RMr

‖ PΦrzr − Pr(ũ) ‖22 , (29)

where the matrix P ∈ {0,1}np×Nd is a sampling matrix consisting of sparse np selected rows of the identity
matrix, which also correspond to the same rows in the time-discrete residual vector, where np � Np, and
for convenience in a later discussion, let Np ⊆ N be the set of np corresponding sampled particles. The
solution to Eq.29 yields

r̂ = [PΦr ]
+Pr(ũ). (30)

Substituting Eq. 30 into r̃ = Φr r̂ yields the residual approximation

r̃ = Φr [PΦr ]
+Pr(ũ), (31)

whereby via the approximation, r̃ ≈ r , the substitution of Eq. 31 into the weighted LSPG minimization in
Eq. 28 yields the following residual minimization,

û ≈ arg min
x̃∈RM

‖Θr(ũ)‖22, (32)
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where the weighing matrix is defined by Θ := [PΦr ]
+P. To enable the sparse residual minimization of

Eq. 32, the sampling matrix P is constructed via the same greedy algorithm approach presented by Algorithm
1 in reference [1] or Algorithm 3 in reference [11].

3.3.1 Offline training and online deployment

To perform LSPG with GNAT hyper-reduction, a series of offline training steps must be executed. The
current work adopts training procedure II from [7]. This offline procedure includes performing the following:

Stage 1: Perform FOMSPH training simulations over a sampled set of points in a desired parametric space
D and store the state-vector time-history in a snapshot matrix.

Stage 2: Compute the POD basis, Φ, of the parametric state-vector snapshot matrix S

Stage 3: Perform LSPG simulations without hyper-reduction over the same training points in Stage 1.
Collect the time-histories of the residual vectors and each of their iterations, construct a residual
snapshot matrix, and construct a residual POD basis, Φr .

Stage 4: Construct a sampling matrix, P, following a similar procedures outlined by Algorithm 1 in
reference [1] or Algorithm 3 in reference [11].

Stage 5: Compute and store the weighting matrix Θ = [PΦr ]
+P that enables hyper-reduction online.

Once the offline training procedures have been deployed, the online procedures, presented by Algorithm 1
and Algorithm 2 can be executed.

Finally, it is important to discuss the notation used to describe the process of efficiently querying the
domain with LSPG/GNAT. Let Nq ⊆ N be a set of nq ∈ N particles probed online by a multi-query loop.
Note that the queried particles can be the sampled particles, a subset of sampled particles, or not in the set
of sampled particles, and nq � Np. Then, a queried particle state of interest is denoted by ǔ = Φ̌û, where
Φ̌ := Φ(Nq, ·) ∈ R

nq×M denotes the map from low-dimensional embeddings to the queried particle states.

4. FULL-ORDER AND REDUCED-ORDERMODELINGOF HEAT-DEPOSITION PROBLEMS

All numerical experiments were performed on a Linuxmachine equipped with AMDRyzen Threadripper
3990x 64-core processors x 128 machine with 252 GB of RAM. All simulations were coded in C++ with
OpenMP parallelization. It is important to note that the FOM does not require any linear algebra package
since the Jacobian during the implicit time integration only has entries on its diagonal, i.e., Jii. Hence,
inverses can be performed naïvely for the linear system of equation in the implicit time integration, i.e.,
J−1
ii =

1
Jii

. On the other hand, all ROM linear algebra was performed by the Eigen library [12]. Although
Eigen deals with dense-dense matrix multiplication in parallel via OpenMP, it does not perform dense inverse
operations or matrix decomposition in parallel. Future work will look into using dense linear algebra parallel
packages, such as ScaLAPACK [13], to perform the SVD required during ROM training and to perform
inverse operations during least-squares solves in the ROM.
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Algorithm 1: OnlinePROM: Online LSPG/GNAT loop
Input: POD basis Φ; Particle index set of queried particles, Nq, where Φ̌ := Φ(Nq, ·);

Pre-computed
hyper-reduction matrix, A :=

[
PΦ̄r

]+; Parametric vector µ̄; Initial conditions ¯̃u0 and ¯̃f 0; Material
properties, Γ; Precomputed SPH gradient of the kernel, ∇W̄(Ξ̄); Neighbor list, Ξ; Index set of
sampled particles,Np. An over-bar denotes minimum cardinality as a result of hyper-reduction. For
instance, f̄ := { fNp (1) . . . fNp (np )}

T .
Output: Time histories of queried state vectors, ǔ.

1 k = 1 // initialize Gauss-Newton loop iteration counter
2 tol = user-defined tolerance
3 for n = 1 . . . Nt do // loop over all time steps
4 while ε < tol do
5 [r̄, J̄] = ComputeSPH(µ̄, ¯̃u, ¯̃f , Γ̄,∇W̄(Ξ̄)) // SPH computations

6 C := PJ̄( ¯̃un
k
)Φ̄ and D := P̄ r̄( ¯̃un

k
)

7 ûk+1 = arg min
z∈RM

‖ACz + AD‖2 // compute the linear least-squares equivalent to Eq. 32

8 ûn
k+1 = ûn

k
+ α∆ûk // α is computed via line-search or set to 1

9 ¯̃un
k+1 = Φ̄ûn

k+1 // compute states of sampled particles for SPH computations

10 ε = | |Φ̄
T
J̄( ¯̃un

k
)T r̄( ¯̃un

k
)| |2/| |Φ̄

T
J̄(ŭ)T r̄(ŭ)| |2, where ŭ := ¯̃un

1 // check relative reduced

residual error

11 k ← k + 1
12 end
13 ǔn = Φ̌ûn

k
// compute queried particle states

14 k = 1
15 end

4.1 Full-order modeling set-up

All numerical experiments in this report consider a heat-deposition transverse pass over a rectangular
316L SS stainless component with the following width, length, and height, respectively: w = 2mm, l = 4mm,
h = 0.5 mm. The rectangular component is discretized using SPH such that Nw = 50, Nl = 100, andNh = 14
are the number of particles laid along the width, length, and height direction, respectively, for a total
of N = 70,000 particles. The Wendland kernel is employed, and the smoothing length considered is
h = 1.5max(∆x,∆y,∆z). Four heat-deposition problems were considered in this study, which accounted for
variable laser power and speed. Parameters considered for the numerical experiments are listed in Table 1.
Full-order SPH models were performed for 4ms with a time step of ∆t = 4µs. A relative residual tolerance
was set to tol = 10−3 and each simulation had a maximum restriction of 10 iterations per time step. The
initial conditions for all experiments were set to the ambient temperature of u0 = 293.15K .

4.2 Reduced-order modeling set-up

The reduced-order models in this report entailed only a reproductive setting. In other words, the
deployment of the PROM framework presented in this report was not considered under a multiquery setting
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Algorithm 2: ComputeSPH; Smoothed-particle hydrodynamics computations
Input: Sampled parametric vector µ̄, approximate state vector, ¯̃u, approximate velocity from prior

iterations
and time steps, ¯̃f , temperature-dependent material properties, Γ̄, and pre-computed kernel gradient
∇W̄(Ξ).
Output: Sampled residual r̄ , and residual Jacobian J̄ .

1 Γ̄ = UpdateMaterial(Γ̄, ¯̃u) // update mat. properties via linear interpolation of data in
Fig. 2

2 for i = Np(1), . . . ,Np(np) do
3 Nneigh := Ξ(i) // define the set of neighboring particles for the current sampled particle

i

4 nneigh := |Ξ(i)| // define the number of neighboring particles to loop over
5 for j = Nneigh(1), . . . ,Nneigh(nneigh) do

6 f̃i(Ξ(i)) = 1
ρicν,i

nneigh∑
j

m j

ρ j

4kik j
(ki+k j)

(ũi − ũ j)
ri j
r2
i j

· ∇Wi j(Ξ(i)) +
qi Ai

cν,imi
// SPH computations

7 end
8 end
9 r̄ = ¯̃ut

k
− ¯̃ut−1 − ∆t ¯̃f , // Compute the residual

10 J̄vel = ∂ f̃ /∂r , // compute the inexact Jacobian
11 J̄ = Ī − ∆t J̄vel. // Compute the residual Jacobian. Note Ī is the identity matrix at sampled

entries

Table 1—Heat-deposition parameters
q0 (W/m2) ux (m/s)

Experiment 1 40.0 0.5
Experiment 2 100.0 0.5
Experiment 3 40.0 1.0
Experiment 4 100.0 1.0

and results do not reflect prediction of points in parametric space on which the training was not deployed.
Future work will employ the current framework in a multiquery setting, such as inverse analysis used identify
heat deposition profile and performance parameters. In this work, we mainly focus on assessing the impact
that dimensionality of the reduced-order basis (ROB) and relative residual tolerance has on the performance
and reproducibility of the FOM. Special focus is given to wall-time, CPU time, and ROM probe error relative
to the FOMprobes. PROMs employed in this study considered twoROB cases: Case 1) 99.9990% of the state
statistical energy (SSE) is employed for the ROB, and Case 2) 99.9999% of the SSE is employed. However,
every experiment employs 99.925% of residual statistical energy (RSE). It is also important to note that the
rank of the residual POD basis employed is also set to the number of sampled particles employed in the
hyper-reduction, i.e., np = ran(Φr ). Recall that SPH requires state information from neighboring particles.
Thus, in addition to acquiring information from sampled target particles in the set N , the framework must
also gather information from source particles in the set Ns, where ns = |Ns | corresponds to the number
of sources (or total neighbors of the sample particles). Table 2 lists all the parameter information for the
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PROMs deployed. Note: Percent of total particles (POTP) needed for the hyper-reduced particles is defined
as POTP = 100 × (np + ns)/N .

Table 2—PROM parameters
SSE (%) ran(Φ) RSE (%) ran(Φr ) np ns POTP (%)

Exp. 1, ROB Case 1 99.9990 148 99.925 630 630 7517 11.64
Exp. 1, ROB Case 2 99.9999 421 99.925 609 609 7697 11.72
Exp. 2, ROB Case 1 99.9990 388 99.925 933 933 7807 12.49
Exp. 2, ROB Case 2 99.9999 664 99.925 915 915 7728 12.45
Exp. 3, ROB Case 1 99.9990 108 99.925 612 612 10816 16.33
Exp. 3, ROB Case 2 99.9999 576 99.925 583 583 10844 16.32
Exp. 4, ROB Case 1 99.9990 472 99.925 1178 1178 11903 18.69
Exp. 4, ROB Case 2 99.9999 807 99.925 1143 1143 11754 18.42

4.3 Definition of performance metrics

To assess the performance of the full-order model with regard to savings in wall-time (SWT) and savings
in CPU hours (SCPUH), the following definitions were employed:

SWT =
WTFOM
WTROM

, (33)

SCPUH =

# of cores∑
i=1

TFOM,i

# of cores∑
i=1

TROM,i

. (34)

To assess the performance with regard to reproducibility of the FOM, the following definition was employed:

Percent error = 100 ×

�����un
ROM ,i

− un
FOM ,i

un
FOM ,i

����� , (35)

where the subscripts i and n correspond to a probe at particle i at time step n.

4.4 Results

Full-ordermodel temperature plots are shown in Figure 3. Experiments reflect relatively high-temperature
profiles when the laser pass moves slowly or when the heat flux power is high. Four temperature probes were
placed on the surface of the specimen to collect temperature data that will be compared against the ROM.
The location of each probe is listed in Table 3. Reduced-order model temperature plots are shown in Figure
4. Experiments reflect relatively high temperature profiles when the laser pass moves slowly or when the
heat flux power is high. Four temperature probes were placed at the same location as the probes used for
the FOM to collect temperature data. Note that the gray particles illustrated in Fig. 4 represent the outline
of the full particle domain. However, the gray particles are not loaded or active in the ROM simulation,
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(a) Experiment 1: q0 = 40 W/m2 and ux = 0.5 m/s2. (b) Experiment 2: q0 = 100 W/m2 and ux = 0.5 m/s2.

(c) Experiment 3: q0 = 40 W/m2 and ux = 1 m/s2. (d) Experiment 4: q0 = 100 W/m2 and ux = 1 m/s2.

Fig. 3—Temperature plots of the FOM numerical experiments at t = 3.2µs corresponding
to Table 1.

Table 3—FOM and ROM probe locations
x (mm) y (mm) z (mm)

Probe 1 0.364 -0.265 0.5
Probe 2 0.121 -0.429 0.5
Probe 3 0.323 -0.184 0.5
Probe 4 3.59 -0.061 0.5
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and only the jet-colored particles are active in the ROM simulation, i.e., jet-colored particles are part of the
hyper-reduced particle mesh. It is important to highlight that the sampling algorithm employed to define the
hyper-reduced particle mesh selects particles along the traversal of the heat pass, which is the main source
of error in the simulation. The outline of the sampled mesh is consistent with the intended algorithmic
purpose, which employs a greedy algorithm to minimize residual error in a given ROM simulation. It is also
important to highlight that the sampling algorithm selects particles within the bounds of the traveled path
during FOM training runs. In other words, the hyper-reduced particle mesh for Experiment 1 and 2 extends
only to about half the length of the specimen, while for Experiment 3 and 4 it extends the full length of the
specimen.

(a) Experiment 1: q0 = 40 W/m2 and ux = 0.5 m/s2. (b) Experiment 2: q0 = 100 W/m2 and ux = 0.5 m/s2.

(c) Experiment 3: q0 = 40 W/m2 and ux = 1 m/s2. (d) Experiment 4: q0 = 100 W/m2 and ux = 1 m/s2.

Fig. 4—Temperature plots of the ROM numerical experiments at t = 3.2µs corresponding
to Table 1 and all plots correspond to the ROB Case 1. Note that gray particles represent
particles not used in the ROM and are not part of the hyper-reduced particle domain.

Percent error plots, quantified by Eq. 35, for all experiments are presented in Figs. 5-8. The error data
shows the evolution of the ROM error over time for ROB Case 1 and Case 2. In addition, ROMs were
deployed for a loose relative residual tolerance of tol = 10−2 to highlight the effectiveness of the ROM despite
course error tolerances. Results show that tight tolerances reduce reproducible error by almost two orders of
magnitude in some cases (a trivial conclusion). It is also seen that increasing the rank of the ROB improves
error. Overall, error plots show at most a percent error of 0.68 % from Fig. 6(a) (Experiment 2; Probe 1;
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ROB Case 2; tol = 10−2), which indicate a reasonable reproducible error upper bound for the experiments in
this study.

(a) Probe 1: x = 0.364mm, y = −0.265mm, z = 0.5mm. (b) Probe 2: x = 0.121mm, y = −0.429mm, z = 0.5mm.

(c) Probe 3: x = 0.323mm, y = −0.184mm, z = 0.5mm. (d) Probe 4: x = 3.59mm, y = −0.061mm, z = 0.5mm.

Fig. 5—Error plots between FOM and ROM temperature probes for experiment 1.

Wall time results are presented in Fig. 9. All FOMs and ROMs were parallelized across 1, 16, 32,
and 64 cores via OpenMP to assess performance with respect to wall time. The lowest wall time spent on
FOMs occurs when 64 cores are deployed across all experiments. The lowest wall times spent on ROMs
occurs at 16 cores for Experiments 1, 32 cores for Experiment 2, 16 and 32 cores (depending on the rank
of the ROB) for Experiment 3, and 16 and 32 cores (depending on the rank of the ROB) for Experiment 4.
It is important to highlight that the choice of hyper-parameters for ROMs and parallelization architecture
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(a) Probe 1: x = 0.364mm, y = −0.265mm, z = 0.5mm. (b) Probe 2: x = 0.121mm, y = −0.429mm, z = 0.5mm.

(c) Probe 3: x = 0.323mm, y = −0.184mm, z = 0.5mm. (d) Probe 4: x = 3.59mm, y = −0.061mm, z = 0.5mm.

Fig. 6—Error plots between FOM and ROM temperature probes for experiment 2.
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(a) Probe 1: x = 0.364mm, y = −0.265mm, z = 0.5mm.
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(b) Probe 2: x = 0.121mm, y = −0.429mm, z = 0.5mm.

(c) Probe 3: x = 0.323mm, y = −0.184mm, z = 0.5mm. (d) Probe 4: x = 3.59mm, y = −0.061mm, z = 0.5mm.

Fig. 7—Error plots between FOM and ROM temperature probes for experiment 3.
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(a) Probe 1: x = 0.364mm, y = −0.265mm, z = 0.5mm. (b) Probe 2: x = 0.121mm, y = −0.429mm, z = 0.5mm.

(c) Probe 3: x = 0.323mm, y = −0.184mm, z = 0.5mm. (d) Probe 4: x = 3.59mm, y = −0.061mm, z = 0.5mm.

Fig. 8—Error plots between FOM and ROM temperature probes for experiment 4.
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is important to achieve notable speed-up in simulation. It can be seen that a high rank ROB, as required
for Experiments 2 and 4, significantly reduce any speed-up that can be realized with hyper-reduction or
dimensionality reduction due to poor scaling of dense matrix operations. On the other hand, Experiments
1 and 3 show notable speed-up due to their significantly lower ROB rank. It is also important to show
that enabling loose tolerances to achieve fewer Gauss–Newton iterations does not decrease wall time by
significant amounts. The hyper-parameters which achieve the best wall time and error in their respective
experiments are listed in Table 4.

Table 4—Wall-time savings compared to the FOM using 64 cores
tolerance ROM # of cores SWT SCPUH

Exp. 1, ROB Case 1 10−3 16 1.7683 7.0320
Exp. 2, ROB Case 1 10−3 32 0.5999 1.2321
Exp. 3, ROB Case 1 10−3 32 3.4044 4.8428
Exp. 4, ROB Case 1 10−3 16 0.3759 1.6499

CPU hours spent on numerical experiments are presented in Fig. 10. All FOMs and ROMs were
parallelized across 1, 16, 32, and 64 cores via OpenMP to assess the performance with respect to CPU
hours. The lowest CPU hours spent on FOMs occurred when 16 cores were deployed across all experiments.
The lowest CPU hours spent on ROMs occurred when only 1 core was deployed across all experiments.
It is important to highlight that poor CPU hours scaling is poor likely due to the lack of parallelization
in the least-squares solves. As mentioned earlier, the Eigen linear algebra library is employed to perform
the least-square solves, but does not provide a parallel algorithm for least-squares solves with dense matrix
operations. Future work will either include developing an in-house parallel MPI least-squares solver or
employing ScaLAPACK [13]. The hyper-parameters which achieve the best CPU hours savings and error
across experiments are listed in Table 5.

Table 5—CPU-hours savings compared to the FOM using 16 cores
tolerance ROM # of cores SWT SCPUH

Exp. 1, ROB Case 1 10−3 1 0.5121 32.5907
Exp. 2, ROB Case 1 10−3 1 0.1133 6.9445
Exp. 3, ROB Case 1 10−3 1 1.2179 53.2810
Exp. 4, ROB Case 1 10−3 1 0.0759 4.5826

5. CONCLUSIONS AND OUTLOOK

The LSPG ROM framework equipped with GNAT hyper-reduction was deployed on a heat-deposition
temperature-dependent problemwith SPH. Error analyses show that theROMframework employed is capable
of reproducing FOM numerical experiments with considerable accuracy. The ROM framework exhibited
wall time and CPU savings. However, it is important to note that computational savings achieved by the ROM
were not of considerable levels with respect to those often reported in the literature for the LSPG/GNAT
framework in fluid dynamics [7], and at times the ROM was even slower than the FOM. To the best of the
authors’ knowledge, there are three possible points prohibiting the current ROM from achieving considerable
wall time and CPU savings that match or exceed results in the literature for heat-deposition problems: 1)
The Kolmogorov N−width limitation of the affine POD subspace employed requires high ranks to enable
a low number of iterations to achieve convergence and lower error. However, a high rank POD subspace
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(c) Experiment 3 wall time.
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(d) Experiment 4 wall time.

Fig. 9—Wall time for FOM and ROMs across all four experiments.
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Fig. 10—CPU hours spent on FOM and ROMs across all four experiments.
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severely limits any computational savings due to poor scaling in solving the dense matrix least-squares
problem presented by Eq. 32. 2) The Eigen linear algebra library employed does not include a parallel dense
least-squares solver, which prohibits the ROM framework from realizing full parallelization benefits. 3)
Meshless nonlocal numerical frameworks, such as SPH, have a much higher neighbor count than their local
method counterparts, i.e., finite elements, finite volumes, finite differences, to compute solutions. Therefore,
nonlocal methods cannot achieve the same levels of sparsity in the sampled mesh as local methods for which
the GNAT hyper-reduction was originally built. As a result, the computational savings that hyper-reduction
enables in local methods is not directly transferred to nonlocal methods, such as SPH.

The three possible limitations observed and listed above are currently being addressed as an extension to
the work in the Karles Fellowship. It is important to note that the first observation listed above regarding the
Kolmogorov N−width limitation of the affine POD subspaces was recently addressed by Lee and Carlberg
[8] within the context of the LSPG/GNAT framework via nonlinear subspaces. As a result, we are currently
investigating the application of nonlinear subspaces to address the limitation posed by the Kolmogorov
N−width in the current heat-deposition problem. Current work is also underway to restructure the in-house
ROM code to improve its parallelization architecture and to employ third-party libraries to enable parallel
dense matrix least-squares solves. On a final note, it is important to highlight that a major contribution
of the work performed during the Karles Fellowship addressed point 3) listed above, i.e., overcoming
nonlocality in hyper-reduction of the LSPG/GNAT framework. As previously noted, nonlocal numerical
frameworks’ sampled particles require information frommore neighbors than local methods, thereby limiting
the levels of sparsity that could be achieved for considerable computational savings. To address the limiting
sparsity issues associated with nonlocal methods, the projection-tree reduced-order model (PTROM) was
developed as an auxiliary methodology under the Karles Fellowship [1]. The theoretical framework of the
PTROM was developed on a simplistic two-dimensional nonlocal framework for fluid dynamics problems,
but was generalized for the purposes of transferring its framework to SPH and heat-deposition problems.
Current work is underway to deploy the PTROM on the SPH heat-deposition problem to enable improved
computational savings. However, because the PTROM is an auxiliary method under the Karles Fellowship a
detailed description of the method is out of the scope of the current report. Nevertheless, a brief description
and overview of the method are presented in Appendix A but the interested reader can refer to the preprint
under review [1].

In summary, the twomain contributions of the work conducted under the Karles Fellowship include 1) the
development of the novel PTROMand 2) the first reported application of the LSPG/GNAT framework on SPH
heat-deposition problems. The resultingwork of the fellowship has paved theway for natural extensions of the
work presented herein. Examples include, but are not limited to, deploying the PTROM across multiphysics
applications outside of additivemanufacturing, developing newdimensional reduction techniques that include
mass-deposition in additive manufacturing, and employing nonlinear subspace methods.
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Appendix A

PROJECTION-TREE REDUCED-ORDER MODELING IN FLUID DYNAMICS

The projection-tree reduced-order modeling (PTROM) framework is a ROM method that addresses
the lack of sparsity in nonlocal numerical frameworks that prohibits them from achieving considerable
computational savings under hyper-reduction in ROMs. The PTROM framework takes motivation from the
LSPG/GNAT ROM methodology and hierarchical decomposition to achieve unprecedented computational
savings for nonlocal ROM methods.

From an overhead perspective nonlocal methods model a physical system of partial differential equations
(PDEs) by discretizing a continuum as a series of adaptive, reactive, and interactive collocation points, often
known as particles. The discretized space consists of a set of target and source particles that interact with each
other and behave according to the governing set of PDEs. An example of a nonlocal numerical framework is
the free-vortex wake method (FVM), which employs the Biot-Savart kernel to model the vorticity and wake
aerodynamics in an aerospace structure. Figure A1 illustrates an example of the FVM (top of image), the
nonlocal interactions of vortex particles (bottom right), and an illustration of the resulting two-dimensional
dense nonlocal pairwise matrix (bottom left).

Fig. A1—Image depicting nonlocal pairwise interaction of a tip vortex shed off of an
elliptical wing. Image from Rodriguez et al. [1].
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As discussed in the main sections of this report, nonlocal methods are faced with a lack of sparsity when
restructured in a ROM framework that incorporates hyper-reduction. The lack of sparsity in hyper-reduction
of nonlocal methods stems from a relatively high number of sources per target particle, which results in
the retention of a high number of particles in the sampled hyper-reduced particle mesh deployed for online
simulations. In some instances, as is the case when employing the Biot–Savart kernel in fluid dynamics, the
number of sources is equal to the total number of particles in the domain. These nonlocal interactions result
in O(N2) operational count complexity (OCC) for FOM computations and can result in O(N) OCC when
naïvely deploying LSPG/GNAT on the Biot–Savart kernel in fluid dynamics [1]. An overhead view of how
the PTROM reduces the number sources in a hyper-reduced mesh for nonlocal frameworks is now presented.

A.1 Overcoming nonlocality via hierarchical decomposition

The PTROM is based on constructing separate low-dimensional bases for target particles and source
particles. For target particles, constructing the low-dimensional basis is equivalent to the procedure presented
in Section 3.1. For source particles, however, constructing the low-dimensional basis is multi-tiered, as
depicted in Fig. A2. To begin, the POD modes obtained for targets are weighed by their corresponding
singular values and super-imposed to form a space (called a cluster space [1]) on which clustering of the
weighted super-imposed POD modes can be performed. Next, hierarchical decomposition is performed
on the cluster space, and agglomerated particles and the hierarchical data structure are recorded. Finally,
using the information recorded for agglomerated particles in cluster space and the hierarchical data, each
POD mode is clustered in the row-wise direction to reduce the number of neighbor particles queried in the
nonlocal ROM framework, as depicted in Fig. A3. The interested reader is referred to [1] for a more detailed
discussion on how to construct and deploy the PTROM framework.

A.2 Future work with projection-tree reduced-order modeling

The PTROM framework was tested on a series of vortex dynamics simulations, which resulted in a speed
up factor of 2000, i.e., the PTROM was 2000 times faster than the FOM, and where the corresponding
reproductive error reached sub-0.1% error [1]. Results presented by the PTROM show promise in the
framework, but there are many improvements to be made before the framework can be made available for
complex multiphysics problems, such as the heat-deposition problem presented in the main sections of this
report. Some examples of improvements to the framework include substituting the affine POD subspace
with a nonlinear subspace approach, incorporate parallelization for dense matrix least-squares solves, and
identifying more memory efficient hierarchical decomposition methods.
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Compute snapshot SVD,
truncate U, and retain M columns
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Fig. A2—Procedure employed to perform hierarchical decomposition on target POD modes
to define a low-dimensional basis for source particles . Image from Rodriguez et al. [1].
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Fig. A3—Clustering of the target POD matrix according the hierarchical decomposition
data structure generated to form a low-dimensional bases for source particles. Image from
Rodriguez et al. [1].
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