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Summary. A person's behavior provides significant information about their emo­
tional state, attitudes, and attention. Our goal is to create virtual humans that 
convey such information to people while interacting with them in virtual worlds. 
The virtual humans must respond dynamically to the events surrounding them, 
which are fundamentally influenced by users' actions, while providing an illusion of 
human-like behavior. A user must be able to interpret the dynamic cognitive and 
emotional state of the virtual humans using the same nonverbal cues that people 
use to understand one another. Towards these goals, v.-e are integrating and ex­
tending components from three prior systems: a virtual human architecture with a 
wide range of cognitive and motor capabilities, a model of task-oriented emotional 
appraisal and socially situated planning, and a model of how emotions and coping 
impact physical behavior. \Ve describe the key research issues and a.pproad1 in ea.ch 
of these prior systems, as well as our integration and its initial implementation in a 
leadership training system. 

1 Introduction 

A person's emotional state influences them in many ways. It impacts their 
decision making, actions, memory, attention, voluntary muscles, etc., all of 
which may subsequently impact their emotional state (e.g., see [2]). This per­
vasive impact is reflected in the fact that a person will exhibit a wide variety 
of nonverbal behaviors consistent with their emotional state, behaviors that 
can serve a variety of functions both for the person exhibiting them as well as 
for people observing them. For example, shaking a fist at someone plays an in­
tended role in communicating information. On the other hand, behaviors such 
as rubbing one's thigh, averting gaze, or a facial expression of fear may have 
no explicitly intended role in communication. ~everthcless, these actions may 
suggest considerable information about a person's emotional arousal , their 
attitudes, and their focus of attention. 
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Our goal is to create virtual humans that convey these types of information 
to humans while interacting with them in virtual worlds. We arc interested 
in virtual worlds that offer human users an engaging scenario through \vhich 
they ,vill gain valuable experience. For example, a young Army lieutenant 
could be trained for a peacekeeping mission by putting him in virtual Bosnia 
and presenting him with the sorts of situations and dilemmas he is likely to 
face. In such scenarios, virtual humans can play a variety of roles, such as an 
experienced sergeant serving as a mentor, soldiers serving as his teammates, 
and the local populace. Unless the lieutenant is truly drawn into the scenario, 
his actions a.re unlikely to reflect the decisions he will make under stress in 
real life. The effectiveness of the training depends on our success in creating 
engaging, believable characters that convey a rich inner dynamics that unfolds 
in response to the scenario. 

Thus, our design of the virtual humans must satisfy three requirements. 
First, they must be believable; that is, they must provide a sufficient illusion 
of human-like behavior that the human user will be drawn into the scenario. 
Second, they must be responsive; that is, they must respond to the events sur­
rounding them, which will be fundamentally influenced by the user's actions. 
Finally, they must be interpretable; the user must be able to interpret their 
response to situations, including their dynamic cognitive and emotional state, 
using the same nonverbal cues that people use to understand one another. 
Thus, our virtual humans cannot simply create an illusion of life through 
cleverly designed randomness in their behavior; their inner behavior must re­
spond appropriately to a dynamically unfolding scenario, and their out\vard 
behavior must convey that inner behavior accurately and dearly. 

This paper describes our progress towards a model of the outward mani­
festations of an agent's cognitive and emotional state. \Ve revie\v three prior 
systems that have heavily influenced our thinking on expressive behaviors, dis­
cussing the unique aspects of each and illustrating how they have influenced 
the design of an integrated system. The first, Steve [40, 42, 41], provides an 
architecture for virtual humans that can collaborate ,vith human users and 
other virtual humans in 3D virtual worlds. Although Steve did not include any 
emotions, its broad capabilities provide a foundation for the virtual humans 
towards which we a.re ,vorking. The second, Jack and Steve, provides a model 
of how emotions arise from the relationship between environmental events and 
an agent's plans and goals [16], as well as a model of socially situated planning 
that builds on that emotional appraisal model. The third, Carmen's Bright 
IDEAS [31], contributes a complementary model of emotional appraisal as 
,veil as a model of the impact of emotional state and coping on physical be­
havior. After describing the key concepts in each of these prior systems, we 
describe a new project in which we have integrated these concepts into virtual 
humans for experiential learning in engaging virtual worlds. 
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2 Steve 

Our earliest work on virtual humans resulted in Steve (Figure 1), an animated 
agent that collaborates with human users and other virtual humans on tasks 
in 3D virtual worlds [40, 42, 43]. Such task-oriented collaboration requires an 
agent to balance a variety of demands. Tasks require an agent to perceive the 
state of the virtual world, assess the state of goals, construct plans to achieve 
those goals, navigate through the virtual world and execute it s plans. Collabo­
ration requires these task-related behaviors to be interleaved wit h face-to-face 
social interactions with others (human users and virtual humans) embedded 
in the same virtual world. The agent 's environment is unpredictable in many 
ways: others may speak to the agent or take actions in the world at any time, 
and the virtual world itself may change unexpectedly (e.g., through simulated 
equipment failures). Thus, the agent must be able to adapt its task-related 
and social behaviors at any time. Steve's main contribution is its ability to 
interleave task-related behaviors and face-to-face dialogue in such dynamic 
virtual worlds. 

Fig. 1. St eve describing a power light 
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Despite an impressive variety of related work on embodied conversational 
agents [G] and animated pedagogical agents [21], Steve is unique in this abil­
ity. Several systems have carefully modeled the interplay bet.ween speech and 
nonverbal behavior in face-to-face dialogues [5, 7, 4, 36], but these systems 
focused exclusively on dyadic conversation, and they did not allow users and 
agents to collaborate on tasks in a 3D virtual world. The Gandalf system [7], 
,vhich provided a sophisticated model of real-time face-to-face interaction, al­
lowed an a.gent and human to cohabit a real physical space, and to use gaze 
and gesture to reference an object (i.e., a wall-mounted display screen) in 
that space, but the agent's presence was limited to a 2D head and hand on 
a computer monitor. Similarly, the Rea agent [4] provides a state-of-the-art 
model of dyadic face-to-face conversation, but bypasses issues of collaboration 
in dynamic virtual worlds; she can transport herself to and into virtual houses 
and apartments, and the user can point to some objects within those virtual 
environments, but the user is not immersed in those environments, and Rea's 
movement and references within them is very limited. The Cosmo agent [27] 
includes a sophisticated speech and gesture generation module that chooses 
appropriate deictic references and gestures to objects in its virtual world based 
on both spatial considerations and the dialogue context, but the agent and 
its environment are rendered in 2D and the user does not cohabit the virtual 
world with Cosmo. The \VhizLow pedagogical agent [28] performs tasks in a 
3D virtual world, but the agent docs not collaborate with students on tasks; 
the student specifies high-level tasks via menus, and the a.gent carries them 
out. Bindiganavale et al. [3] developed a training system that alluws multiple 
virtual humans to collaborate on tasks in a virtual world, but the trainee 
learns by giving natural language instructions (task knowledge) to the agents 
and viewing the consequences; she cannot participate in the scenario directly. 
Each of these systems provides impressive capabilities in its area of research 
focus, but none of them can interleave task-related behaviors and face-to-face 
dialogue with humans and virtual humans in dynamic virtual worlds. 

To support these capabilities, Steve consists of three main modules: percep­
tion, cognition, and mot.or control [40]. The perception module monitors mes­
sages from other software components, identifies relevant events, and main­
tains a snapshot of the state of the world. It tracks the follmving information: 
the simulation state (in terms of objects and their attributes), actions taken 
by students and other agents, the location of each student and agent, the ob­
jects within a student's field of view, and human and agent speech (separate 
messages indicate the beginning of speech, the end, and a semantic represen­
tation of its content). The cognition module, implemented in Soar [24, 34], 
interprets the input it receives from the perception module, chooses appro­
priate goals, constructs and executes plans to achieve those goals, and sends 
motor commands to the mot.or control module. St.eve's cognition module can 
typically react to new perceptual input in a fraction of a second, so it is 
very responsive [42]. The cognition module includes a wide variety of domain­
independent capabilities, including planning, replanning, and plan execution; 
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motion for that part with a. smooth transition. The resulting flexibility is an 
important part of Steve's ability to react instantly to unexpected events. 

The cognition module generates Steve's communicative behavior by dy­
namically selecting its next action from a repertoire of behavioral primitives. 
To support the needs of task-oriented collaboration, Steve includes the fol­
lowing primitives: 

• Speak: Steve can produce a. verbal utterance directed at a human or an­
other agent. To make it clear to v.rhom the utterance is directed, the motor 
control module automatically shifts Steve's gaze to the hearer just prior 
to the utterance. (Task-related events can cause gaze to shift to something 
else before the utterance is complete.) To make it d ear that Steve is speak­
ing, the motor control module automatically maintains a "speaking face" 
( eyebrmvs slightly raised and mouth moving) throughout the utterance. 
Steve has a wide range of utterances, all generated from text templates, 
ranging from a simple "OK" or "no" to descriptions of domain actions and 
goals. A message from the speech synthesis software indicates to Steve's 
perception module when the utterance is complete. 

• Move to an object: To guide the student to a ne,v object, Steve can plan 
a shortest path from his current location and move along that path [40]. 
To guide the student's attention, the motor control module automatically 
shifts Steve's ga,1e to his next destination on ea.ch leg of the path. In 
contrast, to simply follow the student a.round (e.g., when monitoring the 
student's activities), Steve shrinks and attaches himself to the corner of 
the student's field of view, so that he can provide visual feedback on their 
actions. 

• Manipulate an object: To demonstrate domain task steps, Steve can ma­
nipulate objects in a variety of ways. Currently, this includes manipu­
lations that can be done by grasping the object (e.g., moving, pulling, 
inserting, turning) or using his fingers (e.g., pressing a button, flipping a 
switch). To guide the student's attention, the motor control module auto­
matically shifts Steve's gaze to the object just prior to the manipulation. 
State change messages from the simulator indicate to Steve's perception 
module when the manipulation is complete (e.g., a button's state attribute 
changing to "depressed" ). 

• Vi.~nally check an object: Steve can also demonstrate domain task steps 
that simply require visually checking an object (e.g. , checking the oil level 
on a dipstick or checking whether an indicator light is illuminated) . This 
requires Steve to shift gaze to the object and make a mental note of the 
relevant property of that object. 

• I'oint at an object: To draw a student's attention to an object, or connect a 
verbal referring expression to the object it denotes, Steve can point at the 
object. To further guide the student's attention, the motor control module 
automatically shifts Steve's gaze to the object just prior to pointing at it. 
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• Give tutorial feedback: To provide tutorial feedback on a student's action, 
Steve indicates a student error by shaking his head as he says "no," and he 
indicates a correct action by simply looking at the student and nodding. 
The motivation for shaking the head is to complement and reinforce the 
verbal evaluation, and the motivation for the head nod is to provide the 
least obtrusive possible feedback to the student. 

• Offer turn: Since our goal is to make Steve's demonstrations interactive, 
\Ve allow students to interrupt ,vith questions ( "\Vhat next'?" and "\Vhy?") 
or to request to abort the task or finish it themselves. Although they can 
talk during Steve's utterances or demonstrations, Steve explicitly offers the 
conversational turn to them after each speech act ( which could be several 
sentences) or performance of a domain action. He docs this by shifting 
his gaze to them and pausing one second. Kot only does this give stu­
dents convenient openings for interruptions, but it also helps to structure 
Steve's presentations. (Prior to adding this feature, users complained that 
Steve's presentations ,vcre hard to follow because he never paused to take 
a breath.) 

• Listen to stndent: \Vhen the student is speaking, Steve can choose to qui­
etly listen. This simply involves shifting ga7,e to the student to indicate 
attention. 

• Wait for someone: \Vhcn Steve is waiting for someone to take an action 
( either the student or a teammate in a team training scenario), he can 
shift gaze to that person ( or agent) to indicate his expectation. 

• Acknowledge an utterance: \Vhen a student or teammate says something 
to Steve, he can choose to explicitly acknowledge his understanding of 
their utterance by looking at them and nodding. The speech recognizer 
does not provide recognition of intermediate clauses, so Steve is limited to 
acknowledging understanding of entire utterances. 

• Drop hand8: \Vhen Steve is not using his arms and hands, he can drop them 
back down to hang loosely at his sides. Although there is evidence that 
such a move can convey a conversational signal (i.e., end of turn) [12], Steve 
does not currently use this behavior for that purpose; it simply means he 
has nothing else to do ,vith his hands (such as pointing or manipulating) . 

• Attend to action: \Vhen someone other than Steve manipulates an object 
in his environment, Steve automatically shifts his gaze to the object to 
indicate his awareness. Unlike all the above behaviors, ,vhich arc chosen 
deliberately by the cognition module, this behavior is a sort of knee-jerk 
reaction invoked directly by the percept.ion module. Ilecause an object 
manipulation is a very transient event, our design rationale was to react 
as quickly as possible. 

Steve's main challenge is generating coherent behavior, and the key to 
addressing this challenge is to maintain a rich representation of context. The 
ability to react to unexpected events and handle interruptions is crucial for 
task-oriented collaboration in dynamic virtual worlds, yet it threatens the 
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coherence of an agent's behavior. A good representation of context allmv an 
agent to be responsive while maintaining its overall focus. Steve maintains 
two separate but complementary types of context: 

• Task Context: Steve models tasks using a hierarchical, partial-order plan 
representation. As a task proceeds, Steve continually monitors the state of 
the virtual world, and it uses the task model to maintain a plan for how 
to complete the task, using a variant of partial-order planning techniques 
[40]. This allows Steve to revise its plans to adapt to unexpected events. 

• Dialog,uc Context: The dialogue context represents the state of the inter­
action between a student and Steve, including whether the student and/ or 
Steve is currently speaking; a focus stack [20] representing the hierarchy of 
tasks, subtasks, and actions in \vhich the student and Steve are currently 
engaged; the state of their interaction on the current task step (e.g., the 
state might be that Steve has explained what must be done next but nei­
ther he nor the student has done it); a record of whether Steve or the stu­
dent is currently responsible for completing the task (this task initiative 
can change during a mixed-initiative interaction); the last answer Steve 
gave, in case the student asks a follow-up question; any pending obliga­
tions (i.e., student requests or questions that Steve has not yet addressed); 
and the actions that Steve and the student have already taken [42]. 

Based on the current task and dialogue contexts, Steve can choose his 
next action to fill one of three roles. First, he can respond to the student. 
This includes responding to a student's request, giving them tutorial feedback 
on their action, or simply listening when they are talking. Second, Steve can 
choose for himself how to advance the collaborative dialogue. This includes 
things like suggesting the next task step, describing it, or demonstrating it in 
cases \vhere the student did not explicitly request such help. Third, Steve can 
choose a turn-taking or grounding ad [50] that helps regulate the dialogue 
bet,veen the student and himself without advancing the task. This includes 
offering the student the conversational turn or acknowledging understanding 
of an utterance with a head nod. 

Several such actions may be appropriate at any given moment, so priorities 
allow Steve to choose the most appropriate. The highest priority is to respond 
to the student. If no such actions arc proposed, the next priority is to perform 
any relevant conversational regulation action. However, if an opportunity for 
a conversational regulation action is missed due to a higher priority action for 
responding to the student, it will not be deferred and performed later. Only 
when neither of these types of actions is proposed will Steve take the initiative 
to advance the task collaboration, and he only docs that when he has the task 
initiative. Traum proposed a similar priority scheme in his model of spoken 
task-oriented dialogue [49]. 

The original version of Steve, described in this section, did not include 
a model of emotions, and expressive behavior was not a primary research 
focus. However, Steve's broad capabilities have served as a valuable founda-
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tion for our current work on virtual humans, described later in this chapter. 
The expressive behaviors that we have integrated into Steve arc derived from 
two separate research projects: Emile (.Jack and St.eve) and Carmen's Bright. 
IDEAS. 

3 Jack and Steve 

.Jack and Steve was an exploration in the extent to v,rhich plans and plan 
reasoning could inform rich models of expressive social behavior. The .Jack 
and Steve system was predicated on two basic claims: 1) that plans and plan 
reasoning can mediate expressive behavior and 2) that small biases in how 
plans are evaluated and generated can result in large systematic differences 
in agent behavior. 

\Vit.h these goals in mind, Jack and Steve differed in several respects from 
the preceding Steve system. To support biases in plan evaluation, .Jack and 
Steve incorporated a richer plan representation, including decision-theoretic 
information to inform the evaluation process and meta-planning capabilities. 
To translate small biases into large external variations, .Jack and Steve fo­
cused on plan generation, whereby these biases could be magnified over the 
multiple steps involved in the generation process. In contrast, Steve focused 
more on plan execution and repair, so its plan generation algorithm was less 
general. The systems also differed significantly in terms of their inter-agent 
behavior. Steve focused on collaborative interactions between agents and hu­
man users, whereas .Jack and Steve explored hmv biases in the plan generation 
process could support a variety of non-collaborative interactions as well, but, 
as the focus was exploring systematic differences in joint behavior, agents only 
interact with other computational agents and not with human users. 

The .Jack and Steve system led to two key innovations that have influenced 
our subsequent agent designs: Emile [16], a plan-based model of emotional 
appraisal , and socially sifoated planning[l 7], whereby an agent may alter its 
goal-directed behavior based on features of the social context. These models 
,vcre integrated with the animation system developed for the Steve system, 
described above, augmenting them ,vith a limited ability to generate facial 
expressions, expressive gestures, and emotionally biased speech synthesis . 

.Jack and Steve vms motivated by a convergence of several distinct bodies 
of research. First, psychological theories of emotion emphasi:l:e the pervasive 
role of emotions in social interactions and suggested that human emotions arc 
mediated by some form of goal-directed reasoning. Cognitive appraisal the­
ory, in particular, argues that emotions arise from an assessment process t hat 
characterizes hmv events impact goals along several abstract dimensions such 
as goal-relevance, goal-congruence, and likelihood [45]. Second, psychological 
theories of personality illustrate that people of different personality types will 
appraise and respond to events quite differently, and t hat goal-directed rea­
soning may mediate this process as well. These theories argue that relatively 
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small biases in appraisal or response might lead to large systematic differences 
in outward behavior. For example, conscientious individuals tend to accept 
greater personal responsibility for joint goals, which in turn can lead to the 
construction of quite different plans and collaborative interactions than might 
result from a non-conscientious individual [38]. Finally, artificial intelligence 
theories of collaborative behavior have begun to build formal models of so­
cial interaction in terms of goal-directed reasoning. Work on shared plans [19] 
and joint intentions (IO] illustrate how reasoning about interactions bet\veen 
plans, and representing beliefs, obligations and commitments, could motivate 
social behavior. Jack and Steve joined these strands of research into a sys­
tem that utilized plans and plan reasoning to model an agent's relationship 
to its physical and social environment, and to support systematic individual 
variations in how this relationship was conceived. 

3.1 Motivating Example 

The Jack and Steve application domain centered on the antics of two South­
ern Californian roommates, Jack and Steve. The agents engaged in unscripted 
interactions via simulated speech, and a user could explore a variety of interac­
tions by altering internal characteristics of either agent. For example, a user 
could alter an agent's goals (e.g, to have fun or to make money) and alter 
characteristics of their personality ( e.g., are they cooperative or rude) . 

In this motivating example, Jack's goal is to make money, he views Steve as 
a friend, and treats him fairly. Steve wants to surf, views .Jack as a friend, but 
tends to be rude in his dealings. All of these terms have a specific technical 
definition discussed below. Iloth agents develop different plans but have to 
contend with a shared resource. 13esides performing task level actions, the 
agents engage in speech acts and generate gestures, facial expressions, and 
affective speech modulation based on properties of the social context. 

\Vhat follows arc annotated traces of two separate runs of the system where 
the only difference is a change in the personality of the Steve agent. In the first 
trace he treats .Jack rudely and in the second he treats him fairly. The agents 
generate speech via simple template filling and agents actually communicate 
with each other through a stylized plan-communication language. Figure 3 il­
lustrates the mental state of each agent at some point in the interaction. \Vhitc 
boxes indicate individual actions and arrows indicate the establishment of an 
action's preconditions by another action's effects, or a threat to some precon­
di tion's establishment by an intervening action that negates the establishing 
effect. Blue boxes indicate "plans," which arc sets of actions treated as a con­
ceptual unit by the social layer. The emotion windows illustrate each agent's 
current emotional state, characterized in terms of intensity values along a set 
of basic emotions. 

Rude Interaction: 
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Jack: [Incorporates Steve's revised plan and finds a conflict with his own 
plans. Based on personality, Jack attempts to negotiate a fair sol-ution.) 1,Vait 
a second. Our plans conflict. I plan to drive the car to the-quicky-rnart then 
I plan to buy a-lottery-ticket. 

Steve: [Incorporates Jack's plan and recognizes the same interaction. Based 
on personality model, Steve responds to the interaction differently. He devises 
a plan that satisfies his own goals without regard to any conflicts it ma:IJ in­
trodm:e in Jack's plans. Stem: e:1:its stage right.} Later dude, I'm driving the 
car to the beach. 

Jack: [Perceives that the car has departed without him. Looks angry. Says 
in angry voice:) I \Vant to kill-my-roommate. 

Cooperative Interaction: 
In this second interaction, the user replays the interaction but first alters 

Steve's personality to treat Jack fairly. The agents have identical goals and 
knowledge, but due to differences in their social appraisals the interaction is 
quite different. The interaction is identical up to the point that .Jack detects 
an interaction between the plans: 

.Jack: {Incor7Hn-(J,tes Steve's n:vised plan and firuls (J, umfiir;t with his own 
plans. Based on personality, Jack attempts to negotiate a fair solution.) \Yait 
a second. Our plans conflict. I plan to drive the car to the-quicky-mart then 
I plan to buy a-lottery-ticket. 

Steve: [Incorporates Jack's plan and recognizes the same interaction. Based 
on Steve luwing somewhat lower .rncial stat'lls, he fake.~ the initiative in repair­
ing the conflict.} Well, I could change my plans. [Looks concerned, scratches 
head, then devises a possible joint plan.) I have a suggestion. Could you drive 
the car to the-quicky-mart with-me then I could drive the car to the beach . 

.Jack: {Iru:or71omtes Steve's .~nggested joint plan, determine.~ that it is con­
si.~tent with his own plans, and agrees to form. a joint com.mitment to the 
shared plan.) Sounds good to me. 

3.2 Plan-based Social Appraisal 

As discussed earlier, The .Jack and Steve system ,vas predicated on two ba­
sic dairns: 1) that plans and plan reasoning can mediate expressive behavior 
and 2) that small biases in hmv plans are appraised and generated can result 
in large systematic differences in agent behavior. Jack and Steve supported 
such expressive and flexible interactions by implementing social reasoning as a 
layer atop a general-purpose partial-order planning system [1, 51]. The plan­
ning system provides domain-independent representations of world actions 
in terms of preconditions and effects, and provides general reasoning mech­
anisms that construct partial plans, repair interactions bet,veen them, and 
oversee plan execution. The social layer manages communication and biases 
plan generation and execution in accordance with the social context ( as as­
sessed within this social layer). In this sense, social reasoning is formalized as 
a form of meta-reasoning. 
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To support a variety of social interactions, the social reasoning layer must 
provide a rich model of the social context. The social situation is described 
in terms of a number of static and dynamic features from a particular agent's 
perspective. Static features include innate properties of the character being 
modeled (social role and a small set of personality variables) . Dynamic fea­
tures are derived from a set of domain-independent inference procedures that 
operate on the current mental state of t he agent. These include the set of 
current communicative obligations, a variety of relations behveen the plans in 
memory (e.g., your plans threaten my plans), and a model of the emotional 
state of the agent (important for its communicative role). 

One novel aspect of the system is the way in which the social layer funda­
mentally alters the planning process. Grosz and Kraus [19] show how meta­
level conRtructR like social commitmentR can act as constraints that limit the 
planning process in support of collaboration (for example, by preventing a 
planner from unilaterally altering an agreed-upon joint plan). Jack and Steve 
,vent beyond this to show how to model a variety of "social stances" one can 
take towards other individuals based on one 's role in an organization and 
other dispositional factors. In terms of planning, rather than simply being 
cooperative, the social layer can bias planning to be more or less considerate 
to the goals of other participants. In terms of communication, agents can va.ry 
in terms of hmv much initiative or control they can take over the interaction, 
from bossy agents that try to tell others what to do to more passive agents 
that meekly avoid interactions or social conflicts. 

3.3 Social Context 

As in the preceding Steve system, Jack and Steve maint ains a rich represen­
tation of the social context to drive coherent behavior. Domain independent 
appraisal rules map features of an agent's current plan knowledge into a cur­
rent socilll conte:1:t. Besides static features of the social context set b)r the user, 
such as the agents' goals and personality, the social context can be divided 
into the follmving distinct components. 

Plan Context: The plan context plays an analogous role to the Task 
Context in the original Steve system. The plan context represents information 
about the plans agents are entertaining , as well as meta-level information 
about the status of these plans. The Jack and Steve system incorporated 
a different pla n representa tion than the original Steve system. While both 
systems used general plan representations, .Jack and Steve also incorporated 
a decision-theoretic model, representing the likelihood and utility of various 
plans ( vd1ich is quite useful in modeling t he intensit y of emotional responses). 
Unlike Steve's plans, ,vhich are hierarchical, Jack and Steve adopted a simpler 
non-hierarchical plan representation but included an explicit model of meta­
plan reasoning . 

.Jack and Steve's base-level planning layer represents future-directed ac­
tions that an agent is aware of (whether they come from its own planning 
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or are communicated from outside) as a single plan in the classical planning 
sense (i.e., a partially-ordered set of actions with establishment and threat 
relations behveen actions), henceforth referred to as the tfL8k network. This 
allows the base-level planner to reason about the interrelationship bet.ween 
these activities. Hmvever, at the social level, subsets of this task network are 
explicitly treated as distinct plans in the commonsense use of the term (i.e, 
a coherent set of actions directed towards a goal), henceforth referred to as 
plan.~. Plans at this social layer may belong to the agent or may corresponding 
to (what the agent believes to be) plans of other gents. 

The plan context also represents a number of meta-level relations between 
these plans. Plans can contain threats if the actions within a plan threaten 
each other and the plans of one a.gent can introduce threats or be threatened 
by the plans of another agent (such relations are computed using the basic 
plan-evaluation routines provided by standard planning systems). Plans of one 
agent are deemed relevant to the plans of other agents if they may causally 
interact [11]. 

Emotional Context: Unlike the preceding Steve system, the Jack and 
Steve system maintains a representation of the agents' emotional st.ate. The 
model of emotional reasoning that supports this, Emile, has been described 
extensively elsewhere [16, 18]. Emile adopts the cognitive view of emotions as 
a form of plan evaluation, relating events to an agent 's current goals (c.f., [35, 
25]). As in other appraisal-based computational models of emotion [13, 33], 
Emile classifies events in terms of a set of appmi.rnl var-iable8: 

• goal relevance - arc the consequences of an event relevant to an organism's 
goals 

• desirability - how desirable are the consequences 
• likelihood - how likely are the consequences 
• causal attribution - who is the causal agent underlying the event and do 

they deserve credit or blame 

Unlike prior computational models , Emile reified these variables in terms of 
domain-independent features of an agent's plans in memory. Emile contains 
a set of recognition rules that scan an a.gent's internal representations and 
generate an appraisal frame \vhenever certain features are recognized. For 
example, when St.eve st.at.es he will drive the car to the beach, the effect of 
this potential action (that the car is no longer at home) threatens Jack's plan 
to get to the quicky mart. The existence of a threat to an important goal is 
interpreted as an undesirable event, which ultimately gets mapped into a fear 
response based on the likelihood of the threat and the importance of the goal. 

:\Iany appraisals may arise from the current plan cont.ext. (e.g., Steve may 
be simultaneously hopeful that he will surf but fearful that .Jack may abscond 
with the car). Individual appraisals arc collected together by class and their 
intensities summed into an overall emotional context. Different subsets of ap­
praisals can be aggregated and associated \vith meta-level constructs , allowing 
Emile to compute an agent's overall st.ate, track the emotions arising from a 
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specific plan, or make estimates of the overall emotional state of other agents 
(given an understanding of their goals and plans). Each of these aggregate 
states is represented as a real-valued vector representing the intensities of dif­
ferent emotional states (Fear, .Joy, etc.) and Emile dynamically modifies this 
state as appraisals change in response to the current world situation and the 
state of plans in memory. 

Communicative Context: The communicative context tracks what in­
formation has been comnmnicated to different agents and maintains any com­
municative obligations that arise from speech acts. \Vhen one agent commu­
nicates a plan to another, the social layer inserts the plan into the task net­
work and records that the recipient knows this plan. This belief persists until 
the sender's planning layer modifies the plan, at which point the social layer 
records that the recipient's knowledge is out of date. If one agent requests an­
other's current plans, the social layer represents a communicative obligation: 
the fact that the recipient of the request owes a response is recorded in each 
agent's social layer (though whether the recipient satisfies this obligation is 
up to its mvn social control program). 

The communicative context roughly corresponds to the earlier Steve sys­
tem's notion of dialogue context in the sense that both are concerned with 
representing a history of preceding communication and its impact on current 
beliefs and pending obligations. The Steve system, however, focused more on 
dialogue related to hierarchical task execution (e.g., the focus stack), whereas 
.Jack and Steve focus more on the relationship of dialogue acts to plan gener­
ation. 

3.4 Social Operators and Social Stances 

Social operators are actions that occur at the social level. These are sub­
divided into meta-planning operators and communicative operators. By trig­
gering these operators based on features of an agent's social context, the Jack 
and Steve system could represent a number of distinct social behaviorn. 

:vieta-planning operators alter the way the planner operates at the base­
level. :'vieta-planning operators alluw the social level to read and manipulate 
plan objects, populate them with subsets of the task network, and alter how 
the planner operates on those subsets. For example, if Steve communicates 
his plan to .Jack, .Jack could create a ne,v plan object ( "Steve's Plan") and 
populate it with the set of communicated actions. Different plans could be 
treated differently by allowing or disallowing certain types of planning modi­
fications. Classical planning algorithms can be viewed as a sequential decision 
process: some critiquing routines identify a set of problems with the current 
plan network and propose a set of modifications t hat resolve at least one of 
these problems (an action should be added, these actions should be reordered, 
etc.); one modification is applied and the process continues [23]. The social 
level might disallmv any changes to a plan ( corresponding to the idea that 
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the a.gent is committed to the plan), or it may allow more subtle variations in 
how plans arc changed by constraining the set of allmvablc modifications. 

Communicative operators correspond to a set of speech acts that an agent. 
may use to communicate with other agents. As they are defined at the meta­
level, they can operate on plans only as an atomic structure and cannot make 
reference to components of a plan (although one has the option of breaking 
a plan into explicit sub-plans). Some speech acts serve to communicate plans 
(one can I~FOR:'vI another agent of one's plans, REQUEST that they accept 
some plan of activity, etc.). Other speech acts serve to change the state of some 
previously communicated plan ( one can state that some plan is under revision, 
that a plan is acceptable, that it should be forgotten, etc.). Communicative 
primitives also include non-verbal communication, such as gestures. 

Ftorn the standpoint. of modeling expressive behavior, the most. novel con­
tribution of the Jack and Steve system was the way social operators could al­
ter the ,va.y the planner handles interactions behveen plans of different agents, 
thereby implementing the idea of a social stance. A number of distinct social 
stances could be modeled and were organized along four roughly orthogo­
nal dimensions: conscienti<msnr;ss, dominr111.ce, sociability, and independence. 
These stances are all implemented as search control strategies, limiting certain 
of a planner's threat resolution options or the a.gent's communication options. 

Conscientiousness impacts the extent that an agent respects the goals and 
plans of other agents. A non-conscientious (rude) agent only considers threats 
to his own plans and discounts any threats that his own actions introduce into 
the plans of other agents. For example, the rude Steve a.gent runs to grab the 
keys before Jack gets a. cha.nee to take the car. This corresponds to the threat 
resolution strategy of promotion, ,vhcrcby a threatened action is moved before 
the threat. A conscientious agent wouldn't consider promotion as it prevents 
Jack's plans from succeeding (in planning terminology this is an instance 
of brother-clobbers-brother-goal); hmvever a. rude agent vwuld discount this 
other-directed threat. 

Dominance impacts whether an agent is willing to dictate actions to other 
agents. For example, a dominant agent would freely introduce actions into the 
plans of other agents, or incorporate steps into his own plans that. other agents 
are expected to perform. In contrast, a meek a.gent would a.void these options 
and tend to ,vork around interactions. For example, a meek Steve might find 
some other way to get to the beach or simply stay home. 

Sociability relates to how readily an agent communicates to resolve con­
flicts or to provide potentially useful information. Social agents communi­
cate whenever they encounter interactions between plans ,vhile asocial a.gents 
,vould try to resolve conflicts without communication. For example, an asocial 
agent could resolve the resource conflict involving the car by simply taking 
the car to the quicky mart. before the other agent gets a chance to take it to 
the beach. 

Finally, agents vary in terms of their independence. An independent a.gent 
,vould refuse to develop plans that depended on the actions of other agents. 
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For example, the plan of riding to the quicky mart together would be ruled 
out by an independent agent. 

Beyond social stances, meta-operators allow the social level to create and 
manipulate plan objects. Plans can be created and destroyed, and they can be 
populated with ne\V goals and with activities communicated by other agents. 
Another set of meta-operators determines whether the planning algorithm 
can modify the activities in one of these plan objects. One can make a plan 
modifiable. allowing the planner to fix any flaws with that plan. or one can 
freeze its current state (as when adopting a commitment to a certain course 
of action. One can also modify the execution status of the plan, enabling or 
disabling the execution of actions within it. 

Distinct personalities and social stances arc implemented via a set of social 
rule8 that execute sequences of social operators based on appraised features 
of the social context. These rules can be viewed as a simple social domain 
theory or, alternatively, as a simple reactive plan. 

The Jack and Steve system included about thirty social rules. A few ex­
amples arc listed here. 

Social-Rule: plan-for-goal 
IF I have a top-level ?goal 
THE~ 

Do-Gcsturc(Thinking) 
Say(to-self, "I want to '?goal") 
?plan = create-ne-1-v-plan('?goal) 
enable-modification (?plan) 

The plan-for-goal rule creates a ne,v plan object for an agent's top-level 
consisting of one dummy step that has the goal as its precondition, and, by 
enabling modification, allows the base-level planner to add actions to the 
plan in order to achieve the goal. The rule also triggers an utterance ( "I 
,vant to ... ") and an expressive "Thinking" gesture (implemented by a motor 
procedure that turns the agent's head up and to the side and raises one arm 
to scratch the head). 

Social-Rule: conunit-to-plan 
IF I have ?plan 

AND I am currently modifying ?plan 
AND the '?plan is free of threats 

THE~ 
Do-Gesture(~od-Head) 
commit-to('?plan) 
disablc-modification("?plan) 

If at some point the base-level planner successfully constructs a threat-free 
plan to achieve to goal, the commit-to-plan rule commits to the plan and pre­
vents the planner from making further modifications. Note that the definition 
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of "threat-free" is dependent on the agent's social stance (for example, a rude 
agent may perceive his plan as threat-free even though it is clobbering steps 
of another agent's plans). 

Social-Rule: help-friend 
IF I have a ?plan that is relevant-to the plan of another ?agent 

AND I am friends with ?agent 
AND I am socially-adept 
AND the '?plan is not known to '?agent 

THE:\! 
Do-Gesture(Look-at ?agent) 
SpccchAct(I:\JFOILVI, ?plan ?agent) 

If an agent has been defined to be socially-adept and they are aware of 
some information that may causally impact the plans of another agent, the 
help-friend rule ensures that this information is communicated to the other 
agent. 

Social-Rule: you-cause-problems-for-me 
IF I have a ?plan 

AND ?you have ?your-plan 
AND my ?plan is threatened by ?your-plan 
AND I am committed to my ?plan 
AND I am not meek 
AND ?you don't know my ?plan 

THE:\! 
Say(?you, "\Vait a second, our plans conflict") 
SpeechAct(I:\JFOR.VI, '?plan, '?you) 

If an agent has committed to a plan and discovers that the actions of 
another agent are threatening the plan's execution, a non-meek agent should 
communicate his own plans with the unstated expectation that the other agent 
,vill respond cooperatively. 

:\Iany of these rules, such as help-friend, correspond to standard conven­
tions in collaborative planning. \Vhat is novel about Jack and Steve, ho,vever, 
is the idea of differentially applying them depending on features of an agent's 
personality, allowing, for example, a flexible gradation between cooperative 
and non-cooperative behavior. Collectively, these rules form a sort of social 
domain theory and, by explicitly representing social context and social oper­
ators, Jack and Steve facilitates the easy construction of different mappings 
between them and thus easy experimentation with different social theories. 

3.5 Bodily Expression 

The Jack and Steve system's chief contributions arc in its internal process 
models of how emotion gets appraised and planning gets altered by social 
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stances. However, this internal machinery must be manifested externally to 
have an impact on the user . .Jack and Steve's reasoning mechanism was 
connected to the Steve agent body described earlier. This provided non­
photorealistic 3D human-like bodies that included control of body movements 
(including procedural control of gaze, pointing and grasping) and procedural 
control of facial expressions (including control of eyebrows, eyelids and mouth 
characteristics). It also included a text-to-speech system with some coarse con­
trol over the characteristics of speech that could give some sense of emotional 
speech. Through these controls we developed a small repertoire of exaggerated 
facial poses to convey basic emotions and a set of arm and facial gestures to 
indicate other mental processes. This included pointing to the air and nodding 
,vhcn successfully completing a plan, scratching one's head when developing 
a plan, and \vinking when irrecoverably destroying another agent's plans. 

Jack and Steve were never formally evaluated but anecdotal evidence sug­
gests that people could easily recognize certain basic differences in personality 
( e.g. rude versus cooperative) through the different trajectory of the interac­
tions and the type of plans agents developed, although not all combinations of 
traits led to recognizable differences. Facial expressions and gestures seemed 
primarily useful for conveying information about the agent's appraised inter­
nal state and apparently added to the perceived humorousness of the interac­
tion. 

\Ve subsequently implemented a version of the system using more photo­
realistic faces which people, interestingly, found rather less funny and more 
disturbing. This \Vas likely due to the crude control we had over facial ex­
pressions. In both systems, characters would hold a fixed facial expression 
for several seconds. In the non-photorealistic Steve graphical bodies, people 
seemed to find this acceptable. Hmvever ,vith the more photorealistic faces 
people felt the characters were "creepy" or "maniacal." This reinforces the 
conventional wisdom that the drive toward photorealism in graphical models 
will demand considerably more attention to the form and dynamics of physical 
expressions. 

4 Carmen's Bright IDEAS 

Carmen's Bright IDEAS (CBI) was an agent-based system designed to re­
alize an Interactive Pedagogical Drama (IPD) [31] , an approach to learning 
that immerses the learner in an engaging, evocative story vvhcre she inter­
acts openly \vith realistic characters. The pedagogical goal of CilI v,:as to help 
mothers of pediatric cancer patients deal with the many stresses they face due 
to their child's illness. A mother learns by making decisions or taking actions 
on behalf of a character in the story, and secs the consequences of her decisions 
subsequently played out. To bring this pedagogy to life, the drama mirrors 
the mother 's own problems. In the CilI story, the various stresses Carmen is 
facing are revealed, including her son's cancer, her daughter Diana's temper 
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tantrums, work problems, etc. The drama foregrounds these stresses and al­
lows the learner to interactively influence how Carmen copes v,-ith them. To 
facilitate open interaction, the characters in CDI were realized as autonomous 
agents. 

:\fany of the differences with the previously discussed systems stem from 
the fact that the agents in CBI realize a social drama about very stressful 
issues. In particular, CBI's drama explores how the main character agent 
develops cognitively and emotionally. In contrast, the focus for the previously 
discussed Steve agent was on performing a procedural task in an irnrnersive 
environment. Therefore drama and character development was not a central 
concern. 

As a consequence of this dramatic goal, the design of the agent models in 
CDI was rooted in psychological research in stress and causes of emotions. In 
particular, like Emile, cognitive appraisal theory influenced the design of the 
CBI agents, though the two systems reali7;e different, complementary aspects 
of appraisal theory. The focus in Emile was on the task-oriented causes of 
emotion. In CBI, there was a more pressing requirement to model the causes of 
emotion that stern from what psychologists call an ego identity, an individual's 
concerns for loved ones, for how others perceive them, for performing their 
social roles well, and for measuring up to their personal ideals. Emotions stem 
from how events impact these concerns. Further, CBI agents needed to also 
model the consequences of emotions - how people cope with difficult emotional 
stresses in both adaptive and maladaptive ways as well a.show to learn better 
\Vays of coping. 

Also, the animated agents needed effective ways to convey the impact of 
emotion on both the agent's dialog and physical behavior. In particular, this 
required developing models of how complex, sophisticated emotional stress 
processes are revealed over time in coping behavior and dialog. Although 
other systems have addressed expressive behavior, this modeling of human 
coping and its dynamic impact on behavior set CBI apar t . The concern for 
expressive behavior that reveals underlying dynamics gre,v out of the fact 
t hat CDI was being designed for a clinical trial with mot hers of pediat ric 
cancer patients. The dynamics would potentially benefit believability of the 
agents and facilitate the learner's identification with the agents. In addition, 
it might further the learner's understanding of t he underlying emotional and 
coping processes that the agents were modeling, which in fact was pa rt of the 
pedagogy. 

4.1 The drama of Carmen's Bright IDEAS 

CBI is a three act interactive drama. In the key act, Carmen discusses her 
problems wit h a clinical counselor, Gina , who suggests she use a problem 
solving technique called Bright IDEAS to help her find solutions. Note each 
letter of IDEAS refers to a separate st ep in the problem solving method: 
Identify a solvable problem, Develop possible solutions, Evaluate your options, 
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Act on your plan and Sec if it worked. Bright refers to the need for a positive 
attitude. Figure 4 is a shot of Carmen and Gina in Gina's office. With Gina's 
help, Carmen goes through the initial steps of Bright IDEAS, applying the 
steps to one of her problems, and then completes the remaining steps on her 
own. The final act reveals the outcomes of Carmen's application of Bright 
IDEAS. 

Fig. 4. Carmen (right) speaking with Gina (left). 

Central to the drama's tension is the interaction between Gina, Carmen 
and the learner. The interaction model we designed for CBI is what we call 
a rubber-band model. See Figure 5. Both Gina and the learner exert influ­
ence over Carmen but the influence is partial and mediated by Carmen's 
own cognitive and emotional dynamics. Thus we characterize this influence 
as rubber-bands. It is Gina's job to keep the social problem solving on track 
so that the story proceeds to a successful outcome by effectively responding 
to Carmen's cognitive and emotional state, at times motivating her through 
dialog to work through the steps of IDEAS on some problem or alternatively 
calming or reassuring her. The human mother interacts with the drama by 
making choices for Carmen such as what problem to work on and how she 
should cope with the stresses she is facing. The learner can choose alterna­
tive internal thoughts for Carmen, such as "I hope this helps with Diana." 
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The:;;e are present.eel as thought balloons (see Figure G). Dot.h Gina's dialog 
movC's and t.hc lC'arncr's ,hoicr,s influ('J1cc t.hr. cognit.ivc and r.11101.ional s1.alC' 
of t.Jie agent playing Can11c11, ,vhich in turn impacts her bchavio1· and dialog, 
pC'rha.p8 in cm1ftict.i11g ways. Thr: cognitive awl emotional dyrwmics wit.liiu 
the Carmen agent ensures that. Carmc11's behavior is believable at all times, 
regardless of how Gina and the learner 111ay be influencing her. 

In this interaction 1nodcl, the Gina agent, is both an on-screen c:harac:tcr 
and the drmna\; director. The social intenidion between agents is driven by 
the Gina. agent'~ per~istent goal to motivate the Cannen agent. Therefore, 
Gina typically takes the initiative. If the Carmen agent is di~tres~ed, she 
requires considerable prompting, praise and guidance from Gina. Ilut as she 
is reassured about IDEAS, she will begin to "feel" hopeful and may engag;e 
the problem solving without. explicit prompcing. 

F ig. 5. Rubber band interaction model. 

The combination of Gina's motivation of Carmen through dialog and the 
learner 's emot ional impact on Carmen creat es tension, a rubber-band t uµ;-of­
war between Cina's attempts to mor.ivate Carmen and the initial, possibly 
less positive, attitudes of the Carmen/learner pair. As the learner plays a role 
in der,ennining Carmen\, a t titudes, she assumes a relat ionship in this tug­
of-war, ind11ding, ickally, an idr,nt.ilkaLion wil.h Carnwn an d lwr diHk uHir,s, 
a responsibiliL_y for the onscreen act.inn and perhaps empa thy for Gina . H 
Gina gr.ls Carnwn t.o a.r,t.ivdy C'ngagr, in applying the IDE.AS t.r,drniqur, wit.h 
a. positive attitude. t hen she potentially wins over the learner, giving lier a 
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positive attitude. Regardless, the learner gets a vivid demonstration of how 
to apply the technique. The design also allows the learner to adopt different 
relationships to Carmen and the story. The learner may have Carmen feel as 
she would, act tlw way slw would or "act out" in ways she would not in front 
of her real-world counselor. 

Fig. 6. Learner influences Carmen by selecting Thought Balloons. 

4.2 CBI Agent Models 

Technically, the basic design for interactive pedagogical drama includes five 
main components: a cast of autonomous character agents, the 2D or 3D pup­
pets which arc the physical manifestations of those agents, a director agent, 
a cinematographer agent, and finally the learner/user who impacts the be­
havior of the characters. Animated agents in the drama choose their actions 
autonomously but also follow directions from the learner and/ or a direct or 
agent. Direct.or and ci1rnmatograplrnr agents manage the intn·active drama's 
onscreen action and its presentation, respectively, so as to maintain story 
structure, achieve pedagogical goals, and present the dynamic story so as to 
ad1ieve best. dramatic effect. Here, the discussion will foms on the onscreen 
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derived from emotional appraisal may suggest quite different behaviors. As 
we will discuss, behavior generation mediates this contention. 

An example demonstrates how these pathways work within the architec­
ture. At one point, Gina asks Carmen why her daughter is having tantrums. 
Carmen tends to feel anxious about being judged a bad mother and the learner 
may choose a thought that reinforces this anxiety. Carmen copes (problem 
solving) by dismissing the significance of the tantrums ( dialog model): "She 
iR just being babyish. ,;he wantR attention." Based on Carmen's dialog and 
emotional state, behavior generation select,; relevant behaviors (e.g., fidgeting 
with her hands). Her dialog also feeds back to emotional appraisal. She may 
now feel guilty for "de-humanizing" her child, may physically display that 
feeling (behavior generation) and then go on to openly blame herself. Car­
men can go through this sequence of interactions solely based on the flux in 
her emotional reaction to her own behavior. Gina, meanwhile, will emotion­
ally appraise Carmen's seeming callousness and briefly reveal shock (e.g., by 
raised eyebrows) , but that behavior is quickly overridden if her dialog model 
decides to project sympathy. 

As noted in Figure 7, the agents use dialog annotations to communicate. 
In order to maximi7,e expressive effect of such dialog, recorded dialog of voice 
actors was used instead of speech synthesis. A significant amount of variability 
in the generated dialog is supported by breaking the recordings into mean­
ingful individual phrases and fragments and by recording multiple variations 
(in content and emotional expression). There are 480 dialog fragment,; in the 
clinical trial version of CBI. The agents compose their dialog on the fly, using 
annotations attached to the fragments to understand each other and decide 
hmv to respond. The agents experience each fragment 's annotation in order, 
so their internal state and appearance can be in flux over the dialog segment. 

Emotional apprai,ml and dialog are depicted in Figure 7 as happening in 
parallel. However the phrase-by-phrase dialog generation and comprehension 
of the associated annotation tags in practice results in appraisals being inter­
leaved with the dialog. As this sequential process unfolds phrase by phrase, 
a behavior program is being incrementally constructed by the Behavior Gen­
eration. It is useful to understand this sequencing because it helps determine 
how emotion relates to other components of the architecture and therefore 
how the subtlety and dynamics of emotional expression in CBI is realized. In 
particular, the sequencing is closely related to the resulting expressive behav­
ior program that ,vill be discussed in the Behavior Generation section. 

Agents proceRR dialog in the following order: 

1. "Hear" Dialog Line ( other speaker) if there is one. 
2. Appraise dialog from step 1 and pass result to Behavior Generation. 
3. Decision-making form intent to perform a dialog act based on some list 

of phrases to speak. 
4. If agent wants to speak goto 5 otherwise goto l. 
5. Appraise step 3 decision-making and pass result to Behavior Generation. 
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6. Compute dialog pause based on emotional state and pass to Behavior 
Generation. 

7. Pass phrase and annotations to Behavior Generation to build the part of 
the behavior program that. will be executed in parallel with this phrase. 

8. Appraise phrase just spoken and pass to Behavior Generation. 
9. If phrases remain go to 6 else inform Behavior Generation that dialog turn 

is over and goto 1. 

The Appraisal at. (2) is the starting emotional appraisal. It. sets emotional 
state and consequently informs behavior generation, and thus indirectly man­
ages the initial face, head turns and body expression (posture) of the agent, 
as well as impacting the decision making that precedes its mvn dialog. De­
cision making at. (3) comes up with a plan to say something. The appraisal 
at (5) sets emotional state and expressions based on decision making at. 3 -
the dialog intent/content of the entire response. This may in turn update face 
expression, head position and body focus. The pause at (6) simply manipu­
lates the time bchvccn the agent's phrases based on emotional state, allowing 
expressive pauses in the dialog. 

T he part. of the behavior program built at (7) creat es a parallel and se­
quential struct ure that includes gestures, facial expressions, head movements, 
blink patterns, posture shifts and speaking of the appropriate surface phrase. 
Because of animation infrastructure, the behavior program is incrementa lly 
built by these steps but. execution only happens \vhen the complet e program 
is constructed for the dialog turn. The appraisal at (8) sets emotional state 
in reaction to content relayed by each phrase. 

The dialog annotations arc not designed to fully describe t he dialog but 
rather constitute an abstract level at which the agents reas on about how to 
react. to each other's as well as their own dialog. Annotations include: 

• Dialog content: Dialog Act, Speaker and Addressee 
• Emotional content : Coping Act (e.g. denial) 
• Propositional content: Main referent (e.g. Diana) and Topic (e.g., temper 

tantrums) 
• Performance content: Referential structure (e.g., "me" indicates speaker is 

referring to self as "I feel..." , "me other" indicates speaker is referring to 
self and someone else) that is used in gesture determination and duration 
of phrase (used to decide which gesture macro to use, when to use it and 
how to set blink pattern) 

4.3 Emotional Model 

The emotion model in CBI has several unique features required to reaJi7,e 
expressive, interactive psychosocial drama that set it apart from st andard 
models of emotions used in agent systems. Central to these features is the 
fact. that emotions in CDI are not simply there t o make the characters more 
believable. Emotions and hmv individuals cope with emotional stress were an 
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integral aspect of the pedagogy. The pedagogical goal was for the mot.hen; 
to learn how to choose and carry out the right coping strategy for a given 
situation and to maintain a realistic belief in their efficacy. 

Consistent with the pedagogical role of emotion in CBI. the agents' inter­
actions with each other and the learner are in fact grounded in the research 
that influenced the Bright IDEAS pedagogy: the cognitive appraisal theory 
of human emotion as posited by Richard Lazarus [25]. This theory organizes 
human behavior around appraisal and coping. Appraisal leads to emotion by 
assessing the person-environment relationship. This assessment is performed 
along several key dimensions. For example, did an event facilitate or inhibit the 
agent's goals; who deserves blame or credit? Most notable for the discussion 
here is the dimension of ego involvement: how an event impacts an individ­
ual's ego-identity. Ego-identity is the individual's collection of concerns for 
self- and social-esteem, social roles, moral values, self-ideals as well as concern 
for other people's well-being. 

Coping is the process of dealing with emotion, either by acting externally 
on the world (problem-focused coping), or by acting internally to change be­
liefs or attention (emotion-focused coping). For example, a problem-focused 
way to attempt to deal with a loved one's illness is to take action that 
gets them medical attention. Alternatively, one might use an emotion-focused 
strategy such as avoiding thinking about it , focussing on the positive (e.g., 
one's love for an ill child) or denying the seriousness of the event. In Lazarus's 
theory, coping and appraisal interact and unfold over time, supporting the 
temporal character of emotion evident in human behavior. 

As the previous tantrum example reveals, ego-identity and coping are key 
aspects of the emotion modeling in CBI. The focus on ego identity, in par­
ticular, distinguishes CBI from systems like Emile that model emotions that 
arise from tasks. In CBI, the knowledge modeled by the agent's ego identity 
comprises a key element of how it interacts with other characters and its re­
sponse to events. For example, it is Carmen's concern for her son's ,veil-being 
that induces sadness. And it is her ideal of being a good mother, and desire 
to be perceived as one (social esteem), that leads to anxiety about discussing 
Diana's tantrums with Gina. 

Another key concern for CBI was to support the temporal character of 
emotion: an agent may ''feel" distress for an event which motivates the shifting 
of blame, which leads to anger. The venting of that anger may in turn lead to 
guilt. In particular, capturing and expressing these dynamics in CBI lead to 
a design whereby agents emotionally evaluate and react to their own dialog. 
The expression of emotion also stems from two sources, appraisals [16] as well 
as the intention to communicate emotions [26, 39] that is derived from the 
current dialog act. Thus an agent can communicate emotions that they do 
not "feel". \Ve \Viii discuss in the Behavior Generation section how these two 
sources are mediated. 

In CBI, ego-identity is modeled as a collection of role ideals (Carmen 
,vants to be a good-mother), concerns (good-mothers ,vant their children to 



28 Stacy lvlarsella, .Jonathan Gratch, and .Jeff Rickel 

be happy and healthy) and responsibilities (good-mothers are responsible for 
their child's behavior). The system also models social relations (Gina is in 
essence a parental-surrogate for Carmen). Appraisal rules derive emotions 
from these various representations. Figure 8 describes some of the knowledge of 
ego-identity, roles and social relationships. Some of the appraisal rules used in 
the emotional processing are exemplified in Figure 9. l'iote that the appraisals 
arc also performed on topic changes. Topics such as Diana's tantrums and 
Jimmy's illness have pre-existing emotional state information that is averaged 
into current emotion state when the topic is raised ( as we will see :tvIRE realizes 
such a capability in a more principled fashion). Emotions are represented as 
scalars on key types of emotion and coping factors. The appraisals result 
in changes in these values, which in turn impact dialog transitions, dialog 
rules and expressive behavior. Although there was an attempt to write these 
appraisal rules in a general fashion, the coverage is also partial, driven by the 
demands of the interactive story and characters and the pragmatic demand 
of getting CBI ready for clinical trials with real mothers. 

Roles and Ideals 

• (ego-ideal <person> <role> <type>) 
- Example: (ego-ideal Carmen mother good-mot.her) 

• (concern <type> <relationship> <state>) 
- Example: (concern good-mot.her dependent. positive-affect.) 

• (responsibility <type> <relationship> <state>) 
- Examplci: (responsibility good-mot.her dependent behavior) 

Rdat.ionships 

• (parent.al-surrogate <person> <person>) 
- Example: (parental-surrogate Carmen Gina) 

Fig. 8. Example Ego-Identity Representations 

4.4 CBI Dialog Model 

The dialog model used by the CBI agents is designed to support considerable 
flexibility, dialog turn by dialog turn, while supporting interesting dramatic 
outcomes. Iviost interesting from an expressive behavior standpoint, all this 
flexibility in dialog is often driven by emotions, specifically the agents' emo­
tional state, their coping strategies and their assessment of the other's agent's 
emotional state. To better appreciate this impact of emotions, we will briefly 
describe how dialog is generated. 

The agent's dialog module selects high-level strategies to drive the dis­
course through the scene. These strategies are descriptions of possible realiza­
tions of the major components of the discourse and are designed to support 
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• If event violates a concern, it is negative. 

• If asked by parental- surrogate about negative event which agent feels responsi­
ble for then increase anxiety. 

• If talking about negative event then increase sadness. 

• If talking about negative event which a.gent feels responsibility for then increase 
guilt. 

• If new topic is raised and agent has pre-existing emotional attitude towards it 
then average in emotions with current emotional state. 

Fig. 9. Example Appraisal Rules 

considerable flexibility in the agent's turn-by-turn dialog. For example, the 
main act in CDI is Gina's goal of getting Carmen to apply the IDEAS steps 
to one of her problems. Gina has an abstract strategy to do this: reassure Car­
men, suggest they jointly apply Bright IDEAS, ask her to choose a problem 
and guide her through the task of solving that problem - specifically guide her 
through the subgoals of I-D-E-A-S applied to that problem. This particular 
strategy sets an overall direction for the scene. The agents also have alterna­
tive substrategies that can hierarchically expand a strategy. For example the 
I-D-E-A-S subgoals need to be expanded. One substrategy is to repeatedly 
prompt/help the other agent to enumerate possible solutions to a subgoal. 
For example, Gina might use this substrategy to help Carmen develop (the 
D in IDEAS) possible solutions to Diana's tantrums. Another is to ask an or­
dered sequence of questions on a topic. Gina, for example, might help Carmen 
identify (I) the current problem's features by answering the "5\Vs": who is at 
the center of the current problem being discussed, what is the problem, where 
docs the problem happen, when docs it happen and why docs it happen. 

T he high level strategy and substrategies are not fixed prescriptions for 
the dialog. Rather, the agent expands the hierarchy and works out steps in the 
strategy interactively with the other agent. In the case of CBI, the expansion 
is done via joint agreement of Gina and Carmen. Gina suggests a substrategy 
like the "5Ws'' and Carmen decides whether to agree to that approach. Each 
step in a strategy may need to be further expanded by the agents, via selecting 
another substrategy to expand it. Alternatively, a step may be primitive in 
the sense that there is no strategy to expand it. Such primitive steps are not 
single dialog turns, however. Rather, the agent generates its dialog turn-by­
turn by flexibly interpreting the high-level strategies using a state machine. 
This machine allmvs the agent to adapt to twists and turns in the dialog caused 
by the autonomy of the agents and the learner's interactions. In the case of 
non-primitive steps in a strategy, it manages the dialog interactions which will 
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hopefully lead to an agreement on how to expand the step. Similarly, in the 
case of primitive steps, like answering the "why" question of the "5-\Vs", the 
state machine manages how the agent will interact with the other agent. to 
satisfy the step. 

The state machine includes t,vo kinds of nodes: dialog acts that generate 
a dialog turn and nodes that step through the current (sub)strategy being 
interpreted (e.g., l\""cxt Step). Both of these node types manage the dialog 
state by expanding a strategy. maintaining what the current strategy and 
topic is, where the agent is in the strategy and dialog obligations. Transit.ions 
occur between nodes depending on the current strategy, the current state of 
the dialog as well as the agent's and listener agent's emotional state. The 
dialog acts arc: 

• Suggest (e.g., a joint subplan), 
• Agree (to subplan), 
• Ask/Prompt (e.g., for an answer). 
• Re-Ask/Re-Prompt, 
• Answer or re-answer, 
• Reassure (e.g., to impact listener's emotional state) , 
• Agree/Sympathize (convey sympathy), 
• Praise, 
• Offer-Answer (,vithout being asked), 
• Clarify (elaborate), 
• Resign (give-up) and 
• Summarize 

l\fost notable arc the ones that arc tightly coupled to emotional state and 
pedagogy: Rea.s:mre, Praise, Agree/Sympathize, Resign (Give-up) and Sum­
marize. 

This design allows for both deliberative dialog and reactive dialog that 
variabilizes the agent interactions at multiple levels. At the highest level, al­
ternative strategics and substratcgics can be selected. Further, the specific 
transit.ions and resulting acts realize those strategies dialog turn by dialog 
turn in flexible ways, because a single step of the strategy can be realized 
by different paths through the agent"s dialog state machine. Finally, there 
arc typically multiple realization rules to address a specific act. For example, 
there may be multiple ways for Carmen to answer a specific question. Some 
of these may be qualitatively different. in the sense that they lead to different. 
recorded dialog lines and different. dialog annotations. Such differences lead to 
a different resulting state of the system. Others may have the same resulting 
annotations, but actually use different lines or even the same line spoken with 
different affect. For example, Carmen has multiple ,vays to say many of her 
lines, using different. affect (frustrated, depressed. optimistic, etc.), that are 
selected based on her emotional state. 

Emotion and its expression play a key role in the dialog in other ways. 
For example, Gina's transitions between dialog acts arc based on Carmen's 
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emotional state. She reassures or sympathizes ,vhen Carmen is distraught 
but prompts Carmen to address the current step in the current dialog strat­
egy when Carmen is less distraught. If Carmen's emotion model leads her 
to respond inappropriately, Gina has to decide how to repair this failure. In 
psychological terms, Gina is often choosing \Vhether to direct Carmen tO\vards 
emotion-directed versus problem-directed coping by giving either emotional 
or instrumental support. Coping is key to the agent's selection of dialog and 
its response to it. Carmen may choose an evasive coping strategy and select 
dialog consistent with that strategy using the coping annotations. For exam­
ple, the Carmen agent 's emotion model appraises the discussion of Diana's 
tantrums as a source of distress because of her concern for Diana and because 
failure to control Diana may reflect on her ability as a mother. Her response 
to this stress may be to blame Diana and trivialize her tantrums by saying 
she is just being babyish. The Gina agent will not accept this ans,ver, again 
because of the coping strategy annotation, and will ask a follow-on question. 
But Carmen may also reject her own answer first. Specifically if she is not too 
anxious or angry, the guilt caused by the answer may cause her to re-answer 
it prior to Gina's further prompting. 

4.5 Behavior Generation 

As noted, nonverbal behaviors are generated by the behavior generation mod­
ule. The design of this module was heavily influenced by the psychological 
research of Ftcedman [15]. Fteedman described behavior of clinical patients 
in terms of modes mediated by emotional state. In our computational model, 
we have delineated three modes: body-focus, transitional and communicative, 
roughly based on his work. These modes are arranged in a finite state ma­
chine, which we call a physical focus model. Body-focus mode is marked by 
a self-focused attention, away from the conversation and the problem-solving 
behavior. Emotionally, it is associated v,:ith considerable depression or guilt. 
Physically, it is associated with the tendencies of gaze aversion, paused or 
inhibited verbal activity and hand-to-body stimulation that is either soothing 
( e.g., rhythmic stroking of forearm) or self-punitive (e.g., squeezing or scratch­
ing of forearm). The agent doesn't exhibit communicative gestures such as 
deictic or beat gestures when in this mode. Transitional indicates a less with­
drawn attention, less anxiety, a burgeoning willingness to take part in the 
conversation, milder conflicts with the problem solving and a closer relation 
to the listener. Physically, it can be marked by hand-to-hand fidgeting . There 
are more communicative gestures in this mode but t hey are still muted. Fi­
nally, communicative indicates a full willingness, or intent, to engage in the 
dialog and problem solving. Physically, it is marked by the agent's full range 
of communicative gestures and use of gaze in t urn taking. 

Behavior generation selects behavior based on physical focus mode. At 
any point in t ime, the agent will be in a specific mode based on emotional 
state that predisposes it to use nonverbal behavior in a particular fashion. 
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Each behavior available to an a.gent is categorized according to vihich subset 
of these modes it is consistent with. Any specific nonverbal behavior, such as a 
particular nod of the head, may exist in more than one mode, and conversely 
a type of behavior, such as head nods in general, may be realized differently 
in different modes. Transitions between modes are based on emotional state. 

By grouping behaviors into modes, the physical focus mode attempts to 
mediate competing communicative and non-communicative demands on an 
agent's physical resources, in a fashion consistent with emotional state. Ges­
tures, gaze and head movements are in particular driven by the physical focus 
mode. As we \Vill see, facial expressions have a more temporal relation to 
the focus mode, driven by a desire to balance the expression of underlying 
emotional state with the communicative intent to express emotion as a social 
signal. This grouping model is designed to be general across agents. However, 
realism also requires that behaviors within each mode incorporate individual 
differences, as in human behavior. For example, Carmen's and Gina's reper­
toire of gestures incorporate individual differences. 

Based on the current focus mode and emotional state, behavior rules, trig­
gered in concert ,vith the dialog and appraisal processes noted above, build a 
behavior program that expresses how those processes are unfolding. Behaviors 
include a combination of posture, head movement, facial expressions, blinking 
and dialog, arranged in an Xl\IL structure. 

The structure of the behavior program consists of animation directives for 
the pieces of the agent's body. composed by parallel <P> and sequential <S> 
markers as well as pause animation directives. This allows recursive structures 
capable of simultaneous, sequential and delayed behaviors of arbitrary com­
plexity. The XML structure in CBI is similar to other X:.VIL based animation 
languages, including most recently the work of Cassell et al. [8] and Pelachaud 
et al. [37]. Even though CI31's parallel, sequential and pause language is simple 
and quite aged now, it is somewhat unique in its ability to support timing of 
one behavior in absolute time or relative to any other behavior. Often Xl\!IL 
languages only support timing of behaviors tied to the schedule of the speech. 

Figure 10 depicts the high level XML structure of the resulting animation 
program for one phrase of an agent's dialog turn. Each box in the diagram 
would in turn be realized by nested XJVIL animation directives. Note there are 
starting and ending expressions for the entire dialog turn as ,vcll as expres­
sions that arc displayed as the dialog turn unfolds, phrase by phrase. This 
allows the agent's behavior to reflect unfolding emotional signals driven by 
the multiple appraisals and sources of emotions as noted earlier. In partic­
ular, the starting facial expressions are driven by appraisal of the previous 
speaker's dialog. Expressions during the phrase arc driven either by appraisal 
or the intent to communicate emotion derived by the dialog model. In com­
municative mode .. it is the latter while in body and transitional mode it is 
the former. Kote, the system originally used a \veighted average of these two 
sources of emotion to select the expression but, in actual practice, there was 
insufficient expressive facial behavior in the animation resources to support 
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<S> 
<P> 

(Carmen, broYs, <identifier>) 
(Carmen, eyes, <identifier>) 

<IP> 
(pause, <ticks>) 

<P> 
(Carmen,head, <identifier>) 
(Carmen,mouth, <identifier>) 
(Carmen,eyes, <identifier>) 
(Carmen,brows, <identifier> 

<IP> 
<IS> 

Fig. 11. Facial and head behavior for a guilt expression. 

how those conflicts play out expressively over time. This lead the design of 
the agents along certain paths: how to model ego-identity, coping and the 
dynamics of expression. Perhaps the best test. of its success in doing so were 
the trials with real mothers of pediatric cancer patients. 

Carmen was evaluated in an exploratory arm of a larger clinical trial of the 
Bright IDEAS technique. The evaluation was very promising for Carmen and 
the use of interactive pedagogical drama in health interventions. Details on 
the results can be found in [30]. Overall, mothers were very enthusiastic. They 
found the story and its presentation in animated form to be very believable as 
well as a very effective and concrete way to learn Bright IDEAS. At the same 
time, one mother noted slowness in the graphics and other mothers wanted 
more story content that addreRRed other issues (Ruch as marital com:ernR). 

For the discussion in this chapter, this reveals a fundamental concern. One 
of the key issues that ,vas faced in design of CBI was not having the sufficient 
resources to create the necessary dialog and animation assets to reveal all the 
expressive capabilities of the underlying models. Going forward with such ap­
plications will require us to leverage existing character animation frameworks 
as opposed to building our own as we did in Carmen. Nevertheless, systems 
like CBI could fill a void in making effective health intervention training avail­
able to the larger public. The training task for CBI was a difficult one, fraught 
with potentially many pitfalls. The fact that it was received so ,vcll by the 
mothers ·was remarkable and bodes well for applying IPD to other training 
and learning tasks. 

5 Mission Rehearsal Exercise 

The :.\fission Ikhcarsal Exercise CVmE) system [46] brings together ideas from 
each of the preceding systems to create a broader and more flexible array of 
expressive behaviors. The goal of the :VIRE is to t each leadership skills in 
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high-stakes social situations. The system places a human learner in command 
of a team of virtual humans interacting in an emotionally charged virtual 
environment. For example, in our initial scenario, the learner's team has, by 
accident .. critically injured a young boy and the learner must juggle how to 
treat the boy ·without jeopardizing his mission or the safety of his team. To 
accomplish this, the learner must engage in face-to-face dialogue ,vith his team 
members, take stock of the situation, give orders, and monitor their execution. 
Complicating this are characters that may express intense emotion and offer 
potentially biased or misleading information. 

To model such dramatic and interactive scenarios, the :\IRE combines a 
number of clements of the preceding systems. \Ve build on Steve's ability to 
flexibly interact with a human user, but augment it with the richer social 
and emotional behaviors of CI3I and Jack and Steve. This has pushed us 
tmvanls a tight integration of approaches, in some cases significantly altering 
their character, while at other times forcing us to defer key capabilities of the 
preceding systems for future research. 

Although this chapter focuses on expressive behavior and the cognitive 
processes that support this, the :VIRE combines a variety of capabilities in 
service of realistic and natural collaboration with virtual humans including: 

• a realistic model of human auditory and visual perception [44] 
• a domain-specific finite-state speech recogni7:er that recogni7:es thousands 

of distinct utterances in noisy environments 
• a finite-state semantic parser that produces (partial) semantic representa­

tions of the information in the text strings returned from speech recogni­
tion 

• a dialogue model tha.t explicitly represents as pects of the social context 
[49, 32] while supporting multi-party conversations and face-to-face com­
munication in 3D virtual worlds [47] 

• a dialogue manager that recognizes dialogue acts from utterances, updates 
the dialogue model, and selects new content for the virtual human to say 

• a natural language genera.tor that can produce nuanced English expres­
sions, depending on the virtual human's personality and emotional state 
as well as the selected content [14] 

• an expressive speech synthesizer capable of speaking in different voice 
modes depending on factors such as proximity (speaking vs. shouting) 
and illocutionary force (command vs. normal speech) [22] 

The MRE seeks to advance the state of the art in each of these areas, but 
also to explore how best to integrate them into a single agent architecture 
[44], incorporating a flexible blackboard architecture to facilitate experiments 
,vith the connections between the individual components. \Ve refer the reader 
to the above citations for details on these other components and here focus 
on our innovations in expressive behavior. 

Figure 12 illustrates a scene from the :\IRE scenario. The learner plays 
the role of a lieutenant in the C.S. Army involved in a peacekeeping operation 
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in Bosnia. In route to assisting another unit, one of the lieutenant's vehicles 
becomes involved in a traffic accident, critically injuring a young boy. The 
boy's mot.her is understandably distraught and a lor:al crowd begins to gather. 
The learner must resolve the situation by interacting through spoken dialogue 
with virtual humans in the scene. 

Fig. 12. A scene from t he 11RE scenario. 

5.1 Cognition and Emotions 

To support such emotionally dramatic situations, virtual humans not only 
must produce a range of realistic: expressive behaviors, but require the cog­
nitive machinery to recognize which behaviors are appropriate in the course 
of an unscripted interaction wit h a human user. \'{hen selecting an expres­
sive behavior, the virtual human's mental processes must take into account 
not only the task and dialogue context, as in the Steve syst em, but also how 
features of the social rnntext will influence emotional appraisal and coping 
strategie8. 

We adopted Steve as a starting point for our integrated model of the 
cognition that underlies expre8sive behavior as, unlike Jack and Steve and 
CBI, the system supported flexible face-to-face interactions with a human 
user. However, Steve's task model had to be extended in a number of ways to 
represent the socio-emotional context. 

Integrating the Emile plan-based appraisal model into St.eve was relatively 
stra.ightforward as both systems used similar task representations. Steve al­
ready possessed a model of task responsibility that. supported appraisals of 
causal attribution , though Steve's task model had to be extended to represent 
probabilities and utilities and the processes that update these values. Steve 
also did not explicitly represent threats between task steps, necessary for ap­
praisals of fear or anger, so we incorporated standard threat detection and 
resolution schemes. 
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One key difference between Steve and the Jack and Steve system was that 
the former focused on collaborative task execution and did not represent mul­
tiple competing ways to accomplish a task. (Steve would represent multiple 
alternative plans, but the current state of the world would always uniquely 
identify a "best" plan that all agents would be in agreement with.) Wegener­
alized the Steve task representation to encode multiple competing courses of 
action (recipes) for accomplishing a task. This allows agents to negotiate over 
tasks and express emotions and coping behaviors that may indicate varying 
preferences over alternatives [48]. 

Integrating CBI's coping model motivated further changes and resulted in 
a tight integration bet.ween appraisal, coping, and task reasoning that closely 
follows the cognitive appraisal theories of Richard Lazarus [25] , and, in the 
end, elevated emotion processing to a central organizing construct for the vir­
tual human's behavior. Recall this theory posits that human behavior is orga­
nized around appraisal and coping. Appraisal generates emotion by assessing 
the person-environment relationship and coping is the process of dealing with 
emotion, either by acting externally on the world (problem-focused coping), or 
by acting internally to change beliefs or attention ( emotion-focused coping) . 
Coping and appraisal interact and unfold over time, supporting the temporal 
character of emotion highlighted by CBI: an agent may "feel" distress for an 
event (appraisal), which motivates the shifting of blame (coping), which leads 
to anger (re-appraisal). 

Through integrating CDI's coping model, coping strategies were recast 
explicitly into procedures that updated Steve's task representations and rea­
soning processes. For example, a strategy like problem-focused coping might 
motivate the task reasoner to refine its plans or motivate the agent to propose 
a particular course of action to the learner. Emotion-focused strategies like 
denial or shifting blame operate on the task representations, influencing the 
assignment of responsibility or altering the probability or utility of task con­
sequences [29]. As many coping responses relate to pas t actions or decisions, 
we found it necessary to extend Steve's task representation to explicitly en­
code a cairnal history of past events and actions. Thus, appraisal and coping 
operate over a unified representation of past, present, and future task-related 
information. 

Some of the key innovations of CBI and .Jack and Steve have not, as of yet, 
been integrated into the :\!IRE system, including planning stances and CBI's 
emphasis on ego identity. Although the integrated system does allmv more flex­
ibility in the plan generation process than the original St.eve system, we have 
not adopted the full generative planning approach underlying Jack and Steve 
that planning stances require. In terms of cognitive appraisal , both CBI and 
Laza rus' theories emphasize the importance of ego identity. However, given 
Emile's heavy emphasis on task-related appraisals and domain-independent 
appraisal mechanisms, ,ve have not found a suitable g;eneral way to repre­
sent the fact that certain threats are more central to an agent's makeup than 
others. 
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5.2 Physical Behavior 

Internally, the virtual humans are continually perceiving the events surround­
ing them, understanding utterances, updating their beliefs, formulating and 
revising plans, generating emotional appraisals, and choosing actions. Virtual 
humans in t.he MRE attempt to manifest t.he rich dynamics of this cognitive 
and emotional inner state through each character's external behavior using 
the same verbal and nonverbal cues that people use to understand one an­
other. The key challenge is the range of behaviors that must be seamlessly 
integrated: each character's body movements must reflect its awareness of 
events in the virtual world, its physical act.ions, the myriad of nonverbal sig­
nals that accompany speech during social interactions (e.g., ga:;-;e shifts , head 
movements, and gestures), and its emotional reactions. Expressive physical 
behavior in the MRE agents integrates the task-related nonverbal behaviors 
of the Steve system and the coping behaviors of CBI, leveraging the close 
int.egrat.ion of task-related and social information maintained by the virtual 
human's mental state. 

Our use of gaze illustrates this tight integration. Since ga:,;-;e indicates a 
character's focus of attention, it is a key clement in any model of out\:vard 
behavior, and must. be closely synchronized to the character's inner thoughts. 
Prior work on gaze in virtual humans has considered either task-related gaze 
[9] or social gaze [0] but has not produced an integrated model of the two. Our 
gaze model is driven by our cognitive model, which interleaves task-related be­
haviors, social behaviors, and attention capture. Task-related behaviors (e.g., 
checking t.he status of a goal or monitoring for an expected effect. or action) 
trigger a corresponding gaze shift, as does attention capture (e.g., hearing a 
new sound in the environment). Gaze during social interactions is driven by 
the dialogue state and the state of the virtual human's mvn processing, includ­
ing gaze at an interlocutor who is speaking, gaze aversion during utterance 
planning (to claim or hold t.he turn), gaze at an addressee when speaking, and 
gaze when expecting someone t.o speak. This tight. int.egrat.ion of gaze behav­
iors to our underlying cognitive model ensures that the out,vard attention of 
the virtual humans is synchronized \vith their inner thoughts. 

Body movements arc also critical for conveying emotional changes, in­
cluding facial expressions, gestures, posture, gaze and head movements. In 
humans, these behaviors are signals and as such they can be used intention­
ally by an individual to inform or deceive but can also unintentionally reveal 
information about the individual's internal emotional state. Thus a person's 
behavior may express anger because they foci it or because they want others 
to think they feel it. or for both reasons. \Vith t.he exception of CBI, prior 
work on emotional expression in virtual humans focused on either the in­
tentional use of emotional expression or revealing the agent's "true'' internal 
emotional state [33]. Our work attempts to integrate these aspects by tying 
expressive behavior to coping behavior, generalizing t.he mechanism used in 
CBI. Emotional changes in the virtual human unfold as a consequence of Soar 
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operators updating the task representation. These operators provide a focus 
for emotional processes, invoking coping strategics to address the resulting 
emotions which in turn leads to expressive behaviors. This focus on operators 
both centers emotional expression on the agent's current internal cognitive 
processing but also allO\vs coping to alter the relation of the expression to 
those internal cognitive processes. Thus, when making amends, our virtual 
humans might freely express their true appraisal-based feelings of guilt and 
concern, for example through facial expressions, gestures, posture, gaze and 
head movementR. However, when shifting responsibility, they might suppress 
an initial expression of guilt and rather express anger at the character they 
arc blaming, to reflect a more calculated attempt to persuade others. 

Finally, a wide range of body movements arc typically closely linked to 
speech, movements that emphasize, augment and even supplant components 
of the spoken linguistic information. Consistent with this dose relation, thiR 
nonverbal behavior, which can include hand-arm gestures, head movements 
and postural shifts, is typically synchronized in time with the speech. Realizing 
this synchronization faces the challenge that we do not have an incremental 
model of Rpeech production. Such a model would allow us to tie nonverbal 
behaviors to speech production operations much like the gaze and coping 
behaviors are tied to cognitive operations. Rather, our approach is to build on 
the gesture scheduling approach developed for CBI, ,vhich plans the utterance 
out and annotates it with nonverbal behavior. The annotated utterance is 
then passed to a text-to-speech generation system that schedules both the 
verbal and nonverbal behavior, using the BEAT system [8]. This approach 
is similar to the work of Cassell et al. [5]. Our ,vork differs in the structure 
passed to the gesture annotation process, in order to capture the myriad ways 
that the nonverbal behavior can relate to the spoken dialog and the internal 
state of the virtual human. Specifically, while both systems pass the syntactic, 
semantic and pragmatic structure of the utterance, we additionally pass the 
emotional appraisal and coping information associated with the components 
of the utterance. The gesture annotation process uses this information to 
annotate the utterance with gestures, head movements, eyebrow lifts and eye 
flashes. 

Some key aspects of Carmen's Bright IDEAS have not been incorporated 
into the current :.VIn.E system. CBI made effective use of the dramatic impact 
of pauses in speech, which can convey emotional turmoil or deliberation. CBI 
agents also had a far richer repertoire of expressive behaviorR, particularly 
variability in motions as,;ociated with the eyes, eyelids, and brows. Such ex­
pressivity is not currently possible with the speech and animation systems 
used in the :.vrn.E system. "\Vhilc the MRE uses more realistic graphical mod­
els than the preceding three systems, they were developed by a third-party 
vendor, so \Ve had less creative control over the animation than the other sys­
tems, which ,-vere developed in-house. Further the stylized 2D animation used 
in CBI supported a greater range of recognizable expressions. The greater 
complexity of 1\/IRE's natural language modules also limits the range of ex-
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pressive behavior. In contrast to CBI, ,vhich used voice actors, lVIRE utilizes 
a fully automated speech generation pipeline, which provides the capability of 
dynamically generating a wide range of utterances, but allows far less nuanced 
speech, both in terms of emotional dynamics and creative use of pauses. 

6 Conclusion 

This chapter has shown the evolution of our ideas on expressive behaviors 
and their integration in our current virtual humans. Steve's ability to in­
terleave task-related behaviors and face-to-face dialogue in dynamic virtual 
worlds serves as the foundation for the virtual humans in our :\1RE system. 
The .Jack and Steve svstem contributed a model of task-oriented emotional 
appraisal (Emile) and 

0

a model of socially situated planning. The CBI system 
contributed a complementary model of emotional appraisal focusing on social 
relationships and ego identity, as \vell as a model of coping and of the effect of 
emotions and coping on physical behavior. Our MRE virtual humans integrate 
many of the ideas from these three prior systems, while significantly extending 
our prior work in some areas, such as our model of coping. The animation and 
speech capabilities in these four systems have offered different tradeoffs in gen­
erality and expressivity, illustrating the fact that any implemented model of 
expressive behavior must be closely integrated v,;ith the animation and speech 
capabilities available to it; otherwise, it may not be possible t o accurately ex­
press the distinctions in that model. In our current work, we arc continuing to 
push the frontiers of both our model of expressive behavior and its connection 
to the latest technologies in animation and speech production. 

Acknowledgement. The Office of Kava! Research funded the original research on 
Steve under grant. N00014-95-C-0179 and AA.SERT grant. N00014-97-1-0598. Lewis 
Johnson contributed to the original design of Steve, Randy Stiles and his colleagues 
devclopcid the graphics software, Allcin }Junro and his colleagues developed the sim­
ulator, and Ben }foore helped link Steve to speech recognition. 

The work on Carmen's 13right. IDEAS was supported in part by the ::-.rat.ional 
Cancer Institute under grant R2iiCA6ii520. Our colleagues Lewis .Johnson and Kate 
LaBore contributed significantly to the project. 

The Department of the Army funds the },fRE project under contract DAAD 
19-99-D-0046. \Ve thank our many colleagues who are contributing to the lv1RE 
proj<\ct: Shri Karayanan leads a tciam working on speech recognition. Randy Hill, 
Mike van Lent , Changhee Han, and Youngjun Kim are working on models of agent 
perception. Ed Hovy, Dccpak Ravichandran, and l\ilichacl Fleischman arc working on 
natural language understanding and generation. Lewis .Johnson, Kate LaBore, Shri 
::-.rarayanan, and Richard \Vhit.ncy arc working on speech synthesis. Larry 'I\1ch wrote 
the :',1[RE story line with creative input from Richard Lindheim and technical input 
on Army procedures from Elke Hutto and General Pat O'::-.[eal. Sean Dunn, Sheryl 
Kwak, Ben l\foore, and :'vlarcus Thiebaux created the simulation infrastructure for 
lVlRE. Marcus also developed the character animation system for Steve and Jack and 



Expressive Behaviors for Virtual ·worlds 41 

Steve. Any opinions, findings, and conclusions expressed in this article are those of 
the authors and do not necessarily reflect. the views of the Department of the Army. 

References 

1. .Jose A. Ambros-Ingerson and Sam Steel. Integrating planning, execution and 
monitoring. In Proceeding.5 of the Seventh National Conference on Artific.1:al 
Intelligence {AAAI-88), pages 83 88, San :\Iateo, CA, 1988. :.VIorgan Kaufmann. 

2. L. Berkowit\'.. Causes and Consequences of Feelings. Cambridge "Cniversity 
Press, 2000. 

3. Rama I3indiganavale, \Villiam Schuler, .Jan I'd. Allb<\ck, Norman I. I3adlcr, Ar­
avind K. Joshi, and l'vlartha Palmer. Dynamically altering agent behaviors using 
natural language instructions. In Proceedings of the FV'l.wth International Con­
ference on Autonomo!ls Agents, pages 293-300, Kew York, 2000. AC!Vl Press. 

4. Justine Cassell, Tim Bickmore, Lee Campbell, Hannes Vilhjalmsson, and Hao 
Yan. Conversation as a system framework: Designing embodied conversational 
agents. In J. Cassell, .J. Sullivan, S. Prcivost., and E. Churchill, edit.ors, Embodied 
Con11ersational Agents. !\HT Press, Cambridge, :\·IA, 2000. 

ii. Justine Cassell, Catherine Pelachaud, Korman Badler, :\fark Steedman, Brett 
Achorn, Tripp Becket, Brett Douville, Scott Prevost, and :\Iatthew Stone. An­
imated conversation: Rule-based generation of facial expression, gesture and 
spoken intonation for multiple conversational agents, In Proceedings of ACM 
SIGGRAPH '94, pages 413- 420, Reading, !VIA, 1994. Addison-Wesley. 

6. Justine Cassell, Joseph Sullivan, Scot.t Prevost, and Elizabeth Churchill, edit.ors. 
Embodied Conversai'ional Agents. :\IIT Press, Cambridge, l\IA, 2000. 

7. Justine Cassell and Kristinn R . Th6risson. The power of a nod and a glance: 
Envelope vs. emotional feedback in animated conversational agents. Applied 
Artificial Intelligence, 13:519-538, 1999. 

8. Justine Cassell, Hannes Vilhjalmsson, and Timothy Bickmore. Beat: t he behav­
ior expression animation toolkit. In Proceedings of ACM SIGGRAPH, pages 
477-486, New York, 2001. ACM Press. 

9. Sonu Chopra-Khullar and Norman I. I3a.dlcr. \Vherc to look? Automating at­
tending behaviors of virtual human characters. kutonorrw-us Agents and M-ult'i­
Agent Systcm8, 4(1-2):9-23, 2001. 

10. Philip R. Cohen and Hector J. Levesque. Teamwork. Nov.s, 2,'5(4):487-512 , 1991. 
11. :\Iarie desJ ardins and :\Iichad .J. \Vol vcrton. Coordinating a distribu t.cd plan­

ning system. AI Magazine, 20(4):45-53, Winter 1999. 
12. Starkey Duncan, Jr. Some signals and rules for taking speaking turns in con­

versations. In Shirley 'Neitz, editor, Nonve·r·bal Cornrrmn·icat·ion, pages 298 311. 
Oxford "Cnivcrsity Press, 1974. 

13, Clark Elliott. The Affective Reasoner: A Process Model of Emotions in a M11lti­
agent System. PhD thesis, Korthwestern University, 1992. 

14. :\-Iichael Fleischman and Eduard Hovy. Emotional variation in speech-based nat­
ural language generation, In Proceedings of the International Natnral Lo:ng11age 
Generation Conference, New York, 2002. Arden House. 

Iii. Norbert Freedman. The analysis of movement behavior during the clinical inter­
view. In A.\V. Siegman and B. Pope, editors, St·ud·ies in Dyadic Comumnicat·ion, 
pages 177- 210. Pergamon Press, )few York, 1972. 



42 Stacy Marsella, .Jonathan Gratch, and .Jeff Rickel 

16. Jonathan Gratch. Emile: Marshalling passions in training and education. In I'ro­
ceedings of the Fourth International Conference on Autonomous Agents, pages 
325-332, New York, 2000. AC!Vl Press. 

17 . .Jonathan Gratch. Socially situated planning. In Lola Caiiamero Kerstin Daut­
enhahn, Alan H. Bond and Bruce Edmonds, editors, Socially Intelligent Agents: 
Creatfrig Relat'ionships wdh Computers and Robots, pages 181 188. Kluwer Aca­
demic Publishers, 2002. 

18. .Jonathan Gratch and Stacy Ivlarsella. Tears and fears: :\Iodeling emotions and 
emotional behaviors in synthetic agents. In Proceed1:ngs of the Fifth Interna­
tional Conference on Autonomotis Agents, pages 278-285, ::-.rew York, 2001. AC!vl 
Press. 

19. B. J. Gros,: and S. Kraus. Collaborative plans for complex group action. Arti­
ficial Intelligence, 86(2):269 357, 1996, 

20. Barbara .J. Grosz and Candace L. Sidner. Attention, int,\ntions, and the! struc­
ture of discourse. Comvutat'ional Ling·uist'ics, 12(3):175 204, 1986. 

21. \V. Lewis .Johnson, Jeff\V. Rickel, and .James C. Lester. Animated pedagogical 
agents: Face-to-face interaction in interactive learning environments. Interna­
tional Journal of Artificial Intelligence in Education, 11:47-78, 2000. 

22. \V.L . .Johnson, S. )l°arayanan, R. \Vhitney, R. Das, :'vL Bulut, and C. LaBore. 
Limited domain synthesis of expressive military speech for animated characters. 
In I'roceedings of the IEEE Workshop on Speech Synthesis, Santa :'vionica, CA, 
2002. 

23. Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as 
refinement search: A unified framework for evaluating design tradeoffs in partial­
order planning. Artific1:al Intelligence, 76:167- 238, 1995. 

24. John E. Laird, Allen Kewell, and Paul S. Rosenbloom. Soar: An architecture 
for general intelligence. Artificial Intr.ll(qence, 33(1):1-64, 1987. 

25. R.S. Lazarus. Emotion and Adaptation. Oxford Press, 1991. 
26 . .Tames C. Lester, Stuart G. Ttnvns, Charles B. Callaway, .Jennifer L. Voerman, 

and Patrick .J. FitzGerald. Deictic and emotive communication in animation 
pedagogical agents. In .1. Cassell, .T. Sullivan, S. Prevost, and E. Churchill, 
editors, Embod1:ed Con11er.rntiorrnl Agents. MIT Press, Cambridge, :\IA, 2000. 

27 . .Tames C. Lester, .Jennifer L. Voennan, Stuart G. Towns, and Charles B. Call­
away. Deictic bdicvability: Coordinating gestnr<\ locomot.ion, and speech in 
lifelike pedagogical agents. Applied Artificial Intelligence, 13:383-414, 1999. 

28 . .James C. Lester, Luke S. Zettlemoyer, Joel Gregoire, and \Villiam H. Bares. 
Explanatory lifelike avatars: Performing user-designed tasks in 3d learning envi­
ronments. In Proceedings of the Third International Conference on A'Utonomo'us 
Agents, New York, 1999. ACl'vl Press. 

29. Stacy Marsella and Jonathan Gratch. l\fodeling coping behavior in virtual hu­
mans: Don't worry, be! happy. In Proceedings of the Second International Joint 
Conference on A·utonorno·us Agents and Af,ult·i-Agent Systems. AC:'vI Press, 2003. 

30. Stacy IVIarsella, \V. Lewis .Johnson, and Catherine Lal3ore. Interactive peda­
gogical drama for health interventions. In I'roceedings of the 11th International 
Conference on Artificial Intelligence in Education. IOS Press, 2003. 

31. Stacy C. :'viarsella, \V. Lewis .Johnson, and Catherine La.Bore. Interactive ped­
agogical drama. In Proceedings of the Fom·th International Conference on A'U­
tonornons Agents, pages 301- 308, ::-{ew York, 2000. AC:'vI Press. 



Expressive Behaviors for Virtual ·worlds 43 

32. Colin :'lfatheson, Massimo Poesio, and David Traum. :'lfodelling grounding and 
discmirse obligations using update rules. In Proceedings of the First Conference 
of the North American Chapter of the Association for Computational Linguis­
f'ics, 2000. 

33. \V. Scott Neal Reilly. Believable Social and Emotional Agents. PhD thesis, 
School of Computer Science, Carnegie :\Icllon "Cnivcrsity, Pittsburgh, PA, 1996. 
Technical Report Cl\1-C-CS-96-138. 

34. Allen Kewell. Unified Theories of Cognition. Harvard "Cniversity Press, Cam­
bridge, l\JA, 1990. 

3.'i. A. Ortony, G.L. Clore, and A. Collins. The Cognitive Structure of Emotions. 
Cambridge University Press, 1988. 

36. Catherine Pdachaud, Korman I. I3adlcr, and :\Iark Steedman. Generating facial 
expressions for speech. Cognitive Science, 20(1), 1996. 

37. Catherine Pelachaud, Valeria Carofiglio, Berardina De Carolis, Fiorella de Ro­
sis, and Isabella Poggi. Embodied contextual agent in information delivering 
application. In Proceedings of the First International Joint Conference on Av.­
tonomo·us Agents and M·ulti-Agent Systems, pages 758 765, New York, 2002. 
AC:\I Prn-;s. 

38 . .T. Penley and .T. Tomaka. Associations among the big five, emotional responses, 
and coping with acute stress. Personality and Individual Di.fferenr:e.~, 32:1215-
1228, 2002. 

39. Isabella Poggi and Catherine Pelachaud. Emotional meaning and expression 
in performative faces . In Inte'!'national Wm'kshop on Affect 'in Intemc.tions: 
Towards a New Generation of Inter.faces, Siena, Italy, 1999. 

40 . .Jeff Hickel and \V. Lewis Johnson. Animated agents for procedural training 
in virtual reality: Perception, cognition, and motor control. Applied Artificial 
Intelligence, 13:343 382, 1999. 

41. Jeff Rickel and \V. Lewis Johnson. Virtual humans for team training in vir­
tual reality. In Proceed-irigs of the Ninth Intenwtional Con.f erence on A rt-ificial 
Intelligence in Edtication, pages 578- 585. IOS Press, 1999. 

42. Jeff Rickd a,nd \V. Lewis .Johnson. Task-ori<!nt.ed collaboration with embodied 
agents in virtual worlds. In J. Cassell, J. Sullivan, S. Prevost , and E. Churchill, 
editors, Embod·ied Conversational Agents. MIT Press, Cambridge, :VIA, 2000. 

43 . Jeff Rickel and \V. Lewis .Johnson. Extending virtual humans to support team 
training in virtual reality. In G. La,kemayer and I3. >febd, <!ditors, Exploring 
Artificial Intelligence in the New Mi/leniv.m, pages 217-238. :'lforgan Kaufmann, 
San Francisco, 2002. 

44. Jeff Rickel , Stacy 1\-!arsella, Jonathan Gra.tch, Randall Hill, David Tra.um, and 
\Villia,m Swartout. Toward a n<!W gcnc!ration of virtual humans for intc!ractive 
experiences. IEEE Intelligent Sy8tems, 17( 4):32-38, 2002. 

4.'5. K.R. Scherer. AppraiRal considered as a process of multilevel sequential check­
ing. In K.R. Scherer, A. Schorr, and T. Johnstone, editors, Appraisal J>roces8e8 
in Emotion: Theory, Method8, and Re8earr.h, pa,ges 92-120. Oxford "Cnivcrsity 
Press, 2001. 

46. \V. Swartout, R. Hill, .J. Gratch, \V.L. Johnson,. C. Kyriakakis, C. La­
Bore, R. Lindheim, S. Marsella, D. :\Iira.glia, B. Moore, .J. :\Iorie, J. Rickel, 
:VI. Thiebaux, L. Tuch, n.. \Vhitney, and J . Douglas. Toward the holodeck: 
Integrating graphics, sound, character and story. In Proceedings of the Fifth In­
ternat·ional Confer·ence on A·utonomo·us Agents, pages 409 416, Kew York, 2001. 
AC:\I Press. 



44 Stacy lvlarsella, .Jonathan Gratch, and .Jeff Rickel 

47. David Traum and Jeff Rickel. Embodied agents for multi-party dialogue in 
immcrsive virt.ual worlds. In Pmceeding8 of the Fir8t International Joint Con­
ference on Autonomous Agents and Multi-Agent Systems, pages 766-773, New 
York, 2002. AC!vl Press. 

48. David Traum, Jeff Rickel, Jonathan Gratch, and Stacy l\farsella. Negotiation 
over tasks in hybrid human-agent teams for simulation-based training. In Pro­
ceeding8 of the Second International Joint Conference on Autonomou8 Agents 
and M·ult-i-Agent Systems. AC.VI Press, 2003. 

49. David R. Traum. A Computational Theory of Grounding in Natural La:nguage 
Con11ersation. PhD thesis, Department of Computer Science, 1..:-niversity of 
Rochester , Roc:hest.t\r, ~Y, 1994. 

50. David R. Traum and Elizabeth A. Hinkelman. Conversation acts in task-oriented 
dialogue. Corrwutat-ional Intelligence, 8(3):575 599, 1992. 

51. Daniel S. \Veld. An introduc:t.ion to least commitment planning. AI Magazine, 
15(4):27 61, 1994. 



Index 

Emile, 9, 14, 20, 27 

agents, 9 
character, 23 
cinematographer, 23 
director, 23 
tut.or, 34 

Carmen's Bright IDEAS (CBI), 2, 9, 
19, 38, 39 

CBI, see Cannen's Bright IDEAS 
cognitive appraisal theory, 9, 20, 27 
coping, 2, 20, 27 

emotion-focused, 27, 37 
problem-focused, 27, 37 

dialogue, 3, 8, 24, 28, 34, 35 
dialogue acts, 30 
emotion and, 18 
expressive, 30 
gestures, 38, 39 
nonverbal behavior, 4, 31, 38, 39 
obligations, 8, 10, 15 
persona.lity and, 10, 16, 17 

drama, 20 

emotion, 1, 10, 24, 26 
appraisal, 27 
appraisal theory, 9, 14, 29 
appraisal variables, 9, 14, 27 
conveying of, 18, 36 
coping, 20, 27 
dialogue, 28 
ego-identity, 27 

facial expressions, 19 
gestures, 19, 38, 39 

evaluation, 34 
expressive behavior, 1, 2, 4, 16, 18, 24, 

31 , 33 
dialogue, 30 
facial expressions, 32, 34 
gestures, 32 
personality, 32 
physical focus model, 31 
scripting languages, 32, 33 

Interactive Pedagogical Drama (IPD), 
19, 23, 34 

IPD, sr,r, Interactive Pedagogical Drama 

.Jack and Steve, 2 
joint intentions, 10 

:VIRE (!\fission Rehearsal Exercise) , 34 

pernonality, 9, 10, 16, 17, 28 
biases to appraisal, 9 
ego-identity, 27, 28, 37 

planning, 3, 4, 8, 9, 24 
decision-theoretic:, 9 
expressive behavior and, 9 
rnetaplanning, 9, 13, 15, 17 
plan generation, 9 
social, 9, 12 

social context, 9, 12, 13, 28, 36 
roles, 28, 29 
social relationships, 28 

social interaction, 21 



46 Index 

speech recognition, 35 
speech synthesis, 35 
Steve, 2, 3, 20 

virtual humans, 2, 3 




