

DEPARTMENT OF THE NAVY

OFFICE OF COUNSEL

NAVAL UNDERSEA WARFARE CENTER DIVISION

1176 HOWELL STREET NEWPORT Rl 02841-1708

 IN REPLY REFER TO

 Attorney Docket No. 100625

2 February 2022

The below identified patent application is available for

licensing. Requests for information should be addressed

to:

TECHNOLOGY PARTNERSHIP OFFICE

 NAVAL UNDERSEA WARFARE CENTER

 1176 HOWELL ST.

CODE 00T2, BLDG. 102T

 NEWPORT, RI 02841

Serial Number 17/575,703

Filing Date 14 January 2022

Inventor Makia S. Powell

Address any questions concerning this matter to the

Technology Partnership Office at (401) 832-3339.

DISTRIBUTION STATEMENT

Approved for Public Release

Distribution is unlimited

Attorney Docket No. 100625

1 of 17

ASYNCHRONOUS MULTIPLICATION IMPLEMENTATION

STATEMENT OF GOVERNMENT INTEREST

[0001] The invention described herein may be manufactured and

used by or for the Government of the United States of America

for governmental purposes without the payment of any royalties

thereon or therefor.

CROSS REFERENCE TO OTHER PATENT APPLICATIONS

[0002] None.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

[0003] The present invention is directed to an implementation

of a floating point multiplication for digital circuitry.

(2) Description of the Prior Art

[0004] In digital computer processing, signed floating point

numbers can be utilized in a form having a mantissa multiplied

by a base having an exponent. Mathematical functions are

carried out on these numbers in semiconductor floating point

units or processors in binary format. A floating point unit

does addition, subtraction, multiplication, and division

operations on floating point numbers. In many implementations

the exponent is biased which means that a number called the bias

is subtracted from the written exponent before computation. This

Attorney Docket No. 100625

2 of 17

allows implementations to use a positive representation of a

negative exponent, since the written exponent minus the bias is

negative. The examples assume a normalized format, which means

that the first bit of the mantissa is ‘1’.

[0005] The Institute of Electrical and Electronics Engineers

(IEEE) has standards for floating point representation of

numbers. The current standard used by most commercial

processors is IEEE-754-2008. The output of this format is a

binary floating point number that contains a sign, biased

exponent, and mantissa. A 16-bit IEEE-754 floating point number

is given by the following format:

seee eemm mmmm mmmm

where each letter represents a binary digit or bit; s is the

sign bit; each e is an exponent bit; and each m is a mantissa

bit. In this format the minimum exponent is -14, and the

maximum exponent is 15. The exponent bias is 15. This means

that 15 is subtracted from the exponent value to give the actual

value. An exponent value having all “1”s is used to represent

infinity or “not a number” known as NaN. An exponent value

having all zeroes is used to represent a denormalized number.

IEEE-754 32 bit, 64 bit, 128 bit, and 256 bit floating point

formats are similar.

Attorney Docket No. 100625

3 of 17

[0006] Important resources for floating point unit

mathematical routine implementations are size and speed. The

size of the implementation is the number of gates that are

required. Typical commercial 32 bit multiply/accumulate

floating point units without division take approximately 12,800

gates. This typical commercial implementation runs at 1

MFlop/Mhz or 55Mhz. When utilizing field programmable gate

arrays (FPGAs) and other special purpose semiconductors, it is

often desirable to reduce the number of gates and chip resources

required for processing floating point numbers. It is further

desirable to process these numbers as quickly as possible.

[0007] FIG. 1 provides a diagram illustrating the normal

process for multiplying floating point numbers. As illustrated

at 10, the floating point multiplicand A and multiplier B are

first broken down into segments: the sign bit - s, exponent

segment having exponent bits e, and mantissa segment having

mantissa bits m. Standard logic, not shown, is utilized to

identify exceptions such as not a number or NaN based on the

exponent bits. The sign bits Asgn and Bsgn are processed by

performing an exclusive OR operation 12 on sign bits Asgn and

Bsgn, resulting in a product sign bit, Psgn. The multiplicand and

multiplier exponent segments Aexp and Bexp are added together In

multiplication exponent adder 14 and provided as the product

exponent Pexp. Exponent overflow conditions are flagged as known

Attorney Docket No. 100625

4 of 17

in the art, but not illustrated in FIG. 1. The mantissa

segments Aman and Bman are multiplied in a mantissa multiplier 16

to produce a product mantissa Pm. Mantissa multiplier 16 can

utilize various logic architectures to efficiently produce the

product of a multiplier and multiplicand. These algorithms

include Baugh-Wooley algorithm, Wallace trees, or Dadda

multipliers.

[0008] The number of bits in the product mantissa segment n

is the sum of the number of bits in the multiplicand mantissa

segment nA and the multiplier mantissa segment nB with all of

these algorithms. For example, when a 10-bit multiplicand

mantissa Aman is being multiplied with a 10-bit multiplier

mantissa Bman, this will result in a 20-bit product mantissa Pman.

The least significant 10 bits of product mantissa Pman are used

for rounding in 18 and discarded. Rounding in 18 can be

performed by a variety of techniques known in the art such as

truncation and banker’s rounding. Typically, this results in the

least-significant n/2-1 bits of the product mantissa Pman being

discarded as insignificant, resulting in a rounded product

mantissa Pm.

[0009] The rounded product mantissa is recombined with the

product exponent in normalization module 20. Normalization

module 20 receives the rounded product mantissa Pm which is not

normalized. Normalization module 20 locates the most significant

Attorney Docket No. 100625

5 of 17

bit in the rounded product mantissa Pm. The product exponent Pexp

is adjusted accordingly to account for the radix being

positioned between the most significant bit and next most

significant bit. In conformance with the IEEE 754 standard, the

leading most significant bit is also dropped as part of this

operation. Reference number 22 indicates assembly of the final

floating point product P produced by reassembling the product

sign bit Psgn with the product exponent Pexp and the product

mantissa Pm.

[0010] When the number of bits that a multiplier processes

doubles, its area increases quadratically, and its speed

decreases by 50%. For example, a 64-bit multiplier is roughly 4

times as large, and twice as slow as a 32-bit multiplier, and 8

times as large and four times as slow as a 16-bit multiplier.

One prior art option for reducing the resource requirements and

increasing speed is to round or truncate the multiplicand and

multiplier to the number of bits that give significant output.

This allows the use of smaller, faster multipliers; however, it

also introduces significant worst case error into the multiplier

by introducing multiplicative rounding errors.

[0011] In view of this, it is desirable to have a multiplier

for floating point numbers that is more efficient in digital

circuit area and speed while providing sufficiently accurate

results.

Attorney Docket No. 100625

6 of 17

SUMMARY OF THE INVENTION

[0012] The first object of the present invention is to

provide an implementation of a multiplier utilizing fewer gates.

[0013] Another object is to provide an implementation of a

multiplier capable of operating at faster speeds than existing

units.

[0014] Accordingly, there is provided a multiplier apparatus

that computes multiplication of a multiplicand and a multiplier

to give a product. A multiplicand separator and a multiplier

separator receive n bit numbers and separate them into high

order segments and low order segments. A first multiplier

multiplies the high order segments. Second and third multipliers

multiply the high order and low order segments. The products of

these multiplications are added together by an adder to give a

multiplication product. Another implementation uses rounding

logic to allow fewer bits in the multipliers. The adder can be a

three-way adder or a combination of two-way adders. This

apparatus can also be applied in a floating point embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Reference is made to the accompanying drawings in

which are shown an illustrative embodiment of the invention,

wherein corresponding reference characters indicate

corresponding parts, and wherein:

Attorney Docket No. 100625

7 of 17

[0016] FIG. 1 is a diagram of a prior art floating point

multiplication implementation.

[0017] FIG. 2 is a detailed diagram of a floating point

implementation according to one embodiment of the present

invention.

[0018] FIG. 3 is a detailed diagram a floating point

implementation according to a second embodiment of the present

invention.

DETAILED DESCRIPTION OF THE INVENTION

[0019] FIG. 2 shows one embodiment of floating point

multiplication utilizing the current invention. The

implementation receives a multiplicand A and a multiplier B in

floating point format. This can be in IEEE 754 floating point

format or any similar format having a sign bit s, a plurality of

exponent bits e, and a plurality of mantissa bits m. A half

precision IEEE 754 floating point number utilizes 16 bits with 1

sign bit, 5 exponent bits, and 10 mantissa bits. A single

precision IEEE 754 floating point number utilizes 32 bits with 1

sign bit, 8 exponent bits, and 23 mantissa bits. A double

precision IEEE 754 number has 1 sign bit, 11 exponent bits, and

52 mantissa bits. Quad precision occupies 128 bits. Typically,

the exponent bits are biased in order to show fractions with

positive exponents.

Attorney Docket No. 100625

8 of 17

[0020] Multiplicand A and multiplier B are received at 30 as

parallel binary numbers in floating point format. Segments of

the floating numbers are separated by connecting the bit values

to the components utilizing the segments as input. Sign bits

Asgn and Bsgn are segregated for processing. Exponential bits are

grouped as multiplicand exponential segment Aexp and multiplier

exponential segment Bexp. The most significant bit of the

mantissa in floating point is “1”, and this is assumed when

processing the mantissa segments Aman and Bman. (In the IEEE 754

standard this bit is “implicit” and not stored.) During

separation of the number into segments, this implicit most

significant bit must be restored to the higher order segments or

otherwise accounted for. For discussion herein, the mantissas

including the leading “1” will be used, and the mantissa segment

will have an additional bit when compared to the IEEE format

mantissa segment.

[0021] As indicated at 30, high order mantissa bits and low

order mantissa bits are grouped separately as a high order

multiplicand mantissa segment A1, a low order multiplicand

mantissa segment A2, a high order multiplier mantissa segment B1,

and a low order multiplier mantissa segment B2.

[0022] In this embodiment, the number of bits in the low

order segment and the high order segment are chosen to avoid

rounding problems. If n is the number of bits in the mantissa

Attorney Docket No. 100625

9 of 17

segment, these bits are located at positions n-1 through 0. The

mantissa should be divided so that the high order segment should

have bits in places n-1 through n/2-1. The low order segment

should have bits in places n/2-2 through 0. If the mantissa has

an odd number of bits n, the high order segment should have bits

in positions n-1 through (n-1)/2 -1, and the low order segment

should have bits in places (n-1)/2-2 through 0. In either case

both high order multiplicand mantissa segment A1 and the high

order multiplier mantissa segment B1 should have the same number

of bits. The low order multiplicand mantissa segment A2 and the

low order multiplier mantissa segment B2 should also have the

same number of bits.

[0023] The sign of the product is determined utilizing XOR

gate 32. XOR gate 32 receives multiplicand sign bit Asgn and

multiplier sign bit Bsgn. XOR gate 32 executes an exclusive OR

function to give a product sign bit Psgn.

[0024] In the prior art, multiplication exponent adder 34 is

joined to receive multiplicand exponent segment Aexp and

multiplier exponent segment Bexp. These exponent segments are

added to produce a provisional product exponent segment Pexp.

Pexp is provisional because it may need to be corrected when the

floating point number is normalized after multiplication.

[0025] Multiplication of the mantissa is carried out

utilizing three multipliers: a first mantissa multiplier 36, a

Attorney Docket No. 100625

10 of 17

second mantissa multiplier 38, and a third mantissa multiplier

40. First mantissa multiplier 36 is joined to receive the high

order multiplicand mantissa segment A1 and the high order

multiplier mantissa segment B1. Segments A1 and B1 are

multiplied to provide a high order partial product mantissa

segment P1. In the first embodiment, high order partial product

will have bits in places 2n-1 through n/2-1 of the final product

because the number of bit places is the sum of the number of bit

places in the multiplicand A1 and the multiplier B1 plus one bit

for carries in the most significant place.

[0026] Second mantissa multiplier 38 is joined to receive the

high order multiplicand mantissa segment A1 and the low order

multiplier mantissa segment B2. These segments A1 and B2 are

multiplied to give a first intermediate order partial product

mantissa segment P2. In this embodiment, first intermediate

order partial product will have 3n/2-1 bits in places 2n-n/2-2

through 0. When n is odd, the first intermediate order partial

product mantissa segment P2 has 3(n-1)/2-1 bits. The bits will

be in places 3(n-1)/2-2 through 0.

[0027] Third mantissa multiplier 40 is joined to receive the

low order multiplicand mantissa segment A2 and the high order

multiplier mantissa segment B1. Multiplier 40 multiplies these

segments to give a second intermediate order partial product

mantissa segment P3 having bits in places 3n/2-2 through 0. As

Attorney Docket No. 100625

11 of 17

above, the bits will be in places 3(n-1)/2-2 through 0 when n is

odd. The low order multiplicand mantissa segment A2 is not

multiplied by the low order multiplier mantissa segment B2

because, the multiplication of A2*B2 results in a product that is

too small to affect the top 2n-1 through 2n bits of the summed

product.

[0028] A three-way adder 42 is utilized to add the high order

mantissa segment P1, the first intermediate order mantissa

segment P2, and the second intermediate order mantissa segment

P3. The higher order mantissa segment P1 and low order mantissa

segments P2 and P3 are aligned so that the appropriate place

values add properly. This can be done by zero padding the low

or high order terms. Three way adder 42 produces the sum P4. In

an alternative embodiment, two adders can be used to combine the

partial product mantissa segments.

[0029] Normalization 46 receives the unscaled product P4 and

the provisional product exponent segment Pexp to renormalize P4.

Renormalization is performed by finding the place of the most

significant asserted bit in P4 utilizing a priority encoder. The

provisional product exponent segment Pexp is then incremented by

this place value. The leading one is dropped as being assumed.

[0030] Rounding and truncation can occur before or after

renormalization. An advantage of truncating early is that the

truncated number is shorter for the priority encoder, but this

Attorney Docket No. 100625

12 of 17

runs the risk of zeroing out smaller values. In any case,

rounding uses the most significant bit of the portion being

truncated. If this bit is asserted, the least significant bit

of the truncated number is incremented. As an example, if P4 has

bits n to 0, it may be desirable to truncate it to bits n

through (n+1)/2. To round, if bit n/2 is 1, bit (n+1)/2 is

incremented. Other rounding schemes can be used. To provide the

floating point output, the sign bit, the exponent segment, and

normalized product mantissa are reassembled into a binary

floating point number. This may be performed by providing the

appropriate outputs in the correct bit positions.

[0031] In the first embodiment, shown in FIG. 2, the first,

second, and third multipliers are each roughly half the size of

the prior art multiplier in bits. Each of these half bit number

sized multipliers has an area that is 25% of the full sized

multiplier. These half bit number multipliers are twice as

fast. The final multiplier utilizing this first embodiment has

75% of the area of the prior art multiplier. The adders do not

add significant delay to the path since an n-bit multiplier

already contains n adders.

[0032] It is acknowledged that the final product will have

some error when computed using this method. The worst case

error occurs when multiplication of the high order multiplicand

segment A1 and the high order multiplier segment B1 has no carry

Attorney Docket No. 100625

13 of 17

out, and the multiplication of the low order multiplicand

segment A2 and the low order multiplier segment B2 has a carry

out.

[0033] FIG. 3 illustrates an alternative embodiment using

one bit smaller multipliers. Signs are computed as described

above. Separate rounding logic is required. This embodiment can

be used to accommodate available circuit resources. The

multiplier and multiplicand have mantissas with n bits in

positions n-1 through 0. This includes restoration of the

assumed leading “1”. The mantissas are divided with the higher

order segments, A1 and B1, having values in places n-1 through

n/2 and the lower order segments, A2 and B2, having values in

places (n/2)-1 through 0. If the mantissas have an odd number of

bits, the higher order segments, A1 and B1, will values in places

n-1 through (n-1)/2. The lower order segments, A2 and B2, have

values in places (n-1)/2-1 through 0. As with the first

embodiment, both high order multiplicand mantissa segment A1 and

the high order multiplier mantissa segment B1 should have the

same number of bits. The low order multiplicand mantissa

segment A2 and the low order multiplier mantissa segment B2

should also have the same number of bits.

[0034] As above, multiplication of the mantissa is carried

out utilizing three multipliers: a first mantissa multiplier

36’, a second mantissa multiplier 38’, and a third mantissa

Attorney Docket No. 100625

14 of 17

multiplier 40’. First mantissa multiplier 36’ is joined to

receive and multiply the high order multiplicand mantissa

segment A1 and the high order multiplier mantissa segment B1.

This multiplication provides a high order partial product

mantissa segment P1 having bits in places 2n-1 through n of the

final product.

[0035] Second mantissa multiplier 38’ is joined to receive

and multiply the high order multiplicand mantissa segment A1 and

the low order multiplier mantissa segment B2. This multiplication

gives a first intermediate order partial product mantissa

segment P2. In this embodiment, first intermediate order partial

product will have bits in places 2n-(n/2)-1 through 0. With an

odd number of bits n for the segments, A1 and B1 will have bits

in places n-1 through (n-1)/2, and A2 and B2 will have bits in

places (n-1)/2-1 through 0.

[0036] Third mantissa multiplier 40’ is joined to receive the

low order multiplicand mantissa segment A2 and the high order

multiplier mantissa segment B1. Multiplier 40’ multiplies these

segments to give a second intermediate order partial product

mantissa segment P3 having bits in places 2n-(n/2)-2 through 0.

As above, the low order multiplicand mantissa segment A2 is not

multiplied by the low order multiplier mantissa segment B2.

[0037] In this embodiment, two two-way adders are used

instead of one three-way adder. The first embodiment can also

Attorney Docket No. 100625

15 of 17

use two-way adders. P2 is added to P3 in first two-way adder 48

to produce an intermediate result. The intermediate result is

added to P1 to produce provisional sum P4 in second two-way adder

50.

[0038] Rounding logic is used to compute a sum correction as

follows. If both A2 and B2 are greater than a maximum low order

segment value, ((2n-n/2-2)2 as described herein) then the product

of these numbers will require the provisional sum P4 to be

rounded up by 1. (2n-n/2-2)2 is identified as V in FIG. 3. This

is implemented by logically comparing A2 with (2n-n/2-2)2 at 52,

and logically comparing B2 with (2n-n/2-2)2 at 54. The results

of the logical comparison is provided to an AND function 56.

The output of the AND function 56 is added to provisional sum P4

at place value 2n-n/2-2 to give sum P5 using adder 58. Values of

P4 in places 2n-n/2-3 through 0 are dropped.

[0039] This apparatus can be implemented utilizing many

different technologies. These technologies include field

programmable gate arrays, application specific integrated

circuits, portions of integrated circuits, programmable read

only memory, programmable logic arrays, hard-wired electrical

circuits, or the like.

[0040] It will be understood that many additional changes in

the details, materials, steps, and arrangement of parts, which

have been herein described and illustrated in order to explain

Attorney Docket No. 100625

16 of 17

the nature of the invention, may be made by those skilled in the

art within the principle and scope of the invention as expressed

in the appended claims.

[0041] The foregoing description of the preferred embodiments

of the invention has been presented for purposes of illustration

and description only. It is not intended to be exhaustive, nor

to limit the invention to the precise form disclosed, and

obviously, many modification and variations are possible in

light of the above teaching. Such modifications and variations

that may be apparent to a person skilled in the art are intended

to be included within the scope of this invention as defined by

the accompanying claims.

Attorney Docket No. 100625

17 of 17

ASYNCHRONOUS MULTIPLICATION IMPLEMENTATION

ABSTRACT OF THE DISCLOSURE

A multiplier apparatus computes multiplication of a

multiplicand and a multiplier to give a product. A multiplicand

separator and a multiplier separator receive n bit numbers and

separate them into high order segments and low order segments.

A first multiplier multiplies the high order segments. Second

and third multipliers multiply the high order and low order

segments. The products of these multiplications are added

together by an adder to give a multiplication product. Another

implementation uses rounding logic to allow fewer bits in the

multipliers. The adder can be a three-way adder or a combination

of two-way adders.

	100625sheet1.pdf
	100625sheet2.pdf
	100625sheet3.pdf

