# FINAL REPORT

Small-Scale Thermal Treatment of Investigation-Derived Wastes (IDW) Containing Per- and Polyfluoroalkyl Substances (PFAS)

SERDP Project ER18-1556

MAY 2021



Dr. Paul G. Koster van Groos Aptim Federal Services, LLC

> *Distribution Statement A* This document has been cleared for public release



This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense.

| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | UMENTATIO                          | N PAGE                             |                               | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                                            |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect<br>this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),<br>4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to co<br>valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. |                                           |                                    |                                    |                               | rching existing data sources, gathering and maintaining the<br>collection of information, including suggestions for reducing<br>fferson Davis Highway, Suite 1204, Arlington, VA 22202-<br>ith a collection of information if it does not display a currently |  |  |  |  |
| 1. REPORT DATE (DD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PORT DATE (DD-MM-YYYY)     2. REPORT TYPE |                                    |                                    |                               | DATES COVERED (From - To)                                                                                                                                                                                                                                     |  |  |  |  |
| 17-05-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                         | SERDP Final Rep                    | ort                                | 59                            | June 2018 - May 2021                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               | 912HQ-18-C-0043                                                                                                                                                                                                                                               |  |  |  |  |
| Small-Scale Tr<br>(IDW) Containi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nermal Treatmer<br>.ng Per-and Pol        | nt of Investiga<br>Lyfluoroalkyl S | tion-Derived Wa<br>ubstances (PFAS | astes<br>5)<br>5              | . GRANT NUMBER                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    | 50                            | . PROGRAM ELEMENT NUMBER                                                                                                                                                                                                                                      |  |  |  |  |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                    |                                    | 50                            | . PROJECT NUMBER                                                                                                                                                                                                                                              |  |  |  |  |
| Koster van Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oos, Paul G                               |                                    |                                    | El                            | IR18-1556                                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    | 56                            | Se. TASK NUMBER                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    | 5f                            | WORK UNIT NUMBER                                                                                                                                                                                                                                              |  |  |  |  |
| 7. PERFORMING ORG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ANIZATION NAME(S)                         | AND ADDRESS(ES)                    |                                    | 8.                            | PERFORMING ORGANIZATION REPORT                                                                                                                                                                                                                                |  |  |  |  |
| Aptim Federal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Services                                  |                                    |                                    |                               | NUMBER                                                                                                                                                                                                                                                        |  |  |  |  |
| 17 Princess Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bad                                       |                                    |                                    | _                             |                                                                                                                                                                                                                                                               |  |  |  |  |
| Lawrenceville,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NJ 08648                                  |                                    |                                    | E                             | R18-1556                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
| 9. SPONSORING / MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | AME(S) AND ADDRES                  | S(ES)                              | 10                            | . SPONSOR/MONITOR'S ACRONYM(S)                                                                                                                                                                                                                                |  |  |  |  |
| Stratogia Envi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ronmontal Bog                             | arch and Dougl                     | opmont Drogram                     | SI                            | SRDP                                                                                                                                                                                                                                                          |  |  |  |  |
| 4800 Mark Cent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er Drive. Suit                            | earch and Devel<br>e 16F16         | opment Program                     |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
| Alexandria, VA 22350-3605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                    |                                    | 11                            | . SPONSOR/MONITOR'S REPORT                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    | NUMBER(S)                          |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
| 12 DISTRIBUTION / A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VAII ABII ITY STATEM                      | IFNT                               |                                    | E.                            | (10-1356                                                                                                                                                                                                                                                      |  |  |  |  |
| Distribution A: Appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ved for public                            | release; dist                      | ribution is unl                    | imited.                       |                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
| 13. SUPPLEMENTARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YNOTES                                    |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
| 14. ABSTRACT The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e focus of this                           | s project was t                    | o help develop                     | better un                     | derstanding of PFAS fate                                                                                                                                                                                                                                      |  |  |  |  |
| associated wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | th lower temper                           | cature (below 6                    | 00 C) thermal                      | treatment                     | approaches. This included                                                                                                                                                                                                                                     |  |  |  |  |
| an effort to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | assess the pote                           | ential benefit                     | of Ca(OH)2 ame                     | ndments fo                    | r lowering PFAS                                                                                                                                                                                                                                               |  |  |  |  |
| variety of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rmal decompos                             | and oll-gassing<br>ition products  | OI VOLATILE ON<br>were examined.   | includinc                     | orine (VOF) species. A<br>fluroride mineralized from                                                                                                                                                                                                          |  |  |  |  |
| the PFAS, sulf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fur oxyanions,                            | and VOF specie                     | s that evolved                     | •                             | fidiofide mineralized from                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>_</b> .                                | -                                  |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
| 15. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                    |                                    |                               |                                                                                                                                                                                                                                                               |  |  |  |  |
| Per-and Polyflu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | loroalkyl Subst                           | cances (PFAS),p                    | erfluorosulfon:                    | ic acids (                    | PFSAs), perfluorocarboxylic                                                                                                                                                                                                                                   |  |  |  |  |
| acids (PFCAs),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | perfluoralkyl                             | acids (PFAAs),                     | thermal degrad                     | dation, py                    | rolysis,                                                                                                                                                                                                                                                      |  |  |  |  |
| 16. SECURITY CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SIFICATION OF:                            |                                    | 17. LIMITATION                     | 18. NUMBER                    | 19a. NAME OF RESPONSIBLE PERSON                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                    | OF PAGES                           | 19h TELEPHONE NUMBED (include |                                                                                                                                                                                                                                                               |  |  |  |  |
| UNCLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UNCLASS                                   | UNCLASS                            | UNCLASS                            | 693                           | area code)<br>(609) 895-5367                                                                                                                                                                                                                                  |  |  |  |  |

#### ABSTRACT

*Introduction and Objectives:* There is intense interest in developing better approaches for managing wastes laden with per- and polyfluoroalkyl substances (PFAS). High temperature thermal treatment (e.g., above 1000 °C) of these materials is frequently performed, but lower temperature treatment (e.g., below 600 °C) may be appropriate to remove PFAS from materials as well. The focus of this limited scope SERDP project was to help develop better understanding of PFAS fate associated with lower temperature thermal treatment approaches. Specifically, the objectives of this project were to evaluate effects of low temperature thermal treatment on PFAS in simulated investigation derived wastes (IDW) and to assess the potential benefit of Ca(OH)<sub>2</sub> amendments for lowering PFAS decomposition temperatures and release of volatile organic fluorine (VOF) species.

**Technical Approach:** Simulated solid IDW materials were prepared with high concentrations of perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs), with Ca(OH)<sub>2</sub> added to a subset of these materials. The high concentrations of PFAS used in these experiments facilitated examination of a variety of thermal decomposition products, including fluoride mineralized from the PFAS, sulfur oxyanions from desulfonation of PFSAs, and VOF species that evolved. Thermal decomposition was performed in a tube furnace at temperatures up to 575 °C and products remaining in solids, trapped in aqueous solutions, and collected in gas sampling bags were examined through a variety of techniques. In addition to evaluation of PFAS, modified approaches were used to examine fluoride associated with solid species, and selected-ion monitoring (SIM) gas chromatography-mass spectrometry (GC-MS) was used to examine expected fluorocarbon ion fragments of collected VOF.

**Results:** Removal of PFSAs and perfluorooctanoic acid (PFOA) from the solids was essentially complete (>99.9%) when final temperatures reached 575 °C and 450 °C, respectively, with representative decomposition temperatures for PFSAs occurring near 360 °C, and that for PFOA occurring below 300 °C. With the amendment of Ca(OH)<sub>2</sub> to solids, decomposition of PFSAs appeared to occur below 300 °C, while PFOA was less affected. Without Ca(OH)<sub>2</sub>, no more than 30% of initial fluorine in the PFAS was observed as fluoride, consistent with long perfluoroalkyl chains associated with 1H-perfluoroalkane and perfluoroalkene VOF observed. Fluorine mineralization was particularly low for PFOA. Ca(OH)<sub>2</sub> amendments increased fluorine mineralization in all cases, but this remained below 50% of initial fluorine content under all conditions evaluated. While up to 5% of PFSAs added to solids were observed as PFCAs in aqueous traps without Ca(OH)<sub>2</sub> amendments, these PFCAs were not observed when Ca(OH)<sub>2</sub> was present. The inclusion of Ca(OH)<sub>2</sub> appeared to cause a shift in the composition of VOF species, possibly suppressing the evolution of perfluoroalkene species.

**Benefits:** This project demonstrated that low temperature treatments can remove perfluoroalkyl acids (PFAAs) from simulated IDW materials, and that VOF evolve from this low temperature process. Further, this work demonstrated the concept that hydrated lime (Ca(OH)<sub>2</sub>) amendments can lower PFAS decomposition temperatures, facilitate greater PFAS mineralization, and change the composition of VOF. The use of amendments such as Ca(OH)<sub>2</sub> that offer promise for treating PFAS at low temperatures to products with lower toxicity should be investigated further. Better understanding of these processes will aid future implementation of lower temperature thermal treatments for PFAS.

#### **EXECUTIVE SUMMARY**

#### **ES.1.** INTRODUCTION:

This limited scope project was performed to help address a need for improved treatment approaches for waste derived from subsurface investigations related to per- and polyfluoroalkyl substances (PFAS). Thermal treatment is practical and widely utilized for management of such investigation derived waste (IDW), despite some current uncertainties regarding the fate of volatile organic fluorine (VOF). While high temperature thermal treatment (e.g., above 1000 °C) is frequently used, lower temperature decomposition (e.g., below 600 °C) may also be appropriate and requires fewer resources and less energy. Additionally, lower temperature thermal treatment, including so-called thermal desorption processes, may be applicable at more field sites due to much greater ease of deployment. Lower temperatures have been shown to volatilize many PFAS, but resulting products, including hydrogen fluoride (HF) and VOF species, may present challenges.

The work described herein showed that low temperature treatments can remove perfluoroalkyl acids (PFAAs) from simulated IDW materials, and that VOF evolve from this low temperature process. Further, this work demonstrated the concept that hydrated lime (Ca(OH)<sub>2</sub>) amendments can lower PFAS decomposition temperatures, facilitate greater PFAS mineralization, and change the composition of VOF. A thermal testing system was developed to evaluate these processes, and to facilitate the examination of VOF and quantification of fluoride species. A gas chromatography-mass spectrometry (GC-MS) method was applied to examine VOF, which may otherwise occur beyond the analytical coverage provided by liquid chromatography with tandem mass spectrometry (LC-MS/MS). It is necessary to consider the composition and chemistry of VOF and other products when evaluating low temperature treatment approaches for PFAS.

#### **ES.2. OBJECTIVES:**

The objectives of this project were to evaluate thermal treatment for PFAS in simulated IDW and to assess the potential benefit of Ca(OH)<sub>2</sub> amendments for lowering PFAS decomposition temperatures and release of VOF species. One benefit of thermal treatment is that it can be operated at small scales as may be appropriate for IDW. Specific objectives of the work described in this report were:

- 1. To evaluate thermal decomposition and production of mineralized fluorine (e.g., HF) and VOF species during heating of perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs);
- 2. To evaluate whether Ca(OH)<sub>2</sub> amendments affect the formation of VOF compounds that may include fluorinated greenhouse and toxic gases; and
- 3. To evaluate the thermal decomposition of a mixture of the 6 PFAS included in the third Unregulated Contaminant Monitoring Rule (UCMR-3) in a representative soil, with and without Ca(OH)<sub>2</sub> amendments. These UCMR-3 PFAS are:
  - Perfluorooctanesulfonic acid (PFOS),
  - Perfluorohexanesulfonic acid (PFHxS),
  - Perfluorobutanesulfonic acid (PFBS),

- Perfluorononanoic acid (PFNA),
- Perfluorooctanoic acid (PFOA), and
- Perfluoroheptanoic acid (PFHpA).

# ES.3. TECHNICAL APPROACH:

Three primary technical tasks were performed to achieve the objectives of this limited scope project:

- Task 1.Preparation of simulated IDW solids
- Task 2. Baseline decomposition of PFOS, PFHxS, and PFOA
- Task 3. Decomposition of simulated solid IDW with Ca(OH)<sub>2</sub>

During Task 1, all-purpose sand and field soil granular solids were separately augmented with PFAS to simulate solid IDW. PFAS augmented granular solids were used for the experiments in this project because they eased handling, concentration measurements, and mixing with Ca(OH)<sub>2</sub> solids. All granular solids were dried and sieved, with the fraction passing the 0.6 mm sieve used for the experiments. For experiments with Ca(OH)<sub>2</sub>, this was homogenized with the solids using a rotary tumbler.

Most of the effort for this project was associated with Tasks 2 and 3. Tasks 2 and 3 were performed in a similar manner, and both tasks used the same testing system to examine thermal decomposition of PFSA and PFCA laden solid materials. This system consisted of a tube furnace fitted with a 1-inch OD stainless-steel process tube, two midget impingers in series to trap fluoride, sulfur dioxide, and other water-soluble species, and a Flexfoil gas sampling bag for collection of VOF species (See **Figure ES - 1**). A nickel sample boat was used to contain PFAS-laden samples within the furnace. Temperatures provided throughout this work are the furnace set temperatures, but those at the sample boat may have been up to 20 °C lower.



**Figure ES - 1. Components of the thermal testing system**. Depicted are the nitrogen sweep gas cylinder, tube furnace, midget impingers (i.e., base traps), and Flexfoil gas collection bags.

During experiments, a nickel sample boat containing simulated PFAS IDW was emplaced in the center of the process tube, and the process tube was connected to two midget impingers, which were in turn connected to a Flexfoil bag. The system was closed, such that gases evolved from the simulated IDW were swept to the impingers and ultimately collected in the Flexfoil bags. During a given thermal decomposition experiment, the set temperature of the furnace was systematically increased through a range where PFSA and PFCA decomposition was anticipated. Impingers were replaced approximately every hour, together with a change in furnace temperature, and solutions collected for analysis. Flexfoil bags were replaced at the same time as impingers and stored for off-line analysis of VOF by GC-MS. After a given thermal run, the furnace was allowed to cool and the nickel boat containing thermally treated solids was carefully removed, with contained solids placed in aqueous solution for extraction. Solutes associated with nickel boat and process tube surfaces were also extracted and analyzed.

Fluoride was evaluated by ion chromatography (IC) consistent with USEPA Method 300 or using a fluoride ion specific electrode (ISE). Sulfur oxyanions were evaluated in aqueous solutions and extracts as sulfate, after oxidation by hydrogen peroxide, by IC consistent with USEPA Method 300. An analytical method based on reverse phase liquid chromatography with suppressed conductivity detection (RPLC-SCD) was used to evaluate PFSA and PFCA concentrations for most of the work described in this report, and a limited number of samples were sent to an external DoD ELAP accredited laboratory (Pace Analytical Gulf Coast) for analysis by LC-MS/MS. Overall, agreement between the RPLC-SCD and LC-MS/MS methods was satisfactory for the interpretations provided herein. A GC-MS method was developed and improved throughout this project to evaluate VOF species. While this GC-MS approach requires further refinement, it proved to be one of the more useful tools for the interpretations provided in this work.

# **ES.4. RESULTS AND DISCUSSION:**

Concentrations ranging from 0.8 mg/g to 2.4 mg/g for individual PFAS were targeted for use in the simulated IDW. After preparation, measured PFAS concentrations of the solids were within 35% of target concentrations and satisfactory for purposes of the experiments.

During thermal decomposition experiments, PFSAs and PFCAs were removed from simulated IDW materials at temperatures achievable in the field, and amendment with Ca(OH)<sub>2</sub> was shown to increase this removal. Depending on conditions, PFAS removals ranged between 90% (for PFSAs held at 325 °C for 4 hours without Ca(OH)<sub>2</sub> addition) and greater than 99.9% (for PFOS and PFHxS ramped up to a final temperature of 575 °C; and PFOA ramped up to a final temperature of 450 °C). VOF evolution from the simulated IDW solids was significant during this process, which was be noted by the presence of the trifluoromethyl (-CF<sub>3</sub>) ion fragment with mass to charge (m/z) ratio of 69 in GC-MS analyses. **Figure ES - 2** shows the accumulating m/z 69 signal (shown in blue) associated with PFOS decomposition in the simulated IDW using sieved all-purpose sand, both without and with Ca(OH)<sub>2</sub>. The average furnace temperature at which VOF were collected (based on averaged m/z 69 signal) during PFOS decomposition was estimated, and is also indicated in **Figure ES - 2** as the blue dashed line, shifting from TvOF=364 °C without Ca(OH)<sub>2</sub> to TvOF=278 °C with Ca(OH)<sub>2</sub>. Using this methodology, in the experiments using all-purpose sieved sand, temperatures associated with VOF release from PFSAs decreased from near 360 °C to near 280 °C when Ca(OH)<sub>2</sub> was

amended, while temperatures associated with VOF release from PFOA were near 250 °C whether Ca(OH)<sub>2</sub> was amended or not (See **Figure ES - 3**). Consistent with these observations that Ca(OH)<sub>2</sub> lowered decomposition temperature for PFSAs, fewer PFSAs remained when the simulated field IDW material was held at 325 °C for four hours when Ca(OH)<sub>2</sub> was amended, and no PFCAs were detected in either case (See **Figure ES - 3**).



Figure ES - 2. Evolution of VOF from simulated PFOS IDW with increasing temperature. A.) IDW alone and B.) IDW with  $Ca(OH)_2$ . Blue markers and solid line represent cumulative m/z 69 observed as temperature increases. M/z 69 represents both perfluoroalkene and 1H-perfluoroalkane species. The dashed blue line represents the estimated average temperature at which m/z 69 was recovered. Red markers and dashed line represent the cumulative ratio of m/z 51 to m/z 131. The shift to lower 51:131 ratios with increasing temperature, indicating an increase in perfluoroalkene-like abundance with temperature, was much more muted with  $Ca(OH)_2$ .



**Figure ES - 3. Decomposition temperatures and PFAS remaining after decomposition.** A.)Estimated average temperature at which m/z 69 was recovered in VOF showing a shift to lower temperatures with Ca(OH)<sub>2</sub> amendments for PFSAs. B.) Observed fraction of PFAS remaining in simulated IDW after thermal treatment.

Improved fluorine mineralization of PFAS and suppression of volatile water-reactive PFCA precursors (e.g., acyl fluoride species) was also noted with the inclusion of Ca(OH)<sub>2</sub> amendments

(See **Figure ES - 4**). This suggests promise for enhancing PFAS mineralization and reducing PFCA formation using Ca(OH)<sub>2</sub>, and this process should be optimized. While the volatile PFCA precursors appeared reasonably facile to remove from the gas phase, they are of interest as they may lead to mobilization and distribution of PFCA species (perhaps localized) if not appropriately considered.



**Figure ES - 4. Products of PFAS thermal decomposition.** A.) Fraction of fluorine of parent PFAS observed as fluoride products, indicating greater fluorine mineralization with Ca(OH)<sub>2</sub> amendments. B.) Fraction of initial PFAS observed as PFCAs in impinger traps, indicating the release of likely volatile intermediates (e.g., acyl fluoride VOF).

VOF collected in Flexfoil bags were observed to contain large quantities of two homologous series – one with strongest signals at m/z 51 and 69, and one with strongest signals at m/z 131 and 69. The mass spectra of VOF collected during decomposition of the simulated field IDW illustrate this well and are shown in **Figure ES - 5** at relevant retention times. Representative 1H-perfluoroalkane and perfluoroalkene species procured from Synquest Labs, Inc (Alachua, FL) match the retention times and mass spectra of the VOF resulting from thermal decomposition closely (See **Figure ES - 5**), and suggest that other observed VOF with analogous spectra are 1H-perfluoroalkane and perfluoroalkene species with longer or shorter perfluoroalkyl chains, including perfluoroactene, 1H-perfluoropentane, 1H-perfluorobutane and likely 1H-perfluoroalkane and perfluoroalkene VOF of similar length as parent PFAS were most common, but other minor VOF components, including possibly more toxic species, should not be ruled out.



**Figure ES - 5. Cumulative GC-MS SIM ion fragment signals of VOF resulting from PFAS decomposition and from stock materials.** A.) VOF after thermal decomposition of simulated field IDW with the 6 UCMR-3 PFAS, without Ca(OH)<sub>2</sub>. B.) VOF from procured stock materials. GC-MS signals were discretized at 0.1 min resolution. For (B), red and green dashed lines indicate homologous 1H-perfluoroalkane and perfluoroalkene species, respectively. The size and intensity of red squares relate to the strength of the signal for ion fragments observed at indicated retention times.

In addition to the m/z 69 ion fragment which is shared among both 1H-perfluoroalkane and perfluoroalkene species, we also evaluated the ratio of m/z 51 to m/z 131 as an indication of relative proportions of these two dominant VOF. This ratio (shown as cumulative amount evolved at temperature indicated and below) is shown in **Figure ES - 2** in red for the case of PFOS decomposition, both without and with Ca(OH)<sub>2</sub>. As shown, amendment of IDW with Ca(OH)<sub>2</sub> resulted in a shift in the cumulative composition of VOF toward greater 1H-perfluoroalkane abundance with Ca(OH)<sub>2</sub> amendment. While this is evident by the ratio of m/z 51:131 in **Figure ES - 2**, an additional decomposition experiment with PFOS sand amended with 10 times greater Ca(OH)<sub>2</sub> (160 mg/g) very clearly demonstrated this effect. **Figure ES - 6** shows the mass spectra of VOF from this experiment together with the baseline spectra of PFOS without Ca(OH)<sub>2</sub>, and perfluoroalkene VOF species (e.g., perfluoroheptene at RT=4.5 min) were notably suppressed in the presence of higher Ca(OH)<sub>2</sub>.



**Figure ES - 6. Cumulative GC-MS SIM ion fragment signals of VOF resulting from PFOS decomposition in simulated IDW and with Ca(OH)**<sub>2</sub> **amendment.** GC-MS signals were discretized at 0.1 min resolution. A shift from perfluoroalkene (e.g., m/z 131) to 1H-perfluoroalkane species (e.g., m/z 51) is observed when Ca(OH)<sub>2</sub> is present. Furnace temperatures for both experiments were matched and ranged from 275 °C to 575 °C.

# ES.5. IMPLICATIONS FOR FUTURE RESEARCH AND BENEFITS:

Low temperature thermal treatment of PFAS is promising as it has been shown to remove PFAAs through partial mineralization and transformation to more volatile VOF. Improved understanding of these VOF is essential to evaluate the fate of thermally treated PFAS, and to assess toxicity risks associated with VOF products. Future development of low temperature thermal treatment approaches for PFAS will rely on safe, cost-effective, and optimized methods for managing the VOF produced.

There remains a need to continue identifying and quantifying VOF that may evolve during PFAS thermal decomposition, including VOF evolving from PFAA precursors and novel PFAS, such as GenX. Towards this end, GC-MS methods for VOF should continue to be refined. At this time, the GC-MS method used in this work requires high concentrations of analytes and there would be significant benefit associated with improving the sensitivity of these measurements. Particularly with respect to VOF, identification of major species and other components of interest should facilitate better approaches to trap and concentrate species for better detection.

All the experiments performed during this limited-scope project utilized relatively inert and dry  $N_2$  as a sweep gas. This may have had the experimental benefit of preserving more reactive products or intermediates that otherwise may not have been observed. However, the influence of

oxygen and water in the gas phase should be investigated as these may significantly alter volatile products. For example, oxygen may be added at the vinyl bond of the perfluoroalkene species, resulting in possible acyl fluoride groups, which may be subsequently hydrolyzed to form new PFCAs, albeit with a shorter perfluoroalkyl chain. With respect to low temperature thermal treatment of PFAS, and better understanding of possible volatile emissions, all such processes are important to consider and warrant further investigation.

During this work, Ca(OH)<sub>2</sub> amendments were observed to decrease decomposition temperatures, increase fluorine mineralization, and change the composition of VOF. It is unclear whether or how these individual effects are related, but the suppression of perfluoroalkene species, as exhibited in **Figure ES - 6** is intriguing. It would be helpful to better understand reactions between perfluoroalkene, or possibly acyl fluoride species, and Ca(OH)<sub>2</sub> that could lead to fluorine mineralization, or whether Ca(OH)<sub>2</sub> otherwise inhibits formation of these volatile species during thermal PFAS decomposition. For application of low temperature treatment for PFAS, better understanding of factors affecting the relative abundances of perfluoroalkene and 1H-perfluoroalkane VOF is necessary, as these VOF likely behave differently during subsequent flue gas treatment approaches (e.g., sorption or oxidation) that may be necessary. Ultimately, understanding products resulting from low temperature thermal decomposition of PFAS, including the perfluoroalkene and 1H-perfluoroalkane VOF identified in this work, will be critical for the DoD as it considers thermal treatment approaches to manage PFAS laden materials.

# TABLE OF CONTENTS

| Abstract       | i                                                                      |  |  |  |  |  |  |
|----------------|------------------------------------------------------------------------|--|--|--|--|--|--|
| Executive S    | iummaryii                                                              |  |  |  |  |  |  |
| ES.1. Ir       | ntroduction:ii                                                         |  |  |  |  |  |  |
| ES.2. 0        | Objectives:ii                                                          |  |  |  |  |  |  |
| ES.3. T        | Technical Approach:iii                                                 |  |  |  |  |  |  |
| ES.4. R        | esults and Discussion:iv                                               |  |  |  |  |  |  |
| ES.5. Ir       | nplications for Future Research and Benefits:viii                      |  |  |  |  |  |  |
| List of Tabl   | esxi                                                                   |  |  |  |  |  |  |
| List of Figure | resxi                                                                  |  |  |  |  |  |  |
| Acronym Li     | istxii                                                                 |  |  |  |  |  |  |
| Keywords       | xiv                                                                    |  |  |  |  |  |  |
| Acknowledg     | gementsxiv                                                             |  |  |  |  |  |  |
| 1.0 Obj        | ectives1                                                               |  |  |  |  |  |  |
| 2.0 Bac        | kground2                                                               |  |  |  |  |  |  |
| 3.0 Mat        | terials and Methods4                                                   |  |  |  |  |  |  |
| 3.1 T          | hermal testing system                                                  |  |  |  |  |  |  |
| 3.2 A          | nalytical methods                                                      |  |  |  |  |  |  |
| 3.2.1          | Anions                                                                 |  |  |  |  |  |  |
| 3.2.2          | PFAS                                                                   |  |  |  |  |  |  |
| 3.2.3          | VOF9                                                                   |  |  |  |  |  |  |
| 3.3 E          | xperimental Methods                                                    |  |  |  |  |  |  |
| 3.3.1          | Preparation of simulated IDW solids12                                  |  |  |  |  |  |  |
| 3.3.2          | Baseline decomposition of PFOS, PFHxS, and PFOA13                      |  |  |  |  |  |  |
| 3.3.3          | Decomposition of simulated solid IDW with Ca(OH) <sub>2</sub> 13       |  |  |  |  |  |  |
| 4.0 Res        | ults and Discussion                                                    |  |  |  |  |  |  |
| 4.1 P          | reparation of simulated IDW solids                                     |  |  |  |  |  |  |
| 4.2 B          | aseline decomposition of PFOS, PFHxS, and PFOA16                       |  |  |  |  |  |  |
| 4.2.1          | Evaluation of sample extracts16                                        |  |  |  |  |  |  |
| 4.2.2          | Evaluation of impinger solutions17                                     |  |  |  |  |  |  |
| 4.2.3          | Evaluation of VOF19                                                    |  |  |  |  |  |  |
| 4.3 D          | Decomposition of simulated solid IDW with Ca(OH) <sub>2</sub> 23       |  |  |  |  |  |  |
| 4.3.1          | Decomposition of PFOS, PFHxS, and PFOA in sand amended with Ca(OH)2 23 |  |  |  |  |  |  |
| 4.3.2          | Decomposition of UCMR-3 PFSAs and PFCAs in amended field IDW28         |  |  |  |  |  |  |
| 5.0 Con        | clusions and Implications for Future Research                          |  |  |  |  |  |  |
| 6.0 Lite       | erature Cited                                                          |  |  |  |  |  |  |

APPENDIX A: PFAS Analytical Results for Amended Field IDW Experiments

# LIST OF TABLES

| Table 1. PFAS concentrations of three prepared IDW solids.         1                          | 5          |
|-----------------------------------------------------------------------------------------------|------------|
| Table 2. Concentrations of the 6 UCMR-3 PFAS in prepared soil IDW.                            | 6          |
| Table 3. Quantities of PFAS, fluoride, and sulfur oxyanions extracted from IDW solids, sampl  | e          |
| boat, and process tube                                                                        | 7          |
| Table 4. Cumulative quantities of PFAS, fluoride, and sulfur oxyanions collected in impinger  | S          |
| during thermal treatment of IDW19                                                             | 9          |
| Table 5. Quantities of PFAS, fluoride, and sulfur oxyanions extracted from Ca(OH)2 amended    | d          |
| IDW solids, sample boat, and process tube                                                     | 4          |
| Table 6. Quantities of PFAS, fluoride, and sulfur oxyanions extracted from simulated soil IDW | <i>r</i> . |
|                                                                                               | 0          |

# LIST OF FIGURES

| Figure 1. Components of the thermal testing system                                  | 4            |
|-------------------------------------------------------------------------------------|--------------|
| Figure 2. Example furnace set temperatures and measured process tube temperatures.  | 5            |
| Figure 3. Comparison of fluoride measurements                                       | 6            |
| Figure 4. Sample IC chromatogram of aqueous sample from an impinger demonstratir    | ng oxidation |
| of sulfite.                                                                         | 7            |
| Figure 5. RPLC-SCD chromatogram associated with the 6 UCMR-3 PFAS.                  | 8            |
| Figure 6. VOF of procured stocks analyzed by GC-MS SIM method                       | 10           |
| Figure 7. Measured mass spectra of A.) perfluoroalkene and B.) 1H-perfluoroalkane s | species10    |
| Figure 8. Molecular structures of A.) perfluoroheptene and B.) 1H-perfluoroheptane  | 11           |
| Figure 9. Cumulative percentage of fluorine, PFAS, and sulfur recovered in impinger | s solutions. |
|                                                                                     | 19           |
| Figure 10. Cumulative GC-MS ion fragment signals of VOF resulting from PFAS dec     | composition  |
| in sand IDW.                                                                        | 21           |
| Figure 11. Evolution of VOF from simulated IDW without Ca(OH) <sub>2</sub>          | 22           |
| Figure 12. Cumulative GC-MS ion fragment signals of VOF resulting from PFAS dec     | composition  |
| in sand IDW amended with Ca(OH)2.                                                   | 26           |
| Figure 13. Evolution of VOF from simulated IDW with Ca(OH)2.                        | 27           |
| Figure 14. Cumulative GC-MS ion fragment signals of VOF resulting from PFOS dec     | composition  |
| in simulated IDW and with 160 mg/g Ca(OH)2 amendment.                               | 28           |
| Figure 15. Cumulative GC-MS ion fragment signals of VOF resulting from PFAS dec     | composition  |
| in simulated soil IDW.                                                              |              |
| Figure 16. Decomposition temperatures and PFAS remaining after decomposition        |              |
| Figure 17. Products of PFAS thermal decomposition.                                  | 34           |
| Figure 18. Cumulative ratio of m/z 51 to 131 of VOF evolved from IDW                | 35           |

| ACRONYM LIST                       |                                                         |
|------------------------------------|---------------------------------------------------------|
| AC                                 | Activated Carbon                                        |
| AFFF                               | Aqueous film forming foam                               |
| APTIM                              | Aptim Federal Services, LLC                             |
| CaF <sub>2</sub>                   | Calcium fluoride                                        |
| Ca(OH) <sub>2</sub>                | Calcium hydroxide                                       |
| CF <sub>4</sub>                    | Tetrafluoromethane                                      |
| $C_2F_6$                           | Hexafluoroethane                                        |
| C <sub>5</sub> F <sub>11</sub> COF | Perfluorohexanoyl fluoride                              |
| C <sub>7</sub> F <sub>15</sub> COF | Perfluorooctanoyl fluoride                              |
| COF <sub>2</sub>                   | Carbonyl Fluoride                                       |
| DoD                                | United States Department of Defense                     |
| EDTA                               | Ethylenediaminetetraacetic acid                         |
| ELAP                               | Environmental Laboratory Accreditation Program          |
| EPA                                | Environmental Protection Agency                         |
| GAC                                | Granular activated carbon                               |
| GC-MS                              | Gas Chromatography-Mass Spectrometry                    |
| HAL                                | Health advisory level                                   |
| HF                                 | Hydrogen fluoride                                       |
| HFP                                | Hexafluoropropylene                                     |
| IC                                 | Ion Chromatography                                      |
| ID                                 | Interior diameter                                       |
| IDW                                | Investigation derived waste(s)                          |
| ISE                                | Ion specific electrode                                  |
| JBMDL                              | Joint Base McGuire-Dix-Lakehurst                        |
| Κ                                  | Potassium                                               |
| КОН                                | Potassium hydroxide                                     |
| LC-MS/MS                           | Liquid chromatography tandem-mass spectrometry          |
| LOD                                | Limit of detection                                      |
| m/z                                | Mass-to-charge ratio                                    |
| MRT                                | Mean residence time                                     |
| $N_2$                              | Diatomic nitrogen                                       |
| Na                                 | Sodium                                                  |
| Na <sub>3</sub> H-EDTA             | Trisodium Ethylenediaminetetraacetic acid               |
| NaOH                               | Sodium hydroxide                                        |
| ND                                 | Not detected                                            |
| OD                                 | Outside diameter                                        |
| PFAA                               | Perfluoroalkyl acid                                     |
| PFAS                               | Per- and Polyfluoroalkyl Substance(s)                   |
| PFBS                               | Perfluorobutanesulfonate, perfluorobutanesulfonic acid  |
| PFCA                               | Perfluorocarboxylic acid                                |
| PFHpA                              | Perfluoroheptanoate, perfluoroheptanoic acid            |
| PFHxS                              | Perfluorohexane sulfonate, perfluorohexanesulfonic acid |
| PFNA                               | Perfluorononanoate, perfluorononanoic acid              |
|                                    |                                                         |

# Acronym List (cont'd)

| PFOA            | Perfluorooctanoate, perfluorooctanoic acid                              |
|-----------------|-------------------------------------------------------------------------|
| PFOS            | Perfluorooctane sulfonate, perfluorooctanesulfonic acid                 |
| PFPA            | Perfluoropropionate, perfluoropropionic acid                            |
| PFSA            | Perfluorosulfonic acids                                                 |
| ppt             | Parts per trillion                                                      |
| PTFE            | Polytetrafluoroethylene                                                 |
| PVC             | Polyvinyl chloride                                                      |
| RPLC-SCD        | Reverse phase liquid chromatography - suppressed conductivity detection |
| RT              | Retention time                                                          |
| SB              | Soil boring                                                             |
| SERDP           | Strategic Environmental Research and Development Program                |
| SiF4            | Silicon tetrafluoride                                                   |
| SIM             | Selected-ion monitoring                                                 |
| $SO_2$          | Sulfur dioxide                                                          |
| SO <sub>3</sub> | Sulfur trioxide                                                         |
| Tvof            | Average temperature of VOF collection                                   |
| TFE             | Tetrafluoroethylene                                                     |
| TIC             | Tentatively identified compound                                         |
| UCMR-3          | Third Unregulated Contaminant Monitoring Rule                           |
| USEPA           | United States Environmental Protection Agency                           |
| VOF             | Volatile Organic Fluorine                                               |
|                 |                                                                         |

# **KEYWORDS**

Per- and polyfluoroalkyl substances (PFAS), perfluorosulfonic acids (PFSAs), perfluorocarboxylic acids (PFCAs), perfluoroalkyl acids (PFAAs), thermal degradation, pyrolysis, thermolysis, thermal treatment, investigation derived wastes (IDW), hydrated lime (Ca(OH)<sub>2</sub>), volatile organic fluorine (VOF), 1H-perfluoroalkane, perfluoroalkene, hydrogen fluoride.

#### ACKNOWLEDGEMENTS

Charles Condee, Paul Hedman, and Tony Soto (APTIM) contributed significantly to this work through their efforts in the laboratory and their analytical expertise. Discussions with Dr. Paul Hatzinger and Stuart Shealy (APTIM) helped focus these efforts on practical concerns regarding PFAS. As a group, we are grateful for the financial and technical support provided for this project by the Strategic Environmental Research and Development Program (SERDP). We thank Dr. Andrea Leeson and others with SERDP for their guidance and the support staff at Noblis for their administrative assistance. We acknowledge and are grateful for the assistance of Dr. Charles Schaefer of CDM Smith in procuring a sample of field materials to be used in this work. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

# **1.0 OBJECTIVES**

The objectives of this project were to evaluate thermal treatment for per- and polyfluoroalkyl substances (PFAS) in simulated investigation derived wastes (IDW) and to assess the potential benefit of hydrated lime (Ca(OH)<sub>2</sub>) amendments for lowering PFAS decomposition temperatures and release of volatile organic fluorine (VOF) species. One benefit of thermal treatment is that it can be operated at small scales as may be appropriate for IDW. Specific objectives of the work described in this report were:

- 1. To evaluate thermal decomposition and production of mineralized fluorine (e.g., HF) and VOF species during heating of perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs);
- 2. To evaluate whether Ca(OH)<sub>2</sub> amendments affect the formation of VOF compounds that may include fluorinated greenhouse and toxic gases; and
- 3. To evaluate the thermal decomposition of a mixture of the 6 PFAS included in the third Unregulated Contaminant Monitoring Rule (UCMR-3) in a representative soil with and without Ca(OH)<sub>2</sub> amendments. These UCMR-3 PFAS are:
  - Perfluorooctanesulfonic acid (PFOS),
  - Perfluorohexanesulfonic acid (PFHxS),
  - Perfluorobutanesulfonic acid (PFBS),
  - Perfluorononanoic acid (PFNA),
  - Perfluorooctanoic acid (PFOA), and
  - Perfluoroheptanoic acid (PFHpA).

#### 2.0 BACKGROUND

There is heightened concern within the U.S. and internationally regarding environmental releases of per- and polyfluoroalkyl substances (PFAS). Regulatory limits for some PFAS in water are in the low parts per trillion (ppt) range, driven by their recalcitrance and associations between PFAS exposure and health outcomes such as developmental impacts, hepatoxicity, immunosuppression, and others.<sup>1–4</sup> PFAS are contaminants of concern across all branches of the Department of Defense (DoD) primarily due to their presence in aqueous film-forming foams (AFFF) which are widely applied for suppressing hydrocarbon fires. Historical application of AFFF at military sites includes emergency applications, fire training exercises, and equipment testing, resulting in more than 650 sites across DoD.<sup>5</sup>

Recognition of the risks posed by PFAS has resulted in evaluations and investigations associated with DoD use of these materials. Site investigations have been and continue to be initiated to determine the extent of the issue, resulting in IDW that may contain PFAS (e.g., sediments from the installation of groundwater monitoring wells). The scale and types of IDW generated at sites vary widely, but IDW laden with PFAS requires disposal management.

Thermal treatment is practical and widely utilized for management of IDW, despite some current uncertainties regarding the fate of VOF. High temperature thermal treatment (e.g., above 1000 °C) is widely applied,<sup>6–8</sup> but lower temperature decomposition (e.g., below 600 °C) is also of interest as it requires fewer resources and is less energy intensive. Additionally, lower temperature thermal treatment, including so-called thermal desorption processes, may be applicable at more field sites due to much greater ease of deployment. Lower temperatures have been shown to volatilize many PFAS, but resulting products, including hydrogen fluoride (HF) and VOF, may present challenges.

The impact of thermal processing on PFAS has been investigated experimentally in a variety of contexts that provide insight into required temperatures and expected products. The fluorochemical industry, for example, has long examined such processes from an industrial processing perspective. In this context, thermally processed PFCA salts were shown to yield up to 9- carbon perfluoroalkene species at temperatures below 300 °C, with yields as high as 97% depending on parent PFCA and cations used.<sup>9</sup> During these studies, 1H-perfluoroalkane, and acyl fluoride species were also noted as products depending on cation type and other reaction conditions.<sup>9</sup> More recently, similar approaches have been evaluated for the production of perfluoroalkene monomers of interest, such as tetrafluoroethylene (TFE) from the pyrolysis of perfluoropropionic acid salts (PFPA) with high yields.<sup>10</sup> In addition to non-polymeric PFAS (e.g., PFCAs), polymeric PFAS such as (e.g., polytetrafluoroethylene, PTFE) have also been investigated as a source of fluorocarbon monomers, particularly with TFE and hexafluoropropylene (HFP) products noted with variable efficiency.<sup>11-14</sup>

In addition to studies related to industrial processing of fluorochemicals, thermal treatment of PFAS has also been experimentally investigated with regards to waste management needs. For example, thermal treatment of activated carbon (AC) containing PFAS at temperatures exceeding 700 °C has been shown to remove most PFAS from AC, but VOF species as well as mineralized fluorine products were produced,<sup>15</sup> with much greater mineralization at 1000 °C. VOF indicated incomplete mineralization of the PFAS and highlight the continued need for improved

understanding of thermal treatment approaches. Other VOF that have been observed after thermal decomposition of PFAS include 1H-perfluoroalkane, perfluoroalkene, and cyclic perfluoroalkane species,<sup>16,17</sup> broadly consistent with products described earlier with respect to industrial processes. VOF may be further transformed in the atmosphere and result in the broader distribution of PFCA species. For example, several VOF (e.g., 1H-perfluorooctane) are considered PFOA-related compounds with respect to the Stockholm Convention on Persistent Organic Pollutants.<sup>18</sup>

Optimization of thermal processing of PFAS-containing solids through use of amendments has received attention. For example, the addition of alkaline NaOH solution to GAC prior to thermal treatment resulted in greater fluorine mineralization localized to the GAC than without such alkaline treatment.<sup>19</sup> Similar to this alkaline treatment, the addition of Ca(OH)<sub>2</sub> to various solid materials (e.g., sludge, boron nitride) has been investigated.<sup>20–23</sup> During these studies, Ca(OH)<sub>2</sub> was suggested to the lower decomposition temperature of PFOS from near 450 °C to near 350 °C and lead to the formation of stable CaF<sub>2</sub> minerals, as observed by x-ray diffraction analyses.<sup>21</sup> Later studies with Ca(OH)<sub>2</sub> suggested greater fluorine mineralization of PFSAs than PFCAs when Ca(OH)<sub>2</sub> was present.<sup>22</sup> During these efforts, VOF were examined by gas chromatography-mass spectrometry (GC-MS) and changes among ion fragments associated with VOF were noted, although it is not clear whether individual VOF (e.g., 1H-perfluoroalkane) were identified in chromatograms.<sup>22</sup>

During this limited-scope project, we pursued the concept that Ca(OH)<sub>2</sub> amendments may be utilized to lower decomposition temperatures and VOF emissions, with the goal of understanding factors that affect this performance. This required developing a thermal testing system that facilitated the examination of VOF products and allowed for quantification of fluoride species.

#### **3.0 MATERIALS AND METHODS**

# 3.1 Thermal testing system

A thermal testing system was used to experimentally examine the thermal decomposition of PFSA and PFCA laden solid materials. This system consisted of: a tube furnace fitted with a 1-inch OD, 0.875-inch ID diameter 316 stainless-steel process tube; two midget impingers (25 mL) in series to trap fluoride, sulfur dioxide, and other water-soluble species; and a Flexfoil gas sampling bag for collection of VOF species (See **Figure 1**). A nickel sample boat was used to contain PFAS-laden samples within the furnace. The stainless-steel process tube was 20" long, with an internal volume of approximately 200 mL. Nitrogen gas (N<sub>2(g)</sub>) flowing at approximately 25 mL/min was used as a sweep gas during experiments resulting in a mean residence time (MRT) of ~8 minutes in tube. While the system was typically closed, it was contained within a fume hood to prevent possible exposures to vented gases when components were serviced.

The thermal response of this system was evaluated with flow of  $N_{2(g)}$  and in the presence of an empty sample boat using a K-type thermocouple inserted to the mid-point of the tube near the sample boat. **Figure 2** shows the progression of temperature with time in response to changes in set temperature of the furnace. Temperatures within the process tube were measured to be 10 to 20 °C less than the set temperature and this temperature was generally reached within 10 minutes of change in set temperature. Based on these thermocouple measurements, then, furnace set temperatures can be viewed as conservative estimates of required decomposition temperatures (i.e., biased high), as true temperatures are expected to be as much as 20 °C lower. As such, temperatures provided throughout this work will be the furnace set temperatures. Future efforts should endeavor to incorporate more direct measures of temperature, but this was beyond the scope of the current effort.



**Figure 1. Components of the thermal testing system.** Depicted are the nitrogen sweep gas, tube furnace, midget impingers (i.e., base traps), and Flexfoil gas collection bags.



**Figure 2. Example furnace set temperatures and measured process tube temperatures.** Measured temperatures were located internal to the process tube under flow conditions.

During experiments, the nickel sample boat was emplaced in the center of the process tube, and the process tube was connected by stainless steel compression fittings to smaller diameter stainless steel tubing, and ultimately connected to two midget impingers (25mL) in series via short lengths of PVC tubing. Impingers operate by facilitating contact between the gas and a surface or solution, thereby removing species of interest from the gas phase. Throughout the efforts described in this report, the impingers were filled with 20 mL of 1 mM NaOH solution or carbonate buffered solution prepared in water (20mM at pH~10) to collect water soluble species.

Nitrogen sweep gas carrying VOF species not trapped in the impingers was routed to Flexfoil bags (3L) for ultimate collection. Prior to each use, Flexfoil bags were evacuated, and filled with  $N_2$  gas, to be evacuated again, a minimum of three times.

# 3.2 Analytical methods

# 3.2.1 <u>Anions</u>

Fluoride produced during complete or partial PFAS mineralization was of significant interest during this work. Two approaches were used to evaluate fluoride concentrations: ion chromatography (IC) with conductivity detection and potentiometric determination using a fluoride ion specific electrode (ISE). IC was performed consistent with USEPA Method 300 and the ISE was used with matrix matched standards, where possible, as well as with standard addition approaches. **Figure 3** shows a comparison of the two methods utilized (IC and ISE) and agreement between the two was satisfactory. For most samples, IC was determined to be appropriate and it was used for analysis of fluoride in aqueous trap solutions and most aqueous extracts from thermally treated and control solids, nickel boats, and process tube surfaces. Extraction of solids containing Ca(OH)<sub>2</sub> and field derived solids were additionally processed using an EDTA solution and analyzed by ISE.



**Figure 3. Comparison of fluoride measurements.** Measurements were made by ion chromatography (IC) and fluoride ion specific electrode (ISE). The dashed line shows a 1:1 relationship.

Sulfur oxyanions were noted to result from complete or partial mineralization of thermally treated PFSAs, and these were evaluated in aqueous solutions and extracts by IC consistent with USEPA Method 300. In addition to sulfate, a signal later determined to be sulfite was noted in the chromatograms. This interpretation was initially informed by the disappearance of the peak upon treatment with hydrogen peroxide, together with an increase in sulfate concentrations, as

shown in **Figure 4**, and was later confirmed with a solution of sodium bisulfite. For clarity, total sulfur oxyanion concentrations of all aqueous samples and extracts were evaluated as sulfate after oxidation by hydrogen peroxide. While quantification and discrimination between sulfite and sulfate signals was beyond the scope of this work, examination of a limited sample set suggested that sulfite may have comprised a significant fraction of sulfur in trapped samples. The presence of sulfite suggests that SO<sub>2(g)</sub> evolved during decomposition, rather than SO<sub>3(g)</sub>. Further investigations examining the speciation of sulfur produced during thermal treatment of PFSAs would benefit from improved efforts at quantifying both SO<sub>2</sub> and SO<sub>3</sub> in gas phases as well as sulfite and sulfate oxyanions associated with solids.



Figure 4. Sample IC chromatogram of aqueous sample from an impinger demonstrating oxidation of sulfite. A.) shows the condition prior to hydrogen peroxide treatment, and B.) after treatment.

# 3.2.2 <u>PFAS</u>

An analytical method based on reverse phase liquid chromatography with suppressed conductivity detection (RPLC-SCD) was used to evaluate PFSA and PFCA concentrations for most of the work described in this report,<sup>24,25</sup> with a limited number of samples sent to an external DoD ELAP accredited laboratory (Pace Analytical Gulf Coast) for analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Drawbacks of the RPLC-SCD method include higher detection limits (on the order of 0.05 mg/L) and interference between

PFCA and PFSA species due to co-elution. Experimentally, the use of elevated PFAS concentrations addressed the issue of relatively high detection limits. The drawback related to co-elution of PFSA and PFCA species led to occasional equivocal determinations, but the use of a single PFAS during most experiments, and complementary analytical determinations facilitated use of the information provided by the RPLC-SCD method.

To briefly describe the RPLC-SCD method, a borate buffer mobile phase was used to load a large volume sample aliquot (0.5-2.5 mL) onto a 2-mm guard column (Acclaim PA2) to collect and concentrate the PFAS analytes. After sample introduction, the guard column was washed with buffer to remove matrix interferences. After the wash step the concentrator column was switched into line with a 2-mm analytical column (Acclaim PA2), where acetonitrile was used as an organic modifier in the mobile phase to transport the PFAS analytes through the column for separation and analysis. After separation, the PFAS were detected and quantitated using external suppressed conductivity. **Figure 5** shows example chromatograms with three PFCAs and three PFSAs of interest, together comprising the six UCMR-3 PFAS.



**Figure 5. RPLC-SCD chromatogram associated with the 6 UCMR-3 PFAS.** A.) Shows the 3 PFCAs, and B.) the 3 PFSAs.

#### 3.2.3 <u>VOF</u>

A method using GC-MS instrumentation was developed and improved throughout this project to evaluate VOF collected in Flexfoil bags after PFAS decomposition. This method was pursued after preliminary observations of VOF by GC-MS appeared successful. While the GC-MS approach used in this work requires further refinement, evaluation of VOF proved to be one of the more useful tools for the interpretations of this work. It enabled identification of several VOF and preliminary assessment of their relative amounts. Future efforts are necessary to better quantify observed species as well as to further identify unknown compounds. Improved identification of relevant VOF will also facilitate future efforts at concentrating such VOF analytes for observation at much lower concentrations.

The GC-MS method used an Agilent 7980/5975 GC-MS system equipped with a 60-meter DB-624 column (Agilent part # 123-0364UI) with high purity helium carrier gas. Samples were introduced to the GC-MS instrument by manual injection of 0.2- or 0.5-mL volumes. Oven temperatures were ramped from 45 °C to 250 °C and the transfer line was maintained at 250 °C. The total runtime of the method was 18 minutes. Selected-ion monitoring (SIM) was used to observe 12 ion fragments that corresponded to fluorocarbon species (fragments at mass charge ratio, m/z of 51, 69, 81, 93, 100, 113, 119, 131, 150, 181, 207, 231). SIM was used to increase signals by focusing acquisition time on ion fragments of interest. For purposes of this initial investigation, retention times of integrated peak areas were truncated at a resolution of 0.1 minutes.

Two primary standards were utilized to observe and normalize for fluctuations in GC-MS signal response: tetrafluoromethane (CF4) alone, which was observed at mass 69, and a mixture of CF4 and hexafluoroethane (C2F6), which was observed at both mass 69 and 119. Both of these standards eluted at the same time. Review of collected signals and comparison to reference spectra available on the NIST Chemistry WebBook<sup>26</sup> led to the purchase of perfluoroalkene and 1H-perfluoroalkane VOF from Synquest Labs, Inc (Alachua, FL). Measured mass spectra (normalized to the signal at m/z 69) for these homologous species are provided in **Figure 6** and **Figure 7**. As discussed in Sections 4.2.3, 4.3.1.3, and 4.3.2.3, many of these spectra and retention times match those of VOF resulting from PFAS thermal decomposition. In examining the mass spectra during this project, it was helpful to focus on three dominant ion fragments observed: m/z 69 as a measure of both perfluoroalkene and 1H-perfluoroalkane type species. As shown in **Figure 8**, these fragments correspond to components of the associated molecules. More refined identification and quantification of VOF will require additional effort beyond the scope of this project.



**Figure 6. VOF of stocks analyzed by GC-MS SIM method.** GC-MS signals were normalized by m/z 69 signal and discretized at 0.1 min resolution. Red and green dashed lines indicate homologous 1H-perfluoroalkane and perfluoroalkene species, respectively. The size and intensity of red squares relate to the strength of the signal for ion fragments observed at indicated retention times.



**Figure 7. Measured mass spectra of A.) perfluoroalkene and B.) 1H-perfluoroalkane species.** There is great similarity in these series. Note that m/z 131 and 69 are dominant in A.), and m/z 51 and 69 are dominant in B.)



**Figure 8. Molecular structures of A.) perfluoroheptene and B.) 1H-perfluoroheptane.** The dominant ion fragments observed by GC-MS SIM are indicated. Note that the hydrogen atom is omitted in the representation of 1H-perfluoroheptane but is included in the mass of the ion fragment as CHF<sub>2</sub> (m/z 51).

# 3.3 Experimental Methods

The thermal decomposition of PFAS in simulated IDW materials and the evaluation of Ca(OH)<sub>2</sub> amendments for lowering decomposition temperature and releases of VOF were addressed with three primary technical tasks:

Task 1.Preparation of simulated IDW solids Task 2.Baseline decomposition of PFOS, PFHxS, and PFOA Task 3.Decomposition of simulated solid IDW with Ca(OH)<sub>2</sub>

The experimental methods associated with each of these tasks is detailed below, with results described in Sections 4.1,4.2, and 4.3

#### 3.3.1 <u>Preparation of simulated IDW solids</u>

To investigate PFAS thermal decomposition during this work, sand and soil granular solids were augmented with PFAS. While other methods of introducing PFAS to the tube furnace were investigated (e.g., drying of salts in the sample boat), preparation of PFAS augmented granular solids eased handling, concentration measurements, and mixing with Ca(OH)<sub>2</sub> solids. All granular solids were dried and sieved, with the fraction passing the 0.6 mm sieve used for the experiments.

For most of the experiments performed, solids consisted of sieved all-purpose sand. PFAS were not detected by RPLC-SCD in aqueous extracts of this sand prior to their amendment. PFAS were added to the sieved sand by adding 6 mL of a single alkaline methanol PFAS stock (10 g/L or 10 g/kg) to 25 g of sand in 20 mL vials. After the methanol was subsequently evaporated under filtered  $N_{2(g)}$  flow, the solids were homogenized through use of a vortex mixer or rotary tumbler. Target and measured PFAS concentrations of these augmented solids are discussed in Section 4.1. For experiments with Ca(OH)<sub>2</sub>, 0.1 g of Ca(OH)<sub>2</sub> was mixed with 6 g of PFAS containing solids and homogenized by use of rotary tumbler, resulting in an average concentration of 16.7 mg/g.

A second set of solids was prepared using sieved field IDW collected from soil borings at Joint Base McGuire-Dix-Lakehurst (JBMDL). This IDW was collected on January 28 and 29, 2019 in the vicinity of the Lakehurst Historic Fire Training Area #1 (AFFF Area 16) during field efforts associated with SERDP Project ER18-1204. The JBMDL IDW used was a composite from five soil borings (SB1 to SB5) and covered depths from 5 to 12 feet. Limited characterization of this IDW suggested that total PFAS concentrations were less than 1 mg/kg prior to augmentation, significantly lower than concentrations after amendment. The sieved IDW was mixed 1:1 with sieved all-purpose sand and loaded with the six UCMR-3 PFAS. 100 g of the sieved IDW/sand mixture was augmented in a glass jar through addition of 10 mL of each individual alkaline methanol PFAS stock (10 g/kg). As before, after the methanol was evaporated under filtered N<sub>2(g)</sub> flow, the solids were homogenized through use of a rotary tumbler. Target and measured PFAS concentrations of these augmented solids are discussed in Section 4.1. For the experiment with Ca(OH)<sub>2</sub>, 0.67 g of Ca(OH)<sub>2</sub> was mixed with 20 g of PFAS containing solids, for a concentration of 33.5 mg/g, and homogenized by use of rotary tumbler.

The particle sizes (<0.6 mm) utilized in these experiments facilitated preparation of wellmixed and homogenous solids, and likely reduced spatial distances between PFAS and Ca(OH)<sup>2</sup> amendments. Due to the short length scales associated with the simulated IDW solids, heat and mass transport limitations were likely muted compared to larger scale materials and treatment systems. As such, the results observed during these studies likely represent more optimal conditions leading to PFAS decomposition and VOF transport. Nonetheless, the underlying decomposition mechanisms probed are relevant, and the knowledge gained from these efforts can help inform systems at different scales. For larger scale systems, heat and mass transport limitations, as well as impacts of soil moisture and other constituents, require greater consideration beyond the scope of this work.

#### 3.3.2 Baseline decomposition of PFOS, PFHxS, and PFOA

The thermal decomposition of representative PFSAs (PFOS and PFHxS) and a PFCA (PFOA) was evaluated using the testing system and sample train described in Section 3.1. The nickel sample boat was loaded with 2.5 to 3 g of the PFAS augmented sieved sand described above (~5-8 mg PFAS) and emplaced in the furnace process tube, which was subsequently sealed and connected to all remaining components of the system. The N<sub>2(g)</sub> sweep gas was then set to a flow rate of 25 mL/min through the process tube and the experiment was initiated.

During a given thermal decomposition experiment, the set temperature of the furnace was systematically increased through a range where PFSA and PFCA decomposition was anticipated: 275 °C to 575 °C for PFSAs, and 150 °C to 450 °C for PFOA. During thermal runs, impingers were replaced approximately every hour, together with a change in furnace temperature, and solutions collected for analysis. Impinger solutions were analyzed for anions (fluoride and sulfur oxyanions) and PFAS by RPLC-SCD. Between uses, impingers were washed and triple rinsed. There was no evidence of significant carry-over of analytes between uses, and there were no detections of fluoride or PFAS among blanks. Additionally, no significant changes in concentration of fluoride in impingers due to sorption were observed over time when initial concentrations were 1 mg/L.

For VOF collection, Flexfoil bags were replaced at the same time as impingers and stored for off-line analysis by GC-MS. While VOF were noted to be stable for longer periods in the Flexfoil bags, they were generally analyzed within 24 hours of collection.

After a given thermal run, the furnace was allowed to cool and the nickel boat containing thermally treated solids was carefully removed and solids were placed in aqueous solution for extraction. The nickel boat was separately placed in aqueous solution for extraction of its surfaces, and additional solution placed within the process tube for extraction of inner surfaces. Extracts of the solids, boat and process tube surfaces were analyzed for anions (fluoride and sulfur oxyanions) and PFAS by RPLC-SCD as described previously.

#### 3.3.3 Decomposition of simulated solid IDW with Ca(OH)2

## 3.3.3.1 Decomposition of PFOS, PFHxS, and PFOA in sand amended with Ca(OH)<sub>2</sub>

The thermal decomposition of representative PFSAs (PFOS and PFHxS) and a PFCA (PFOA) mixed with Ca(OH)<sub>2</sub> was evaluated in the same manner as described above in Section 3.3.2. As noted in Section 3.3.1, these solids were mixed with Ca(OH)<sub>2</sub> at a concentration of 16.7 mg/g. For these experiments, the nickel sample boat was loaded with 3 g of the PFAS and Ca(OH)<sub>2</sub> augmented sieved sand.

During thermal decomposition experiments, the set temperature of the furnace was adjusted to account for PFAS decomposition at lower temperatures in the presence of Ca(OH)<sub>2</sub>. Temperatures were systematically increased from approximately 150 °C to 400 °C for PFOS/Ca(OH)<sub>2</sub> materials, from 150 °C to 450 °C for PFHxS/Ca(OH)<sub>2</sub> materials, and from 100 °C to 450 °C for PFOA/Ca(OH)<sub>2</sub> materials. Use of impingers and Flexfoil bags was analogous to the Task 2 experiments described in Section 3.3.2.

After each thermal run, the furnace was allowed to cool, the nickel boat was carefully removed, and the treated solids were removed and extracted as described in Section 3.3.2. Extracts of the solids, sample boat and process tube surfaces were then analyzed for anions (fluoride and sulfur oxyanions) and PFAS by RPLC-SCD.

It was noted that extracts and recoveries of analytes from Ca(OH)<sub>2</sub> amended sand using a single aqueous extraction appeared incomplete. As such, solids containing Ca(OH)<sub>2</sub> were additionally processed. This process consisted of up to three sequential extractions (suspension in fresh solution and separation by centrifugation) in ultrapure water, and for fluoride analyses, up to three additional extractions using a trisodium EDTA solution (20 mM Na<sub>3</sub>H-EDTA). Trisodium EDTA was utilized to complex calcium and other species and to facilitate extraction and subsequent quantification of fluoride by ISE. Decreases in measured concentrations with sequential extracts indicated extraction efficiency.

#### 3.3.3.2 Decomposition of UCMR-3 PFSAs and PFCAs in amended field IDW

Thermal decomposition of the six UCMR-3 PFAS was evaluated using the same overall system described in Section 3.1. This was performed using the field IDW material prepared as described in Section 3.3.1, with and without Ca(OH)<sub>2</sub>. The Ca(OH)<sub>2</sub> concentration used for these experiments, 33.5 mg/g, was double that of the earlier experiments due to the approximate doubling of organic fluorine associated with amended PFAS. As before, the nickel sample boat was loaded with 3 g of solids.

During these experiments, the furnace was set to a constant temperature of 325 °C for the duration of the experiment. The furnace was kept at this temperature for four hours, with replacement of impingers and Flexfoil bags every hour in the same manner as described in Sections 3.3.2 and 3.3.3.1. A 5-mL subsample of impinger solutions was reserved for analyses by an external DoD ELAP accredited lab (Pace Analytical Gulf Coast) for PFAS. Due to limited sample volume (and in order to reserve sample in case of loss during shipping), samples sent to the external lab were diluted 250x (0.5 mL sample to 125 mL water).

After four hours, the furnace was allowed to cool and the nickel boat containing thermally treated solids was carefully removed, with contained solids split in half for analyses of PFAS by RPLC-SCD and LC-MS/MS at the external DoD ELAP accredited lab. Due to limited sample quantities (and in order to reserve sample in case of loss during shipping), between 0.5 g and 0.8 g of solids were sent to the external laboratory. The solids to be analyzed by RPLC-SCD were placed in aqueous solution for extraction and were also analyzed for fluoride and sulfur oxyanions.

Extracts of the solids, sample boat and process tube surfaces were analyzed for anions and PFAS as described in Section 3.3.3.1. As before, multiple extractions of the solids, including a second set using a trisodium EDTA solution to complex calcium, were performed.

#### 4.0 RESULTS AND DISCUSSION

#### 4.1 Preparation of simulated IDW solids

Concentrations of simulated IDW solids prepared for the experiments were evaluated. The three all-purpose sieved sand solids prepared with PFOS, PFHxS and PFOA were evaluated by extraction with water and analysis by RPLC-SCD (See **Table 1**). Amended concentrations of solids used were satisfactory and within 25% of target PFAS concentrations. During this work, it was clear that use of alkaline methanol stocks was important, particularly for PFAS procured as acid/protonated species. For example, use of acidic PFOA in methanol without alkaline stabilization resulted in loss of PFOA during preparation of augmented solids, perhaps due to volatilization during evaporation and drying of the solids.

Concentrations of the UCMR-3 PFAS in solids prepared using sieved field IDW are provided in **Table 2**. These UCMR-3 PFAS were quantified by both the RPLC-SCD method and LC-MS/MS with reasonably good agreement between the two measures. PFBS analysis by RPLC-SCD was sensitive to the high pH of Ca(OH)<sub>2</sub> amended samples, so this was omitted from **Table 2**. Measured PFAS concentrations were often lower than target concentrations, but LC-MS/MS measures were within 35% of target concentrations and satisfactory for purposes of the experiments. Reasons for discrepancies between target and measured PFAS concentrations were unresolved, but may have included some loss of PFAS to glass jar surfaces during preparation. Analytical reports for the LC-MS/MS and RPLC-SCD analyses associated with the field IDW are included in Appendix A.

The concentrations of PFAAs associated with the simulated IDW solids used in this work are much greater and more homogenous than would be expected in many IDW materials. Further, the PFAAs were also recently added to the solids and perhaps less strongly sequestered through associations with organic and inorganic materials. While these differences are unlikely to affect the decomposition processes probed during this work, this should be verified in future studies. Like the issues associated with different heat and mass transfer limitations in larger scale systems described in Section 3.3.1, this was outside the scope of this study.

| Solid                                                                                                             | Target PFAS<br>Concentration<br>(mg/g) | Measured PFAS<br>Concentration<br>by RPLC-SCD<br>(mg/g) <sup>a</sup> | Expected Sulfur<br>Concentration<br>(mg/g) <sup>b</sup> | Expected<br>Fluorine<br>Concentration<br>(mg/g) <sup>b</sup> |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|--|--|
| IDW - PFOS                                                                                                        | 2.4                                    | 2.7                                                                  | 0.52                                                    | 1.7                                                          |  |  |
| IDW - PFHxS                                                                                                       | 1.9                                    | 1.8                                                                  | 0.42                                                    | 1.1                                                          |  |  |
| IDW - PFOA                                                                                                        | 2.4                                    | 2.7                                                                  | -                                                       | 1.8                                                          |  |  |
| Notes:(a) – Measurements prior to experiment and/or of control samples(b) – Based on measured PFAS concentrations |                                        |                                                                      |                                                         |                                                              |  |  |

**Table 1. PFAS concentrations of three prepared IDW solids.** These solids were prepared with allpurpose sand. Expected sulfur and fluorine concentrations associated with the PFAS are also provided. **Table 2.** Concentrations of the 6 UCMR-3 PFAS in prepared soil IDW. LC-MS/MS analyses were performed at Pace Analytical Gulf Coast. Expected sulfur and fluorine concentrations associated with the PFAS are also provided.

| PFAS<br>Amendment                                                                                                                                                                                                                                                                                                                                 | Target<br>Concentration<br>(mg/g) | Measured<br>Concentration<br>by RPLC-SCD<br>(mg/g) <sup>a</sup> | Measured<br>Concentration<br>by LC-MS/MS<br>(mg/g) <sup>a</sup> | Expected<br>Sulfur<br>Concentration<br>(mg/g) <sup>b</sup> | Expected<br>Fluorine<br>Concentration<br>(mg/g) <sup>b</sup> |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|--|
| PFSAs                                                                                                                                                                                                                                                                                                                                             |                                   |                                                                 |                                                                 |                                                            |                                                              |  |
| -PFOS                                                                                                                                                                                                                                                                                                                                             | 0.8                               | 0.86                                                            | 0.59                                                            | 0.11                                                       | 0.38                                                         |  |
| -PFHxS                                                                                                                                                                                                                                                                                                                                            | 0.8                               | 0.69°                                                           | 0.61                                                            | 0.15                                                       | 0.38                                                         |  |
| -PFBS                                                                                                                                                                                                                                                                                                                                             | 0.8                               | 0.67 <sup>d</sup>                                               | 0.62                                                            | 0.20                                                       | 0.35                                                         |  |
| PFSA Total                                                                                                                                                                                                                                                                                                                                        | 2.4                               | 2.2                                                             | 1.8                                                             | 0.46                                                       | 1.1                                                          |  |
| PFCAs                                                                                                                                                                                                                                                                                                                                             |                                   |                                                                 |                                                                 |                                                            |                                                              |  |
| -PFNA                                                                                                                                                                                                                                                                                                                                             | 0.8                               | 0.77                                                            | 0.58                                                            | -                                                          | 0.40                                                         |  |
| -PFOA                                                                                                                                                                                                                                                                                                                                             | 0.8                               | 0.69°                                                           | 0.61                                                            | -                                                          | 0.42                                                         |  |
| -PFHpA                                                                                                                                                                                                                                                                                                                                            | 0.8                               | 0.55                                                            | 0.55                                                            | -                                                          | 0.37                                                         |  |
| PFCA Total                                                                                                                                                                                                                                                                                                                                        | 2.4                               | 2.0                                                             | 1.7                                                             | -                                                          | 1.2                                                          |  |
| PFAS Total                                                                                                                                                                                                                                                                                                                                        | 4.8                               | 4.2                                                             | 3.6                                                             | 0.46                                                       | 2.3                                                          |  |
| Notes:(a) – Average of two controls samples analyzed (with and without Ca(OH)2)(b) – Based on LC-MS/MS measured concentrations performed by Pace Analytical Gulf Coast(c) – Taken as ½ of the equivocal total PFHxS/PFOA signal which co-eluted(d) – Does not include Ca(OH)2 amended sample as PFBS response by RPLC-SCD wassensitive to high pH |                                   |                                                                 |                                                                 |                                                            |                                                              |  |

# 4.2 Baseline decomposition of PFOS, PFHxS, and PFOA

The thermal decomposition of representative PFSAs (PFOS, PFHxS) and a PFCA (PFOA) was investigated to provide a baseline for evaluating the impacts of Ca(OH)<sub>2</sub> amendments. While these solids were not amended with Ca(OH)<sub>2</sub>, it was impractical in this work to eliminate all materials that could possibly help facilitate PFAS decomposition, such as sand grain surfaces and small quantities of NaOH and KOH (introduced with the methanol stocks).

# 4.2.1 Evaluation of sample extracts

PFAS, fluorine, and sulfur oxyanion quantities extracted from solids, sample boats, and the process tube after thermal treatment are provided in **Table 3**. None of the amended PFAS were detected after thermal treatment, suggesting greater than 99.9% removal from the solids in each case (based on 0.05 mg/L detection limit in extracts). Approximately 1% of PFOS removed from the solids was observed as PFOA in the extracts, more than 95% of which was observed in the extract of process tube surfaces. Due to the likely decomposition of PFOA itself at elevated temperatures, this recovery of PFOA from the process tube suggested it may have been located in colder regions of the process tube.

Up to 13% of initial sulfur quantities were found in extracts, primarily associated with process tube surfaces. Concentrations, however, were similar to those found in extracts observed after PFOA decomposition (where no sulfur should have resulted from PFOA decomposition) suggesting that background concentrations may have accounted for a sizeable portion of the sulfur observed.

Fluorine, however, was observed in all thermal decomposition experiments at quantities greater than background and controls. Approximately 13% of initial fluorine content in the case PFHxS, 8% for PFOS, and 5% for PFOA were accounted for in the extract solutions.

| Solid                      | Temp<br>Range<br>(°C)                                                                                                                                                                                                                                                             | Initial<br>PFAS<br>(mg/g) | Final PFAS <sup>a</sup><br>(mg/g) <sup>b</sup> and<br>(%) <sup>c</sup> | Initial<br>Sulfur<br>(mg/g) | Final<br>Sulfur<br>(mg/g) <sup>b</sup><br>and (%) <sup>c</sup> | Initial<br>Fluorine<br>(mg/g) | Final<br>Fluorine<br>(mg/g) <sup>b</sup><br>and (%) <sup>c</sup> |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|-------------------------------|------------------------------------------------------------------|
| IDW-<br>PFOS               | 275-575                                                                                                                                                                                                                                                                           | 2.7                       | PFOA-0.02<br>(1%)                                                      | 0.17                        | 0.02<br>(13%)                                                  | 1.7                           | 0.13<br>(8%)                                                     |
| IDW-<br>PFOS<br>(Control)  | -                                                                                                                                                                                                                                                                                 | 2.7                       | PFOS-3.0<br>(110%)                                                     | 0.17                        | 0.005<br>(3%)                                                  | 1.7                           | 0.01<br>(0.3%)                                                   |
| IDW-<br>PFHxS              | 275-575                                                                                                                                                                                                                                                                           | 1.8                       | ND                                                                     | 0.14                        | 0.01<br>(8%)                                                   | 1.1                           | 0.14<br>(13%)                                                    |
| IDW-<br>PFHxS<br>(Control) | -                                                                                                                                                                                                                                                                                 | 1.8                       | PFHxS-1.8<br>(100%)                                                    | 0.14                        | 0.003<br>(2%)                                                  | 1.1                           | ND                                                               |
| IDW-<br>PFOA               | 150-450                                                                                                                                                                                                                                                                           | 2.7                       | ND                                                                     | -                           | 0.01<br>(-%)                                                   | 1.8                           | 0.08<br>(5%)                                                     |
| IDW-<br>PFOA<br>(Control)  | -                                                                                                                                                                                                                                                                                 | 2.7                       | PFOA-2.5<br>(91%)                                                      | -                           | 0.005<br>(-%)                                                  | 1.8                           | ND                                                               |
| Notes:                     | <ul> <li>(a) – PFAS measured is identified if possible.</li> <li>(b) – Sum of quantities extracted from solids, sample boat, and process tube normalized by IDW mass emplaced in the furnace</li> <li>(c) – Percent of initial quantities of PFAS, sulfur, or fluorine</li> </ul> |                           |                                                                        |                             |                                                                |                               |                                                                  |

Table 3. Quantities of PFAS, fluoride, and sulfur oxyanions extracted from IDW solids, sample boat, and process tube.

#### 4.2.2 Evaluation of impinger solutions

Quantities of PFAS, fluoride, and sulfur oxyanions recovered in the impingers during thermal decomposition of PFOS and PFHxS are shown in **Figure 9** and provided in **Table 4**. The quantities shown in **Figure 9** represent the quantity collected at the temperature indicated and that collected at all lower temperatures, such that the quantity at the highest temperature (i.e., 575 °C) represents the sum collected during the entire experiment. PFAS, fluoride, and sulfur were not detected or quantified at concentrations greater than background in impingers during the thermal decomposition of PFOA. Agreement among the products of PFOS and PFHxS decomposition in the impingers helps provide confidence that the overall recovery behavior is representative of these PFSAs.

Approximately two-thirds (~66%) of sulfur introduced to the tube furnace associated with PFSAs was recovered at the impingers. The average furnace temperature at which sulfur species were collected in impingers (mass average) was estimated to be 375 °C. Given the qualified quantity of sulfur observed in extracts described in Section 4.2.1, between 74% and 80% of initial sulfur found in parent PFAS were recovered in the extracts and the impingers. While much

of sulfur associated with PFSAs was accounted for, the mass balance of sulfur remained incomplete. This suggests there were unexpected challenges in quantifying sulfate or initial PFAS, or else, unexplained loss of sulfur beyond analytical coverage. Future efforts would benefit from improved mass balance of sulfur.

Approximately 15% of fluorine present in the PFSAs was observed in the impingers. Together with extracts described in Section 4.2.1, 4% (PFOA), 22% (PFOS), and 28% (PFHxS) of initial fluorine associated with parent PFAS materials was recovered in the extracts and the impingers. Fluoride measured in the impingers may result from hydrofluoric acid (HF) evolution during thermal decomposition, but may also result from other volatile fluorine species such as silicon tetrafluoride (SiF4), carbonyl fluoride (COF2) or other acyl fluoride species (e.g., perfluorooctanoyl fluoride (C<sub>7</sub>F<sub>15</sub>COF) or perfluorohexanoyl fluoride (C<sub>5</sub>F<sub>11</sub>COF)) that react quickly in the aqueous phase, with liberation of fluoride. Reactions of acyl fluoride species with water can also result in PFCA products, as observed in the impingers (see below). Unlike the signals of PFAS and sulfur, fluorine recovery at the impingers continued as temperatures increased, perhaps as a result of the complex transport behavior of gaseous fluorine species. In experiments with PFSAs, the average furnace temperature at which fluoride was collected in impingers (mass average) was estimated to be 440 °C. Broader scrutiny of individual water-reactive volatile fluorine species is necessary but was beyond the scope of this work.

On a mass basis, approximately 5% of the thermally treated PFSAs was recovered in the impingers as complementary PFCAs with equal number of carbons. Identification of PFHxA in impingers after thermal treatment of PFHxS, however, was equivocal as both PFHxA and PFBS co-eluted in the RPLC-SCD method. As PFOA was noted to result from PFOS decomposition, and a significant quantity of sulfur was recovered, it appeared likely the PFAS recovered were PFCAs rather than sulfonated species. Together with extracts described in Section 4.2.1, up to 6% of initial PFSA masses were recovered as PFCAs in the extracts and the impingers. The average furnace temperature at which PFCAs resulting from PFSA decomposition were collected in impingers (mass average) was estimated to be 390 °C. As noted previously, these PFCAs may have resulted from the reaction of volatile acyl fluorides, or perhaps other volatile intermediate species, with water. Identification and quantification of such volatile PFCA precursor species is necessary but was beyond the scope of this effort.



**Figure 9. Cumulative percentage of fluorine, PFAS, and sulfur recovered in impingers solutions.** These resulted after thermal decomposition of PFOS and PFHxS in IDW without Ca(OH)<sub>2</sub>. Open symbols represent recoveries during thermal decomposition of PFOS, and closed symbols represent recoveries during thermal decomposition of PFAS recovered during PFOS decomposition is almost exclusively PFOA (>95%), with minor contributions from PFHpA and likely PFHxA. PFHxA co-eluted with PFBS leading to equivocal assessment. The PFAS recovered during PFHxS decomposition was likely PFHxA. Vertical dashed lines represent the weighted average temperature species were estimated to evolve at.

| Solid                                                                                                                                                                | Temp<br>Range<br>(°C) | Initial<br>PFAS<br>(mg/g) | Trapped PFAS <sup>a</sup><br>(mg/g) <sup>b</sup> and (%) <sup>c</sup> | Initial<br>Sulfur<br>(mg/g) | Trapped<br>Sulfur<br>(mg/g) <sup>b</sup><br>and (%) <sup>c</sup> | Initial<br>Fluorine<br>(mg/g) | Trapped<br>Fluorine<br>(mg/g) <sup>b</sup> and<br>(%) <sup>c</sup> |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|-----------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|--|
| IDW-<br>PFOS                                                                                                                                                         | 275-575               | 2.7                       | PFOA- 0.13<br>(5%)                                                    | 0.17                        | 0.12<br>(67%)                                                    | 1.7                           | 0.24<br>(14%)                                                      |  |
| IDW-<br>PFHxS                                                                                                                                                        | 275-575               | 1.8                       | PFHxA/PFBS-0.08<br>(5%) <sup>b</sup>                                  | 0.14                        | 0.09<br>(66%)                                                    | 1.1                           | 0.20<br>(15%)                                                      |  |
| IDW-<br>PFOA                                                                                                                                                         | 150-450               | 2.7                       | ND                                                                    | -                           | 0.01<br>(-%)                                                     | 1.8                           | ND                                                                 |  |
| Notes: (a) – PFAS measured is identified if possible.<br>(b) Cumulative total collected in impingers tube normalized by IDW mass emplaced in the furnace             |                       |                           |                                                                       |                             |                                                                  |                               |                                                                    |  |
| (c) – Contractive total concerct in impligers tube normalized by 1D w mass emphased in the runace $(c)$ – Percent of initial quantities of PFAS, sulfur, or fluorine |                       |                           |                                                                       |                             |                                                                  |                               |                                                                    |  |

Table 4. Cumulative quantities of PFAS, fluoride, and sulfur oxyanions collected in impingers during thermal treatment of IDW.

# 4.2.3 Evaluation of VOF

The VOF that passed through aqueous impingers and collected in Flexfoil bags were evaluated by GC-MS as described in Section 3.2.3. Because these VOF passed through aqueous traps, it suggests they are beyond analytical coverage provided by LC-MS/MS methods generally focused on accurately quantifying PFAAs.
Cumulative signals of the ion fragments observed by SIM during GC-MS analysis of the VOF are presented in Figure 10. These signals represent the sum of detected ion fragments at given retention times collected during the entire experiment. Consideration of the relative quantities of the mass spectra shown in Figure 10 is helpful in understanding the evolution of VOF during PFSA and PFCA decomposition. As noted in Section 3.2.3, homologous series associated with 1H-perfluoroalkane species and perfluoroalkene species appear prevalent among the VOF species. As anticipated, no species were identified with fluoroalkyl chain lengths exceeding that of the parent PFAS themselves. It is interesting to note, however that the most abundant perfluoroalkene species observed in the case of the PFSAs were 1 carbon unit shorter than the parent compounds: perfluoroheptene (RT~4.5 min) resulting from PFOS decomposition, and tentatively identified (TIC) perfluoropentene (RT~4.1 min) resulting from PFHxS decomposition. These VOF suggest the loss of three fluorine atoms for each product, if the missing component is completely defluorinated. This contrasts with VOF resulting from PFOA decomposition where products of equal fluoroalkyl carbon length dominated: 1Hperfluoroheptane (RT~5.1 min) with no defluorination, and perfluoroheptene (RT~4.5 min) with loss of a single fluorine atom for each product. This evidence of greater defluorination among VOF products of PFSA decomposition (occurring at higher temperatures) relative to PFCA decomposition (occurring at lower temperatures), was consistent with the greater quantities of fluorine observed in impingers and associated with the solid products after thermal decomposition. The prevalence of VOF with preserved fluoroalkyl chain of equal length after PFOA decomposition is very consistent with the lack of fluorine observed in impingers and small quantity of fluorine observed in solids. For all three compounds, smaller signals likely associated with shorter chained VOF were also observed, but detailed scrutiny of these was beyond the scope of this effort.

As mentioned in Section 3.2.3, it can be helpful to focus attention on three of the dominant ion fragments observed in the mass spectra of the perfluoroalkene and 1H-perfluoroalkane species: m/z 69 as a measure of both species, m/z 131 as a measure of perfluoroalkene species, and m/z 51 as a measure of 1H-perfluoroalkane species. As m/z 69 can represent both species, cumulative evolution of this mass fragment observed by GC-MS during the thermal experiments was used to evaluate decomposition progress. This cumulative m/z 69 quantity is represented by the blue markers and solid lines in **Figure 11** for PFOS, PFHxS, and PFOA with increasing temperatures. As before, the average furnace temperature at which VOF were collected (based on averaged m/z 69 signal) can be estimated for PFOS, PFHxS, and PFOA. The temperatures associated with the decomposition of PFOS ( $T_{VOF}=364 \,^{\circ}C$ ), and PFHxS ( $T_{VOF}=355 \,^{\circ}C$ ) were consistent that those determined using analytes observed in the impingers as shown in **Figure 9**. The temperature associated with PFOA decomposition is significantly lower than for the PFSAs at  $T_{VOF}=245 \,^{\circ}C$ , indicating that decarboxylation of PFCAs occurred more readily than desulfonation of PFSAs under the baseline conditions tested.



**Figure 10.** Cumulative GC-MS SIM ion fragment signals of VOF resulting from PFAS decomposition in sand IDW. This IDW was not amended with Ca(OH)<sub>2</sub>. GC-MS signals were discretized at 0.1 min resolution. VOF resulting from decomposition of a single PFAS in the IDW: A.) PFOS, B.) PFHxS, and C.) PFOA.



**Figure 11. Evolution of VOF from simulated IDW without Ca(OH)**<sub>2</sub>**.** Blue markers and line represent cumulative m/z 69 observed as temperature increases. M/z 69 represents both perfluoroalkene and 1H-perfluoroalkane species. The dotted blue line represents the estimated average temperature at which m/z 69 was recovered. Red markers and line represent the cumulative ratio of m/z 51 to m/z 131. A shift to lower 51:131 ratios was observed with increasing temperature, indicating an increase in perfluoroalkene like abundance with temperature.

During the thermal experiments, a shift in VOF composition from greater 1H-perfluoroalkane abundance to greater perfluoroalkene abundance was noted with increasing temperature. This shift can be observed through inspection of the ratio of m/z 51 (representing 1H-perfluoroalkane species) to m/z 131 (representing perfluoroalkene species), which is shown as the red markers and dashed lines in **Figure 11**. The decrease in this cumulative ratio observed for all PFAS examined indicates this shift, which was noted to be most evident at furnace temperatures near 300 °C. Determining whether the observed perfluoroalkene species resulted from elimination of HF from 1H-perfluoroalkane species with increasing temperature, or through some other pathway from parent PFSA or PFCA species would be helpful for understanding VOF formation and evolution, and warrants study beyond the scope of this preliminary effort. It is notable perhaps, however, that the shift to greater perfluoroalkene species was more evident in VOF collected during PFSA decomposition, which occurred at higher temperatures and appeared associated with greater fluorine mineralization.

## 4.3 Decomposition of simulated solid IDW with Ca(OH)<sub>2</sub>

## 4.3.1 Decomposition of PFOS, PFHxS, and PFOA in sand amended with Ca(OH)2

To assess the potential benefit of Ca(OH)<sub>2</sub> for lowering decomposition temperatures of PFAS and lowering releases of VOF, the sands investigated and described in Section 4.2 were reexamined after mixing with 16.7 mg/g of Ca(OH)<sub>2</sub>, as described in Section 3.3.1. The same general tools utilized during the baseline investigation were applied for this comparison: evaluation of extracts of solids and surfaces, evaluation of impinger solutions, and evaluation of VOF by GC-MS. However, as noted in Section 3.3.3.1, lower temperatures were used during these experiments to account for lower temperature decomposition facilitated by the Ca(OH)<sub>2</sub> amendments.

#### 4.3.1.1 Evaluation of sample extracts

Extracted PFAS, fluorine, and sulfur oxyanion quantities associated with solids, sample boats, and the process tube after thermal treatment are provided in **Table 5**. Approximately 0.01 mg/g of PFOS and 0.005 mg/g of PFHxS were observed after treatment of their respective solids, corresponding to 0.4% and 0.3% of the amended quantities, respectively. This indicates that approximately 99.6% of PFOS and PFHxS were removed from the sands after thermal treated at temperatures up to 400 °C and 450°C, respectively, and greater than 99.9% removal of PFOA (based on 0.05 mg/L detection limit in extracts), after treatment at temperatures up to 450 °C. Unlike during the baseline assessment, no other PFAAs were observed among the extracts, with cumulative detection limits of approximately 0.005 mg/g.

Recovery of sulfur from PFSAs in the solid extracts was substantial, with 50-60% of initial sulfur recovered. This contrasts with no more than 15% recovery in cases without the Ca(OH)<sub>2</sub> amendment. The recovery of sulfur in the presence of Ca(OH)<sub>2</sub> is similar to the total recovery observed in impingers previously (up to 67%, see **Table 4**). No sulfur was detected in the impingers, indicating that volatile and trapped sulfur oxyanions accounted for no more than 1% of initial quantities. As in the case without Ca(OH)<sub>2</sub>, while much of the added sulfur was accounted for, the mass balance of sulfur remained incomplete, perhaps for the same reasons as noted in Section 4.2.2. Future efforts would benefit from improved mass balance of sulfur.

Fluoride was observed associated with solids in all thermal decomposition experiments with Ca(OH)<sub>2</sub>, accounting for: 41% of initial PFOS fluorine, 32% of initial PFHxS fluorine, and 26% of initial PFOA fluorine. Despite the lower temperatures that were used in these experiments, each of these quantities is greater than total fluoride observed without Ca(OH)<sub>2</sub>: by a factor of 1.9x for PFOS, 1.1x for PFHxS, and 5.8x for PFOA. It is unclear why the relative improvement for mineralization of PFHxS was smaller. It should be noted that 80% to 90% of the fluoride observed was extracted using the complexing EDTA solution, after previous extractions with water alone showed limited recovery of fluoride. This increased fluoride extraction with more aggressive EDTA extraction suggests it was present as CaF<sub>2</sub> or other less soluble species.

Table 5. Quantities of PFAS, fluoride, and sulfur oxyanions extracted from Ca(OH)<sub>2</sub> amended IDW solids, sample boat, and process tube.

| Solid                                                                                                                                                                                                                                                      | Temp<br>Range<br>(°C) | Initial<br>PFAS<br>(mg/g) | Final PFAS <sup>a</sup><br>(mg/g) <sup>b</sup> and<br>(%) <sup>c</sup> | Initial<br>Sulfur<br>(mg/g) | Final<br>Sulfur<br>(mg/g) <sup>b</sup><br>and (%) <sup>c</sup> | Initial<br>Fluorine<br>(mg/g) | Final<br>Fluorine<br>(mg/g) <sup>b</sup><br>and (%) <sup>c</sup> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|-------------------------------|------------------------------------------------------------------|
| IDW-PFOS<br>w/ Ca(OH) <sub>2</sub>                                                                                                                                                                                                                         | 150-400               | 2.7                       | PFOS-0.01<br>(0.4%)                                                    | 0.17                        | 0.11<br>(62%)                                                  | 1.7                           | 0.7<br>(41%)                                                     |
| IDW-PFOS<br>w/ Ca(OH) <sub>2</sub><br>Control                                                                                                                                                                                                              | -                     | 2.7                       | PFOS-1.8<br>(67%)                                                      | 0.17                        | 0.01<br>(6%)                                                   | 1.7                           | 0.01<br>(0.3%)                                                   |
| IDW-PFHxS<br>w/ Ca(OH) <sub>2</sub>                                                                                                                                                                                                                        | 150-450               | 1.8                       | PFHxS-0.005<br>(0.3%)                                                  | 0.14                        | 0.08<br>(55%)                                                  | 1.1                           | 0.35<br>(32%)                                                    |
| IDW-PFHxS<br>w/ Ca(OH) <sub>2</sub><br>Control                                                                                                                                                                                                             | -                     | 1.8                       | PFHxS-1.5<br>(83%)                                                     | 0.14                        | 0.004<br>(3%)                                                  | 1.1                           | 0.01<br>(0.6%)                                                   |
| IDW-PFOS<br>w/ Ca(OH) <sub>2</sub>                                                                                                                                                                                                                         | 100-450               | 2.7                       | ND                                                                     | -                           | 0.005<br>(-%)                                                  | 1.8                           | 0.5<br>(26%)                                                     |
| IDW-PFOA<br>w/ Ca(OH) <sub>2</sub><br>Control                                                                                                                                                                                                              | -                     | 2.7                       | PFOA-2.4<br>(89%)                                                      | -                           | 0.005<br>(-%)                                                  | 1.8                           | 0.01<br>(0.3%)                                                   |
| Notes:(a) – PFAS measured is identified if possible.<br>(b) – Sum of quantities extracted from solids, sample boat, and process tube normalized<br>by IDW mass emplaced in the furnace<br>(c) – Percent of initial quantities of PFAS, sulfur, or fluorine |                       |                           |                                                                        |                             |                                                                |                               |                                                                  |

# 4.3.1.2 Evaluation of impinger solutions

No quantities of PFAS, fluoride, or sulfur oxyanions were observed in the impingers after thermal decomposition of the PFAS when amended with Ca(OH)<sub>2</sub>. This contrasts with experiments performed in the absence of Ca(OH)<sub>2</sub>, suggesting that Ca(OH)<sub>2</sub> inhibits volatilization or otherwise sequesters the relevant species. With respect to possible evolution of PFCA forming species, which were recovered at impingers when Ca(OH)<sub>2</sub> was not added to solids, it is unlikely that more than 0.02 mg of PFCAs could have been present in the impingers without detection. This indicates that less than 0.4% of PFAS treated in presence of Ca(OH)<sub>2</sub> were converted to volatile species that form PFCAs in solution.

# 4.3.1.3 Evaluation of VOF

The VOF that passed through aqueous impingers and collected in Flexfoil bags were evaluated by GC-MS as described in Sections 3.2.3 and 4.2.3. As before, these VOF passed through aqueous traps and were likely beyond analytical coverage provided by LC-MS/MS methods.

Cumulative signals of the ion fragments observed by SIM during GC-MS analysis of the VOF are presented in **Figure 12**. 1H-perfluoroalkane and perfluoroalkene species were again prevalent and no species were identified with fluoroalkyl chain lengths exceeding that of the parent PFAS. The greatest VOF signal observed in each case was associated with the 1H-perfluoroalkane species of equal fluoroalkyl chain length as the parent PFAS: 1H-perfluorooctane (RT = 5.7 min) for PFOS, 1H-perfluorohexane (RT=4.7 min) for PFHxS, and 1H-perfluoroheptane (RT=5.1 min) for PFOA. For the case of PFSA decomposition, this contrasts with the experiments without Ca(OH)<sub>2</sub> amendment, where strong signals representing fluoroalkyl chains with one fewer carbon were noted, particularly the perfluoroalkene species.

The prevalence of a second 1H-perfluoroalkane VOF signal shown in **Figure 12** may also be of interest – that associated with a fluoroalkyl chain length three carbons shorter than the parent PFAS (i.e., 1H-perfluoropentane [TIC, RT = 4.4 min] for PFOS, 1H-perfluoropropane [TIC, RT = 4 min] for PFHxS, and 1H-perfluorobutane [TIC, RT=4.1 min] for PFOA). These VOF were noted despite the apparent absence of 1H-perfluoroalkane VOF of intermediate chain lengths (e.g., the absence of 7- or 6-carbon 1H-perfluoroalkane species for PFOS). While speculative, this pattern suggests the cleavage/release of a 3-carbon intermediate species, perhaps as fluoropropane or fluoropropene.

As before, ion fragments m/z 69 and the ratio of m/z of 51:131 were used to evaluate decomposition progress as furnace temperatures were increased (see **Figure 13**). The average furnace temperature at which VOF were collected (estimated based on averaged m/z 69 signal) were significantly lower than without Ca(OH)<sub>2</sub> for PFOS ( $T_{VOF}=278$  °C) and PFHxS ( $T_{VOF}=286$  °C), but almost identical for PFOA ( $T_{VOF}=239$  °C). While no products were observed at impingers for comparison, these lower temperatures likely indicate that Ca(OH)<sub>2</sub> facilitated PFSA decomposition at lower temperatures, while the impact on PFCAs was more limited. Perhaps this relates to stronger interactions between Ca(OH)<sub>2</sub> and sulfonate groups than carboxylate groups. It may also be related to the presence of Na<sup>+</sup> or K<sup>+</sup> cations in the alkaline methanol, which several industry studies indicated facilitated PFCA decomposition at similar temperatures.<sup>9,27,28</sup>



**Figure 12.** Cumulative GC-MS SIM ion fragment signals of VOF resulting from PFAS decomposition in sand IDW amended with Ca(OH)<sub>2</sub>. GC-MS signals were discretized at 0.1 min resolution. VOF resulting from decomposition of a single PFAS in the IDW: A.) PFOS, B.) PFHxS, and C.) PFOA.



Figure 13. Evolution of VOF from simulated IDW with  $Ca(OH)_2$ . Blue markers and line represent cumulative m/z 69 observed as temperature increases. M/z 69 represents both perfluoroalkene and 1H-perfluoroalkane species. The dotted blue line represents the estimated average temperature at which m/z 69 was recovered. Red markers and line represent the cumulative ratio of m/z 51 to m/z 131. 51:131 ratios were observed to be constant or increasing as VOF evolved, indicating a more limited perfluoroalkene contributions than in absence of amended Ca(OH)<sub>2</sub>.

The shift in VOF composition from 1H-perfluoroalkane to perfluoroalkene species noted during decomposition of the PFAAs without Ca(OH)<sub>2</sub> with increasing temperature (as indicated by a decrease in the m/z 51:131 ratio) was muted or absent in the presence of Ca(OH)<sub>2</sub>. While this is evident in the data presented in **Figure 13**, an additional decomposition experiment with PFOS sand amended with 10 times greater Ca(OH)<sub>2</sub> (160 mg/g) also clearly demonstrated this effect. This experiment was performed at the same temperatures as the thermal decomposition experiment without Ca(OH)<sub>2</sub>, and cumulative GC-MS signals for both experiments are shown in **Figure 14**. Most of the VOF collected in the presence of Ca(OH)<sub>2</sub> occurred at the lowest furnace temperature (275 °C). As shown in **Figure 14**, perfluoroalkene VOF species (e.g., perfluoroheptene at RT=4.5 min) were notably suppressed in the presence of higher Ca(OH)<sub>2</sub>. While this experiment preceded the use of multiple extractions, or EDTA to facilitate fluoride extractions, fluoride was noted together with sulfur oxyanions in an aqueous extract of the high Ca(OH)<sub>2</sub> amended sand. Unfortunately, these extractions were likely far from complete. No analytes of interest were observed in the impinger solutions associated with the experiment with higher Ca(OH)<sub>2</sub>. The pattern noted earlier, with the absence of 7- and 6-carbon

1H-perfluoroalkane species, is apparent in this data as well. Further evaluating conditions at which perfluoroalkene species form, are inhibited from forming, or decompose are likely of significant importance when evaluating the thermal decomposition of PFAS and deserves further scrutiny.



**Figure 14. Cumulative GC-MS SIM ion fragment signals of VOF resulting from PFOS decomposition in simulated IDW and with 160 mg/g Ca(OH)**<sub>2</sub> **amendment.** GC-MS signals were discretized at 0.1 min resolution. A shift from perfluoroalkene (e.g., m/z 131) to 1H-perfluoroalkane species (e.g., m/z 51) is observed when Ca(OH)<sub>2</sub> is present. Furnace temperatures for both experiments were matched and ranged from 275 °C to 575 °C.

### 4.3.2 Decomposition of UCMR-3 PFSAs and PFCAs in amended field IDW

Experiments performed with the amended field IDW were used to evaluate and verify, under more complex conditions, the interpretations of previous experiments. These experiments were performed with a mix of the six UCMR-3 PFAS, consisting of 3 PFSAs (PFOS, PFHxS, and PFBS) and 3 PFCAs (PFNA, PFOA, and PFHpA) (**Table 2**). Due to the anticipated doubling of fluorine associated with these PFAS in the amended field IDW compared to previous experiments, Ca(OH)<sub>2</sub> amendments were doubled to 33.5 mg/g to maintain a similar Ca:F ratio. The same general investigative approach as used for the previously described experiments were used to observe decomposition behavior of the amended field IDW. As noted in Section 3.3.3.2, however, the furnace was set to a fixed temperature of 325 °C for a duration of four hours for these experiments. Based on earlier results, this temperature was expected to result in extensive, if not complete, removal of PFCAs, and more limited removal of PFSAs from the IDW solids.

### 4.3.2.1 Evaluation of sample extracts and solids

PFAS, fluorine, and sulfur oxyanion quantities associated with solids, sample boats, and the process tube after thermal treatment are provided in **Table 6**. The PFAS quantities provided in **Table 6** were based on concentrations measured by the DoD ELAP accredited laboratory (Pace Analytical Gulf Coast) by LC-MS/MS after collection as described in Section 3.3.3.2. As noted in Section 4.1 (see **Table 2**), LC-MS/MS and RPLC-SCD measurements were in reasonable agreement, and analytical reports for the LC-MS/MS and RPLC-SCD analyses associated with the field IDW are included in Appendix A.

In the absence of Ca(OH)<sub>2</sub>, a total of approximately 0.17 mg/g of PFSAs (10% of the amended quantity), distributed fairly evenly among PFOS, PFHxS, and PFBS, remained in the solids after treatment at 325 °C for 4 hours. No PFCAs were detected among the solids with a cumulative limit of detection (LOD) of 0.006 mg/g for the three PFCAs added. These quantities indicate that 90% of PFSAs were removed during the treatment and that greater than 99.5% of PFCAs were removed. The extent of PFSA removal was greater than expected based on the earlier experiments with all-purpose sand, which suggested that a component of the field soil may have facilitated some PFSA decomposition.

In the field IDW mixed with Ca(OH)<sub>2</sub>, a total of approximately 0.02 mg/g of PFSAs remained after treatment, again fairly evenly distributed among PFOS, PFHxS, and PFBS, and no PFCAs were detected. For the PFSAs, this corresponded to a reduction in quantities of 98.7% compared to controls and a reduction of 86% (almost one additional log unit of reduction) beyond that observed in the treated samples without Ca(OH)<sub>2</sub>. Due to a lower LOD, greater than 99.95% in PFCA quantities were removed in the samples with Ca(OH)<sub>2</sub> amendments. No other PFAS were noted among the solid samples.

Sulfur mineralization from the PFSAs in the solid extracts was substantial, with 69% of initial sulfur recovered in the case without Ca(OH)<sub>2</sub>, and approximately 100% of initial sulfur recovered in the case with Ca(OH)<sub>2</sub> amendments. The high recovery of sulfur in both experiments is in agreement with thermal decomposition of significant quantities of PFSAs. The higher recovery among the solids in the case without Ca(OH)<sub>2</sub> than in earlier experiments with the sieved all-purpose sand suggest greater sequestration by materials in the field sample, and are perhaps consistent with the greater PFSA mineralization than expected. The mass balance among sulfur species in these experiments was more complete than before, perhaps as a result of better quantification of PFSA species by the LC-MS/MS method.

Fluoride resulting from PFAS decomposition was observed in solids, both without and with Ca(OH)<sub>2</sub> amendments. As expected, mineralization and recovery of total fluoride was greater in the case of Ca(OH)<sub>2</sub> amendment (40%) than in the case without Ca(OH)<sub>2</sub> (15%). This factor of 2.6x increase in fluoride mineralization was consistent with previous experiments where amendment with Ca(OH)<sub>2</sub> increased total fluoride mineralization by 1.1x to 5.8x with increased sequestration in the solids.

**Table 6. Quantities of PFAS, fluoride, and sulfur oxyanions extracted from simulated soil IDW.** Extractions from soils without and with Ca(OH)<sub>2</sub> are provided. PFAS analyses by LC-MS/MS were performed at Pace Analytical Gulf Coast.

| Analyte                                                                                                                                                                                                                                                                                                                                             | Initial PFAS        | No Ca                                                     | a(OH) <sub>2</sub>                                      | With 33.5 mg/g Ca(OH) <sub>2</sub>                        |                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------|--|
| (PFAS,<br>Sulfur, or<br>Fluorine)                                                                                                                                                                                                                                                                                                                   | (mg/g) <sup>a</sup> | Final solid<br>extracts<br>(mg/g) and<br>(%) <sup>b</sup> | Impinger<br>(mg/g) <sup>c</sup> and<br>(%) <sup>b</sup> | Final solid<br>extracts<br>(mg/g) and<br>(%) <sup>b</sup> | Impinger<br>(mg/g)c and<br>(%) <sup>b</sup> |  |
| PFSAs                                                                                                                                                                                                                                                                                                                                               |                     |                                                           |                                                         |                                                           |                                             |  |
| -PFOS                                                                                                                                                                                                                                                                                                                                               | 0.59                | 0.05<br>(9%)                                              | <6.7 x 10 <sup>-6</sup> U                               | 0.007<br>(1.3%)                                           | <6.7 x 10 <sup>-6</sup> U                   |  |
| -PFHxS                                                                                                                                                                                                                                                                                                                                              | 0.61                | 0.06<br>(10%)                                             | <6.7 x 10 <sup>-6</sup> U                               | 0.006<br>(1.0%)                                           | <6.7 x 10 <sup>-6</sup> U                   |  |
| -PFBS                                                                                                                                                                                                                                                                                                                                               | 0.62                | 0.06<br>(10%)                                             | <6.7 x 10 <sup>-6</sup> U                               | 0.01<br>(1.6%)                                            | <6.7 x 10 <sup>-6</sup> U                   |  |
| PFSA Total                                                                                                                                                                                                                                                                                                                                          | 1.8                 | 0.17<br>(10%)                                             | ND                                                      | 0.02<br>(1.3%)                                            | ND                                          |  |
| PFCAs                                                                                                                                                                                                                                                                                                                                               |                     |                                                           |                                                         |                                                           |                                             |  |
| -PFNA                                                                                                                                                                                                                                                                                                                                               | 0.58                | <0.002 U                                                  | <6.7 x 10 <sup>-6</sup> U                               | <0.0002 U                                                 | <6.7 x 10 <sup>-6</sup> U                   |  |
| -PFOA                                                                                                                                                                                                                                                                                                                                               | 0.61                | <0.002 U                                                  | <6.7 x 10 <sup>-6</sup> U                               | <0.0002 U                                                 | <6.7 x 10 <sup>-6</sup> U                   |  |
| -PFHpA                                                                                                                                                                                                                                                                                                                                              | 0.55                | <0.002 U                                                  | 6.5 x 10 <sup>-6</sup> J                                | <0.0002 U                                                 | <6.7 x 10 <sup>-6</sup> U                   |  |
| -PFHxA                                                                                                                                                                                                                                                                                                                                              | <0.015 U            | <0.002 U                                                  | 6.9 x 10 <sup>-6</sup> J                                | <0.0002 U                                                 | <6.7 x 10 <sup>-6</sup> U                   |  |
| -PFPeA                                                                                                                                                                                                                                                                                                                                              | <0.015 U            | <0.002 U                                                  | 1.0 x 10 <sup>-5</sup> J                                | <0.0002 U                                                 | <6.7 x 10 <sup>-6</sup> U                   |  |
| -PFBA                                                                                                                                                                                                                                                                                                                                               | <0.015 U            | <0.002 U                                                  | 2.1 x 10 <sup>-5</sup>                                  | <0.0002 U                                                 | <6.7 x 10 <sup>-6</sup> U                   |  |
| PFCA Total                                                                                                                                                                                                                                                                                                                                          | 1.7                 | <0.012 U<br>(<0.7%)                                       | 4.5 x 10 <sup>-5</sup> J                                | <0.001 U<br>(<0.06%)                                      | ND                                          |  |
| PFAS Total                                                                                                                                                                                                                                                                                                                                          | 3.6                 | 0.17<br>(5%)                                              | 4.5 x 10 <sup>-5</sup> J<br>(0.001%)                    | 0.02<br>(0.7%)                                            | ND                                          |  |
| Sulfur and Flue                                                                                                                                                                                                                                                                                                                                     | orine <sup>d</sup>  |                                                           |                                                         |                                                           |                                             |  |
| Sulfur                                                                                                                                                                                                                                                                                                                                              | 0.15                | 0.10<br>(69%)                                             | 0.03 (18%)                                              | 0.15<br>(100%)                                            | 0.004<br>(3%)                               |  |
| Fluorine                                                                                                                                                                                                                                                                                                                                            | 2.3                 | 0.35<br>(15%)                                             | ND                                                      | 0.92<br>(40%)                                             | ND                                          |  |
| Notes:       (a) – Based on control samples analyzed by LC-MS/MS at Pace Analytical Gulf Coast         (b) – Percent of initial quantities of PFAS, sulfur, or fluorine         (c) – Mass collected at impingers normalized by IDW mass emplaced in the furnace         (d) – Sulfur and fluorine concentrations are relative to unheated controls |                     |                                                           |                                                         |                                                           |                                             |  |

# 4.3.2.2 Evaluation of impinger solutions

Cumulative totals of sulfur oxyanions and PFAS recovered and measured in impingers are provided in **Table 6**. No fluoride was detected in the impinger solutions. For the soil without Ca(OH)<sub>2</sub>, approximately 18% of sulfur present in parent PFSAs was observed in the impingers, primarily during the first hour of treatment. This quantity was smaller than expected given the extent of PFSA decomposition but was consistent with the larger than expected quantity observed in soils and consistent with sequestration among the solids. Consistent with the

previous experiments utilizing Ca(OH)<sub>2</sub> amendments, very little sulfur was observed in impingers during thermal decomposition of PFAS in field solids with Ca(OH)<sub>2</sub>.

As no PFAS were detected in the impinger solutions by RPLC-SCD, only two impinger solutions were analyzed for PFAS by LC-MS/MS for each experiment: the impinger solution associated with the first hour of decomposition as it was anticipated to contain the greatest quantity of PFAS, and the impinger solution associated with the third hour of decomposition as a comparative baseline sample, where no detectable PFAS were anticipated. As shown in **Table 6**, small quantities of various PFCAs with perfluoroalkyl chains containing 7 or less carbons were detected in the impinger solution after PFAS decomposition in the soil without Ca(OH)<sub>2</sub>, corresponding to approximately 4.5 x 10<sup>-5</sup> mg per gram of treated soil in total. In this case, it is difficult to attribute the PFCAs to either PFSA or PFCA parent compounds, but the earlier observation of PFCAs resulting from PFOS and PFHxS decomposition suggest that PFSAs may have been the source of these PFCAs as well. If all amended PFAS are considered the source, then less than 0.001% of PFAS were recovered as PFCAs in the impingers. If only PFSAs were the source of these PFCAs, then less than 0.002% of these PFSAs were recovered as PFCAs in the impingers. No PFAS were detected among impinger solutions in the case when Ca(OH)<sub>2</sub> was added to the soil IDW prior to thermal treatment.

## 4.3.2.3 Evaluation of VOF

Cumulative signals of the ion fragments observed by SIM during GC-MS analysis of the VOF are presented in Figure 15. More than 98% of the total VOF observed were collected in the first hour of heating in the case without Ca(OH)<sub>2</sub>, and no VOF were noted in Flexfoil bags after the first hour in the case with Ca(OH)<sub>2</sub>. 1H-perfluoroalkane and perfluoroalkene species appeared to compose the greatest fraction of VOF observed and no species were identified with fluoroalkyl chain lengths exceeding that of the parent PFAS. The VOF spectra shown in Figure 15 with and without Ca(OH)<sub>2</sub> appear similar to each other, and it is evident that large quantities of VOF evolved from the parent PFAS with little to no mineralization of fluorine (e.g., 1H-perfluorooctane, RT=5.7 min, resulting from either PFNA or PFOS). As noted in previous discussions, there was a shift from perfluoroalkene to 1H-perfluoroalkane species with the inclusion of Ca(OH)<sub>2</sub>, which was perhaps most evident in examining the ratio of m/z 51:131, which increased from 2.1 to 3.6 when Ca(OH)<sub>2</sub> was added. It is unclear how this shift related to the increased mineralization of fluorine observed. It is notable, however, that significant signals of both 1H-perfluoroalkane and perfluoroalkene VOF with long perfluoroalkyl chains indicating little mineralized occurred together with significant removal of parent PFAS from the solid phase.



**Figure 15. Cumulative GC-MS SIM ion fragment signals of VOF resulting from PFAS decomposition in simulated soil IDW.** This soil IDW was amended with the six UCMR-3 PFAS and examined A.) without and B.) with 34 mg/g Ca(OH)<sub>2</sub> amendment. While similar, there is a slight shift in abundance among perfluoroalkene (e.g., m/z 131) and 1H-perfluoroalkane species (e.g., m/z 51) species. The furnace temperature for both experiments was set to a constant temperature of 325 °C. GC-MS signals were discretized at 0.1 min resolution.

#### 5.0 CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH

Management of PFAS laden materials is a concern for the DoD. This concern extends to management of IDW that occur at a variety of scales. One management approach for these materials that can cover a broad range of scales is thermal treatment, including lower temperature thermal desorption approaches. The work described in this report showed that low temperature treatments can remove PFAAs from simulated IDW materials, and that VOF evolve from this low temperature process. Further, this work demonstrated the concept that Ca(OH)<sub>2</sub> amendments can lower PFAS decomposition temperatures, facilitate greater PFAS mineralization, and change the composition of VOF.

There remains a need to continue identifying and quantifying VOF that may evolve during PFAS thermal decomposition, including species evolving from PFAA precursors and novel PFAS, such as GenX. While further refinements and improvements are necessary, methodologies were developed during this project to use GC-MS instrumentation to assess prevalent VOF species that passed through aqueous traps, and to evaluate mineralized fluoride found as CaF<sub>2</sub> or other less soluble species. At this time, both of these approaches require high concentrations of analytes and there would be significant benefit associated with improving the sensitivity of these measurements. Particularly with respect to VOF, identification of major species and other components of interest should facilitate better approaches to trap and concentrate species for better detection.

PFSAs and PFCAs were removed from simulated IDW at temperatures achievable in the field, and amendment with Ca(OH)<sub>2</sub> at quantities up to 34 mg/g were shown to increase this removal. In clean, sieved sand, temperatures associated with VOF release from PFSAs decreased from near 360 °C to near 280 °C when Ca(OH)<sub>2</sub> was added, while temperatures associated with VOF release from PFOA were near 250 °C whether Ca(OH)<sub>2</sub> was present or not (See **Figure 16**). Consistent with these observations, less PFSAs remained in the field IDW material held at 325 °C when Ca(OH)<sub>2</sub> was added, and no PFCAs were detected in either case (See **Figure 16**). Improved fluorine mineralization of PFAS and suppression of volatile water-reactive PFCA precursors (e.g., acyl fluoride species) was also noted with the inclusion of Ca(OH)<sub>2</sub> amendments (See **Figure 17**). While these volatile PFCA precursors appeared reasonably facile to remove from the gas phase, they are of interest as they may lead to mobilization and distribution of PFCA species (perhaps localized) if not appropriately considered.



**Figure 16. Decomposition temperatures and PFAS remaining after decomposition.** A.)Estimated average temperature at which m/z 69 was recovered in VOF showing a shift to lower temperatures with Ca(OH)<sub>2</sub> amendments for PFSAs. B.) Observed fraction of PFAS remaining in simulated IDW after thermal treatment, showing less PFAS remaining with Ca(OH)<sub>2</sub> amendments.



**Figure 17. Products of PFAS thermal decomposition.** A.) Fraction of fluorine of parent PFAS observed as fluoride products, indicating greater fluorine mineralization with Ca(OH)<sub>2</sub> amendments. B.) Fraction of initial PFAS observed as PFCAs in impinger traps, indicating the release of likely volatile intermediates (e.g., acyl fluoride VOF).

At the lower decomposition temperatures evaluated in this work, VOF with fluoroalkyl chains of similar length as parent PFAS were observed. VOF consisted largely of 1H-perfluoroalkane and perfluoroalkene species that were not removed by aqueous impinger traps, but other minor VOF components, including possibly more toxic species, should not be ruled out. Amendment of IDW with Ca(OH)<sub>2</sub> resulted in an apparent shift in the cumulative composition of VOF, from greater perfluoroalkene abundance to greater 1H-perfluoroalkane abundance, noted as a shift to greater relative quantities of m/z 51 to m/z 131 ion fragments observed by GC-MS SIM (See **Figure 18**). As greater perfluoroalkene quantities were observed at higher temperatures in the absence of Ca(OH)<sub>2</sub>, this suggests a possible relationship between the influence of Ca(OH)<sub>2</sub> and perfluoroalkene species that should be explored further. For

example, it would be helpful to better understand reactions between perfluoroalkene, or possibly acyl fluoride species, and Ca(OH)<sub>2</sub> that could lead to fluorine mineralization, or whether Ca(OH)<sub>2</sub> otherwise inhibits formation of these volatile species from parent PFAS. For application of low temperature treatment of PFAS, improved understanding of the relative abundances of perfluoroalkene and 1H-perfluoroalkane VOF is also necessary, as these VOF have different toxicities and likely behave differently during subsequent flue gas treatment approaches (e.g., sorption or oxidation) that may be necessary.



**Figure 18.** Cumulative ratio of m/z 51 to 131 of VOF evolved from IDW. With the inclusion of Ca(OH)<sub>2</sub>, a shift to greater 51:131 was observed indicating the greater presence of 1H-perfluoroalkane species.

All the experiments performed during this limited-scope project utilized relatively inert and dry N<sub>2</sub> as a sweep gas. This may have had the potential benefit of preserving more reactive products or intermediates that otherwise may not have been observed. However, the influence of oxygen and water in the gas phase should be investigated as these may significantly alter products. For example, oxygen may be added at the vinyl bond of the perfluoroalkene species, resulting in possible acyl fluoride groups, which may be subsequently hydrolyzed to form new carboxylic groups, albeit with a shorter perfluoroalkyl chain. If these shortened PFCAs remain in the thermal treatment system, this may lead to sequential decomposition of the perfluoroalkyl chain. This process was noted as a challenge causing fluorocarbon polymer instabilities six decades ago, together with a patented technique using humidified air to produce more stable -CF<sub>2</sub>H endgroups, analogous to 1H-perfluoroalkane species.<sup>29</sup> The role of Ca(OH)<sub>2</sub> and similar species were noted to impact these processes,<sup>29</sup> consistent with the observations described in this report. If the end goal of PFAS thermal treatment is improved fluorine mineralization, the former process of repeated perfluoroalkene oxidation and chain shortening may be desired, provided perfluoroalkene and acyl fluoride VOF are not released, whereas if the formation of more stable and likely less toxic 1H-perfluoroalkane species are desired, inclusion of water vapor may be desired.

Ca(OH)<sub>2</sub> was observed to alter the composition of 1H-perfluoroalkane and perfluoroalkene VOF and to impact PFAS mineralization. To apply low temperature treatment of PFAS, it will be important for the DoD to improve its understanding of this dynamic system. This includes understanding whether other amendments perform similarly to Ca(OH)<sub>2</sub> and what temperatures are required for desired PFAS mineralization when using such amendments. Recognizing the

importance of developing effective management approaches for PFAS laden materials, these efforts will help improve understanding of PFAS fate during low temperature thermal treatment.

## **6.0 LITERATURE CITED**

- McDonough, C. A.; Choyke, S.; Ferguson, P. L.; Dewitt, J. C.; Higgins, C. P. Bioaccumulation of Novel Per- And Polyfluoroalkyl Substances in Mice Dosed with an Aqueous Film-Forming Foam. *Environ. Sci. Technol.* 2020, 54 (9), 5700–5709. https://doi.org/10.1021/acs.est.0c00234.
- Lau, C.; Thibodeaux, J. R.; Hanson, R. G.; Narotsky, M. G.; Rogers, J. M.; Lindstrom, A. B.; Strynar, M. J. Effects of Perfluorooctanoic Acid Exposure during Pregnancy in the Mouse. *Toxicol. Sci.* 2006, *90* (2), 510–518. https://doi.org/10.1093/toxsci/kfj105.
- (3) Loveless, S. E.; Finlay, C.; Everds, N. E.; Frame, S. R.; Gillies, P. J.; O'Connor, J. C.; Powley, C. R.; Kennedy, G. L. Comparative Responses of Rats and Mice Exposed to Linear/branched, Linear, or Branched Ammonium Perfluorooctanoate (APFO). *Toxicology* 2006, 220 (2-3), 203–217. https://doi.org/10.1016/j.tox.2006.01.003.
- (4) DeWitt, J. C.; Shnyra, A.; Badr, M. Z.; Loveless, S. E.; Hoban, D.; Frame, S. R.; Cunard, R.; Anderson, S. E.; Meade, B. J.; Peden-Adams, M. M.; et al. Immunotoxicity of Perfluorooctanoic Acid and Perfluorooctane Sulfonate and the Role of Peroxisome Proliferator-Activated Receptor Alpha. *Critical Reviews in Toxicology*. 2009, pp 76–94. https://doi.org/10.1080/10408440802209804.
- (5) Department of Defense. DoD Inventory of Fire/Crash Training Area Sites http://h2oradio.org/PDF/List-of-Fire-amp-Crash-Training-Areas-EOY14.pdf.
- (6) Taylor, P. H.; Yamada, T.; Striebich, R. C.; Graham, J. L.; Giraud, R. J. Investigation of Waste Incineration of Fluorotelomer-Based Polymers as a Potential Source of PFOA in the Environment. *Chemosphere* 2014, *110*, 17–22. https://doi.org/10.1016/j.chemosphere.2014.02.037.
- (7) Yamada, T.; Taylor, P. H. Final Report Laboratory- Scale Thermal Degradation of Perfluoro-Octanyl Sulfonate and Related Precursors; 2003.
- (8) Yamada, T.; Taylor, P. H.; Buck, R. C.; Kaiser, M. A.; Giraud, R. J. Thermal Degradation of Fluorotelomer Treated Articles and Related Materials. *Chemosphere* 2005, *61* (7), 974– 984. https://doi.org/10.1016/j.chemosphere.2005.03.025.
- (9) LaZerte, J. D.; Hals, L. J.; Reid, T. S.; Smith, G. H. Pyrolyses of the Salts of the Perfluoro Carboxylic Acids. J. Am. Chem. Soc. 1953, 75 (18), 4525–4528. https://doi.org/10.1021/ja01114a040.
- (10) Hercules, D. A.; Parrish, C. A.; Sayler, T. S.; Tice, K. T.; Williams, S. M.; Lowery, L. E.; Brady, M. E.; Coward, R. B.; Murphy, J. A.; Hey, T. A.; et al. Preparation of Tetrafluoroethylene from the Pyrolysis of Pentafluoropropionate Salts. *J. Fluor. Chem.* 2017, 196, 107–116. https://doi.org/10.1016/j.jfluchem.2016.10.004.
- (11) Madorsky, S. I.; Hart, V. E.; Straus, S.; Sedlak, V. A. Thermal Degradation of Tetrafluoroethylene and Hydrofluoroethylene Polymers in a Vacuum. J. Res. Natl. Bur. Stand. (1934). 1953, 51 (6), 327. https://doi.org/10.6028/jres.051.036.

- (12) Florin, R. E.; Wall, L. A.; Brown, D. W.; Hymo, L. A.; Michaelsen, J. D. Factors Affecting the Thermal Stability of Polytetrafluoroethylene. *J. Res. Natl. Bur. Stand. (1934).* 1954, 53 (2), 121. https://doi.org/10.6028/jres.053.015.
- (13) Atkinson, B.; Atkinson, V. A. The Thermal Decomposition of Tetrafluoroethylene. J. Chem. Soc. 1957, 2086–2094. https://doi.org/10.1039/jr9570002086.
- (14) Lewis, E. E.; Naylor, M. A. Pyrolysis of Polytetrafluoroethylene. J. Am. Chem. Soc. 1947, 69 (8), 1968–1970. https://doi.org/10.1021/ja01200a039.
- (15) Watanabe, N.; Takemine, S.; Yamamoto, K.; Haga, Y.; Takata, M. Residual Organic Fluorinated Compounds from Thermal Treatment of PFOA, PFHxA and PFOS Adsorbed onto Granular Activated Carbon (GAC). J. Mater. Cycles Waste Manag. 2016, 18 (4), 625– 630. https://doi.org/10.1007/s10163-016-0532-x.
- (16) Vecitis, C.; Park, H.; Cheng, J. Treatment Technologies for Aqueous Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA). *Front. Environ. Sci. Eng.* 2009, 3 (2), 129–151. https://doi.org/10.1007/s11783-009-0022-7.
- (17) Singh, R. K.; Fernando, S.; Baygi, S. F.; Multari, N.; Thagard, S. M.; Holsen, T. M. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. *Environ. Sci. Technol.* **2019**, *53* (5), 2731–2738. https://doi.org/10.1021/acs.est.8b07031.
- (18) UNEP POPRC. Further Assessment of Information on Pentadecafluorooctanoic Acid (CAS No: 335-67-1, PFOA, Perfluorooctanoic Acid), Its Salts and PFOA-Related (UNEP/POPS/POPRC.14/3) Compounds; 2018.
- (19) Watanabe, N.; Takata, M.; Takemine, S.; Yamamoto, K. Thermal Mineralization Behavior of PFOA, PFHxA, and PFOS during Reactivation of Granular Activated Carbon (GAC) in Nitrogen Atmosphere. *Environ. Sci. Pollut. Res.* 2015, No. October. https://doi.org/10.1007/s11356-015-5353-2.
- (20) Wang, F.; Shih, K.; Lu, X.; Liu, C. Mineralization Behavior of Fluorine in Perfluorooctanesulfonate (PFOS) during Thermal Treatment of Lime-Conditioned Sludge. *Environ. Sci. Technol.* 2013, 47 (6), 2621–2627. https://doi.org/10.1021/es305352p.
- (21) Wang, F.; Lu, X.; Shih, K.; Liu, C. Influence of Calcium Hydroxide on the Fate of Perfluorooctanesulfonate under Thermal Conditions. J. Hazard. Mater. 2011, 192 (3), 1067–1071. https://doi.org/10.1016/j.jhazmat.2011.06.009.
- (22) Wang, F.; Lu, X.; Li, X. Y.; Shih, K. Effectiveness and Mechanisms of Defluorination of Perfluorinated Alkyl Substances by Calcium Compounds during Waste Thermal Treatment. *Environ. Sci. Technol.* 2015, 49 (9), 5672–5680. https://doi.org/10.1021/es506234b.
- (23) Feng, Y.; Zhou, Y.; Lee, P.-H.; Shih, K. Mineralization of Perfluorooctanesulfonate (PFOS) and Perfluorodecanoate (PFDA) from Aqueous Solution by Porous Hexagonal Boron Nitride: Adsorption Followed by Simultaneous Thermal Decomposition and Regeneration. *RSC Adv.* 2016, 6 (114), 113773–113780. https://doi.org/10.1039/C6RA15564B.
- (24) Tracy, M.; Liu, X.; Pohl, C. Analysis of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Water Samples Using Reversed-Phase Liquid Chromatography (RPLC) with Suppressed Conductivity Detection; Sunnyvale, CA, 2008.

- (25) Ochoa-Herrera, V.; Sierra-Alvarez, R.; Somogyi, A.; Jacobsen, N. E.; Wysocki, V. H.; Field, J. A. Reductive Defluorination of Perfluorooctane Sulfonate. *Environ. Sci. Technol.* 2008, *42* (9), 3260–3264. https://doi.org/10.1021/es702842q.
- (26) National Institute of Standards and Technology. NIST Chemistry WebBook https://webbook.nist.gov/chemistry/ (accessed Jan 23, 2021). https://doi.org/https://doi.org/10.18434/T4D303.
- (27) Brice, T. J.; Lazerte, J. D.; Hals, L. J.; Pearlson, W. H. The Preparation and Some Properties of the C4F8 Olefins. J. Am. Chem. Soc. **1953**, 75 (11), 2698–2702. https://doi.org/10.1021/ja01107a044.
- (28) Hals, L. J.; Reid, T. S.; Smith, G. H. The Preparation of Terminally Unsaturated Perfluoro Olefins by the Decomposition of the Salts of Perfluoro Acids. *Journal of the American Chemical Society*. 1951, p 4054. https://doi.org/10.1021/ja01152a547.
- (29) Schreyer, R.; E.I. du Pont de Nemours and Company. US3085083A Stabilized Tetrafluoroethylene-Fluoro-Olefin Copolymers Having-CF2H End Groups -. 3085083, 1963.

Appendix A

PFAS Analytical Results for Amended Field IDW Experiments

Sample Key for Pace Analytical Gulf Coast Report, PFAS by LC-MS/MS:

- Smp 1 Control Field IDW solid w/o Ca(OH)2
- Smp 2 Treated Field IDW solid w/o Ca(OH)2
- Smp 3 Control Field IDW solid w/ Ca(OH)2
- Smp 4 Treated Field IDW solid w/ Ca(OH)<sub>2</sub>
- Smp 5 250x dilution of Impinger 1, Field IDW solid w/o Ca(OH)<sub>2</sub> at 325 °C, 1<sup>st</sup> hour
- Smp 6 250x dilution of Impinger 3, Field IDW solid w/o Ca(OH)2 at 325 °C, 3rd hour
- Smp 7 250x dilution of Impinger 1, Field IDW solid w/ Ca(OH)<sub>2</sub> at 325 °C, 1<sup>st</sup> hour
- Smp 8 250x dilution of Impinger 3, Field IDW solid w/ Ca(OH)<sub>2</sub> at 325 °C,  $3^{rd}$  hour

Aptim Sample Reports

- Lab ID RD2784 Field IDW w/o Ca(OH)2
- Lab ID RD2787 Field IDW w/ Ca(OH)2



LELAP CERTIFICATE NUMBER: 01955 DOD-ELAP ACCREDITATION NUMBER: 74960

# **ANALYTICAL RESULTS**

**PERFORMED BY** 

**Pace Analytical Gulf Coast** 

7979 Innovation Park Dr. Baton Rouge, LA 70820 (225) 769-4900

**Report Date 01/20/2021** 



Project IDW

*Deliver To* Paul Koster Van Groos APTIM 17 Princess Road Lawrenceville, NJ 08648 609 895 5367 Additional Recipients NONE



# Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with Pace Gulf Coast's Standard Operating Procedures.

#### Common Abbreviations that may be Utilized in this Report

- ND Indicates the result was Not Detected at the specified reporting limit
- NO Indicates the sample did not ignite when preliminary test performed for EPA Method 1030
- Indicates the result was Diluted Out DO
- МІ Indicates the result was subject to Matrix Interference
- TNTC Indicates the result was Too Numerous To Count
- SUBC Indicates the analysis was Sub-Contracted
- Indicates the analysis was performed in the Field FLD
- DL **Detection Limit**
- Limit of Detection LOD
- LOQ Limit of Quantitation
- Re-analysis RE
- ĊF HPLC or GC Confirmation
- 00:01 Reported as a time equivalent to 12:00 AM

#### Reporting Flags that may be Utilized in this Report

| Jorl   | Indicates the result is between the MDL and LOQ                                         |
|--------|-----------------------------------------------------------------------------------------|
| J      | DOD flag on analyte in the parent sample for MS/MSD outside acceptance criteria         |
| U      | Indicates the compound was analyzed for but not detected                                |
| B or V | Indicates the analyte was detected in the associated Method Blank                       |
| Q      | Indicates a non-compliant QC Result (See Q Flag Application Report)                     |
| *      | Indicates a non-compliant or not applicable QC recovery or RPD – see narrative          |
| E      | Organics - The result is estimated because it exceeded the instrument calibration range |
| E      | Metals - % diference for the serial dilution is > 10%                                   |
| L      | Reporting Limits adjusted to meet risk-based limit.                                     |
| Ρ      | RPD between primary and confirmation result is greater than 40                          |
| Ы      | Diluted analysis – when appended to Client Sample ID                                    |

– when appended to Client Sample ID

Sample receipt at Pace Gulf Coast is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of Pace Gulf Coast. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with The NELAC Institute (TNI) Standard 2009 and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature Pace Gulf Coast Report 220122279

# Certifications

| Certification    | Certification Number |
|------------------|----------------------|
| DOD ELAP         | 74960                |
| Alabama          | 01955                |
| Arkansas         | 88-0655              |
| Colorado         | 01955                |
| Delaware         | 01955                |
| Florida          | E87854               |
| Georgia          | 01955                |
| Hawaii           | 01955                |
| Idaho            | 01955                |
| Illinois         | 200048               |
| Indiana          | 01955                |
| Kansas           | E-10354              |
| Kentucky         | 95                   |
| Louisiana        | 01955                |
| Maryland         | 01955                |
| Massachusetts    | 01955                |
| Michigan         | 01955                |
| Mississippi      | 01955                |
| Missouri         | 01955                |
| Montana          | N/A                  |
| Nebraska         | 01955                |
| New Mexico       | 01955                |
| North Carolina   | 618                  |
| North Dakota     | R-195                |
| Oklahoma         | 9403                 |
| South Carolina   | 73006001             |
| South Dakota     | 01955                |
| Tennessee        | 01955                |
| Texas            | T104704178           |
| Vermont          | 01955                |
| Virginia         | 460215               |
| Washington       | C929                 |
| USDA Soil Permit | P330-16-00234        |

# Case Narrative

### Client: APTIM Report: 220122279

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.1.1 as specified in the contract.

#### SEMI-VOLATILES MASS SPECTROMETRY

In the PFAS Isotope Dilution QSM B15 analysis for prep batch 700444, PFHpA was detected at an estimated concentration in the method blank. This is due to laboratory contamination. The concentration is < 10% the concentration in the associated sample(s).

In the PFAS Isotope Dilution QSM B15 analysis for prep batch 700361, the LCS/LCSD RPD for PFUnA was outside the control limits.

#### MISCELLANEOUS

#### **PFAS Abbreviations**

| Abbreviation | Analyte Name                           | <b>Abbreviation</b> | Analyte Name                                        |
|--------------|----------------------------------------|---------------------|-----------------------------------------------------|
| PFBA         | Perfluorobutanoic acid                 | 11CI-PF3OUdS        | 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid |
| PFBS         | Perfluorobutanesulfonic acid           | 4:2 F⊺S             | 4:2 Fluorotelomer sulfonic acid                     |
| PFDA         | Perfluorodecanoic acid                 | 6:2 F⊺S             | 6:2 Fluorotelomer sulfonic acid                     |
| PFDS         | Perfluorodecane sulfonic acid          | 8:2 FTS             | 8:2 Fluorotelomer sulfonic acid                     |
| PFDoA        | Perfluorododecanoic acid               | 9CI-PF3ONS          | 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid    |
| PFEESA       | Perfluoro(2-ethoxyethane)sulfonic acid | ADONA               | Dodecafluoro-3H-4,8-dioxanonanoic acid              |
| PFHpA        | Perfluoroheptanoic acid                | FOSA                | Perfluorooctane Sulfonamide                         |
| PFHpS        | Perfluoro-1-heptanesulfonic acid       | HFPO-DA             | Perfluoro-2-proxypropanoic acid                     |
| PFHxA        | Perfluorohexanoic acid                 | NEtFOSAA            | N-ethylperfluorooctanesulfonamidoacetic acid        |
| PFHxS        | Perfluorohexanesulfonic acid           | NFDHA               | Nonafluoro-3,6-dioxaheptanoic acid                  |
| PFMBA        | Perfluoro-4-methoxybutanoic acid       | NMeFOSAA            | N-methylperfluorooctanesulfonamidoacetic acid       |
| PFMPA        | Perfluoro-3-methoxypropanoic acid      |                     |                                                     |
| PFNA         | Perfluorononanoic acid                 |                     |                                                     |
| PFNS         | Perfluorononanesulfonic acid           |                     |                                                     |
| PFOA         | Perfluorooctanoic acid                 |                     |                                                     |
| PFOS         | Perfluorooctanesulfonic acid           |                     |                                                     |
| PFPeA        | Perfluoropentanoic acid                |                     |                                                     |
| PFPeS        | Perfluoropentanesulfonic acid          |                     |                                                     |
| PFTA         | Perfluorotetradecanoic acid            |                     |                                                     |
| PFTeDA       | Perfluorotetradecanoic acid            |                     |                                                     |
| PFTrDA       | Perfluorotridecanoic acid              |                     |                                                     |
| PFUnA        | Perfluoroundecanoic acid               |                     |                                                     |

# **Q Flag Summary**

## Client Sample ID: SMP 5, EXP 12, IMP 1A REP A,B Lab Sample ID: 22012227905

| Method: PFAS Isotope Dilution QSM B15 Analysis Date: 12/24/2020 10:53:58 PM |           |         |              |               |        |           |
|-----------------------------------------------------------------------------|-----------|---------|--------------|---------------|--------|-----------|
| Analyte                                                                     | CAS       | CCV OUL | LCS/LCSD OUL | SURROGATE OUL | IS OUL | CLCCV OUL |
| PFUnA                                                                       | 2058-94-8 |         | X            |               |        |           |

## Client Sample ID: SMP 6, EXP 12, IMP 3A REP A-F Lab Sample ID: 22012227906

| Method: PFAS Isotope Dilution QSM B15 Analysis Date: 12/24/2020 11:08:23 PM |           |         |         |  |               |        |           |
|-----------------------------------------------------------------------------|-----------|---------|---------|--|---------------|--------|-----------|
| Analyte                                                                     | CAS       | CCV OUL | LCS/LCS |  | SURROGATE OUL | IS OUL | CLCCV OUL |
| PFUnA                                                                       | 2058-94-8 |         | X       |  |               |        |           |

## Client Sample ID: SMP 7, EXP 13, IMP 1A REP A,B Lab Sample ID: 22012227909

| Method: PFAS Isotope Dilution QSM B15 Analysis Date: 12/24/2020 11:51:28 PM |           |         |              |               |        |           |  |
|-----------------------------------------------------------------------------|-----------|---------|--------------|---------------|--------|-----------|--|
| Analyte                                                                     | CAS       | CCV OUL | LCS/LCSD OUL | SURROGATE OUL | IS OUL | CLCCV OUL |  |
| PFUnA                                                                       | 2058-94-8 |         | Х            |               |        |           |  |

# Client Sample ID: SMP 8, EXP 13, IMP 3A REP A, B Lab Sample ID: 22012227910

| Method: PFAS Isotope Dilution QSM B15 Analysis Date: 12/25/2020 12:05:41 AM |           |         |              |               |        |           |
|-----------------------------------------------------------------------------|-----------|---------|--------------|---------------|--------|-----------|
| Analyte                                                                     | CAS       | CCV OUL | LCS/LCSD OUL | SURROGATE OUL | IS OUL | CLCCV OUL |
| PFUnA                                                                       | 2058-94-8 |         | Х            |               |        |           |

CCV OUL=CCV out of limits LCS/LCSD OUL=LCS/LCSD out of limits SURROGATE OUL=Surrogate out of limits IS OUL=Internal Standard out of limits CLCCV OUL=Closing CCV out of limits

# Sample Summary

| LAB ID      | Client ID                      | Matrix | Collect Date     | <b>Receive Date</b> |
|-------------|--------------------------------|--------|------------------|---------------------|
| 22012227901 | SMP 1, EXP 12C                 | Solid  | 05/27/2020 01:00 | 12/22/2020 12:00    |
| 22012227902 | SMP 2, EXP 12T                 | Solid  | 05/27/2020 02:00 | 12/22/2020 12:00    |
| 22012227903 | SMP 3, EXP 13C                 | Solid  | 06/04/2020 11:00 | 12/22/2020 12:00    |
| 22012227904 | SMP 4, EXP 13T                 | Solid  | 06/04/2020 12:00 | 12/22/2020 12:00    |
| 22012227905 | SMP 5, EXP 12, IMP 1A REP A,B  | Water  | 05/27/2020 01:00 | 12/22/2020 12:00    |
| 22012227906 | SMP 6, EXP 12, IMP 3A REP A-F  | Water  | 05/27/2020 03:00 | 12/22/2020 12:00    |
| 22012227907 | SMP 6, EXP 12, IMP 3A REP A-F- | Water  | 05/27/2020 03:00 | 12/22/2020 12:00    |
| 22012227908 | SMP 6, EXP 12, IMP 3A REP A-F- | Water  | 05/27/2020 03:00 | 12/22/2020 12:00    |
| 22012227909 | SMP 7, EXP 13, IMP 1A REP A,B  | Water  | 06/04/2020 11:00 | 12/22/2020 12:00    |
| 22012227910 | SMP 8, EXP 13, IMP 3A REP A,B  | Water  | 06/04/2020 13:00 | 12/22/2020 12:00    |

# Test Summary

| LAB ID      | Client ID                      | Matrix | Method                        |
|-------------|--------------------------------|--------|-------------------------------|
| 22012227901 | SMP 1, EXP 12C                 | Solid  | PFAS Isotope Dilution QSM B15 |
| 22012227902 | SMP 2, EXP 12T                 | Solid  | PFAS Isotope Dilution QSM B15 |
| 22012227903 | SMP 3, EXP 13C                 | Solid  | PFAS Isotope Dilution QSM B15 |
| 22012227904 | SMP 4, EXP 13T                 | Solid  | PFAS Isotope Dilution QSM B15 |
| 22012227905 | SMP 5, EXP 12, IMP 1A REP A,B  | Water  | PFAS Isotope Dilution QSM B15 |
| 22012227906 | SMP 6, EXP 12, IMP 3A REP A-F  | Water  | PFAS Isotope Dilution QSM B15 |
| 22012227907 | SMP 6, EXP 12, IMP 3A REP A-F- | Water  | PFAS Isotope Dilution QSM B15 |
| 22012227908 | SMP 6, EXP 12, IMP 3A REP A-F- | Water  | PFAS Isotope Dilution QSM B15 |
| 22012227909 | SMP 7, EXP 13, IMP 1A REP A,B  | Water  | PFAS Isotope Dilution QSM B15 |
| 22012227910 | SMP 8, EXP 13, IMP 3A REP A,B  | Water  | PFAS Isotope Dilution QSM B15 |

# Manual Integrations

Manual Integrations for LC and IC (if performed) are documented in the raw data. No other manual integrations were performed by Pace Gulf Coast.

# Detect Summary

| LAB ID              | Client ID                        | Method                       | Parameter                               | <b>Result Units</b> |
|---------------------|----------------------------------|------------------------------|-----------------------------------------|---------------------|
| 22012227901         | SMP 1, EXP 12C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorobutanesulfonic acid (PFBS)     | 529000 ug/Kg        |
| <b>22012227</b> 901 | SMP 1, EXP 12C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluoroheptanoic acid (PFHpA)         | 482000 ug/Kg        |
| <b>2201222790</b> 1 | SMP 1, EXP 12C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorohexanesulfonic acid<br>(PFHxS) | 527000 ug/Kg        |
| 22012227901         | SMP 1, EXP 12C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorononanoic acid (PFNA)           | 498000 ug/Kg        |
| <b>2201222790</b> 1 | SMP 1, EXP 12C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorooctanesulfonic acid (PFOS)     | 504000 ug/Kg        |
| <b>2201222790</b> 1 | SMP 1, EXP 12C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorooctanoic acid (PFOA)           | 530000 ug/Kg        |
| 22012227902         | SMP 2, EXP 12T                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorobutanesulfonic acid (PFBS)     | 62500 ug/Kg         |
| 22012227902         | SMP 2, EXP 12T                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorohexanesulfonic acid<br>(PFHxS) | 58500 ug/Kg         |
| 22012227902         | SMP 2, EXP 12⊺                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorooctanesulfonic acid (PFOS)     | 51900 ug/Kg         |
| 22012227903         | SMP 3, EXP 13C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorobutanesulfonic acid (PFBS)     | 712000 ug/Kg        |
| 22012227903         | SMP 3, EXP 13C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluoroheptanoic acid (PFHpA)         | 625000 ug/Kg        |
| 22012227903         | SMP 3, EXP 13C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorohexanesulfonic acid<br>(PFHxS) | 685000 ug/Kg        |
| 22012227903         | SMP 3, EXP 13C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorononanoic acid (PFNA)           | 668000 ug/Kg        |
| 22012227903         | SMP 3, EXP 13C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorooctanesulfonic acid (PFOS)     | 668000 ug/Kg        |
| 22012227903         | SMP 3, EXP 13C                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorooctanoic acid (PFOA)           | 684000 ug/Kg        |
| 22012227904         | SMP 4, EXP 13⊤                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorobutanesulfonic acid (PFBS)     | 10200 ug/Kg         |
| 22012227904         | SMP 4, EXP 13⊺                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorohexanesulfonic acid<br>(PFHxS) | 5870 ug/Kg          |
| 22012227904         | SMP 4, EXP 13⊺                   | PFAS Isotope Dil. QSM<br>B15 | Perfluorooctanesulfonic acid (PFOS)     | 7460 ug/Kg          |
| 22012227905         | SMP 5, EXP 12, IMP 1A REP<br>A,B | PFAS Isotope Dil. QSM<br>B15 | Perfluorobutanoic acid (PFBA)           | 12.7 ng/L           |
| 22012227905         | SMP 5, EXP 12, IMP 1A REP<br>A,B | PFAS Isotope Dil. QSM<br>B15 | Perfluoroheptanoic acid (PFHpA)         | 3.92J ng/L          |
| 22012227905         | SMP 5, EXP 12, IMP 1A REP<br>A,B | PFAS Isotope Dil. QSM<br>B15 | Perfluorohexanoic acid (PFHxA)          | 4.12J ng/L          |
| 22012227905         | SMP 5, EXP 12, IMP 1A REP<br>A,B | PFAS Isotope Dil. QSM<br>B15 | Perfluoropentanoic acid (PFPeA)         | 6.33J ng/L          |

# PFAS Isotope Dilution QSM B15

# Form 1B

Results

Pace Gulf Coast Report#: 220122279

Page 10 of 628

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |             |    | Client Sample ID: | SMP 1, EXP 12C     |                               |          |      |      |  |
|------------------|----------------------|-------------|----|-------------------|--------------------|-------------------------------|----------|------|------|--|
| Collect Date:    | 05/27/20 Time: 0100  |             |    | GCAL Sample ID:   | 22012227901        |                               |          |      |      |  |
| Matrix:          | Solid                | % Moisture: | NA |                   | Instrument ID:     | QQQ2                          |          |      |      |  |
| Sample Amt:      | g                    |             |    | Lab File ID:      | 2210104B_25.d      |                               |          |      |      |  |
| Injection Vol.:  | 1.0                  |             |    | (µL)              | GC Column:         | ACC-C18-30M                   | D        | 2.1  | (mm) |  |
| Prep Final Vol.: | 5000000              |             |    | (µL)              | Dilution Factor:   | 1                             | Analyst: | MRA  |      |  |
| Prep Date:       |                      |             |    |                   | Analysis Date:     | 01/04/21                      | Time:    | 2203 |      |  |
| Prep Batch:      | 70044 <b>4</b>       |             |    |                   | Analytical Batch:  | 701166                        |          |      |      |  |
| Prep Method:     | PFAS ID QSM B15 Prep |             |    |                   | Analytical Method: | PFAS Isotope Dilution QSM B15 |          |      |      |  |

CONCENTRATION UNITS: ug/kg

| CAS                        | ANALYTE                        | RESULT | Q | DL   | LOD   | LOQ   |
|----------------------------|--------------------------------|--------|---|------|-------|-------|
| 27619-97-2                 | 6:2 Fluorotelomersulfonic acid | 15200  | U | 6440 | 15200 | 37900 |
| 39108-34-4                 | 8:2 Fluorotelomersulfonic acid | 15200  | U | 9850 | 15200 | 37900 |
| 375-73-5                   | Perfluorobutanesulfonic acid   | 529000 |   | 4550 | 15200 | 37900 |
| 375-22-4                   | Perfluorobutanoic acid         | 15200  | U | 4920 | 15200 | 37900 |
| 335-76-2                   | Perfluorodecanoic acid         | 15200  | U | 4550 | 15200 | 37900 |
| 375-85-9                   | Perfluoroheptanoic acid        | 482000 |   | 4920 | 15200 | 37900 |
| 355-46 <b>-4</b>           | Perfluorohexanesulfonic acid   | 527000 |   | 5300 | 15200 | 37900 |
| 30 <b>7-</b> 24 <b>-</b> 4 | Perfluorohexanoic acid         | 15200  | U | 5680 | 15200 | 37900 |
| 375-95-1                   | Perfluorononanoic acid         | 498000 |   | 3410 | 15200 | 37900 |
| 1763-23-1                  | Perfluorooctanesulfonic acid   | 504000 |   | 6820 | 15200 | 37900 |
| 335-67-1                   | Perfluorooctanoic acid         | 530000 |   | 5680 | 15200 | 37900 |
| 2706-90-3                  | Perfluoropentanoic acid        | 15200  | U | 5680 | 15200 | 37900 |
| 2058-94-8                  | Perfluoroundecanoic acid       | 15200  | U | 5300 | 15200 | 37900 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227901 Dilution

1

ISTD/Surr

Comment MRA,QQQ2;700444

Conc

Snike

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

- Data File
- 2210104B\_25.d PFAS40Poroshell093020 (Inj Vol 2 Acq Method

Acq Date

1/4/2021 22:03

# Sample Chromatogram



Position P1-C3

# Quantitation Results

|               |                 |               |                  |                |                | 1010/0411       | Conc             | opine  |               |              |      |
|---------------|-----------------|---------------|------------------|----------------|----------------|-----------------|------------------|--------|---------------|--------------|------|
| Compound      | Response        | RT            | ISTD             | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | %Rec s | 5NR           | Symm         | MInt |
| M2PFDA        | 62826.369       | 4.149         |                  |                |                | 90.47           | 18 <b>.0942</b>  | 298    | 0.46          | 1.49         |      |
| M2PFH×A       | 177011.954      | 2,152         |                  |                |                | 91.12           | 36 <b>.449</b> 3 | 569    | 5.70          | 1.59         |      |
| M2PFOA        | 71724.746       | 3.248         |                  |                |                | 90.69           | 18.1377          | 275    | 2.45          | 1.70         |      |
| M4PFOS        | 45361.105       | 3.712         |                  |                |                | 89.74           | 1 <b>7.9</b> 474 | 256    | 3.72          | 1.52         |      |
| MPFOA         | 141.025         | 3.266         |                  |                |                | 0.00            | 12 <b>.614</b> 4 |        | 2.18          | 1.20         |      |
| M3PFBA        | 3410.942        | 0.464         |                  |                |                | 0.00            | 4.6523           | 4      | 3.67          | 1.52         |      |
| HFPO-DA       | 78.821          | 2.349         | M3HFPODA         | 767            | 2.384          | 114.65          | 0.6775           |        | 0.54          | 0.87         |      |
| 4:2 FTS       | 14.728          | 2.057         | M2 4:2 FT\$      | <b>240</b> 4   | 2.104          | 97.4 <b>0</b>   | 0.0194           |        | 0.41          | 1.51         | m    |
| 6:2 FTS       | 114 <b>.243</b> | 3.217         | M2 6:2 FTS       | 4 <b>5</b> 39  | 3.225          | 1 <b>00.</b> 41 | 0.0781           |        | 5.28          | 2.88         |      |
| ADONA         | 53.578          | 2.878         | M8PFOA           | 21353          | 3.247          | 97.28           | 0.0038           |        | 0.91          | 1.08         | m    |
| PFHpS         | 2053.307        | 3.297         | M8PFOA           | 21353          | 3.247          | 97.28           | 0.8533           | 5      | 9.53          | 1.45         |      |
| 10:2 FTS      | 25.168          | <b>5.</b> 211 | M2 8:2 FTS       | 4266           | 4.129          | 102.89          | 0.0164           |        | 2. <b>1</b> 1 | 0.69         |      |
| PFPeS         | 240.022         | 2.323         | M5P <b>FH</b> xA | 20269          | 2,151          | 97.82           | 0.1178           |        | 5.92          | 1.25         |      |
| PFODA         | 418.153         | 6.504         | M2PFHxDA         | 10 <b>0</b> 93 | 6.348          | 9 <b>0.</b> 43  | 0.3481           | 1      | 8.80          | 1.50         |      |
| NETFOSAA      | 11.688          | 4.577         | d5-NEtFOSAA      | 11 <b>0</b> 10 | 4 <b>.64</b> 1 | 101.64          | <b>D.0</b> 038   |        | 1.59          | 0.88         |      |
| PFHxDA        | 120.769         | 6.361         | M2PFHxDA         | 10093          | 6.318          | 90.13           | 0.0652           |        | 0.91          | 1.31         |      |
| NMeFOSAA      | 21.443          | 4.384         | d3-NMeFOSAA      | 7979           | 4.365          | 103.39          | 0.0065           |        | 0.44          | 0 <b>.70</b> | m    |
| PFBA          | 410.382         | 0.485         | MPEBA            | 23487          | 0.463          | 95.81           | 0.0471           |        | 2.38          | 1.40         |      |
| PFBS          | 153789.332      | 1.507         | M3PFBS           | 8636           | 1.505          | 94.36           | 69 <b>.</b> 8492 | 505    | 6.28          | 1.36         |      |
| PFDA          | 36.064          | 4.131         | M6PFDA           | 15081          | 4 <b>.149</b>  | 96.85           | 0.0103           |        | 0.19          | 0.72         |      |
| PFDoA         | 126.853         | 5.260         | MPFDoA           | 12 <b>9</b> 37 | 5.186          | 95.66           | 0.0512           | 1      | 8.47          | 0.68         |      |
| NETFOSA       | 35.051          | 5.768         | d-NEtFOSA        | 5290           | 5.694          | 8 <b>4.</b> 44  | 0.0263           |        | 0.83          | 0.68         |      |
| PFHpA         | 294849.953      | 2.798         | M4P <b>FH</b> pA | 19473          | 2.797          | 94.99           | 63.6276          | 293    | 4.19          | 1.42         |      |
| PFHxA         | 378.401         | 2.153         | M5PFHxA          | 20269          | 2.151          | 97.82           | 0.0818           | 1      | 1.23          | 1.54         |      |
| PFHxS         | 172105.304      | 2.875         | M3PFHxS          | 9119           | 2.874          | 95 <b>.</b> 50  | 69.5164          | 1253   | 0.42          | 1.23         | m    |
| PFNA          | 302898.261      | 3.679         | M9PFNA           | 20837          | 3.678          | 100.80          | 65 <b>.6</b> 776 | 19     | 1.50          | 1.52         |      |
| NETFOSE       | 22.581          | 5.767         | d9-NEtFOSE       | 8 <b>9</b> 80  | 5.682          | 91.07           | 0.0123           |        | 3.01          | 1.00         |      |
| PFOA          | 324572.800      | 3.249         | M8PFOA           | 21353          | 3.247          | 97.28           | 69.9202          | 1533   | 2.56          | 1.50         |      |
| PFOS          | 211400.533      | 3.704         | M8PFOS           | 9 <b>983</b>   | 3.702          | 96.88           | <b>66.481</b> 0  | 356    | 7.12          | 0.78         | m    |
| PFPeA         | 179.200         | 1.253         | M5PFPeA          | 16522          | 1.263          | 97.32           | 0.0340           |        | 5.78          | 1.84         |      |
| PFTA          | 76.662          | 5.946         | M2PFTA           | 9 <b>4</b> 69  | 5.954          | 100.12          | <b>0.0</b> 470   |        | 0.58          | 0.76         |      |
| PFTrDA        | 16.030          | 5.541         | MPFDoA           | 12 <b>9</b> 37 | 5.186          | 95.66           | 0.0082           |        | 0.70          | 1.17         |      |
| PFEESA        | 129.584         | 1.895         | M3PFHxS          | 91 <b>19</b>   | 2.874          | 95.50           | 0.0163           |        | 3.54          | 1.03         |      |
| <b>PFU</b> nA | 163.852         | 4.684         | M7PFUnA          | 16052          | 4.662          | 96.15           | 0.0486           |        | 4.58          | 1.13         |      |







#### PFNS



## PFDoS





#### M2PFTA






# M7PFUnA







#### NEtFOSAA



800

rijan (r:177)

400 600









#### d7-NMeFOSE











1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |             |      | Client Sample ID:  | SMP 2, EXP 12T                |               |          |      |      |
|------------------|----------------------|-------------|------|--------------------|-------------------------------|---------------|----------|------|------|
| Collect Date:    | 05/27/20             | Time:       | 0200 |                    | GCAL Sample ID:               | 22012227902   |          |      |      |
| Matrix:          | Solid                | % Moisture: | NA   |                    | Instrument ID:                | QQQ2          |          |      |      |
| Sample Amt:      | .51                  | g           |      |                    | Lab File ID:                  | 2210104B_28.0 | k        |      |      |
| Injection Vol.:  | 1.0                  |             |      | (µL)               | GC Column:                    | ACC-C18-30M   | D        | 2.1  | (mm) |
| Prep Final Vol.: | 500000               |             |      | (µL)               | Dilution Factor:              | 1             | Analyst: | MRA  |      |
| Prep Date:       |                      |             |      |                    | Analysis Date:                | 01/04/21      | Time:    | 2242 |      |
| Prep Batch:      | 70044 <b>4</b>       |             |      |                    | Analytical Batch:             | 701166        |          |      |      |
| Prep Method:     | PFAS ID QSM B15 Prep |             |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |               |          |      |      |

CONCENTRATION UNITS: ug/kg

| CAS                        | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|----------------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2                 | 6:2 Fluorotelomersulfonic acid | 1960   | U | 833  | 1960 | 4900 |
| 39108-34-4                 | 8:2 Fluorotelomersulfonic acid | 1960   | U | 1270 | 1960 | 4900 |
| 375-73-5                   | Perfluorobutanesulfonic acid   | 62500  |   | 588  | 1960 | 4900 |
| 375-22-4                   | Perfluorobutanoic acid         | 1960   | U | 637  | 1960 | 4900 |
| 335-76-2                   | Perfluorodecanoic acid         | 1960   | U | 588  | 1960 | 4900 |
| 375-85-9                   | Perfluoroheptanoic acid        | 1960   | U | 637  | 1960 | 4900 |
| 355-4 <b>6-4</b>           | Perfluorohexanesulfonic acid   | 58500  |   | 686  | 1960 | 4900 |
| 30 <b>7-</b> 24 <b>-</b> 4 | Perfluorohexanoic acid         | 1960   | U | 735  | 1960 | 4900 |
| 375-95-1                   | Perfluorononanoic acid         | 1960   | U | 441  | 1960 | 4900 |
| 1763-23-1                  | Perfluorooctanesulfonic acid   | 51900  |   | 882  | 1960 | 4900 |
| 335-67-1                   | Perfluorooctanoic acid         | 1960   | U | 735  | 1960 | 4900 |
| 2706-90-3                  | Perfluoropentanoic acid        | 1960   | U | 735  | 1960 | 4900 |
| 2058-94-8                  | Perfluoroundecanoic acid       | 1960   | U | 686  | 1960 | 4900 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227902 Dilution

Sample

1

MRA,QQQ2;700444

Comment

### Batch Data Path Last Calib Update

D:\MassHunter\Data\2210104ACAL\QuantResults\22010104A.batch.bin 1/5/2021 14:27

Samp Type

Data File

Acq Method

Acq Date

## Sample Chromatogram



PFAS40Poroshell093020 1 Inj Vol 2

2210104B\_28.d

1/4/2021 22:42

Position P1-C6

#### ISTD/Surr Spike Conc %Rec %Rec Compound Response RT ISTD ISTD Resp ISTD RT (ng/mL) SNR Symm MInt 132.28 M2PFDA 91857.886 4.149 26.4554 2262.35 1.42 126.29 245330.158 50.5170 7052.89 1.44 M2PFHxA 2.152 98408.411 124.43 24.8855 4132.05 1.50 M2PFOA 3.248 3.703 123.58 289.83 1.52 M4PFOS 62469.389 24.7164 400.833 0.00 35.8537 2.48 MPFOA 3.238 6.16 1.56 **M3PEBA** 3822.139 0 464 0.00 5.2131 86.13 2528 9,889 2.095 102.42 0.0124 1.54 1.17 4:2 FTS 2 169 M2 4:2 FTS 4716 3 226 0.0432 2.85 1 4 2 6:2 FTS 65.656 3.254 M2 6:2 FTS 104.33 1.07 35.290 23110 3.247 105.29 0.0023 0.72 ADONA 2.896 M8PFOA 25.756 4.129 108.69 0.0159 7.28 0.77 8:2 FTS 4.203 M2 8:2 FTS 4507 9CI-PE3ONS 20.245 10812 3.711 104.93 0.0020 0.47 4 1 1 8 M8PEOS 1.18 PFHpS 1932.449 3 297 M8PFOA 23110 3.247 105.29 0.7420 65.95 1.29 1.43 PFPeS 256.100 2.323 M5PFHxA 22260 2.151 107.43 0.1144 7.31 1.88 6.348 109.51 0.2514 PFODA 365.698 6.504 M2PFHxDA 12223 21.39 **NEtFOSAA** 8.419 4.819 d5-NEtFOSAA 12200 4.632 112.62 0.0024 1.11 1.50 6.318 109.51 **PFHxDA** 137.501 6.351 M2PFHxDA 12223 0.0613 1.02 1.73 **NMeFOSAA** 4.365 0.0047 2.08 14.478 4.171 d3-NMeFOSAA 7421 96.16 1.13 PFBA 449.246 0.466**MPFBA** 25048 0.463 102.17 0.0483 15.26 1.801.505 10378.09 PEBS 149560.589 1.497 M3PFBS 9203 100.55 63,7435 1.50 PFDA 195.300 4.141 M6PFDA 16770 4.139 107.71 0.0501 INF 0.69 0**.9**3 **PFD**oA 7.327 5.150 **MPFDoA** 1**44**16 5.186 106.59 0.0027 0.82 5.684 1.37 **NEtFOSA** 21.164 5.778 d-NEtFOSA 6476 103.37 0.0130 0.55 2.797 0.70 PFHpA 185.391 2.826 M4PFHpA 22006 107.35 0.0354 0.47 PFHxA 475.726 2.162 M5PFHxA 22260 2.151 107.43 0.0937 2.32 0.88 PFHxS 154769.838 2.875 M3PFH<sub>x</sub>S 9552 2.874 100.05 59.6768 INF 1.35 m PFNA 266.095 3.707 M9PFNA 22065 3.669 106.74 0.0545 INF 1.06 PFOA 349.110 3.249 M8PFOA 23110 3.247 105.29 0.0695 2.41 1.04 PFOS 182318.408 3.704 M8PFOS 10812 3.711 104.93 52.9383 957.85 1.37 m PFPeA 276.022 1.253 M5PFPeA 17413 1.248 102.57 0.0496 1.71 1.47 m PFTA 53.556 5.957 **M2PFTA** 10023 5.954 105.97 0.0310 1.73 0.70 РЕМВА 28.628 1.529 M5PFHxA 22260 2.151 107.43 0.0052 1.75 1.64 **PFTrDA** 92.763 5.653 MPFDoA 14416 5.186 106.59 0.0425 0.22 1.00 PFEESA 143.894 1.886 M3PFH<sub>x</sub>S 9552 2.874 100.05 0.0172 0.74 1.02 **PFUnA** 127.815 4.729 M7PFUnA 18092 4.662 108.36 0.0336 3.11 1.51 NFDHA 29.239 2.009 M4PFHpA 22006 2.797 107.35 0.0067 0.32 1.59



Z,6 Z,7 Z,8 Acquisition time (mi

4,5

4,6 4,7 4,8 Acquisition Line (min)

4,5

a60 a80 Mass-lo-Charge (m/z)

a13





PFDoS













# M7PFUnA







#### **NEtFOSAA**



rijan (r:177)



d-NMeFOSA





#### d7-NMeFOSE







1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |             |               |                    | Client Sample ID:             | SMP 3, EXP 13 | BC       |      |      |
|------------------|----------------------|-------------|---------------|--------------------|-------------------------------|---------------|----------|------|------|
| Collect Date:    | 06/04/20             | Time:       | 1 <b>10</b> 0 |                    | GCAL Sample ID:               | 22012227903   |          |      |      |
| Matrix:          | Solid                | % Moisture: | NA            |                    | Instrument ID:                | QQQ2          |          |      |      |
| Sample Amt:      | .73                  | g           |               |                    | Lab File ID:                  | 2210104B_32.d | k        |      |      |
| Injection Vol.:  | 1.0                  |             |               | (µL)               | GC Column:                    | ACC-C18-30M   | D        | 2.1  | (mm) |
| Prep Final Vol.: | 5000000              |             |               | (µL)               | Dilution Factor:              | 1             | Analyst: | MRA  |      |
| Prep Date:       |                      |             |               |                    | Analysis Date:                | 01/04/21      | Time:    | 2334 |      |
| Prep Batch:      | 70044 <b>4</b>       |             |               |                    | Analytical Batch:             | 701166        |          |      |      |
| Prep Method:     | PFAS ID QSM B15 Prep |             |               | Analytical Method: | PFAS Isotope Dilution QSM B15 |               |          |      |      |

CONCENTRATION UNITS: ug/kg

| CAS               | ANALYTE                        | RESULT         | Q | DL           | LOD   | LOQ   |
|-------------------|--------------------------------|----------------|---|--------------|-------|-------|
| 27619-97-2        | 6:2 Fluorotelomersulfonic acid | 13700          | U | 5820         | 13700 | 34200 |
| 39108-34-4        | 8:2 Fluorotelomersulfonic acid | 13700          | U | 8900         | 13700 | 34200 |
| 375-73-5          | Perfluorobutanesulfonic acid   | 712000         |   | <b>41</b> 10 | 13700 | 34200 |
| 375-22-4          | Perfluorobutanoic acid         | 13700          | U | 4450         | 13700 | 34200 |
| 335-76-2          | Perfluorodecanoic acid         | 13700          | U | <b>4</b> 110 | 13700 | 34200 |
| 375-85-9          | Perfluoroheptanoic acid        | 625000         |   | 4450         | 13700 | 34200 |
| 355-4 <b>6-4</b>  | Perfluorohexanesulfonic acid   | 685000         |   | 4790         | 13700 | 34200 |
| 307-24-4          | Perfluorohexanoic acid         | 13 <b>7</b> 00 | U | 5140         | 13700 | 34200 |
| 375-95-1          | Perfluorononanoic acid         | 668000         |   | 3080         | 13700 | 34200 |
| 1763-23 <b>-1</b> | Perfluorooctanesulfonic acid   | 668000         |   | 6160         | 13700 | 34200 |
| 335-67-1          | Perfluorooctanoic acid         | 684000         |   | 5140         | 13700 | 34200 |
| 2706-90-3         | Perfluoropentanoic acid        | 13700          | U | 5140         | 13700 | 34200 |
| 2058-94-8         | Perfluoroundecanoic acid       | 13700          | U | 4790         | 13700 | 34200 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227903 Dilution

1

Comment MRA,QQQ2;700444

### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

- Data File
- 2210104B\_32.d PFAS40Poroshell093020 (Inj Vol 2 Acq Method 1/4/2021 23:34

Acq Date

Sample Chromatogram



Position P1-D1

#### Quantitation Results

|             |                |                |                          |                |                | ISTD/Suff       | Conc                     | Spike |               |              |      |
|-------------|----------------|----------------|--------------------------|----------------|----------------|-----------------|--------------------------|-------|---------------|--------------|------|
| Compound    | Response       | RT             | ISTD                     | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)                  | %Rec  | SNR           | Symm         | MInt |
| M2PFDA      | 74222.332      | 4.149          |                          |                |                | 106.88          | 21.3763                  |       | 3832.11       | 1.66         |      |
| M2PFHxA     | 205683.624     | 2,152          |                          |                |                | 105.88          | 42.3532                  |       | 8832.02       | 1.44         |      |
| M2PFOA      | 83600.611      | 3.248          |                          |                |                | 105.70          | <b>21.</b> 14 <b>0</b> 9 |       | 3934.06       | 1.70         |      |
| M4PFOS      | 50580.101      | 3.703          |                          |                |                | 100.06          | 20.0124                  |       | 3202.15       | 1.60         |      |
| MPFOA       | 496.132        | 3.266          |                          |                |                | 0.00            | 44.3779                  |       | 1.88          | 2.39         |      |
| M3PFBA      | 3953.945       | 0.464          |                          |                |                | 0.00            | 5.3929                   |       | 39.27         | 1.56         |      |
| HFPO-DA     | 182.928        | 2.322          | M3HFPODA                 | 610            | 2.393          | 91.22           | 1.9762                   |       | 3.05          | 1.22         |      |
| 4:2 FT\$    | 22.722         | 2.095          | M2 4:2 FTS               | 2864           | 2.104          | 1 <b>16.</b> 07 | 0.0251                   |       | 1.94          | 1.34         |      |
| 6:2 FTS     | 77.460         | 3.226          | M2 6:2 FTS               | 4603           | 3.225          | 101.83          | 0.0522                   |       | 3.60          | 2.63         |      |
| ADONA       | 90.765         | 2.924          | M8PFOA                   | 22887          | 3.247          | 104.28          | 0.0059                   |       | 1. <b>1</b> 6 | 1.06         |      |
| 8:2 FTS     | 26.399         | 4.212          | M2 8:2 FTS               | 4474           | 4.138          | 107.91          | 0.0164                   |       | 0.97          | 0.75         |      |
| FOSA        | 24.923         | 4.326          | M8FOSA                   | 13971          | 4.335          | 103.56          | 0.0065                   |       | 5.54          | 2.83         |      |
| 9CI-PF3ONS  | 45,198         | 3.970          | M8PFO\$                  | 10556          | <b>3</b> ,711  | 102.44          | 0.0045                   |       | 1.86          | 1.61         |      |
| PFDS        | 29.504         | 4.676          | M6PFDA                   | 1 <b>648</b> 4 | 4.14 <b>9</b>  | 105.87          | 0.0110                   |       | 5.34          | 3.87         |      |
| 110-PF30UdS | 87.73 <b>7</b> | 4.998          | M8PFOS                   | 10556          | 3.711          | 102.44          | 0.0092                   |       | 1.95          | 1.28         |      |
| PFHpS       | 3137.846       | 3.297          | M8PFOA                   | 22887          | 3.217          | 10 <b>1.28</b>  | 1.2166                   |       | <b>1</b> 6.81 | 1.33         |      |
| PFNS        | 25.101         | 4.200          | M9PFNA                   | 21084          | 3.678          | 101.99          | 0.0094                   |       | 2.00          | 1.10         |      |
| PFPeS       | 330.296        | 2.314          | M5PFH×A                  | 21649          | 2.151          | 104.48          | 0.1517                   |       | 4.35          | 1.58         |      |
| PFÓDA       | 416.020        | 6.514          | M2PFHxDA                 | 10756          | 6.358          | <b>96.3</b> 7   | 0.3250                   |       | 9.44          | 1 <b>.40</b> |      |
| NETFOSAA    | 3.756          | 4.689          | d5-NEtFOSAA              | 12 <b>0</b> 04 | 4. <b>6</b> 41 | 1 <b>10.8</b> 1 | 0.0011                   |       | 0.32          | 1.62         | m    |
| PFHxDA      | 88.369         | 6.351          | M2PFHxDA                 | 10 <b>7</b> 56 | 6.358          | 96.37           | 0.0447                   |       | 3.63          | 1.38         |      |
| NMeFOSAA    | 15.66 <b>4</b> | 4.384          | d3-NMeFOSAA              | 8434           | 4.374          | 109.28          | 0.0045                   |       | 0.45          | 1.27         | m    |
| PFBA        | 439.092        | 0.466          | MPFBA                    | 24808          | 0.463          | 101.19          | 0.0477                   |       | 3.48          | 1.56         |      |
| PFB\$       | 234985.850     | 1.497          | M3PFB\$                  | 8865           | 1.505          | 96.86           | <b>103.9</b> 670         |       | 4568.95       | 1.50         |      |
| NMeFOSA     | 15.891         | 5.364          | d-NMeF05A                | 6 <b>0</b> 47  | 5.363          | 100.56          | 0.0127                   |       | 0.12          | 0.79         |      |
| PFDA        | 293.190        | 4.196          | M6PFDA                   | 16484          | 4.149          | 105.87          | 0.0766                   |       | 5.69          | 0.62         |      |
| PFDoA       | 45.925         | 5.205          | MPFDoA                   | 15185          | 5.186          | 112.28          | 0.0158                   |       | 2.90          | 0.83         |      |
| PFHpA       | 455341.232     | 2,798          | M4P <b>FH</b> pA         | 20960          | 2.797          | 102.24          | 91.2886                  |       | 10611.22      | 1.42         |      |
| PFHxA       | 318.924        | 2.153          | M5PFHxA                  | 21649          | 2.151          | 104.48          | 0.0646                   |       | 9.71          | 1.80         |      |
| PFHxS       | 261442.293     | 2.875          | M3PFHxS                  | 9632           | 2.874          | 100.88          | 99 <b>.9</b> 740         |       | 11565.17      | 1.23         | m    |
| PFNA        | 455431.676     | 3.679          | M9PFNA                   | 21084          | 3.678          | 101.99          | 97.5962                  |       | 11891.44      | 1.52         |      |
| PFOA        | 496883.005     | 3.249          | M8PFOA                   | 22887          | 3.247          | 10 <b>4.28</b>  | 99.8632                  |       | 22072.22      | 1.50         |      |
| PFOS        | 328084.435     | 3.704          | M8PFOS                   | 10 <b>5</b> 56 | 3.711          | 102.44          | 97.5745                  |       | 567.14        | 0.78         | m    |
| PFPeA       | 287.712        | 1.253          | M5PFPeA                  | 17767          | 1.248          | 104.66          | 0.0507                   |       | 6.17          | 1.46         |      |
| PFTA        | 18.714         | 5.927          | M2PFTA                   | 101 <b>6</b> 4 | 5.954          | 1 <b>07.</b> 47 | 0.0107                   |       | 1.15          | 2.55         |      |
| PFMBA       | 25.957         | 1.538          | M5PFHxA                  | 21649          | 2.151          | 10 <b>4.</b> 48 | 0.0048                   |       | 1.72          | 0.89         |      |
| PFEESA      | 245.733        | 1.8 <b>7</b> 6 | M3PFHxS                  | 9632           | 2.874          | 100.88          | 0.0292                   |       | 9.27          | 1.02         |      |
| PFUnA       | 301.753        | 4.656          | M7PFUnA                  | 18546          | 4. <b>67</b> 2 | 111.08          | 0.0774                   |       | 3.15          | 1.22         |      |
| NFDHA       | 24,726         | 2.018          | M4P <b>FH</b> p <b>A</b> | 20960          | 2,797          | 102.24          | 0.0060                   |       | 0.27          | 0.85         |      |



Z,8 Z,7 Z,8 Acquisition Lime (mi

4,5

4,6 4,7 4,8 Acquisition Line (min)

4,5

a60 a80 Mass-lo-Charge (m/z)

a13



PFDoS





### M2PFTA







# M7PFUnA





#### NEtFOSAA





# d-NMeFOSA



Acquisi kin Time (min)



# PFHxS



#### d7-NMeFOSE





5,8

5,9

ę

Acquisilion time (mi

a,a

eco 🛦

thange (m/z)



1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |                 |      | Client Sample ID:  | SMP 4, EXP 13T                |          |      |      |
|------------------|----------------------|-----------------|------|--------------------|-------------------------------|----------|------|------|
| Collect Date:    | <u>06/04/20</u> T    | me: <u>1200</u> |      | GCAL Sample ID:    | 22012227904                   |          |      |      |
| Matrix:          | Solid % Mois         | ure: NA         |      | Instrument ID:     | QQQ2                          |          |      |      |
| Sample Amt:      | <u>.57 g</u>         |                 |      | Lab File ID:       | 2210104B_35.d                 | d        |      |      |
| Injection Vol.:  | 1.0                  |                 | (µL) | GC Column:         | ACC-C18-30M                   | D        | 2.1  | (mm) |
| Prep Final Vol.: | 1000                 |                 | (µ∟) | Dilution Factor:   | 50                            | Analyst: | MRA  |      |
| Prep Date:       |                      |                 |      | Analysis Date:     | 01/05/21                      | Time:    | 0013 |      |
| Prep Batch:      | 70044 <b>4</b>       |                 |      | Analytical Batch:  | 701166                        |          |      |      |
| Prep Method:     | PFAS ID QSM B15 Prep |                 |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |          |      |      |

CONCENTRATION UNITS: ug/kg

| CAS               | ANALYTE                        | RESULT | Q | DL          | LOD | LOQ |
|-------------------|--------------------------------|--------|---|-------------|-----|-----|
| 27619-97-2        | 6:2 Fluorotelomersulfonic acid | 175    | U | 74.6        | 175 | 439 |
| 39108-34-4        | 8:2 Fluorotelomersulfonic acid | 175    | U | <b>1</b> 14 | 175 | 439 |
| 375-73-5          | Perfluorobutanesulfonic acid   | 10200  |   | 52.6        | 175 | 439 |
| 375-22-4          | Perfluorobutanoic acid         | 175    | U | 57.0        | 175 | 439 |
| 335-76-2          | Perfluorodecanoic acid         | 175    | U | 52.6        | 175 | 439 |
| 375-85-9          | Perfluoroheptanoic acid        | 175    | U | 57.0        | 175 | 439 |
| 355-46-4          | Perfluorohexanesulfonic acid   | 5870   |   | 61.4        | 175 | 439 |
| 307-24-4          | Perfluorohexanoic acid         | 175    | U | 65.8        | 175 | 439 |
| 375-95-1          | Perfluorononanoic acid         | 175    | U | 39.5        | 175 | 439 |
| 1763-23 <b>-1</b> | Perfluorooctanesulfonic acid   | 7460   |   | 78.9        | 175 | 439 |
| 335-67-1          | Perfluorooctanoic acid         | 175    | U | 65.8        | 175 | 439 |
| 2706-90-3         | Perfluoropentanoic acid        | 175    | U | 65.8        | 175 | 439 |
| 2058-94-8         | Perfluoroundecanoic acid       | 175    | U | 61.4        | 175 | 439 |

# **Quantitative Analysis Sample Report**

### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Data File

Acq Method Acq Date

- HCH RV \* XIO 4-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 50-\* 5



Samp Name 22012227904 Dilution Samp Type Sample

Comment MRA,QQQ2;700444

50

# Quantitation Results

| Compound     | Response   | RT             | ISTD             | ISTD Resp   | I <b>STD R</b> T | ISTD/Surr<br>%Rec | Conc<br>(ng/mL)          | Spike<br>%Rec | SNR            | Symm         | MInt |
|--------------|------------|----------------|------------------|-------------|------------------|-------------------|--------------------------|---------------|----------------|--------------|------|
| M2PFDA       | 71318.596  | 4.158          |                  |             |                  | 102.70            | 20.5400                  |               | INF            | 1.42         |      |
| M2PFHxA      | 197172.059 | 2 <u>.</u> 152 |                  |             |                  | 101.50            | 40.6006                  | 72            | 88.53          | 1.36         |      |
| M2PFOA       | 79103.650  | 3.248          |                  |             |                  | 100.02            | 20.0037                  | 2             | 59.60          | 1.70         |      |
| M4PFOS       | 48868.838  | 3.712          |                  |             |                  | 96.68             | 19.3353                  | 55            | 26.48          | 1.52         |      |
| MPFOA        | 59.888     | 3.248          |                  |             |                  | 0.00              | 5.3568                   |               | 2.53           | 2.45         |      |
| M3PFBA       | 53.618     | 0.492          |                  |             |                  | 0.00              | 0.0731                   |               | 1.59           | 1.75         |      |
| HFPO-DA      | 57.575     | 2.504          | M3HFPODA         | 276         | 2.348            | 41.18             | 1.3779                   |               | 1.07           | 0.92         |      |
| 6:2 FTS      | 48.002     | 3.226          | M2 6:2 FTS       | 134         | 3.235            | 2.97              | 1.1093                   |               | <b>2</b> .44   | 1.25         |      |
| ADONA        | 77.008     | 2.841          | <b>M8PFOA</b>    | 479         | 3.247            | 2.18              | 0.2408                   |               | 0.37           | 1.63         |      |
| 8:2 FTS      | 22.353     | 4.166          | M2 8:2 FTS       | 57          | 4.138            | 1.37              | 1.0945                   |               | 2.23           | 1.50         |      |
| 11CI-PF3OUdS | 14.816     | 4.989          | M8PFOS           | 185         | 3.711            | 1.79              | 0.0887                   |               | 1.35           | 0.92         |      |
| PFHpS        | 2634.915   | 3.297          | M8PFOA           | 479         | 3.247            | 2.18              | 48.7721                  |               | 43.03          | 1.29         |      |
| PFDo\$       | 13,750     | 5.632          | M8PFOS           | 185         | <b>3</b> ,711    | 1.79              | 0.2467                   |               | 1.31           | 1.28         |      |
| PFPeS        | 283.064    | 2.323          | M5PFHxA          | 352         | 2.142            | 1.7 <b>0</b>      | 8 <b>.0</b> 019          |               | 8.01           | 1.12         |      |
| PFODA        | 414.670    | 6.504          | M2PFHxDA         | 230         | 6.339            | 2.06              | 15.1475                  |               | 1 <b>7.1</b> 5 | 1.63         |      |
| NETFOSAA     | 3.218      | 4.716          | d5-NEtFOSAA      | 118         | 1.632            | 3.86              | 0.0272                   |               | 0.26           | 0.73         | m    |
| PFHxDA       | 476.197    | 6.510          | M2PFHxDA         | 230         | 6.33 <b>9</b>    | 2.06              | 1 <b>1.</b> 2735         |               | 11.79          | 1.30         |      |
| NMeFOSAA     | 45.109     | 4.422          | d3-NMeFOSAA      | 174         | 4.374            | 2.26              | 0.6296                   |               | 6.18           | 3.78         |      |
| PFBA         | 631.895    | 0.466          | MPFBA            | 451         | 0.453            | 1.84              | 3.7774                   |               | INF            | 1.21         |      |
| PFBS         | 208054.102 | 1.497          | M3PFBS           | 140         | 1.505            | 1.53              | 5814 <b>.4907</b>        | 122           | 70.86          | 1.50         |      |
| NMeFOSA      | 22.956     | 5.456          | d-NMeFOSA        |             |                  | 100.00            |                          |               | 2.26           | 1.62         |      |
| PFDoA        | 85.331     | 5.233          | MPFD0A           | 248         | 5.195            | 1.84              | 1.7958                   |               | 1.54           | 1.86         |      |
| NEtFOSA      | 14.860     | 5.933          | d-NEtFOSA        |             |                  | 100.00            |                          |               | 1.15           | 0.50         |      |
| PFHpA        | 116.470    | 2,798          | M4P <b>FH</b> pA | 369         | 2.797            | 1.80              | 1.3274                   |               | 0.67           | 1.25         |      |
| PFHxA        | 381.559    | 2.153          | M5PFHxA          | 352         | 2.142            | 1.70              | 4.7536                   |               | <b>5.1</b> 7   | 1 <b>.60</b> |      |
| PFHxS        | 215661.467 | 2.866          | M3PFHxS          | 237         | 2.87 <b>4</b>    | 2.49              | 3345.8730                |               | INF            | 0.97         | m    |
| PFNA         | 220.888    | 3.688          | M9PFNA           | 469         | 3.687            | 2.27              | 2.12 <b>9</b> 6          |               | 0.90           | 1.20         | m    |
| PFOA         | 513.194    | 3.259          | M8PFOA           | 479         | 3.247            | 2.18              | 4.9242                   |               | 7.90           | 0.76         | m    |
| PFOS         | 250274.631 | 3.713          | M8PFOS           | 185         | 3.711            | 1.79              | 4249.4261                |               | INF            | 1.26         | m    |
| PFPeA        | 95.838     | 1.265          | M5PFPeA          | 281         | 1.239            | 1.66              | 1.0669                   |               | 0.39           | 1.46         |      |
| PFTA         | 26.725     | 6.021          | M2PFTA           | 220         | 5.944            | 2.33              | 0.7046                   |               | 0.53           | 0.66         |      |
| PFTrDA       | 19.177     | 5.652          | MPFDoA           | 248         | 5.195            | 1.84              | 0.5105                   |               | 1.32           | 0.92         |      |
| PFEESA       | 205.966    | 1.876          | M3PFHxS          | 23 <b>7</b> | 2.874            | 2.49              | 0.9925                   |               | 3.96           | 0.94         |      |
| PFUnA        | 11.186     | 4.581          | M7PFUnA          | 322         | 4.672            | 1.93              | 0.1654                   |               | 0.69           | 0.69         |      |
| NFDHA        | 27.010     | 1.917          | M4PFHpA          | 369         | 2.797            | 1.80              | 0 <b>.</b> 37 <b>0</b> 6 |               | 2.28           | 0.73         |      |



d5-NEtFOSAA







#### PFNS



# PFDoS





# M2PFTA



QPace Cliff Coast Report#: 220922279



# M6PFDA



# M7PFUnA





### MPFDoA



# **PFODA**



# **NEtFOSAA**



-Charge (r1/2)




5,6

5,3 5,4 5,5 5,6 Acquisi kin Time (min)

5.2

,3 5,4 5,5 5,1 Acquisition time (mi

5 a,3 200 400 600 Mass-Io-Charge (m/z)



5,9

e

6,1 5,9 È 6,1 Acquisilion time (mi

5,8

5,9 6 8,1 Aquisi kin Line (min)

5,8

4C0 Mass-In-O

eco 🛦

thange (m/z)



1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |                 |  |                 | Client Sample ID:  | SMP 5, EXP 12, IMP 1A REP A,B |          |      |      |  |
|------------------|----------------------|-----------------|--|-----------------|--------------------|-------------------------------|----------|------|------|--|
| Collect Date:    | 05/27/20 Time: 0100  |                 |  | GCAL Sample ID: | 22012227905        |                               |          |      |      |  |
| Matrix:          | Water                | r% Moisture: NA |  |                 | Instrument ID:     | QQQ1                          |          |      |      |  |
| Sample Amt:      | 125                  | mL              |  |                 | Lab File ID:       | 2201224A_44.0                 | d        |      |      |  |
| Injection Vol.:  | 1.0                  |                 |  | (µ∟)            | GC Column:         | ACC-C18-30M                   | D        | 2.1  | (mm) |  |
| Prep Final Vol.: | 1000                 |                 |  | (µ∟)            | Dilution Factor:   | 1                             | Analyst: | MRA  |      |  |
| Prep Date:       |                      |                 |  |                 | Analysis Date:     | 12/24/20                      | Time:    | 2253 |      |  |
| Prep Batch:      | 700361               |                 |  |                 | Analytical Batch:  | 700789                        |          |      |      |  |
| Prep Method:     | PFAS ID QSM B15 Prep |                 |  |                 | Analytical Method: | PFAS Isotope Dilution QSM B15 |          |      |      |  |

CONCENTRATION UNITS: ng/L

| CAS              | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2       | 6:2 Fluorotelomersulfonic acid | 4.00   | U | 1.79 | 4.00 | 10.0 |
| 39108-34-4       | 8:2 Fluorotelomersulfonic acid | 4.00   | U | 1.63 | 4.00 | 10.0 |
| 375-73-5         | Perfluorobutanesulfonic acid   | 4.00   | U | 1.47 | 4.00 | 10.0 |
| 375-22-4         | Perfluorobutanoic acid         | 12.7   |   | 2.13 | 4.00 | 10.0 |
| 335-76-2         | Perfluorodecanoic acid         | 4.00   | U | 1.65 | 4.00 | 10.0 |
| 375-85-9         | Perfluoroheptanoic acid        | 3.92   | J | 1.85 | 4.00 | 10.0 |
| 355-46 <b>-4</b> | Perfluorohexanesulfonic acid   | 4.00   | U | 1.64 | 4.00 | 10.0 |
| 307-24-4         | Perfluorohexanoic acid         | 4.12   | J | 1.94 | 4.00 | 10.0 |
| 375-95-1         | Perfluorononanoic acid         | 4.00   | U | 1.68 | 4.00 | 10.0 |
| 1763-23-1        | Perfluorooctanesulfonic acid   | 4.00   | U | 1.70 | 4.00 | 10.0 |
| 335-67-1         | Perfluorooctanoic acid         | 4.00   | U | 1.80 | 4.00 | 10.0 |
| 2706-90-3        | Perfluoropentanoic acid        | 6.33   | J | 2.35 | 4.00 | 10.0 |
| 2058-94-8        | Perfluoroundecanoic acid       | 4.00   | U | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227905 Dilution

1

Comment MRA,QQQ1;700361

## **Batch Data Path** Last Calib Update

 $D:\ MassHunter\ Data\ 2201224 A CAL\ Quant Results\ 2201224 A. batch. bin$ 12/24/2020 15:17

Samp Type Sample

Data File 2201224A\_44.d PFASWiscExpan.m Acq Method 12/24/2020 22:53 Acq Date





Position Vial 37

Inj Vol 2

## Quantitation Results

|              |                  |       |             |                       |                | 15TD/Surr       | Conc                     | Spike |               |              |      |
|--------------|------------------|-------|-------------|-----------------------|----------------|-----------------|--------------------------|-------|---------------|--------------|------|
| Compound     | Response         | RT    | ISTD        | ISTD Resp             | ISTD RT        | %Rec            | (ng/mL)                  | %Rec  | SNR           | Symm         | MInt |
| M2PFDA       | 228055.183       | 5.186 |             |                       |                | 133.28          | 26.6557                  |       | 12335.70      | 1 <b>.86</b> |      |
| M2PFHxA      | 370802.356       | 3.491 |             |                       |                | 139.09          | 55.6378                  |       | 3929.80       | 1.97         |      |
| M2PFOA       | 173123.137       | 4.499 |             |                       |                | 137.02          | 27.4045                  |       | 21785.63      | 1.84         |      |
| M4PFOS       | 65325.771        | 4.893 |             |                       |                | 134.22          | <b>26.8</b> 4 <b>4</b> 6 |       | 5000.88       | 1.29         |      |
| M3PFBA       | 6908.793         | 0.503 |             |                       |                | 0.00            | <b>5.</b> 3764           |       | 195.69        | 1.78         |      |
| MPFOA        | 560.339          | 4.499 |             |                       |                | 0.00            | 27.5023                  |       | 9.04          | 1 <b>.79</b> |      |
| HFPQ-DA      | 0.000            | 3.589 | M3HFPODA    | 3023                  | 3.693          | 103.08          |                          |       | 3.83          | 1.00         | m    |
| 4:2 FTS      | 104.371          | 3.458 | M2 4:2 FTS  | 12117                 | 3.458          | 109.42          | 0.0220                   |       | 2.59          | 1.61         |      |
| 6:2 FTS      | 544.677          | 4.477 | M2 6:2 FTS  | 22747                 | 4.487          | 103.67          | 0.0693                   |       | 15.05         | 1.70         |      |
| ADONA        | 232.570          | 4.148 | M8PFOA      | 23675                 | 4.499          | 1 <b>12.</b> 87 | 0.0112                   |       | 9.33          | 0.65         | m    |
| 8:2 FTS      | 132.596          | 5.175 | M2 8:2 FTS  | 10753                 | 5.185          | 10 <b>4.</b> 42 | 0.0186                   |       | 4.76          | 1 <b>.74</b> |      |
| FOSA         | 139.236          | 5.293 | M8FOSA      | 23656                 | 5.291          | 107.52          | 0.0126                   |       | 112.67        | 1.19         |      |
| 9CI-PF3ONS   | 352.074          | 5.080 | M8PFOS      | 5639                  | 4,893          | 119.67          | 0.0064                   |       | 15.20         | 1.23         |      |
| PFDS         | 11.421           | 5.525 | M6PFDA      | 36535                 | 5.186          | 1 <b>18.2</b> 1 | 0.0059                   |       | 6.54          | 1.08         |      |
| 11CI-PF3OUdS | 122.119          | 5.658 | M8PFOS      | 5 <del>6</del> 39     | 4.893          | 1 <b>19.6</b> 7 | 0.0097                   |       | 30.80         | 0.89         |      |
| PFHpS        | 71.203           | 4.529 | M8PFOA      | 23675                 | 1.199          | 112.87          | 0.0198                   |       | 5.91          | 1.21         |      |
| 10:2 FTS     | 102.770          | 5.827 | M2 8:2 FTS  | 10753                 | 5.185          | 10 <b>4.</b> 42 | 0.0304                   |       | 1.69          | 1.68         |      |
| PFNS         | 10.397           | 5.215 | M9PFNA      | 28 <b>5</b> 74        | 4.863          | 107.30          | 0.0066                   |       | 1.38          | 1.01         |      |
| PFDoS        | 44.54 <b>0</b>   | 6.179 | M8PFOS      | 5639                  | 4,893          | 119.67          | 0.0160                   |       | 3.99          | 1.58         |      |
| PFPeS        | 33.595           | 3.647 | M5PFHxA     | <b>3049</b> 4         | 3.490          | 113.52          | 0.0102                   |       | 1. <b>1</b> 3 | 1.47         |      |
| PFODA        | 158 <b>.777</b>  | 8.216 | M2PFHxDA    | 311 <b>4</b> 2        | 7.585          | 92.04           | 0.0455                   |       | 6.15          | 1.75         |      |
| NETFOSAA     | 94.032           | 5.495 | d5-NEtFOSAA | 13693                 | 5.484          | 109.04          | 0.0245                   |       | 10.97         | 1.06         |      |
| PFHxDA       | 363.590          | 7.589 | M2PFHxDA    | 31142                 | 7.585          | 92.04           | 0.1198                   |       | 1.69          | 1.40         |      |
| NMeF0\$AA    | 21.899           | 5.339 | d3-NMeFOSAA | 11585                 | 5.328          | 121.58          | 0.0058                   |       | 12.96         | 1.21         |      |
| PFBA         | 16494.992        | 0.505 | MPFBA       | 40301                 | 0.511          | 114.05          | 1.5877                   |       | 203.62        | 1.67         |      |
| PFBS         | <b>39.37</b> 1   | 2.485 | M3PFBS      | 16 <b>04</b> 0        | 2. <b>4</b> 83 | 135.98          | 0.0080                   |       | 2.49          | 1.11         |      |
| NMeFOSA      | 87.56 <b>0</b>   | 6.000 | d-NMcFOSA   | 15498                 | 5.927          | 92.19           | 0.0607                   |       | 2.66          | 2.14         |      |
| PFDA         | 418.082          | 5,187 | M6PFDA      | 36535                 | 5.186          | 1 <b>18.2</b> 1 | 0.0379                   |       | 8.13          | 2.65         |      |
| PFDoA        | 94.351           | 5.849 | MPFDoA      | 39655                 | 5.818          | 105.32          | 0.0115                   |       | 7.06          | 0.60         |      |
| NETFOSA      | 27.116           | 6.237 | d-NEtFOSA   | 10722                 | 6.21 <b>6</b>  | 90.35           | 0.0184                   |       | 3.50          | 1.46         |      |
| PFHpA        | 4117.960         | 4.067 | M4PFHpA     | 41172                 | 4.067          | 1 <b>16.</b> 67 | 0.4896                   |       | 72.05         | 1.63         |      |
| PFHxA        | 413 <b>9.899</b> | 3.493 | M5PFHxA     | 30494                 | 3.490          | 113.52          | 0.5145                   |       | 84.26         | 1.96         |      |
| NMeFOSE      | 20.706           | 5.922 | d7-NMeFOSE  | 25463                 | 5.943          | 109.44          | 0.0078                   |       | 2.41          | 1.57         |      |
| PFI IxS      | 178.862          | 4.137 | M3PFI IxS   | 11042                 | 4.136          | 110.58          | 0.0362                   |       | 14.72         | 1.19         | m    |
| PFNA         | 325.649          | 4.864 | M9PFNA      | <b>285</b> 74         | 4.863          | 10 <b>7.30</b>  | 0.0366                   |       | 2.93          | 1.78         |      |
| NETFOSE      | 7.504            | 6.130 | d9-NEtFOSE  | 22384                 | 6.223          | 1 <b>07.6</b> 7 | 0.0030                   |       | 1.03          | 0.88         |      |
| PFOA         | 963.661          | 4.500 | M8PFOA      | 23675                 | 4.499          | 112.87          | 0.1444                   |       | 16.20         | 2.23         | m    |
| PFOS         | 444.621          | 4.894 | M&PFOS      | 5639                  | 4.893          | 119.67          | 0.0866                   |       | 29.91         | 1.43         | m    |
| PFPeA        | 3395.807         | 1.637 | M5PFPeA     | 18245                 | 1.635          | 108.51          | 0 <b>.7</b> 916          |       | 28,27         | 1.35         |      |
| PFMPA        | 87.423           | 0.786 | M5PFPeA     | 18245                 | 1.635          | 108.51          | 0.0211                   |       | 3.25          | 0.95         |      |
| PFTA         | 198.257          | 6.614 | M2PFTA      | 3175 <b>1</b>         | <b>6.6</b> 13  | 99 <b>.</b> 90  | 0.0352                   |       | 13.76         | 2.63         |      |
| PFMBA        | 72. <b>4</b> 06  | 2.541 | M5PFHxA     | 30494                 | 3.490          | 113.52          | 0.0175                   |       | 2.79          | 0.72         |      |
| PFTrDA       | 333.971          | 6.201 | MPFDoA      | 39655                 | 5.818          | 105.32          | 0.0393                   |       | 2.42          | 0.65         |      |
| PFEESA       | 111.695          | 3.253 | M3PFHxS     | 11 <b>0</b> 42        | 4.136          | 110.58          | 0.0110                   |       | INF           | 1.21         |      |
| PFUnA        | 293.626          | 5.496 | M7PFUnA     | 5814 <b>3</b>         | 5.496          | 1 <b>10.80</b>  | 0.0236                   |       | 4.75          | 1.12         |      |
| NFDHA        | 42.965           | 3.372 | M4PFHpA     | <b>4</b> 117 <b>2</b> | 4.067          | 1 <b>16.6</b> 7 | 0.0106                   |       | 2.77          | 1.78         |      |

## HFPO-DA



4:2 FTS



## **M3HFPODA**



## 6:2 FTS



## ADONA



## 8:2 FTS



## d3-NMeFOSAA



### d5-NEtFOSAA









## M5PFPeA



## M6PFDA



## M7PFUnA















1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |    |  |                | Client Sample ID:  | SMP 6, EXP 12, IMP 3A REP A-F |          |      |      |  |
|------------------|----------------------|----|--|----------------|--------------------|-------------------------------|----------|------|------|--|
| Collect Date:    | 05/27/20 Time: 0300  |    |  |                | GCAL Sample ID:    | 22012227906                   |          |      |      |  |
| Matrix:          | Water % Moisture: NA |    |  | Instrument ID: | QQQ1               |                               |          |      |      |  |
| Sample Amt:      | 125                  | mL |  |                | Lab File ID:       | 2201224A_45.d                 | d        |      |      |  |
| Injection Vol.:  | 1.0                  |    |  | (µ∟)           | GC Column:         | ACC-C18-30M                   | ID       | 2.1  | (mm) |  |
| Prep Final Vol.: | 1000                 |    |  | (µ∟)           | Dilution Factor:   | 1                             | Analyst: | MRA  |      |  |
| Prep Date:       |                      |    |  |                | Analysis Date:     | 12/24/20                      | Time:    | 2308 |      |  |
| Prep Batch:      | 700361               |    |  |                | Analytical Batch:  | 700789                        |          |      |      |  |
| Prep Method:     | PFAS ID QSM B15 Prep |    |  |                | Analytical Method: | PFAS Isotope Dilution QSM B15 |          |      |      |  |

CONCENTRATION UNITS: ng/L

| CAS                        | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|----------------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2                 | 6:2 Fluorotelomersulfonic acid | 4.00   | U | 1.79 | 4.00 | 10.0 |
| 39108-34-4                 | 8:2 Fluorotelomersulfonic acid | 4.00   | U | 1.63 | 4.00 | 10.0 |
| 375-73-5                   | Perfluorobutanesulfonic acid   | 4.00   | U | 1.47 | 4.00 | 10.0 |
| 375-22-4                   | Perfluorobutanoic acid         | 4.00   | U | 2.13 | 4.00 | 10.0 |
| 335-76-2                   | Perfluorodecanoic acid         | 4.00   | U | 1.65 | 4.00 | 10.0 |
| 375-85-9                   | Perfluoroheptanoic acid        | 4.00   | U | 1.85 | 4.00 | 10.0 |
| 355-46 <b>-4</b>           | Perfluorohexanesulfonic acid   | 4.00   | U | 1.64 | 4.00 | 10.0 |
| 30 <b>7-</b> 24 <b>-</b> 4 | Perfluorohexanoic acid         | 4.00   | U | 1.94 | 4.00 | 10.0 |
| 375-95-1                   | Perfluorononanoic acid         | 4.00   | U | 1.68 | 4.00 | 10.0 |
| 1763-23-1                  | Perfluorooctanesulfonic acid   | 4.00   | U | 1.70 | 4.00 | 10.0 |
| 335-67-1                   | Perfluorooctanoic acid         | 4.00   | U | 1.80 | 4.00 | 10.0 |
| 2706-90-3                  | Perfluoropentanoic acid        | 4.00   | U | 2.35 | 4.00 | 10.0 |
| 2058-94-8                  | Perfluoroundecanoic acid       | 4.00   | U | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227906 Dilution

1

Comment MRA,QQQ1;700361

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

Samp Type Sample

12/24/2020 15:17

Position Vial 38

Inj Vol 2

## **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_45.d PFASWiscExpan.m

12/24/2020 23:08

Sample Chromatogram



## Quantitation Results

|               |                  |       |              |                |                | ISID/Surr       | Conc            | Spike   |                  |      |
|---------------|------------------|-------|--------------|----------------|----------------|-----------------|-----------------|---------|------------------|------|
| Compound      | Response         | RT    | ISTD         | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)         | %Rec SN | R Symm           | MInt |
| M2PFDA        | 179052.240       | 5.197 |              |                |                | 10 <b>4.</b> 64 | 20.9281         | 4115.6  | 3 1.31           |      |
| M2PFHxA       | 283729.609       | 3.501 |              |                |                | 106.43          | 42.5728         | 11914.6 | 4 1.27           | ,    |
| M2PFOA        | 129203.283       | 4.510 |              |                |                | 102.26          | 20.4522         | 5931.9  | 2 1.35           |      |
| M4PFOS        | 46984.095        | 4.893 |              |                |                | 9 <b>6.5</b> 4  | 19.3073         | 4122.2  | .3 1 <b>.5</b> 9 | )    |
| M3PFBA        | 6528.575         | 0.503 |              |                |                | 0.00            | 5.0805          | 213.3   | 3 1.63           |      |
| MP <b>FOA</b> | 452.814          | 4.509 |              |                |                | 0.00            | 22.2248         | 14.3    | 2 1.30           | )    |
| HFPO-DA       | 479.120          | 3.632 | M3HFPODA     | 2803           | 3.693          | 95.59           | 1.3424          | 0.9     | 8 3.18           |      |
| 4:2 FTS       | 34.161           | 3.468 | M2 4:2 FTS   | 1 <b>300</b> 4 | 3.458          | 117.43          | 0.0067          | 1.6     | 0.37             | ,    |
| 6:2 FTS       | 781.018          | 4.477 | M2 6:2 FTS   | 23233          | 4 <b>.4</b> 87 | 105.88          | 0.0972          | 9.6     | 4 1.65           |      |
| ADONA         | 92.163           | 4.169 | M8PFOA       | <b>219</b> 70  | 4 <b>.509</b>  | 104.74          | 0.0048          | 4.1     | 2 0.59           | )    |
| 8:2 FTS       | 35.211           | 5.185 | M2 8:2 FTS   | 11 <b>0</b> 40 | 5.185          | 10 <b>7.20</b>  | 0.0048          | 0.8     | 5 0.07           | m    |
| FOSA          | 36.580           | 5.334 | M8FOSA       | 22823          | 5.291          | 103.73          | 0.0034          | 4.9     | 9 0.58           | •    |
| 9CI-PF3ONS    | 146.060          | 5.080 | M8PFO\$      | 4938           | 4,893          | 104.8 <b>0</b>  | 0.0031          | 1,7     | '4 1 <b>.56</b>  | ;    |
| PFDS          | 15.789           | 5.515 | M6PFDA       | <b>3552</b> 4  | 5.196          | 114.94          | 0.0084          | 12.7    | 6 1.23           |      |
| 11CI-PF3OUdS  | 30.744           | 5.710 | M8PFOS       | 4938           | 4.893          | 10 <b>4.80</b>  | 0.0028          | 22.2    | 4 0.98           |      |
| PFHpS         | 30.078           | 4.549 | M8PFOA       | 21970          | 1.509          | 10 <b>1.71</b>  | 0.0090          | 1.8     | 2 0.99           | )    |
| 10:2 FTS      | 67.566           | 5.837 | M2 8:2 FTS   | 11 <b>0</b> 40 | 5.185          | 107.20          | 0.0195          | 16.2    | 4 1.29           | )    |
| PFNS          | 11.632           | 5.205 | M9PFNA       | 26826          | 4.874          | 1 <b>00.</b> 74 | <b>0.0</b> 079  | 7.4     | 5 1.14           | ŀ    |
| PFDoS         | 42.220           | 6.189 | M8PFOS       | 4938           | 4.893          | 1 <b>04.80</b>  | 0.0173          | 3.4     | 5 1.33           |      |
| PFPeS         | 78.503           | 3.699 | M5PFHxA      | 28838          | 3.501          | 107.36          | 0.0252          | 2.2     | 5 0.85           |      |
| PFODA         | 94.880           | 8.216 | M2PFHxDA     | 30717          | 7.596          | 90.79           | 0.0276          | 6.5     | 0 1.68           |      |
| NEtFOSAA      | 17.221           | 5.526 | d5-NEtFOSAA  | 13186          | 5.484          | 105.00          | 0.0047          | 12.3    | 5 1.11           |      |
| PFH×DA        | 432.538          | 7.599 | M2PFHxDA     | 30717          | 7.596          | 90.79           | 0.1444          | 11.6    | 0 1.35           |      |
| NMeF0\$AA     | 11.942           | 5.339 | d3-NMeFO\$AA | 11353          | 5.328          | 119.15          | 0.0032          | 3.0     | 2 1.13           |      |
| PFBA          | 1230.224         | 0.505 | MPFBA        | 39111          | 0.501          | 110.68          | 0.1220          | 5.4     | 8 1.26           |      |
| PFBS          | 143.513          | 2.454 | M3PFBS       | 16124          | 2. <b>4</b> 94 | 136.69          | 0.0289          | 7.0     | 7 1.69           | ,    |
| NMeFOSA       | 66.172           | 5.938 | d-NMcFOSA    | 14 <b>7</b> 86 | 5.927          | 87.95           | 0.0480          | 1.8     | 9 2.48           |      |
| PFDA          | 575 <b>.5</b> 37 | 5,197 | M6PFDA       | 35524          | 5.196          | 1 <b>14.</b> 94 | 0.0537          | 26.7    | 7 1.51           |      |
| PFDoA         | 190.807          | 5.828 | MPFDoA       | 38152          | 5.828          | 101.33          | 0.0242          | 2.8     | 6 3.10           | )    |
| NETFOSA       | 38.602           | 6.237 | d-NEtFOSA    | 10515          | 6.2 <b>26</b>  | 88.61           | 0.0266          | 4.3     | 5 0.81           |      |
| PFHpA         | 645.252          | 1.078 | M4PFHpA      | 39035          | <b>4.0</b> 77  | 1 <b>10.6</b> 1 | 0.0809          | 10.1    | 8 1.17           | ,    |
| PFHxA         | 972.479          | 3.493 | M5PFHxA      | 28838          | 3.501          | 107.36          | 0.1278          | 10.8    | 0 1.89           | •    |
| NMeFOSE       | 121.172          | 5.974 | d7-NMeFOSE   | 21240          | 5.953          | 91.29           | 0.0546          | 12.4    | 5 0.64           | ł    |
| PFI IxS       | 125.072          | 4.137 | M3PFI IxS    | 10825          | 4.147          | 108.40          | 0.0258          | 14.7    | 2 1.90           | m    |
| PFNA          | 372.443          | 4.885 | M9PFNA       | 26826          | 4.874          | 10 <b>0.</b> 74 | 0 <b>.0</b> 446 | 3.7     | 0 1.01           |      |
| NETFOSE       | 15.595           | 6.369 | d9-NEtFOSE   | 18 <b>96</b> 4 | 6.223          | 91.22           | 0.0075          | 0.9     | 0.39             | )    |
| PFOA          | 518 <b>.14</b> 6 | 4.510 | M8PFOA       | 21 <b>9</b> 70 | 4.509          | 10 <b>4.74</b>  | 0.0837          | 7.7     | 2 1.14           | ļ    |
| PFOS          | 102.661          | 4.904 | M&PFOS       | 4938           | 4.893          | 104.80          | 0.0228          | 5.4     | 0 0.59           | )    |
| PFPeA         | 355.613          | 1.627 | M5PFPeA      | 17983          | 1.635          | 106.95          | 0.0841          | 1,8     | 1.77             | ,    |
| PFMPA         | 102.406          | 0.735 | M5PFPeA      | 17983          | 1.635          | 106.95          | 0.0250          | 1.9     | 8 1.17           | ,    |
| PFTA          | 141.426          | 6.624 | M2PFTA       | 30251          | 6.623          | 95.18           | 0.0263          | б.3     | 8 2.20           | )    |
| PFMBA         | 57.657           | 2.531 | M5PFHxA      | 28838          | 3.501          | 107.36          | 0.0148          | 2.9     | 1.03             |      |
| PFTrDA        | 606.211          | 6.190 | MPFDoA       | 38152          | 5.828          | 101.33          | 0.0742          | 1.8     | 5 2.42           |      |
| PFEESA        | 54.014           | 3.450 | M3PFHxS      | 10825          | 4.147          | 1 <b>08.40</b>  | 0.0054          | 2.0     | 0.43             |      |
| PFUnA         | 144 <b>.625</b>  | 5.465 | M7PFUnA      | 57764          | 5.496          | 110.08          | 0.0117          | 0.5     | 0 1.00           | )    |
| NFDHA         | 73,204           | 3.372 | M4PFHpA      | 39035          | 4 <b>.0</b> 77 | 110.61          | 0.0190          | 3.2     | 4 2.35           |      |



d5-NEtFOSAA







6,2 6,4 5,6 6,5 Acquisition Line (min)

4

8,2 6,4 6,6 6,8 Accusion time (min)

Y

3AC 590 700 710

Viusa-lo-Charge (m/z)

A



## M6PFDA



## M7PFUnA



(111/2



M8F0SA





## MPFBA







## **NEtFOSAA**







PFDoA







1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |    |  |                | Client Sample ID:  | SMP 6, EXP 12, IMP 3A REP A-F- |          |      |      |  |
|------------------|----------------------|----|--|----------------|--------------------|--------------------------------|----------|------|------|--|
| Collect Date:    | 05/27/20 Time: 0300  |    |  |                | GCAL Sample ID:    | 22012227907                    |          |      |      |  |
| Matrix:          | Water % Moisture: NA |    |  | Instrument ID: | QQQ1               |                                |          |      |      |  |
| Sample Amt:      | 125                  | mL |  |                | Lab File ID:       | 2201224A_46.d                  | k        |      |      |  |
| Injection Vol.:  | 1.0                  |    |  | (µ∟)           | GC Column:         | ACC-C18-30M                    | D        | 2.1  | (mm) |  |
| Prep Final Vol.: | 1000                 |    |  | (µ∟)           | Dilution Factor:   | 1                              | Analyst: | MRA  |      |  |
| Prep Date:       |                      |    |  |                | Analysis Date:     | 12/24/20                       | Time:    | 2322 |      |  |
| Prep Batch:      | 700361               |    |  |                | Analytical Batch:  | 700789                         |          |      |      |  |
| Prep Method:     | PFAS ID QSM B15 Prep |    |  |                | Analytical Method: | PFAS Isotope Dilution QSM B15  |          |      |      |  |

CONCENTRATION UNITS: ng/L

| CAS               | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|-------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2        | 6:2 Fluorotelomersulfonic acid | 69.0   |   | 1.79 | 4.00 | 10.0 |
| 39108-34-4        | 8:2 Fluorotelomersulfonic acid | 72.3   |   | 1.63 | 4.00 | 10.0 |
| 375-73-5          | Perfluorobutanesulfonic acid   | 52.9   |   | 1.47 | 4.00 | 10.0 |
| 375-22-4          | Perfluorobutanoic acid         | 69.1   |   | 2.13 | 4.00 | 10.0 |
| 335-76-2          | Perfluorodecanoic acid         | 66.5   |   | 1.65 | 4.00 | 10.0 |
| 375-85-9          | Perfluoroheptanoic acid        | 66.1   |   | 1.85 | 4.00 | 10.0 |
| 355-46 <b>-4</b>  | Perfluorohexanesulfonic acid   | 65.7   |   | 1.64 | 4.00 | 10.0 |
| 307-24-4          | Perfluorohexanoic acid         | 68.3   |   | 1.94 | 4.00 | 10.0 |
| 375-95-1          | Perfluorononanoic acid         | 65.9   |   | 1.68 | 4.00 | 10.0 |
| 1763-23 <b>-1</b> | Perfluorooctanesulfonic acid   | 70.3   |   | 1.70 | 4.00 | 10.0 |
| 335-67-1          | Perfluorooctanoic acid         | 76.0   |   | 1.80 | 4.00 | 10.0 |
| 2706-90-3         | Perfluoropentanoic acid        | 66.7   |   | 2.35 | 4.00 | 10.0 |
| 2058-94-8         | Perfluoroundecanoic acid       | 66.4   |   | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227907 Dilution

1

Comment MRA,QQQ1;700361

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

Samp Type QC

12/24/2020 15:17

Position Vial 39

Inj Vol 2

## **Batch Data Path** Last Calib Update

## Data File Acq Method Acq Date

PFASWiscExpan.m

12/24/2020 23:22

2201224A\_46.d

Sample Chromatogram



## Quantitation Results

| -             |                    |                |              |                |                | ISTD/Surr       | Conc                    | Spike  |                  |      |      |
|---------------|--------------------|----------------|--------------|----------------|----------------|-----------------|-------------------------|--------|------------------|------|------|
| Compound      | Response           | RT             | ISTD         | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)                 | %Rec   | SNR              | Symm | MInt |
| M2PFDA        | 211600.121         | 5.186          |              |                |                | 123.66          | 24.7324                 | 123.66 | 13525.04         | 1.52 |      |
| M2PFH×A       | 357544.112         | 3.491          |              |                |                | 1 <b>34.</b> 12 | 53.6485                 | 134.12 | INF              | 1.67 |      |
| M2PFOA        | 160471.466         | 4.499          |              |                |                | 127.01          | <b>25.4</b> 018         | 127.01 | 6212.62          | 1.59 |      |
| M4PFOS        | 59185.759          | 4.883          |              |                |                | 121.61          | 24.3214                 | 121.61 | 5898.90          | 1.82 |      |
| M3PFBA        | 647 <b>0</b> .329  | 0.503          |              |                |                | 0.00            | 5.0352                  | 100.70 | 177.98           | 1.77 |      |
| MP <b>FOA</b> | 651 <b>.</b> 451   | 4.499          |              |                |                | 0.00            | 31.9742                 | 127.90 | 57.52            | 2.06 |      |
| HFPO-DA       | 12175.602          | 3.684          | M3HFPODA     | 3321           | 3.683          | 113.22          | 2 <b>8.7</b> 999        | 96.00  | 296.40           | 1.86 |      |
| 4:2 FT\$      | 39062.189          | 3.458          | M2 4:2 FT\$  | 13192          | 3.458          | 119.12          | 7.56 <b>0</b> 6         | 80.86  | 787.15           | 1.41 |      |
| 6:2 FTS       | 68177.438          | 4.477          | M2 6:2 FTS   | 22858          | 4.477          | 104.18          | 8.6269                  | 90.81  | 600.04           | 1.95 |      |
| ADONA         | 182153.869         | 4.148          | M8PFOA       | 22537          | 4. <b>499</b>  | 107.44          | 9.1806                  | 91.81  | 14273.32         | 1.43 |      |
| 8:2 FTS       | 652 <b>42.7</b> 20 | 5 <u>.</u> 185 | M2 8:2 FTS   | 10900          | 5.185          | 105.85          | 9.0416                  | 94.18  | 1273.66          | 1.25 |      |
| FOSA          | 103404.268         | 5.293          | M8FOSA       | 22 <b>92</b> 2 | 5.291          | 104.18          | 9.6897                  | 96.90  | 9173.33          | 1.28 |      |
| 9CI-PF3ONS    | 421046.378         | 5.069          | M8PFO\$      | 5209           | 4.882          | 110.53          | 8.3375                  | 83.37  | 34347,62         | 1.80 |      |
| PFDS          | 16243.601          | 5.494          | M6PFDA       | 34570          | 5.186          | 111.85          | 8.8991                  | 92.22  | 324.21           | 1.39 |      |
| 11CI-PF3OUdS  | 91029.475          | 5.669          | M8PFOS       | 5209           | 4.882          | 1 <b>10.5</b> 3 | 7.8662                  | 78.66  | 2973.90          | 1.77 |      |
| PFHpS         | 36713.203          | 4.539          | M8PFOA       | 22537          | 1.199          | 107.11          | 10 <b>.7331</b>         | 112.98 | 2108.69          | 1.17 |      |
| 10:2 FTS      | 53264.779          | 5.816          | M2 8:2 FTS   | 10 <b>90</b> 0 | 5.185          | 105.85          | 15.5375                 | 80.59  | 2790.49          | 1.70 |      |
| PFNS          | 16140.465          | 5.194          | M9PFNA       | 26 <b>86</b> 4 | 4.863          | 100.88          | 10.8808                 | 113.34 | 1917.39          | 1.62 |      |
| PFDoS         | 33379.109          | 6.168          | M8PFOS       | 5209           | 4.882          | 110.53          | 12.9598                 | 66.94  | 2696.52          | 1.63 |      |
| PFPeS         | 34177.055          | 3.647          | M5PFHxA      | 30180          | 3.490          | 112.35          | 10 <b>.4</b> 978        | 111.68 | 685.71           | 1.64 |      |
| PFODA         | 40618.597          | 8.206          | M2PFHxDA     | 29092          | 7.565          | 85.98           | 12 <b>.4</b> 681        | 62.34  | 2469.01          | 1.65 |      |
| NEtFOSAA      | 36371.947          | 5.484          | d5-NEtFOSAA  | 13 <b>7</b> 98 | 5.474          | 109.87          | <b>9.4</b> 010          | 94.01  | 2 <b>144.</b> 36 | 1.50 |      |
| PFH×DA        | 49873.497          | 7.568          | M2PFHxDA     | 29 <b>0</b> 92 | 7.565          | 85.98           | 17.5842                 | 87.92  | 944.15           | 1.47 |      |
| NMeF0\$AA     | 33643.312          | 5.329          | d3-NMeFO\$AA | 9493           | 5.328          | 99.63           | 1 <b>0.9</b> 480        | 109.48 | 3201.66          | 1.31 |      |
| PFBA          | 89252.755          | 0.505          | MPFBA        | 40 <b>0</b> 85 | 0.511          | 113.44          | 8.6375                  | 86.37  | 763.54           | 1.62 |      |
| PFBS          | 32870 <b>.49</b> 1 | 2.475          | M3PFBS       | 16145          | 2. <b>47</b> 3 | 136.87          | 6 <b>.6</b> 0 <b>94</b> | 74.68  | 1 <b>477.1</b> 5 | 1.10 |      |
| NMeFOSA       | 26600.971          | 5.917          | d-NMcFOSA    | 15 <b>761</b>  | 5.917          | 93.75           | 18.1209                 | 90.60  | 739.01           | 1.67 |      |
| PFDA          | 86727.842          | 5,187          | M6PFDA       | 34570          | 5.186          | 111.85          | 8.3181                  | 83.18  | 3168.91          | 1.53 |      |
| PFDoA         | 69441.706          | 5.818          | MPFDoA       | 39084          | 5.818          | 103.80          | 8.5861                  | 85.86  | 5706.74          | 1.25 |      |
| NETFOSA       | 21658.781          | 6.216          | d-NEtFO5A    | 8915           | 6.205          | 75.12           | 1 <b>7.63</b> 27        | 88.16  | 998.88           | 1.64 |      |
| PFHpA         | 69846.064          | 1.067          | M4PFHpA      | 41372          | 4.067          | 117.24          | 8.2639                  | 82.64  | 1597.29          | 1.49 |      |
| PFHxA         | 67983.247          | 3.493          | M5PFH×A      | 30180          | 3.490          | 112.35          | 8.5366                  | 85.37  | 507.66           | 1.53 |      |
| NMeFOSE       | 38443.077          | 5.954          | d7-NMeFOSE   | 23236          | 5.943          | 99.86           | 15 <b>.82</b> 37        | 79.12  | 4724.44          | 1.44 |      |
| PFLIxS        | 42292.552          | 4.137          | M3PFI IxS    | 11499          | 4.136          | 115.16          | 8.2088                  | 90.01  | 1229.82          | 1.48 | m    |
| PFNA          | 68934.316          | 4.864          | M9PFNA       | 26864          | 4.863          | 100.88          | <b>8.2</b> 410          | 82.41  | 658.63           | 1.69 |      |
| NETFOSE       | 35771.036          | 6.233          | d9-NEtFOSE   | 21880          | 6.212          | 105.25          | 14.8388                 | 74.19  | 1417.59          | 1.27 |      |
| PFOA          | 60309.289          | 4.500          | M8PFOA       | 22537          | 4.499          | 107.44          | 9.4956                  | 94.96  | 1175.62          | 1.62 |      |
| PFOS          | 41653.936          | 4.883          | M8PFOS       | 5209           | 4.882          | 110.53          | <b>8.7</b> 815          | 94.88  | 1205.32          | 1.75 | m    |
| PFPeA         | 35751.143          | 1.637          | M5PFPeA      | 18244          | 1.635          | 108.50          | 8.3344                  | 83.34  | 224,17           | 1.22 |      |
| PFMPA         | 72073.174          | 0.755          | M5PFPeA      | 18244          | 1.635          | 10 <b>8.50</b>  | 17.3669                 | 86.83  | 2239.82          | 1.40 |      |
| PFTA          | 49011.897          | 6.603          | M2PFTA       | 29745          | 6. <b>6</b> 03 | 93.59           | 9.2862                  | 92.86  | 773.92           | 1.49 |      |
| PFMBA         | 67306.941          | 2.510          | M5PFHxA      | 30180          | 3.490          | 112.35          | 16 <b>.4</b> 763        | 82.38  | 3012.91          | 1.27 |      |
| PFTrDA        | 82289.117          | 6.179          | MPFDoA       | 39084          | 5.818          | 103.80          | 9.8306                  | 98.31  | 1082.48          | 1.68 |      |
| PFEEŞA        | 174 <b>451.559</b> | 3.253          | M3PFHxS      | 11499          | 4.136          | 115.16          | 16.4454                 | 92.39  | 11049.66         | 1.34 |      |
| PFUnA         | 106369.601         | 5.486          | M7PFUnA      | 59979          | 5.485          | 1 <b>14.30</b>  | 8.2964                  | 82.96  | <b>28</b> 16.67  | 1.90 |      |
| NFDHA         | 70379.877          | 3.382          | M4PFHpA      | 41372          | 4.067          | 117.24          | 17.2671                 | 86.34  | 5825.71          | 1.30 |      |





4:2 FTS



## **M3HFPODA**





## ADONA



## 8:2 FTS



## d3-NMeFOSAA



### d5-NEtFOSAA





FOSA

Musa-lo-Charge (m/z)



715.0 8 ×10

8-1-5-5-4-3-2-1

4

M2PFTA

ARM (71 ×10 3-8-7-6-5-4-3-2-0-0-

Ĭ

Suns :

M (715 0 -> 670 0) 220\*224A 46 (

6.60

8,2 6,4 6,6 6,8 Acquisition time (min) мнм (6.509-6.732 min, 27 асона) (=15.0... [=x10 <sup>3</sup> ]

3ac 590 700 710

Viusa-lo-Charge (m/z)

Source

6,2 6,4 5,6 6,5 Acquisition Line (min) 1.75-1.5-1.25-0.5-0.5-0.5-



## M7PFUnA



IBM (5.229-5.428 min. 20 scans) (505.0

8.0

Co.mls



M8F0SA

Co.nte

78 0) 220 1224/

×10 Sint

7. 6. 5.

5,2 5,4 5,6 5,8 Acquisition time (min)

0.2

5,2

0.5-

450

=0. 4 =50 Musa-lo-Charge (m/z)

5,4 5,6 5,8 Acquisition Line (min)



### d-NMeFOSA







## d-NEtFOSA

PFDoA



## PFHxA





## PFHxS



### d7-NMeFOSE







## MPFOA


1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |             |      |                    | Client Sample ID:             | SMP 6, EXP 12, IMP 3A REP A-F- |          |      |      |  |
|------------------|----------------------|-------------|------|--------------------|-------------------------------|--------------------------------|----------|------|------|--|
| Collect Date:    | 05/27/20             | Time:       | 0300 |                    | GCAL Sample ID:               | 22012227908                    |          |      |      |  |
| Matrix:          | Water %              | % Moisture: | NA   |                    | Instrument ID:                | QQQ1                           |          |      |      |  |
| Sample Amt:      | 125                  | mL          |      |                    | Lab File ID:                  | 2201224A_47.c                  | k        |      |      |  |
| Injection Vol.:  | 1.0                  |             |      | (µL)               | GC Column:                    | ACC-C18-30M                    | ID.      | 2.1  | (mm) |  |
| Prep Final Vol.: | 1000                 |             |      | (µ∟)               | Dilution Factor:              | 1                              | Analyst: | MRA  |      |  |
| Prep Date:       |                      |             |      |                    | Analysis Date:                | 12/24/20                       | Time:    | 2337 |      |  |
| Prep Batch:      | 700361               |             |      |                    | Analytical Batch:             | 700789                         |          |      |      |  |
| Prep Method:     | PFAS ID QSM B15 Prep |             |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |                                |          |      |      |  |

CONCENTRATION UNITS: ng/L

| CAS                        | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|----------------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2                 | 6:2 Fluorotelomersulfonic acid | 70.5   |   | 1.79 | 4.00 | 10.0 |
| 39108-34-4                 | 8:2 Fluorotelomersulfonic acid | 78.4   |   | 1.63 | 4.00 | 10.0 |
| 375-73-5                   | Perfluorobutanesulfonic acid   | 53.4   |   | 1.47 | 4.00 | 10.0 |
| 375-22-4                   | Perfluorobutanoic acid         | 71.5   |   | 2.13 | 4.00 | 10.0 |
| 335-76-2                   | Perfluorodecanoic acid         | 69.8   |   | 1.65 | 4.00 | 10.0 |
| 375-85-9                   | Perfluoroheptanoic acid        | 72.6   |   | 1.85 | 4.00 | 10.0 |
| 355-46 <b>-4</b>           | Perfluorohexanesulfonic acid   | 69.4   |   | 1.64 | 4.00 | 10.0 |
| 30 <b>7-</b> 24 <b>-</b> 4 | Perfluorohexanoic acid         | 68.9   |   | 1.94 | 4.00 | 10.0 |
| 375-95-1                   | Perfluorononanoic acid         | 71.4   |   | 1.68 | 4.00 | 10.0 |
| 1763-23-1                  | Perfluorooctanesulfonic acid   | 65.3   |   | 1.70 | 4.00 | 10.0 |
| 335-67-1                   | Perfluorooctanoic acid         | 77.3   |   | 1.80 | 4.00 | 10.0 |
| 2706-90-3                  | Perfluoropentanoic acid        | 67.7   |   | 2.35 | 4.00 | 10.0 |
| 2058-94-8                  | Perfluoroundecanoic acid       | 72.7   |   | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227908 Dilution

1

Comment MRA,QQQ1;700361

 $D:\ MassHunter\ Data\ 2201224 A CAL\ Quant Results\ 2201224 A. batch. bin$ 

Samp Type QC

12/24/2020 15:17

Position Vial 40

Inj Vol 2

#### **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_47.d PFASWiscExpan.m

12/24/2020 23:37

Sample Chromatogram



## Quantitation Results

| <b>L</b>      |                    |                |             |                |                | ISTD/Surr       | Conc             | Spike         |                   |              |      |
|---------------|--------------------|----------------|-------------|----------------|----------------|-----------------|------------------|---------------|-------------------|--------------|------|
| Compound      | Response           | RT             | ISTD        | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | %Rec          | SNR               | Symm         | MInt |
| M2PFDA        | 203696.140         | 5.186          |             |                |                | 119.04          | 23.8085          | 119.04        | 3582.17           | 1 <b>.70</b> |      |
| M2PFHxA       | 340552.690         | 3.501          |             |                |                | 12 <b>7.75</b>  | 51.0989          | 127.75        | 7927.12           | 1.31         |      |
| M2PFOA        | 159378.236         | 4.499          |             |                |                | 126.14          | 25.2287          | 126.14        | 13387.95          | 1.78         |      |
| M4PFOS        | 59819.808          | 4.883          |             |                |                | 122.91          | 24.5820          | 122.91        | 10591.14          | 1 <b>.96</b> |      |
| M3PFBA        | 6602.082           | 0.513          |             |                |                | 0.00            | 5.1377           | 102.75        | <b>19</b> 4.47    | 1.19         |      |
| MP <b>FOA</b> | 468.638            | 4.509          |             |                |                | 0.00            | 23.0014          | 92.01         | 25.98             | 0.97         |      |
| HFPO-DA       | 12357.009          | 3.694          | M3HFPODA    | 3275           | 3.693          | 111.67          | 29.6364          | 98.79         | 120.59            | 1.44         |      |
| 4:2 FTS       | 38840.728          | 3.458          | M2 4:2 FTS  | 12893          | 3.458          | 116.43          | 7.6918           | 82.27         | 279.09            | 1.93         |      |
| 6:2 FTS       | 71770 <b>.2</b> 19 | 4.487          | M2 6:2 FTS  | 23561          | 4.487          | 107.38          | 8.8103           | 92.74         | 587.79            | 1.28         |      |
| ADONA         | 192974.002         | 4.148          | M8PFOA      | 23659          | 4. <b>4</b> 99 | 112.79          | 9.2648           | 92.65         | 16517.16          | 1.63         |      |
| 8:2 FTS       | 70788.349          | 5 <u>.</u> 185 | M2 8:2 FTS  | 10910          | 5.185          | 105.94          | 9.8011           | 102.10        | 3561.43           | 1.33         |      |
| FOSA          | 115919.458         | 5.293          | M8FOSA      | 24621          | 5.291          | 111.90          | 10.1129          | 101.13        | 3499.84           | 1.40         |      |
| 9CI-PF3ONS    | 445540,298         | 5.069          | M8PFO\$     | 6038           | 4.882          | 128.12          | 7.6111           | 76.11         | 4 <b>591.5</b> 7  | 1.94         |      |
| PFDS          | 19192.713          | 5.494          | M6PFDA      | 35522          | 5.186          | 114.93          | 10.2330          | 106.04        | 1503.33           | 1.67         |      |
| 11CI-PF3OUdS  | 102835.330         | 5.679          | M8PFOS      | 6038           | 4.882          | 128.12          | 7.6662           | 76.66         | 10607.67          | 1.32         |      |
| PFHpS         | 39886.632          | 4.539          | M8PFOA      | 23659          | 1.199          | 112.79          | 11.0992          | 116.83        | 1190.36           | 1.67         |      |
| 10:2 FTS      | 56687.434          | 5.827          | M2 8:2 FTS  | 10 <b>9</b> 10 | 5.185          | 105.94          | 16.5208          | 85.6 <b>9</b> | 1258.52           | 1.40         |      |
| PFNS          | 17963.352          | 5.194          | M9PFNA      | 27 <b>501</b>  | 4.863          | 103.27          | 11.8293          | 123.22        | 2070.99           | 1.82         |      |
| PFDoS         | 46470.647          | 6.179          | M8PFOS      | 6 <b>0</b> 38  | 4.882          | 128.12          | 15.5653          | 80.40         | 2461.48           | 1.66         |      |
| PFPeS         | 34638.731          | 3.657          | M5PFHxA     | 31440          | 3.501          | 117.04          | 10.2131          | 108.65        | 2753.04           | 1.25         |      |
| PFODA         | 57595.350          | 8.216          | M2PFHxDA    | 32365          | 7.596          | 95.65           | 15.8915          | 79.46         | 2264.33           | 1.26         |      |
| NETFOSAA      | 40100.393          | 5.484          | d5-NEtFOSAA | 14752          | 5.484          | 1 <b>17.4</b> 6 | 9.6949           | 96.95         | 20693 <b>.7</b> 8 | 1.82         |      |
| PFH×DA        | 61051.859          | 7.589          | M2PFHxDA    | 32365          | 7.596          | 95.65           | 19.3488          | 96.74         | 1258.41           | 1.50         |      |
| NMeF0\$AA     | 34530.597          | 5.329          | d3-NMeFOSAA | 9664           | 5.328          | 101.42          | 11.0382          | 110.38        | 4024.78           | 1.45         |      |
| PFBA          | 91817 <b>.59</b> 1 | 0.505          | MPFBA       | 39864          | 0.511          | 1 <b>12.</b> 81 | 8.9349           | 89.35         | 2175.50           | 1.69         |      |
| PFBS          | 33998.536          | 2 <u>.</u> 485 | M3PFBS      | 16542          | 2 <b>.4</b> 83 | 140.23          | 6.6725           | 75.40         | 1810.47           | 1.17         |      |
| NMeFOSA       | 26546.947          | 5.928          | d-NMcFOSA   | 15776          | 5.927          | 93.84           | 18 <b>.0</b> 658 | 90.33         | 879.55            | 1.46         |      |
| PFDA          | 93513.088          | 5,187          | M6PFDA      | 35522          | 5.186          | 1 <b>14.</b> 93 | 8.7285           | 87.29         | 1823.45           | 1.68         |      |
| PFDoA         | 77387.228          | 5.818          | MPFDoA      | 40693          | 5.818          | 108.07          | 9.1901           | 91.90         | 7058.12           | 1.65         |      |
| NETFOSA       | 22905.791          | 6.227          | d-NEtFOSA   | 9 <b>4</b> 80  | 6.21 <b>6</b>  | 79.88           | 17.5365          | 87.68         | 1129.93           | 1.60         |      |
| PFHpA         | 78414.231          | 1.067          | M4PFHpA     | 42321          | 4.067          | 119.92          | 9.0696           | 90.70         | 1 <b>14</b> 9.61  | 1.81         |      |
| PFHxA         | 71500.707          | 3.503          | M5PFHxA     | 31440          | 3.501          | 1 <b>17.04</b>  | 8.6184           | 86.18         | 266.56            | 1.24         |      |
| NMeFOSE       | 38064.045          | 5.954          | d7-NMeFOSE  | 2217 <b>7</b>  | 5.943          | 95.31           | 16 <b>.41</b> 61 | 82.08         | 31 <b>7</b> 9.08  | 1.92         |      |
| PFI IxS       | 46148.712          | 4.137          | M3PFI IxS   | 11874          | 4.136          | 118.91          | 8.6747           | 95.12         | 3573.11           | 1.75         | m    |
| PFNA          | 76393.676          | 4.864          | M9PFNA      | 27501          | 4.863          | 103.27          | 8.9214           | 89.21         | <b>503.5</b> 7    | 1.88         |      |
| NETFOSE       | 36126.797          | 6.244          | d9-NEtFOSE  | 20801          | 6.223          | 100.06          | 15.7635          | 78.82         | 1618 <b>.1</b> 3  | 1.21         |      |
| PFOA          | 64407.450          | 4.500          | M8PFOA      | 23659          | 4.499          | 112.79          | 9.6601           | 96.60         | 998.35            | 1.75         |      |
| PFOS          | 44902.933          | 4.883          | M&PFOS      | 6038           | 4.882          | 128.12          | 8.1666           | 88.24         | 4883.08           | 1.98         | m    |
| PFPeA         | 37362.115          | 1.637          | M5PFPeA     | 18783          | 1.635          | 111.71          | 8.4597           | 84.60         | 351.54            | 1.40         |      |
| PFMPA         | 75595.456          | 0.766          | M5PFPeA     | 18 <b>783</b>  | 1.635          | 111.71          | 17.6922          | 88.46         | 4033.23           | 1.30         |      |
| PFTA          | 56540.959          | 6.614          | M2PFTA      | 31123          | 6. <b>62</b> 3 | 97.92           | 10.2383          | 102.38        | 4 <b>562.1</b> 7  | 1.77         |      |
| PFMBA         | 71540.381          | 2.531          | M5PFHxA     | 31440          | 3.501          | 117.04          | 16 <b>.810</b> 6 | 84.05         | 5204.56           | 1.05         |      |
| PFTrDA        | 89105.515          | 6.190          | MPFDoA      | 40693          | 5.818          | 108.07          | 10.2240          | 102.24        | 707.96            | 1.61         |      |
| PFEESA        | 181695.307         | 3.253          | M3PFHxS     | 11 <b>8</b> 74 | 4.136          | 118.91          | 16.5880          | 93.19         | 5457 <b>.9</b> 9  | 1.76         |      |
| PFUnA         | 116370.415         | 5.496          | M7PFUnA     | 5987 <b>2</b>  | 5.496          | 114.09          | 9.0927           | 90.93         | 18 <b>25</b> .51  | 1.33         |      |
| NFDHA         | 73399.291          | 3.382          | M4PFHpA     | 42321          | 4. <b>0</b> 67 | 119.92          | 17 <b>.6</b> 041 | 88.02         | 427.96            | 1.68         |      |





4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS



### ADONA



#### 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA





Musa-lo-Charge (m/z)



### M2PFTA







#### M7PFUnA

M3PFBS



BM (5.219-5.469 min. 25 scens) (505.

8.0

Co.mls



M8F0SA

Co.nte

78 0) 220 1224/

끹



e 6,2 6,4 Acquisition Line (min)

5,8

N,a C,3 a (nim) emit noi.ieiupo-

5,8

520 100 500

Viusa-lo-Charge (m/z)

A.





## PFHxA



### **NMeFOSE**



### PFHxS



#### d7-NMeFOSE





Musa-lo-Charge (m/z)





1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |             |               |                    | Client Sample ID:             | SMP 7, EXP 13, IMP 1A REP A,B |          |      |      |  |  |
|------------------|----------------------|-------------|---------------|--------------------|-------------------------------|-------------------------------|----------|------|------|--|--|
| Collect Date:    | 06/04/20             | Time:       | 1 <b>10</b> 0 |                    | GCAL Sample ID:               | 22012227909                   |          |      |      |  |  |
| Matrix:          | Water                | % Moisture: | NA            |                    | Instrument ID:                | QQQ1                          | QQQ1     |      |      |  |  |
| Sample Amt:      | 125                  | mL          |               |                    | Lab File ID:                  | 2201224A_48.c                 | k        |      |      |  |  |
| Injection Vol.:  | 1.0                  |             |               | (µL)               | GC Column:                    | ACC-C18-30M                   | D        | 2.1  | (mm) |  |  |
| Prep Final Vol.: | 1000                 |             |               | (µ∟)               | Dilution Factor:              | 1                             | Analyst: | MRA  |      |  |  |
| Prep Date:       |                      |             |               |                    | Analysis Date:                | 12/24/20                      | Time:    | 2351 |      |  |  |
| Prep Batch:      | 700361               |             |               |                    | Analytical Batch:             | 700789                        |          |      |      |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |             |               | Analytical Method: | PFAS Isotope Dilution QSM B15 |                               |          |      |      |  |  |

CONCENTRATION UNITS: ng/L

| CAS              | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2       | 6:2 Fluorotelomersulfonic acid | 4.00   | U | 1.79 | 4.00 | 10.0 |
| 39108-34-4       | 8:2 Fluorotelomersulfonic acid | 4.00   | U | 1.63 | 4.00 | 10.0 |
| 375-73-5         | Perfluorobutanesulfonic acid   | 4.00   | U | 1.47 | 4.00 | 10.0 |
| 375-22-4         | Perfluorobutanoic acid         | 4.00   | U | 2.13 | 4.00 | 10.0 |
| 335-76-2         | Perfluorodecanoic acid         | 4.00   | U | 1.65 | 4.00 | 10.0 |
| 375-85-9         | Perfluoroheptanoic acid        | 4.00   | U | 1.85 | 4.00 | 10.0 |
| 355-46 <b>-4</b> | Perfluorohexanesulfonic acid   | 4.00   | U | 1.64 | 4.00 | 10.0 |
| 307-24-4         | Perfluorohexanoic acid         | 4.00   | U | 1.94 | 4.00 | 10.0 |
| 375-95-1         | Perfluorononanoic acid         | 4.00   | U | 1.68 | 4.00 | 10.0 |
| 1763-23-1        | Perfluorooctanesulfonic acid   | 4.00   | U | 1.70 | 4.00 | 10.0 |
| 335-67-1         | Perfluorooctanoic acid         | 4.00   | U | 1.80 | 4.00 | 10.0 |
| 2706-90-3        | Perfluoropentanoic acid        | 4.00   | U | 2.35 | 4.00 | 10.0 |
| 2058-94-8        | Perfluoroundecanoic acid       | 4.00   | U | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

1

Comment MRA,QQQ1;700361

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

#### **Batch Data Path** Last Calib Update

12/24/2020 15:17

Position Vial 41 Samp Name 22012227905 Dilution Inj Vol 2 Samp Type Sample

PFASWiscExpan.m Acq Method Acq Date

Data File

12/24/2020 23:51

2201224A\_48.d

Sample Chromatogram



## Quantitation Results

|                       |                  |                        |             |                |                | ISID/Surr       | Conc             | Spike |                  |      |      |
|-----------------------|------------------|------------------------|-------------|----------------|----------------|-----------------|------------------|-------|------------------|------|------|
| Compound              | Response         | RT                     | ISTD        | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | %Rec  | SNR              | Symm | MInt |
| M2PFDA                | 206472.239       | 5.197                  |             |                |                | 12 <b>0.</b> 67 | 24.1330          |       | 3577.09          | 1.23 |      |
| M2PFHxA               | 335706.707       | 3.491                  |             |                |                | 125.93          | 50.3718          |       | <b>1747</b> 6.39 | 1.93 |      |
| M2PFOA                | 157513.659       | 4.499                  |             |                |                | 124.67          | 24.9336          |       | 4054.16          | 1.96 |      |
| M4PFOS                | 56740.496        | 4.893                  |             |                |                | 116.58          | 23.3166          |       | 8888.05          | 1.41 |      |
| M3PFBA                | 6214.708         | 0.513                  |             |                |                | 0.00            | 4.8363           |       | 258.55           | 1.32 |      |
| MP <b>FOA</b>         | 504.244          | 4.509                  |             |                |                | 0.00            | 24 <b>.749</b> 1 |       | 9.79             | 1.04 |      |
| HFPQ-DA               | 0.000            | 3.684                  | M3HFPODA    | 3106           | 3.693          | 105.92          |                  |       | 2. <b>1</b> 6    | 1.00 | m    |
| 4:2 FTS               | 131.401          | 3.458                  | M2 4:2 FT\$ | 12805          | 3.458          | 115.63          | 0.0262           |       | <b>3</b> .54     | 1.77 |      |
| 6:2 FTS               | 443.246          | 4.477                  | M2 6:2 FTS  | 22837          | 4.487          | 104.08          | 0.0561           |       | 7.95             | 1.23 |      |
| ADONA                 | 295.382          | 4.159                  | M8PFOA      | 21 <b>4</b> 84 | 4 <b>.499</b>  | 1 <b>02.</b> 42 | 0.0156           |       | 16.27            | 1.81 |      |
| 8:2 FTS               | 247.396          | 5.185                  | M2 8:2 FTS  | 10568          | 5.185          | 102.61          | 0.0354           |       | 33.58            | 1.87 |      |
| FOSA                  | 128.361          | 5.303                  | M8FOSA      | 22574          | 5.291          | 102.60          | 0.0122           |       | 54.72            | 1.13 |      |
| 9CI-PF3ONS            | 396.472          | 5.080                  | M8PFO\$     | 5474           | 4,893          | 1 <b>16.16</b>  | 0.0075           |       | 26.59            | 2.10 |      |
| PFDS                  | 25.312           | 5.494                  | M6PFDA      | 34800          | 5.196          | 112.59          | 0.0138           |       | 5.44             | 2.53 |      |
| 11 <b>CI-</b> PF3OUdS | 131.723          | 5.689                  | M8PFOS      | 5474           | 4.893          | 1 <b>16.16</b>  | 0.0108           |       | 10 <b>.72</b>    | 1.19 |      |
| PFHpS                 | 57.211           | 4.549                  | M8PFOA      | 21181          | 1.199          | 102.12          | 0.0175           |       | 2.99             | 0.99 |      |
| 10:2 FTS              | 105.523          | 5.816                  | M2 8:2 FTS  | 10568          | 5.185          | 102.61          | 0.0318           |       | 53.97            | 2.20 |      |
| PFNS                  | 46.357           | 5.205                  | M9PFNA      | 26888          | 4.874          | 1 <b>00.</b> 97 | 0.0312           |       | 35.54            | 1.78 |      |
| PFDoS                 | 48.679           | 6.168                  | M8PFOS      | 5474           | 4,893          | 116.16          | 0.0180           |       | 3.30             | 2.82 |      |
| PFPeS                 | 47.92 <b>6</b>   | 3.647                  | M5PFHxA     | 2844 <b>1</b>  | 3.490          | 105.88          | 0.0156           |       | 1.38             | 1.35 |      |
| PFODA                 | 136.897          | 8.227                  | M2PFHxDA    | 30882          | 7.596          | 91.27           | 0.0396           |       | 11.13            | 1.42 |      |
| NEtFOSAA              | 60.537           | 5.495                  | d5-NEtFOSAA | 13 <b>0</b> 37 | 5.484          | 103.81          | 0.0166           |       | 36. <b>7</b> 4   | 1.54 |      |
| PFH×DA                | 413.678          | 7.599                  | M2PFHxDA    | 30882          | 7.596          | 91.27           | 0.1374           |       | 7.87             | 1.72 |      |
| NMeF0\$AA             | 67.762           | 5.371                  | d3-NMeFOSAA | 11217          | 5.328          | 117.72          | 0.0187           |       | 25.17            | 0.54 |      |
| PFBA                  | 14 <b>86.734</b> | 0.515                  | MPFBA       | 37482          | 0.511          | 1 <b>06.</b> 07 | 0.1539           |       | 19.40            | 1.47 |      |
| PFBS                  | 31.479           | 2.516                  | M3PFBS      | 15 <b>0</b> 58 | 2 <b>4</b> 94  | 127.65          | 0.0068           |       | 1.86             | 1.17 |      |
| NMeFOSA               | 8.423            | 5.875                  | d-NMcFOSA   | 15238          | 5.927          | 90.64           | 0.0059           |       | 2.34             | 0.71 |      |
| PFDA                  | 491.909          | 5,197                  | M6PFDA      | 34800          | 5.196          | 112.59          | 0.0469           |       | 7.10             | 1.91 |      |
| PFDoA                 | 181.247          | 5.818                  | MPFDoA      | 39745          | 5.818          | 105.56          | 0.0220           |       | 5.64             | 1.67 |      |
| NEtFOSA               | 25.418           | 6.247                  | d-NEtFOSA   | 10862          | 6.216          | 91.53           | 0.0170           |       | 1.52             | 1.20 |      |
| PFHpA                 | 645.302          | 1.067                  | M4PFHpA     | 38447          | 4.067          | 108.95          | 0.0822           |       | 14.50            | 1.82 |      |
| PFHxA                 | 0.000            | 3.493                  | M5PFH×A     | 28441          | 3.490          | 105.88          |                  |       | 7.26             | 1.00 | m    |
| NMeFOSE               | 18.012           | 5.964                  | d7-NMeFOSE  | 22709          | 5. <b>94</b> 3 | 97.60           | 0.0076           |       | 1.69             | 0.72 |      |
| PFLIxS                | 122.750          | 4.137                  | M3PFI lxS   | 10998          | 4.136          | 110.14          | 0.0249           |       | 6.05             | 1.33 | m    |
| PFNA                  | 259.091          | 4 <b>.</b> 86 <b>4</b> | M9PFNA      | 26888          | 4.874          | 1 <b>00.</b> 97 | 0.0309           |       | 1.98             | 1.57 |      |
| NETFOSE               | 13.004           | 6.244                  | d9-NEtFOSE  | 21325          | 6.223          | 102.58          | 0.0055           |       | 1.26             | 1.53 |      |
| PFOA                  | 603.279          | 4.500                  | M8PFOA      | 21484          | 4.499          | 102.42          | 0.0996           |       | 6.18             | 1.17 | m    |
| PFOS                  | 135.216          | 4.904                  | M8PFOS      | 5474           | 4.893          | 116.16          | 0.0271           |       | 2.72             | 1.12 | m    |
| PFPeA                 | 603.635          | 1.637                  | M5PFPeA     | 17235          | 1.645          | 102.50          | 0.1490           |       | 1.43             | 1.45 |      |
| PFMPA                 | 93.1 <b>18</b>   | 0.776                  | M5PFPeA     | 17235          | 1.645          | 10 <b>2.50</b>  | 0.0238           |       | 3.42             | 1.33 |      |
| PFTA                  | 257.456          | 6.614                  | M2PFTA      | 30104          | 6 <b>.62</b> 3 | 94.72           | 0.0482           |       | 9.87             | 1.39 |      |
| PFMBA                 | 70.241           | 2.520                  | M5PFH×A     | 28441          | 3.490          | 105.88          | 0.0182           |       | 3.34             | 1.02 |      |
| PFTrDA                | 220.351          | 6.201                  | MPFDoA      | 39745          | 5.818          | 105.56          | 0.0259           |       | 1.61             | 4.75 |      |
| PFEESA                | 180.783          | 3.263                  | M3PFHxS     | 10998          | 4.136          | 1 <b>10.</b> 14 | 0.0178           |       | 6.78             | 1.48 |      |
| PFUnA                 | 398.458          | 5.496                  | M7PFUnA     | 58250          | 5.496          | 1 <b>11.00</b>  | 0.0320           |       | 11.81            | 2.15 |      |
| NFDHA                 | 43.93 <b>0</b>   | 3.372                  | M4PFHpA     | 38447          | 4.067          | 108.95          | 0.0116           |       | 2.58             | 1.55 |      |



#### d3-NMeFOSAA



#### d5-NEtFOSAA









### M5PFPeA



### M6PFDA



#### M7PFUnA





#### NEtFOSAA











1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |             |      |                    | Client Sample ID:             | SMP 8, EXP 13, IMP 3A REP A,B |             |      |      |  |  |
|------------------|----------------------|-------------|------|--------------------|-------------------------------|-------------------------------|-------------|------|------|--|--|
| Collect Date:    | 06/04/20             | Time:       | 1300 |                    | GCAL Sample ID:               | 22012227910                   |             |      |      |  |  |
| Matrix:          | Water                | % Moisture: | NA   |                    | Instrument ID:                | QQQ1                          | <u>QQQ1</u> |      |      |  |  |
| Sample Amt:      | 125                  | mL          |      |                    | Lab File ID:                  | 2201224A_49.c                 | k           |      |      |  |  |
| Injection Vol.:  | 1.0                  |             |      | (µL)               | GC Column:                    | ACC-C18-30M                   | D           | 2.1  | (mm) |  |  |
| Prep Final Vol.: | 1000                 |             |      | (µ∟)               | Dilution Factor:              | 1                             | Analyst:    | MRA  |      |  |  |
| Prep Date:       |                      |             |      |                    | Analysis Date:                | 12/25/20                      | Time:       | 0005 |      |  |  |
| Prep Batch:      | 700361               |             |      |                    | Analytical Batch:             | 700789                        |             |      |      |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |             |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |                               |             |      |      |  |  |

CONCENTRATION UNITS: ng/L

| CAS              | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2       | 6:2 Fluorotelomersulfonic acid | 4.00   | U | 1.79 | 4.00 | 10.0 |
| 39108-34-4       | 8:2 Fluorotelomersulfonic acid | 4.00   | U | 1.63 | 4.00 | 10.0 |
| 375-73-5         | Perfluorobutanesulfonic acid   | 4.00   | U | 1.47 | 4.00 | 10.0 |
| 375-22-4         | Perfluorobutanoic acid         | 4.00   | U | 2.13 | 4.00 | 10.0 |
| 335-76-2         | Perfluorodecanoic acid         | 4.00   | U | 1.65 | 4.00 | 10.0 |
| 375-85-9         | Perfluoroheptanoic acid        | 4.00   | U | 1.85 | 4.00 | 10.0 |
| 355-4 <b>6-4</b> | Perfluorohexanesulfonic acid   | 4.00   | U | 1.64 | 4.00 | 10.0 |
| 307-24-4         | Perfluorohexanoic acid         | 4.00   | U | 1.94 | 4.00 | 10.0 |
| 375-95-1         | Perfluorononanoic acid         | 4.00   | U | 1.68 | 4.00 | 10.0 |
| 1763-23-1        | Perfluorooctanesulfonic acid   | 4.00   | U | 1.70 | 4.00 | 10.0 |
| 335-67-1         | Perfluorooctanoic acid         | 4.00   | U | 1.80 | 4.00 | 10.0 |
| 2706-90-3        | Perfluoropentanoic acid        | 4.00   | U | 2.35 | 4.00 | 10.0 |
| 2058-94-8        | Perfluoroundecanoic acid       | 4.00   | U | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227910 Dilution

1

Comment MRA,QQQ1;700361

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

Samp Type Sample

#### **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_49.d PFASWiscExpan.m

12/25/2020 0:05

12/24/2020 15:17

Position Vial 42

Inj Vol 2

Sample Chromatogram =) 22019246\_48,d (2201222281



## Quantitation Results

|                |                 |       |                      |                    |                | ISTD/Surr       | Conc                     | Spike |                  |                  |      |
|----------------|-----------------|-------|----------------------|--------------------|----------------|-----------------|--------------------------|-------|------------------|------------------|------|
| Compound       | Response        | RT    | ISTD                 | ISTD Resp          | ISTD RT        | %Rec            | (ng/mL)                  | %Rec  | SNR              | Symm             | MInt |
| M2PFDA         | 203306.408      | 5.186 |                      |                    |                | 118.81          | 23.7630                  |       | 3650.21          | 1.8 <del>9</del> |      |
| M2PFHxA        | 335168.221      | 3.491 |                      |                    |                | 125.73          | 50.2910                  |       | 46 <b>45.</b> 21 | 2.05             |      |
| M2PFOA         | 155655.022      | 4.499 |                      |                    |                | 123.20          | 24.6394                  |       | 13908.83         | 1.92             |      |
| M4PFOS         | 59957.658       | 4.893 |                      |                    |                | 123.19          | 24 <b>.6</b> 386         |       | 2406.98          | 1.31             |      |
| M3PFBA         | 6348.355        | 0.513 |                      |                    |                | 0.00            | 4 <b>.9</b> 4 <b>0</b> 3 |       | 147.78           | 1.31             |      |
| MPFOA          | 449.241         | 4.499 |                      |                    |                | 0.00            | 22 <b>.0</b> 494         |       | 11.21            | 1.89             |      |
| HFPO-DA        | 299.263         | 3.725 | M3HFPODA             | 3334               | 3.693          | 113.67          | 0.7051                   |       | 0.73             | 2.23             | m    |
| 4:2 FT\$       | 222.104         | 3.448 | M2 4:2 FT\$          | 12534              | 3.458          | 113.18          | 0.0452                   |       | 0.36             | 1.19             |      |
| 6:2 FTS        | 624.280         | 4.456 | M2 6:2 FTS           | 22660              | 4.487          | 103 <b>.2</b> 7 | 0.0797                   |       | 6.27             | 2.28             |      |
| ADONA          | 142.087         | 4.159 | M8PFOA               | 21569              | 4. <b>499</b>  | 102.83          | 0.0075                   |       | 3.31             | 1.66             |      |
| 8:2 FTS        | 91. <b>4</b> 06 | 5.185 | M2 8:2 FTS           | 12458              | 5.185          | 12 <b>0.</b> 97 | 0.0111                   |       | 1.46             | 2.24             |      |
| FOSA           | 111.165         | 5.293 | M8FOSA               | 23147              | 5.291          | 105.20          | 0.0103                   |       | 94.61            | 1.85             |      |
| 9CI-PF3ONS     | 176.646         | 5.080 | M8PFO\$              | 5165               | 4,893          | 109.61          | 0.0035                   |       | 13,32            | 1.39             |      |
| PFDS           | 9.615           | 5.567 | M6PFDA               | 35238              | 5.186          | 114.01          | 0.0052                   |       | 1.30             | 0.90             |      |
| 11CI-PF3OUdS   | 10.794          | 5.700 | M8PFOS               | 51 <b>65</b>       | 4.893          | 109.61          | 0.0009                   |       | 8.38             | 1.17             |      |
| PFHpS          | 87.850          | 4.445 | M8PFOA               | 21569              | 1.199          | 102.83          | 0.0268                   |       | 1.25             | 1.18             |      |
| 10:2 FTS       | 59.074          | 5.858 | M2 8:2 FTS           | 12458              | 5.185          | 12 <b>0.</b> 97 | 0.0151                   |       | 3.65             | 0 <b>.59</b>     |      |
| PFNS           | 18.606          | 5.351 | M9PFNA               | 26671              | 4.874          | 100.16          | 0.0126                   |       | 5.66             | 1.18             |      |
| PFDoS          | 9.834           | 6,189 | M8PFOS               | 5165               | 4,893          | 109.61          | 0.0039                   |       | 1.80             | 0.86             |      |
| PFPeS          | 50.277          | 3.657 | M5PFHxA              | 28 <del>6</del> 46 | 3.490          | 106.64          | 0.0163                   |       | 7.83             | 2.25             |      |
| PFODA          | 80.510          | 8.216 | M2PFHxDA             | 31 <b>0</b> 76     | 7.596          | 91.85           | 0.0231                   |       | 5.39             | 1.11             |      |
| NEtFOSAA       | 34.477          | 5.484 | d5-NEtFOSAA          | 12270              | 5.484          | 97.70           | 0.0100                   |       | 3.48             | 1.36             |      |
| PFH×DA         | 411 <b>.743</b> | 7.589 | M2PFHxDA             | <b>3107</b> 6      | 7.596          | 91.85           | 0.1359                   |       | 8.87             | 2.74             |      |
| NMeF0SAA       | <b>30.</b> 841  | 5.339 | d3-NMeFOSAA          | 10174              | 5.328          | 106.77          | 0.0094                   |       | 24.40            | 1.58             |      |
| PFBA           | 565.381         | 0.474 | MPFBA                | 38792              | 0.511          | 109.78          | 0.0565                   |       | 5.45             | 1.45             | m    |
| PFBS           | 43.932          | 2,516 | M3PFBS               | 15 <b>54</b> 8     | 2.50 <b>4</b>  | 131.81          | 0.0092                   |       | 1.72             | 1.05             |      |
| NMcFOSA        | 109.014         | 5,948 | d-NMcFOSA            | 15 <b>774</b>      | 5.927          | 93.83           | 0.0742                   |       | 1.89             | 1.03             |      |
| PFDA           | 556.414         | 5,187 | M6PFDA               | 35238              | 5.186          | 1 <b>14.</b> 01 | 0.0524                   |       | 13.27            | 1.82             |      |
| P <b>FD</b> oA | 214.704         | 5.818 | MPFDoA               | 38984              | 5,818          | 103.54          | 0.0266                   |       | 31.87            | 2.19             |      |
| NETFOSA        | 8.091           | 6.237 | d-NEtFOSA            | 11806              | 6,216          | 99.48           | 0.0050                   |       | 0.70             | 0.60             |      |
| PFHDA          | 427.575         | 4.078 | M4PFHbA              | 40092              | <b>4.0</b> 67  | 113.61          | 0.0522                   |       | 2,45             | 2.47             |      |
| PFHxA          | 990.840         | 3.493 | M5PFHxA              | 28646              | 3.490          | 106.64          | 0.1311                   |       | 2.71             | 1.51             |      |
| NMeFOSE        | 51.758          | 5.953 | d7-NMeFOSE           | 23965              | 5. <b>94</b> 3 | 103.00          | 0.0207                   |       | 4.46             | 1.30             |      |
| PFLIxS         | 29,100          | 4.168 | M3PFI IxS            | 11067              | 4.136          | 110.83          | 0.0059                   |       | 5.60             | 0.17             | m    |
| PFNA           | <b>291.94</b> 8 | 4.874 | M9PENA               | 26671              | 4.874          | 100.16          | 0.0352                   |       | 0.64             | 0.30             |      |
| NETFOSE        | 29,562          | 6.493 | d9-NEtFOSE           | 22198              | 6.223          | 106.78          | 0.0121                   |       | 1.38             | 0.36             |      |
| PFOA           | 543.907         | 4.510 | M8PFOA               | 21569              | 4,499          | 102.83          | 0.0895                   |       | 2.46             | 1.23             | m    |
| PFOS           | 182.390         | 4.894 | M&PFOS               | 5165               | 4.893          | 109.61          | 0.0388                   |       | 5.63             | 1.46             | m    |
| PFPeA          | 213.825         | 1.648 | M5PFPeA              | 17750              | 1,645          | 105.56          | 0.0512                   |       | 8,84             | 0.54             |      |
| PEMPA          | 76,688          | 0.745 | M5PFPeA              | 17750              | 1.645          | 105.56          | 0.0190                   |       | 1.79             | 2.25             |      |
| PETA           | 239.840         | 6.624 | M2PFTA               | 30368              | 6.623          | 95.55           | 0.0445                   |       | 16.58            | 1.21             |      |
| PFTrDA         | 447.454         | 6.201 | MPFDoA               | 38984              | 5.818          | 103.54          | 0.0536                   |       | 3.26             | 3.07             |      |
| PFEESA         | 132.537         | 3.242 | M3PFH <sub>x</sub> S | 11067              | 4.136          | 110.83          | 0.0130                   |       | 5.64             | 0.61             |      |
| PFUnA          | 348.866         | 5.507 | M7PFUnA              | 59 <b>0</b> 40     | 5.496          | 112.51          | 0.0276                   |       | 1.89             | 0.48             |      |
| NFDHA          | 45.864          | 3.382 | M4PFHDA              | 40092              | 4. <b>0</b> 67 | 113.61          | 0.0116                   |       | 2.67             | 1.33             |      |
|                |                 |       |                      |                    |                |                 |                          |       |                  |                  |      |





4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS



### ADONA



#### 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA









### M5PFHxA



### M5PFPeA



#### M6PFDA



#### M7PFUnA





Musa-lo-Charge (m/z)





85

Ţ Acquisition Time (min)

5 5

6 6,5 Acquisition Linee (min)

5,5

с 400 £00 Мижа-Io-Charujei (m/z)

200





1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |           |    | Client Sample ID:  | MB2127843                     |                  |          |      |      |  |  |
|------------------|----------------------|-----------|----|--------------------|-------------------------------|------------------|----------|------|------|--|--|
| Collect Date:    | NA                   | Time:     | NA |                    | GCAL Sample ID:               | 21 <b>278</b> 43 | 2127843  |      |      |  |  |
| Matrix:          | Water %              | Moisture: | NA |                    | Instrument ID:                | QQQ1             |          |      |      |  |  |
| Sample Amt:      | <b>12</b> 5 m        | ٦L        |    |                    | Lab File ID:                  | 2201224A_41.d    | d        |      |      |  |  |
| Injection Vol.:  | 1.0                  |           |    | (µL)               | GC Column:                    | ACC-C18-30M      | D        | 2.1  | (mm) |  |  |
| Prep Final Vol.: | 1000                 |           |    | (µ∟)               | Dilution Factor:              | 1                | Analyst: | MRA  |      |  |  |
| Prep Date:       |                      |           |    |                    | Analysis Date:                | 12/24/20         | Time:    | 2211 |      |  |  |
| Prep Batch:      | 700361               |           |    |                    | Analytical Batch:             | 700789           |          |      |      |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |           |    | Analytical Method: | PFAS Isotope Dilution QSM B15 |                  |          |      |      |  |  |

CONCENTRATION UNITS: ng/L

| CAS                        | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|----------------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2                 | 6:2 Fluorotelomersulfonic acid | 4.00   | U | 1.79 | 4.00 | 10.0 |
| 39108-34-4                 | 8:2 Fluorotelomersulfonic acid | 4.00   | U | 1.63 | 4.00 | 10.0 |
| 375-73-5                   | Perfluorobutanesulfonic acid   | 4.00   | U | 1.47 | 4.00 | 10.0 |
| 375-22-4                   | Perfluorobutanoic acid         | 4.00   | U | 2.13 | 4.00 | 10.0 |
| 335-76-2                   | Perfluorodecanoic acid         | 4.00   | U | 1.65 | 4.00 | 10.0 |
| 375-85-9                   | Perfluoroheptanoic acid        | 4.00   | U | 1.85 | 4.00 | 10.0 |
| 355-4 <b>6-4</b>           | Perfluorohexanesulfonic acid   | 4.00   | U | 1.64 | 4.00 | 10.0 |
| 30 <b>7-</b> 24 <b>-</b> 4 | Perfluorohexanoic acid         | 4.00   | U | 1.94 | 4.00 | 10.0 |
| 375-95-1                   | Perfluorononanoic acid         | 4.00   | U | 1.68 | 4.00 | 10.0 |
| 1763-23-1                  | Perfluorooctanesulfonic acid   | 4.00   | U | 1.70 | 4.00 | 10.0 |
| 335-67-1                   | Perfluorooctanoic acid         | 4.00   | U | 1.80 | 4.00 | 10.0 |
| 2706-90-3                  | Perfluoropentanoic acid        | 4.00   | U | 2.35 | 4.00 | 10.0 |
| 2058-94-8                  | Perfluoroundecanoic acid       | 4.00   | U | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

#### **Batch Data Path** Last Calib Update

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 12/24/2020 15:17

Samp Name 2127843

Samp Type Sample

Dilution

1

Comment MRA,QQQ1;700361

Data File 2201224A\_41.d PFASWiscExpan.m Acq Method 12/24/2020 22:11 Acq Date

## Sample Chromatogram



Position Vial 34

Inj Vol 2

## Quantitation Results

|               |                   |       |                  |                        |                | ISID/Surr       | Conc                     | Spike |                  |              |      |
|---------------|-------------------|-------|------------------|------------------------|----------------|-----------------|--------------------------|-------|------------------|--------------|------|
| Compound      | Response          | RT    | ISTD             | ISTD Resp              | ISTD RT        | %Rec            | (ng/mL)                  | %Rec  | SNR              | Symm         | MInt |
| M2PFDA        | 213892.221        | 5.197 |                  |                        |                | 125.00          | 25.0003                  | 1     | 3107.07          | 1.22         |      |
| M2PFHxA       | 351308.882        | 3.491 |                  |                        |                | 131.78          | 52.7129                  |       | 5092. <b>1</b> 1 | 1.92         |      |
| M2PFOA        | 158137.672        | 4.499 |                  |                        |                | 125.16          | 25.0323                  | 1     | 1781.64          | 1.93         |      |
| M4PFOS        | 59266.121         | 4.893 |                  |                        |                | 121.77          | <b>2</b> 4 <b>.</b> 3544 |       | 36 <b>45.1</b> 7 | 1.36         |      |
| M3PFBA        | 6601.4 <b>1</b> 7 | 0.503 |                  |                        |                | 0.00            | 5.1372                   |       | 224.45           | 1.75         |      |
| MP <b>FOA</b> | 565.436           | 4.499 |                  |                        |                | 0.00            | 27.7525                  |       | 16. <b>7</b> 9   | 1.63         |      |
| HFPO-DA       | 59.164            | 3.578 | M3HFPODA         | 3276                   | 3.693          | 111.69          | 0.1419                   |       | 0.55             | 1.92         |      |
| 4:2 FTS       | 65.162            | 3.448 | M2 4:2 FT\$      | 12760                  | 3.458          | 115.23          | 0.0130                   |       | 0.72             | 1.97         |      |
| 6:2 FTS       | 333.529           | 4.487 | M2 6:2 FTS       | <b>2</b> 4634          | 4 <b>.4</b> 87 | 1 <b>12.2</b> 7 | 0.0392                   |       | 3.59             | 1.57         |      |
| ADONA         | 41.623            | 4.159 | M8PFOA           | 22321                  | 4 <b>.499</b>  | 10 <b>6.</b> 41 | 0.0021                   |       | 3.74             | 0.60         |      |
| 8:2 FTS       | 47.619            | 5.196 | M2 8:2 FTS       | 12125                  | 5.185          | 117.73          | 0.0059                   |       | 16. <b>1</b> 3   | 1.38         |      |
| FOSA          | 91.915            | 5.282 | M8FOSA           | 2247 <b>1</b>          | 5.291          | 102.13          | 0.0088                   |       | <b>4</b> 9.26    | 2.04         |      |
| 9CI-PF3ONS    | 122.819           | 5.080 | M8PFOS           | 5486                   | 4,893          | 1 <b>16.</b> 41 | 0.0023                   |       | 7.47             | 1.66         |      |
| PFDS          | 0.710             | 5.442 | M6PFDA           | 33562                  | 5.196          | 108.59          | 0.0004                   |       | 0.01             | 2.05         | m    |
| 11CI-PF3OUdS  | 23.299            | 5.669 | M8PFOS           | 5 <b>4</b> 86          | 4.893          | 1 <b>16.</b> 41 | 0.0019                   |       | 2.70             | 2.21         |      |
| PFHpS         | 33.554            | 4.539 | M8PFOA           | 22321                  | 1.199          | 106.41          | 0.0099                   |       | 1.63             | 1.19         |      |
| 10:2 FTS      | 36.999            | 5.806 | M2 8:2 FTS       | 12125                  | 5.185          | 117.73          | 0 <b>.009</b> 7          |       | 4.77             | 1.54         |      |
| PFNS          | 36.174            | 5.194 | M9PFNA           | 29152                  | 4.874          | 109.47          | 0.0225                   |       | 12.60            | 1.4 <b>0</b> |      |
| PFDoS         | 13.200            | 6.189 | M8PFOS           | 5486                   | 4.893          | 1 <b>16.</b> 41 | 0.0049                   |       | 1.46             | 1.20         |      |
| PFPeS         | 39.425            | 3.647 | M5PFHxA          | 3137 <b>1</b>          | 3.490          | 1 <b>16.79</b>  | 0.0116                   |       | 2.47             | 0.96         |      |
| PFODA         | 70.627            | 8.227 | M2PFHxDA         | 34553                  | 7.606          | 102.12          | 0.0183                   |       | 5.19             | 1.31         |      |
| NEtFOSAA      | 0.407             | 5.484 | d5-NEtFOSAA      | 12835                  | 5.484          | 102.20          | 0.0001                   |       | 0.05             | 0.28         | m    |
| PFH×DA        | 449.367           | 7.599 | M2PFHxDA         | 34553                  | 7.606          | 102.12          | 0.1334                   |       | 2.56             | 1.54         |      |
| NMeFO\$AA     | 43.855            | 5.339 | d3-NMeFOSAA      | 9887                   | 5.328          | 103.76          | 0.0137                   |       | 21.12            | 0.81         |      |
| PFBA          | 251.582           | 0.495 | MPFBA            | 41318                  | 0.511          | 116.93          | 0.0236                   |       | 6.61             | 2.38         |      |
| PFBS          | 177 <b>.44</b> 2  | 2.475 | M3PFBS           | 16639                  | 2.494          | 141.06          | 0.0346                   |       | 6.94             | 1.10         |      |
| NMeFOSA       | 23.480            | 5.792 | d-NMcFOSA        | 10750                  | 5.927          | 63.94           | 0.0235                   |       | 0.64             | 1.00         |      |
| PFDA          | 377.294           | 5,187 | M6PFDA           | 33562                  | 5.196          | 108.59          | 0.0373                   |       | 5.22             | 1.92         |      |
| PFDoA         | 211.273           | 5.839 | MPFDoA           | 40135                  | 5.828          | 106.59          | 0.0254                   |       | 13.99            | 0.79         |      |
| NETFOSA       | 15.870            | 6.227 | d-NEtFOSA        | 7 <b>8</b> 49          | 6.226          | 6 <b>6.</b> 14  | 0.0147                   |       | 1.68             | 1.08         |      |
| PFHpA         | 154.484           | 1.078 | M4PF <b>H</b> pA | <b>4</b> 0 <b>0</b> 77 | 4.067          | 113.57          | 0.0189                   |       | 2.77             | 2.15         |      |
| PFHxA         | 583.465           | 3.493 | M5PFHxA          | 31371                  | 3.490          | 116.79          | 0.0705                   |       | 6.52             | 2.08         |      |
| NMeFOSE       | 21.115            | 5.974 | d7-NMeFOSE       | 22702                  | 5,953          | 9 <b>7.</b> 57  | 0.0089                   |       | 2 <b>.1</b> 4    | 2.37         |      |
| PFLIxS        | 164.806           | 4.137 | M3PFI IxS        | 11118                  | 4.136          | 111.35          | 0.0331                   |       | 2.94             | 0.26         | m    |
| PFNA          | 80.471            | 4.864 | M9PFNA           | 29152                  | 4.874          | 109.47          | 0.0089                   |       | 5.81             | 3.08         |      |
| NETFOSE       | 23.950            | 6.161 | d9-NEtFOSE       | 21277                  | 6.223          | 102.35          | 0.0102                   |       | 3.45             | 1.49         |      |
| PFOA          | 214.276           | 4.489 | M8PFOA           | 22321                  | 4.499          | 106.41          | 0.0341                   |       | 1.92             | 1.09         |      |
| PFOS          | 283.617           | 4.883 | M8PFOS           | 5486                   | 4.893          | 116.41          | 0.0568                   |       | 4.14             | 1.53         | m    |
| PFPeA         | 210.306           | 1.679 | M5PFPeA          | 18938                  | 1.635          | 112.62          | 0.0472                   |       | 2.13             | 0.54         |      |
| PFMPA         | 52.309            | 0.797 | M5PFPeA          | 18938                  | 1.635          | 112.62          | 0.0121                   |       | 1. <b>1</b> 4    | 0.80         |      |
| PFTA          | 221.663           | 6.624 | M2PFTA           | 30786                  | 6.623          | 9 <b>6.</b> 86  | 0.0406                   |       | 9.80             | 1.84         |      |
| PFMBA         | 38.884            | 2.520 | M5PFH×A          | 3137 <b>1</b>          | 3.490          | 116.79          | 0.0092                   |       | 1.59             | 1.50         |      |
| PFTrDA        | 415.938           | 6.253 | MPFDoA           | 40135                  | 5.828          | 106.59          | 0.0484                   |       | 1.19             | 2.24         |      |
| PFEESA        | 36.871            | 3.263 | M3PFHxS          | 11118                  | 4.136          | 111.35          | 0.0036                   |       | 1.45             | 0.74         |      |
| PFUnA         | 339.219           | 5.496 | M7PFUnA          | 61756                  | 5.496          | 117.68          | 0.0257                   |       | 5.45             | 2.27         |      |
| NFDHA         | 30.970            | 3.382 | M4P <b>FH</b> pA | 40 <b>0</b> 77         | 4 <b>.0</b> 67 | 113.57          | 0.0078                   |       | 2.13             | 1.50         |      |

285.0

301

50 (m/2

377.0 + 100

-

irge (m/z

0.8-0.6-0.4-

0.2-

5/0 560 580 Musa-lo-Charge (m/z)

5,4 5,6 5,8 8 Acquisition Firme (min)

#### HFPO-DA 220 224/ 41 IBM (3 3.6 (5 m h) (285.0->\*) 220 제이건 ×10 Co..nle t Found 끹 Co.mls -1,6-1,4-1,2-2 2-1,9-1.6-1.7-1.6-1,5-.5 1,25 2 57 ΆΛΙ 0,8-0,6-0,4-0,2-0-0,75-0.5-0.25-0.25-250 Charge (m/z) 3.5 3.6 3.7 3.9 equistion Time (min) 3.6 3.7 3.8 Acquisition Time (min) 3.5 Mass 4:2 FTS (BM (3.379-3.439 min, 11 secus) (327.0 /BM (327 2201224A 41. - MRM (3.2 2 ×10 '-3 -5 -----.0 , 327.0 -> 20.0 Rado = 79.0 (192.7 %) COLD.3 ×10 ×10 Counts 0.9-0,9 0,8 0,7-0,5nin. 0.8-0.7 0.6 0.5 ο, 0.4 0-3.2 3.3 9.4 3.5 S.6 Acquisition Time (mi ).3 3,4 5,5 3,6 Acquisition Time (n 200 5.2 3.3 **M3HFPODA** 287.0 -> 160.0 # ×10 <sup>3</sup> MRM (237.0-> 169 0) 220°224A 41. MBM (3.800-3.627 min, 22 scara) (287.0... i Si u ×10 <sup>3</sup>-3 693 ml ×10<sup>2</sup> 3.5-3-2.5-2.-1.5--0.5-0.5-0,6с, я 0.6-0.3 0.4-0.4 0.2 0.2 0а-4<del>.</del>5 3/4 8,5 3,6 3,7 8,8 3,9 Acquisition time (min) 3,4 3,5 3,6 3,7 3,8 Augustikin Hrve 5,5 200 225 250 275 6:2 FTS - #81 ( 127,0 ⇒ 407,0) 220°224A\_41,d ⊉ x10<sup>2</sup> 4.48° rin. 8 1.4-7,0 , 127,0 -> 81,0 Balio = 96,3 (815,6 MBLI(1457-4.621 mb 18 scens) (427 C Courts. ×10 <sup>2</sup> 4 ×10 Ц Surts .2 1.2-0.8 0.8 0.6-0.5 'N 02 0.1 4,4 quist is <u>к</u>,6 **4**,8 1,6 320 Ċ, 2ao ADONA . MRM (377,0 -> 251,0) 2201224A\_41,d 은 ×10 1<sup>-1</sup> 은 8,5-MBM (4.055-1.238 mln) (377 G-251) 2201 ×10 ×10 1 la Inte euris. 58,4 (22 8.5 6 ь,ь 4.150 min з. 5.5 5-2-AM 1.5 9,8 1.2200 300 8:2 FTS - MBM (527.0 -> 607.0) 220 224∧\_41.d ≝ ×10 <sup>2</sup>\_\_\_\_\_ S\_\_\_\_\_ 527.0 --월 末10 .0,527.0--81. MRM (5.164-5.267 min, 10 scans) (527.0.. ≝ ≭10 <sup>1</sup>\_\_\_\_ ≝ atio = 305.2 6-5-1-2---0-0.9-0.9 -3.0 0.8 0.7-0.7 0.6-0.5 0.4 0.4 5 5.2 5.4 5.6 Acquistion Time (min) s 5,2 5,4 5,6 Acquisition Time (min) 4.8 4.8 200 300 400 ŝ 100 d3-NMeFOSAA - VIRM (573.0 -> 51 5.0) 2201 224A\_41.d MRM (5.265-5.408 min, 23 secons) (573.C... ×10 " -6-5-4-3-2--×10<sup>-8</sup> XCD3 Nums. ×10 OLUS 3-2.5-2.5-2-7.5-2-5.2 5.4 5.6 Acquisition Time (min) 5.2 5.4 5.6 Acquisition Time (min) 540 560 5 620 Musa-Io-Cl harge (m/z) d5-NEtFOSAA - VIRM \$1 ×1( (539.0.-> 551.0) 2201224. ABM (5.411-5.635 min. 22 score) (589.0... 4EM (53 ×10 <sup>3</sup>\_ 3.6-3.6-2.6-2.6-2.5-1.5-5.21 jame' ×10 <sup>3-</sup> 213

5,2 5,4 5,6 5,8 6 Acquisition time (min)

0.5-

2.5-2.5-2.5-2-

0.5

5,2




PFPeS



### M5PFPeA

32

ala



9/1

5.6 3.8 280

290 300 310

### M6PFDA



#### M7PFUnA





Musa-lo-Charge (m/z)



e 6,2 6,4 Auguisitkin Line (min)

5,8

6 8,2 8,4 Acquisition time (min)

5,8

530 400 500

Viusa-lo-Charge (m/z)

1



d7-NMeFOSE







1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |      | Client Sample ID:  | LCS2127844                    |  |  |  |
|------------------|----------------------|------|--------------------|-------------------------------|--|--|--|
| Collect Date:    | NA Time: NA          |      | GCAL Sample ID:    | 2127844                       |  |  |  |
| Matrix:          | Water % Moisture:    | NA   | Instrument ID:     | QQQ1                          |  |  |  |
| Sample Amt:      | 125 mL               |      | Lab File ID:       | 2201224A_42.d                 |  |  |  |
| Injection Vol.:  | 1.0                  | (µL) | GC Column:         | ACC-C18-30M ID 2.1 (mm)       |  |  |  |
| Prep Final Vol.: | 1000                 | (µ∟) | Dilution Factor:   | 1 Analyst: MRA                |  |  |  |
| Prep Date:       |                      |      | Analysis Date:     | 12/24/20 Time: 2225           |  |  |  |
| Prep Batch:      | 700361               |      | Analytical Batch:  | 700789                        |  |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |  |  |  |

CONCENTRATION UNITS: ng/L

| CAS              | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2       | 6:2 Fluorotelomersulfonic acid | 77.0   |   | 1.79 | 4.00 | 10.0 |
| 39108-34-4       | 8:2 Fluorotelomersulfonic acid | 71.7   |   | 1.63 | 4.00 | 10.0 |
| 375-73-5         | Perfluorobutanesulfonic acid   | 53.4   |   | 1.47 | 4.00 | 10.0 |
| 375-22-4         | Perfluorobutanoic acid         | 69.8   |   | 2.13 | 4.00 | 10.0 |
| 335-76-2         | Perfluorodecanoic acid         | 68.2   |   | 1.65 | 4.00 | 10.0 |
| 375-85-9         | Perfluoroheptanoic acid        | 71.0   |   | 1.85 | 4.00 | 10.0 |
| 355-4 <b>6-4</b> | Perfluorohexanesulfonic acid   | 68.9   |   | 1.64 | 4.00 | 10.0 |
| 307-24-4         | Perfluorohexanoic acid         | 69.5   |   | 1.94 | 4.00 | 10.0 |
| 375-95-1         | Perfluorononanoic acid         | 68.1   |   | 1.68 | 4.00 | 10.0 |
| 1763-23-1        | Perfluorooctanesulfonic acid   | 78.5   |   | 1.70 | 4.00 | 10.0 |
| 335-67-1         | Perfluorooctanoic acid         | 79.9   |   | 1.80 | 4.00 | 10.0 |
| 2706-90-3        | Perfluoropentanoic acid        | 68.2   |   | 2.35 | 4.00 | 10.0 |
| 2058-94-8        | Perfluoroundecanoic acid       | 68.8   |   | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

### **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_42.d PFASWiscExpan.m

12/24/2020 22:25

Inj Vol 2

12/24/2020 15:17

Position Vial 35

Samp Name 2127844 Samp Type QC

1 Comment MRA,QQQ1;700361

Dilution



| -             |                     |                        |                  |                |                | ISTD/Surr              | Conc             | Spike          |                      |              |      |
|---------------|---------------------|------------------------|------------------|----------------|----------------|------------------------|------------------|----------------|----------------------|--------------|------|
| Compound      | Response            | RT                     | ISTD             | ISTD Resp      | ISTD RT        | %Rec                   | (ng/mL)          | %Rec           | SNR                  | Symm         | MInt |
| M2PFDA        | 185265.685          | 5.186                  |                  |                |                | 108.27                 | 21.6543          | 108.27         | 12080.95             | 1.87         |      |
| M2PFH×A       | 315433.861          | 3.491                  |                  |                |                | 1 <b>18.3</b> 2        | 4 <b>7.</b> 3299 | 118.32         | 4471.87              | 1.37         |      |
| M2PFOA        | 144962.859          | 4.499                  |                  |                |                | 114.73                 | 22.9468          | 114.73         | 4859.63              | 1.59         |      |
| M4PFOS        | <b>53381.14</b> 0   | 4.883                  |                  |                |                | 109.68                 | <b>21.936</b> 1  | 109.68         | 7710.75              | 2.05         |      |
| M3PFBA        | 5958.188            | 0.513                  |                  |                |                | 0.00                   | 4.6367           | 92.73          | <b>178.9</b> 4       | 1.18         |      |
| MPF <b>OA</b> | 636.730             | 4.499                  |                  |                |                | 0.00                   | 3 <b>1.</b> 2517 | 125.01         | 21.75                | 3.02         |      |
| HFPO-DA       | 11275.560           | 3.684                  | M3HFPODA         | 2612           | 3.683          | 89.07                  | 33.9044          | 113.01         | 74.96                | 1.54         |      |
| 4:2 FTS       | 35766.961           | 3.448                  | M2 4:2 FT\$      | 11563          | 3.458          | 104.42                 | <b>7.8</b> 977   | 84.47          | 259.98               | 2.00         |      |
| 6:2 FTS       | 66960.393           | 4.477                  | M2 6:2 FTS       | 20125          | 4.477          | 91.72                  | 9.6234           | 101.30         | <b>23</b> 18.04      | 1.96         |      |
| ADONA         | 171802.948          | 4.148                  | M8PFOA           | 20227          | 4. <b>499</b>  | 9 <b>6.</b> 42         | 9.6480           | 96.48          | 193 <b>5.1</b> 8     | 1.24         |      |
| 8:2 FTS       | 63086.477           | 5.185                  | M2 8:2 FTS       | 10639          | 5.185          | 103.31                 | 8.9576           | 93.31          | 50 <b>4</b> 2.83     | 1.43         |      |
| FOSA          | 90396.222           | 5.293                  | M8FOSA           | 20014          | 5.291          | 90.96                  | 9.7014           | 97.01          | 5957.31              | 1.57         |      |
| 9CI-PF3ONS    | 4 <b>0</b> 0281.816 | 5.080                  | M8PFO\$          | 4212           | 4,882          | 89.38                  | 9.8019           | 98.02          | 15659.50             | 1.25         |      |
| PFDS          | 166 <b>02.1</b> 50  | 5.494                  | M6PFDA           | 31028          | 5.186          | 100.39                 | 10.1338          | 105.01         | 1283.35              | 1.89         |      |
| 11CI-PF3OUdS  | 93428 <b>.59</b> 9  | 5.679                  | M8PFOS           | 4212           | 4.882          | 89.38                  | 9.9840           | 99 <b>.</b> 84 | 7954.59              | 1.35         |      |
| PFHpS         | 34626.031           | 4.539                  | M8PFOA           | 20227          | 1.199          | 96.12                  | 11.27 <b>01</b>  | 1 <b>18.61</b> | 933.27               | 1.50         |      |
| 10:2 FTS      | 53138.074           | 5.827                  | M2 8:2 FTS       | 10 <b>639</b>  | 5.185          | 103.31                 | 15.8814          | 82.37          | 8773.46              | 1.44         |      |
| PENS          | 15370.477           | 5.194                  | M9PFNA           | 23816          | 4.863          | <b>89.</b> 44          | 1 <b>1.6</b> 877 | 121.75         | <b>830.1</b> 4       | 1.98         |      |
| PFDoS         | 42233.802           | 6.179                  | M8PFOS           | 4212           | 4.882          | 89.38                  | <b>20.</b> 2780  | 104.74         | 1 <b>967.72</b>      | 1.69         |      |
| PFPeS         | 30948.104           | 3.647                  | M5PFHxA          | 28136          | 3.490          | 104.74                 | 10.1964          | 108.47         | 675.03               | 1.29         |      |
| PFODA         | <b>59732.83</b> 1   | 8.206                  | M2PFHxDA         | 27 <b>9</b> 77 | 7.575          | 82.69                  | 19.0662          | 95.33          | 2529.83              | 1.48         |      |
| NETFOSAA      | 34239.619           | 5.484                  | d5-NEtFOSAA      | 1180 <b>7</b>  | 5.484          | <b>94.</b> 01          | 10.3425          | 103.43         | 108 <b>1.7</b> 6     | 1.93         |      |
| PFH×DA        | 52407.267           | 7.579                  | M2PFHxDA         | 27977          | 7.575          | 82.69                  | 19.2141          | 96.07          | 1018.04              | 1.28         |      |
| NMeF0\$AA     | 31120.013           | 5.329                  | d3-NMeFOSAA      | 9697           | 5.328          | 101.76                 | 9.9145           | 99.15          | 1666.29              | 1.75         |      |
| PFBA          | 81298.798           | 0.505                  | MPFBA            | 36156          | 0.511          | 102.32                 | 8.7225           | 87.23          | 826.40               | 1 <b>.60</b> |      |
| PFBS          | 30757.988           | 2 <u>.</u> 475         | M3PFBS           | 1 <b>49</b> 57 | 2. <b>47</b> 3 | 12 <b>6.80</b>         | 6.6759           | <b>75.4</b> 3  | 1331.57              | 1 <b>.10</b> |      |
| NMeFOSA       | 14452.598           | 5.928                  | d-NMcFOSA        | 11235          | 5.927          | 66.83                  | 13.8105          | 69.05          | 492.49               | 1.46         |      |
| PFDA          | 79796.388           | 5.187                  | M6PFDA           | 31028          | 5.186          | 100.39                 | 8.5269           | 85.27          | 1189.47              | 1.81         |      |
| PFDoA         | 649 <b>06.487</b>   | 5.818                  | MPFDoA           | 35237          | 5.818          | 93.58                  | 8.9015           | 89.02          | 3592.10              | 1.65         |      |
| NETFOSA       | 14245.374           | 6.227                  | d-NEtFOSA        | 8092           | 6.21 <b>6</b>  | 68.19                  | 12.7769          | 63.88          | 338.25               | 1.63         |      |
| PFHpA         | 63725 <b>.74</b> 4  | 1.067                  | M4PF <b>H</b> pA | 35149          | 4.067          | 99.60                  | 8.8745           | 88.75          | 667.51               | 1.30         |      |
| PFHxA         | 64535.556           | 3.493                  | M5PFHxA          | 28136          | 3.490          | 10 <b>4.</b> 74        | 8.6923           | 86.92          | 1 <b>797.8</b> 3     | 1.31         |      |
| NMeFOSE       | 36447.310           | 5.964                  | d7-NMeFOSE       | 21168          | 5 <b>.94</b> 3 | 90.98                  | 16 <b>.4</b> 678 | 82.34          | 1890.56              | 1.27         |      |
| PFLIxS        | 40177.867           | 4.137                  | M3PFI IxS        | 10407          | 4.136          | 104.22                 | 8.6166           | 94.48          | 1155.34              | 1.28         | m    |
| PFNA          | 63146.801           | 4 <b>.</b> 86 <b>4</b> | M9PFNA           | 23816          | 4.863          | 89.44                  | 8.5152           | 85.15          | 1383.23              | 1.89         |      |
| NETFOSE       | 31986.544           | 6.244                  | d9-NEtFOSE       | 18 <b>468</b>  | 6.223          | 88.84                  | 1 <b>5.720</b> 0 | 78.60          | 1220. <del>9</del> 9 | 1.23         |      |
| PFOA          | 56943.326           | 4.500                  | M8PFOA           | 20227          | 4.499          | 96.42                  | 9.9898           | 99.90          | 1239.40              | 1.57         |      |
| PFOS          | 37627.465           | 4.894                  | M&PFOS           | 4212           | 4.882          | 89.38                  | 9.8097           | 105.99         | INF                  | 1.24         | m    |
| PFPeA         | 33041.471           | 1.637                  | M5PFPeA          | 16478          | 1.624          | 98.0 <b>0</b>          | 8.5280           | 85.28          | 600.21               | 1.15         |      |
| PFMPA         | 66267.907           | 0.766                  | M5PFPeA          | 16478          | 1.624          | 9 <b>8.</b> 0 <b>0</b> | 17.6788          | 88.39          | 2809.19              | 1.17         |      |
| PFTA          | 51027.455           | 6.614                  | M2PFTA           | 28196          | 6.613          | 88.71                  | 10.1990          | 101.99         | 375.90               | 1.46         |      |
| PFMBA         | 62298.697           | 2 <u>.</u> 510         | M5PFHxA          | 28136          | 3.490          | 104.74                 | 16.3580          | 81 <b>.79</b>  | 3830.17              | 1.23         |      |
| PFTrDA        | 77682.914           | 6.190                  | MPFDoA           | 35237          | 5.818          | 93.58                  | 10.2936          | 102.94         | 759.12               | 1.62         |      |
| PFEEŞA        | 166198.635          | 3.242                  | M3PFHxS          | 10407          | 4.136          | 104.22                 | 17.3113          | 97.25          | 578.62               | 1.85         |      |
| PFUnA         | 99974.497           | 5.497                  | M7PFUnA          | 54376          | 5.496          | 103.62                 | 8.6012           | 86.01          | 1080.41              | 1 <b>.40</b> |      |
| NFDHA         | 65167 <b>.34</b> 9  | 3.372                  | M4P <b>FH</b> pA | 35149          | 4.067          | 99.60                  | 18 <b>818</b> 6  | 94.0 <b>9</b>  | 5231.34              | 1.82         |      |





4:2 FTS



#### **M3HFPODA**





# ADONA



# 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA





# PFDoS

FOSA





# M2PFOA



#### M2PFTA



400

(111/2)

soc



# M5PFPeA



### M6PFDA



#### M7PFUnA



IRM (5.229-5.480 min, 24 scans) (506.0

8.0

20-0E





M8F0SA

6-5-4-3-2-

Co.nte

78 0) 220 12244

× 10

5-5-7-7-

끹







#### **NMeFOSAA**



### PFBA



### M2PFHxDA



# PFBS



# **NMeFOSA**

| $\begin{bmatrix} -\frac{1}{6,8} & \frac{1}{6} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{1} \\ -\frac{1}{6,8} & \frac{1}{6} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{1} \\ -\frac{1}{6,8} & \frac{1}{6} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{1} \\ -\frac{1}{6,8} & \frac{1}{6} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{1} \\ -\frac{1}{6,8} & \frac{1}{6} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{1} \\ -\frac{1}{6,8} & \frac{1}{6} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{1} \\ -\frac{1}{6,8} & \frac{1}{6} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{1} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,2} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,2} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,2} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,2} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,2} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,2} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} & \frac{1}{6,4} \\ -\frac{1}{6,8} & \frac{1}{6,4} &$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# **PFDA**



#### d-NMeFOSA



55-6.008 min. 24 scans) (613.0





# PFHxS

**PFDoA** 

.0) 220 224A 42



# d7-NMeFOSE





Musa-lo-Charge (m/z)





1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |      | Client Sample ID:  | LCSD2127845                   |  |  |  |
|------------------|----------------------|------|--------------------|-------------------------------|--|--|--|
| Collect Date:    | NA Time: NA          |      | GCAL Sample ID:    | 2127845                       |  |  |  |
| Matrix:          | Water % Moisture:    | NA   | Instrument ID:     | <u>QQQ1</u>                   |  |  |  |
| Sample Amt:      | 125 mL               |      | Lab File ID:       | 2201224A_43.d                 |  |  |  |
| Injection Vol.:  | 1.0                  | (µL) | GC Column:         | ACC-C18-30M ID 2.1 (mm)       |  |  |  |
| Prep Final Vol.: | 1000                 | (µL) | Dilution Factor:   | 1 Analyst: MRA                |  |  |  |
| Prep Date:       |                      |      | Analysis Date:     | 12/24/20 Time: 2239           |  |  |  |
| Prep Batch:      | 700361               |      | Analytical Batch:  | 700789                        |  |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |  |  |  |

CONCENTRATION UNITS: ng/L

| CAS              | ANALYTE                        | RESULT | Q | DL   | LOD  | LOQ  |
|------------------|--------------------------------|--------|---|------|------|------|
| 27619-97-2       | 6:2 Fluorotelomersulfonic acid | 71.9   |   | 1.79 | 4.00 | 10.0 |
| 39108-34-4       | 8:2 Fluorotelomersulfonic acid | 79.2   |   | 1.63 | 4.00 | 10.0 |
| 375-73-5         | Perfluorobutanesulfonic acid   | 55.7   |   | 1.47 | 4.00 | 10.0 |
| 375-22-4         | Perfluorobutanoic acid         | 70.6   |   | 2.13 | 4.00 | 10.0 |
| 335-76-2         | Perfluorodecanoic acid         | 66.6   |   | 1.65 | 4.00 | 10.0 |
| 375-85-9         | Perfluoroheptanoic acid        | 74.7   |   | 1.85 | 4.00 | 10.0 |
| 355-4 <b>6-4</b> | Perfluorohexanesulfonic acid   | 65.9   |   | 1.64 | 4.00 | 10.0 |
| 307-24-4         | Perfluorohexanoic acid         | 72.7   |   | 1.94 | 4.00 | 10.0 |
| 375-95-1         | Perfluorononanoic acid         | 67.5   |   | 1.68 | 4.00 | 10.0 |
| 1763-23-1        | Perfluorooctanesulfonic acid   | 83.1   |   | 1.70 | 4.00 | 10.0 |
| 335-67-1         | Perfluorooctanoic acid         | 80.4   |   | 1.80 | 4.00 | 10.0 |
| 2706-90-3        | Perfluoropentanoic acid        | 68.7   |   | 2.35 | 4.00 | 10.0 |
| 2058-94-8        | Perfluoroundecanoic acid       | 96.7   |   | 1.86 | 4.00 | 10.0 |

# **Quantitative Analysis Sample Report**

### **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_43.d PFASWiscExpan.m

12/24/2020 22:39

Position Vial 36 Inj Vol 2

12/24/2020 15:17

Samp Name 2127845 Samp Type QC

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

Dilution

1 Comment MRA,QQQ1;700361



| -                |                             |               |                  |                        |                | ISTD/Surr       | Conc             | Spike           |                  |              |      |
|------------------|-----------------------------|---------------|------------------|------------------------|----------------|-----------------|------------------|-----------------|------------------|--------------|------|
| Compound         | Response                    | RT            | ISTD             | ISTD Resp              | ISTD RT        | %Rec            | (ng/mL)          | %Rec            | SNR              | Symm         | MInt |
| M2PFDA           | 193371.743                  | 5.186         |                  |                        |                | 113.01          | 22.6018          | 1 <b>13.</b> 01 | 6799.39          | 1.88         |      |
| M2PFHxA          | 314999.752                  | 3.491         |                  |                        |                | 1 <b>18.</b> 16 | 47.2648          | 118.16          | 17728.28         | 1.60         |      |
| M2PFOA           | 148448.774                  | 4.499         |                  |                        |                | 117.49          | 23.4986          | 117.49          | 12052.84         | 1.98         |      |
| M4PFOS           | 52289.959                   | 4.893         |                  |                        |                | 107.44          | <b>21.4</b> 877  | 107.44          | <b>6577.</b> 35  | 1.31         |      |
| M3PFBA           | 647 <b>8.64</b> 3           | 0.503         |                  |                        |                | 0.00            | 5.0417           | 100.83          | 441.06           | 1.74         |      |
| MPFOA            | 535.669                     | 4.509         |                  |                        |                | 0.00            | 26.2915          | 105.17          | 4.06             | 1.16         |      |
| HFPQ-DA          | 11786.101                   | 3.684         | M3HFPODA         | 2 <b>8</b> 42          | 3.693          | 96.91           | 32.5719          | 108.57          | INF              | 1.90         |      |
| 4;2 FTS          | 36802.710                   | 3.458         | M2 4:2 FT\$      | 11816                  | 3.458          | 1 <b>06.</b> 71 | 7.9523           | 85.05           | 1010.00          | 1.37         |      |
| 6:2 FTS          | 66360.252                   | 4.487         | M2 6:2 FTS       | 21370                  | 4 <b>.4</b> 87 | 97.39           | 8.9817           | 94.54           | 741.39           | 1.39         |      |
| ADONA            | 180368.457                  | 4.148         | M8PFOA           | 21899                  | 4 <b>499</b>   | 10 <b>4.</b> 40 | 9.3555           | 93 <b>.56</b>   | 19710.02         | 1.49         |      |
| 8:2 FTS          | 64667.311                   | <b>5</b> .185 | M2 8:2 FTS       | 9863                   | 5.185          | 95.77           | 9.9046           | 103.17          | 7041.30          | 1.49         |      |
| FOSA             | 98307.469                   | 5.293         | M8FOSA           | 19834                  | 5.291          | 90.15           | 10.6461          | 106.46          | 6520.82          | 1.58         |      |
| 9CI-PF3ONS       | 41 <b>37</b> 72,1 <b>57</b> | 5.080         | M8PFO\$          | 4291                   | 4.893          | 91.06           | 9.9452           | 99.45           | 9700.05          | 1.26         |      |
| PFDS             | 12867.387                   | 5.494         | M6PFDA           | 33203                  | 5.186          | 107.43          | 7.3396           | 76.06           | 880.02           | 1.63         |      |
| 11CI-PF3OUdS     | 97671.884                   | 5.679         | M8PFOS           | 429 <b>1</b>           | 4.893          | 91.06           | 10.2447          | 102.45          | 10050.23         | 1 <b>.30</b> |      |
| PFHpS            | 36350.652                   | 4.539         | M8PFOA           | 21899                  | 1.199          | 10 <b>1.10</b>  | 10.9282          | 115.03          | 1635.65          | 1.86         |      |
| 10:2 FTS         | 53461.045                   | 5.827         | M2 8:2 FTS       | 9863                   | 5.185          | 95.77           | 17.2353          | 89.39           | 6780.48          | 1.39         |      |
| PFNS             | 14 <b>30</b> 1.619          | 5.194         | M9PFNA           | 26 <b>0</b> 50         | 4.863          | 97.83           | 9.9423           | 103.57          | 1227 <b>.1</b> 8 | 2.03         |      |
| PFDoS            | 41938.462                   | 6.179         | M8PFOS           | 4291                   | 4,893          | 91.06           | 19.7643          | 102.09          | 879.58           | 1.68         |      |
| PFPeS            | 32427.810                   | 3.647         | M5PFHxA          | 28 <del>6</del> 30     | 3.490          | 10 <b>6.58</b>  | 10.4997          | 111.70          | 2392. <b>1</b> 1 | 1.55         |      |
| PFODA            | <b>4</b> 11 <b>74.94</b> 9  | 8.216         | M2PFHxDA         | 28530                  | 7.596          | 8 <b>4.</b> 32  | 12.8876          | 64 <b>.44</b>   | 3179.03          | 2.02         |      |
| NEtFOSAA         | 10805.174                   | 5.505         | d5-NEtFOSAA      | 8745                   | 5.484          | 69.64           | 4.4064           | 44.06           | 714.93           | 0.96         |      |
| PFHxDA           | 52510.679                   | 7.599         | M2PFHxDA         | 28530                  | 7.596          | 84.32           | 18.8785          | 94.39           | 1247.00          | 1.29         |      |
| NMeF0\$AA        | 30435.504                   | 5.329         | d3-NMeFO\$AA     | 10010                  | 5.328          | 105.05          | 9.3929           | 93.93           | 2765.43          | 1.62         |      |
| PFBA             | 84643.801                   | 0.505         | MPFBA            | 37210                  | 0.501          | 1 <b>05.30</b>  | 8.8242           | 88.24           | 609.60           | 1.63         |      |
| PFBS             | 32062.765                   | 2.475         | M3PFBS           | 14949                  | 2 <b>47</b> 3  | 12 <b>6.</b> 73 | 6 <b>.9</b> 630  | 78.68           | 1312.71          | 1.10         |      |
| NMeFOSA          | 14936.596                   | 5.928         | d-NMcFOSA        | 9747                   | 5.917          | 57.98           | 16 <b>.4</b> 522 | 82.26           | 315.32           | 1.41         |      |
| PFDA             | 83418.773                   | 5,187         | M6PFDA           | 33203                  | 5.186          | 107.43          | 8.3300           | 83.30           | 1093.64          | 1.84         |      |
| PFDoA            | 71927.491                   | 5.818         | MPFDoA           | 3649 <b>1</b>          | 5.818          | 96.92           | 9.5253           | 95.25           | 1 <b>348.1</b> 9 | 1.59         |      |
| NETFOSA          | 14570.420                   | 6.227         | d-NEtFOSA        | 7 <b>4</b> 70          | 6.21 <b>6</b>  | 62.95           | 14.1568          | 70.78           | 966.76           | 1.56         |      |
| PFHpA            | 717 <b>45.38</b> 8          | 1.067         | M4PFHpA          | 37592                  | <b>4.0</b> 67  | 106.53          | 9.3420           | 93.42           | 825.08           | 1.60         |      |
| PFHxA            | 68633.424                   | 3.493         | M5PFHxA          | 28630                  | 3.490          | 106.58          | 9.0849           | 90.85           | 233.59           | 1.44         |      |
| NMeFOSE          | 39629.319                   | 5.954         | d7-NMeFOSE       | 22023                  | 5.943          | 94.65           | 1 <b>7.210</b> 0 | 86.05           | 9 <b>767.7</b> 0 | 1.84         |      |
| P <b>FI I</b> xS | 41903.128                   | 4.137         | M3PFI IxS        | 11346                  | 4.136          | 113.63          | 8.2427           | 90.38           | 2889.64          | 1.55         | m    |
| PFNA             | 68468.768                   | 4.864         | M9PFNA           | 26050                  | 4.863          | 97.83           | 8.4411           | 84.41           | 219.71           | 2.06         |      |
| NETFOSE          | 38521.184                   | 6.233         | d9-NEtFOSE       | 22387                  | 6.223          | 107.69          | 1 <b>5.61</b> 72 | 78.09           | 730.72           | 1.82         |      |
| PFOA             | 61984.138                   | 4.500         | M8PFOA           | 21899                  | 4.499          | 10 <b>4.40</b>  | 10.0438          | 100.44          | 2065.29          | 1.96         |      |
| PFOS             | 40584.261                   | 4.894         | M&PFOS           | 429 <b>1</b>           | 4.893          | 91.06           | 10.3852          | 112.21          | 1493.92          | 1.29         | m    |
| PFPeA            | 34868.128                   | 1.637         | M5PFPeA          | 17259                  | 1.624          | 102.64          | 8.5922           | 85.92           | 451.54           | 1.13         |      |
| PFMPA            | 71551.802                   | 0.755         | M5PFPeA          | 17259                  | 1.624          | 102.64          | 18 <b>.224</b> 6 | 91.12           | 2504.27          | 1.30         |      |
| PFTA             | 53538.837                   | 6.624         | M2PFTA           | 29574                  | 6.623          | 93.05           | 10.2025          | 102.03          | 2516.32          | 1.25         |      |
| PFMBA            | 67770.312                   | 2.520         | M5PFH×A          | 28630                  | 3.490          | 106.58          | 1 <b>7.4</b> 879 | 87.44           | 2839.05          | 1.04         |      |
| PFTrDA           | 82593.650                   | 6.190         | MPFDoA           | 36491                  | 5 818          | 96.92           | 10 5680          | 105.68          | 457.36           | 1.64         |      |
| PFEESA           | 172029.299                  | 3.253         | M3PFHxS          | 11346                  | 4.136          | 113.63          | 16.4354          | 92.33           | 12358.46         | 1.34         |      |
| PFUnA            | 81346.437                   | 5.507         | M7PFUnA          | <b>3</b> 1 <b>4</b> 94 | 5.506          | 60.02           | 12.0834          | 120.83          | 648.68           | 0.92         |      |
| NFDHA            | 70677.760                   | 3.382         | M4P <b>FH</b> pA | 37592                  | 4 <b>.0</b> 67 | 10 <b>6.</b> 53 | 19.0835          | 95.42           | 5404.05          | 1.27         |      |



# **M3HFPODA**



#### 6:2 FTS



# ADONA



# 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA





# PFDoS

FOSA





#### M2PFTA







# M6PFDA



# M7PFUnA



RM (5.239-5.490 min, 24 scans) (505.0

×10<sup>-3</sup>-1.4-1.2-

8.0

Co.mls



M8F0SA

Co.nte

78 0) 220 1224/

× 10

끹







# d-NMeFOSA





# d-NEtFOSA



# PFHxA





# PFHxS



#### d7-NMeFOSE







# MPFOA



1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279           |              |      | Client Sample ID:  | MB2128031      |             |       |      |  |
|------------------|---------------------|--------------|------|--------------------|----------------|-------------|-------|------|--|
| Collect Date:    | NA Time: NA         |              |      | GCAL Sample ID:    | 2128031        |             |       |      |  |
| Matrix:          | Solid % Moistur     | ∋: <u>NA</u> |      | Instrument ID:     | QQQ2           |             |       |      |  |
| Sample Amt:      | 5 <u>g</u>          |              |      | Lab File ID:       | 2210104B_22.d  | k           |       |      |  |
| Injection Vol.:  | 1.0                 |              | (µ∟) | GC Column:         | ACC-C18-30M    | D           | 2.1   | (mm) |  |
| Prep Final Vol.: | 1000                |              | (µ∟) | Dilution Factor:   | 1              | Analyst:    | MRA   |      |  |
| Prep Date:       |                     |              |      | Analysis Date:     | 01/04/21       | Time:       | 2123  |      |  |
| Prep Batch:      | 70044 <b>4</b>      |              |      | Analytical Batch:  | 701166         |             |       |      |  |
| Prep Method:     | PFAS ID QSM B15 Pre | ρ            |      | Analytical Method: | PFAS Isotope [ | Dilution QS | M B15 |      |  |

CONCENTRATION UNITS: ug/kg

| CAS                        | ANALYTE                        | RESULT | Q | DL    | LOD   | LOQ  |
|----------------------------|--------------------------------|--------|---|-------|-------|------|
| 27619-97-2                 | 6:2 Fluorotelomersulfonic acid | 0.400  | U | 0.170 | 0.400 | 1.00 |
| 39108-34-4                 | 8:2 Fluorotelomersulfonic acid | 0.400  | U | 0.260 | 0.400 | 1.00 |
| 375-73-5                   | Perfluorobutanesulfonic acid   | 0.483  | J | 0.120 | 0.400 | 1.00 |
| 375-22-4                   | Perfluorobutanoic acid         | 0.400  | U | 0.130 | 0.400 | 1.00 |
| 335-76-2                   | Perfluorodecanoic acid         | 0.400  | U | 0.120 | 0.400 | 1.00 |
| 375-85-9                   | Perfluoroheptanoic acid        | 0.520  | J | 0.130 | 0.400 | 1.00 |
| 355 <b>-</b> 46 <b>-4</b>  | Perfluorohexanesulfonic acid   | 0.492  | J | 0.140 | 0.400 | 1.00 |
| 30 <b>7-</b> 24 <b>-</b> 4 | Perfluorohexanoic acid         | 0.400  | U | 0.150 | 0.400 | 1.00 |
| 375-95-1                   | Perfluorononanoic acid         | 0.521  | J | 0.090 | 0.400 | 1.00 |
| 1763-23-1                  | Perfluorooctanesulfonic acid   | 0.465  | J | 0.180 | 0.400 | 1.00 |
| 335-67-1                   | Perfluorooctanoic acid         | 0.605  | J | 0.150 | 0.400 | 1.00 |
| 2706-90-3                  | Perfluoropentanoic acid        | 0.400  | U | 0.150 | 0.400 | 1.00 |
| 2058-94-8                  | Perfluoroundecanoic acid       | 0.400  | U | 0.140 | 0.400 | 1.00 |

# **Quantitative Analysis Sample Report**

### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 2128031

Samp Type Sample

Dilution

ISTD/Surr

1

Comment MRA,QQQ2;700444

Conc

Snike

Data File Acq Method

Acq Date

### 1/4/2021 21:23 Sample Chromatogram



PFAS40Poroshell093020 J Inj Vol 2

2210104B\_22.d

Position P1-B9

# Quantitation Results

|                        |                    |                |                  |                |                | 1010/0411      | Conc                     | opine |                 |              |      |
|------------------------|--------------------|----------------|------------------|----------------|----------------|----------------|--------------------------|-------|-----------------|--------------|------|
| Compound               | Response           | RT             | ISTD             | ISTD Resp      | ISTD RT        | %Rec           | (ng/mL)                  | %Rec  | SNR             | Symm         | MInt |
| M2PFDA                 | 78795.463          | 4.149          |                  |                |                | 113.47         | 22.6934                  |       | 3058.63         | 1.42         |      |
| M2PFHxA                | 206846.269         | 2,152          |                  |                |                | 106.48         | 42.5926                  |       | <b>744</b> 9.07 | 1.36         |      |
| M2PFOA                 | 86232.098          | 3.248          |                  |                |                | 109.03         | 21.8063                  |       | 3596.54         | 1.70         |      |
| M4PFOS                 | 55195.507          | 3.712          |                  |                |                | 109.19         | 21.8385                  |       | 3977.28         | 1.37         |      |
| MPFOA                  | 352.014            | 3.248          |                  |                |                | 0.00           | 31.4869                  |       | 3 <b>.1</b> 7   | 1.6 <b>6</b> |      |
| M3PFBA                 | 3493. <b>794</b>   | 0.464          |                  |                |                | 0.00           | 4.7653                   |       | 43.15           | 1.73         |      |
| HFPQ-DA                | 111.670            | 2.439          | M3HFPODA         | 566            | 2.393          | 84.59          | 1.3010                   |       | 0.54            | 0.86         |      |
| 4;2 FT\$               | 39.722             | 1.910          | M2 4:2 FT\$      | <b>25</b> 74   | 2.104          | 104.31         | 0.0489                   |       | 1.84            | 1.07         |      |
| 6:2 FTS                | 68.439             | 3.245          | M2 6:2 FTS       | 5000           | 3.225          | 110.62         | 0.0425                   |       | 4.82            | 1.06         |      |
| ADONA                  | 57.503             | 2.878          | M8PFOA           | 23968          | 3.247          | 109.20         | 0.0036                   |       | <b>2.1</b> 1    | 1 <b>.86</b> |      |
| 9CI-PF3ONS             | 67.331             | 3.951          | M8PFOS           | 11512          | 3.711          | 111.72         | 0.0061                   |       | 0.59            | 0.94         |      |
| 11CI-PF3QUdS           | 23.504             | 4.970          | M8PFOS           | 11512          | 3.711          | 111.72         | 0.0023                   |       | 0.62            | 1.17         |      |
| PFDo\$                 | 36.879             | 5.669          | M8PFOS           | 11512          | <b>3</b> ,711  | 111.72         | 0.0106                   |       | 1.30            | 0.79         |      |
| PFPeS                  | 18.571             | 2.231          | M5PFHxA          | 21734          | 2.151          | 104.89         | 0.0085                   |       | 0.31            | 0.75         |      |
| PFODA                  | 27.939             | 6.706          | M2PFHxDA         | 1284 <b>1</b>  | 6.348          | 115.05         | 0.0183                   |       | 4.74            | 2.13         |      |
| NEtFOSAA               | 33.823             | 4.513          | d5-NEtFOSAA      | 12630          | 1.632          | 116.59         | 0.0095                   |       | 1.51            | 0.68         |      |
| PFHxDA                 | 127.599            | 6.361          | M2PFHxDA         | 12841          | 6.348          | 115.05         | 0.0541                   |       | 11.32           | 1.17         |      |
| NMeFOSAA               | 37.065             | 4.356          | d3-NMeFOSAA      | 7848           | 4.374          | 101.68         | 0.0115                   |       | 6.96            | 1.14         |      |
| PFBA                   | 279.934            | 0.457          | MPFBA            | 23430          | 0.463          | 95.58          | 0.0322                   |       | 4.62            | 1.15         |      |
| PFBS                   | 5961.899           | 1.507          | M3PFBS           | 9 <b>6</b> 76  | 1.505          | 105.72         | 2.4167                   |       | 266.02          | 1 <b>.36</b> |      |
| PFDA                   | 77. <b>4</b> 95    | 4.131          | M6PFDA           | 16851          | 4.149          | 108.23         | 0.0198                   |       | 3.65            | 1.50         |      |
| PFDoA                  | 19.409             | 5.215          | MPFDoA           | 15758          | 5.177          | 116.52         | 0.0064                   |       | 4.22            | 0.75         |      |
| NEtFOSA                | 19.357             | 5.778          | d-NEtFOSA        | 5142           | 5.684          | 82.07          | 0.0150                   |       | 1.26            | 1.17         |      |
| P <b>FHp</b> A         | 13740.619          | 2.798          | M4P <b>FH</b> pA | 22212          | 2.797          | 108.35         | 2.59 <b>9</b> 5          |       | 350.08          | 1.50         |      |
| PFHxA                  | 215.004            | 2.171          | M5PFHxA          | 21734          | 2.151          | 104.89         | 0.0434                   |       | 2.55            | 0.73         |      |
| PFHxS                  | 7007.367           | 2 <u>.</u> 875 | M3PFHxS          | 10 <b>4</b> 89 | 2.8 <b>74</b>  | 109.85         | 2 <b>.4</b> 6 <b>0</b> 7 |       | 312.04          | 0.84         | m    |
| PFNA                   | 13409.866          | 3 <u>.</u> 679 | M9PFNA           | 23262          | 3.678          | 112.53         | 2.6046                   |       | 253.01          | 1.52         |      |
| PFOA                   | 157 <b>70.84</b> 6 | 3.249          | M8PFOA           | 23968          | 3.247          | 109 <b>.20</b> | 3.0267                   |       | 75.60           | 1.70         | m    |
| PFOS                   | 8520.737           | 3.704          | M8PFOS           | 11512          | 3.711          | 111.72         | 2.3237                   |       | 112.05          | 0.79         | m    |
| PFPeA                  | 125.979            | 1.253          | M5PFPeA          | 17108          | 1.263          | 100.77         | 0.0231                   |       | 2.89            | 1.27         |      |
| PFMPA                  | 13.609             | 0.698          | M5PFPeA          | 17108          | 1.263          | 100.77         | 0.0028                   |       | 1.49            | 0.72         |      |
| PFTA                   | 37.140             | 5.984          | M2PFTA           | 10 <b>494</b>  | 5.954          | 110.96         | 0.0205                   |       | 4.94            | 0.95         |      |
| <b>PF</b> TrD <b>A</b> | 34.620             | 5.634          | MPFDoA           | 15758          | 5.177          | 116.52         | 0.0145                   |       | 1.91            | 1.52         |      |
| PFEESA                 | 84.718             | 1.913          | M3PFI IxS        | 10489          | 2.874          | 109.85         | 0.0092                   |       | 1.90            | 0.68         |      |
| PFUnA                  | 14.404             | 4.647          | M7PFUnA          | 18605          | 4. <b>6</b> 62 | 111.44         | 0.0037                   |       | 0.54            | 2.00         |      |
| NFDHA                  | 18.233             | 2.165          | M4PF <b>H</b> pA | 22212          | 2.797          | 108.35         | 0.0042                   |       | 1.49            | 0.83         |      |



Z,8 Z,7 Z,8 Acquisition Lime (mi

4,5

4,6 4,7 4,8 Acquisition Line (min)

4,5

a60 a80 Mass-lo-Charge (m/z)

a13



# PFDoS





### M2PFTA









# M7PFUnA




Z,6 4,8 Acquisition ∃ime (min)

4,6 4,8 Acquisition time (mi 500 550 Mass-lo-Charge (m/z)

/50



5,3 a.4 5,5 Acquisition time (m

5.2 5,3 •

52

a,3 a,1 a,a Aqquisi ion Time (min

300 400 500 Mass-Io-Charge (m/z)

200



#### d7-NMeFOSE







3-

4C0 Mass-In-O

eco 🛦

thange (m/z)





1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |      | Client Sample ID:  | LCS2128032                    |  |  |  |
|------------------|----------------------|------|--------------------|-------------------------------|--|--|--|
| Collect Date:    | NA Time: NA          |      | GCAL Sample ID:    | 2128032                       |  |  |  |
| Matrix:          | Solid % Moisture:    | NA   | Instrument ID:     | QQQ2                          |  |  |  |
| Sample Amt:      | <u>5 g</u>           |      | Lab File ID:       | 2210104B_23.d                 |  |  |  |
| Injection Vol.:  | 1.0                  | (µL) | GC Column:         | ACC-C18-30M ID 2.1 (mm)       |  |  |  |
| Prep Final Vol.: | 1000                 | (µL) | Dilution Factor:   | 1Analyst: MRA                 |  |  |  |
| Prep Date:       |                      |      | Analysis Date:     | 01/04/21 Time: 2136           |  |  |  |
| Prep Batch:      | 70044 <b>4</b>       |      | Analytical Batch:  | 701166                        |  |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |  |  |  |

CONCENTRATION UNITS: ug/kg

| CAS                        | ANALYTE                        | RESULT       | Q | DL    | LOD   | LOQ  |
|----------------------------|--------------------------------|--------------|---|-------|-------|------|
| 27619-97-2                 | 6:2 Fluorotelomersulfonic acid | 1.70         |   | 0.170 | 0.400 | 1.00 |
| 39108-34-4                 | 8:2 Fluorotelomersulfonic acid | 1.91         |   | 0.260 | 0.400 | 1.00 |
| 375-73-5                   | Perfluorobutanesulfonic acid   | 1.70         |   | 0.120 | 0.400 | 1.00 |
| 375-22-4                   | Perfluorobutanoic acid         | 1.74         |   | 0.130 | 0.400 | 1.00 |
| 335-76-2                   | Perfluorodecanoic acid         | 1.67         |   | 0.120 | 0.400 | 1.00 |
| 375-85-9                   | Perfluoroheptanoic acid        | 1.86         |   | 0.130 | 0.400 | 1.00 |
| 355-4 <b>6-4</b>           | Perfluorohexanesulfonic acid   | 1.64         |   | 0.140 | 0.400 | 1.00 |
| 30 <b>7-</b> 24 <b>-</b> 4 | Perfluorohexanoic acid         | 1.71         |   | 0.150 | 0.400 | 1.00 |
| 375-95-1                   | Perfluorononanoic acid         | 1.86         |   | 0.090 | 0.400 | 1.00 |
| 1763-23-1                  | Perfluorooctanesulfonic acid   | 1.79         |   | 0.180 | 0.400 | 1.00 |
| 335-67-1                   | Perfluorooctanoic acid         | 2.00         |   | 0.150 | 0.400 | 1.00 |
| 2706-90-3                  | Perfluoropentanoic acid        | <b>1</b> .71 |   | 0.150 | 0.400 | 1.00 |
| 2058-94-8                  | Perfluoroundecanoic acid       | 1.69         |   | 0.140 | 0.400 | 1.00 |

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type QC

Samp Name 2128032

Dilution

1

Comment MRA,QQQ2;700444

Data File Acq Method

PFAS40Poroshell093020 (Inj Vol 2 Acq Date

1/4/2021 21:36 Sample Chromatogram



2210104B\_23.d

Position P1-C1

# Quantitation Results

| -            |            |       |                  |                |                | ISTD/Surr       | Conc             | Spike           |                      |                       |      |
|--------------|------------|-------|------------------|----------------|----------------|-----------------|------------------|-----------------|----------------------|-----------------------|------|
| Compound     | Response   | RT    | 1\$TD            | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | %Rec            | SNR                  | Symm                  | MInt |
| M2PFDA       | 76114 166  | 4.149 |                  |                |                | 109.61          | <b>21.92</b> 11  | 109.61          | 4750.05              | 1.42                  |      |
| M2PFHxA      | 205762.729 | 2,152 |                  |                |                | 105.92          | 42.36 <b>9</b> 5 | 105.92          | 6458.78              | 1.44                  |      |
| M2PFOA       | 85981.218  | 3.248 |                  |                |                | 108.71          | 21.7429          | 108.71          | 2446.47              | 1.50                  |      |
| M4PFOS       | 55147.414  | 3.703 |                  |                |                | 109.10          | 21.8195          | 109.10          | 3158.91              | 1.52                  |      |
| MPFOA        | 403.912    | 3.248 |                  |                |                | 0.00            | 36.1291          | 144.52          | 9.81                 | 1.89                  |      |
| M3PFBA       | 3489.281   | 0.464 |                  |                |                | 0.00            | 4.7591           | 95.18           | 70.75                | 1.71                  |      |
| HFPO-DA      | 2445.955   | 2.376 | M3HFPODA         | 722            | 2.384          | 107.93          | 22.3343          | 111.67          | 4.27                 | 1.41                  |      |
| 4;2 FT\$     | 6979.129   | 2.095 | M2 4:2 FT\$      | 2496           | 2. <b>0</b> 95 | 101.13          | 8.8591           | 94.55           | 26.18                | 1.56                  |      |
| 6:2 FTS      | 14757.600  | 3.226 | M2 6:2 FTS       | 5394           | 3.226          | 119.32          | 8.4951           | 89.33           | 3 <b>2</b> 34.74     | 1.42                  |      |
| ADONA        | 152039.229 | 2.887 | <b>M8PFOA</b>    | 24237          | 3.247          | 1 <b>10.</b> 42 | 9.4021           | 99 <b>.49</b>   | 6147.01              | 1.36                  |      |
| 8:2 FTS      | 16698.923  | 4.129 | M2 8:2 FTS       | 4867           | 4.129          | 117.37          | 9.5523           | 99.50           | 3354.75              | 1.65                  |      |
| FOSA         | 27711.248  | 4.335 | M8FOSA           | 12999          | 4.335          | 96.35           | 7.7965           | 77.96           | 91.49                | 1.50                  |      |
| 9CI-PF3ONS   | 110325,826 | 3.979 | M8PFO\$          | 11200          | 3.702          | 1 <b>08.70</b>  | 10,2936          | 110.33          | 3052.48              | 1.35                  |      |
| PFDS         | 23284.385  | 4.676 | M6PFDA           | 16737          | 4.14 <b>9</b>  | 107.49          | 8.5386           | 88.48           | 199.16               | 1.59                  |      |
| 11CI-PF3OUdS | 107040.539 | 4.979 | M8PFOS           | 11200          | 3.702          | 108.70          | 10.5777          | 1 <b>12.</b> 17 | 3451.00              | 1.50                  |      |
| PFHpS        | 22666.838  | 3.297 | M8PFOA           | 21237          | 3.217          | 11 <b>0.1</b> 2 | 8.2989           | 87.08           | 98.23                | 1.12                  |      |
| 10:2 FTS     | 16130.281  | 5.174 | M2 8:2 FTS       | 4867           | 4.129          | 117.37          | 9.1981           | 95.42           | 581.68               | 1.64                  |      |
| PENS         | 23346.127  | 4.172 | M9PFNA           | 22458          | 3.678          | 108.64          | 8.2360           | 85.61           | 7157.71              | 1.42                  |      |
| PFDoS        | 30079.126  | 5.623 | M8PFOS           | 11200          | 3.702          | 1 <b>08.70</b>  | 8.8939           | 91.88           | 1010.73              | 1.45                  |      |
| PFPeS        | 18349.187  | 2.314 | M5PFHxA          | 21668          | 2.151          | 1 <b>04.5</b> 7 | 8.4214           | 89.49           | 1799.66              | 1.80                  |      |
| PFODA        | 14417.320  | 6.706 | M2PFHxDA         | 13311          | 6.348          | 119.26          | 9.0999           | 91.00           | 876.85               | 1.42                  |      |
| NETFOSAA     | 33343.854  | 4.642 | d5-NEtFOSAA      | 12214          | 4.641          | 112.75          | 9.6534           | 96.53           | 2174.25              | 1.57                  |      |
| PFH×DA       | 23474.848  | 6.351 | M2PFHxDA         | 13311          | 6.348          | 119.26          | 9.6026           | 96.03           | 774.01               | 1.63                  |      |
| NMeF0\$AA    | 36482.037  | 4.375 | d3-NMeFOSAA      | 8468           | 4.374          | 109.72          | 10.4805          | 104.81          | 166.11               | 1.50                  |      |
| PFBA         | 75397.640  | 0.466 | MPFBA            | 23338          | 0.463          | 95 <b>.20</b>   | 8.7053           | 87.05           | 1293.41              | 1 <b>.</b> 4 <b>0</b> |      |
| PFBS         | 20788.977  | 1.507 | M3PFBS           | 9572           | 1.505          | 10 <b>4.</b> 58 | 8.5187           | 96.0 <b>4</b>   | 750.72               | 1.29                  |      |
| NMeFOSA      | 10434.149  | 5.354 | d-NMcFOSA        | 5429           | 5.353          | 90.28           | 9.27 <b>9</b> 1  | 92.79           | 952.29               | 1.50                  |      |
| PFDA         | 32357.914  | 4.150 | M6PFDA           | 16 <b>7</b> 37 | 4.149          | 107.49          | 8.3254           | 83.25           | 10 <b>41.5</b> 5     | 1.42                  |      |
| PFDoA        | 27947.148  | 5.187 | MPFDoA           | 15265          | <b>5.17</b> 7  | 112.87          | 9.5635           | 95.64           | 1304.56              | 1.36                  |      |
| NETFOSA      | 11305.323  | 5.695 | d-NEtFOSA        | 5556           | 5. <b>6</b> 94 | 88.69           | 8.0879           | 80.88           | 1752.01              | 1.50                  |      |
| PFHpA        | 48165.599  | 2.798 | M4PF <b>H</b> pA | 21 <b>751</b>  | 2.797          | 106.10          | 9.3054           | 93.05           | 1760.72              | 1.42                  |      |
| PFHxA        | 42368.367  | 2.153 | M5PFHxA          | 21668          | 2.151          | 10 <b>4.</b> 57 | 8.5696           | 85.70           | 2022. <del>9</del> 4 | 1.46                  |      |
| NMeFOSE      | 15793.521  | 5.398 | d7-NMeFOSE       | 6284           | 5.3 <b>79</b>  | 85.96           | 8.5607           | 85.61           | 2 <b>47</b> .66      | 1.35                  |      |
| PFLIxS       | 22958.718  | 2.875 | M3PFI IxS        | 10332          | 2.874          | 108.21          | 8.1848           | 89.55           | 1787.21              | 0.80                  | m    |
| PFNA         | 46198.038  | 3.670 | M9PFNA           | 22458          | 3.678          | 108.64          | 9.2943           | 92.94           | <b>5</b> 88.97       | 1.60                  |      |
| NETFOSE      | 17580.869  | 5.703 | d9-NEtFOSE       | 8354           | 5. <b>6</b> 82 | 8 <b>4.</b> 72  | 10.2659          | 102.66          | 134.84               | 1.40                  |      |
| PFOA         | 52785.632  | 3.249 | M8PFOA           | 24237          | 3.247          | 1 <b>10.4</b> 2 | 10.0183          | 100.18          | 628.62               | 1.50                  | m    |
| PFOS         | 31972.717  | 3.704 | M&PFOS           | 11200          | 3.702          | 108.70          | 8.9620           | 96.57           | 543.12               | 0.79                  | m    |
| PFPeA        | 45509.113  | 1.253 | M5PFPeA          | 16658          | 1,248          | 98.12           | 8.5537           | 85.54           | 52,14                | 1.53                  |      |
| PFMPA        | 35660.351  | 0.698 | M5PFPeA          | 16658          | 1.248          | 98.12           | 7.6605           | 76.60           | 380.22               | 1.36                  |      |
| PFTA         | 18158.776  | 5.957 | M2PFTA           | 10910          | 5.954          | 115.36          | 9.6560           | 96 <b>.56</b>   | 692.50               | 1.39                  |      |
| PFMBA        | 44009.159  | 1.547 | M5PFHxA          | 21668          | 2.151          | 10 <b>4.</b> 57 | 8.1601           | 81.60           | 11286.46             | 1.48                  |      |
| PFTrDA       | 22684.803  | 5.625 | MPFDoA           | 15265          | 5.177          | 112.87          | 9.8195           | 98.20           | 45.02                | 1.68                  |      |
| PFEEŞA       | 76279.661  | 1.876 | M3PFHxS          | 10332          | 2.874          | 108.21          | 8.4465           | 94.9 <b>0</b>   | 2728.32              | 1.30                  |      |
| PFUnA        | 32770.818  | 4.665 | M7PFUnA          | 18448          | 4. <b>6</b> 62 | 110.50          | 8.4557           | 84.56           | 1316.36              | 1.57                  |      |
| NFDHA        | 33113.365  | 2.027 | M4PFHpA          | 21751          | 2.797          | 10 <b>6.10</b>  | 7.7020           | 77.02           | 59337.36             | 1.43                  |      |









## PFDoS





#### M2PFTA





# M6PFDA



#### M7PFUnA







## NEtFOSAA





5,3 a.4 5,5 Acquisition Lime (m

0.1

52

a,3 a,1 a,a Aqquisi ion Time (min

c.j.

5.2 5,3 300 400 500 Mass-In-Charge (m/z)

200





## PFHxS



## d7-NMeFOSE



300 400 Io-Charge (r1/2)



5,8 5,9 5,9 6 6,1 Acquisition Lime (mi 0-

5,8

5,9 6 8,1 Aquisi kin Tine (min

400 eco Mass-In-Charge (n//)





180 90 200 210

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |             |    |                    | Client Sample ID:             | LCSD2128033   |          |      |      |
|------------------|----------------------|-------------|----|--------------------|-------------------------------|---------------|----------|------|------|
| Collect Date:    | NA Time: NA          |             |    | GCAL Sample ID:    | 2128033                       |               |          |      |      |
| Matrix:          | Solid                | % Moisture: | NA |                    | Instrument ID:                | QQQ2          |          |      |      |
| Sample Amt:      | 5                    | g           |    |                    | Lab File ID:                  | 2210104B_24.c | d        |      |      |
| Injection Vol.:  | 1.0                  |             |    | (µL)               | GC Column:                    | ACC-C18-30M   | D        | 2.1  | (mm) |
| Prep Final Vol.: | 1000                 |             |    | (µ∟)               | Dilution Factor:              | 1             | Analyst: | MRA  |      |
| Prep Date:       |                      |             |    |                    | Analysis Date:                | 01/04/21      | Time:    | 2149 |      |
| Prep Batch:      | 70044 <b>4</b>       |             |    |                    | Analytical Batch:             | 701166        |          |      |      |
| Prep Method:     | PFAS ID QSM B15 Prep |             |    | Analytical Method: | PFAS Isotope Dilution QSM B15 |               |          |      |      |

CONCENTRATION UNITS: ug/kg

| CAS              | ANALYTE                        | RESULT | Q | DL    | LOD   | LOQ  |
|------------------|--------------------------------|--------|---|-------|-------|------|
| 27619-97-2       | 6:2 Fluorotelomersulfonic acid | 1.75   |   | 0.170 | 0.400 | 1.00 |
| 39108-34-4       | 8:2 Fluorotelomersulfonic acid | 2.05   |   | 0.260 | 0.400 | 1.00 |
| 375-73-5         | Perfluorobutanesulfonic acid   | 1.80   |   | 0.120 | 0.400 | 1.00 |
| 375-22-4         | Perfluorobutanoic acid         | 1.68   |   | 0.130 | 0.400 | 1.00 |
| 335-76-2         | Perfluorodecanoic acid         | 1.54   |   | 0.120 | 0.400 | 1.00 |
| 375-85-9         | Perfluoroheptanoic acid        | 1.92   |   | 0.130 | 0.400 | 1.00 |
| 355-46 <b>-4</b> | Perfluorohexanesulfonic acid   | 1.83   |   | 0.140 | 0.400 | 1.00 |
| 307-24-4         | Perfluorohexanoic acid         | 1.71   |   | 0.150 | 0.400 | 1.00 |
| 375-95-1         | Perfluorononanoic acid         | 2.06   |   | 0.090 | 0.400 | 1.00 |
| 1763-23-1        | Perfluorooctanesulfonic acid   | 1.93   |   | 0.180 | 0.400 | 1.00 |
| 335-67-1         | Perfluorooctanoic acid         | 2.22   |   | 0.150 | 0.400 | 1.00 |
| 2706-90-3        | Perfluoropentanoic acid        | 1.71   |   | 0.150 | 0.400 | 1.00 |
| 2058-94-8        | Perfluoroundecanoic acid       | 1.68   |   | 0.140 | 0.400 | 1.00 |

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type QC

Samp Name 2128033

Dilution

1

Comment MRA,QQQ2;700444

Data File Acq Method

Acq Date

1/4/2021 21:49





PFAS40Poroshell093020 (Inj Vol 2

2210104B\_24.d

Position P1-C2

Quantitation Results

| -            |                    |       |             |                        |                | ISTD/Surr       | Conc             | Spike          |                          |               |      |
|--------------|--------------------|-------|-------------|------------------------|----------------|-----------------|------------------|----------------|--------------------------|---------------|------|
| Compound     | Response           | RT    | ISTD        | ISTD Resp              | ISTD RT        | %Rec            | (ng/mL)          | %Rec           | SNR                      | Symm          | MInt |
| M2PFDA       | 76610.411          | 4.149 |             |                        |                | 110.32          | 22.0641          | 110.32         | 2998.59                  | 1.49          |      |
| M2PFHxA      | 207089.339         | 2,152 |             |                        |                | 106.61          | 42 6427          | 106.61         | 12866.11                 | 1.44          |      |
| M2PFOA       | 85605.156          | 3.248 |             |                        |                | 108.24          | 21.6478          | 108.24         | 3033.96                  | 1.70          |      |
| M4PFOS       | 55148.309          | 3.703 |             |                        |                | 109.10          | 21.8198          | 109.10         | 224.48                   | 1.60          |      |
| MPFOA        | 308.794            | 3.248 |             |                        |                | 0.00            | 27.6210          | 110.48         | 1.11                     | 2.47          |      |
| M3PFBA       | 3558.786           | 0.464 |             |                        |                | 0.00            | 4.8539           | 97.08          | 16.04                    | 1.66          |      |
| HFPQ-DA      | 257 <b>9.01</b> 1  | 2.376 | M3HFPODA    | 581                    | 2.384          | 86.81           | 29.2764          | 146.38         | 16.59                    | 1.58          |      |
| 4;2 FTS      | 7557.539           | 2.095 | M2 4:2 FT\$ | 2717                   | 2.104          | 110.11          | 8.81 <b>0</b> 9  | 94.03          | 56.05                    | 1.56          |      |
| 6:2 FTS      | 147 <b>85.992</b>  | 3.226 | M2 6:2 FTS  | 5236                   | 3.225          | 115.83          | 8.7678           | 92.20          | 1164.68                  | 1.50          |      |
| ADONA        | 158128.356         | 2.887 | M8PFOA      | 24063                  | 3.247          | 109.63          | 9.84 <b>9</b> 4  | 104.23         | 9596.47                  | 1.36          |      |
| 8:2 FTS      | 17553.114          | 4.138 | M2 8:2 FTS  | 4757                   | 4.129          | 1 <b>14.</b> 72 | 10.2728          | 107.01         | 317.28                   | 1.49          |      |
| FOSA         | 29553.262          | 4.335 | M8FOSA      | 13022                  | 4.335          | 96.53           | 8.3000           | 83.00          | 2085.47                  | 1.50          |      |
| 9CI-PF3ONS   | 110049,512         | 3.979 | M8PFO\$     | 1121 <b>1</b>          | <b>3</b> ,711  | 108.81          | 10.2571          | 109.94         | 178.66                   | 1 <b>.3</b> 5 |      |
| PFDS         | 23644.116          | 4.685 | M6PFDA      | 17 <b>461</b>          | 4.14 <b>9</b>  | 112.15          | 8.31 <b>0</b> 6  | 86.12          | 168.91                   | 1.39          |      |
| 11CI-PF3OUdS | 108129.275         | 4.989 | M8PFOS      | 1121 <b>1</b>          | 3.711          | 108.81          | 10.6742          | 113.19         | <b>7532.1</b> 0          | 1.37          |      |
| PFHpS        | 22113.353          | 3.297 | M8PFOA      | 21063                  | 3.217          | 109.63          | 8.2765           | 86.85          | 1601.38                  | 1.12          |      |
| 10:2 FTS     | 171 <b>9</b> 8.251 | 5.192 | M2 8:2 FTS  | 4757                   | 4.129          | 1 <b>14.</b> 72 | 10.0335          | 104.08         | 2409.87                  | 1.37          |      |
| PFNS         | 23482.776          | 4.172 | M9PFNA      | 22 <b>883</b>          | 3.678          | 1 <b>10.70</b>  | <b>8.130</b> 4   | <b>84.5</b> 2  | 874.46                   | 1.49          |      |
| PFDoS        | 29911.039          | 5.623 | M8PFOS      | 11 <b>2</b> 1 <b>1</b> | 3.711          | 108.81          | 8.84 <b>9</b> 7  | 91.42          | 3258.22                  | 1 <b>.60</b>  |      |
| PFPeS        | 19943.193          | 2.323 | M5PFHxA     | 21 <del>6</del> 72     | 2.151          | 104.59          | 9.1513           | 97.25          | 123.29                   | 1.42          |      |
| PFODA        | 14215.150          | 6.706 | M2PFHxDA    | 12790                  | 6.348          | 1 <b>14.59</b>  | 9.3379           | 93.38          | 763.17                   | 1.60          |      |
| NEtFOSAA     | 34649.868          | 4.651 | d5-NEtFOSAA | 12845                  | 4.641          | 118.58          | 9.5384           | 95.38          | 53.12                    | 1.58          |      |
| PFHxDA       | 23433.405          | 6.351 | M2PFHxDA    | 12790                  | 6.348          | 114.59          | 9.9762           | 99.76          | 779.63                   | 1.63          |      |
| NMeFOSAA     | 39872.748          | 4.375 | d3-NMeFOSAA | 7867                   | 4.365          | 101.93          | 12.3295          | 123.30         | 3857.44                  | 1.50          |      |
| PFBA         | 76060.004          | 0.466 | MPFBA       | 24375                  | 0.463          | 99.43           | 8.4081           | 84.08          | 611.97                   | 1.31          |      |
| PFBS         | 21960.873          | 1.507 | M3PFBS      | 9579                   | 1.505          | 10 <b>4.</b> 66 | 8.9925           | 101.38         | 1108.55                  | 1.36          |      |
| NMeFOSA      | 10489.384          | 5.354 | d-NMcFOSA   | 6 <b>0</b> 10          | 5.353          | 99.94           | 8.4270           | 84.27          | 101.33                   | 1.58          |      |
| PFDA         | 31278.818          | 4.150 | M6PFDA      | 17461                  | 4.149          | 112.15          | 7.7137           | 77.14          | 99.03                    | 1.50          |      |
| PFDoA        | 28632.116          | 5.187 | MPFDoA      | 14376                  | 5.186          | 106.30          | 10.4039          | 104.04         | 1037.53                  | 1.55          |      |
| NETFOSA      | 12091.666          | 5.704 | d-NEtFOSA   | 5662                   | 5. <b>6</b> 94 | 90.37           | 8.4895           | 84.90          | 365.55                   | 1.43          |      |
| PFHpA        | 52188.919          | 2.798 | M4PFHpA     | 2286 <del>4</del>      | 2.797          | 111.53          | 9.5918           | 95.92          | 1998.99                  | 1.42          |      |
| PFHxA        | 42366.145          | 2.153 | M5PFHxA     | 21672                  | 2.151          | 10 <b>4.59</b>  | 8.5675           | 85.68          | 134.06                   | 1.39          |      |
| NMeFOSE      | 16785.232          | 5.398 | d7-NMeFOSE  | 6 <b>8</b> 40          | 5.388          | 93.57           | 8.3583           | 83.58          | 143.58                   | 1.47          |      |
| PFI IxS      | 25173.039          | 2.875 | M3PFI IxS   | 10136                  | 2.874          | 106.16          | 9.1474           | 100.08         | 219.49                   | 0.80          | m    |
| PFNA         | 52204.057          | 3.679 | M9PFNA      | 22883                  | 3.678          | 1 <b>10.70</b>  | 10.3075          | 103.08         | 1 <b>247.6</b> 4         | 1.52          |      |
| NETFOSE      | 18239.121          | 5.703 | d9-NEtFOSE  | 9256                   | 5 <b>.6</b> 82 | 93.87           | 9 <b>.6</b> 120  | 96.12          | 50 <b>45.</b> 84         | 1.63          |      |
| PFOA         | 58019.031          | 3.249 | M8PFOA      | 24 <b>0</b> 63         | 3.247          | 109.63          | 1 <b>1.0</b> 911 | 110.91         | 505.48                   | 1 <b>.70</b>  | m    |
| PFOS         | 34492.303          | 3.704 | M&PFOS      | 11211                  | 3.711          | 108.81          | 9.6582           | 104.08         | INF                      | 0.79          | m    |
| PFPeA        | 46041.953          | 1.253 | M5PFPeA     | 16825                  | 1,248          | 99.11           | 8.5680           | 85.68          | 1918.54                  | 1.53          |      |
| PFMPA        | 37149.445          | 0.698 | M5PFPeA     | 16825                  | 1.248          | 99.11           | 7.9012           | 79.01          | <b>26</b> 19 <b>.0</b> 4 | 1.50          |      |
| PFTA         | 18679.8 <b>4</b> 9 | 5.957 | M2PFTA      | 10157                  | 5.954          | 107.39          | 10.6698          | 106.70         | 985.38                   | 1.47          |      |
| PFMBA        | 45009.297          | 1.547 | M5PFHxA     | 21672                  | 2.151          | 104.59          | 8.3439           | 83.44          | 2403.34                  | 1.48          |      |
| PFTrDA       | 22950.107          | 5.634 | MPFDoA      | 14376                  | 5.186          | 106.30          | 10.5488          | 105.49         | 770.81                   | 1.37          |      |
| PFEESA       | 77724.639          | 1.876 | M3PFHxS     | 10136                  | 2.874          | 106.16          | 8.7725           | 98.57          | 4141.54                  | 1.30          |      |
| PFUnA        | 32425.092          | 4.665 | M7PFUnA     | 18 <b>32</b> 8         | 4.672          | 109.77          | 8 <b>.42</b> 14  | 84 <b>.2</b> 1 | 1 <b>704.2</b> 0         | 1.57          |      |
| NFDHA        | 34063.863          | 2.027 | M4PFHpA     | 22864                  | 2.797          | 111.53          | 7.5373           | 75.37          | 1419.33                  | 1.43          |      |



#### d3-NMeFOSAA



#### d5-NEtFOSAA





# PFDoS







#### M2PFTA





# M6PFDA



#### M7PFUnA





## PFODA



# NEtFOSAA





#### d-NMeFOSA





# PFHpA



# d-NEtFOSA



# PFHxA



## NMeFOSE



## PFHxS



# d7-NMeFOSE



300 400 to-Charge (m/z)



6,1 o,a e 6,1 Acquisilion time (m

a,a 5,9 ė 5,9 6 8,1 Aquisi kin Tine (min

5,8

400 eco Mass-In-Charge (n//)





1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |       |                 | Client Sample ID:  | SMP 1, EXP 12CDUP             |          |      |      |
|------------------|----------------------|-------|-----------------|--------------------|-------------------------------|----------|------|------|
| Collect Date:    | 05/27/20 Time: 0100  |       | GCAL Sample ID: | 2131564            |                               |          |      |      |
| Matrix:          | Solid % Moistu       | e: NA |                 | Instrument ID:     | QQQ2                          |          |      |      |
| Sample Amt:      | .66 g                |       |                 | Lab File ID:       | 2210104B_26.0                 | d        |      |      |
| Injection Vol.:  | 1.0                  |       | (µL)            | GC Column:         | ACC-C18-30M                   | D        | 2.1  | (mm) |
| Prep Final Vol.: | 5000000              |       | (µ∟)            | Dilution Factor:   | 1                             | Analyst: | MRA  |      |
| Prep Date:       |                      |       |                 | Analysis Date:     | 01/04/21                      | Time:    | 2216 |      |
| Prep Batch:      | 7004 <b>44</b>       |       |                 | Analytical Batch:  | 701166                        |          |      |      |
| Prep Method:     | PFAS ID QSM B15 Prep |       |                 | Analytical Method: | PFAS Isotope Dilution QSM B15 |          |      |      |

CONCENTRATION UNITS: ug/kg

| CAS               | ANALYTE                      | RESULT | Q | DL   | LOD   | LOQ   |
|-------------------|------------------------------|--------|---|------|-------|-------|
| 375-73-5          | Perfluorobutanesulfonic acid | 499000 |   | 4550 | 15200 | 37900 |
| 375-85-9          | Perfluoroheptanoic acid      | 472000 |   | 4920 | 15200 | 37900 |
| 355-46-4          | Perfluorohexanesulfonic acid | 516000 |   | 5300 | 15200 | 37900 |
| 375-95-1          | Perfluorononanoic acid       | 494000 |   | 3410 | 15200 | 37900 |
| 1763-23 <b>-1</b> | Perfluorooctanesulfonic acid | 491000 |   | 6820 | 15200 | 37900 |
| 335-67-1          | Perfluorooctanoic acid       | 497000 |   | 5680 | 15200 | 37900 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227901 Dilution

1

Comment MRA,QQQ2;700444

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

Data File

2210104B\_26.d PFAS40Poroshell093020 (Inj Vol 2 Acq Method

Acq Date

1/4/2021 22:16





Position P1-C4

# Quantitation Results

| Compound      | Response                  | RT             | ISTD        | ISTD Resp     | ISTD RT        | ISTD/Surr<br>%Rec | Conc<br>(ng/mL)  | Spike<br>%Rec | SNR              | Symm         | MInt |
|---------------|---------------------------|----------------|-------------|---------------|----------------|-------------------|------------------|---------------|------------------|--------------|------|
| M2PFDA        | 68596.656                 | 4.149          |             |               |                | 98.78             | 19.7561          |               | 2777.87          | 1.42         |      |
| M2PFHxA       | 196781.139                | 2,152          |             |               |                | 101.30            | 40.5201          |               | 8379.56          | 1.44         |      |
| M2PFOA        | 77024.798                 | 3.248          |             |               |                | 97.39             | 19.4780          |               | 4404. <b>1</b> 8 | 1.70         |      |
| M4PFOS        | 4 <b>8</b> 978.311        | 3.703          |             |               |                | 96.89             | 19.3786          |               | 3817.4 <b>2</b>  | 1.60         |      |
| MPFOA         | 432.152                   | 3.266          |             |               |                | 0.00              | 38 <b>.6</b> 551 |               | 2.88             | 1.45         |      |
| M3PFBA        | 3803.785                  | 0.464          |             |               |                | 0.00              | 5.1881           |               | INF              | 1.61         |      |
| HFPQ-DA       | 66.657                    | 2.404          | M3HFPODA    | 683           | 2.393          | 102.08            | 0.6435           |               | 0.71             | 2.72         |      |
| 4;2 FTS       | 19.036                    | 2.002          | M2 4:2 FT\$ | 2625          | 2. <b>0</b> 95 | 106.36            | 0.0230           |               | 0.47             | 1.00         | m    |
| 6:2 FTS       | 11.987                    | 3.236          | M2 6:2 FTS  | 4 <b>462</b>  | 3.225          | 98.72             | 0.0083           |               | 0.95             | 1.25         | m    |
| ADONA         | 17.529                    | 2.887          | M8PFOA      | 22806         | 3.256          | 103.91            | 0.0012           |               | 0.79             | 1.69         |      |
| 8:2 FTS       | 18.918                    | 4 <u>.</u> 147 | M2 8:2 FTS  | 4425          | 4.128          | 1 <b>06.</b> 71   | 0.0119           |               | 1.39             | 1.00         |      |
| 9CI-PF3ONS    | 50.019                    | 3.913          | M8PFOS      | 10220         | 3.711          | 99.19             | 0.0051           |               | 0.75             | 2.86         |      |
| 11CI-PF3OUdS  | 10,640                    | 4,998          | M8PFO\$     | 10220         | 3,711          | 99.19             | 0.0012           |               | 1,19             | 1.00         |      |
| PFHpS         | 1895.731                  | 3.288          | M8PFOA      | 22806         | 3.256          | 103.91            | 0.7376           |               | 65.76            | 1.70         |      |
| 10:2 FTS      | 19.056                    | 5.128          | M2 8:2 FTS  | 4425          | 4.128          | 106.71            | 0.0120           |               | 6.34             | 0.79         |      |
| PFDoS         | 56.191                    | 5.494          | M8PFOS      | 10220         | 3.711          | 99.19             | 0.0182           |               | 2.11             | 3.11         |      |
| PFPeS         | 292.197                   | 2.332          | M5PFHxA     | 21228         | 2.151          | 102.45            | 0.1369           |               | 5.80             | 1.21         |      |
| PFODA         | 503.645                   | 6.504          | M2PFHxDA    | 10788         | 6.348          | 96.65             | 0.3922           |               | 16.22            | 1.75         |      |
| NETFOSAA      | 4.459                     | 4.791          | d5-NEtFOSAA | 11258         | 4.632          | 103.92            | 0.0014           |               | 7.08             | 0.91         | m    |
| PFHxDA        | 139.790                   | 6.351          | M2PFHxDA    | 10788         | 6.348          | 96.65             | 0.0706           |               | 2.62             | 1.53         |      |
| NMeFOSAA      | 70.105                    | 4.394          | d3-NMeFOSAA | 7 <b>9</b> 99 | 4.374          | 103.64            | 0.0213           |               | 2.54             | 1 <b>.04</b> |      |
| PFBA          | 114.502                   | 0.457          | MPFBA       | 24503         | 0.463          | 99.95             | 0.0126           |               | 2.63             | 1.48         |      |
| PFBS          | 154745.335                | 1.507          | M3PFBS      | 9222          | 1.505          | 100.76            | 65.8157          |               | 1089.03          | 1.36         |      |
| PFDA          | 56.617                    | 4.150          | M6PFDA      | 16182         | 4.14 <b>9</b>  | 103.93            | 0.0151           |               | 0.39             | 1.30         |      |
| PFDoA         | 109.177                   | 5.205          | MPFDoA      | 13791         | 5.177          | 101.97            | <b>0.0</b> 414   |               | 7.37             | 0.88         |      |
| PFHpA         | 292952.654                | 2.798          | M4PFHpA     | 19743         | 2.807          | <b>96.</b> 31     | 62.3518          |               | 275.80           | 1.42         |      |
| PFHxA         | 325.837                   | 2.143          | M5PFHxA     | 21228         | 2.151          | 102.45            | 0.0673           |               | 1.53             | 1.53         |      |
| <b>PFH</b> xS | 169640.484                | 2.875          | M3PFHxS     | 9180          | 2.874          | 96.15             | 68.0627          |               | 12271.98         | 1.23         | m    |
| PFNA          | 302992.936                | 3.679          | M9PFNA      | 21007         | 3.678          | 101.62            | 65.1681          |               | 7251.19          | 1.52         |      |
| PFOA          | 325534.523                | 3.249          | M8PFOA      | 22806         | 3.256          | 103.91            | 6 <b>5.6</b> 589 |               | 1294 <b>.6</b> 6 | 1.70         |      |
| PFOS          | 210837.986                | 3.704          | M8PFOS      | 10220         | 3.711          | 99.19             | 64.7629          |               | INF              | 0.78         | m    |
| PFPeA         | 164.003                   | 1.253          | M5PFPeA     | 17065         | 1.248          | 100.52            | 0.0301           |               | 0.74             | 1.96         |      |
| PFTA          | 19.938                    | 5.957          | M2PFTA      | 9240          | 5.954          | 97.70             | 0.0125           |               | 1.19             | 1.43         |      |
| PFTrDA        | 9.806                     | 5.615          | MPFD0A      | 13791         | 5.177          | 101.97            | 0.0047           |               | 0.13             | 1.23         |      |
| PFEESA        | 1 <b>05.</b> 4 <b>4</b> 3 | 1.876          | M3PFHxS     | 9180          | 2.874          | 9 <b>6.</b> 15    | 0.0131           |               | 6.28             | 1.51         |      |
| PFUnA         | 189 <b>.56</b> 4          | 4.665          | M7PFUnA     | 17201         | 4 <b>.6</b> 62 | 103.03            | 0.0525           |               | 1.93             | 1.63         |      |
| NFDHA         | 14.090                    | 1.908          | M4PFHpA     | 19743         | 2.807          | 96.31             | 0.0036           |               | 1.12             | 1.47         |      |



#### d5-NEtFOSAA







## PFNS



# PFDoS





## M2PFTA







## M7PFUnA





#### NEtFOSAA





d-NMeFOSA



Pace Cliff Coast Repont 1220922298



#### d7-NMeFOSE






1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |      | Client Sample ID:  | SMP 1, EXP 12CMS              |  |  |  |
|------------------|----------------------|------|--------------------|-------------------------------|--|--|--|
| Collect Date:    | 05/27/20 Time: 0100  |      | GCAL Sample ID:    | 2131565                       |  |  |  |
| Matrix:          | Solid % Moisture: NA |      | Instrument ID:     | QQQ2                          |  |  |  |
| Sample Amt:      | .66 g                |      | Lab File ID:       | 2210104B_27.d                 |  |  |  |
| Injection Vol.:  | 1.0                  | (µL) | GC Column:         | ACC-C18-30M ID 2.1 (mm)       |  |  |  |
| Prep Final Vol.: | 500000               | (µL) | Dilution Factor:   | 1 Analyst: MRA                |  |  |  |
| Prep Date:       |                      |      | Analysis Date:     | 01/04/21 Time: 2229           |  |  |  |
| Prep Batch:      | 7004 <b>44</b>       |      | Analytical Batch:  | 701166                        |  |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |  |  |  |

CONCENTRATION UNITS: ug/kg

| CAS        | ANALYTE                        | RESULT | Q | DL   | LOD   | LOQ   |
|------------|--------------------------------|--------|---|------|-------|-------|
| 27619-97-2 | 6:2 Fluorotelomersulfonic acid | 63700  |   | 6440 | 15200 | 37900 |
| 39108-34-4 | 8:2 Fluorotelomersulfonic acid | 66700  |   | 9850 | 15200 | 37900 |
| 375-22-4   | Perfluorobutanoic acid         | 55400  |   | 4920 | 15200 | 37900 |
| 335-76-2   | Perfluorodecanoic acid         | 55500  |   | 4550 | 15200 | 37900 |
| 307-24-4   | Perfluorohexanoic acid         | 57300  |   | 5680 | 15200 | 37900 |
| 2706-90-3  | Perfluoropentanoic acid        | 56100  |   | 5680 | 15200 | 37900 |
| 2058-94-8  | Perfluoroundecanoic acid       | 56300  |   | 5300 | 15200 | 37900 |

Samp Name 22012227901 Dilution

1

Comment MRA,QQQ2;700444

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

Data File

Acq Method

#### 1/4/2021 22:29 Acq Date

Sample Chromatogram



PFAS40Poroshell093020 (Inj Vol 2

2210104B\_27.d

Position P1-C5

## Quantitation Results

| •            |                    |       |                  |                |                | ISTD/Surr      | Conc             | Spike |                         |      |      |
|--------------|--------------------|-------|------------------|----------------|----------------|----------------|------------------|-------|-------------------------|------|------|
| Compound     | Response           | RT    | ISTD             | ISTD Resp      | ISTD RT        | %Rec           | (ng/mL)          | %Rec  | SNR                     | Symm | MInt |
| M2PFDA       | 64599.709          | 4.149 |                  |                |                | 93.02          | 18.6049          |       | 96.02                   | 1.42 |      |
| M2PFHxA      | 180167 346         | 2,152 |                  |                |                | 92.75          | 3 <b>7.099</b> 0 |       | <b>7947</b> .29         | 1.36 |      |
| M2PFOA       | 72035.020          | 3.248 |                  |                |                | 91.08          | 18.2 <b>162</b>  |       | 2350.05                 | 1.70 |      |
| M4PFOS       | 44917 <b>.5</b> 96 | 3.703 |                  |                |                | 88.86          | 17.7720          |       | 213.70                  | 1.60 |      |
| MPFOA        | 429.392            | 3.248 |                  |                |                | 0.00           | 38.4082          |       | 2.01                    | 2.77 |      |
| M3PFBA       | 3610.230           | 0.464 |                  |                |                | 0.00           | <b>4.924</b> 1   |       | 34.56                   | 1.55 |      |
| HFPQ-DA      | 1337.370           | 2.386 | M3HFPODA         | 628            | 2.384          | 93.83          | 14 <b>.0</b> 459 |       | 3.97                    | 1.50 |      |
| 4;2 FTS      | 5830.293           | 2.095 | M2 4:2 FT\$      | 2772           | 2. <b>0</b> 95 | 1 <b>12.30</b> | 6.6645           |       | 287.01                  | 1.48 |      |
| 6:2 FTS      | 11896.796          | 3.226 | M2 6:2 FTS       | 4394           | 3.226          | 97 <b>.2</b> 1 | 8.4059           |       | 339.68                  | 1.50 |      |
| ADONA        | 106315.912         | 2.887 | M8PFOA           | 21836          | 3.247          | 99.49          | 7.2972           |       | 5435.47                 | 1.44 |      |
| 8:2 FTS      | 13129.085          | 4.129 | M2 8:2 FTS       | 4153           | 4.129          | 100.16         | 8.8010           |       | <b>4</b> 18 <b>.1</b> 0 | 1.49 |      |
| FOSA         | 26074.143          | 4.335 | M8FOSA           | 13 <b>0</b> 64 | 4.335          | 96.83          | 7.2998           |       | 770.57                  | 1.50 |      |
| 9CI-PF3ONS   | 76219,451          | 3.970 | M8PFO\$          | 9608           | 3,702          | 93.24          | 8,2899           |       | 3635,39                 | 1,56 |      |
| PFDS         | 18446.894          | 4.676 | M6PFDA           | 15325          | 4,139          | 98.42          | 7.3878           |       | 1908.66                 | 1.51 |      |
| 11CI-PF3OUdS | 71947.772          | 4.979 | M8PFOS           | 9608           | 3,702          | 93.24          | 8,2881           |       | 12826.67                | 1.37 |      |
| PFHpS        | 20137.623          | 3.297 | M8PFOA           | 21836          | 3,217          | 99.19          | 8,1833           |       | INF                     | 1.12 |      |
| 10:2 FTS     | 13471.919          | 5.174 | M2 8:2 FTS       | 4153           | 4,129          | 100.16         | 9.0025           |       | 1198.50                 | 1.56 |      |
| PENS         | 18211.865          | 4.172 | M9PENA           | 20212          | 3.678          | 97.78          | 7.1386           |       | 634.11                  | 1.42 |      |
| PEDoS        | 22887.230          | 5.623 | M8PEOS           | 9608           | 3.702          | 93.24          | 7,9020           |       | 79.76                   | 1.45 |      |
| PEPeS        | 15815.610          | 2.314 | M5PEHxA          | 19784          | 2,151          | 95.48          | 7.9497           |       | 847.71                  | 1.50 |      |
| PEODA        | 10760.000          | 6 706 | M2PEHxDA         | 10126          | 6.348          | 90.72          | 8.9278           |       | 710.04                  | 1.60 |      |
| NETEOSAA     | 22689 936          | 4 642 | d5-NEtEOSAA      | 10715          | 4 632          | 98.91          | 7 4876           |       | 160.66                  | 1.00 | m    |
| PEHXDA       | 16334 013          | 6 351 |                  | 10126          | 6 348          | 90.72          | 8 7833           |       | 894 53                  | 1.63 |      |
| NMeEOSAA     | 25585 367          | 4 375 | d3-NMeEOSAA      | 7829           | 4 374          | 101 44         | 7 9502           |       | 115 14                  | 0.85 | m    |
| PEBA         | 65281 103          | 0.466 | MPERA            | 24054          | 0.463          | 98.12          | 7 3127           |       | 1813 10                 | 1 31 |      |
| PEBS         | 174662 964         | 1 497 | M3PEBS           | 8388           | 1 505          | 91.65          | 81 6710          |       | 6516.99                 | 1 50 |      |
| NMcEOSA      | 9638.037           | 5 354 | d-NMcEOSA        | 5068           | 5 353          | 84 29          | 9 1812           |       | 303 13                  | 1 38 |      |
|              | 26052.066          | 4 150 |                  | 15325          | 4 130          | 08.42          | 7 3204           |       | 1067.28                 | 1 49 |      |
| PEDOA        | 21139 654          | 5 178 | MPEDOA           | 13419          | 5 177          | 99.72          | 8 2293           |       | 30.24                   | 1 55 |      |
| NETEOSA      | 11073 898          | 5.695 |                  | 5304           | 5 684          | 84.65          | 8 7007           |       | 113 71                  | 1 50 |      |
| DEHnA        | 334676 203         | 2 708 | M4DEHinA         | 10346          | 5,004<br>7 707 | 04.05          | 77 6833          |       | 8352.70                 | 1.30 |      |
|              | 3/136 512          | 2.790 | MEDEHVA          | 19784          | 2.757          | 94.37          | 7 5620           |       | 640 55                  | 1.72 |      |
|              | 14630.664          | 5 209 |                  | 7017           | 5 367          | 05.00          | 7 1014           |       | 79.35                   | 1 25 |      |
| DELIVS       | 186032 103         | 2 875 | M3DELLVS         | 8742           | 3,30/          | 93.99          | 78 7585          |       | 556.45                  | 1 32 | m    |
|              | 2466ED ED7         | 2.070 | MODENIA          | 5772           | 2.071          | 91.30          | 70.7505          |       | 759.60                  | 1 27 |      |
|              | 16775 400          | 5.075 |                  | 20212          | 5.070<br>E 603 | 57.70          | 9 9007           |       | 230.00<br>6020 04       | 1.37 |      |
| DECA         | 272459 101         | 3.703 | MODEOA           | 7102           | 2,002<br>7,002 | 93.12          | 79.4507          |       | 3153 54                 | 1.70 |      |
| DEOC         | 372436,101         | 3.249 | MOPEOG           | 21650          | 2,24/          | 99.49<br>02.24 | 70.4392          |       |                         | 0.79 | -    |
| PED-A        | 242718.040         | 3.704 | MOPPOS           | 9008           | 3.702          | 95.24          | 79.3094          |       |                         | 1.20 | 10   |
| PFPEA        | 38291.814          | 1.253 | M5PFPeA          | 16180          | 1.248          | 95.31          | 7.4097           |       | 270.74                  | 1.58 |      |
| PEMPA        | 33402.1/5          | 0.698 | MODETA           | 10100          | 1.248          | 95.31          | 7.4005           |       | 8/9.95                  | 1.30 |      |
|              | 13007.212          | 5.946 | MEDELLA          | 9235           | 5.954          | 97.05          | ö.1/11           |       | 87.000                  | 1./2 |      |
|              | 369//.//6          | 1.547 | MSPHHXA          | 19784          | 2.151          | 95.48          | /.5091           |       | 2011.66                 | 1.34 |      |
| PETRDA       | 1/691.621          | 5.625 | MPFDoA           | 13419          | 5.1/7          | 99.22          | 8./118           |       | /2.53                   | 1.60 |      |
| PFEESA       | 63818.528          | 1.867 | M3PFHxS          | 8742           | 2.874          | 91.56          | 8.3515           |       | 1/3.92                  | 1.51 |      |
| PFUNA        | 25924.570          | 4.665 | M7PFUnA          | 16606          | 4.653          | 99.46          | 7.4311           |       | 1042.96                 | 1.38 |      |
| NFDHA        | 26283.127          | 2.036 | M4PF <b>H</b> pA | 19346          | 2.797          | 9 <b>4.</b> 37 | 6.8731           |       | 1 <b>494.72</b>         | 1.25 |      |





Z,6 Z,7 Z,8 Acquisition time (mi

4,5

4,6 4,7 4,8 Acquisition Line (min)

4,5

a60 a80 Mass-lo-Charge (m/z)

a10



a,a 5,6 5,7 5,8 Acquisi ion Line (min)

5,6 5,7 5,8 Acquisition time (mi

5,5

699.0 400 600 Mass-In-Charge (m

thange (m/z)

>6c



#### M2PFTA





#### M7PFUnA





#### PFODA



#### NEtFOSAA





#### d-NMeFOSA





#### NMeFOSE



#### PFHxS



#### d7-NMeFOSE



300 400 D⊢Chargar (r177)

20c









1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279      | 220122279   |      |      | Client Sample ID:  | SMP 2, EXP 12TDUP |             |              |      |
|------------------|----------------|-------------|------|------|--------------------|-------------------|-------------|--------------|------|
| Collect Date:    | 05/27/20       | Time:       | 0200 |      | GCAL Sample ID:    | 2131566           |             |              |      |
| Matrix:          | Solid          | % Moisture: | NA   |      | Instrument ID:     | QQQ2              |             |              |      |
| Sample Amt:      | .51            | g           |      |      | Lab File ID:       | 2210104B_29.      | d           |              |      |
| Injection Vol.:  | 1.0            |             |      | (µL) | GC Column:         | ACC-C18-30M       | ID.         | 2 <u>.</u> 1 | (mm) |
| Prep Final Vol.: | 500000         |             |      | (µ∟) | Dilution Factor:   | 1                 | Analyst:    | MRA          |      |
| Prep Date:       |                |             |      |      | Analysis Date:     | 01/04/21          | Time:       | 2255         |      |
| Prep Batch:      | 70044 <b>4</b> |             |      |      | Analytical Batch:  | 701166            |             |              |      |
| Prep Method:     | PFAS ID Q      | SM B15 Prep |      |      | Analytical Method: | PFAS Isotope      | Dilution QS | M B15        |      |

CONCENTRATION UNITS: ug/kg

| CAS       | ANALYTE                      | RESULT | Q | DL  | LOD           | LOQ  |
|-----------|------------------------------|--------|---|-----|---------------|------|
| 375-73-5  | Perfluorobutanesulfonic acid | 62900  |   | 588 | 1960          | 4900 |
| 355-46-4  | Perfluorohexanesulfonic acid | 59700  |   | 686 | 1 <b>96</b> 0 | 4900 |
| 1763-23-1 | Perfluorooctanesulfonic acid | 54700  |   | 882 | 1960          | 4900 |

# **Quantitative Analysis Sample Report**

Samp Name 22012227902 Dilution

1

ISTD/Surr

Comment MRA,QQQ2;700444

Conc

Snike

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

- Data File Acq Method

PFAS40Poroshell093020 (Inj Vol 2 1/4/2021 22:55 Acq Date

#### Sample Chromatogram



2210104B\_29.d

Position P1-C7

# Quantitation Results

|                        |                     |       |                      |                   |                | 1010/04H        | Conc             | opine |                |      |      |
|------------------------|---------------------|-------|----------------------|-------------------|----------------|-----------------|------------------|-------|----------------|------|------|
| Compound               | Response            | RT    | ISTD                 | ISTD Resp         | ISTD RT        | %Rec            | (ng/mL)          | %Rec  | SNR            | Symm | MInt |
| M2PFDA                 | 88879.576           | 4.149 |                      |                   |                | 127.99          | 25.5976          |       | 2582.72        | 1.42 |      |
| M2PFHxA                | 242563.651          | 2,152 |                      |                   |                | 12 <b>4.</b> 87 | 49.9473          |       | 7807.91        | 1.36 |      |
| M2PFOA                 | 102273.731          | 3.248 |                      |                   |                | 129.31          | <b>25.8</b> 629  |       | 158.15         | 1.70 |      |
| M4PFOS                 | 62278.708           | 3.703 |                      |                   |                | 123.21          | <b>24.6</b> 410  |       | 2736.54        | 1.60 |      |
| MPFOA                  | 233.445             | 3.248 |                      |                   |                | 0.00            | 20.8811          |       | 13. <b>1</b> 3 | 1.60 |      |
| M3PFBA                 | 3765.230            | 0.464 |                      |                   |                | 0.00            | 5.1355           |       | 28.88          | 1.49 |      |
| HFPQ-DA                | 114 <b>.70</b> 4    | 2.349 | M3HFPODA             | 723               | 2.384          | 108.11          | 1.0456           |       | 1. <b>1</b> 4  | 1.38 |      |
| 4;2 FT\$               | 8.544               | 2.104 | M2 4:2 FT\$          | <b>27</b> 74      | 2. <b>0</b> 95 | 1 <b>12.</b> 41 | 0.0098           |       | 3.64           | 1.00 |      |
| 6:2 FTS                | 51.262              | 3.263 | M2 6:2 FTS           | 4760              | 3.226          | 105.31          | 0.0334           |       | 0.69           | 0.86 | m    |
| ADONA                  | 80.017              | 2.887 | M8PFOA               | 23200             | 3.247          | 105.70          | 0.0052           |       | 8.68           | 1.73 |      |
| 11CI-PF3OUdS           | 41.010              | 5.099 | M8PFOS               | 10482             | 3.711          | 101.73          | 0.0043           |       | 1.05           | 0.60 |      |
| PFHpS                  | 2042.033            | 3.297 | M8PFOA               | 23200             | 3.247          | 105.70          | 0.7811           |       | 46.82          | 1.29 |      |
| PFPeS                  | 197.055             | 2.314 | M5P <b>FH</b> xA     | 20731             | 2,151          | 100.05          | 0.0945           |       | 3.95           | 1.50 |      |
| PFÓDA                  | 440.389             | 6.504 | M2PFHxDA             | 12062             | 6.358          | 1 <b>08.</b> 07 | 0.3067           |       | 21.46          | 1.50 |      |
| NETFOSAA               | 27.082              | 4.679 | d5-NEtFOSAA          | 11856             | 4 <b>.6</b> 32 | 109.44          | 0.0081           |       | 1.71           | 0.84 |      |
| PFHxDA                 | 93.518              | 6.361 | M2PFHxDA             | 12062             | 6.358          | 108.07          | 0.0122           |       | 0.30           | 0.92 |      |
| NMeFOSAA               | 10.398              | 4.487 | d3-NMeFOSAA          | 8 <b>0</b> 50     | 4.374          | 10 <b>4.</b> 31 | 0.0031           |       | 1.24           | 1.31 |      |
| PFBA                   | 434.417             | 0.457 | MPFBA                | 25 <b>068</b>     | 0.463          | 102.26          | 0.0467           |       | 5.12           | 1.27 |      |
| PFBS                   | 149 <b>478.3</b> 41 | 1.497 | M3PFBS               | 9140              | 1.505          | 99.87           | 64.1235          |       | <b>323.</b> 53 | 1.50 |      |
| NMeFOSA                | 7.995               | 5.456 | d-NMeFOSA            | 5 <del>6</del> 81 | 5.353          | 9 <b>4.</b> 47  | 0.0068           |       | 0.82           | 1.00 |      |
| PFDA                   | 21.564              | 4.187 | M6PFDA               | 15 <b>4</b> 21    | 4.149          | 99.04           | 0.0060           |       | 0.79           | 0.78 |      |
| PFDoA                  | 54.522              | 5.159 | MPFDoA               | 14091             | 5.177          | 10 <b>4.</b> 19 | 0.0202           |       | 3.06           | 1.48 |      |
| NEtFOSA                | 19.792              | 5.750 | d-NEtFOSA            | 6164              | 5.694          | 98.39           | 0.0128           |       | 1.90           | 1.33 |      |
| P <b>FH</b> pA         | 186.644             | 2.798 | M4PF <b>H</b> pA     | 21000             | 2.797          | 102.44          | 0.0373           |       | 6.67           | 1.58 |      |
| PFHxA                  | 389.277             | 2.171 | M5PFHxA              | 20731             | 2.151          | 100.05          | 0.0823           |       | 2.56           | 1.18 |      |
| NMeFOSE                | 11.288              | 5.368 | d7-NMeFOSE           | 7200              | 5.3 <b>79</b>  | 98.49           | 0.0053           |       | 1. <b>1</b> 0  | 1.15 |      |
| PFH×S                  | 156326.885          | 2.875 | M3PFH <sub>x</sub> S | 9457              | 2.874          | 99.04           | 60.8883          |       | INF            | 1.35 | m    |
| PFNA                   | 225.992             | 3.679 | M9PFNA               | 21636             | 3.678          | 10 <b>4.</b> 66 | 0.0472           |       | 6 <b>.7</b> 8  | 1.22 |      |
| PFOA                   | 395.319             | 3.259 | M8PFOA               | 23200             | 3.247          | 105.70          | 0.0784           |       | <b>2.1</b> 7   | 1.02 |      |
| PFOS                   | 186281.217          | 3.704 | M8PFOS               | 10 <b>4</b> 82    | 3.711          | 101.73          | 5 <b>5.7</b> 921 |       | INF            | 1.37 | m    |
| PFPeA                  | 176.531             | 1.253 | M5PFPeA              | 17326             | 1.248          | 102.06          | 0.0319           |       | 1.53           | 1.15 | m    |
| PFTA                   | 32.776              | 5.936 | M2PFTA               | 10 <b>0</b> 96    | 5.954          | 106.75          | 0.0188           |       | 0.95           | 3.42 |      |
| <b>PF</b> TrD <b>A</b> | 7.444               | 5.671 | MPFDoA               | 14091             | 5.177          | 10 <b>4.19</b>  | 0.0035           |       | 0.98           | 0.66 |      |
| PFEESA                 | 180.726             | 1.867 | M3PFI IxS            | 9 <b>457</b>      | 2.874          | 99.04           | 0.0219           |       | 2.95           | 1.32 |      |
| PFUnA                  | 59.096              | 4.757 | M7PFUnA              | 17 <b>5</b> 99    | 4. <b>6</b> 62 | 105.41          | 0.0160           |       | 1.68           | 1.05 |      |
| NFDHA                  | 17.681              | 2.009 | M4PF <b>H</b> pA     | 21 <b>0</b> 00    | 2.797          | 102.44          | 0.0043           |       | 2.20           | 0.92 |      |



4,5

a13





PFDoS





#### M2PFTA





#### M7PFUnA







Pace Cull Coast Report 122092229



d-NMeFOSA







#### PFHxS





600

# d7-NMeFOSE







1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279            |      | Client Sample ID:  | SMP 2, EXP 12TMS              |  |  |  |
|------------------|----------------------|------|--------------------|-------------------------------|--|--|--|
| Collect Date:    | 05/27/20 Time: 0     | )200 | GCAL Sample ID:    | 2131567                       |  |  |  |
| Matrix:          | Solid % Moisture: N  | NA   | Instrument ID:     | QQQ2                          |  |  |  |
| Sample Amt:      | .51 g                |      | Lab File ID:       | 2210104B_30.d                 |  |  |  |
| Injection Vol.:  | 1.0                  | (µL) | GC Column:         | ACC-C18-30M ID 2.1 (mm)       |  |  |  |
| Prep Final Vol.: | 500000               | (µL) | Dilution Factor:   | 1 Analyst: MRA                |  |  |  |
| Prep Date:       |                      |      | Analysis Date:     | 01/04/21 Time: 2308           |  |  |  |
| Prep Batch:      | 70044 <b>4</b>       |      | Analytical Batch:  | 701166                        |  |  |  |
| Prep Method:     | PFAS ID QSM B15 Prep |      | Analytical Method: | PFAS Isotope Dilution QSM B15 |  |  |  |

CONCENTRATION UNITS: ug/kg

| CAS        | ANALYTE                        | RESULT | Q | DL          | LOD  | LOQ  |
|------------|--------------------------------|--------|---|-------------|------|------|
| 27619-97-2 | 6:2 Fluorotelomersulfonic acid | 8770   |   | 833         | 1960 | 4900 |
| 39108-34-4 | 8:2 Fluorotelomersulfonic acid | 9960   |   | 1270        | 1960 | 4900 |
| 375-22-4   | Perfluorobutanoic acid         | 8420   |   | 637         | 1960 | 4900 |
| 335-76-2   | Perfluorodecanoic acid         | 7900   |   | 588         | 1960 | 4900 |
| 375-85-9   | Perfluoroheptanoic acid        | 7670   |   | 637         | 1960 | 4900 |
| 307-24-4   | Perfluorohexanoic acid         | 8210   |   | 735         | 1960 | 4900 |
| 375-95-1   | Perfluorononanoic acid         | 7920   |   | 4 <b>41</b> | 1960 | 4900 |
| 335-67-1   | Perfluorooctanoic acid         | 8070   |   | 735         | 1960 | 4900 |
| 2706-90-3  | Perfluoropentanoic acid        | 7990   |   | 735         | 1960 | 4900 |
| 2058-94-8  | Perfluoroundecanoic acid       | 7590   |   | 686         | 1960 | 4900 |

Samp Name 22012227902 Dilution

1

Comment MRA,QQQ2;700444

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

Data File Acq Method

Acq Date

#### PFAS40Poroshell093020 J Inj Vol 2 1/4/2021 23:08

Sample Chromatogram



2210104B\_30.d

Position P1-C8

### Quantitation Results

| •            |                    |       |                      |                |                | ISTD/Surr       | Conc             | Spike |                          |              |      |
|--------------|--------------------|-------|----------------------|----------------|----------------|-----------------|------------------|-------|--------------------------|--------------|------|
| Compound     | Response           | RT    | ISTD                 | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | %Rec  | SNR                      | Symm         | MInt |
| M2PFDA       | 90302.676          | 4.149 |                      |                |                | 130.04          | 26.0075          |       | 6900.52                  | 1.42         |      |
| M2PFHxA      | 248842.428         | 2,152 |                      |                |                | 128.10          | 51.2402          |       | INF                      | 1.44         |      |
| M2PFOA       | 107275.660         | 3.248 |                      |                |                | 135.64          | 27.1278          |       | 4818.56                  | 1.42         |      |
| M4PFOS       | 65232.162          | 3.703 |                      |                |                | 129.05          | <b>25.8</b> 096  |       | 3922.46                  | 1.60         |      |
| MPFOA        | 193.997            | 3.248 |                      |                |                | 0.00            | 17.3526          |       | 3.61                     | 1.93         |      |
| M3PFBA       | 3708. <b>754</b>   | 0.464 |                      |                |                | 0.00            | 5.0585           |       | 25.53                    | 1.50         |      |
| HFPO-DA      | 1746.565           | 2.376 | M3HFPODA             | 636            | 2.374          | 95.08           | 18.1026          |       | 16.62                    | 1.50         |      |
| 4:2 FTS      | 6344.459           | 2.095 | M2 4:2 FTS           | 2594           | 2. <b>0</b> 95 | 105.1 <b>0</b>  | 7.7493           |       | 73.56                    | 1.47         |      |
| 6:2 FTS      | 13845.210          | 3.226 | M2 6:2 FTS           | 4805           | 3.226          | 106.30          | 8.9460           |       | <b>52</b> 4.46           | 1.50         |      |
| ADONA        | 126102.029         | 2.887 | M8PFOA               | 23610          | 3.247          | 1 <b>07.</b> 57 | 8.0052           |       | 827.34                   | 1.44         |      |
| 8:2 FTS      | 15820.059          | 4.129 | M2 8:2 FTS           | 4336           | 4.138          | 10 <b>4.</b> 57 | 10.1572          |       | 681.23                   | 1.42         |      |
| FOSA         | 30449.764          | 4.335 | M8FOSA               | 13716          | 4.335          | 101.67          | 8.1195           |       | 920.09                   | 1.50         |      |
| 9CI-PF3ONS   | 92942.611          | 3.979 | M8PFOS               | 107 <b>63</b>  | 3.702          | 104.46          | 9.0236           |       | 4536.59                  | 1.35         |      |
| PFDS         | 22001.725          | 4.676 | M6PFDA               | 16409          | 4.14 <b>9</b>  | 105.38          | 8.2295           |       | 311.90                   | 1.51         |      |
| 11CI-PF3OUdS | 87608.676          | 4.979 | M8PFOS               | 10 <b>763</b>  | 3.702          | 10 <b>4.46</b>  | 9.0088           |       | 5197.83                  | 1.50         |      |
| PFHpS        | 23930.930          | 3.297 | M8PFOA               | 23610          | 3.217          | 107.57          | 8.9911           |       | 1106.21                  | 1.12         |      |
| 10:2 FTS     | 15826.957          | 5.183 | M2 8:2 FTS           | 4336           | 4.138          | 10 <b>4.</b> 57 | 10.1297          |       | 1270.19                  | 1.56         |      |
| PENS         | 22081.046          | 4.172 | M9PFNA               | 2215 <b>3</b>  | 3.669          | 107.17          | 7.8969           |       | 819.71                   | 1.42         |      |
| PFDoS        | 28329.761          | 5.632 | M8PFOS               | 10763          | 3.702          | 104.46          | 8.7311           |       | 2143.08                  | 1.37         |      |
| PFPeS        | 19043.875          | 2.323 | M5PFHxA              | 21269          | 2.151          | 102.65          | 8.9043           |       | 2804.31                  | 1.29         |      |
| PFODA        | 12940.707          | 6.706 | M2PFHxDA             | 11654          | 6.348          | 10 <b>4.4</b> 1 | 9.3298           |       | <b>47.1</b> 6            | 1.33         |      |
| NETFOSAA     | 32069.681          | 4.642 | d5-NEtFOSAA          | 11620          | 4.641          | 107.27          | 9 <b>.759</b> 0  |       | 2797.15                  | 1.57         |      |
| PFH×DA       | 20367.364          | 6.351 | M2PFHxDA             | 11654          | 6.348          | 1 <b>04.</b> 41 | 9.5166           |       | 900.55                   | 1.63         |      |
| NMeF0\$AA    | 36894.962          | 4.375 | d3-NMeFO\$AA         | 8563           | 4.365          | 110.95          | 10.4818          |       | 97.62                    | 1.50         |      |
| PFBA         | 78319.753          | 0.466 | MPFBA                | 24562          | 0.463          | 100.19          | 8.5920           |       | INF                      | 1.31         |      |
| PFBS         | 181880.822         | 1.497 | M3PFBS               | 9179           | 1.505          | 100.29          | 7 <b>7.71</b> 76 |       | 13001.51                 | 1.50         |      |
| NMeFOSA      | 11537.315          | 5.364 | d-NMcFOSA            | 5898           | 5.353          | 98.08           | 9.4448           |       | 204.57                   | 1.38         |      |
| PFDA         | 30695.929          | 4.141 | M6PFDA               | 16409          | 4.149          | 105.38          | 8.0556           |       | 9 <b>7</b> 0. <b>7</b> 1 | 1.66         |      |
| PFDoA        | 27213.888          | 5.187 | MPFDoA               | 14041          | 5.186          | 103.82          | 10.1242          |       | 896.74                   | 1.42         |      |
| NETFOSA      | 12724.631          | 5.695 | d-NEtFOSA            | 6025           | 5.694          | 96.16           | 8.3958           |       | 790.75                   | 1.50         |      |
| PFHpA        | 40575.592          | 2.798 | M4PFHpA              | 21806          | 2.797          | 106.37          | 7.8192           |       | 817.32                   | 1.42         |      |
| PFHxA        | 40625.758          | 2.153 | M5PFHxA              | 21269          | 2.151          | 102.65          | 8.3714           |       | 1496.92                  | 1.39         |      |
| NMeFOSE      | 16161.094          | 5.398 | d7-NMeFOSE           | 7222           | 5.3 <b>79</b>  | 98.80           | 7.6212           |       | 95.27                    | 1.54         |      |
| PFLIxS       | 193398.375         | 2.866 | M3PFI IxS            | 9313           | 2.874          | 97.54           | 76.4872          |       | INF                      | 1.01         | m    |
| PFNA         | 39625.746          | 3.670 | M9PFNA               | 22153          | 3. <b>6</b> 69 | 1 <b>07.</b> 17 | <b>8.0</b> 817   |       | 55.46                    | 1.52         |      |
| NETFOSE      | 18247.723          | 5.703 | d9-NEtFOSE           | 9585           | 5 <b>.6</b> 93 | 97.20           | 9.2867           |       | 71.51                    | 1.47         |      |
| PFOA         | 42232.070          | 3.249 | M8PFOA               | 23610          | 3.247          | 10 <b>7.</b> 57 | 8.2281           |       | 241.50                   | 1.42         |      |
| PFOS         | 236811.450         | 3.704 | M&PFOS               | 10763          | 3.702          | 104.46          | 69.0727          |       | INF                      | 1.37         | m    |
| PFPeA        | 44 <b>395.1</b> 81 | 1.253 | M5PFPeA              | 17060          | 1.248          | 100.49          | 8.1479           |       | 173.64                   | 1.38         |      |
| PFMPA        | 38003.686          | 0.698 | M5PFPeA              | 17 <b>0</b> 60 | 1.248          | 100.49          | <b>7.9</b> 717   |       | 687.54                   | 1.36         |      |
| PFTA         | 16856.851          | 5.957 | M2PFTA               | 10009          | 5.954          | 105.82          | 9.7712           |       | 1038.73                  | 1.39         |      |
| PFMBA        | 43694.735          | 1.547 | M5PFHxA              | 21269          | 2.151          | 102.65          | 8.2539           |       | 55689.46                 | 1.34         |      |
| PFTrDA       | 21901.445          | 5.634 | MPFDoA               | 14041          | 5.186          | 103.82          | 10.3066          |       | 633.77                   | 1.37         |      |
| PFEEŞA       | 70651.673          | 1.867 | M3PFH <sub>x</sub> S | 9313           | 2.874          | 97.54           | 8.6788           |       | 6140.06                  | 1.51         |      |
| PFUnA        | 29270.323          | 4.665 | M7PFUnA              | 18 <b>0</b> 07 | 4. <b>6</b> 62 | 107.86          | 7.7374           |       | 8 <b>72.3</b> 7          | 1.50         |      |
| NFDHA        | 31559.521          | 2.027 | M4PFHpA              | 21806          | 2.797          | 10 <b>6.3</b> 7 | 7.3220           |       | 1288.37                  | 1 <b>.36</b> |      |



#### d5-NEtFOSAA





5,8

5,5 5,6 5,7 5,8 Acquisition Line (min)

5,6 5,7 Acquisition tim

5,5

699.0 400 600 Mass-In-Charge (m

thange (m/z)

2**00** 



#### M2PFTA







#### M7PFUnA







#### **NEtFOSAA**



n (n.77)



# d-NMeFOSA





#### NMeFOSE

2.1



cqi

#### PFHxS



#### d7-NMeFOSE



300 400 D⊢Chargar (r177)



5,9 6 6,1 Acquisition Lime (mi

5,8

5,9 6 8,1 Aquisi kin Tine (min

5,8

400 eco Mass-In-Charge (n//)





180 90 200 210

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279      | 20122279    |               |      | Client Sample ID:  | SMP 3, EXP 13CDUP |             |       |      |
|------------------|----------------|-------------|---------------|------|--------------------|-------------------|-------------|-------|------|
| Collect Date:    | 06/04/20       | Time:       | 1 <b>10</b> 0 |      | GCAL Sample ID:    | 2131568           |             |       |      |
| Matrix:          | Solid          | % Moisture: | NA            |      | Instrument ID:     | QQQ2              |             |       |      |
| Sample Amt:      | .73            | g           |               |      | Lab File ID:       | 2210104B_33.0     | d           |       |      |
| Injection Vol.:  | 1.0            |             |               | (µ∟) | GC Column:         | ACC-C18-30M       | D           | 2.1   | (mm) |
| Prep Final Vol.: | 5000000        |             |               | (µ∟) | Dilution Factor:   | 1                 | Analyst:    | MRA   |      |
| Prep Date:       |                |             |               |      | Analysis Date:     | 01/04/21          | Time:       | 2347  |      |
| Prep Batch:      | 70044 <b>4</b> |             |               |      | Analytical Batch:  | 701166            |             |       |      |
| Prep Method:     | PFAS ID Q      | SM B15 Prep |               |      | Analytical Method: | PFAS Isotope I    | Dilution QS | M B15 |      |

CONCENTRATION UNITS: ug/kg

| CAS               | ANALYTE                      | RESULT | Q | DL           | LOD   | LOQ   |
|-------------------|------------------------------|--------|---|--------------|-------|-------|
| 375-73-5          | Perfluorobutanesulfonic acid | 690000 |   | <b>41</b> 10 | 13700 | 34200 |
| 375-85-9          | Perfluoroheptanoic acid      | 634000 |   | 4450         | 13700 | 34200 |
| 355-46-4          | Perfluorohexanesulfonic acid | 644000 |   | 4790         | 13700 | 34200 |
| 375-95-1          | Perfluorononanoic acid       | 684000 |   | 3080         | 13700 | 34200 |
| 1763-23- <b>1</b> | Perfluorooctanesulfonic acid | 644000 |   | 6160         | 13700 | 34200 |
| 335-67-1          | Perfluorooctanoic acid       | 645000 |   | 5140         | 13700 | 34200 |
### **Quantitative Analysis Sample Report**

Samp Name 22012227903 Dilution

1

Comment MRA,QQQ2;700444

### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

Data File

#### 2210104B\_33.d PFAS40Poroshell093020 (Inj Vol 2 Acq Method

Acq Date

1/4/2021 23:47 Sample Chromatogram



Position P1-D2

### Quantitation Results

| Compound     | Response        | RT             | ISTD                 | ISTD Resp      | ISTD RT                | ISTD/Surr<br>%Rec | Conc<br>{ng/mL}  | Spike<br>%Rec | SNR          | Symm | MInt |
|--------------|-----------------|----------------|----------------------|----------------|------------------------|-------------------|------------------|---------------|--------------|------|------|
| M2PFDA       | 73475.920       | 4.149          |                      |                |                        | 105.81            | 21.1613          |               | 2316.30      | 1.49 |      |
| M2PFHxA      | 202367.210      | 2,152          |                      |                |                        | 104.18            | 41.6703          |               | 6638.56      | 1.36 |      |
| M2PFOA       | 82541.810       | 3.248          |                      |                |                        | 104.37            | 20.8731          |               | 2962.01      | 1.70 |      |
| M4PFOS       | 50962.534       | 3.703          |                      |                |                        | 100.82            | 20.1637          |               | 3055.72      | 1.60 |      |
| MPFOA        | 537.492         | 3.248          |                      |                |                        | 0.00              | 48 <b>.0</b> 775 |               | 19.08        | 0.83 |      |
| M3PFBA       | 3722.274        | 0.464          |                      |                |                        | 0.00              | 5.0769           |               | 21.93        | 1.46 |      |
| HFPQ-DA      | 132.599         | 2.421          | M3HFPODA             | 755            | 2.375                  | 112.78            | 1.1586           |               | 2.95         | 4.02 |      |
| 4:2 FTS      | 16.269          | 2.086          | M2 4:2 FT\$          | 2651           | 2. <b>0</b> 95         | 107.43            | 0.0194           |               | 0.53         | 1.18 | m    |
| 6:2 FTS      | 38.635          | 3.236          | M2 6:2 FTS           | 4688           | 3.226                  | 103.72            | 0.0256           |               | <b>2</b> .31 | 1.36 |      |
| ADONA        | 33.720          | 2.905          | M8PFOA               | 23620          | 3.247                  | 107.61            | 0.0021           |               | 0.97         | 0.84 | m    |
| 8:2 FTS      | 25.753          | 4.157          | M2 8:2 FTS           | 4364           | 4.129                  | 105.23            | 0.0164           |               | 1.85         | 1.37 |      |
| 9CI-PF3ONS   | 75.210          | 4.043          | M8PFOS               | 10898          | 3.711                  | 105.76            | 0.0072           |               | 8.03         | 0.88 |      |
| PFD\$        | 17,203          | 4.713          | M6PFDA               | 171 <b>23</b>  | 4,149                  | 109.97            | 0.0062           |               | 1.10         | 0.76 |      |
| 11CI-PF3OUdS | 23.171          | 4.869          | M8PFOS               | 10898          | 3.711                  | 105.76            | 0.0024           |               | 1.64         | 0.68 |      |
| PFHpS        | 2961.479        | 3.288          | M8PFOA               | 23620          | 3.247                  | 107.61            | 1.1126           |               | 67.27        | 1.50 |      |
| 10:2 FTS     | 30.695          | 5.255          | M2 8:2 FTS           | 1361           | 1.129                  | 105.23            | 0.0195           |               | 1.01         | 1.11 |      |
| PFPeS        | 286.493         | 2.305          | M5PFHxA              | 21755          | 2.151                  | 10 <b>4.99</b>    | 0.1310           |               | 11.64        | 1.90 |      |
| PFODA        | 450.997         | 6.504          | M2PFHxDA             | 10919          | 6.348                  | 97.83             | 0.3470           |               | 18.02        | 1.83 |      |
| NETFOSAA     | 25.866          | 4.633          | d5-NEtFOSAA          | 11 <b>9</b> 46 | 4.641                  | 1 <b>10.2</b> 7   | <b>0.0</b> 077   |               | 0.69         | 1.92 | m    |
| PFHxDA       | 108.042         | 6.351          | M2PFHxDA             | 10919          | 6.348                  | 97.83             | 0.0539           |               | 2.90         | 1.50 |      |
| NMeFOSAA     | 12. <b>45</b> 8 | 4.468          | d3-NMeFOSAA          | 7881           | 4.374                  | 102.11            | 0.0038           |               | 0.95         | 1.52 |      |
| PFBA         | 383.157         | 0.466          | MPFBA                | 25523          | 0.463                  | 10 <b>4.</b> 11   | 0.0405           |               | 5.32         | 1.56 |      |
| PFBS         | 232315.989      | 1.497          | M3PFBS               | 9043           | 1.505                  | 98.80             | 100.7672         |               | 4366.52      | 1.50 |      |
| PFDA         | 98.383          | 4.131          | M6PFDA               | 171 <b>23</b>  | 4.14 <b>9</b>          | 1 <b>09.</b> 97   | 0.0247           |               | 8.53         | 1.49 |      |
| PFDoA        | 4 <b>0</b> .004 | 5.260          | MPFDoA               | 13920          | 5.18 <b>6</b>          | 102.92            | 0.0150           |               | 2.80         | 0.64 |      |
| NELFOSA      | 28.800          | 5.583          | d-NELFOSA            | 6298           | 5. <b>6</b> 9 <b>4</b> | 10 <b>0.</b> 52   | 0.0182           |               | 1.39         | 0.86 |      |
| PFHpA        | 445475.482      | 2.798          | M4PFHpA              | 20210          | 2.797                  | 98.58             | 92.6261          | 1             | 2808.92      | 1.42 |      |
| PFHxA        | 373.140         | 2 <u>.</u> 171 | M5PFHxA              | 21755          | 2.151                  | 104.99            | 0.0752           |               | 6.09         | 1.18 |      |
| PFHxS        | 253899.307      | 2.875          | M3PFH <sub>x</sub> S | 9 <b>9</b> 42  | 2.874                  | 104.12            | 94 <b>.065</b> 8 | 1             | 5811.80      | 0.80 | m    |
| PFNA         | 457674.462      | 3.679          | M9PFNA               | 20701          | 3.678                  | 100.14            | 99.8916          |               | 3496.06      | 1.37 |      |
| PFOA         | 483230.719      | 3.219          | M8PFOA               | 23620          | 3.247                  | 107.61            | 94.1063          |               | 2852.28      | 1.50 |      |
| PFOS         | 326374.687      | 3.704          | M8PFOS               | 10898          | 3.711                  | 105.76            | 94.0198          |               | INF          | 0.78 | m    |
| PFPeA        | 242.860         | 1.244          | M5PFPeA              | 17340          | 1.248                  | 102.14            | 0.0439           |               | 9.76         | 1.61 |      |
| PFMPA        | 17.363          | 0.698          | M5PFPeA              | 17340          | 1.248                  | 102.14            | 0.0036           |               | 2.18         | 1.40 |      |
| PFMBA        | 16.449          | 1.547          | M5PFHxA              | 21755          | 2.151                  | 104.99            | D.0030           |               | 0.59         | 1.06 |      |
| PFTrDA       | 14.013          | 5.625          | MPFDoA               | 13920          | 5.186                  | 102.92            | 0.0067           |               | 0.97         | 1.00 |      |
| PFEESA       | 282.323         | 1.8 <b>7</b> 6 | M3PFHxS              | 9 <b>9</b> 42  | 2.8 <b>74</b>          | 10 <b>4.</b> 12   | 0.0325           |               | 5.84         | 1.12 |      |
| PFUnA        | 257.727         | 4.665          | M7PFUnA              | 18458          | 4 <b>.6</b> 62         | 110.55            | 0.0665           |               | 3.55         | 1.00 |      |



4,6 4,7 4,8 Acquisition Line (min)

4,5

Z,& Z,Z Z,& Acquisition time (mi

4,5

a60 a80 Mass-lo-Charge (m/z)

a10



### PFNS



### PFDoS





#### M2PFTA





#### M7PFUnA









d-NMeFOSA











### d7-NMeFOSE







1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

| Report No:       | 220122279      | 220122279   |      |      | Client Sample ID:  | SMP 3, EXP 13    | BCMS        |       |      |
|------------------|----------------|-------------|------|------|--------------------|------------------|-------------|-------|------|
| Collect Date:    | 06/04/20       | Time:       | 1100 |      | GCAL Sample ID:    | 213 <b>1</b> 569 |             |       |      |
| Matrix:          | Solid          | % Moisture: | NA   |      | Instrument ID:     | QQQ2             |             |       |      |
| Sample Amt:      | .73            | g           |      |      | Lab File ID:       | 2210104B_34.0    | d           |       |      |
| Injection Vol.:  | 1.0            |             |      | (µL) | GC Column:         | ACC-C18-30M      | D           | 2.1   | (mm) |
| Prep Final Vol.: | 5000000        |             |      | (µ∟) | Dilution Factor:   | 1                | Analyst:    | MRA   |      |
| Prep Date:       |                |             |      |      | Analysis Date:     | 01/05/21         | Time:       | 0000  |      |
| Prep Batch:      | 70044 <b>4</b> |             |      |      | Analytical Batch:  | 701166           |             |       |      |
| Prep Method:     | PFAS ID QS     | SM B15 Prep |      |      | Analytical Method: | PFAS Isotope I   | Dilution QS | M B15 |      |

CONCENTRATION UNITS: ug/kg

| CAS        | ANALYTE                        | RESULT | Q | DL           | LOD   | LOQ   |
|------------|--------------------------------|--------|---|--------------|-------|-------|
| 27619-97-2 | 6:2 Fluorotelomersulfonic acid | 55800  |   | 5820         | 13700 | 34200 |
| 39108-34-4 | 8:2 Fluorotelomersulfonic acid | 57900  |   | 8900         | 13700 | 34200 |
| 375-22-4   | Perfluorobutanoic acid         | 52000  |   | 4450         | 13700 | 34200 |
| 335-76-2   | Perfluorodecanoic acid         | 52100  |   | <b>41</b> 10 | 13700 | 34200 |
| 307-24-4   | Perfluorohexanoic acid         | 51900  |   | 5140         | 13700 | 34200 |
| 2706-90-3  | Perfluoropentanoic acid        | 53400  |   | 5140         | 13700 | 34200 |
| 2058-94-8  | Perfluoroundecanoic acid       | 54100  |   | 4790         | 13700 | 34200 |

Samp Name 22012227903 Dilution

1

Comment MRA,QQQ2;700444

### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Type Sample

- Data File
- 2210104B\_34.d PFAS40Poroshell093020 (Inj Vol 2 Acq Method

Acq Date





Position P1-D3

### Quantitation Results

|                |                             |                |                 |                |                | ISTD/Suff       | Conc                    | Spike |                  |              |      |
|----------------|-----------------------------|----------------|-----------------|----------------|----------------|-----------------|-------------------------|-------|------------------|--------------|------|
| Compound       | Response                    | RT             | ISTD            | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)                 | %Rec  | SNR              | Symm         | MInt |
| M2PFDA         | 67606.189                   | 4.149          |                 |                |                | 97.35           | 1 <b>9.470</b> 8        |       | 7708.15          | 1.66         |      |
| M2PFHxA        | 188337.398                  | 2 <u>.</u> 152 |                 |                |                | 96.95           | 38.7814                 |       | 6745.61          | 1.36         |      |
| M2PFOA         | 76766.903                   | 3.248          |                 |                |                | 9 <b>7.</b> 06  | 19.4128                 |       | 3618.45          | 1.50         |      |
| M4PFOS         | 48023.557                   | 3.712          |                 |                |                | 95.00           | 19.0009                 |       | 2125.51          | 1.37         |      |
| MPFOA          | 283.203                     | 3.248          |                 |                |                | 0.00            | 2 <b>5.</b> 3319        |       | 8.93             | 1.76         |      |
| M3PFBA         | 3569.218                    | 0.464          |                 |                |                | 0.00            | 4.8682                  |       | 12.99            | 1.59         |      |
| HFPO-DA        | 1795.438                    | 2.376          | <b>M3HFPODA</b> | 750            | 2.393          | 112.08          | 15.7869                 |       | 8.23             | 1.89         |      |
| 4:2 FTS        | 5998.391                    | 2.095          | M2 4:2 FTS      | 2650           | 2. <b>0</b> 95 | 107.38          | <b>7.</b> 17 <b>0</b> 7 |       | 303.67           | 1.41         |      |
| 6:2 FTS        | 11506.707                   | 3.226          | M2 6:2 FTS      | 4386           | 3.225          | 97.02           | 8.1458                  |       | 768.92           | 1.42         |      |
| ADONA          | 107690.991                  | 2.887          | M8PFOA          | 21506          | 3.247          | 97.98           | 7.5052                  |       | 5000.13          | 1.44         |      |
| 8:2 FTS        | 13217.054                   | 4.138          | M2 8:2 FTS      | 4352           | 4.138          | 10 <b>4.</b> 96 | 8.4545                  |       | 57.99            | 1.42         |      |
| FOSA           | 25903.583                   | 4.335          | M8FOSA          | 12275          | 4.344          | 90.99           | 7.7179                  |       | 62.50            | 1.50         |      |
| 9CI-PF3ONS     | 75590.650                   | 3.979          | M8PFOS          | 9 <b>993</b>   | 3,711          | 96.99           | 7.9041                  |       | 4735.71          | 1.42         |      |
| PFDS           | 18619.863                   | 4.685          | M6PFDA          | 14 <b>9</b> 96 | 4.158          | 96.31           | 7 <b>.620</b> 6         |       | 934.33           | 1.39         |      |
| 11CI-PF3OUdS   | 72569.267                   | 4.989          | M8PFOS          | 9993           | 3.711          | 9 <b>6.</b> 99  | 8 <b>.0</b> 370         |       | 219.27           | 1.37         |      |
| PFHpS          | 21842.695                   | 3.297          | M8PFOA          | 21506          | 3.217          | 97.98           | 9.0126                  |       | 753.27           | 1.12         |      |
| 10:2 FTS       | 14504.601                   | 5.183          | M2 8:2 FTS      | 4352           | 4.138          | 104.96          | 9.2490                  |       | 835.89           | 1.64         |      |
| PFNS           | 18412.733                   | 4.172          | M9PFNA          | 19147          | 3.678          | 92.62           | 7.6188                  |       | 846.79           | 1.66         |      |
| PFDoS          | 24842.757                   | 5.623          | M8PFOS          | 9993           | 3.711          | 96.99           | 8,2461                  |       | 924.75           | 1.6 <b>0</b> |      |
| PFPeS          | 1 <b>6</b> 14 <b>2.</b> 617 | 2.323          | M5PFHxA         | 19553          | 2.151          | 94.37           | 8.2100                  |       | INF              | 1.29         |      |
| PFODA          | 10617.362                   | 6.706          | M2PFHxDA        | 10 <b>541</b>  | 6.348          | 94.44           | 8 <b>.4</b> 630         |       | 469.59           | 1.42         |      |
| NETFOSAA       | 22922.970                   | 4.651          | d5-NEtFOSAA     | 11418          | 4.641          | 105.40          | 7.0988                  |       | INF              | 0.90         | m    |
| PFHxDA         | 16621.367                   | 6.351          | M2PFHxDA        | 10 <b>541</b>  | 6.348          | 94.44           | 8.5863                  |       | 733.39           | 1.63         |      |
| NMeF0\$AA      | <b>253</b> 77.716           | 4.375          | d3-NMeFOSAA     | 7 <b>785</b>   | 4.374          | 1 <b>00.</b> 87 | 7 <b>.930</b> 4         |       | INF              | 1.26         | m    |
| PFBA           | 65819.628                   | 0.466          | MPFBA           | 23377          | 0.463          | 95.36           | 7.5867                  |       | 1466.59          | 1.31         |      |
| PFBS           | 259005.521                  | 1.497          | M3PFBS          | 8287           | 1.496          | 90.55           | <b>122.</b> 5821        | 1     | 0253.19          | 1.50         |      |
| NMeFOSA        | 10228.945                   | 5.364          | d-NMcFOSA       | 5258           | 5.353          | 87.44           | 9.3930                  |       | 479.09           | 1.44         |      |
| PFDA           | 26508.338                   | 4,150          | M6PFDA          | 14 <b>9</b> 96 | 4.158          | 96.31           | 7.6120                  |       | 713.12           | 1.49         |      |
| PFDoA          | 22741.623                   | 5.187          | MPFDoA          | 13325          | 5.186          | 98.52           | 8.9153                  |       | 42.54            | 1.62         |      |
| NETFOSA        | 10309.810                   | 5.704          | d-NEtFOSA       | 5459           | 5. <b>6</b> 84 | 87.13           | 7.5077                  |       | 322.66           | 1.43         |      |
| PFHpA          | 495724.114                  | 2.798          | M4PFHpA         | 19 <b>0</b> 86 | 2.797          | 93 <b>.</b> 10  | 109.1447                |       | 868.45           | 1.42         |      |
| PFHxA          | 33794.224                   | 2.153          | M5PFHxA         | 19553          | 2.151          | 94.37           | 7.5746                  |       | 572.09           | 1.39         |      |
| NMeFOSE        | 15065.998                   | 5.407          | d7-NMeFOSE      | 6617           | 5.388          | 90.52           | 7.7550                  |       | 117.04           | 1.35         |      |
| PFI IxS        | 284479.396                  | 2.875          | M3PFI IxS       | 8433           | 2.874          | 88.32           | <b>124.2494</b>         |       | 512.43           | 1.23         | m    |
| PFNA           | 509564.778                  | 3.679          | M9PFNA          | 19147          | 3.678          | 92.62           | 120.2428                |       | 302.01           | 1.52         |      |
| NETFOSE        | 15885.376                   | 5.703          | d9-NEtFOSE      | 9383           | 5. <b>6</b> 93 | 95.16           | 8.2583                  | 2     | 7744.90          | 1.47         |      |
| PFOA           | 541761.411                  | 3.249          | M8PFOA          | 21506          | 3.247          | 97.98           | <b>115.877</b> 1        |       | 4026.16          | 1.50         |      |
| PFOS           | 356522.201                  | 3.704          | M8PFOS          | 9993           | 3.711          | 96.99           | 111.9979                |       | INF              | 0.79         | m    |
| P <b>F</b> PeA | 39417.526                   | 1.253          | M5PFPeA         | 15840          | 1,248          | 93.30           | 7.7915                  |       | 185.36           | 1.38         |      |
| PFMPA          | 33371.869                   | 0.698          | M5PFPeA         | 15840          | 1.248          | 93 <b>.30</b>   | 7.5393                  |       | 5459.11          | 1.36         |      |
| PFTA           | 13513.975                   | 5.957          | M2PFTA          | 9370           | 5.954          | 99.07           | 8.3674                  |       | 14 <b>28.1</b> 8 | 1.38         |      |
| PFMBA          | 38132.888                   | 1.547          | M5PFH×A         | 19553          | 2.151          | 94.37           | 7.8352                  |       | 2 <b>547.</b> 20 | 1.34         |      |
| PFTrDA         | 17801.409                   | 5.625          | MPFDoA          | 13325          | 5.186          | 98.52           | 8.8276                  |       | 111.40           | 1.68         |      |
| PFEESA         | 63445.858                   | 1.867          | M3PFHxS         | 8433           | 2.874          | 88.32           | 8.6070                  |       | 2901.82          | 1.51         |      |
| PFUnA          | 26197.230                   | 4.674          | M7PFUnA         | 15 <b>78</b> 4 | 4.672          | 94.54           | 7.9005                  |       | 866.15           | 1.38         |      |
| NFDHA          | 27396.278                   | 2.027          | M4PFHpA         | 19 <b>0</b> 86 | 2.797          | 93 <b>.</b> 10  | 7.2620                  |       | <b>1</b> 58.47   | 1.36         |      |



#### d5-NEtFOSAA





### PFDoS







#### M2PFTA







### M7PFUnA





### PFODA



#### NEtFOSAA





### d-NMeFOSA



526.3 303 40 500

r<u>tan (1-1</u>77)



### PFHpA

5.5 5.6 5.7 5.8 5.9 Acquisition time (min)



.6 5.7 5.8 5.9 Acquistion Time (min)

5.5

5.6

### d-NEtFOSA



### PFHxA



### NMeFOSE



### PFHxS



#### d7-NMeFOSE



300 400 to-Charge (m/z)



6,1 o,a e 6,1 Acquisilion lime (m

5,8 5,9 ė 5,9 6 8,1 Aquisi kin Tine (min

5,8

400 eco Mass-In-Charge (n//)







# PFAS Isotope Dilution QSM B15

### Form 3C

### Spikes

### Water

### 3C WATER SEMIVOLATILE MS/MSD RECOVERY

| Report No:         | 220122279                     | Parent Sample ID: | SMP 6, EXP 12, IMP 3A REP A-F |
|--------------------|-------------------------------|-------------------|-------------------------------|
| Prep Method:       | PFAS ID QSM B15 Prep          | Prep Batch:       | 700361                        |
| Analytical Method: | PFAS Isotope Dilution QSM B15 | Analytical Batch: | 700789                        |

| GCAL QC ID: 22012227907        |       | SDIKE | SAMDIE | MS     | MS % |   |           |
|--------------------------------|-------|-------|--------|--------|------|---|-----------|
| ANALYTE                        | UNITS | ADDED | RESULT | RESULT | REC  | # | QC LIMITS |
| 6:2 Fluorotelomersulfonic acid | ng/L  | 76    | .778   | 69     | 90   |   | 70 - 130  |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 76.8  | .039   | 72.3   | 94   |   | 70 - 130  |
| Perfluorobutanesulfonic acid   | ng/L  | 70.8  | .231   | 52.9   | 74   |   | 70 - 130  |
| Perfluorobutanoic acid         | ng/L  | 80    | .976   | 69.1   | 85   |   | 70 - 130  |
| Perfluorodecanoic acid         | ng/L  | 80    | .43    | 66.5   | 83   |   | 70 - 130  |
| Perfluoroheptanoic acid        | ng/L  | 80    | .647   | 66.1   | 82   |   | 70 - 130  |
| Perfluorohexanesulfonic acid   | ng/L  | 73    | .206   | 65.7   | 90   |   | 70 - 130  |
| Perfluorohexanoic acid         | ng/L  | 80    | 1.02   | 68.3   | 84   |   | 70 - 130  |
| Perfluorononanoic acid         | ng/L  | 80    | .357   | 65.9   | 82   |   | 70 - 130  |
| Perfluorooctanesulfonic acid   | ng/L  | 74    | .183   | 70.3   | 95   |   | 70 - 130  |
| Perfluorooctanoic acid         | ng/L  | 80    | .669   | 76     | 94   |   | 70 - 130  |
| Perfluoropentanoic acid        | ng/L  | 80    | .673   | 66.7   | 83   |   | 70 - 130  |
| Perfluoroundecanoic acid       | ng/L  | 80    | .094   | 66.4   | 83   |   | 70 - 130  |

| GCAL QC ID: 22012227908        |       | S <b>PIKE</b> | MSD           | MSD % |   | %   |   | QC L     | IMITS  |
|--------------------------------|-------|---------------|---------------|-------|---|-----|---|----------|--------|
| ANALYTE                        | UNITS | ADDED         | RESULT        | REC   | # | RPD | # | REC      | RPD    |
| 6:2 Fluorotelomersulfonic acid | ng/L  | 76            | 70.5          | 92    |   | 2   |   | 70 - 130 | 0 - 30 |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 76.8          | 78.4          | 102   |   | 8   |   | 70 - 130 | 0 - 30 |
| Perfluorobutanesulfonic acid   | ng/L  | 70.8          | 53.4          | 75    | 1 | 1   |   | 70 - 130 | 0 - 30 |
| Perfluorobutanoic acid         | ng/L  | 80            | 71.5          | 88    |   | 3   |   | 70 - 130 | 0 - 30 |
| Perfluorodecanoic acid         | ng/L  | 80            | 69.8          | 87    |   | 5   |   | 70 - 130 | 0 - 30 |
| Perfluoroheptanoic acid        | ng/L  | 80            | 72.6          | 90    |   | 9   |   | 70 - 130 | 0 - 30 |
| Perfluorohexanesulfonic acid   | ng/L  | 73            | 69.4          | 95    |   | 6   |   | 70 - 130 | 0 - 30 |
| Perfluorohexanoic acid         | ng/L  | 80            | 68.9          | 85    |   | 1   |   | 70 - 130 | 0 - 30 |
| Perfluorononanoic acid         | ng/L  | 80            | 71.4          | 89    |   | 8   |   | 70 - 130 | 0 - 30 |
| Perfluorooctanesulfonic acid   | ng/L  | 74            | 65.3          | 88    |   | 7   |   | 70 - 130 | 0 - 30 |
| Perfluorooctanoic acid         | ng/L  | 80            | 77.3          | 96    |   | 2   |   | 70 - 130 | 0 - 30 |
| Perfluoropentanoic acid        | ng/L  | 80            | 67.7          | 84    |   | 1   |   | 70 - 130 | 0 - 30 |
| Perfluoroundecanoic acid       | ng/L  | 80            | 72 <u>.</u> 7 | 91    | Ī | 9   |   | 70 - 130 | 0 - 30 |

RPD : 0 out of 13 outside limits

# Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 26 outside limits

\* Values outside of QC limits

### 3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

| Report No:         | 220122279                     |                   |        |
|--------------------|-------------------------------|-------------------|--------|
| Prep Method:       | PFAS ID QSM B15 Prep          | Prep Batch:       | 700361 |
| Analytical Method: | PFAS Isotope Dilution QSM B15 | Analytical Batch: | 700789 |

| GCAL QC ID: 2127844            | UNITS | SPIKE<br>ADDED | SAMPLE<br>RESULT | LCS<br>RESULT | LCS %<br>REC | # | OC LIMITS |
|--------------------------------|-------|----------------|------------------|---------------|--------------|---|-----------|
|                                |       |                |                  |               |              |   | <u> </u>  |
| 6:2 Fluorotelomersulfonic acid | ng/L  | 76             | 0                | 77            | <b>10</b> 1  |   | 70 - 130  |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 76.8           | 0                | 71.7          | 93           |   | 70 - 130  |
| Perfluorobutanesulfonic acid   | ng/L  | 70.8           | 0                | 53.4          | 75           |   | 70 - 130  |
| Perfluorobutanoic acid         | ng/L  | 80             | 0                | 69.8          | 87           |   | 70 - 130  |
| Perfluorodecanoic acid         | ng/L  | 80             | 0                | 68.2          | 85           |   | 70 - 130  |
| Perfluoroheptanoic acid        | ng/L  | 80             | 0                | 71            | 89           |   | 70 - 130  |
| Perfluorohexanesulfonic acid   | ng/L  | 73             | 0                | 68.9          | 94           |   | 70 - 130  |
| Perfluorohexanoic acid         | ng/L  | 80             | 0                | 69.5          | 87           |   | 70 - 130  |
| Perfluorononanoic acid         | ng/L  | 80             | 0                | 68.1          | 85           |   | 70 - 130  |
| Perfluorooctanesulfonic acid   | ng/L  | 74             | 0                | 78.5          | 106          |   | 70 - 130  |
| Perfluorooctanoic acid         | ng/L  | 80             | 0                | 79.9          | 100          |   | 70 - 130  |
| Perfluoropentanoic acid        | ng/L  | 80             | 0                | 68.2          | 85           |   | 70 - 130  |
| Perfluoroundecanoic acid       | ng/L  | 80             | 0                | 68.8          | 86           |   | 70 - 130  |

| GCAL QC ID: 2127845            |       | SPIKE | LCSD         | LCSD        |   | %   |   | QC L            | IMITS  |
|--------------------------------|-------|-------|--------------|-------------|---|-----|---|-----------------|--------|
| ANALYTE                        | UNITS | ADDED | RESULT       | % REC       | # | RPD | # | REC             | RPD    |
| 6:2 Fluorotelomersulfonic acid | ng/L  | 76    | 71.9         | 95          |   | 7   |   | 70 - 130        | 0 - 30 |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 76.8  | <b>7</b> 9.2 | 103         |   | 10  |   | 70 - 130        | 0 - 30 |
| Perfluorobutanesulfonic acid   | ng/L  | 70.8  | 55.7         | 79          |   | 4   |   | 70 - 130        | 0 - 30 |
| Perfluorobutanoic acid         | ng/L  | 80    | 70.6         | 88          |   | 1   |   | 70 - 130        | 0 - 30 |
| Perfluorodecanoic acid         | ng/L  | 80    | 66.6         | 83          |   | 2   |   | 70 - 130        | 0 - 30 |
| Perfluoroheptanoic acid        | ng/L  | 80    | 74.7         | 93          |   | 5   |   | 70 - 130        | 0 - 30 |
| Perfluorohexanesulfonic acid   | ng/L  | 73    | 65.9         | 90          |   | 4   |   | 70 - 130        | 0 - 30 |
| Perfluorohexanoic acid         | ng/L  | 80    | 72.7         | 91          |   | 4   |   | 70 - 130        | 0 - 30 |
| Perfluorononanoic acid         | ng/L  | 80    | 67.5         | 84          |   | .9  |   | 70 - 130        | 0 - 30 |
| Perfluorooctanesulfonic acid   | ng/L  | 74    | 83.1         | 112         |   | 6   |   | 70 - 130        | 0 - 30 |
| Perfluorooctanoic acid         | ng/L  | 80    | 80.4         | 100         |   | .5  |   | <b>70 -</b> 130 | 0 - 30 |
| Perfluoropentanoic acid        | ng/L  | 80    | 68.7         | 86          |   | .8  |   | 70 - 130        | 0 - 30 |
| Perfluoroundecanoic acid       | ng/L  | 80    | 96.7         | <b>12</b> 1 |   | 34  | * | 70 - 130        | 0 - 30 |

RPD : 1 out of 13 outside limits

# Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 26 outside limits

\* Values outside of QC limits

# PFAS Isotope Dilution QSM B15

### Form 3D

### Spikes

Soil

### 3D SOIL SEMIVOLATILE MS/MSD RECOVERY

| Report No:                 | 220122279                                     |                                   | Parent Sample IE |                   |                | SMP 3, EXP 13C |           |  |  |  |  |
|----------------------------|-----------------------------------------------|-----------------------------------|------------------|-------------------|----------------|----------------|-----------|--|--|--|--|
| Prep Method:               | PFAS ID QSM B                                 | 15 Prep                           |                  | Prep Batch:       | 70044 <b>4</b> |                |           |  |  |  |  |
| Analytical Method:         | lytical Method: PFAS Isotope Dilution QSM B15 |                                   |                  | Analytical Batch: | 701166         |                |           |  |  |  |  |
| GCAL QC ID: 213<br>ANALYTE | 1569<br>UNIT                                  | SPIKE SAMPLI<br>UNITS ADDED RESUL |                  | MS<br>RESULT      | MS %<br>REC    | #              | QC LIMITS |  |  |  |  |
| 6:2 Fluorotelomersulf      | onic acid ug/kg                               | 65100                             | 358              | 55800             | 85             |                | 70 - 130  |  |  |  |  |
| 8:2 Fluorotelomersulf      | onic acid ug/kg                               | 65800                             | 113              | 57900             | 88             |                | 70 - 130  |  |  |  |  |
| Perfluorobutanoic aci      | d ug/kg                                       | 68500                             | 327              | 52000             | 75             |                | 70 - 130  |  |  |  |  |
| Perfluorodecanoic aci      | id ug/kg                                      | 68500                             | 525              | 52100             | 75             |                | 70 - 130  |  |  |  |  |
| Perfluorohexanoic aci      | id ug/kg                                      | 68500                             | <b>4</b> 42      | 51900             | 75             |                | 70 - 130  |  |  |  |  |
| Perfluoropentanoic ad      | cid ug/kg                                     | 68500                             | 347              | 53400             | 77             |                | 70 - 130  |  |  |  |  |
| Perfluoroundecanoic        | acid ug/kg                                    | 68500                             | 530              | 54100             | 78             |                | 70 - 130  |  |  |  |  |

RPD : \_\_\_\_\_out of \_\_\_\_outside limits

# Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 7 outside limits

\* Values outside of QC limits

### 3D SOIL SEMIVOLATILE MS/MSD RECOVERY

| Report No:                          | 220122279       |                  |                  | Parent Sample ID: | SMP 2, EXP 12T |  |           |  |  |
|-------------------------------------|-----------------|------------------|------------------|-------------------|----------------|--|-----------|--|--|
| Prep Method:                        | PFAS ID QSM B   | 15 Prep          |                  | Prep Batch:       | 70044 <b>4</b> |  |           |  |  |
| Analytical Method:                  | PFAS Isotope Di | lution QSM I     | 315              | Analytical Batch: | 701166         |  |           |  |  |
| GCAL QC ID: 213<br>ANALYTE          | 1567<br>UNITS   | SPIKE<br>S ADDED | SAMPLE<br>RESULT | MS<br>RESULT      | MS %<br>REC #  |  | QC LIMITS |  |  |
| 6:2 Fluorotelomersulf               | onic acid ug/kg | 9320             | 42.4             | 8770              | 94             |  | 70 - 130  |  |  |
| 8:2 Fluorotelomersulf               | onic acid ug/kg | 9410             | 15.6             | 9960              | 106            |  | 70 - 130  |  |  |
| Perfluorobutanoic aci               | d ug/kg         | 9800             | 47.4             | 8420              | 85             |  | 70 - 130  |  |  |
| Perfluorodecanoic ac                | id ug/kg        | 9800             | 49.2             | 7900              | 80             |  | 70 - 130  |  |  |
| Perfluoroheptanoic ad               | cid ug/kg       | 9800             | 34.7             | 7670              | 78             |  | 70 - 130  |  |  |
| Perfluorohexanoic aci               | id ug/kg        | 9800             | 91.8             | 8210              | 83             |  | 70 - 130  |  |  |
| Perfluorononanoic ac                | id ug/kg        | 9800             | 53.4             | 7920              | 80             |  | 70 - 130  |  |  |
| Perfluorooctanoic aci               | d ug/kg         | 9800             | 68.1             | 8070              | 82             |  | 70 - 130  |  |  |
| Perfluoropentanoic ad               | cid ug/kg       | 9800             | 48.7             | 7990              | 81             |  | 70 - 130  |  |  |
| Perfluoroundecanoic acid ug/kg 9800 |                 |                  | 33               | 7590              | 77             |  | 70 - 130  |  |  |

RPD : 0 out of 0 outside limits

# Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: \_\_\_\_\_ out of \_\_\_\_ outside limits

\* Values outside of QC limits

### 3D SOIL SEMIVOLATILE MS/MSD RECOVERY

| Report No: 220122279       |                               |                   | Parent Sample ID: | SMP 1, EXP 12C    |                |   |                  |  |
|----------------------------|-------------------------------|-------------------|-------------------|-------------------|----------------|---|------------------|--|
| Prep Method:               | PFAS ID QSM                   | B15 Prep          |                   | Prep Batch:       | 70044 <b>4</b> |   |                  |  |
| Analytical Method:         | PFAS Isotope Dilution QSM B15 |                   | B15               | Analytical Batch: | 701166         |   |                  |  |
| GCAL QC ID: 213<br>ANALYTE | 1565<br>UNI                   | SPIKE<br>IS ADDED | SAMPLE<br>RESULT  | MS<br>RESULT      | MS %<br>REC    | # | QC LIMITS        |  |
| 6:2 Fluorotelomersulf      | onic acid ug/l                | g 72000           | 592               | 63700             | 88             |   | 70 - 130         |  |
| 8:2 Fluorotelomersulf      | onic acid ug/l                | ig 72700          | 0                 | 66700             | 92             |   | <b>7</b> 0 - 130 |  |
| Perfluorobutanoic aci      | d ug/l                        | g 75800           | 357               | 55400             | 73             |   | 70 - 130         |  |
| Perfluorodecanoic aci      | id ug/l                       | g 75800           | 78                | 55500             | 73             |   | 70 - 130         |  |
| Perfluorohexanoic aci      | id ug/l                       | g 75800           | 620               | 57300             | 75             |   | <b>7</b> 0 - 130 |  |
| Perfluoropentanoic ad      | id ug/l                       | g 75 <b>800</b>   | 257               | 56100             | 74             |   | 70 - 130         |  |
| Perfluoroundecanoic        | acid ug/l                     | g 75800           | 368               | 56300             | 74             |   | 70 - 130         |  |

RPD : \_\_\_\_\_out of \_\_\_\_outside limits

 $\ensuremath{\texttt{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 7 outside limits

\* Values outside of QC limits

### 3D SOIL SEMIVOLATILE LCS/LCSD RECOVERY

| Report No:                 | 220122279    |                         |                |                  |                   |                |   |           |
|----------------------------|--------------|-------------------------|----------------|------------------|-------------------|----------------|---|-----------|
| Prep Method:               | PFAS ID QS   | SM B1                   | 5 Prep         |                  | Prep Batch:       | 70044 <b>4</b> |   |           |
| Analytical Method:         | PFAS Isotop  | sotope Dilution QSM B15 |                | 315              | Analytical Batch: | 701166         |   |           |
| GCAL QC ID: 212<br>ANALYTE | 8032<br>U    | IN/TS                   | SPIKE<br>ADDED | SAMPLE<br>RESULT | LCS<br>RESULT     | LCS %<br>REC   | # | QC LIMITS |
| 6:2 Fluorotelomersulf      | onic acid ι  | ug/kg                   | 1.9            | 0                | 1.7               | 89             |   | 70 - 130  |
| 8:2 Fluorotelomersulf      | onic acid ι  | ug/kg                   | 1.92           | 0                | 1.91              | 100            |   | 70 - 130  |
| Perfluorobutanesulfor      | nic acid 🛛 u | ug/kg                   | 1.77           | 0                | 1.7               | 96             |   | 70 - 130  |
| Perfluorobutanoic aci      | d l          | ug/kg                   | 2              | 0                | 1.74              | 87             |   | 70 - 130  |
| Perfluorodecanoic ac       | id ι         | ug/kg                   | 2              | 0                | 1.67              | 83             |   | 70 - 130  |
| Perfluoroheptanoic ad      | cid u        | ug/ <b>k</b> g          | 2              | 0                | 1.86              | 93             |   | 70 - 130  |
| Perfluorohexanesulfo       | nic acid u   | ⊿g/kg                   | 1.82           | 0                | 1.64              | 90             |   | 70 - 130  |
| Perfluorohexanoic aci      | id u         | ⊿g/kg                   | 2              | 0                | 1.71              | 86             |   | 70 - 130  |
| Perfluorononanoic ac       | id u         | ug/kg                   | 2              | 0                | 1.86              | 93             |   | 70 - 130  |
| Perfluorooctanesulfor      | nic acid u   | ug/kg                   | 1.85           | 0                | 1.79              | 97             |   | 70 - 130  |
| Perfluorooctanoic aci      | d l          | ug/kg                   | 2              | 0                | 2                 | 100            |   | 70 - 130  |
| Perfluoropentanoic ad      | cid u        | ug/kg                   | 2              | 0                | 1.71              | 86             |   | 70 - 130  |
| Perfluoroundecanoic        | acid u       | ug/kg                   | 2              | 0                | 1.69              | 85             |   | 70 - 130  |

2128033

LCSD LCSD RESULT % REC

| 6:2 Fluorotelomersulfonic acid | ug/kg | 1.9  | 1.75 | 92          | 3   | 70 - 130 | 0 - 30 |
|--------------------------------|-------|------|------|-------------|-----|----------|--------|
| 8:2 Fluorotelomersulfonic acid | ug/kg | 1.92 | 2.05 | 107         | 7   | 70 - 130 | 0 - 30 |
| Perfluorobutanesulfonic acid   | ug/kg | 1.77 | 1.8  | 102         | 5   | 70 - 130 | 0 - 30 |
| Perfluorobutanoic acid         | ug/kg | 2    | 1.68 | 84          | 3   | 70 - 130 | 0 - 30 |
| Perfluorodecanoic acid         | ug/kg | 2    | 1.54 | 77          | 8   | 70 - 130 | 0 - 30 |
| Perfluoroheptanoic acid        | ug/kg | 2    | 1.92 | 96          | 3   | 70 - 130 | 0 - 30 |
| Perfluorohexanesulfonic acid   | ug/kg | 1.82 | 1.83 | 100         | 11  | 70 - 130 | 0 - 30 |
| Perfluorohexanoic acid         | ug/kg | 2    | 1.71 | 86          | .02 | 70 - 130 | 0 - 30 |
| Perfluorononanoic acid         | ug/kg | 2    | 2.06 | 103         | 10  | 70 - 130 | 0 - 30 |
| Perfluorooctanesulfonic acid   | ug/kg | 1.85 | 1.93 | 104         | 7   | 70 - 130 | 0 - 30 |
| Perfluorooctanoic acid         | ug/kg | 2    | 2.22 | <b>1</b> 11 | 10  | 70 - 130 | 0 - 30 |
| Perfluoropentanoic acid        | ug/kg | 2    | 1.71 | 86          | .2  | 70 - 130 | 0 - 30 |
| Perfluoroundecanoic acid       | ug/kg | 2    | 1.68 | 84          | .4  | 70 - 130 | 0 - 30 |

RPD : 0 out of 13 outside limits

# Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 26 outside limits

\* Values outside of QC limits

# PFAS Isotope Dilution QSM B15

### Form 4B

### Method Blanks

### 4B SEMIVOLATILE METHOD BLANK SUMMARY

| Report No:       | 220122279            |      | Method Blank ID:   | 2127843       |             |                      |      |
|------------------|----------------------|------|--------------------|---------------|-------------|----------------------|------|
| Matrix:          | Water                |      | Instrument ID:     | QQQ1          |             |                      |      |
| Sample Amt:      | 125 mL               |      | Lab File ID:       | 2201224A_41.c | ł           |                      |      |
| Injection Vol.:  | 1.0                  | (µL) | GC Column:         | ACC-C18-30M   |             | 2 <u>.</u> 1         | (mm) |
| Prep Final Vol.: | 1000                 | (µ∟) | Dilution Factor:   | 1             | Analyst:    | MRA                  |      |
| Prep Date:       |                      |      | Analysis Date:     | 12/24/20      | Time:       | <b>22</b> 1 <b>1</b> |      |
| Prep Batch:      | 700361               |      | Analytical Batch:  | 700789        |             |                      |      |
| Prep Method:     | PFAS ID QSM B15 Prep |      | Analytical Method: | PFAS Isotope  | Dilution QS | M B15                |      |

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

|     |                                | GCAL        | LAB           | DATE             | TIME     |
|-----|--------------------------------|-------------|---------------|------------------|----------|
|     | CLIENT SAMPLE ID               | SAMPLE ID   | FILE ID       | ANALYZED         | ANALYZED |
| 1.  | LCS2127844                     | 2127844     | 2201224A_42.d | 12/24/20         | 2225     |
| 2.  | LCSD2127845                    | 2127845     | 2201224A_43.d | 12/24/20         | 2239     |
| 3.  | SMP 5, EXP 12, IMP 1A REP A,B  | 22012227905 | 2201224A_44.d | 12/24/20         | 2253     |
| 4.  | SMP 6, EXP 12, IMP 3A REP A-F  | 22012227906 | 2201224A_45.d | 12/24/20         | 2308     |
| 5.  | SMP 6, EXP 12, IMP 3A REP A-F- | 22012227907 | 2201224A_46.d | 12/24/20         | 2322     |
| 6.  | SMP 6, EXP 12, IMP 3A REP A-F- | 22012227908 | 2201224A_47.d | 12/24/20         | 2337     |
| 7.  | SMP 7, EXP 13, IMP 1A REP A,B  | 22012227909 | 2201224A_48.d | 12/24/20         | 2351     |
| 8.  | SMP 8, EXP 13, IMP 3A REP A,B  | 22012227910 | 2201224A_49.d | 12/25/20         | 0005     |
| 9.  | LC\$2127844RE                  | 2127844RE   | 2201230A_53.d | 12/31/20         | 0040     |
| 10. | LCSD2127845RE                  | 2127845RE   | 2201230A_54.d | <b>12/</b> 31/20 | 0053     |

### 4B SEMIVOLATILE METHOD BLANK SUMMARY

| Report No:       | 220122279            |      | Method Blank ID:   | 2128031       |             |             |      |
|------------------|----------------------|------|--------------------|---------------|-------------|-------------|------|
| Matrix:          | Solid                |      | Instrument ID:     | QQQ2          |             |             |      |
| Sample Amt:      | 5 g                  |      | Lab File ID:       | 2210104B_22.0 | ł           |             |      |
| Injection Vol.:  | 1.0                  | (µ∟) | GC Column:         | ACC-C18-30M   |             | <u>2.</u> 1 | (mm) |
| Prep Final Vol.: | 1000                 | (µ∟) | Dilution Factor:   | 1             | Analyst:    | MRA         |      |
| Prep Date:       |                      |      | Analysis Date:     | 01/04/21      | Time:       | 2123        |      |
| Prep Batch:      | 700444               |      | Analytical Batch:  | 701166        |             |             |      |
| Prep Method:     | PFAS ID QSM B15 Prep |      | Analytical Method: | PFAS Isotope  | Dilution QS | M B15       |      |

### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

|     |                   | GCAL                         | LAB           | DATE     | TIME     |
|-----|-------------------|------------------------------|---------------|----------|----------|
|     | CLIENT SAMPLE ID  | SAMPLE ID                    | FILE ID       | ANALYZED | ANALYZED |
| 1.  | LCS2128032        | 2128032                      | 2210104B_23.d | 01/04/21 | 2136     |
| 2.  | LCSD2128033       | 2128033                      | 2210104B_24.d | 01/04/21 | 2149     |
| 3.  | SMP 1, EXP 12C    | 22012227901                  | 2210104B_25.d | 01/04/21 | 2203     |
| 4.  | SMP 1, EXP 12CDUP | 2131564                      | 2210104B_26.d | 01/04/21 | 2216     |
| 5.  | SMP 1, EXP 12CMS  | 2131565                      | 2210104B_27.d | 01/04/21 | 2229     |
| 6.  | SMP 2, EXP 12T    | 22012227902                  | 2210104B_28.d | 01/04/21 | 2242     |
| 7.  | SMP 2, EXP 12TDUP | 2131566                      | 2210104B_29.d | 01/04/21 | 2255     |
| 8.  | SMP 2, EXP 12TMS  | 2131567                      | 2210104B_30.d | 01/04/21 | 2308     |
| 9.  | SMP 3, EXP 13C    | 22012227903                  | 2210104B_32.d | 01/04/21 | 2334     |
| 10. | SMP 3, EXP 13CDUP | 2131568                      | 2210104B_33.d | 01/04/21 | 2347     |
| 11. | SMP 3, EXP 13CMS  | 2131569                      | 2210104B_34.d | 01/05/21 | 0000     |
| 12. | SMP 4, EXP 13T    | <b>22</b> 0 <b>1222</b> 7904 | 2210104B_35.d | 01/05/21 | 0013     |

# PFAS Isotope Dilution QSM B15

### Form 4I

## Instrument Blanks

### 4I ORGANICS INSTRUMENT BLANK

| Report No:         | 220122279        | Instrument ID:    | QQQ1          |
|--------------------|------------------|-------------------|---------------|
| Analysis Date:     | 12/24/2020 12:50 | Lab File ID:      | 2201224A_12.d |
| Analytical Method: | EPA 537.1        | Analytical Batch: | 700987        |

| ANALYTE                        | UN/TS | RESULT | Q | DL   | LOD  | LOQ  | # |
|--------------------------------|-------|--------|---|------|------|------|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 4.00   | U | 1.79 | 4.00 | 10.0 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 4.00   | U | 1.63 | 4.00 | 10.0 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 4.00   | U | 1.47 | 4.00 | 10.0 |   |
| Perfluorobulanoic acid         | ng/L  | 4.00   | U | 2.13 | 4.00 | 10.0 |   |
| Perfluorodecanoic acid         | ng/L  | 4.00   | U | 1.65 | 4.00 | 10.0 |   |
| Perfluoroheptanoic acid        | ng/L  | 4.00   | U | 1.85 | 4.00 | 10.0 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 4.00   | U | 1.64 | 4.00 | 10.0 |   |
| Perfluorohexanoic acid         | ng/L  | 4.00   | U | 1.94 | 4.00 | 10.0 |   |
| Perfluorononanoic acid         | ng/L  | 4.00   | U | 1.68 | 4.00 | 10.0 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 4.00   | U | 1.70 | 4.00 | 10.0 |   |
| Perfluorooctanoic acid         | ng/L  | 4.00   | U | 1.80 | 4.00 | 10.0 |   |
| Perfluoropentanoic acid        | ng/L  | 4.00   | U | 2.35 | 4.00 | 10.0 |   |
| Perfluoroundecanoic acid       | ng/L  | 4.00   | U | 1.86 | 4.00 | 10.0 |   |

\* - Result greater than 1/2 LOQ

FORM 4I - ORG

### **Quantitative Analysis Sample Report**

### **Batch Data Path** Last Calib Update

Data File

Acq Method

### $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$

Inj Vol 2

2201224A\_12.d

PFASWiscExpan.m

12/24/2020 15:17 Position Vial 8

Samp Name 1500

Samp Type Sample

Dilution

1 Comment MRA,QQQ1



### Quantitation Results

|                 |                                   |       |                      |                |                | ISID/Surr       | Conc            | Spike |                  |              |      |
|-----------------|-----------------------------------|-------|----------------------|----------------|----------------|-----------------|-----------------|-------|------------------|--------------|------|
| Compound        | Response                          | RT    | ISTD                 | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)         | %Rec  | SNR              | Symm         | MInt |
| M2PFDA          | 228965.204                        | 5.176 |                      |                |                | 133.81          | 26.7620         |       | 5818 <b>.7</b> 3 | 1.53         |      |
| M2PFHxA         | 339131.308                        | 3,491 |                      |                |                | 127.21          | 50.8857         | :     | 22061.53         | 1.46         |      |
| M2PFOA          | 158665.573                        | 4.489 |                      |                |                | 125.58          | <b>25.115</b> 9 | :     | 23624.80         | 1.35         |      |
| M4PFOS          | 48838.205                         | 4.873 |                      |                |                | 100.35          | 20.0693         |       | 6828.32          | 1.6 <b>6</b> |      |
| M3PFBA          | 647 <b>4.81</b> 2                 | 0.513 |                      |                |                | 0.00            | 5.0387          |       | 325.32           | 1.21         |      |
| MPFOA           | 550. <b>79</b> 0                  | 4.489 |                      |                |                | 0.00            | 27.0336         |       | 21.68            | 1.36         |      |
| HFPO-DA         | 102.133                           | 3.673 | M3HFPODA             | 3368           | 3.683          | 114.84          | 0.2382          |       | 0.49             | 0.11         |      |
| 4:2 FTS         | 195.852                           | 3.458 | M2 4:2 FT\$          | 12990          | 3.458          | 117.30          | 0.0385          |       | 2.52             | 2.22         |      |
| 6:2 FTS         | <b>2</b> 11 <b>.</b> 4 <b>6</b> 2 | 4.477 | M2 6:2 FTS           | 23608          | 4. <b>4</b> 66 | 107.59          | 0.0259          |       | 3.64             | 3.25         |      |
| ADONA           | 440.862                           | 4.128 | M8PFOA               | 22031          | 4.488          | 105.03          | 0.0227          |       | 9.26             | 1.56         |      |
| 8:2 FTS         | 158 <b>.90</b> 6                  | 5.164 | M2 8:2 FTS           | 10948          | 5.175          | 106.30          | 0.0219          |       | 24.52            | 1.54         |      |
| FOSA            | 41.7 <b>74</b>                    | 5.293 | M8FOSA               | 20719          | 5.281          | 9 <b>4.</b> 17  | 0.0043          |       | 21.76            | 0.90         |      |
| 9CI-PF3ONS      | 334.097                           | 5.048 | M8PFOS               | 4451           | 4.872          | 94.46           | 0.0077          |       | 29.10            | 4.73         |      |
| PFDS            | 54.18 <b>6</b>                    | 5.473 | M6PFDA               | 36822          | 5.176          | 119.13          | <b>0.02</b> 79  |       | 15.68            | 2.69         |      |
| 11CI-PF3OUdS    | 196.377                           | 5.669 | M8PFOS               | 4451           | 4.872          | 9 <b>4.</b> 46  | 0.0199          |       | 101.10           | 2.04         |      |
| PFHpS           | 73.288                            | 4.529 | M8PFOA               | 22031          | 1.188          | 105.03          | 0.0219          |       | 2.81             | 0.19         |      |
| 10:2 FTS        | 122.506                           | 5.816 | M2 8:2 FTS           | 10 <b>9</b> 48 | 5.175          | 106.30          | 0.0356          |       | 10.83            | 2.56         |      |
| PENS            | 63.801                            | 5.184 | M9PFNA               | 30951          | 4.853          | 116.23          | 0.0373          |       | 12.72            | 1.47         |      |
| PFDoS           | 43.359                            | 6.179 | M8PFOS               | 4451           | 4.872          | 94.46           | 0.0197          |       | 4.30             | 2.10         |      |
| PFPeS           | <b>26.</b> 70 <b>0</b>            | 3.551 | M5PFHxA              | 29774          | 3.490          | 1 <b>10.8</b> 4 | 0.0083          |       | 1.23             | 2.23         |      |
| PFODA           | 448.256                           | 8.206 | M2PFHxDA             | 32491          | 7.585          | 96.03           | 0.1232          |       | 17.55            | 2.32         |      |
| NETFOSAA        | 138.020                           | 5.474 | d5-NEtFOSAA          | 12342          | 5.474          | 98.28           | 0.0399          |       | 90.09            | 0.94         |      |
| PFH×DA          | 610.628                           | 7.589 | M2PFHxDA             | 32491          | 7.585          | 96.03           | 0.1928          |       | 4.25             | 1.15         |      |
| NMeF0\$AA       | 92.507                            | 5.318 | d3-NMeFOSAA          | 10 <b>5</b> 46 | 5.307          | 1 <b>10.6</b> 7 | 0.0271          |       | 18.67            | 1.88         |      |
| PFBA            | 14 <b>2.76</b> 4                  | 0.515 | MPFBA                | 38222          | 0.511          | 1 <b>08.</b> 17 | 0.0145          |       | 1.48             | 3.53         |      |
| PFBS            | 20.987                            | 2.434 | M3PFBS               | 13296          | 2. <b>47</b> 3 | 112.72          | 0.0051          |       | 0.86             | 2.17         |      |
| NMeFOSA         | 8.151                             | 5.917 | d-NMcFOSA            | 17 <b>441</b>  | 5.906          | 103.74          | 0.0050          |       | 1.67             | 1.03         |      |
| PFDA            | 524.198                           | 5,176 | M6PFDA               | 36822          | 5.176          | 119.13          | 0.0472          |       | 3.70             | 1.51         |      |
| PFDoA           | 291.070                           | 5.818 | MPFDoA               | 41288          | 5.807          | 109.65          | 0.0341          |       | 5.79             | 2.44         |      |
| NETFOSA         | 22.996                            | 6.247 | d-NEtFOSA            | 11395          | 6.205          | 96.02           | 0.0146          |       | 5.36             | 1.39         |      |
| PFHpA           | 301.273                           | 1.057 | M4PFHpA              | 38716          | 4.056          | 109.71          | 0.0381          |       | 8.99             | 0.30         |      |
| PFHxA           | 604.153                           | 3.483 | M5PFHxA              | 29774          | 3.490          | 1 <b>10.84</b>  | 0.0769          |       | 9.38             | 2.34         |      |
| NMeFOSE         | 12.079                            | 6.162 | d7-NMeFOSE           | 262 <b>43</b>  | <b>5.9</b> 32  | 1 <b>12.79</b>  | 0.0044          |       | 1.82             | 1.04         |      |
| <b>PFI I</b> xS | 82.924                            | 4.126 | M3PFI IxS            | 9360           | 4.126          | 93.73           | 0.0198          |       | 5.99             | 2.27         | m    |
| PFNA            | 507.378                           | 4.843 | M9PFNA               | 30951          | 4.853          | 1 <b>16.2</b> 3 | 0.0526          |       | 6.51             | 1.13         |      |
| NETFOSE         | 9.201                             | 6.098 | d9-NEtFOSE           | 23279          | 6.212          | 111.98          | 0.0036          |       | 1.85             | 1.02         |      |
| PFOA            | 395.724                           | 4.490 | M8PFOA               | 22031          | 4.488          | 105.03          | 0.0637          |       | 8.08             | 0.83         |      |
| PFOS            | 6.557                             | 4.873 | M&PFOS               | 4451           | 4.872          | 94.46           | 0.0016          |       | 2.55             | 1.58         |      |
| PFPeA           | 357.775                           | 1.637 | M5PFPeA              | 18007          | 1.635          | 107.09          | 0.0845          |       | 2.07             | 0.72         | m    |
| PFMPA           | 231.224                           | 0.776 | M5PFPeA              | 18007          | 1.635          | 107.09          | 0.0564          |       | 2.19             | 0.73         |      |
| PFTA            | 289.894                           | 6.614 | M2PFTA               | 33997          | 6. <b>6</b> 13 | 10 <b>6.</b> 97 | 0.0481          |       | 20.20            | 1.72         |      |
| PFMBA           | 89.742                            | 2.520 | M5PFHxA              | 29774          | 3.490          | 1 <b>10.84</b>  | 0.0223          |       | 1.95             | 0.71         |      |
| PFTrDA          | 471.894                           | 6.190 | MPFDoA               | 41288          | 5.807          | 109.65          | 0.0534          |       | INF              | 1.90         |      |
| PFEEŞA          | 98.428                            | 3.232 | M3PFH <sub>x</sub> S | 9360           | 4.1 <b>26</b>  | 93.73           | 0.0114          |       | 1.02             | 0.27         |      |
| PFUnA           | 261.021                           | 5.486 | M7PFUnA              | 66402          | 5.485          | 1 <b>26.5</b> 4 | 0.0184          |       | 2.30             | 1.04         |      |
| NFDHA           | 103.563                           | 3.382 | M4PFHpA              | 38716          | 4.056          | 109.71          | 0.0272          |       | 4.19             | 1.45         |      |
|                 |                                   |       |                      |                |                |                 |                 |       |                  |              |      |

### HFPO-DA



4:2 FTS



### **M3HFPODA**





### ADONA



### 8:2 FTS

| <ul> <li>MRM (527.0 -&gt; 507.0) 220 224A_12.d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 527.0 - 507.0 , 527.0 -> 81.0 | <ul> <li>MBM (5.122-5.248 min, 12 scans) (527.0</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------|
| 5 10 <sup>2</sup><br>0.9-<br>0.8-<br>0.7-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5 |                               |                                                            |
| Cequisition mine (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / tegetskish fifte (filli)    | and a state of the ge (in the)                             |

#### d3-NMeFOSAA



#### d5-NEtFOSAA




M (3.502-3.660 min. 15 scans) (349

\*10 4

80 D

귀마이



PFPeS

C...It

D) 220 1224A\_12.

는 x10

Ś







#### M7PFUnA

M3PFBS





#### **NEtFOSAA**



**Инаа-10-**С









### 4I ORGANICS INSTRUMENT BLANK

| Report No:         | 220122279                    | Instrument ID:    | QQQ2          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 01/04/2021 18:47             | Lab File ID:      | 2210104B_10.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 701166        |

| ANALYTE                        | UN/TS | RESULT | Q | DL   | LOD  | LOQ  | # |
|--------------------------------|-------|--------|---|------|------|------|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 4.00   | U | 1.79 | 4.00 | 10.0 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 4.00   | U | 1.63 | 4.00 | 10.0 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 4.00   | U | 1.47 | 4.00 | 10.0 |   |
| Perfluorobulanoic acid         | ng/L  | 4.00   | U | 2.13 | 4.00 | 10.0 |   |
| Perfluorodecanoic acid         | ng/L  | 4.00   | U | 1.65 | 4.00 | 10.0 |   |
| Perfluoroheptanoic acid        | ng/L  | 4.00   | U | 1.85 | 4.00 | 10.0 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 4.00   | U | 1.64 | 4.00 | 10.0 |   |
| Perfluorohexanoic acid         | ng/L  | 4.00   | U | 1.94 | 4.00 | 10.0 |   |
| Perfluorononanoic acid         | ng/L  | 4.00   | U | 1.68 | 4.00 | 10.0 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 4.00   | U | 1.70 | 4.00 | 10.0 |   |
| Perfluorooctanoic acid         | ng/L  | 4.00   | Ų | 1.80 | 4.00 | 10.0 |   |
| Perfluoropentanoic acid        | ng/L  | 4.00   | U | 2.35 | 4.00 | 10.0 |   |
| Perfluoroundecanoic acid       | ng/L  | 4.00   | U | 1.86 | 4.00 | 10.0 |   |

\* - Result greater than 1/2 LOQ

FORM 4I - ORG

## **Quantitative Analysis Sample Report**

#### **Batch Data Path** Last Calib Update

#### 1/5/2021 14:27

Samp Name 1500

Samp Type Sample

Dilution

1

Comment MRA,QQQ2;Cal

Data File Acq Method

## Acq Date

#### 1/4/2021 18:47 Sample Chromatogram



PFAS40Poroshell093020 J Inj Vol 2

2210104B\_10.d

Position P1-A8

## Quantitation Results

| -            |                 |       |                      |                |                | ISTD/Surr       | Conc             | Spike |         |              |     |
|--------------|-----------------|-------|----------------------|----------------|----------------|-----------------|------------------|-------|---------|--------------|-----|
| Compound     | Response        | RT    | ISTD                 | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | %Rec  | SNR     | Symm         | MIn |
| M2PFDA       | 78388.709       | 4.140 |                      |                |                | 112.88          | 22.5762          |       | 2292.83 | 1.66         |     |
| M2PFH×A      | 223699.728      | 2,152 |                      |                |                | 115.16          | 46 <b>.0</b> 630 |       | 619.87  | 1.59         |     |
| M2PFOA       | 94408.974       | 3.248 |                      |                |                | 119.37          | 23.8741          |       | 3510.08 | 1.42         |     |
| M4PFOS       | 58320.926       | 3.703 |                      |                |                | 115.38          | 23.0751          |       | 3830.48 | 1.52         |     |
| MPFOA        | 348.615         | 3.248 |                      |                |                | 0.00            | 31.1829          |       | 5.90    | 3.15         |     |
| M3PFBA       | 3851.988        | 0.464 |                      |                |                | 0.00            | 5.2539           |       | 22.35   | 1.64         |     |
| HFPO-DA      | 129.222         | 2.458 | M3HFPODA             | 777            | 2.393          | 116.11          | 1.0967           |       | 2.69    | 0.68         |     |
| 4:2 FTS      | 17.265          | 2.020 | M2 4:2 FTS           | 2644           | 2. <b>0</b> 95 | 107.13          | 0.0207           |       | 0.65    | 1.77         | m   |
| 6:2 FTS      | 19.320          | 3.217 | M2 6:2 FTS           | 4867           | 3.226          | 107.68          | 0.0123           |       | 0.73    | 0.91         |     |
| ADONA        | 85.093          | 2.962 | M8PFOA               | 23830          | 3.247          | 108.57          | 0.0054           |       | 1.70    | 0.81         |     |
| 8:2 FTS      | 34.016          | 4.175 | M2 8:2 FTS           | 4527           | 4.129          | 109.18          | 0.0209           |       | 1.50    | 1.05         |     |
| FOSA         | 58.645          | 4.326 | M8FOSA               | 1327 <b>3</b>  | 4.325          | 98.39           | 0.0162           |       | 3.78    | 1.67         |     |
| 9CI-PF3ONS   | 67,315          | 3.970 | M8PFO\$              | 1117 <b>3</b>  | 3.702          | 108.44          | 0.0063           |       | 4.18    | 1.50         |     |
| PFDS         | 29.097          | 4.685 | M6PFDA               | 17 <b>30</b> 4 | 4.139          | 111.14          | 0.0103           |       | 0.71    | 1.01         | m   |
| 11CI-PF3OUdS | 44.375          | 5.035 | M8PFOS               | 11173          | 3.702          | 108.44          | 0.0044           |       | 1.07    | 0.79         | m   |
| PFHpS        | 15.119          | 3.279 | M8PFOA               | 23830          | 3.217          | 108.57          | 0.0056           |       | 0.32    | 1.00         |     |
| 10:2 FTS     | 33.868          | 5.174 | M2 8:2 FTS           | 4527           | 4.129          | 109.18          | 0.0208           |       | 1.71    | 0.93         | m   |
| PENS         | <b>30</b> .951  | 4.126 | M9PFNA               | 22 <b>40</b> 4 | 3.669          | 108.38          | 0.0109           |       | 1.22    | 1.61         | m   |
| PFDoS        | 12,166          | 5.641 | M8PFOS               | 1117 <b>3</b>  | 3.702          | 108.44          | 0.0036           |       | 0.73    | 1.12         |     |
| PFPeS        | 7.009           | 2.305 | M5PFHxA              | 22153          | 2.151          | 10 <b>6.</b> 92 | 0.0031           |       | 0.61    | 1.00         | m   |
| PFODA        | 6 <b>9.4</b> 35 | 6.706 | M2PFHxDA             | 10780          | 6.348          | 96.58           | 0.0541           |       | 2.01    | 1.19         |     |
| NETFOSAA     | 64.911          | 4.633 | d5-NEtFOSAA          | 11 <b>927</b>  | 4.641          | 1 <b>10.10</b>  | 0.0192           |       | 0.37    | 1.68         |     |
| PFH×DA       | 169.691         | 6.361 | M2PFHxDA             | 10780          | 6.348          | 96.58           | 0.0857           |       | 0.91    | 1.30         |     |
| NMeF0\$AA    | 132.749         | 4.394 | d3-NMeFOSAA          | 7708           | 4.374          | 99.88           | 0.0419           |       | 3.56    | 0.85         | m   |
| PFBA         | 121.981         | 0.448 | MPFBA                | 26251          | 0.463          | 107.08          | 0.0125           |       | 0.65    | 1.10         |     |
| PFBS         | 45. <b>4</b> 69 | 1.507 | M3PFBS               | 10 <b>4</b> 30 | 1.505          | 113.96          | 0.0171           |       | 3.10    | 1.22         |     |
| NMcFOSA      | 3.491           | 5.364 | d-NMcFOSA            | 5860           | 5.353          | 97.45           | 0.0029           |       | 0.12    | 1.01         | m   |
| PFDA         | 120.674         | 4,131 | M6PFDA               | 17304          | 4.139          | 111.14          | 0.0300           |       | 4.70    | 1.99         |     |
| PFDoA        | 93.493          | 5.233 | MPFDoA               | 14936          | 5.177          | 110.44          | 0.0327           |       | 2.92    | 0.69         |     |
| NETFOSA      | 21.581          | 5.658 | d-NEtFO5A            | 6478           | 5. <b>6</b> 84 | 103.40          | 0.0132           |       | 0.69    | 0.92         |     |
| PFHpA        | 147.627         | 2.826 | M4PFHpA              | 22 <b>841</b>  | 2.797          | 111.42          | 0.0272           |       | 3.66    | 1.12         |     |
| PFHxA        | 214.762         | 2.134 | M5PFHxA              | 22153          | 2.151          | 106.92          | 0.0425           |       | 3.07    | 1.07         |     |
| NMeFOSE      | 11.592          | 5.379 | d7-NMeFOSE           | <b>79</b> 62   | 5.3 <b>79</b>  | 108.92          | 0.0050           |       | 1.04    | 1.21         |     |
| PFLIxS       | 27.714          | 2.875 | M3PFI IxS            | 10479          | 2.874          | 109.75          | 0.0097           |       | 1.37    | 0.87         | m   |
| PFNA         | 57.376          | 3.652 | M9PFNA               | <b>2240</b> 4  | 3. <b>6</b> 69 | 108.38          | 0.0116           |       | 0.43    | 1.87         |     |
| NETFOSE      | 8.783           | 5.693 | d9-NEtFOSE           | 10515          | 5. <b>6</b> 82 | 106.64          | 0.0041           |       | 0.65    | 1.11         | m   |
| PFOA         | 323.316         | 3.249 | M8PFOA               | 23830          | 3.247          | 108.57          | 0.0624           |       | 2.14    | 0.99         |     |
| PFOS         | 87.945          | 3.685 | M8PFOS               | 11173          | 3.702          | 108.44          | 0.0247           |       | 1.18    | 1.70         | m   |
| PFPeA        | 115.8 <b>07</b> | 1.265 | M5PFPeA              | 18 <b>42</b> 4 | 1,263          | 108.52          | 0.0197           |       | 6.36    | 0.98         |     |
| PFMPA        | 13.420          | 0.688 | M5PFPeA              | 18 <b>42</b> 4 | 1.263          | 108.52          | 0.0026           |       | 0.76    | 1.83         |     |
| PFTA         | 62.210          | 5.966 | M2PFTA               | 9939           | 5.954          | 105.09          | 0.0363           |       | 0.51    | 0.77         | m   |
| PFMBA        | 23.424          | 1.557 | M5PFH×A              | 22153          | 2.151          | 106.92          | 0.0042           |       | 1.45    | 2.15         |     |
| PFTrDA       | 116.214         | 5.691 | MPFDoA               | 14 <b>9</b> 36 | 5.177          | 110.44          | 0.0514           |       | 3.66    | 0.82         |     |
| PFEESA       | 52.531          | 1.895 | M3PFH <sub>x</sub> S | 10479          | 2.874          | 109.75          | 0.0057           |       | 1.77    | 2.25         |     |
| PFUnA        | 15.781          | 4.619 | M7PFUnA              | 19 <b>0</b> 58 | 4. <b>6</b> 62 | 114.15          | 0.0039           |       | 0.16    | 0.74         | m   |
| NFDHA        | 12.653          | 1.990 | M4PFHpA              | 2284 <b>1</b>  | 2.797          | 111.42          | 0.0028           |       | 0.44    | 1 <b>.50</b> |     |



4,6 4,7 4,8 Acquisition threatm

4,5

0.5-0.25-0-

4,5

4,6 4,7 4,8 Acquisition Line (min)

560 550 Vass-Io-Charge (m/z)

510











QPace Cliff Coast Report 1220922298



#### M7PFUnA







526.0

500 550 Vase-Io-Charge (m/z)

150



**PFHxDA** 





Pace Cull Coast Report 122092229



# PFAS Isotope Dilution QSM B15

## Form 5E

Tunes

Pace Gulf Coast Report#: 220122279

Page 287 of 628



| Instrument Name           | Instrument 1                                  |
|---------------------------|-----------------------------------------------|
| MS Model                  | G6460A                                        |
| MS Instrument Serial      | SG11477210                                    |
| Software_Firmware Version | B.09.00.B9037.0, FW: A.00.08.64               |
| Tune Date & Time          | 24 December 2020 09:09:28                     |
| Data Path                 | D:\MassHunter\Tune\QQQ\G6460A\atunes.tune.xml |
| Ion Source                | AJS ESI                                       |
| Ionization Mode           | AJS ESI                                       |
| Tuned Resolution          | All                                           |
| Vacuum Pressure           | 1.84E+0[R]; 1.92E-5[H]                        |
| Source Parameters         |                                               |

....

#### 

| Parameter       | value |  |
|-----------------|-------|--|
| Gas Temp        | 300   |  |
| Gas Flow        | 10    |  |
| Nebulizer       | 15    |  |
| Capillary       | 4000  |  |
| Nozzle Voltage  | 1500  |  |
| Sheath Gas Temp | 250   |  |
| Sheath Gas Flow | 7     |  |

## **Positive Results**

Analyzer: MS1 Polarity: Positive Width: Unit

| m/z                                                                                                                                                                                | m/z                                                                                                                                                                                    | Delta                                                                                                                                   | Result                                                                                                                                 | FWHM                                                                                                     | FWHM                                                                                                                         | Delta                                                                                                              | Result                                                                                                           | Abundance                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Expected                                                                                                                                                                           | Measured                                                                                                                                                                               | 0.01                                                                                                                                    | Page                                                                                                                                   | Expected                                                                                                 | Measured                                                                                                                     | 0.02                                                                                                               | Poee                                                                                                             | 108602                                                                                                                             |
| 322.04                                                                                                                                                                             | 5 322.06                                                                                                                                                                               | 0.01                                                                                                                                    | Pase                                                                                                                                   | 0.70                                                                                                     | 0.72                                                                                                                         | 0.02                                                                                                               | Pace                                                                                                             | 100002                                                                                                                             |
| 622.00                                                                                                                                                                             | 8 622.00                                                                                                                                                                               | -0.01                                                                                                                                   | Pase                                                                                                                                   | 0.70                                                                                                     | 0.67                                                                                                                         | -0.03                                                                                                              | Pass                                                                                                             | 106454                                                                                                                             |
| 022.0                                                                                                                                                                              | 922.02                                                                                                                                                                                 | -0.01                                                                                                                                   | Pace                                                                                                                                   | 0.70                                                                                                     | 0.07                                                                                                                         | 0.00                                                                                                               | Page                                                                                                             | 117335                                                                                                                             |
| 1521.0                                                                                                                                                                             | 1521.06                                                                                                                                                                                | -0.01                                                                                                                                   | Pase                                                                                                                                   | 0.70                                                                                                     | 0.72                                                                                                                         | 0.02                                                                                                               | Pace                                                                                                             | 3/259                                                                                                                              |
| 2121.07                                                                                                                                                                            | 2121.00                                                                                                                                                                                | -0.02                                                                                                                                   | Pase                                                                                                                                   | 0.70                                                                                                     | 0.72                                                                                                                         | 0.02                                                                                                               | Pass                                                                                                             | 14222                                                                                                                              |
| Analyzer: M                                                                                                                                                                        | S2 Polarity                                                                                                                                                                            | · Dositive                                                                                                                              | Width: Unit                                                                                                                            | 0.10                                                                                                     | 0.72                                                                                                                         | 0.02                                                                                                               | 1 400                                                                                                            | 17222                                                                                                                              |
|                                                                                                                                                                                    | SZ FOIAITty                                                                                                                                                                            | . FUSILIVE                                                                                                                              | Width: Offic                                                                                                                           |                                                                                                          |                                                                                                                              |                                                                                                                    |                                                                                                                  |                                                                                                                                    |
| m/z<br>Expected                                                                                                                                                                    | m/z<br>I Measured                                                                                                                                                                      | Delta                                                                                                                                   | Result                                                                                                                                 | FWHM<br>Expected                                                                                         | FWHM<br>Measured                                                                                                             | Delta                                                                                                              | Result                                                                                                           | Abundance                                                                                                                          |
| 118.09                                                                                                                                                                             | 118.09                                                                                                                                                                                 | 0.00                                                                                                                                    | Pass                                                                                                                                   | 0.70                                                                                                     | 0.74                                                                                                                         | 0.04                                                                                                               | Pass                                                                                                             | 134444                                                                                                                             |
| 322.05                                                                                                                                                                             | 322.02                                                                                                                                                                                 | -0.03                                                                                                                                   | Pass                                                                                                                                   | 0.70                                                                                                     | 0.72                                                                                                                         | 0.02                                                                                                               | Pass                                                                                                             | 4 <b>847</b> 8                                                                                                                     |
| 622.03                                                                                                                                                                             | 621.99                                                                                                                                                                                 | -0.04                                                                                                                                   | Pass                                                                                                                                   | 0.70                                                                                                     | 0.74                                                                                                                         | 0.04                                                                                                               | Pass                                                                                                             | 102196                                                                                                                             |
| 922.01                                                                                                                                                                             | 921.94                                                                                                                                                                                 | -0.07                                                                                                                                   | Pass                                                                                                                                   | 0.70                                                                                                     | 0.77                                                                                                                         | 0.07                                                                                                               | Pass                                                                                                             | 130407                                                                                                                             |
| 1521.97                                                                                                                                                                            | 7 1521.91                                                                                                                                                                              | -0.06                                                                                                                                   | Pass                                                                                                                                   | 0.70                                                                                                     | 0.76                                                                                                                         | 0.06                                                                                                               | Pass                                                                                                             | 78505                                                                                                                              |
| 2121.93                                                                                                                                                                            | 3 2121.75                                                                                                                                                                              | -0.18                                                                                                                                   | Pass                                                                                                                                   | 0.70                                                                                                     | 0.76                                                                                                                         | 0.06                                                                                                               | Pass                                                                                                             | 16602                                                                                                                              |
| Analyzer: M                                                                                                                                                                        | S1 Polarity                                                                                                                                                                            | : Positive                                                                                                                              | Width: Wide                                                                                                                            | <del>)</del>                                                                                             |                                                                                                                              |                                                                                                                    |                                                                                                                  |                                                                                                                                    |
|                                                                                                                                                                                    | mlz                                                                                                                                                                                    | Delta                                                                                                                                   | Result                                                                                                                                 | EW/HM                                                                                                    | E/WHM                                                                                                                        | Dolta                                                                                                              | Rosult                                                                                                           | Abundanco                                                                                                                          |
| Expected                                                                                                                                                                           | Measured                                                                                                                                                                               | Dena                                                                                                                                    | Negali                                                                                                                                 | Expected                                                                                                 | Measured                                                                                                                     | Dena                                                                                                               | Nesul                                                                                                            | Abunuance                                                                                                                          |
| 118.09                                                                                                                                                                             | 118.14                                                                                                                                                                                 | 0.05                                                                                                                                    | Pass                                                                                                                                   | 1.20                                                                                                     | 1.19                                                                                                                         | -0.01                                                                                                              | Pass                                                                                                             | 143598                                                                                                                             |
| 322.05                                                                                                                                                                             | 5 322.07                                                                                                                                                                               | 0.02                                                                                                                                    | Pass                                                                                                                                   | 1.20                                                                                                     | 1.44                                                                                                                         | 0.24                                                                                                               | Pass                                                                                                             | 63187                                                                                                                              |
| 622.03                                                                                                                                                                             | 622.05                                                                                                                                                                                 | 0.02                                                                                                                                    | Pass                                                                                                                                   | 1.20                                                                                                     | 1.30                                                                                                                         | 0.10                                                                                                               | Pass                                                                                                             | 158747                                                                                                                             |
| 922.01                                                                                                                                                                             | 921.93                                                                                                                                                                                 | -0.08                                                                                                                                   | Pass                                                                                                                                   | 1.20                                                                                                     | 1.29                                                                                                                         | 0.09                                                                                                               | Pass                                                                                                             | 201654                                                                                                                             |
| 1521.97                                                                                                                                                                            | 1521.97                                                                                                                                                                                | 0.00                                                                                                                                    | Pass                                                                                                                                   | 1.20                                                                                                     | 1.24                                                                                                                         | 0.04                                                                                                               | Pass                                                                                                             | 101141                                                                                                                             |
| 2121.93                                                                                                                                                                            | 3 2121.81                                                                                                                                                                              | _0.12                                                                                                                                   | Pass                                                                                                                                   | 1 30                                                                                                     | 1.00                                                                                                                         | 0.00                                                                                                               | _                                                                                                                | 60853                                                                                                                              |
|                                                                                                                                                                                    |                                                                                                                                                                                        | -0.12                                                                                                                                   | 1 000                                                                                                                                  | 1.20                                                                                                     | 1.29                                                                                                                         | 0.09                                                                                                               | Pass                                                                                                             | ~~~~~                                                                                                                              |
| Analyzer: M                                                                                                                                                                        | S2 Polarity                                                                                                                                                                            | : Positive                                                                                                                              | Width: Wide                                                                                                                            | 1,20<br><b>9</b>                                                                                         | 1,29                                                                                                                         | 0.09                                                                                                               | Pass                                                                                                             |                                                                                                                                    |
| Analyzer: M                                                                                                                                                                        | S2 Polarity                                                                                                                                                                            | : Positive                                                                                                                              | Width: Wide                                                                                                                            | •<br>•                                                                                                   | 1,29                                                                                                                         | 0.09                                                                                                               | Pass                                                                                                             |                                                                                                                                    |
| Analyzer: M                                                                                                                                                                        | S2 Polarity                                                                                                                                                                            | : Positive<br>Delta                                                                                                                     | Width: Wide<br>Result                                                                                                                  | FWHM                                                                                                     | FWHM                                                                                                                         | Delta                                                                                                              | Pass<br>Result                                                                                                   | Abundance                                                                                                                          |
| Analyzer: M<br>m/z<br>Expected                                                                                                                                                     | S2 Polarity<br>m/z<br>Measured                                                                                                                                                         | : Positive<br>Delta                                                                                                                     | Width: Wide<br>Result                                                                                                                  | FWHM<br>Expected                                                                                         | FWHM<br>Measured                                                                                                             | Delta                                                                                                              | Result                                                                                                           | Abundance                                                                                                                          |
| Analyzer: M<br>m/z<br>Expecteo<br>118.09                                                                                                                                           | <b>S2</b> Polarity<br>m/z<br>Measured<br>3 118.15                                                                                                                                      | : Positive<br>Delta                                                                                                                     | Width: Wide<br>Result                                                                                                                  | FWHM<br>Expected<br>1.20                                                                                 | FWHM<br>Measured<br>1.21                                                                                                     | 0.09<br>Delta<br>0.01                                                                                              | Pass<br>Result<br>Pass                                                                                           | Abundance<br>183536                                                                                                                |
| Analyzer: M<br>m/z<br>Expected<br>118.09<br>322.05                                                                                                                                 | <b>S2</b> Polarity<br>m/z<br>Measured<br>118.15<br>322.02                                                                                                                              | : Positive<br>Delta<br>0.06<br>-0.03                                                                                                    | Width: Wide<br>Result<br>Pass<br>Pass                                                                                                  | FWHM<br>Expected<br>1.20<br>1.20                                                                         | FWHM<br>Measured<br>1.21<br>1.46                                                                                             | 0.09<br>Delta<br>0.01<br>0.26                                                                                      | Pass<br>Result<br>Pass<br>Pass                                                                                   | Abundance<br>183536<br>78024                                                                                                       |
| Analyzer: M<br>m/z<br>Expected<br>118.09<br>322.09<br>622.03                                                                                                                       | <b>S2</b> Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>621.96                                                                                                                    | -0.12<br>Positive<br>Delta<br>-0.03<br>-0.03                                                                                            | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass                                                                                          | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20                                                         | 1.29<br>FWHM<br>Measured<br>1.21<br>1.46<br>1.33                                                                             | 0.09<br>Delta<br>0.01<br>0.26<br>0.13                                                                              | Pass<br>Result<br>Pass<br>Pass<br>Pass                                                                           | Abundance<br>183536<br>78024<br>182217                                                                                             |
| Analyzer: M<br>m/z<br>Expected<br>118.09<br>322.00<br>622.00<br>922.01                                                                                                             | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>621.96<br>921.93                                                                                                                 | -0.12<br>Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08                                                                           | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass                                                                                  | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                                 | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31                                                                             | 0.09<br>Delta<br>0.01<br>0.26<br>0.13<br>0.11                                                                      | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass                                                                   | Abundance<br>183536<br>78024<br>182217<br>262131                                                                                   |
| Analyzer: M<br>m/z<br>Expected<br>322.00<br>622.03<br>922.01<br>1521.97                                                                                                            | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>3621.96<br>921.93<br>71521.87                                                                                                    | Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10                                                                                       | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                  | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                         | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14                                                                     | 0.09<br>Delta<br>0.26<br>0.13<br>0.11<br>-0.06                                                                     | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                   | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597                                                                         |
| Analyzer: M<br>m/z<br>Expectee<br>118.09<br>322.00<br>622.03<br>922.07<br>1521.97<br>2121.99                                                                                       | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>3621.96<br>921.93<br>1521.87<br>32121.79                                                                                         | -0.12<br>Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14                                                         | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                          | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                         | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17                                                             | 0.09<br>Delta<br>0.01<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03                                                    | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                           | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935                                                               |
| Analyzer: M<br>m/z<br>Expected<br>322.00<br>622.03<br>922.01<br>1521.97<br>2121.93<br>Analyzer: M                                                                                  | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>3621.96<br>921.93<br>71521.87<br>32121.79<br>S1 Polarity                                                                         | -0.12<br>Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive                                           | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wide                                                   | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                         | <b>FWHM</b><br><b>Measured</b><br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17                                               | 0.09<br>Delta<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03                                                            | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                   | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935                                                               |
| Analyzer: M<br>m/z<br>Expected<br>322.00<br>622.00<br>922.01<br>1521.97<br>2121.90<br>Analyzer: M                                                                                  | S2 Polarity<br>m/z<br>Measured<br>118,15<br>5 322.02<br>8 621,96<br>921.93<br>7 1521.87<br>8 2121.79<br>S1 Polarity<br>m/z                                                             | -0.12<br>Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive<br>Delta                                  | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                                   | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>5st                          | 1.29<br>FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17<br>FWHM                                             | 0.09<br>Delta<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03<br>Delta                                                   | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result                                         | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935<br>Abundance                                                  |
| Analyzer: M<br>m/z<br>Expected<br>322.00<br>622.03<br>922.01<br>1521.97<br>2121.93<br>Analyzer: M<br>m/z<br>Expected                                                               | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>6 621.96<br>921.93<br>7 1521.87<br>2 1221.79<br>S1 Polarity<br>m/z<br>Measured                                                   | -0.12<br>Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive<br>Delta                                  | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wide<br>Result                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>sst                          | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17<br>FWHM<br>Measured                                         | 0.05<br>Delta<br>0.01<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03<br>Delta                                           | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result                                         | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935<br>Abundance                                                  |
| Analyzer: M<br>m/z<br>Expectee<br>118.00<br>322.00<br>622.00<br>922.01<br>1521.91<br>2121.93<br>Analyzer: M<br>m/z<br>Expectee<br>118.09                                           | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>6 621.96<br>921.93<br>7 1521.87<br>2121.79<br>S1 Polarity<br>m/z<br>Measured<br>117.95                                           | : Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive<br>Delta<br>-0.14                                | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wide<br>Result                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                         | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17<br>FWHM<br>Measured<br>2.43                                 | 0.05<br>Delta<br>0.01<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03<br>Delta<br>-0.07                                  | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Result                                       | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935<br>Abundance<br>208217                                        |
| Analyzer: M<br>m/z<br>Expected<br>118.00<br>322.00<br>622.00<br>922.01<br>1521.97<br>2121.93<br>Analyzer: M<br>m/z<br>Expected<br>118.00<br>322.00                                 | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>6 621.96<br>921.93<br>7 1521.87<br>8 2121.79<br>S1 Polarity<br>m/z<br>Measured<br>9 117.95<br>5 322.07                           | -0.14<br>-0.03<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive<br>Delta<br>-0.14<br>0.02                                     | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wide<br>Result<br>Pass<br>Pass                 | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>2.50<br>2.50                 | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17<br>FWHM<br>Measured<br>2.43<br>2.63                         | 0.09<br>Delta<br>0.01<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03<br>Delta<br>-0.07<br>0.13                          | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Result<br>Pass<br>Result                     | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935<br>Abundance<br>208217<br>86756                               |
| Analyzer: M<br>m/z<br>Expected<br>118.00<br>322.03<br>622.03<br>922.07<br>1521.93<br>2121.93<br>Analyzer: M<br>m/z<br>Expected<br>118.09<br>322.03<br>622.03                       | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>621.96<br>921.93<br>1521.87<br>1521.87<br>2121.79<br>S1 Polarity<br>m/z<br>Measured<br>117.95<br>322.07<br>622.06                | : Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive<br>Delta<br>-0.14<br>0.02<br>0.03                | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                                   | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>2.50<br>2.50<br>2.50         | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17<br>FWHM<br>Measured<br>2.43<br>2.63<br>2.57                 | 0.09<br>Delta<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03<br>Delta<br>-0.07<br>0.13<br>0.07                          | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Result                               | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935<br>Abundance<br>208217<br>86756<br>204606                     |
| Analyzer: M<br>m/z<br>Expected<br>118.00<br>322.00<br>622.00<br>922.01<br>1521.97<br>2121.90<br>Analyzer: M<br>m/z<br>Expected<br>118.00<br>322.00<br>622.00<br>922.01             | S2 Polarity<br>m/z<br>Measured<br>118,15<br>322,02<br>621,96<br>921,93<br>1521,87<br>2121,79<br>S1 Polarity<br>m/z<br>Measured<br>117,95<br>322,07<br>622,06<br>922,05                 | -0.14<br>Positive<br>Delta<br>0.06<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive<br>Delta<br>-0.14<br>0.02<br>0.03<br>0.04 | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>2.50<br>2.50<br>2.50<br>2.50 | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17<br>FWHM<br>Measured<br>2.43<br>2.63<br>2.57<br>2.51         | Delta<br>0.01<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03<br>Delta<br>-0.07<br>0.13<br>0.07<br>0.01                  | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935<br>Abundance<br>208217<br>86756<br>204606<br>289433           |
| Analyzer: M<br>m/z<br>Expected<br>322.03<br>622.03<br>922.01<br>1521.97<br>2121.93<br>2121.93<br>Analyzer: M<br>m/z<br>Expected<br>118.09<br>322.03<br>622.03<br>922.01<br>1521.97 | S2 Polarity<br>m/z<br>Measured<br>118.15<br>322.02<br>3621.96<br>921.93<br>71521.87<br>32121.79<br>S1 Polarity<br>m/z<br>Measured<br>117.95<br>322.07<br>3622.06<br>922.05<br>71521.97 | -0.14<br>-0.03<br>-0.03<br>-0.07<br>-0.08<br>-0.10<br>-0.14<br>: Positive<br>Delta<br>-0.14<br>0.02<br>0.03<br>0.04<br>0.04<br>0.00     | Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wide<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                         | FWHM<br>Measured<br>1.21<br>1.46<br>1.33<br>1.31<br>1.14<br>1.17<br>FWHM<br>Measured<br>2.43<br>2.63<br>2.57<br>2.51<br>2.37 | 0.09<br>Delta<br>0.01<br>0.26<br>0.13<br>0.11<br>-0.06<br>-0.03<br>Delta<br>-0.07<br>0.13<br>0.07<br>0.01<br>-0.13 | Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | Abundance<br>183536<br>78024<br>182217<br>262131<br>195597<br>162935<br>Abundance<br>208217<br>86756<br>204606<br>289433<br>183719 |



### Analyzer: MS2 Polarity: Positive Width: Widest

| m/z<br>Expected | m/z<br>Measured | Delta | Result | FWHM<br>Expected | FWHM<br>Measured | Delta | Result | Abundance       |
|-----------------|-----------------|-------|--------|------------------|------------------|-------|--------|-----------------|
| 118,09          | 118.18          | 0.09  | Pass   | 2,50             | 2,48             | -0.02 | Pass   | 243792          |
| 322.05          | 322.03          | -0.02 | Pass   | 2.50             | 2.71             | 0.21  | Pass   | 1212 <b>1</b> 9 |
| 622.03          | 622.00          | -0.03 | Pass   | 2.50             | 2.55             | 0.05  | Pass   | 2 <b>5</b> 4316 |
| 922.01          | 921.90          | -0.11 | Pass   | 2.50             | 2.52             | 0.02  | Pass   | 414481          |
| 1521.97         | 1521.86         | -0.11 | Pass   | 2.50             | 2.55             | 0.05  | Pass   | 395804          |
| 2121.93         | 2121.78         | -0.15 | Pass   | 2.50             | 2.69             | 0.19  | Pass   | 387344          |



### **Negative Results**

Analyzer: MS1 Polarity: Negative Width: Unit

| · I                                                                                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                          |                                                                                    |                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| m/z                                                                                                                                                                                                          | m/z                                                                                                                                                                                             | Delta                                                                                                                                                                       | Result                                                                                                                                               | FWHM                                                                                                                    | FWHM                                                                                                                                                                               | Delta                                                                                                                                                    | Result                                                                             | Abundance                                                                                                                                                                       |  |
| Expected                                                                                                                                                                                                     | Measured                                                                                                                                                                                        | 0.40                                                                                                                                                                        | <b>D</b> -                                                                                                                                           | Expected                                                                                                                | Measured                                                                                                                                                                           | 0.44                                                                                                                                                     | Da                                                                                 | 407075                                                                                                                                                                          |  |
| 112.99                                                                                                                                                                                                       | 112.87                                                                                                                                                                                          | -0.12                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.81                                                                                                                                                                               | 0.11                                                                                                                                                     | Pass                                                                               | 107075                                                                                                                                                                          |  |
| 302.00                                                                                                                                                                                                       | 301.96                                                                                                                                                                                          | -0.04                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.74                                                                                                                                                                               | 0.04                                                                                                                                                     | Pass                                                                               | 45383                                                                                                                                                                           |  |
| 601.98                                                                                                                                                                                                       | 601.99                                                                                                                                                                                          | 0.01                                                                                                                                                                        | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.71                                                                                                                                                                               | 0.01                                                                                                                                                     | Pass                                                                               | 96336                                                                                                                                                                           |  |
| 1033.99                                                                                                                                                                                                      | 1034.00                                                                                                                                                                                         | 0.01                                                                                                                                                                        | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.73                                                                                                                                                                               | 0.03                                                                                                                                                     | Pass                                                                               | 182381                                                                                                                                                                          |  |
| 1633.95                                                                                                                                                                                                      | 1633.93                                                                                                                                                                                         | -0.02                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.70                                                                                                                                                                               | 0.00                                                                                                                                                     | Pass                                                                               | 212240                                                                                                                                                                          |  |
| 2233.91                                                                                                                                                                                                      | 2233.94                                                                                                                                                                                         | 0.03                                                                                                                                                                        | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.79                                                                                                                                                                               | 0.09                                                                                                                                                     | Pass                                                                               | 1 <b>3</b> 9 <b>41</b> 5                                                                                                                                                        |  |
| Analyzer: MS2                                                                                                                                                                                                | 2 Polarity: I                                                                                                                                                                                   | Negative                                                                                                                                                                    | Width: Uni                                                                                                                                           | t                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                          |                                                                                    |                                                                                                                                                                                 |  |
|                                                                                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                          |                                                                                    |                                                                                                                                                                                 |  |
| m/z                                                                                                                                                                                                          | m/z                                                                                                                                                                                             | Delta                                                                                                                                                                       | Result                                                                                                                                               | FWHM                                                                                                                    | FWHM                                                                                                                                                                               | Delta                                                                                                                                                    | Result                                                                             | Abundance                                                                                                                                                                       |  |
| Expected                                                                                                                                                                                                     | Measured                                                                                                                                                                                        | 0.00                                                                                                                                                                        | D                                                                                                                                                    | Expected                                                                                                                | Measured                                                                                                                                                                           | 0.04                                                                                                                                                     | D                                                                                  | 450444                                                                                                                                                                          |  |
| 112.99                                                                                                                                                                                                       | 112.99                                                                                                                                                                                          | 0.00                                                                                                                                                                        | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.00                                                                                                                                                                               | -0.04                                                                                                                                                    | Pass                                                                               | 109111                                                                                                                                                                          |  |
| 302.00                                                                                                                                                                                                       | 301.95                                                                                                                                                                                          | -0.05                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.68                                                                                                                                                                               | -0.02                                                                                                                                                    | Pass                                                                               | 57864                                                                                                                                                                           |  |
| 601.98                                                                                                                                                                                                       | 601.91                                                                                                                                                                                          | -0.07                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.71                                                                                                                                                                               | 0.01                                                                                                                                                     | Pass                                                                               | 78732                                                                                                                                                                           |  |
| 1033.99                                                                                                                                                                                                      | 1033.91                                                                                                                                                                                         | -0.08                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.71                                                                                                                                                                               | 0.01                                                                                                                                                     | Pass                                                                               | 1691 <b>1</b> 6                                                                                                                                                                 |  |
| 1633.95                                                                                                                                                                                                      | 1633.82                                                                                                                                                                                         | -0.13                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.73                                                                                                                                                                               | 0.03                                                                                                                                                     | Pass                                                                               | 330914                                                                                                                                                                          |  |
| 2233.91                                                                                                                                                                                                      | 2233.81                                                                                                                                                                                         | -0.10                                                                                                                                                                       | Pass                                                                                                                                                 | 0.70                                                                                                                    | 0.67                                                                                                                                                                               | -0.03                                                                                                                                                    | Pass                                                                               | 188785                                                                                                                                                                          |  |
| Analyzer: MS <sup>2</sup>                                                                                                                                                                                    | 1 Polarity: I                                                                                                                                                                                   | Negative                                                                                                                                                                    | Width: Wid                                                                                                                                           | e                                                                                                                       |                                                                                                                                                                                    |                                                                                                                                                          |                                                                                    |                                                                                                                                                                                 |  |
|                                                                                                                                                                                                              |                                                                                                                                                                                                 | -                                                                                                                                                                           |                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                          |                                                                                    |                                                                                                                                                                                 |  |
| m/z                                                                                                                                                                                                          | m/z                                                                                                                                                                                             | Delta                                                                                                                                                                       | Result                                                                                                                                               | FWHM                                                                                                                    | FWHM                                                                                                                                                                               | Delta                                                                                                                                                    | Result                                                                             | Abundance                                                                                                                                                                       |  |
| Expected                                                                                                                                                                                                     | 110 05                                                                                                                                                                                          | 0.44                                                                                                                                                                        | Deec                                                                                                                                                 | Expected                                                                                                                | vieasured                                                                                                                                                                          | 0.07                                                                                                                                                     | Daar                                                                               | 1/6511                                                                                                                                                                          |  |
| 112.99                                                                                                                                                                                                       | 112.85                                                                                                                                                                                          | -0.14                                                                                                                                                                       | Pass                                                                                                                                                 | 1.20                                                                                                                    | 1.27                                                                                                                                                                               | 0.07                                                                                                                                                     | Pass                                                                               | 140511                                                                                                                                                                          |  |
| 302.00                                                                                                                                                                                                       | 301.96                                                                                                                                                                                          | -0.04                                                                                                                                                                       | Pass                                                                                                                                                 | 1.20                                                                                                                    | 1.30                                                                                                                                                                               | 0.10                                                                                                                                                     | Pass                                                                               | 67433                                                                                                                                                                           |  |
| <b>6</b> 01.98                                                                                                                                                                                               | 601.97                                                                                                                                                                                          | -0.01                                                                                                                                                                       | Pass                                                                                                                                                 | 1.20                                                                                                                    | 1.21                                                                                                                                                                               | 0.01                                                                                                                                                     | Pass                                                                               | 152149                                                                                                                                                                          |  |
| 1033.99                                                                                                                                                                                                      | 1033.97                                                                                                                                                                                         | -0.02                                                                                                                                                                       | Pass                                                                                                                                                 | 1.20                                                                                                                    | 1.13                                                                                                                                                                               | -0.07                                                                                                                                                    | Pass                                                                               | 366033                                                                                                                                                                          |  |
| 1633.95                                                                                                                                                                                                      | 1633.92                                                                                                                                                                                         | -0.03                                                                                                                                                                       | Pass                                                                                                                                                 | 1.20                                                                                                                    | 1.10                                                                                                                                                                               | -0.10                                                                                                                                                    | Pass                                                                               | 799117                                                                                                                                                                          |  |
| 2233.91                                                                                                                                                                                                      | 2233.92                                                                                                                                                                                         | 0.01                                                                                                                                                                        | Pass                                                                                                                                                 | 1.20                                                                                                                    | 1.11                                                                                                                                                                               | -0.09                                                                                                                                                    | Pass                                                                               | 624202                                                                                                                                                                          |  |
| Analyzer: MS2                                                                                                                                                                                                | 2 Polarity: I                                                                                                                                                                                   | Negative                                                                                                                                                                    | Width: Wid                                                                                                                                           | le                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                          |                                                                                    |                                                                                                                                                                                 |  |
|                                                                                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                          |                                                                                    |                                                                                                                                                                                 |  |
| m/z<br>Expected                                                                                                                                                                                              | m/z<br>Moasurad                                                                                                                                                                                 | Delta                                                                                                                                                                       | Result                                                                                                                                               | FWHM                                                                                                                    | FWHM                                                                                                                                                                               | Delta                                                                                                                                                    | Result                                                                             | Abundance                                                                                                                                                                       |  |
| 112 99                                                                                                                                                                                                       | 113.03                                                                                                                                                                                          | 0.04                                                                                                                                                                        | Pass                                                                                                                                                 | 1 20                                                                                                                    | 1 20                                                                                                                                                                               | 0.00                                                                                                                                                     | Pass                                                                               | 196368                                                                                                                                                                          |  |
| 302.00                                                                                                                                                                                                       | 301.96                                                                                                                                                                                          | -0.04                                                                                                                                                                       | Pace                                                                                                                                                 | 1.20                                                                                                                    | 1.20                                                                                                                                                                               | 0.00                                                                                                                                                     | Pace                                                                               | 84657                                                                                                                                                                           |  |
| 601.00                                                                                                                                                                                                       | 601.00                                                                                                                                                                                          | 0.04                                                                                                                                                                        | Pass                                                                                                                                                 | 1.20                                                                                                                    | 1.22                                                                                                                                                                               | 0.02                                                                                                                                                     | Pass                                                                               | 105700                                                                                                                                                                          |  |
| 001,96                                                                                                                                                                                                       | 001.90                                                                                                                                                                                          | -0.08                                                                                                                                                                       | F855                                                                                                                                                 | 1.20                                                                                                                    | 1.50                                                                                                                                                                               | 0.10                                                                                                                                                     |                                                                                    | 125729                                                                                                                                                                          |  |
| 1033.99                                                                                                                                                                                                      | 1033.94                                                                                                                                                                                         | - 105                                                                                                                                                                       | Lace.                                                                                                                                                | 4 7 7 7                                                                                                                 | 4 0 0                                                                                                                                                                              | 0.00                                                                                                                                                     | 1 000                                                                              | 000400                                                                                                                                                                          |  |
| 163305                                                                                                                                                                                                       |                                                                                                                                                                                                 | -0.00                                                                                                                                                                       | - ass                                                                                                                                                | 1.20                                                                                                                    | 1.26                                                                                                                                                                               | 0.06                                                                                                                                                     | Pass                                                                               | 339199                                                                                                                                                                          |  |
| 1000.00                                                                                                                                                                                                      | 1633,81                                                                                                                                                                                         | -0.14                                                                                                                                                                       | Pass                                                                                                                                                 | 1.20<br>1.20                                                                                                            | 1.26<br>1.14                                                                                                                                                                       | 0.06                                                                                                                                                     | Pass<br>Pass                                                                       | 339199<br>818397                                                                                                                                                                |  |
| 2233.91                                                                                                                                                                                                      | 1633,81<br>2233,75                                                                                                                                                                              | -0.14<br>-0.16                                                                                                                                                              | Pass<br>Pass<br>Pass                                                                                                                                 | 1.20<br>1.20<br>1.20                                                                                                    | 1.26<br>1.14<br>1.12                                                                                                                                                               | 0.06<br>-0.06<br>-0.08                                                                                                                                   | Pass<br>Pass<br>Pass<br>Pass                                                       | 339199<br>818397<br>700762                                                                                                                                                      |  |
| 2233.91<br>Analyzer: MS                                                                                                                                                                                      | 1633,81<br>2233,75<br>1 Polarity: I                                                                                                                                                             | -0.03<br>-0.14<br>-0.16<br>Negative                                                                                                                                         | Pass<br>Pass<br>Pass<br>Width: Wid                                                                                                                   | 1.20<br>1.20<br>1.20                                                                                                    | 1.26<br>1.14<br>1.12                                                                                                                                                               | 0.06<br>-0.06<br>-0.08                                                                                                                                   | Pass<br>Pass<br>Pass<br>Pass                                                       | 339199<br>818397<br>700762                                                                                                                                                      |  |
| 2233.91<br>Analyzer: MS                                                                                                                                                                                      | 1633.81<br>2233.75<br>I Polarity: I                                                                                                                                                             | -0.00<br>-0.14<br>-0.16<br>Negative                                                                                                                                         | Pass<br>Pass<br>Pass<br>Width: Wid                                                                                                                   | 1.20<br>1.20<br>1.20                                                                                                    | 1.26<br>1.14<br>1.12                                                                                                                                                               | 0.06<br>-0.06<br>-0.08                                                                                                                                   | Pass<br>Pass<br>Pass<br>Pass                                                       | 339199<br>818397<br>700762                                                                                                                                                      |  |
| Analyzer: MS<br>m/z                                                                                                                                                                                          | 1633,81<br>2233.75<br>1 Polarity: 1<br>m/z<br>Measured                                                                                                                                          | -0.03<br>-0.14<br>-0.16<br>Negative<br>Delta                                                                                                                                | Pass<br>Pass<br>Pass<br>Width: Wid<br>Result                                                                                                         | 1.20<br>1.20<br>1.20<br>Iest<br>FWHM<br>Expected                                                                        | 1.26<br>1.14<br>1.12<br>FWHM<br>Measured                                                                                                                                           | 0.06<br>-0.06<br>-0.08<br>Delta                                                                                                                          | Pass<br>Pass<br>Pass<br>Pass<br>Result                                             | 339199<br>818397<br>700762<br>Abundance                                                                                                                                         |  |
| Analyzer: MS <sup>-</sup><br>m/z<br>Expected<br>112.99                                                                                                                                                       | 1633,81<br>2233.75<br>I Polarity: I<br>m/z<br>Measured<br>112.78                                                                                                                                | -0.13<br>-0.14<br>-0.16<br>Negative<br>Delta<br>-0.21                                                                                                                       | Pass<br>Pass<br>Width: Wid<br>Result                                                                                                                 | 1.20<br>1.20<br>1.20<br>lest<br>FWHM<br>Expected<br>2.50                                                                | 1.26<br>1.14<br>1.12<br>FWHM<br>Measured<br>2.59                                                                                                                                   | 0.06<br>-0.06<br>-0.08<br>Delta<br>0.09                                                                                                                  | Pass<br>Pass<br>Pass<br>Pass<br>Result                                             | 339199<br>818397<br>700762<br>Abundance<br>221463                                                                                                                               |  |
| 2233.91<br>Analyzer: MS'<br>m/z<br>Expected<br>112.99<br>302.00                                                                                                                                              | 1633,81<br>2233.75<br>I Polarity: I<br>m/z<br>Measured<br>112.78<br>301.97                                                                                                                      | -0.13<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03                                                                                                                       | Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass                                                                                                 | 1.20<br>1.20<br>1.20<br>FWHM<br>Expected<br>2.50<br>2.50                                                                | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67                                                                                                                    | 0.06<br>-0.06<br>-0.08<br><b>Delta</b><br>0.09<br>0.17                                                                                                   | Pass<br>Pass<br>Pass<br>Pass<br>Result                                             | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147                                                                                                                      |  |
| 2233.91<br>Analyzer: MS <sup>-</sup><br>m/z<br>Expected<br>112.99<br>30200<br>601.98                                                                                                                         | 1633,81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601 97                                                                                                                   | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01                                                                                                              | Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass                                                                                         | 1.20<br>1.20<br>1.20<br>Expected<br>2.50<br>2.50<br>2.50                                                                | 1.26<br>1.14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73                                                                                                            | 0.06<br>-0.06<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23                                                                                                  | Result                                                                             | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194045                                                                                                            |  |
| 2233.91<br>Analyzer: MS <sup>*</sup><br>m/z<br>Expected<br>112.99<br>302.00<br>601.98                                                                                                                        | 1633.81<br>2233.75<br>I Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1032.99                                                                                                        | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01                                                                                                              | Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass                                                                                 | 1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50                                         | 1.26<br>1.14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73                                                                                                    | 0.06<br>-0.06<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23<br>0.23                                                                                          | Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass                     | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>506021                                                                                                  |  |
| 2233.91<br>Analyzer: MS'<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99                                                                                                                         | 1633,81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.02                                                                                             | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00                                                                                                      | Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass                                                                                 | 1.20<br>1.20<br>1.20<br>lest<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50                                        | 1.26<br>1.14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.73                                                                                            | 0.06<br>-0.06<br>-0.08<br><b>Delta</b><br>0.09<br>0.17<br>0.23<br>0.23<br>0.23                                                                           | Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass             | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754472                                                                                       |  |
| 2233.91<br>Analyzer: MS'<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95                                                                                                              | 1633,81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03                                                                                             | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08                                                                                              | Pass<br>Pass<br>Vidth: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                         | 1.20<br>1.20<br>1.20<br>1.20<br><b>Expected</b><br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                         | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.73<br>2.73<br>2.76                                                                            | 0.06<br>-0.06<br>-0.08<br><b>Delta</b><br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.26<br>0.26                                                           | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas              | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1754473                                                                            |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91                                                                                                    | 1633.81<br>2233.75<br>1 Polarity: 1<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88                                                                                  | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03                                                                                     | Pass<br>Pass<br>Vidth: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                                  | 1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                         | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.73<br>2.76<br>2.89                                                                            | 0.06<br>-0.06<br>-0.08<br><b>Delta</b><br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.26<br>0.39                                                           | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas              | 339199<br>818397<br>700762<br><b>Abundance</b><br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529                                                                     |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2                                                                                   | 1633.81<br>2233.75<br>1 Polarity: 1<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: 1                                                                 | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative                                                                         | Pass<br>Pass<br>Pass<br>Vidth: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                          | 1.20<br>1.20<br>1.20<br><b>Expected</b><br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                         | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.73<br>2.76<br>2.89                                                                            | 0.06<br>-0.06<br>-0.08<br><b>Delta</b><br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.26<br>0.39                                                           | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                       | 339199<br>818397<br>700762<br><b>Abundance</b><br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529                                                                     |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2                                                                                   | 1633.81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I                                                                 | -0.14<br>-0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative                                                                | Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid                                             | 1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50         | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.73<br>2.76<br>2.89                                                                            | 0.06<br>-0.06<br>-0.08<br><b>Delta</b><br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.26<br>0.39                                                           | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                       | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br>Abundance                                                               |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected                                                                | 1633.81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I<br>m/z<br>Measured                                              | -0.14<br>-0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative<br>Delta                                                       | Pass<br>Pass<br>Pass<br>Vidth: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                          | 1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50         | 1.26<br>1,14<br>1.12<br>FWHM<br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.76<br>2.89<br>FWHM<br>Measured                                                                       | 0.06<br>-0.08<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23<br>0.26<br>0.39<br>Delta                                                                         | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas              | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br>Abundance                                                               |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99                                                      | 1633.81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I<br>Measured<br>112.94                                           | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative<br>Delta<br>-0.05                                                       | Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                            | 1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50         | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.76<br>2.89<br><b>FWHM</b><br>Measured<br>2.50                                                 | 0.06<br>-0.08<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.26<br>0.39<br>Delta<br>0.00                                                 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                       | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br>Abundance<br>242321                                                     |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00                                             | 1633.81<br>2233.75<br>I Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I<br>Measured<br>112.94<br>301.96                                 | -0.14<br>-0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative<br>Delta<br>-0.05<br>-0.04                                     | Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass                                         | 1.20<br>1.20<br>1.20<br>1.20<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                | 1.26<br>1,14<br>1.12<br>FWHM<br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.76<br>2.89<br>FWHM<br>Measured<br>2.50<br>2.50                                                       | 0.06<br>-0.06<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.26<br>0.39<br>Delta<br>0.00<br>0.00                                         | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas              | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br>Abundance<br>242321<br>119790                                           |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98                                  | 1633,81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I<br>m/z<br>Measured<br>112.94<br>301.96<br>601 87                | -0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative<br>Delta<br>-0.05<br>-0.04<br>-0.04<br>-0.11                            | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                         | 1.20<br>1.20<br>1.20<br>1.20<br>5.00<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2                               | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.73<br>2.76<br>2.89<br><b>FWHM</b><br>Measured<br>2.50<br>2.50<br>2.50<br>2.63                 | 0.06<br>-0.06<br>-0.08<br><b>Delta</b><br>0.09<br>0.17<br>0.23<br>0.23<br>0.26<br>0.39<br><b>Delta</b><br>0.00<br>0.00<br>0.13                           | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Result | 339199<br>818397<br>700762<br><b>Abundance</b><br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br><b>Abundance</b><br>242321<br>119790<br>183399                   |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91 | 1633.81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I<br>Measured<br>112.94<br>301.96<br>601.87<br>1033.88            | -0.14<br>-0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative<br>Delta<br>-0.05<br>-0.04<br>-0.11                            | Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass           | 1.20<br>1.20<br>1.20<br>1.20<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2                               | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.76<br>2.89<br><b>FWHM</b><br>Measured<br>2.50<br>2.50<br>2.50<br>2.50<br>2.53                 | 0.06<br>-0.08<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23<br>0.26<br>0.39<br>Delta<br>0.00<br>0.00<br>0.00<br>0.03                                         | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas              | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br>Abundance<br>242321<br>119790<br>183399<br>566808                       |  |
| 2233.91<br>Analyzer: MS<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91 | 1633.81<br>2233.75<br>1 Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I<br>Measured<br>112.94<br>301.96<br>601.87<br>1033.88<br>1633.91 | -0.14<br>-0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative<br>Delta<br>-0.05<br>-0.04<br>-0.11<br>-0.11<br>-0.11          | Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass   | 1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50 | 1.26<br>1.14<br>1.12<br>FWHM<br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.76<br>2.89<br>FWHM<br>Measured<br>2.50<br>2.50<br>2.50<br>2.50<br>2.53<br>2.53<br>2.53               | 0.06<br>-0.08<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23<br>0.23                                          | Result Pass Pass Pass Pass Pass Pass Pass Pas                                      | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br>Abundance<br>242321<br>119790<br>183399<br>566808<br>175764             |  |
| 2233.91<br>Analyzer: MS<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2020 21                | 1633.81<br>2233.75<br>I Polarity: I<br>Measured<br>112.78<br>301.97<br>601.97<br>1033.99<br>1634.03<br>2233.88<br>2 Polarity: I<br>Measured<br>112.94<br>301.96<br>601.87<br>1033.88<br>1633.91 | -0.14<br>-0.14<br>-0.16<br>Negative<br>Delta<br>-0.21<br>-0.03<br>-0.01<br>0.00<br>0.08<br>-0.03<br>Negative<br>Delta<br>-0.05<br>-0.04<br>-0.11<br>-0.04<br>-0.11<br>-0.04 | Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass | 1.20<br>1.20<br>1.20<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                        | 1.26<br>1,14<br>1.12<br><b>FWHM</b><br>Measured<br>2.59<br>2.67<br>2.73<br>2.73<br>2.76<br>2.89<br><b>FWHM</b><br>Measured<br>2.50<br>2.50<br>2.50<br>2.63<br>2.53<br>2.53<br>2.52 | 0.06<br>-0.06<br>-0.08<br>Delta<br>0.09<br>0.17<br>0.23<br>0.23<br>0.23<br>0.26<br>0.39<br>Delta<br>0.00<br>0.00<br>0.00<br>0.13<br>0.03<br>0.03<br>0.02 | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas              | 339199<br>818397<br>700762<br>Abundance<br>221463<br>92147<br>194945<br>606931<br>1754473<br>1763529<br>Abundance<br>242321<br>119790<br>183399<br>566808<br>1757864<br>1956472 |  |



| Instrument Name           | Instrument 1                                  |
|---------------------------|-----------------------------------------------|
| MS Model                  | G6460A                                        |
| MS Instrument Serial      | SG13107204                                    |
| Software Firmware Version | B.09.00.B9037.0, FW: A.00.08.64               |
| Tune Date & Time          | 04 January 2021 08:42:50                      |
| Data Path                 | D:\MassHunter\Tune\QQQ\G6460A\atunes.TUNE.XML |
| Ion Source                | AJS ESI                                       |
| Ionization Mode           | AJS ESI                                       |
| Tuned Resolution          | All                                           |
| Vacuum Pressure           | 1 70E+0[R]; 1 21E-5[H]                        |
|                           |                                               |

## Source Parameters

| Parameter       | Value |
|-----------------|-------|
| Gas Temp        | 300   |
| Gas Flow        | 10    |
| Nebulizer       | 15    |
| Capillary       | 4000  |
| Nozzle Voltage  | 1500  |
| Sheath Gas Temp | 250   |
| Sheath Gas Flow | 7     |

## **Positive Results**

Analyzer: MS1 Polarity: Positive Width: Unit

| m/z<br>Evroatod | m/z             | Delta      | Result      | FWHM             | FWHM              | Delta          | Result | Abundance      | e      |
|-----------------|-----------------|------------|-------------|------------------|-------------------|----------------|--------|----------------|--------|
| 118 09          | 118 03          | -0.06      | Pass        |                  | nieasured<br>0.77 | 0.07           | Pass   | 291797         | 7      |
| 322.05          | 322.06          | 0.00       | Pace        | 0.70             | 0.69              | -0.01          | Pace   | 136/16/        | 1      |
| 622.00          | 622.00          | -0.02      | Pase        | 0.70             | 0.00              | 0.01           | Pass   | 186483         | 2      |
| 022.03          | 022.01          | -0.02      | Pass        | 0.70             | 0.60              | 0.01           | Pass   | 145150         | n<br>n |
| 1521.07         | 1521.05         | -0.00      | Pase        | 0.70             | 0.03              | 0.01           | Dace   | 47807          | 7      |
| 2121.02         | 2121.95         | -0.02      | Pasa        | 0.70             | 0.79              | 0.01           | Pace   | 25009          | 2<br>0 |
| Analyzan MC2    | Deleritu        | -0.07      |             | 0.70             | 0.76              | 0.08           | газэ   | 30990          | 5      |
| Analyzer: M52   | Polarity        | Positive   |             |                  |                   |                |        |                |        |
| m/z<br>Expected | m/z<br>Moasurod | Delta      | Result      | FWHM<br>Expected | FWHM<br>Measured  | Delta          | Result | Abundance      | 9      |
| 118 09          | 118 07          | -0.02      | Pass        | 0 70             | 0 75              | 0.05           | Pass   | 273036         | â      |
| 322.05          | 322.01          | -0.04      | Pass        | 0 70             | 0.73              | 0.03           | Pass   | 101186         | 8      |
| 622.03          | 622.03          | 0.00       | Pass        | 0.70             | 0.75              | 0.05           | Pass   | 133295         | 5      |
| 922.00          | 921.96          | -0.05      | Pass        | 0.70             | 0.65              | -0.05          | Pass   | 89775          | 5      |
| 1521 97         | 1521.87         | _0.10      | Pase        | 0.70             | 0.78              | 0.08           | Pass   | 54912          | 2      |
| 2121 03         | 2121 02         | _0.10      | Pase        | 0.70             | 0.65              | -0.05          | Pase   | 28002          | - 2    |
| Analyzer MS1    | Polarity        | · Positivo | Width: Wide | 0.10             | 0.00              | 0.00           | 1 400  | 20002          | -      |
|                 | Folanty         | , rosiuve  |             |                  |                   |                |        |                |        |
| m/z             | m/z             | Delta      | Result      | FWHM             | FWHM              | Delta          | Result | Abundance      | е      |
| Expected        | Measured        |            |             | Expected         | Measured          |                | _      |                | _      |
| 118.09          | 118.02          | -0.07      | Pass        | 1.20             | 1.21              | 0.01           | Pass   | 345583         | 3      |
| 322.05          | 322.06          | 0.01       | Pass        | 1.20             | 1.22              | 0.02           | Pass   | 176174         | 4      |
| 622.03          | 621.97          | -0.06      | Pass        | 1.20             | 1.07              | -0.13          | Pass   | 238075         | 5      |
| 922.01          | 921.92          | -0.09      | Pass        | 1.20             | 1.08              | -0.12          | Pass   | 207168         | 3      |
| 1521.97         | 1521.94         | -0.03      | Pass        | 1.20             | 1.12              | -0.08          | Pass   | 813 <b>1</b> 5 | 5      |
| 2121,93         | 2121,79         | -0.14      | Pass        | 1.20             | 1.26              | 0.06           | Pass   | 67366          | 3      |
| Analyzer: MS2   | Polarity        | : Positive | Width: Wide | •                |                   |                |        |                |        |
| m/z             | m/z             | Delta      | Result      | FWHM             | FWHM              | Delta          | Result | Abundance      | e      |
| Expected        | Measured        |            |             | Expected         | Measured          | -              |        |                |        |
| 118.09          | 118.00          | -0.09      | Pass        | 1.20             | 1.21              | 0.01           | Pass   | 388077         | 7      |
| 322.05          | 322.12          | 0.07       | Pass        | 1.20             | 1.31              | 0.11           | Pass   | 199307         | 7      |
| 622.03          | 621,91          | -0.12      | Pass        | 1.20             | 1.31              | 0.11           | Pass   | <b>29868</b> 5 | ō      |
| 922.01          | 921.84          | -0.17      | Pass        | 1.20             | 1.37              | 0.17           | Pass   | 254346         | 3      |
| 1521.97         | 1521.79         | -0.18      | Pass        | 1.20             | 1.27              | 0.07           | Pass   | 139834         | 4      |
| 2121.93         | 2121.63         | -0.30      | Pass        | 1.20             | 1.18              | -0.02          | Pass   | 115456         | 6      |
| Analyzer: MS1   | Polarity        | : Positive | Width: Wide | st               |                   |                |        |                |        |
| ·               |                 |            | _           |                  |                   |                |        |                |        |
| m/z             | m/z             | Delta      | Result      | FWHM             | FWHM              | Delta          | Result | Abundance      | 3      |
| Expected        | Measured        | A 14       |             | Expected         | Measured          | 0.00           |        | 476744         |        |
| 118.09          | 117.96          | -0.13      | Pass        | 2.50             | 2.44              | -0.06          | Pass   | 4/5/11         | 1      |
| 322.05          | 322.08          | 0.03       | Pass        | 2.50             | 2.52              | 0.02           | Pass   | 234840         | J      |
| 622.03          | 622.02          | -0.01      | Pass        | 2.50             | 2.45              | -0.05          | Pass   | 349823         | 3      |
| 922.01          | 922.15          | 0.14       | Pass        | 2. <b>5</b> 0    | 2.30              | -0.20          | Pass   | 376260         | C      |
| 1521.97         | 1522.07         | 0.10       | Pass        | 2.50             | 2.27              | -0.23          | Pass   | 180087         | 7      |
| 2121.93         | 2121.86         | -0.07      | Pass        | 2.50             | 2.35              | -0 <u>.</u> 15 | Pass   | 167147         | 7      |



### Analyzer: MS2 Polarity: Positive Width: Widest

| m/z<br>Expected | m/z<br>Measured | Delta | Result | FWHM<br>Expected | FWHM<br>Measured | Delta | Result | Abundance               |
|-----------------|-----------------|-------|--------|------------------|------------------|-------|--------|-------------------------|
| 118.09          | 117,82          | -0.27 | Pass   | 2,50             | 2,51             | 0.01  | Pass   | 575 <b>38</b> 5         |
| 322.05          | 322.00          | -0.05 | Pass   | 2.50             | 2.73             | 0.23  | Pass   | 326419                  |
| 622.03          | 622.09          | 0.06  | Pass   | 2.50             | 2.66             | 0.16  | Pass   | 506749                  |
| 922.01          | 921.83          | -0.18 | Pass   | 2.50             | 2.87             | 0.37  | Pass   | <b>46</b> 13 <b>1</b> 2 |
| 1521.97         | 1521.97         | 0.00  | Pass   | 2.50             | 2.90             | 0.40  | Pass   | 384445                  |
| 2121.93         | 2121.85         | -0.08 | Pass   | 2.50             | 3.06             | 0.56  | Pass   | 459825                  |



### **Negative Results**

Analyzer: MS1 Polarity: Negative Width: Unit

| m/z                                                                                                                                                                                                                                                                       | m/z                                                                                                                                                                                                                                                            | Delta                                                                                                                                                                                                                          | Result                                                                                                                                         | FWHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FWHM                                                                                                                                                                                 | Delta                                                                                                                                                               | Result                                                                                   |                                                                                                                                                                                                                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Expected                                                                                                                                                                                                                                                                  | Measured                                                                                                                                                                                                                                                       | <b>D</b> on a                                                                                                                                                                                                                  | Roouli                                                                                                                                         | Expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measured                                                                                                                                                                             | Donta                                                                                                                                                               | Roouli                                                                                   | / Buildanee                                                                                                                                                                                                                 |  |
| 112.99                                                                                                                                                                                                                                                                    | <b>1</b> 12.93                                                                                                                                                                                                                                                 | -0.06                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.78                                                                                                                                                                                 | 0.08                                                                                                                                                                | Pass                                                                                     | 119109                                                                                                                                                                                                                      |  |
| 302.00                                                                                                                                                                                                                                                                    | 301.96                                                                                                                                                                                                                                                         | -0.04                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.73                                                                                                                                                                                 | 0.03                                                                                                                                                                | Pass                                                                                     | 69 <b>4</b> 42                                                                                                                                                                                                              |  |
| 601.98                                                                                                                                                                                                                                                                    | 601.92                                                                                                                                                                                                                                                         | -0.06                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                                                                                 | 0.02                                                                                                                                                                | Pass                                                                                     | 118829                                                                                                                                                                                                                      |  |
| 1033.99                                                                                                                                                                                                                                                                   | 1033.89                                                                                                                                                                                                                                                        | -0.10                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                                                                                 | 0.02                                                                                                                                                                | Pass                                                                                     | 193906                                                                                                                                                                                                                      |  |
| 1633.95                                                                                                                                                                                                                                                                   | 1633.92                                                                                                                                                                                                                                                        | -0.03                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69                                                                                                                                                                                 | -0.01                                                                                                                                                               | Pass                                                                                     | 323495                                                                                                                                                                                                                      |  |
| 2233.91                                                                                                                                                                                                                                                                   | 2233.83                                                                                                                                                                                                                                                        | -0.08                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70                                                                                                                                                                                 | 0.00                                                                                                                                                                | Pass                                                                                     | 163618                                                                                                                                                                                                                      |  |
| Analyzer: MS2                                                                                                                                                                                                                                                             | Polarity:                                                                                                                                                                                                                                                      | Negative                                                                                                                                                                                                                       | Width: Unit                                                                                                                                    | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                | <b>.</b>                                                                                                                                                                                                                       |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      | <b></b>                                                                                                                                                             |                                                                                          |                                                                                                                                                                                                                             |  |
| m/z<br>Expected                                                                                                                                                                                                                                                           | m/z<br>Measured                                                                                                                                                                                                                                                | Delta                                                                                                                                                                                                                          | Result                                                                                                                                         | FWHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FWHM                                                                                                                                                                                 | Delta                                                                                                                                                               | Result                                                                                   | Abundance                                                                                                                                                                                                                   |  |
| 112.99                                                                                                                                                                                                                                                                    | 112 98                                                                                                                                                                                                                                                         | -0.01                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 71                                                                                                                                                                                 | 0.01                                                                                                                                                                | Pass                                                                                     | 87359                                                                                                                                                                                                                       |  |
| 302.00                                                                                                                                                                                                                                                                    | 302.00                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                           | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                                                                                 | 0.02                                                                                                                                                                | Pass                                                                                     | 54833                                                                                                                                                                                                                       |  |
| 601.98                                                                                                                                                                                                                                                                    | 601.93                                                                                                                                                                                                                                                         | -0.05                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69                                                                                                                                                                                 | -0.01                                                                                                                                                               | Pass                                                                                     | 73045                                                                                                                                                                                                                       |  |
| 1033.99                                                                                                                                                                                                                                                                   | 1033.90                                                                                                                                                                                                                                                        | -0.09                                                                                                                                                                                                                          | Page                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70                                                                                                                                                                                 | 0.00                                                                                                                                                                | Pass                                                                                     | 113832                                                                                                                                                                                                                      |  |
| 1633.95                                                                                                                                                                                                                                                                   | 1633.83                                                                                                                                                                                                                                                        | _0.00                                                                                                                                                                                                                          | Pass                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.76                                                                                                                                                                                 | 0.06                                                                                                                                                                | Pass                                                                                     | 240154                                                                                                                                                                                                                      |  |
| 2222.01                                                                                                                                                                                                                                                                   | 2222 76                                                                                                                                                                                                                                                        | -0.12                                                                                                                                                                                                                          | Baaa                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70                                                                                                                                                                                 | 0.00                                                                                                                                                                | Doop                                                                                     | 179910                                                                                                                                                                                                                      |  |
| Analyzan MC1                                                                                                                                                                                                                                                              | ZZJJJ.70                                                                                                                                                                                                                                                       | -0.10                                                                                                                                                                                                                          | Vidth Wid                                                                                                                                      | o.ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75                                                                                                                                                                                 | 0.05                                                                                                                                                                | F doo                                                                                    | 170019                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                           | Folanty.                                                                                                                                                                                                                                                       | Negative                                                                                                                                                                                                                       |                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                             |  |
| m/z                                                                                                                                                                                                                                                                       | m/z                                                                                                                                                                                                                                                            | Delta                                                                                                                                                                                                                          | Result                                                                                                                                         | FWHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FWHM                                                                                                                                                                                 | Delta                                                                                                                                                               | Result                                                                                   | Abundance                                                                                                                                                                                                                   |  |
| Expected                                                                                                                                                                                                                                                                  | Measured                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                |                                                                                                                                                | Expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measured                                                                                                                                                                             |                                                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                             |  |
| 112.99                                                                                                                                                                                                                                                                    | 112.88                                                                                                                                                                                                                                                         | -0.11                                                                                                                                                                                                                          | Pass                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.25                                                                                                                                                                                 | 0.05                                                                                                                                                                | Pass                                                                                     | 139315                                                                                                                                                                                                                      |  |
| 302.00                                                                                                                                                                                                                                                                    | 302.00                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                           | Pass                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.19                                                                                                                                                                                 | -0.01                                                                                                                                                               | Pass                                                                                     | 92 <b>47</b> 6                                                                                                                                                                                                              |  |
| 601.98                                                                                                                                                                                                                                                                    | 601.91                                                                                                                                                                                                                                                         | -0.07                                                                                                                                                                                                                          | Pass                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.14                                                                                                                                                                                 | -0.06                                                                                                                                                               | Pass                                                                                     | 184130                                                                                                                                                                                                                      |  |
| 1033.99                                                                                                                                                                                                                                                                   | 1033.98                                                                                                                                                                                                                                                        | -0.01                                                                                                                                                                                                                          | Pass                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.02                                                                                                                                                                                 | -0.18                                                                                                                                                               | Pass                                                                                     | 330974                                                                                                                                                                                                                      |  |
| 1633.95                                                                                                                                                                                                                                                                   | 1633.87                                                                                                                                                                                                                                                        | -0.08                                                                                                                                                                                                                          | Pass                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.01                                                                                                                                                                                 | -0.19                                                                                                                                                               | Pass                                                                                     | 728507                                                                                                                                                                                                                      |  |
| 2233.91                                                                                                                                                                                                                                                                   | 2233.81                                                                                                                                                                                                                                                        | -0.10                                                                                                                                                                                                                          | Pass                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30                                                                                                                                                                                 | 0.10                                                                                                                                                                | Pass                                                                                     | 524683                                                                                                                                                                                                                      |  |
| Analyzer: MS2                                                                                                                                                                                                                                                             | Polarity:                                                                                                                                                                                                                                                      | Negative                                                                                                                                                                                                                       | Width: Wid                                                                                                                                     | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                             |  |
| _ L                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                | D-14-                                                                                                                                                                                                                          | <b>D</b> Ik                                                                                                                                    | =14/1114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                      | D-#-                                                                                                                                                                | <b>D</b> It                                                                              | A L                                                                                                                                                                                                                         |  |
| m/z<br>Expected                                                                                                                                                                                                                                                           | m/z<br>Measured                                                                                                                                                                                                                                                | Delta                                                                                                                                                                                                                          | Result                                                                                                                                         | FWHM<br>Expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FWHM<br>Measured                                                                                                                                                                     | Delta                                                                                                                                                               | Result                                                                                   | Abundance                                                                                                                                                                                                                   |  |
| m/z<br>Expected<br>112,99                                                                                                                                                                                                                                                 | m/z<br>Measured<br>112,93                                                                                                                                                                                                                                      | Delta<br>-0.06                                                                                                                                                                                                                 | Result<br>Pass                                                                                                                                 | FWHM<br>Expected<br>1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FWHM<br>Measured<br>1,18                                                                                                                                                             | Delta<br>-0.02                                                                                                                                                      | Result<br>Pass                                                                           | Abundance                                                                                                                                                                                                                   |  |
| m/z<br>Expected<br>112.99<br>302.00                                                                                                                                                                                                                                       | m/z<br>Measured<br>112.93<br>301.91                                                                                                                                                                                                                            | <b>Delta</b><br>-0.06<br>-0.09                                                                                                                                                                                                 | Result<br>Pass<br>Pass                                                                                                                         | FWHM<br>Expected<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FWHM<br>Measured<br>1.18<br>1.28                                                                                                                                                     | <b>Delta</b><br>-0.02<br>0.08                                                                                                                                       | Result<br>Pass<br>Pass                                                                   | Abundance<br>111148<br>94806                                                                                                                                                                                                |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98                                                                                                                                                                                                                             | <b>m/z</b><br>Measured<br>112.93<br>301.91<br>601.98                                                                                                                                                                                                           | <b>Delta</b><br>-0.06<br>-0.09<br>0.00                                                                                                                                                                                         | Result<br>Pass<br>Pass<br>Pass                                                                                                                 | FWHM<br>Expected<br>1,20<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FWHM<br>Measured<br>1.18<br>1.28<br>1.39                                                                                                                                             | <b>Delta</b><br>-0.02<br>0.08<br>0.19                                                                                                                               | Result<br>Pass<br>Pass<br>Pass                                                           | Abundance<br>111148<br>94806<br>174091                                                                                                                                                                                      |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99                                                                                                                                                                                                                  | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92                                                                                                                                                                                                       | <b>Delta</b><br>-0.06<br>-0.09<br>0.00<br>-0.07                                                                                                                                                                                | Result<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46                                                                                                                                     | Delta<br>-0.02<br>0.08<br>0.19<br>0.26                                                                                                                              | Result<br>Pass<br>Pass<br>Pass<br>Pass                                                   | Abundance<br>111148<br>94806<br>174091<br>364536                                                                                                                                                                            |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95                                                                                                                                                                                                       | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71                                                                                                                                                                                            | <b>Delta</b><br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24                                                                                                                                                                       | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                                 | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61                                                                                                                             | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41                                                                                                                      | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                   | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695                                                                                                                                                                  |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91                                                                                                                                                                                            | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61                                                                                                                                                                                 | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30                                                                                                                                                                     | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                                                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61                                                                                                                             | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41                                                                                                              | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                   | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386                                                                                                                                                       |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1                                                                                                                                                                           | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:                                                                                                                                                                    | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30                                                                                                                                                                     | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width Wid                                                                            | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61                                                                                                                     | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41                                                                                                              | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                   | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386                                                                                                                                                       |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1                                                                                                                                                                           | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:                                                                                                                                                                    | Delta<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative                                                                                                                                                                  | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid                                                                           | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61                                                                                                                     | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41                                                                                                              | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                   | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386                                                                                                                                                       |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z                                                                                                                                                                    | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>m/z                                                                                                                                                             | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta                                                                                                                                                | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result                                                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>5WHM                                                                                                             | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>0.41                                                                                                      | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result                         | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance                                                                                                                                          |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected                                                                                                                                                        | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>Measured                                                                                                                                            | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta                                                                                                                                                | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result                                                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br>FWHM<br>Measured                                                                                         | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta                                                                                                     | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result                         | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance                                                                                                                                          |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99                                                                                                                                              | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>m/z<br>Measured<br>112.79<br>112.79                                                                                                                             | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20                                                                                                                                       | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass                                                                 | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br>FWHM<br>Measured<br>2.61                                                                                 | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11                                                                                             | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result                                 | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076                                                                                                                                |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00                                                                                                                                               | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04                                                                                                                                    | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04                                                                                                                               | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass                                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br><b>FWHM</b><br>Measured<br>2.61<br>2.56                                                                  | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06                                                                             | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Pass                 | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916                                                                                                                      |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98                                                                                                                          | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86                                                                                                                          | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12                                                                                                                               | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass                                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>5<br>FWHM<br>Measured<br>2.61<br>2.56<br>2.41                                                                    | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09                                                                            | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Pass<br>Pass         | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578                                                                                                            |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99                                                                                                                          | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16                                                                                                               | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17                                                                                                                       | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass                                 | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>8<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br><b>FWHM</b><br>Measured<br>2.61<br>2.56<br>2.41<br>2.23                                                  | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27                                                           | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Result<br>Pass<br>Pass<br>Pass<br>Pass | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513                                                                                                  |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95                                                                                                    | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83                                                                                                    | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12                                                                                                     | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                                 | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br><b>FWHM</b><br>Measured<br>2.61<br>2.56<br>2.41<br>2.73<br>2.24                                          | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26                                                  | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396                                                                                       |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91                                                                                         | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73                                                                                         | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17                                                                                             | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas          | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br><b>FWHM</b><br>Measured<br>2.61<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33                                  | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26<br>-0.17                                                 | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607                                                                            |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2                                                                        | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:                                                                            | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.12<br>0.18<br>Negative                                                                | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas          | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br><b>FWHM</b><br>Measured<br>2.61<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33                                  | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26<br>-0.17                                                 | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607                                                                            |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2                                                                        | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:                                                                            | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.12<br>0.18<br>Negative                                                                | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas          | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br>2.56<br>2.41<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33                                                     | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta                                        | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance                                                               |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2                                                                        | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:<br>Measured                                                                | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.12<br>Negative<br>Delta                                                               | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas          | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br>2.56<br>2.41<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33<br>FWHM<br>Measured                                 | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta                                                 | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance                                                               |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99                                                      | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:<br>Measured<br>112.92                                                      | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.12<br>Negative<br>Delta<br>-0.20                                                      | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                                                                          | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>1.61<br>2.61<br>2.61<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33<br>FWHM<br>Measured<br>2.77                         | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta<br>0.27                                | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance<br>169663                                                     |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99<br>302.00                                            | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:<br>Measured<br>112.92<br>301.84                                            | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.18<br>Negative<br>Delta<br>-0.28                                                               | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>2.61<br>2.56<br>2.41<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33<br>FWHM<br>Measured<br>2.77<br>2.74                 | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta<br>0.27<br>0.24                        | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance<br>169663<br>149547                                           |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98                       | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:<br>Measured<br>112.92<br>301.84<br>601.68                                  | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.12<br>0.18<br>Negative<br>Delta<br>-0.07<br>-0.16<br>-0.30                                     | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas  | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>2.61<br>2.61<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33<br>FWHM<br>Measured<br>2.77<br>2.74<br>2.86                 | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta<br>0.27<br>0.24<br>0.36                | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance<br>169663<br>149547<br>260179                                 |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99            | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:<br>Measured<br>112.92<br>301.84<br>601.68<br>1033.80                       | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.12<br>-0.18<br>Negative<br>Delta<br>-0.07<br>-0.16                                    | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Result<br>Result<br>Result<br>Result                         | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>2.56<br>2.41<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33<br>FWHM<br>Measured<br>2.77<br>2.74<br>2.86<br>3.02         | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.06<br>-0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta<br>0.27<br>0.24<br>0.36<br>0.52        | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance<br>169663<br>149547<br>260179<br>696644                       |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.95<br>2233.91<br>Analyzer: MS2<br>Mz<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.95<br>2233.91                        | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:<br>Measured<br>112.92<br>301.84<br>601.68<br>1033.80<br>1633.77            | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.07<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.12<br>0.17<br>Negative<br>Delta<br>-0.07<br>-0.16<br>-0.30<br>-0.19<br>-0.19<br>-0.18 | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Result<br>Result<br>Width: Wid<br>Result                     | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>2.61<br>2.61<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33<br>EWHM<br>Measured<br>2.77<br>2.74<br>2.86<br>3.02<br>3.15 | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta<br>0.27<br>0.24<br>0.36<br>0.52<br>0.65         | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance<br>169663<br>149547<br>260179<br>696644<br>2456482            |  |
| m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.95<br>2233.91<br>Analyzer: MS1<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91<br>Analyzer: MS2<br>m/z<br>Expected<br>112.99<br>302.00<br>601.98<br>1033.99<br>1633.95<br>2233.91 | m/z<br>Measured<br>112.93<br>301.91<br>601.98<br>1033.92<br>1633.71<br>2233.61<br>Polarity:<br>Measured<br>112.79<br>302.04<br>601.86<br>1034.16<br>1633.83<br>2233.73<br>Polarity:<br>Measured<br>112.92<br>301.84<br>601.68<br>1033.80<br>1633.77<br>2233.49 | Delta<br>-0.06<br>-0.09<br>0.00<br>-0.24<br>-0.30<br>Negative<br>Delta<br>-0.20<br>0.04<br>-0.12<br>0.17<br>-0.12<br>0.17<br>-0.18<br>Negative<br>Delta<br>-0.07<br>-0.18<br>Negative                                          | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Width: Wid<br>Result | FWHM<br>Expected<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>est<br>FWHM<br>Expected<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50                 | FWHM<br>Measured<br>1.18<br>1.28<br>1.39<br>1.46<br>1.61<br>1.61<br>2.61<br>2.56<br>2.41<br>2.23<br>2.24<br>2.33<br>FWHM<br>Measured<br>2.77<br>2.74<br>2.86<br>3.02<br>3.15<br>3.57 | Delta<br>-0.02<br>0.08<br>0.19<br>0.26<br>0.41<br>0.41<br>Delta<br>0.11<br>0.09<br>-0.27<br>-0.26<br>-0.17<br>Delta<br>0.27<br>0.24<br>0.36<br>0.52<br>0.65<br>1.07 | Result<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pas                    | Abundance<br>111148<br>94806<br>174091<br>364536<br>969695<br>1039386<br>Abundance<br>183076<br>113916<br>233578<br>511513<br>1341396<br>1159607<br>Abundance<br>169663<br>149547<br>260179<br>696644<br>2456482<br>2624757 |  |

# PFAS Isotope Dilution QSM B15

# Form 6E

# Calibrations

## **Quantitative Analysis Calibration Report**

| Batch Data Path<br>Analysis Time<br>Report Time<br>Last Calib Update                                                                                                                                                                          | D:\MassHunter\Data\2<br>1/14/2021 9:10 AM<br>1/14/2021 9:14 AM<br>12/24/2020 3:17 PM | 201224ACAL\QuantRes<br>Analyst Name<br>Reporter Name<br>Batch State |              | sults\220122<br>GCAL\lcms<br>GCAL\lcms<br>Processed | 4A.batch.bin        |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|-----------------------------------------------------|---------------------|-----------------|
| Calibration Info<br>Target Compound                                                                                                                                                                                                           | PFBA                                                                                 |                                                                     |              |                                                     |                     |                 |
| Calibration STD                                                                                                                                                                                                                               | Cal Type                                                                             | Level                                                               | Enabled      | Response                                            | Exp Conc<br>(ng/mL) | RF              |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d                                                                                                                                                                                                  | Calibration                                                                          | 1                                                                   |              | 4165                                                | 0.5000              | 1.1860          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d                                                                                                                                                                                                  | Calibration                                                                          | 2                                                                   | V            | 9322                                                | 1.2500              | 1.0768          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d                                                                                                                                                                                                  | Calibration                                                                          | 3                                                                   | Ø            | 43295                                               | 5.0000              | 1.1922          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d                                                                                                                                                                                                  | Calibration                                                                          | 4                                                                   | V            | 81450                                               | 10.0000             | 1.1 <b>2</b> 31 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d                                                                                                                                                                                                  | Calibration                                                                          | 5                                                                   | $\checkmark$ | 166398                                              | 20.0000             | 1.1370          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d                                                                                                                                                                                                  | Calibration                                                                          | 6                                                                   | Ø            | 883327                                              | 100.0000            | 1.2243          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d                                                                                                                                                                                                  | Calibration                                                                          | 7                                                                   | Ŋ            | 1692681                                             | 200.0000            | 1.3071          |
| PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Use<br>$x = 10^{-1}$ y = 1.288924 * x<br>$R^2 = 0.99884290$<br>Type:Linear, Origin:Force, Weight:None<br>4.5-<br>x = 3.5-<br>2-<br>1.5-<br>1-<br>0.5-<br>0-<br>-0.5-<br>-2 0 2 4 6 8 10 12 | d, 1 QCs                                                                             | 4 26 28                                                             | 30 32 3      | 4 36 38 4<br>Relative Con                           | 0 42<br>ccentration |                 |

Instrument ISTD

M3PFBA

| Calibration STD                              | Cal Type    | Level | Enabled | Response      | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|---------|---------------|---------------------|--------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | Ø       | 6156          | 5.0000              | 1231.1254          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 6123          | 5.0000              | 1224 <b>.57</b> 32 |
| D:\MassHunler\Dala\2201224ACAL\2201224A_04.d | Calibration | 3     | Ø       | 6725          | 5.0000              | 1345.0660          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | M       | 6 <b>75</b> 4 | 5.0000              | 1350.7240          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø       | 6386          | 5.0000              | 1277.2520          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | M       | 6563          | 5.0000              | 1312.6821          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ø       | 6268          | 5.0000              | 1253.6988          |



**MPFBA** 

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF                         |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|----------------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 35115    | 5.0000              | 7023.0854                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ŋ       | 34626    | 5.0000              | 6925.1690                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 36315    | 5.0000              | 7262.9669                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 36260    | 5.0000              | 7251.9506                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø       | 36586    | 5.0000              | 731 <b>7.</b> 1578         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | 36075    | 5.0000              | 7 <b>2</b> 15 <b>.0088</b> |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | X       | 32375    | 5.0000              | 647 <b>5.0241</b>          |
| Target Compound                              | PFMPA       |       |         |          |                     |                            |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 3280           | 1.0000              | 0.9887 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 7 <b>942</b>   | 2.5000              | 0.9635 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 36975          | 10.0000             | 1.0612 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 68183          | 20.0000             | 0.9939 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 142 <b>350</b> | 40.0000             | 1.0278 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 74 <b>2898</b> | 200.0000            | 1.0896 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | M       | 1445520        | 400.0000            | 1,1509 |



M5PFPeA

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF                         |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|----------------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 16589          | 5.0000              | <b>3</b> 31 <b>7.8142</b>  |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 16485          | 5.0000              | 3296.9173                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 17421          | 5.0000              | 3484.1517                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 17150          | 5.0000              | 3430.0518                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 17313          | 5.0000              | 3462.5456                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 17 <b>04</b> 6 | 5.0000              | <b>3</b> 4 <b>0</b> 9.1734 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ø       | 15700          | 5.0000              | 3140.0991                  |
| Target Compound                              | PFPeA       |       |         |                |                     |                            |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 1969     | 0.5000              | 1.1867         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 4039     | 1.2500              | 0.9800         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 18316    | 5.0000              | 1.0514         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 33741    | 10.0000             | <b>0.983</b> 7 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 69746    | 20.0000             | 1.0071         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 385328   | 100.0000            | 1.1303         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ø       | 746852   | 200.0000            | 1,1892         |



M3PFBS

| Calibration STD                              | Cal Type    | Level | Enabled | Response               | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|---------|------------------------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | <b>1</b> 1 <b>7</b> 69 | 5.0000              | 2353.8931         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | <b>11497</b>           | 5.0000              | 2299.3293         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 11965                  | 5.0000              | 2392.9856         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | <b>1</b> 1 <b>783</b>  | 5.0000              | <b>2356.632</b> 4 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø       | <b>1299</b> 4          | 5.0000              | 2598.8356         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | <b>1</b> 1878          | 5.0000              | 2375.6905         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ø       | 10684                  | 5.0000              | 2136.8860         |
| Target Compound                              | PFBS        |       |         |                        |                     |                   |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response               | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|---------|------------------------|---------------------|-----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 1546                   | 0.4425              | 1.4843          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | <b>33</b> 15           | 1.1100              | 1.2987          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 15192                  | 4.4250              | 1 <b>.434</b> 7 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 28732                  | 8.8500              | 1.3776          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 61419                  | 17.7000             | 1.3352          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | <b>31</b> 7 <b>753</b> | 88.5000             | 1.5113          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 586216                 | 177.0000            | 1,5499          |



Target Compound

PFMBA

| Calibration STD                              | Cal Type    | Leve | l Enable | d Response   | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|------|----------|--------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1    | R        | 3266         | 1.0000              | 0.6269 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2    | M        | 729 <b>1</b> | 2.5000              | 0.5776 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3    |          | 33516        | 10.0000             | 0.6149 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4    | V        | 62043        | 20.0000             | 0.5545 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5    |          | 131101       | 40.0000             | 0.5516 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6    | V        | 687526       | 200.0000            | 0.6293 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7    | M        | 1352795      | 400.0000            | 0.6903 |



Target Compound PFEESA Exp Conc **Calibration STD** Cal Type Level Enabled Response (ng/mL) RF

OOO1 2201224A GCAL Leventy Jemp xisx Pace Gulf Coast Report#: 220122279

## **Quantitative Analysis Calibration Report**



| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 3255     | 1.0000              | 0.5107 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 7174     | 2.5000              | 0.4205 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 34809    | 10.0000             | 0.4688 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 38494    | 20.0000             | 0.2711 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 137369   | 40.0000             | 0.4400 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 683172   | 200.0000            | 0.4778 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 1338181  | 400.0000            | 0.4974 |

NFDHA

Target Compound



M2 4:2 FTS

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 10664    | 5.0000              | <b>2132.</b> 8416 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 10921    | 5.0000              | 2184.1518         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 11036    | 5.0000              | <b>2207.2</b> 610 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 11657    | 5.0000              | 2331.3711         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 13263    | 5.0000              | 2652.6324         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 10638    | 5.0000              | 2127.6703         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 9337     | 5.0000              | 1867.3055         |
| Target Compound                              | 4:2 FTS     |       |         |          |                     |                   |

| Calibration STD                              | Сај Туре    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|-----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 1984           | 0.4675              | 1.9895          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 4000           | 1.1700              | 1.5652          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 20087          | 4.6700              | 1.9487          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 37 <b>90</b> 5 | 9.3500              | 1.7389          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 86974          | 19.0000             | 1 <b>.725</b> 7 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | 376140         | 93.5000             | 1.8907          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 690741         | 187,0000            | 1.9781          |



Instrument ISTD

M2PFHxA

| Calibration STD                                       | Cal Type                           | Level     | Enabled        | Response                  | Exp Conc<br>(ng/mL)  | RF                 |
|-------------------------------------------------------|------------------------------------|-----------|----------------|---------------------------|----------------------|--------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d          | Calibration                        | 1         | V              | 235533                    | 40.0000              | 5888.3212          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d          | Calibration                        | 2         | Ø              | <b>26397</b> 4            | 40.0000              | 6599.3625          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d          | Calibration                        | 3         |                | 28227 <b>7</b>            | 40.0000              | 7056.9298          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d          | Calibration                        | 4         | V              | <b>28698</b> 4            | 40.0000              | 717 <b>4.5938</b>  |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d          | Calibration                        | 5         |                | 265102                    | 40.0000              | 6627.5609          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d          | Calibration                        | 6         | V              | <b>2747</b> 16            | 40.0000              | 6867.8959          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d          | Calibration                        | 7         | Ŋ              | 257494                    | 40.0000              | 64 <b>37.</b> 3519 |
| M2PFHxA - 7 Levels, 7 Levels Used, 7 Points, 7 Points | Used, 1 QCs<br>Ignore, Weight: One | 1<br>70 8 | 1  <br>30 90 - | 10 110 120<br>Concentrati | ) 130<br>ion (ng/ml) |                    |

Extracted ISTD

M5PFHxA

Level Enabled Resp

Exp Conc Response (ng/mL)

RF

## **Quantitative Analysis Calibration Report**

| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1 | $\square$ | 26046         | 5.0000 | 5209.1599 |
|----------------------------------------------|-------------|---|-----------|---------------|--------|-----------|
| D;\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2 | M         | 25248         | 5.0000 | 5049.5232 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3 | Ø         | 27253         | 5.0000 | 5450.5474 |
| D;\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4 |           | 27970         | 5.0000 | 5594.0998 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5 |           | 29707         | 5.0000 | 5941.4772 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6 |           | 27313         | 5.0000 | 5462.5051 |
| D:\MassHunler\Dala\2201224ACAL\2201224A_08.d | Calibration | 7 | V         | <b>24</b> 498 | 5.0000 | 4899.5466 |
|                                              |             |   |           |               |        |           |

PFHxA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response        | Exp Conc<br>(ng/mL) | RF                       |
|----------------------------------------------|-------------|-------|--------------|-----------------|---------------------|--------------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |              | 3581            | 0.5000              | 1.3747                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |              | 7413            | 1.2500              | 1 <b>.</b> 17 <b>4</b> 4 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |              | 36119           | 5.0000              | 1.3253                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | $\checkmark$ | 63465           | 10.0000             | 1.1345                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V            | 1 <b>3494</b> 9 | 20.0000             | 1.1356                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |              | 678882          | 100.0000            | 1.2428                   |
| D:\MassHunter\Data\2201224ACAL\2201224A 08.d | Calibration | 7     | $\checkmark$ | 1313899         | 200.0000            | 1.3408                   |



Target Compound

Target Compound

PFPeS

| Calibration STD                              | Cal Type    | Level | Enabled | Response     | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|--------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 15 <b>76</b> | 0.4700              | 0.6437 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 3113         | 1.1800              | 0.5225 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 15333        | 4.7000              | 0.5985 |


### M3HFPODA

| Calibration STD                              | Cal Type    | Level | Enabled | Response      | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|---------|---------------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 2 <b>29</b> 4 | 10.0000             | 229.4025          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 2693          | 10.0000             | 269.3273          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 2884          | 10.0000             | 288.3609          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 3041          | 10.0000             | 304.0655          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 3243          | 10.0000             | 324.3076          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 3118          | 10.0000             | 311 <b>.77</b> 05 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 3257          | 10.0000             | 325.6730          |
| Target Compound                              | HFPO-DA     |       |         |               |                     |                   |

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 563            | 1.5000              | 1.6363 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 1613           | 3.7500              | 1.5968 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | M       | 5798           | 15,0000             | 1,3405 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 10461          | 30.0000             | 1.1468 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 2 <b>419</b> 4 | 60.0000             | 1.2434 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 119289         | 300.0000            | 1.2754 |



M4PFHpA

| Calibration STD                              | Cal Type    | Level | Enabled           | Response | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|-------------------|----------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V                 | 31874    | 5.0000              | 6374.8437         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |                   | 34120    | 5.0000              | 6823.9291         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V                 | 37129    | 5.0000              | 74 <b>25.7530</b> |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |                   | 35500    | 5.0000              | 7099.9009         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V                 | 39028    | 5.0000              | 7805.5095         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | $\mathbf{\nabla}$ | 35748    | 5.0000              | 7149 <b>.6348</b> |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |                   | 33629    | 5.0000              | 6725.7723         |
| Target Compound                              | PFHpA       |       |                   |          |                     |                   |

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 3240           | 0.5000              | 1.0165         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 7 <b>70</b> 4  | 1.2500              | 0.9032         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 35971          | 5.0000              | 0.9688         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 66346          | 10.0000             | 0.9345         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 14 <b>3371</b> | 20.0000             | <b>0.91</b> 84 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 70190 <b>1</b> | 100,0000            | <b>0.9</b> 817 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 1389124        | 200.0000            | 1.0327         |



M3PFHxS

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|-----------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 9965     | 5.0000              | 1992.9924 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ŋ       | 9440     | 5.0000              | 1887.9672 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | Z       | 9705     | 5.0000              | 1940.9832 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 9093     | 5.0000              | 1818.5299 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø       | 9459     | 5.0000              | 1891.7762 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | 10536    | 5.0000              | 2107.2291 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ø       | 11701    | 5.0000              | 2340.2130 |
| Target Compound                              | PFHxS       |       |         |          |                     |           |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response     | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|---------|--------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 2078         | 0.4560              | 2.2867         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | <b>47</b> 05 | 1.1400              | 2.1861         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 20937        | 4.5600              | 2.3655         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 39082        | 9.1200              | 2.3565         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 81059        | 18.2400             | 2.34 <b>91</b> |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 429403       | 91.2000             | 2.2344         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 853053       | 182.4000            | 1,9985         |



ADONA

| Calibration STD                              | Cal Type    | Level | Enabled | Response        | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|---------|-----------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 8854            | 0.5000              | 3.9979         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ø       | 20357           | 1.2500              | 3.8657         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 99 <b>7</b> 73  | 5.0000              | 4.5689         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 1 <b>819</b> 14 | 10.0000             | 4.1861         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ŋ       | 366936          | 20.0000             | 4.0016         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | 17 <b>96086</b> | 100.0000            | <b>4.419</b> 7 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 3428205         | 200.0000            | 5.0969         |



Extracted ISTD

M2 6:2 FTS

| Target Compound                              | 6:2 FTS     |   |                   |                |        |                             |
|----------------------------------------------|-------------|---|-------------------|----------------|--------|-----------------------------|
| D:\MassHunler\Dala\2201224ACAL\2201224A_08.d | Calibration | 7 | V                 | 21080          | 5.0000 | 4 <b>2</b> 16 <b>.084</b> 8 |
| D;\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6 |                   | 21132          | 5.0000 | 4226 <b>.479</b> 4          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5 | V                 | 24177          | 5.0000 | 4 <b>835.478</b> 4          |
| D;\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4 |                   | 21 <b>74</b> 2 | 5.0000 | 4348.3055                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3 | Ø                 | 22898          | 5.0000 | 4579 <b>.6</b> 560          |
| D;\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2 | $\mathbf{\nabla}$ | 20634          | 5.0000 | 4126.7543                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1 | Ŋ                 | 21929          | 5.0000 | 4385.7149                   |
|                                              |             |   |                   |                |        |                             |

| Calibration STD                              | Cal Type    | Level | Enabled | Response        | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|---------|-----------------|---------------------|-----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 3573            | 0.4750              | 1 <b>.7151</b>  |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 8385            | 1.1900              | 1.7074          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 40016           | 4.7500              | 1.8396          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 73397           | 9.5000              | 1.7768          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 1 <b>6022</b> 4 | 19.0000             | 1. <b>7</b> 440 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 693553          | 95.0000             | 1.7273          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 1203654         | 190.0000            | 1.5026          |



Instrument ISTD

MPFOA

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF               |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 366      | 25.0000             | 1 <b>4.6</b> 408 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 600      | 25.0000             | 23.9971          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 322      | 25.0000             | 12.879 <b>1</b>  |



| Extracted ISTD                               | M8PFOA      |       |                   |                        |                     |                             |
|----------------------------------------------|-------------|-------|-------------------|------------------------|---------------------|-----------------------------|
| Calibration STD                              | Cal Type    | Level | Enabled           | Response               | Exp Conc<br>(ng/mL) | RF                          |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |                   | 22148                  | 5.0000              | 4429.5460                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |                   | <b>2106</b> 4          | 5.0000              | 4 <b>2</b> 1 <b>2.83</b> 75 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |                   | 21 <b>837</b>          | 5.0000              | 4367.4841                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |                   | <b>2</b> 1 <b>7</b> 28 | 5.0000              | 4345.6184                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |                   | 22924                  | 5.0000              | 4584.8540                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | $\checkmark$      | 20319                  | 5.0000              | 4063.7928                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | $\mathbf{\nabla}$ | <b>1</b> 6815          | 5.0000              | 3363.0181                   |
| Instrument ISTD                              | M2PFOA      |       |                   |                        |                     |                             |
| Calibration STD                              | Cal Type    | Level | Enabled           | Response               | Exp Conc<br>(ng/mL) | RF                          |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |                   | 1 <b>12128</b>         | 20.0000             | 5606.3992                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V                 | 1 <b>24308</b>         | 20.0000             | 6 <b>2</b> 15.4 <b>1</b> 98 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |                   | 132986                 | 20.0000             | 6649,3098                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |                   | 1 <b>39641</b>         | 20.0000             | 6982.0460                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V                 | 125809                 | 20.0000             | 6290.4483                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |                   | 129923                 | 20.0000             | 6496.1703                   |



### Target Compound

PFOA

| Calibration STD                              | Cal Type    | Level | Enabled   | Response        | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|-----------|-----------------|---------------------|-----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | $\square$ | 2719            | 0.5000              | 1.2275          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |           | 6146            | 1.2500              | 1.1670          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V         | 30968           | 5.0000              | 1 <b>.4181</b>  |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |           | 58941           | 10.0000             | 1.3563          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V         | 1 <b>30462</b>  | 20.0000             | 1 <b>.422</b> 7 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |           | 634692          | 100.0000            | 1.5618          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |           | 118 <b>4442</b> | 200.0000            | 1 <b>.76</b> 10 |



Target Compound

PFHpS



#### M9PFNA

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 29071          | 5.0000              | 5814.1059         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 26182          | 5.0000              | 5236.4197         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 27 <b>867</b>  | 5.0000              | 5573 <b>.4469</b> |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 27263          | 5.0000              | 5452.5375         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 29221          | 5.0000              | 5844.2241         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 2 <b>479</b> 4 | 5.0000              | 4958.7502         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 22008          | 5.0000              | 4401.6350         |
| Target Compound                              | PFNA        |       |         |                |                     |                   |
|                                              |             |       |         |                |                     |                   |
| Calibration STD                              | Cal Type    | Level | Enabled | Response       | (ng/mL)             | RF                |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | Ø       | 3483           | 0.5000              | 1.1982            |

| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2 | V            | 8395    | 1.2500   | 1.2826          |
|----------------------------------------------|-------------|---|--------------|---------|----------|-----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3 | $\checkmark$ | 37064   | 5.0000   | 1.3300          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4 | Ø            | 72045   | 10.0000  | 1.3213          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5 | $\checkmark$ | 153813  | 20.0000  | 1.3159          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6 | V            | 727158  | 100.0000 | 1 <b>.466</b> 4 |
| D;\MassHunter\Data\2201224ACAL\2201224A 08.d | Calibration | 7 |              | 1393233 | 200.0000 | 1.5826          |



### Target Compound

PFOS

| Calibration STD                              | Cal Type    | Level | Enabled      | Response      | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|--------------|---------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |              | 1600          | 0.4628              | 3.6406         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |              | 4831          | 1.1600              | 4.6391         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V            | 20616         | 4.6280              | 5.0172         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V            | 37896         | 9.2550              | 4.7369         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø            | <b>7</b> 7946 | 18.5100             | <b>4.52</b> 16 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | $\checkmark$ | 443086        | 92.5500             | 4.9898         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V            | 910615        | 185.1000            | 4.4439         |



M8PFOS

| Calibration STD                              | Cal Type    | Level | Enabled | Response     | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|---------|--------------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 4747         | 5.0000              | 949 <b>.47</b> 33 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | <b>4</b> 489 | 5.0000              | 89 <b>7.73</b> 64 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | <b>4</b> 439 | 5.0000              | 887.8503          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 4322         | 5.0000              | <b>864.43</b> 17  |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 4656         | 5.0000              | 931.2985          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 4797         | 5.0000              | 959.4619          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 5535         | 5.0000              | 1107.0443         |
| Instrument ISTD                              | M4PFOS      |       |         |              |                     |                   |

| Calibration STD                              | Cal Type    | Level | Enabled | Response               | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|------------------------|---------------------|-----------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 45005                  | 20.0000             | 2250.2530 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 4 <b>4</b> 662         | 20.0000             | 2233.1025 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 45467                  | 20.0000             | 2273.3639 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 47 <b>3</b> 1 <b>2</b> | 20.0000             | 2365.6220 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 42115                  | 20.0000             | 2105.7700 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 55367                  | 20.0000             | 2768.3643 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 60758                  | 20.0000             | 3037.9068 |



#### Target Compound

9CI-PF3ONS



Extracted ISTD

M2 8:2 FTS

| Target Compound                              | 8:2 FTS     |   |              |                       |        |                            |
|----------------------------------------------|-------------|---|--------------|-----------------------|--------|----------------------------|
| D:\MassHunler\Dala\2201224ACAL\2201224A_08.d | Calibration | 7 | R            | <b>107</b> 1 <b>2</b> | 5.0000 | <b>2</b> 14 <b>2.469</b> 4 |
| D;\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6 | M            | 11282                 | 5.0000 | 2256.4171                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5 | V            | 10748                 | 5.0000 | 2149.5932                  |
| D;\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4 | $\checkmark$ | 8941                  | 5.0000 | 1788.2580                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3 | V            | 10030                 | 5.0000 | 2005.9601                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2 | N            | <b>102</b> 34         | 5.0000 | 2046.8689                  |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1 | V            | 10142                 | 5.0000 | 2028.3564                  |
|                                              |             |   |              |                       |        |                            |

| Calibration STD                              | Cal Type    | Level | Enabled      | Response        | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|--------------|-----------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V            | 4027            | 0.4800              | <b>4.136</b> 4 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | $\checkmark$ | 7904            | 1.2000              | 3.2179         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V            | 40005           | 4.8000              | <b>4.</b> 1548 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |              | 62498           | 9.6000              | 3.6405         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | $\checkmark$ | 14 <b>4147</b>  | 19.2000             | 3.4926         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |              | 7 <b>14</b> 215 | 96.0000             | 3.2971         |
| D:\MassHunter\Data\2201224ACAL\2201224A 08.d | Calibration | 7     |              | 1255666         | 192.0000            | 3.0525         |



Instrument ISTD

M2PFDA

| Calibration STD                              | Cal Type    | Level | Enabled | Response        | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|-----------------|---------------------|-----------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 159361          | 20.0000             | 7968.0613 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 1 <b>7415</b> 4 | 20.0000             | 8707.6762 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 197086          | 20.0000             | 9854.2800 |



| Target Compound                              | PFDA        |       |                |                         |                     |        |
|----------------------------------------------|-------------|-------|----------------|-------------------------|---------------------|--------|
| Calibration STD                              | СаІ Туре    | Level | Enabled        | Response                | Exp Conc<br>(ng/mL) | RF     |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | N              | 4390                    | 0.5000              | 1.4443 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V              | 8850                    | 1.2500              | 1.0945 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | ${\bf \nabla}$ | 45688                   | 5.0000              | 1.3278 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |                | 84076                   | 10.0000             | 1.2594 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | M              | 1 <b>8</b> 18 <b>50</b> | 20.0000             | 1.2930 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V              | 846495                  | 100.0000            | 1.5196 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |                | 1542 <b>79</b> 3        | 200.0000            | 1.6909 |



M6PFDA

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|-----------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | R       | 3039 <b>7</b>  | 5.0000              | 6079.3530 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ø       | 32345          | 5.0000              | 6469.0121 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 3 <b>4</b> 410 | 5.0000              | 6881.9918 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 33380          | 5.0000              | 6675.9259 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø       | 35160          | 5.0000              | 7032.0062 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | Ø       | 27852          | 5.0000              | 5570.4045 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ŋ       | 22810          | 5.0000              | 4561.9920 |
| Target Compound                              | PFNS        |       |         |                |                     |           |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response                | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|-------------------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 706                     | 0.4800              | 0.2530 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 1970                    | 1.2000              | 0.3135 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 8142                    | 4.8000              | 0.3044 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 13232                   | 9.6000              | 0.2528 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | <b>3</b> 142 <b>1</b>   | 19.2000             | 0.2800 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | <b>2</b> 37 <b>2</b> 34 | 96.0000             | 0.4983 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 587313                  | 192.0000            | 0,6950 |



FOSA

Exp Conc Calibration STD Response (ng/mL) RF Cal Type Level Enabled D:\MassHunter\Data\2201224ACAL\2201224A\_02.d Calibration **47**34 0.5000 2.1404 1  $\checkmark$ D:\MassHunter\Data\2201224ACAL\2201224A\_03.d Calibration 2  $\checkmark$ 10881 1.2500 2.0962 D:\MassHunter\Data\2201224ACAL\2201224A\_04.d Calibration 3  $\checkmark$ 53818 5.0000 2.5009 D:\MassHunter\Data\2201224ACAL\2201224A\_05.d Calibration 4  $\checkmark$ **9**74**68** 10.0000 2.3404 5 D:\MassHunter\Data\2201224ACAL\2201224A\_10.d Calibration  $\checkmark$ 209222 20.0000 2.4099 6 1089938 100.0000 D:\MassHunter\Data\2201224ACAL\2201224A\_07.d Calibration  $\mathbf{V}$ 2.2598 D:\MassHunter\Data\2201224ACAL\2201224A\_08.d Calibration 7 Ø 2153765 200.0000 2.3439



Extracted ISTD

Target Compound

M8FOSA

| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | M       | <b>221</b> 1 <b>7</b> | 5.0000              | 4423.3904          |
|----------------------------------------------|-------------|-------|---------|-----------------------|---------------------|--------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | <b>2076</b> 4         | 5.0000              | 41 <b>52.7</b> 074 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 21519                 | 5.0000              | 4303.8264          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 20823                 | 5.0000              | 4164.5814          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | <b>2170</b> 4         | 5.0000              | 4340 <b>.7</b> 988 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 2 <b>41</b> 16        | 5.0000              | 4823.1444          |
| D:\MassHunler\Dala\2201224ACAL\2201224A_08.d | Calibration | 7     | R       | 22972                 | 5.0000              | 4594.4123          |
| Extracted ISTD                               | d3-NMeFOSAA |       |         |                       |                     |                    |
|                                              |             |       |         |                       | Exp Conc            |                    |
| Calibration STD                              | Cal Type    | Level | Enabled | Response              | (ng/mL)             | RF                 |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 8663                  | 5.0000              | <b>1732.62</b> 12  |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | M       | 7 <b>75</b> 3         | 5.0000              | 1550.5304          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | M       | 9182                  | 5.0000              | <b>1836.413</b> 7  |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 8909                  | 5.0000              | <b>1781.72</b> 18  |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 1090 <b>7</b>         | 5.0000              | 2181.3538          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 10740                 | 5.0000              | 2148.0264          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 10546                 | 5.0000              | 2109.2166          |
| Target Compound                              | NMeFOSAA    |       |         |                       |                     |                    |
|                                              |             |       |         |                       |                     |                    |
| Calibration STD                              | Cal Type    | Level | Enabled | Response              | Exp Conc<br>(ng/mL) | RF                 |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 1 <b>76</b> 4         | 0.5000              | <b>2.036</b> 7     |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 3553                  | 1.2500              | 1.8329             |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 17336                 | 5.0000              | 1.8880             |
| D:\MassHunter\Data\2201224ACAL\2201224A_05,d | Calibration | 4     | Ø       | 30245                 | 10.0000             | 1,6975             |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 6982 <b>7</b>         | 20.0000             | 1.6005             |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 350052                | 100.0000            | 1.6296             |

D:\MassHunter\Data\2201224ACAL\2201224A\_08.d

7

☑

Calibration

1.6156

681512 200.0000



d5-NEtFOSAA

| Calibration STD                              | Cal Type    | Level | Enabled | Response              | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|-----------------------|---------------------|-----------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 12551                 | 5.0000              | 2510.2021 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ø       | 12752                 | 5.0000              | 2550.3150 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 12868                 | 5.0000              | 2573.6034 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 12554                 | 5.0000              | 2510.8105 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 13866                 | 5.0000              | 2773.2712 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | 11903                 | 5.0000              | 2380.5087 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ŋ       | <b>1</b> 141 <b>7</b> | 5.0000              | 2283.3364 |
| Target Compound                              | NEtFOSAA    |       |         |                       |                     |           |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response               | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|---------|------------------------|---------------------|-----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 2014                   | 0.5000              | 1.6047          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | <b>40</b> 15           | 1.2500              | 1 <b>.2595</b>  |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 19692                  | 5.0000              | 1.5303          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 35287                  | 10.0000             | 1 <b>.405</b> 4 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | <b>7</b> 72 <b>9</b> 2 | 20.0000             | 1.3935          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 347584                 | 100.0000            | 1.4601          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 600113                 | 200.0000            | 1,3141          |



M7PFUnA

| Calibration STD                              | Cal Type    | Level | Enabled | Response      | Exp Conc<br>(ng/mL) | RF                  |
|----------------------------------------------|-------------|-------|---------|---------------|---------------------|---------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 50870         | 5.0000              | 10173 <b>.9951</b>  |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ø       | 53105         | 5.0000              | 10620.9592          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 57294         | 5.0000              | 11458.8502          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 55933         | 5.0000              | 11186.5068          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 58421         | 5.0000              | 11684.1153          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 50272         | 5.0000              | 1 <b>0054.337</b> 4 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ø       | 414 <b>40</b> | 5.0000              | 8288.0219           |
| Target Compound                              | PFUnA       |       |         |               |                     |                     |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response         | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|------------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 5441             | 0.5000              | 1.0696 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 10332            | 1.2500              | 0.7782 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 54106            | 5.0000              | 0.9444 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 101718           | 10.0000             | 0.9093 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 225929           | 20.0000             | 0.9668 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 1 <b>0147</b> 18 | 100.0000            | 1.0092 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 1798825          | 200.0000            | 1,0852 |



Target Compound

PFDS

| Calibration STD                                        | Cal Type    | Level | Enabled | Response              | Exp Conc<br>(ng/mL) | RF     |
|--------------------------------------------------------|-------------|-------|---------|-----------------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d           | Calibration | 1     | V       | 805                   | 0.4825              | 0.2743 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d           | Calibration | 2     |         | 2137                  | 1.2100              | 0.2730 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d           | Calibration | 3     | V       | 8996                  | 4.8250              | 0.2709 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d           | Calibration | 4     | V       | <b>16</b> 41 <b>9</b> | 9.6500              | 0.2549 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d           | Calibration | 5     | V       | 36076                 | 19.3000             | 0.2658 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d           | Calibration | 6     |         | 263996                | 96.5000             | 0.4911 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d           | Calibration | 7     |         | 619521                | 193.0000            | 0.7036 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | I, 1 QCs    |       |         | (                     | C                   |        |



 

 Target Compound
 11Cl-PF3OUdS

 Calibration STD
 Cal Type
 Level
 Enabled
 Response
 Exp Conc (ng/mL)
 RF



| Calibration STD                              | Cal Type    | Leve | l Enable       | d Response       | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|------|----------------|------------------|---------------------|-----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1    |                | 3313             | 0.5000              | 0.9614          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2    | ${\bf \nabla}$ | 8002             | 1.2500              | 0.9166          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3    |                | 36310            | 5.0000              | 0.9157          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4    | V              | 70438            | 10.0000             | 0.9021          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5    |                | 159259           | 20.0000             | 0.9409          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6    | V              | 767233           | 100.0000            | 1.0079          |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7    |                | 1 <b>46509</b> 8 | 200.0000            | 1 <b>.0</b> 427 |

PFDoA

Target Compound



MPFDoA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|--------------|----------|---------------------|--------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V            | 34458    | 5.0000              | 6891 <b>.5</b> 417 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V            | 34920    | 5.0000              | 6984.0130          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | $\checkmark$ | 39651    | 5.0000              | 7930.2674          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V            | 39039    | 5.0000              | 7 <b>807.7</b> 489 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |              | 42313    | 5.0000              | 8462.6773          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | $\checkmark$ | 38062    | 5.0000              | 7 <b>6</b> 12.4078 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V            | 35127    | 5.0000              | 7025.4980          |
| Target Compound                              | 10:2 FTS    |       |              |          |                     |                    |

| Calibration STD                              | Cal Туре    | Level | Enabled | Response         | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|---------|------------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 2888             | 0.9640              | 1.4769         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 6090             | 2.4100              | 1 <b>.2345</b> |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 30058            | 9.6400              | 1.5544         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 58852            | 19.2800             | 1 <b>.7070</b> |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 127 <b>760</b>   | 38.5600             | 1.5414         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 593768           | 192.8000            | 1.3649         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 110 <b>47</b> 80 | 385,6000            | 1,3373         |



d-NMeFOSA

| Calibration STD                              | Cal Type    | Level | Enabled | Response                       | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|---------|--------------------------------|---------------------|--------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 15655                          | 5.0000              | 3131.0068          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 15530                          | 5.0000              | 3105.9721          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 17489                          | 5.0000              | 349 <b>7.</b> 8916 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | R       | 16633                          | 5.0000              | 3326.5830          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | M       | 17370                          | 5.0000              | 3473.9223          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | <b>1</b> 7 <b>9</b> 1 <b>0</b> | 5.0000              | <b>3582.08</b> 57  |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | Ø       | 17 <b>097</b>                  | 5.0000              | 3419.3176          |
| Target Compound                              | NMeFOSA     |       |         |                                |                     |                    |

| Calibration STD                              | Cal Type    | Level | Enabled | Response           | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|--------------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 1423               | 1.0000              | 0.4544 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 3272               | 2.5000              | 0.4213 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 14997              | 10.0000             | 0.4288 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 28 <del>9</del> 40 | 20.0000             | 0.4350 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 61210              | 40.0000             | 0.4405 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 327339             | 200.0000            | 0.4569 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 640459             | 400.0000            | 0.4683 |



d7-NMeFOSE

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|--------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 22578          | 5.0000              | 4515.6608          |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ŋ       | 21911          | 5.0000              | 4382.2988          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 23879          | 5.0000              | 4775.8889          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 24166          | 5.0000              | 4833.2870          |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ŋ       | 25512          | 5.0000              | 5102.4001          |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | R       | 23530          | 5.0000              | 4 <b>706.079</b> 7 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | X       | 21 <b>29</b> 4 | 5.0000              | 4258.8303          |
| Target Compound                              | NMeFOSE     |       |         |                |                     |                    |

| Calibration STD                              | СаІ Туре    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 1852     | 1.0000              | 0.4102 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 4738     | 2.5000              | 0.4325 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 23478    | 10.0000             | 0.4916 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | R       | 40688    | 20.0000             | 0.4209 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 86514    | 40.0000             | 0.4239 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 470681   | 200.0000            | 0.5001 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | M       | 902409   | 400.0000            | 0.5297 |



Target Compound

PFDoS

| Calibration STD                              | Cal Type    | Level | Enabled | Response                       | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|--------------------------------|---------------------|--------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V       | 2682                           | 0.9680              | 2.9184 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | Ø       | 5043                           | 2.4200              | 2.3214 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | <b>2</b> 1 <b>7</b> 1 <b>7</b> | 9.6800              | 2.5269 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 41200                          | 19.3600             | 2.4618 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 89140                          | 38.7200             | 2.4720 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 586827                         | 193.6000            | 3.1592 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 1229478                        | 387.2000            | 2.8683 |



Target Compound PFTrDA Exp Conc **Calibration STD** Cal Type Level Enabled Response (ng/mL) RF QQQ1 2201224A GCAL Levelly jemp.xlsx Pace Gull Coast Report#: 220122279 Page 33 of 38



Extracted ISTD

d-NEtFOSA

| Calibration STD                              | Cal Type    | Level | Enabled | Response               | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|---------|------------------------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 11371                  | 5.0000              | 2274.1891         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 11524                  | 5.0000              | 2304.7593         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 12321                  | 5.0000              | <b>2</b> 464.1147 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |         | 11653                  | 5.0000              | 2330.6284         |
| D;\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | <b>1</b> 1963          | 5.0000              | 2392.5542         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 12486                  | 5.0000              | 2497.2609         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | <b>1</b> 1 <b>75</b> 3 | 5.0000              | 2350.6937         |
| Extracted ISTD                               | d9-NEtFOSE  |       |         |                        |                     |                   |

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|--------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 20086    | 5.0000              | 401 <b>7.</b> 1856 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 19255    | 5.0000              | 3850.9595          |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |         | 21385    | 5.0000              | 4276.9459          |

| Target Compound                              | NEtFOSA     |   |   |                |        |                             |
|----------------------------------------------|-------------|---|---|----------------|--------|-----------------------------|
| D;\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7 |   | 19623          | 5.0000 | 3924.5575                   |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6 | V | 21064          | 5.0000 | 4 <b>2</b> 12 <b>.72</b> 07 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5 |   | 22376          | 5.0000 | 447 <b>5.2</b> 077          |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4 | M | 21 <b>7</b> 35 | 5.0000 | 4346.9173                   |
|                                              |             |   |   |                |        |                             |

| Calibration STD                              | Cal Type    | Level | Enabled | Response      | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|---------------|---------------------|--------|
| D;\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | R       | 1 <b>75</b> 8 | 1.0000              | 0.7729 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | 3334          | 2,5000              | 0,5787 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 15632         | 10.0000             | 0.6344 |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 29656         | 20.0000             | 0.6362 |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     |         | 60696         | 40.0000             | 0.6342 |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 329130        | 200.0000            | 0.6590 |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V       | 655477        | 400.0000            | 0.6971 |



### Target Compound

NEtFOSE

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |         | 2070           | 1.0000              | 0.5153         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V       | <b>4</b> 426   | 2.5000              | <b>0.459</b> 7 |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 20873          | 10,0000             | 0.4880         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V       | 3 <b>97</b> 85 | 20.0000             | 0.4576         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 87482          | 40.0000             | 0.4887         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |         | 446219         | 200.0000            | 0.5296         |



### Target Compound

PFTA

|                                              |             |       |         |                | Exp Conc |                |
|----------------------------------------------|-------------|-------|---------|----------------|----------|----------------|
| Calibration STD                              | Cal Type    | Level | Enabled | Response       | (ng/mL)  | RF             |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | Ø       | 2642           | 0.5000   | <b>0.9</b> 414 |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |         | 5 <b>7</b> 69  | 1.2500   | 0.8128         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | V       | 30316          | 5.0000   | 0.9483         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | Ø       | 5750 <b>7</b>  | 10.0000  | 0.9202         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | V       | 1 <b>24987</b> | 20.0000  | 0.9028         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | V       | 630685         | 100.0000 | 0.9358         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |         | 1207136        | 200.0000 | 0.8748         |



### Extracted ISTD

M2PFTA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response        | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|--------------|-----------------|---------------------|-------------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V            | 28064           | 5.0000              | 5612.8401         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V            | 28391           | 5.0000              | 5678.2423         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |              | 31970           | 5.0000              | 6394.0649         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |              | 31 <b>248</b>   | 5.0000              | 6249.5966         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | M            | 34610           | 5.0000              | 6921.9580         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     | $\checkmark$ | 3369 <b>7</b>   | 5.0000              | 6739.4932         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V            | 34498           | 5.0000              | 6899.5699         |
| Extracted ISTD                               | M2PFHxDA    |       |              |                 |                     |                   |
|                                              |             |       |              |                 | Eve Conc            |                   |
| Calibration STD                              | Cal Type    | Level | Enabled      | Response        | (ng/mL)             | RF                |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |              | 28625           | 5.0000              | 5724.9099         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V            | 31530           | 5.0000              | 6305.9402         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | Ŋ            | 35951           | 5.0000              | 7190.1888         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V            | 324 <b>97</b>   | 5.0000              | 6499.3455         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø            | 34999           | 5.0000              | 6999.8577         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |              | 34622           | 5.0000              | 6924.4782         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     | V            | 38621           | 5.0000              | 7 <b>724.2949</b> |
| Target Compound                              | PFHxDA      |       |              |                 |                     |                   |
|                                              |             |       |              |                 |                     |                   |
| Calibration STD                              | Cal Type    | Level | Enabled      | Response        | (ng/mL)             | RF                |
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     |              | 3170            | 1.0000              | 0.5538            |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     | V            | 7060            | 2.5000              | 0.4478            |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     | Ø            | 38039           | 10.0000             | 0.5290            |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     |              | 63255           | 20.0000             | 0.4866            |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | Ø            | 142 <b>337</b>  | 40.0000             | 0.5084            |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |              | 673809          | 200.0000            | 0.4865            |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |              | 1 <b>428247</b> | 400.0000            | 0.4623            |



Target Compound

PFODA

| Calibration STD                              | Cal Type    | Level | Enabled           | Response       | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|-------------------|----------------|---------------------|----------------|
| D:\MassHunter\Data\2201224ACAL\2201224A_02.d | Calibration | 1     | V                 | 3183           | 1.0000              | 0.5559         |
| D:\MassHunter\Data\2201224ACAL\2201224A_03.d | Calibration | 2     |                   | 785 <b>7</b>   | 2.5000              | 0.4984         |
| D:\MassHunter\Data\2201224ACAL\2201224A_04.d | Calibration | 3     |                   | <b>381</b> 14  | 10.0000             | 0.5301         |
| D:\MassHunter\Data\2201224ACAL\2201224A_05.d | Calibration | 4     | V                 | 69952          | 20.0000             | 0.5381         |
| D:\MassHunter\Data\2201224ACAL\2201224A_10.d | Calibration | 5     | $\mathbf{\nabla}$ | 158887         | 40.0000             | 0.5675         |
| D:\MassHunter\Data\2201224ACAL\2201224A_07.d | Calibration | 6     |                   | 74 <b>2849</b> | 200.0000            | 0.5364         |
| D:\MassHunter\Data\2201224ACAL\2201224A_08.d | Calibration | 7     |                   | 1524512        | 400.0000            | <b>0.493</b> 4 |



### **Quantitative Analysis Sample Report**

#### **Batch Data Path** Last Calib Update

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 12/24/2020 15:17

Data File 2201224A\_02.d PFASWiscExpan.m Inj Vol 2 Acq Method 12/24/2020 10:18 Acq Date

Position Vial 1

Samp Name 1201 Dilution Samp Type Calibration Comment MRA,QQQ1;Cal

1



| -                     |                           |               |                 |                   |                        | ISTD/Surr       | Conc                     | Spike          |                  |              |      |
|-----------------------|---------------------------|---------------|-----------------|-------------------|------------------------|-----------------|--------------------------|----------------|------------------|--------------|------|
| Compound              | Response                  | RT            | ISTD            | ISTD Resp         | ISTD RT                | %Rec            | (ng/mL)                  | %Rec           | SNR              | Symm         | MInt |
| M2PFDA                | 159361.226                | 5.186         |                 |                   |                        | 93.13           | 18.6265                  | 93.13          | 25270.65         | 1.35         |      |
| M2PFHxA               | 235532.849                | 3,501         |                 |                   |                        | 88.35           | 3 <b>5.</b> 3410         | 88.35          | 2269.24          | 1.35         |      |
| M2PFOA                | 112127.984                | 4.499         |                 |                   |                        | 88.75           | 17.7493                  | 88.75          | 1608.52          | 1.33         |      |
| M4PFOS                | 45005.060                 | 4.883         |                 |                   |                        | 9 <b>2.</b> 47  | 18.4941                  | 92.47          | 4 <b>197.5</b> 0 | 1.42         |      |
| M3PFBA                | 615 <b>5.6</b> 27         | 0.503         |                 |                   |                        | 0.00            | 4.7903                   | 95.81          | 210.47           | 1.75         |      |
| MPFOA                 | 366.020                   | 4.489         |                 |                   |                        | 0.00            | 1 <b>7.964</b> 8         | 71.86          | 8.09             | 2.38         |      |
| HFPQ-DA               | 563.065                   | 3.694         | <b>M3HFPODA</b> | 2294              | 3.693                  | <b>78.</b> 22   | 1.9279                   | 128.52         | 5.90             | 0.99         |      |
| 4:2 FTS               | 1983.708                  | 3.468         | M2 4:2 FT\$     | 10 <b>66</b> 4    | 3.458                  | 96.30           | 0.4749                   | 101.59         | 15.48            | 1.6 <b>6</b> |      |
| 6:2 FTS               | 3572.988                  | 4.477         | M2 6:2 FTS      | 21929             | 4.477                  | 99.94           | 0.4713                   | 99 <b>.2</b> 1 | 113.15           | 1.80         |      |
| ADONA                 | 8854.450                  | 4.148         | M8PFOA          | 22148             | 4 <b>499</b>           | 105.58          | 0.4541                   | 90.82          | 700.87           | 1.33         |      |
| 8:2 FTS               | 4027.227                  | <b>5</b> .175 | M2 8:2 FTS      | 10142             | 5.175                  | 98.48           | 0.5999                   | 124.97         | 793.50           | 1.86         |      |
| FOSA                  | 4733.837                  | 5.282         | M8FOSA          | 22117             | 5.291                  | 1 <b>00.</b> 52 | 0.4597                   | 91.95          | 398.44           | 1.94         |      |
| 9CI-PF3ONS            | 21623.829                 | 5.069         | M8PFO\$         | 4747              | 4,882                  | 1 <b>00.</b> 74 | 0.4698                   | 93.96          | 1 <b>551,7</b> 4 | 1.45         |      |
| PFDS                  | 8 <b>0</b> 4.617          | 5.494         | M6PFDA          | 30397             | 5.186                  | 98.35           | 0.5013                   | 103.90         | <b>1</b> 59.94   | 1.61         |      |
| 11 <b>CI-</b> PF3OUdS | 4923.900                  | 5.669         | M8PFOS          | 4747              | 4.882                  | 10 <b>0.</b> 74 | 0 <b>.466</b> 8          | 93.37          | 135.63           | 1.88         |      |
| PFHpS                 | 2106.972                  | 4.539         | M8PFOA          | 22148             | 1.199                  | 105.58          | 0.6263                   | 131.85         | 221.37           | 1.23         |      |
| 10:2 FTS              | 2887.929                  | 5.827         | M2 8:2 FTS      | 10142             | 5.175                  | 98.48           | 0.9054                   | 93.93          | 771.02           | 1.36         |      |
| PFNS                  | 706.063                   | 5.194         | M9PFNA          | 29 <b>0</b> 71    | 4.863                  | 109.17          | 0.4399                   | 91.64          | 50.87            | 1.76         |      |
| PFDoS                 | 2682,297                  | 6.179         | M8PFOS          | 4747              | 4.882                  | 1 <b>00.</b> 74 | 1,1426                   | 118.04         | 153.45           | 1.83         |      |
| PFPeS                 | 157 <b>6.059</b>          | 3.657         | M5PFHxA         | 26046             | 3.501                  | 96.96           | 0.5609                   | 119.35         | 33.75            | 1.15         |      |
| PFODA                 | 3182. <b>699</b>          | 8.216         | M2PFHxDA        | 28625             | 7.596                  | 8 <b>4.</b> 60  | 0 <b>.9</b> 929          | 99 <b>.29</b>  | 263.02           | 1.37         |      |
| NETFOSAA              | 2014.055                  | 5.484         | d5-NEtFOSAA     | 12551             | 5.484                  | 99.94           | 0.5723                   | 114.46         | 261.50           | 1.45         |      |
| PFH×DA                | <b>3</b> 17 <b>0.41</b> 7 | 7.589         | M2PFHxDA        | 28625             | 7.596                  | 8 <b>4.</b> 60  | 1.1361                   | 113.61         | 277.18           | 1.77         |      |
| NMeF0\$AA             | 1764.402                  | 5.318         | d3-NMeFO\$AA    | 8663              | 5.317                  | 90.92           | 0.6292                   | 125.84         | 90.46            | 2.12         |      |
| PFBA                  | 416 <b>4.83</b> 7         | 0.505         | MPFBA           | 35115             | 0.511                  | 99.38           | 0.4601                   | 92.02          | 25.35            | 1.66         |      |
| PFBS                  | 1546.060                  | 2.496         | M3PFBS          | 11769             | 2. <b>4</b> 9 <b>4</b> | 99.78           | 0.4265                   | 96.37          | 77.05            | 1.05         |      |
| NMeFOSA               | 1422.680                  | 5.927         | d-NMcFOSA       | 15655             | 5.917                  | 93.12           | 0.9757                   | 97.57          | 55.41            | 1.23         |      |
| PFDA                  | 4390.209                  | 5,187         | M6PFDA          | 30397             | 5.186                  | 98.35           | 0.4789                   | 95.77          | 316.92           | 1.37         |      |
| PFDoA                 | 3312.740                  | 5.818         | MPFDoA          | 34458             | 5.818                  | 91.51           | 0.4646                   | 92.92          | 247.80           | 1.53         |      |
| NETFOSA               | 1757.796                  | 6.227         | d-NEtFOSA       | 1137 <b>1</b>     | 6.216                  | 95.82           | 1.1220                   | 112.20         | 151.18           | 1.66         |      |
| PFHpA                 | 3240.119                  | 1.067         | M4PFHpA         | 3187 <del>4</del> | <b>4.0</b> 67          | 90.32           | 0 <b>.4</b> 976          | 99.52          | 129.88           | 1.53         |      |
| PFHxA                 | 3580.590                  | 3.503         | M5PFHxA         | 26 <b>0</b> 46    | 3.501                  | 96.96           | 0.5210                   | 104.19         | 24.16            | 1.23         |      |
| NMeFOSE               | 1852.448                  | 5.953         | d7-NMeFOSE      | 22578             | 5.943                  | 97.04           | 0.7847                   | 78.47          | 131.42           | 1.62         |      |
| PFI IxS               | 2078.207                  | 4.137         | M3PFI IxS       | 9 <b>965</b>      | 4.136                  | 99.79           | 0.4655                   | 102.08         | 116.26           | 1.34         | m    |
| PFNA                  | 3483.198                  | 4.864         | M9PFNA          | 29071             | 4.863                  | 109.17          | 0.3848                   | 76.96          | 28.45            | 1.35         |      |
| NETFOSE               | 2069.987                  | 6.244         | d9-NEtFOSE      | 20 <b>0</b> 86    | 6.223                  | 9 <b>6.</b> 62  | 0.9354                   | 93.54          | 234.07           | 1.22         |      |
| PFOA                  | 2718.542                  | 4.500         | M8PFOA          | 22148             | 4.499                  | 105.58          | 0.4356                   | 87.11          | 92.94            | 1.32         |      |
| PFOS                  | 1599.558                  | 4.883         | M&PFOS          | 4747              | 4.882                  | 100.74          | 0 <b>.</b> 37 <b>0</b> 0 | 79.95          | <b>47.</b> 34    | 1.65         | m    |
| PFPeA                 | 1968.617                  | 1.637         | M5PFPeA         | 16589             | 1.635                  | 98.66           | 0.5047                   | 100.94         | 60.90            | 1.31         |      |
| PFMPA                 | 3280.348                  | 0.766         | M5PFPeA         | 16 <b>5</b> 89    | 1.635                  | 98.66           | 0.8693                   | 86.93          | 40.36            | 1.08         |      |
| PFTA                  | 2642.079                  | 6.624         | M2PFTA          | 28064             | 6.623                  | 88.30           | 0.5306                   | 106.11         | 166.59           | 1.49         |      |
| PFMBA                 | 3265.677                  | 2.520         | M5PFHxA         | 26 <b>0</b> 46    | 3.501                  | 96.96           | 0.9263                   | 92.63          | 355.41           | 1.32         |      |
| PFTrDA                | 3919.445                  | 6.190         | MPFDoA          | 34458             | 5.818                  | 91.51           | 0.5311                   | 106.22         | 24.07            | 1.83         |      |
| PFEESA                | 7995.925                  | 3.263         | M3PFHxS         | 9965              | 4.136                  | 99.79           | 0.8698                   | 97.73          | 32.41            | 1.27         |      |
| PFUnA                 | 544 <b>0</b> .983         | 5.486         | M7PFUnA         | 50870             | 5.485                  | 96.94           | 0.50 <b>0</b> 4          | 100.07         | 114.10           | <b>2.1</b> 1 |      |
| NFDHA                 | 3255.366                  | 3.382         | M4PFHpA         | 31874             | 4 <b>.0</b> 67         | 90.32           | 1.0367                   | 103.67         | 245.63           | 1.75         |      |





4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS



### ADONA



#### 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA



RM (5.220-5.481 min, 26 scans) (498.0

531.0

٠

aor

637,0

160

rçe (m/

À

irge (m/z

8.0

30.0E



### PFDoS

FOSA

C...It ×10<sup>-3</sup> 3.0) 220 1224A\_02. 5.282 er

2

Sint









400

(111/2)

soc





### M6PFDA



### M7PFUnA



RM (5.209-5.428 min, 21 scans) (505.0

8.0

Counts



M8F0SA

Co.nte

78 0) 220 1224A

끹





#### d-NMeFOSA


5-5.965 min. 21 scans) (613.



# PFHxS

PFDoA

0) 220 2244



# d7-NMeFOSE



nt) (463



PFNA

0) 220 · 224A\_02 4.854 min.

9.0 , 463.0 -> 215 Ratio = 13.1 (58.0

) %)





QUOL CONFCOAST Report#: 220122279

280 590 400 4 0 Mass-to-Charge (m/z)

# **Quantitative Analysis Sample Report**

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

## **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_03.d PFASWiscExpan.m

Inj Vol 2

12/24/2020 15:17

Position Vial 2

Samp Name 1202

Dilution Samp Type Calibration Comment MRA,QQQ1;Cal

ISTD/Surr

1

Conc

Snike



| Compound    | Rosnonse           | DT                     | TSTD        | ISTD Resp      |         | %Rec           | (ng/ml) | %Rec           | SNR             | Symm         | MTet    |
|-------------|--------------------|------------------------|-------------|----------------|---------|----------------|---------|----------------|-----------------|--------------|---------|
| M2PEDA      | 174153 525         | 5 186                  | 1918        | того ксэр      | 1910 KI | 101 78         | 20 3555 | 101 78         | 13487 39        | 1 35         | Pittift |
| M2PFHxA     | 263974.499         | 3 491                  |             |                |         | 99.02          | 39,6086 | 99.02          | 18994.66        | 1.98         |         |
| M2PEOA      | 124308.397         | 4.489                  |             |                |         | 98.39          | 19.6774 | 98.39          | 8155.04         | 1.98         |         |
| M4PEOS      | 44662.050          | 4.883                  |             |                |         | 91.77          | 18.3531 | 91.77          | 4997.23         | 1.48         |         |
| MBPEBA      | 6122.866           | 0.513                  |             |                |         | 0.00           | 4.7648  | 95.30          | 296.59          | 1.18         |         |
| MPEOA       | 599.927            | 4 489                  |             |                |         | 0.00           | 29.4453 | 117.78         | 25.79           | 1.91         |         |
| HEPO-DA     | 1612.749           | 3.694                  | M3HEPODA    | 2693           | 3.683   | 91.84          | 4.7033  | 125.42         | 8.99            | 1.66         |         |
| 4:2 FTS     | 3999.827           | 3.458                  | M2 4:2 FTS  | 10921          | 3.458   | 98.62          | 0.9352  | 79.93          | 93.01           | 1.69         |         |
| 6:2 FTS     | 8384.682           | 4.477                  | M2 6:2 FTS  | 20634          | 4.477   | 94.04          | 1.1753  | 98.77          | 416.76          | 1.39         |         |
| ADONA       | 20356.798          | 4.138                  | M8PEOA      | 21064          | 4.488   | 100.42         | 1.0977  | 87.82          | 1415.93         | 1.81         |         |
| 8:2 FTS     | 7903.821           | 5 175                  | M2 8:2 FTS  | 10234          | 5.175   | 99.38          | 1.1666  | 97.22          | 598.91          | 1.80         |         |
| FOSA        | 10880.915          | 5 282                  | M8FOSA      | 20764          | 5.291   | 94.37          | 1.1256  | 90.05          | 1212.32         | 1.93         |         |
| 9CI-PE3ONS  | 50449.926          | 5.069                  | M8PFOS      | 4489           | 4.882   | 95.25          | 1.1592  | 92.74          | 2249.82         | 1.4 <b>6</b> |         |
| PEDS        | 2136.978           | 5.494                  | M6PEDA      | 32345          | 5,186   | 104.65         | 1.2513  | 103.41         | 1220.64         | 1.65         |         |
| 110-PE3OUdS | 10876.322          | 5 679                  | M8PEOS      | 4489           | 4.882   | 95.25          | 1.0906  | 87.25          | 8552.47         | 1.31         |         |
| PEHpS       | 3915.081           | 4 529                  | M8PEOA      | 21064          | 1.488   | 100.12         | 1.2236  | 102.83         | 331.46          | 1.99         |         |
| 10:2 FTS    | 6089.752           | 5 827                  | M2 8:2 FTS  | 10234          | 5,175   | 99.38          | 1.8920  | 78.51          | 464.82          | 1.52         |         |
| PENS        | 1970.034           | 5.194                  | M9PENA      | 26182          | 4.863   | 98.32          | 1.3627  | 113.55         | 1199.39         | 1.61         |         |
| PEDoS       | 5043.358           | 6.189                  | M8PEOS      | 4489           | 4.882   | 95.25          | 2.2722  | 93.89          | 399.07          | 1.32         |         |
| PFPeS       | 3113.411           | 3.647                  | M5PFHxA     | 25248          | 3.501   | 93.99          | 1.1431  | 96.87          | 151.78          | 1.84         |         |
| PEODA       | 7857.319           | 8.216                  | M2PFHxDA    | 31530          | 7.596   | 93.19          | 2.2254  | 89.01          | 525.21          | 1.53         |         |
| NETFOSAA    | 4015.133           | 5.484                  | d5-NEtFOSAA | 12752          | 5.484   | 101.54         | 1.1230  | 89.84          | 3017.70         | 1.56         |         |
| PFH×DA      | 7059.644           | 7.599                  | M2PFHxDA    | 31530          | 7,596   | 93.19          | 2.2966  | 91.86          | 210.90          | 1.40         |         |
| NMeFOSAA    | 3552.545           | 5.329                  | d3-NMeFOSAA | 7 <b>753</b>   | 5.317   | 81.36          | 1.4156  | 113.25         | 545.18          | 1.40         |         |
| PFBA        | 9321.641           | 0.505                  | MPFBA       | 34626          | 0.511   | 97.99          | 1.0443  | 83.55          | 236.52          | 1.64         |         |
| PFBS        | 331 <b>4.61</b> 3  | 2.485                  | M3PFBS      | 11 <b>497</b>  | 2.494   | 97.46          | 0.9360  | 84.32          | 210.73          | 1.10         |         |
| NMeFOSA     | 3271.537           | 5.927                  | d-NMcFOSA   | 15530          | 5.927   | 92.37          | 2.2617  | 90.47          | 97.74           | 1.49         |         |
| PFDA        | 8850.318           | 5,187                  | M6PFDA      | 32345          | 5.186   | 104.65         | 0.9072  | 72.58          | 84.41           | 1.25         |         |
| PFDoA       | 8002.294           | 5.818                  | MPFDoA      | 34920          | 5.818   | 92.74          | 1.1074  | 88.59          | 812.57          | 1.57         |         |
| NETFOSA     | 3334.393           | 6.227                  | d-NEtFOSA   | 11 <b>52</b> 4 | 6.226   | 97.11          | 2.1000  | 84.00          | 375.23          | 1.82         |         |
| PFHpA       | 770 <b>4.454</b>   | 4.057                  | M4PFHpA     | 34120          | 4.056   | 96.68          | 1.1053  | 88.42          | 183.02          | 2.01         |         |
| PFHxA       | 7412.827           | 3.493                  | M5PFH×A     | 25248          | 3.501   | 93.99          | 1.1127  | 89.01          | 70.22           | 1.81         |         |
| NMeFOSE     | 4738.338           | 5.953                  | d7-NMeFOSE  | 21 <b>9</b> 11 | 5.943   | 9 <b>4.</b> 17 | 2.0682  | 82.73          | 322.30          | 1.78         |         |
| PFLIxS      | 470 <b>5.05</b> 7  | 4.126                  | M3PFI lxS   | 9440           | 4.126   | 94.54          | 1.1125  | 97.58          | 401.97          | 1.91         | m       |
| PFNA        | 8395.133           | 4 <b>.</b> 86 <b>4</b> | M9PFNA      | 26182          | 4.863   | 98.32          | 1.0298  | 82.38          | <b>97.6</b> 7   | 1.30         |         |
| NETFOSE     | 4425.516           | 6.244                  | d9-NEtFOSE  | 19255          | 6.223   | 92.62          | 2.0861  | 83.44          | 256 <b>.6</b> 7 | 1.45         |         |
| PFOA        | 6145.505           | 4.490                  | M8PFOA      | 21 <b>064</b>  | 4.488   | 100.42         | 1.0353  | 82.82          | <b>14</b> 4.39  | 1.93         |         |
| PFOS        | 4831.039           | 4.883                  | M8PFOS      | 4489           | 4.882   | 95.25          | 1.1818  | 101.88         | 18665.21        | 1.29         | m       |
| PFPeA       | 4038.713           | 1.637                  | M5PFPeA     | 16485          | 1.645   | 98.04          | 1.0420  | 83.36          | 73.65           | 1.33         |         |
| PFMPA       | 7941. <b>82</b> 1  | 0.766                  | M5PFPeA     | 16485          | 1.645   | 98.04          | 2.1179  | 84.72          | 121.06          | 1.17         |         |
| PFTA        | 5769.141           | 6.624                  | M2PFTA      | 28391          | 6.623   | 89.33          | 1.1452  | 91.61          | 163.58          | 1.54         |         |
| PFMBA       | 7291.302           | 2.531                  | M5PFHxA     | 25248          | 3.501   | 93.99          | 2.1335  | 85.34          | 467.68          | 1.10         |         |
| PFTrDA      | 9207.209           | 6.201                  | MPFDoA      | 34 <b>9</b> 20 | 5.818   | 92.74          | 1.2311  | 98.49          | 126.94          | 1.39         |         |
| PFEESA      | 18564.303          | 3.253                  | M3PFHxS     | 9440           | 4.126   | 94.54          | 2.1318  | 95.81          | <b>70.1</b> 4   | 1.85         |         |
| PFUnA       | 1 <b>0332.14</b> 6 | 5.486                  | M7PFUnA     | 53105          | 5.485   | 101.20         | 0.9102  | 7 <b>2.</b> 82 | 125.73          | 1.97         |         |
| NFDHA       | 717 <b>3.624</b>   | 3.382                  | M4PFHpA     | 34120          | 4.056   | 96.68          | 2.1341  | 85.36          | 326.20          | 1.57         |         |





4:2 FTS



### **M3HFPODA**



### 6:2 FTS



## ADONA



# 8:2 FTS



### d3-NMeFOSAA





BM (5.220-5.460 min. 24 scens) (498.0

٠

aor

8.0

Co.mls



FOSA

MBM (495

Co..nls

3.0) 220 1224A

a e





# M2PFOA



### M2PFTA







#### M7PFUnA





. (570

550

r<u>se (</u>m/







# **NMeFOSA**



## PFDA



#### d-NMeFOSA







# d-NEtFOSA

PFDoA



# PFHxA



# **NMeFOSE**



# PFHxS



#### d7-NMeFOSE







## **MPFOA**



# **Quantitative Analysis Sample Report**

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

## **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_04.d PFASWiscExpan.m 12/24/2020 10:46

Position Vial 3 Inj Vol 2

12/24/2020 15:17

Samp Name 1203 Dilution Samp Type Calibration

1 Comment MRA,QQQ1;Cal

Conc

Snike

ISTD/Surr



| Compound    | Pernonce   | PT                   | TSTD        | ISTD Rosn     |       | %Rec   | (ng/ml)         | %Rec   | SNR       | Symm | MTet    |
|-------------|------------|----------------------|-------------|---------------|-------|--------|-----------------|--------|-----------|------|---------|
| M2PEDA      | 197085 599 | 5 176                | 1310        | 15110 KC3p    |       | 115 18 | 23 0359         | 115 18 | 491433.61 | 1.82 | Pitting |
| M2PFHxA     | 282277.193 | 3 491                |             |               |       | 105.89 | 42.3549         | 105.89 | 4525.63   | 1.99 |         |
| M2PEOA      | 132986.196 | 4.489                |             |               |       | 105.26 | 21.0510         | 105.26 | 1280.04   | 1.86 |         |
| M4PEOS      | 45467.279  | 4.883                |             |               |       | 93.42  | 18.6840         | 93.42  | 5838.48   | 1.25 |         |
| M3PEBA      | 6725.330   | 0.503                |             |               |       | 0.00   | 5.2336          | 104.67 | 286.96    | 1.72 |         |
| MPEOA       | 321.978    | 4 489                |             |               |       | 0.00   | 15.8032         | 63.21  | 5.56      | 1.77 |         |
| HEPO-DA     | 5798.106   | 3 684                | M3HEPODA    | 2884          | 3,693 | 98.33  | 15.7930         | 105.29 | 347.93    | 2.04 |         |
| 4:2 FTS     | 20087.030  | 3.458                | M2 4:2 FTS  | 11036         | 3.458 | 99.66  | 4.6471          | 99.51  | 64.52     | 1.72 |         |
| 6:2 FTS     | 40016 476  | 4 477                | M2 6:2 FTS  | 77898         | 4 477 | 104 36 | 5 0546          | 106.41 | 365.68    | 1 79 |         |
|             | 99773.110  | 4.138                | M8PEQA      | 21837         | 4.488 | 104.10 | 5.1897          | 103.79 | 18534.50  | 1.73 |         |
| 8:2 FTS     | 40004.596  | <b>5</b> 175         | M2 8:2 FTS  | 10030         | 5.175 | 97.39  | 6.0253          | 125.53 | 3122.66   | 1.43 |         |
| FOSA        | 53818.024  | 5 282                | M8EOSA      | 21519         | 5.281 | 97.81  | 5.3718          | 107.44 | 3957.90   | 1.49 |         |
| 9CI-PE3ONS  | 242741 184 | 5 059                | M8PEOS      | 4439          | 4 882 | 94 20  | 5 6398          | 112.80 | 22705 37  | 2.05 |         |
| PEDS        | 8995 774   | 5 484                |             | 34410         | 5 176 | 111 33 | 4 9512          | 102.62 | 902.43    | 2.00 |         |
| 110-PE3OUds | 51078 393  | 5.669                | MAPEOS      | 4439          | 4 887 | 94 20  | 5 1738          | 103.48 | 3590.64   | 1 43 |         |
| PEHos       | 17217 661  | 4 529                | MSPEOA      | 21837         | 1 188 | 104 10 | 5 1908          | 109.78 | 1662.63   | 1 71 |         |
| 10.2 FTS    | 30058 473  | 5.816                | M2 8-2 FTS  | 10030         | 5 175 | 97.39  | 9 5293          | 98.85  | 2560 11   | 1.61 |         |
| PENS        | 8142 279   | 5 184                | MOPENA      | 27867         | 4 853 | 104.65 | 5 2914          | 110.24 | 1145 16   | 1.01 |         |
| PEDOS       | 21717 089  | 6 179                | MAPEOS      | 4439          | 4 882 | 94.20  | 9 8932          | 102.20 | 417 95    | 1 31 |         |
| PEPes       | 15333 225  | 3.647                | M5PEHYA     | 77253         | 3 490 | 101.45 | 5 2155          | 110.97 | 1740 73   | 1.68 |         |
|             | 38114 426  | 8 206                |             | 35951         | 7 575 | 106.25 | 94673           | 94.67  | 1068.84   | 1.00 |         |
| NETEOSAA    | 19691 615  | 5 474                | d5-NEtEOSAA | 12868         | 5 474 | 102.46 | 5 4576          | 109 15 | 1370.09   | 1 93 |         |
|             | 38038 572  | 7 579                |             | 35951         | 7 575 | 106.25 | 10.8527         | 108 53 | 1417.83   | 1 39 |         |
| NMeEOSAA    | 17335 804  | 5 3 18               | d3-NMeEOSAA | 9187          | 5 317 | 96.36  | 5 8325          | 116 65 | 1701.82   | 1 74 |         |
| PEBA        | 43295 353  | 0.505                | MPERA       | 36315         | 0.511 | 102 77 | 4 6249          | 92 50  | 1533.48   | 1.61 |         |
| PEBS        | 15192 351  | 2 485                | M3PEBS      | 11965         | 2 483 | 101 43 | 4 1221          | 93.16  | 763 79    | 1 10 |         |
| NMcEOSA     | 14997.488  | <b>5</b> 91 <b>7</b> | d-NMcEOSA   | 17489         | 5.917 | 104.03 | 9,2065          | 92.07  | 1092.11   | 1.60 |         |
| PEDA        | 45688.176  | 5 176                | MEPEDA      | 34410         | 5.176 | 111.33 | 4.4023          | 88.05  | 572.31    | 1.78 |         |
| PEDOA       | 36309 622  | 5.818                | MPEDOA      | 39651         | 5.818 | 105 31 | 4 4252          | 88 50  | 1999 16   | 1 25 |         |
| NETEOSA     | 15631 558  | 6 216                | d-NETEOSA   | 12321         | 6 205 | 103 87 | 9 2083          | 97.08  | 727.07    | 1.80 |         |
| PEHDA       | 35971 366  | 4 057                | M4PFHpA     | 37129         | 4 056 | 105.02 | 4 7473          | 94.85  | 1859 77   | 1 90 |         |
| PFHxA       | 36118.606  | 3 493                | M5PEH×A     | 27253         | 3,490 | 101.45 | 5.0225          | 100.45 | 696.93    | 1.82 |         |
| NMeEOSE     | 23477.606  | 5 953                | d7-NMeFOSE  | 23879         | 5.943 | 102.63 | 9.4032          | 94.03  | 2337.66   | 1.43 |         |
| PELIXS      | 20936.543  | 4.126                | M3PELIxS    | 9705          | 4.126 | 97.19  | 4.8150          | 105.59 | 1756.46   | 1.74 | m       |
| PENA        | 37064.128  | 4.853                | M9PENA      | 27867         | 4.853 | 104.65 | 4.2715          | 85.43  | 257.66    | 1.94 |         |
| NETFOSE     | 20872.914  | 6.233                | d9-NEtFOSE  | 21385         | 6.212 | 102.87 | 8.8590          | 88.59  | 1546.96   | 1.35 |         |
| PEOA        | 30967.843  | 4.490                | M8PEOA      | 21837         | 4.488 | 104.10 | 5.0321          | 100.64 | 1412.75   | 1.81 |         |
| PEOS        | 20615.581  | 4.883                | M8PEOS      | 4439          | 4.882 | 94.20  | 5.0994          | 110.19 | 1583.63   | 1.22 | m       |
| PFPeA       | 18316.286  | 1.637                | M5PFPeA     | 17421         | 1.635 | 103.60 | 4 <b>.47</b> 17 | 89.43  | 271.66    | 1.25 |         |
| PEMPA       | 36975.475  | 0.766                | M5PFPeA     | 17 <b>421</b> | 1.635 | 103.60 | 9.3306          | 93.31  | 607.77    | 1.17 |         |
| PETA        | 30316.174  | 6.603                | M2PFTA      | 31970         | 6.613 | 100.59 | 5.3440          | 106.88 | 416.80    | 1.80 |         |
| РЕМВА       | 33516.399  | 2,520                | M5PFH×A     | 27253         | 3,490 | 101.45 | 9.0857          | 90.86  | 3078.36   | 1.26 |         |
| PFTrDA      | 43976.271  | 6.190                | MPFDoA      | 39651         | 5,818 | 105.31 | 5.1784          | 103.57 | 806.30    | 1.22 |         |
| PFEESA      | 87185.849  | 3.253                | M3PFHxS     | 9705          | 4.126 | 97.19  | 9,7384          | 109.42 | 818.18    | 1.79 |         |
| PFUnA       | 54106.294  | 5.486                | M7PFUnA     | 57294         | 5.485 | 109.18 | 4.4179          | 88.36  | 531.29    | 1.40 |         |
| NFDHA       | 34808.906  | 3.382                | M4PFHbA     | 37129         | 4.056 | 105.21 | 9.5160          | 95.16  | 1223.38   | 1.65 |         |
|             |            | 0.000                |             |               |       |        |                 |        | 0         |      |         |





4:2 FTS



## **M3HFPODA**



#### 6:2 FTS



# ADONA



# 8:2 FTS



### d3-NMeFOSAA



#### d5-NEtFOSAA





Y

8,2 6,1 6,6 6,8 Acquisition time (min)

6,2 8,7 6,8 6,6 Acquisition Line (min)

296 ∠o2

Musa-lo-Charge (m/z)

ł



# M2PFTA







#### M7PFUnA





5,4 5,6 5,8 Acquisition Line (min)

450

=0^ - == Musa-lo-Charge (m/z)

5,2

5,2 5,4 5,6 5,8 Acquisition time (min)



# d-NMeFOSA







# NMeFOSE

PFDoA



# PFHxS



# d7-NMeFOSE







# MPFOA



# **Quantitative Analysis Sample Report**

D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin

## Batch Data Path Last Calib Update

# i cano opeare

Data File Acq Method Aco Date

2201224A\_05.d PFASWiscExpan.m

PFASWiscExpan.m 1 12/24/2020 11:00

Position Vial 4 Inj Vol 2

12/24/2020 15:17

Samp Name1204DilutionSamp TypeCalibrationComment

1 MRA,QQQ1;Cal



#### ISTD/Surr Conc Spike %Rec Compound Response RT ISTD ISTD Resp ISTD RT %Rec (nq/mL)SNR Symm MInt 108.50 108.50 M2PFDA 185659.403 5.176 21.7003 7078.17 1.80 107.65 107.65 286983.753 6898.56 2.05 M2PFHxA 3.491 43.0611 4.489 110.52 110.52 270017.28 1.95 M2PFOA 139640.920 22.1044 1.97 M4PFOS 4.873 97.21 19.4423 97.21 5363.24 47312.441 105.11 284.35 1.75 **M3PEBA** 6753.620 0.503 0.00 5.2557 MPFOA 758.596 4 4 9 9 0.00 37,2330 148.93 24.72 1.33 3041 90.08 76.74 1.29 HEPO-DA 10461.153 3 694 M3HEPODA 3.683 103.68 27.0225 3.458 88 80 11657 105.27 8.3024 186.77 1 71 4:2 FTS 37904.549 3.458 M2 4·2 FTS 99.09 9.7643 102.78 6:2 FTS 73397.373 4.477 M2 6:2 FTS 21742 4.477 2245.97 1.39 4.488 9.5099 ADONA 181913.698 4.148 M8PEOA 21728 103.58 95.10 5313.58 1.25 86.82 109.99 8:2 FTS 62497.915 5 175 M2 8:2 FTS 8941 5.175 10.5590 10521.63 1.42 FOSA 97467.690 5.282 M8FOSA 20823 5.281 94.64 10.0539 100.54 89600.79 1.43 41222.30 1.93 9CI-PF3ONS 441127 274 5.059 M8PFOS 4322 4.872 91.72 10.5266 105.27 PFDS 16419.222 5.484 M6PFDA 33380 5.176 108.00 9.3160 96.54 1799.41 1.86 11CI-PF3OUdS 93398.922 5.669 M8PFOS 4322 4.872 91.72 9.7263 97.26 11152.10 1.51 1.188 PFHpS 33810.925 4.529 M8PFOA 21728 103.58 10.2116 107.81 2128.28 1.77 10:2 FTS 58852.255 5.816 M2 8:2 FTS 8941 5.175 86.82 20.9291 108.55 5628.58 1.70 PFNS 13231.758 5.184 M9PFNA 272**63** 4.853 102.38 8.7895 91.56 925.25 1.94 **PFDoS** 41199.537 6.179 M8PEOS 4322 4.872 91.72 19.2769 99.57 2338.27 1.53 PFPeS 28590.845 3.647 M5PFHxA 27970 3.490 104.13 9.4755 100.80 2779.85 1.84 PFODA 69951.794 8.206 M2PFHxDA 32497 7.586 96.04 19.2223 96.11 5398.33 2.07 **NEtFOSAA** 35286.799 5.474 d5-NEtFOSAA 12554 5.474 99.96 10.0244 100.24 4550.42 1.92 **PFHxDA** 63254.761 7.589 M2PFHxDA 32497 7.586 96.04 19.9654 99.83 1094.43 1.24 **NMeFOSAA** 30245.104 5.318 d3-NMeFOSAA 8909 5.317 93.49 10.4880 104.88 697.21 1.57 PFBA 81450.039 0.505 MPFBA 36260 0.511 102.61 8.7138 87.14 1314.41 1.67 PFBS 28732.109 2.485 M3PFBS 11783 2.494 99.89 7.9161 89.45 1694.43 1.15 **NMcFOSA** 28939.995 5.917 d-NMcFOSA 16633 5.917 98.93 18.6803 93.40 674.41 1.76 PFDA 84076.498 5.176 M6PFDA 33380 5.176 108.00 8.3513 83.51 4781.97 1.77 PFDoA 70437.586 5.818 **MPFDoA** 39039 5.818 103.68 8.7193 87.19 2754.61 1.28 **NEtFOSA** 29656.287 6.227 d-NEtFOSA 11653 6.216 98.20 18.4706 92.35 616**.1**2 1.43 66346.257 4.067 M4PFHpA 35500 4.067 100.60 9.1483 91.48 1012.86 1.36 PFHpA PFHxA 63464.729 3.493 M5PFHxA 27**9**70 3.490 104.13 8.5986 85.99 420.34 1.89 NMeFOSE 40687.871 5.954 d7-NMeFOSE 24166 5.943 103.86 16.1027 80.51 1580.24 1.59 **PFI I**xS 39081.732 M3PFI IxS 9093 4.136 91.06 9.5932 105.19 555.36 1.29 4.137 m PENA 72045.013 4.853 M9PFNA 27263 4.853 102.38 8.4870 84.87 1611.02 1.90 NETFOSE 39785.193 6.233 d9-NEtFOSE 21735 6.212 104.55 16.6141 83.07 2342.82 1.65 58940.632 4.490 M8PFOA 21728 4.488 103.58 9.6257 96.26 1581.05 1.93 PFOA PFOS 37896.434 4.873 M8PFOS 4322 4.872 91.72 9.6279 104.03 2020.24 1.91 m **PFPeA** 33740.661 1.637 M5PFPeA 17150 1.635 101.99 8.3673 83.67 191.66 1.38 101.99 PEMPA 68183.412 0.766 M5PFPeA 17150 1.635 17.4771 87.39 1105.44 1.17 PFTA 57506.646 6.614 M2PFTA 31Z48 6.613 98.32 10.3714 103.71 2731.49 1.61 PFMBA 62043.056 2.531 M5PFHxA 27970 3.490 104.13 16.3872 81.94 2723.67 1.07 98.66 **PFTrDA** 82491.336 6.190 **MPFDoA** 39039 5.818 103.68 9.8662 956.43 1.49 PFEESA 165136.501 3.253 **M3PFHxS** 9093 4.136 91.06 19.6873 110.60 4621.97 1.72 **PFUnA** 101717.648 5.486 M7PFUnA 55933 5.485 106.59 8.5076 85.08 INF 1.37 NFDHA 38493.504 3.393 M4PFHpA 35500 4.**0**67 100.60 11.0062 55.03 6720.67 1.60





4:2 FTS



### **M3HFPODA**





# ADONA



# 8:2 FTS

| - VIRM (527.0 -> 507.0) 220 224/_05.d                  | 527.0 - 507.0 , 527.0 - 81.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - MBM (5.102-5.310 min, 20 scans) (527.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| amplification 50,000,200,200,200,200,200,200,200,200,2 | 2 × 10 <sup>-1</sup> (- × 0.0 - × 1.0)<br>2 × 10 <sup>-1</sup> (- × 0.0 - × 1.0)<br>2 × 10 <sup>-1</sup> (- × 0.0 - × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0 - × 0.0)<br>1 × 0 - × 0.0 - × 0.0)<br>1 × 0 - × 0.0 - × 0.0 - × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0 - × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0 - × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0 - × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0 - × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0) (- × 0.0) (- × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0)<br>2 × 10 <sup>-1</sup> (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × 0.0) (- × | = # 10 3 0 2 3 0 m , 20 8 m (2 2 2<br>= # 10 3 1<br>= |  |  |  |  |
| 4/8 6 5/2 5/4 5/6                                      | 418 5 512 514 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 200 300 400 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                        | Acq.isition Time (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mass-to-Charge (m/z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

### d3-NMeFOSAA



#### d5-NEtFOSAA



9-5.439 min. 23 scans) (498.0

Sund.

8.0



FOSA

Co..nle ×10 ×10 <sup>4</sup>

Sint









### M2PFTA



harge (m/z





0.0 -> ~10 4 1.75 5 1.25

0.75 0.5 0.25

5,2

jai na

M7PFUnA

Couns :

×10 = 1.75= 1.5= 1.25=

0.75-0.5-0.25-0-0-

0. 0.0

25.01.22012244\_05

5,2 5,4 5,6 5,8 Acquisition time (min)

5.082

инаа-to-Charge (m/z)

500 A 550

Viusa-liz-Charije (m/z)

MBM (5.425-5.674 min. 24 scans) (570.0...

450

IHM (5.4 ×10 3-3,5-2,5-2,5-1,5-1,5-1,5-

0,5-

202

5,4 5,6 5,8 Acquisition Line (min)



5,4 5,6 5,8 Acquisition Line (min) 450

500 550 Musa-lo-Charge (m/z)

5,2

5,2 5,4 5,6 5,8 Acquisition time (min) (S13 C.\*\* ) 22



**PFHxDA** 

201224A\_05.c







# PFHxS

**PFDoA** 



# d7-NMeFOSE









# **Quantitative Analysis Sample Report**

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

## **Batch Data Path** Last Calib Update

### Data File Acq Method Acq Date

PFASWiscExpan.m

12/24/2020 11:29

2201224A\_07.d



Position Vial 6 Inj Vol 2

12/24/2020 15:17

Samp Name 1206 Dilution Samp Type Calibration

1 Comment MRA,QQQ1;Cal



# Quantitation Results

| -             |                             |                |                  |                |                | ISTD/Surr       | Conc                      | Spike          |                             |              |      |
|---------------|-----------------------------|----------------|------------------|----------------|----------------|-----------------|---------------------------|----------------|-----------------------------|--------------|------|
| Compound      | Response                    | RT             | ISTD             | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)                   | %Rec           | SNR                         | Symm         | MInt |
| M2PFDA        | 163894.129                  | 5.176          |                  |                |                | 95.78           | 19.1564                   | 95.78          | 154 <b>7</b> 9.90           | 2.00         |      |
| M2PFHxA       | 274715.837                  | 3.491          |                  |                |                | 103.05          | 41.2203                   | 103.05         | 2 <b>7</b> 12. <b>1</b> 9   | 1.46         |      |
| M2PFOA        | 129923.406                  | 4.489          |                  |                |                | 102.83          | 20.5662                   | 102.83         | 94 <b>4</b> 9. <b>5</b> 6   | 1.64         |      |
| M4PFOS        | 55367.287                   | 4.873          |                  |                |                | 113.76          | 22.7523                   | 113 <b>.76</b> | 9 <b>8</b> 30. <b>0</b> 6   | 2.00         |      |
| M3PFBA        | 6563.410                    | 0.513          |                  |                |                | 0.00            | 5.1076                    | 102.15         | 133. <b>0</b> 9             | 1.25         |      |
| MP <b>FOA</b> | 538.433                     | 4.489          |                  |                |                | 0.00            | 26 <b>.4</b> 271          | 105.71         | 52.14                       | 2.85         |      |
| HFPO-DA       | 1192 <b>89.330</b>          | 3.684          | M3HFPODA         | 3118           | 3.683          | 106.31          | 300.5248                  | 100.17         | 1610.38                     | 1.49         |      |
| 4;2 FTS       | 376140.347                  | 3.458          | M2 4:2 FT\$      | 10638          | 3.458          | 96.07           | 9 <b>0.</b> 2752          | 96.55          | 6671.68                     | 1.33         |      |
| 6:2 FTS       | 693553.464                  | 4.467          | M2 6:2 FTS       | 21132          | 4. <b>4</b> 66 | 96.31           | 94 <b>.925</b> 0          | 99.92          | 7781.23                     | 1.94         |      |
| ADONA         | 1796086.156                 | 4.138          | M8PFOA           | 20319          | 4. <b>4</b> 88 | 9 <b>6.</b> 87  | 100.4052                  | 100.41         | 12 <b>72</b> 59. <b>1</b> 1 | 1.52         |      |
| 8:2 FTS       | 714215.1 <b>76</b>          | <b>5</b> .175  | M2 8:2 FTS       | 11282          | 5.175          | 109.55          | 9 <b>5.630</b> 7          | 99.62          | 407349.55                   | 1.58         |      |
| FOSA          | 1089937.587                 | 5.282          | M8FOSA           | 24116          | 5.281          | 109.61          | 97.0775                   | 97.08          | 10931.81                    | 1.84         |      |
| 9CI-PF3ONS    | 4649179.683                 | 5.069          | M8PFO\$          | 4797           | 4,872          | 101.8 <b>0</b>  | 99.9551                   | 99.96          | 100066.87                   | 1.29         |      |
| PFDS          | 263995.863                  | 5.494          | M6PFDA           | 27852          | 5.186          | 9 <b>0.</b> 11  | 179.5145                  | 186.03         | 284359.69                   | 1.39         |      |
| 11CI-PF3OUdS  | 1068781.090                 | 5.679          | M8PFOS           | 4797           | 4.872          | 101 <b>.80</b>  | 100.2759                  | 100.28         | 64210.23                    | 1.32         |      |
| PFHpS         | 109017.238                  | 4.529          | M8PFOA           | 20319          | 1.188          | 96.87           | 132.5252                  | 139 <b>.50</b> | 336 <b>15</b> .81           | 1.52         |      |
| 10:2 FTS      | 593767.736                  | 5.827          | M2 8:2 FTS       | 11282          | 5.175          | 109.55          | <b>167.</b> 3456          | 86.80          | <b>90</b> 629. <b>1</b> 1   | 1.57         |      |
| PFNS          | 237234.038                  | 5.194          | M9PFNA           | 24 <b>79</b> 4 | 4.853          | 93.11           | 173.2813                  | 180.50         | 344790.21                   | 1.22         |      |
| PFDoS         | 586827.026                  | <b>6.18</b> 9  | M8PFOS           | 4797           | 4.872          | 101.8 <b>0</b>  | 247 3761                  | 127.78         | 15570.58                    | 1.62         |      |
| PFPeS         | 333326.049                  | 3.647          | M5PFHxA          | 27313          | 3.490          | 101.68          | 113.1313                  | 120.35         | 2867.58                     | 1.29         |      |
| PFODA         | 742848.613                  | 8.216          | M2PFHxDA         | 34622          | 7.617          | 102.33          | 191.5975                  | 95.80          | 6822.86                     | 1 <b>.94</b> |      |
| NEtFOSAA      | 347583.836                  | 5.484          | d5-NEtFOSAA      | 11903          | 5.474          | 94.78           | 104.1480                  | 104.15         | 1549.62                     | 1.42         |      |
| PFH×DA        | 673808.888                  | 7.610          | M2PFHxDA         | 34622          | 7.617          | 102.33          | 199.6205                  | 99.81          | 23006.21                    | 1.44         |      |
| NMeF0\$AA     | 350052.230                  | 5.318          | d3-NMeFOSAA      | 10740          | 5.317          | 112.72          | 100.6867                  | 100.69         | 37489.71                    | 2.01         |      |
| PFBA          | 883327.486                  | 0.505          | MPFBA            | 36075          | 0.511          | 102.09          | 94.9856                   | 94 <b>.99</b>  | 27480.12                    | 1.69         |      |
| PFBS          | 317 <b>7</b> 52.5 <b>74</b> | 2 <u>.</u> 475 | M3PFBS           | 11878          | 2. <b>47</b> 3 | 10 <b>0.70</b>  | 86.8429                   | 98.13          | 15583.32                    | 1.10         |      |
| NMeFOSA       | 327338.974                  | 5.928          | d-NMcFOSA        | 17 <b>9</b> 10 | 5.927          | 106.53          | 196.2208                  | 98.11          | 554039.66                   | 1.60         |      |
| PFDA          | 846495.230                  | 5.176          | M6PFDA           | 27852          | 5.186          | 90.11           | 100.7694                  | 100.77         | 2998.05                     | 2.00         |      |
| PFDoA         | 767232.742                  | 5.818          | MPFDoA           | 38062          | 5.828          | 101.09          | 9 <b>7.4112</b>           | 97.41          | 85357.25                    | 1.87         |      |
| NETFOSA       | 329129.876                  | 6.237          | d-NEtFOSA        | 12486          | 6.226          | 105.22          | <b>191.31</b> 10          | 95 <b>.66</b>  | 1396.25                     | 1.37         |      |
| PFHpA         | 701900.526                  | 1.057          | M4P <b>FH</b> pA | 35748          | 4.056          | 101.30          | 96.1097                   | 96.11          | 21328.86                    | 1.72         |      |
| PFHxA         | 678881.772                  | 3.493          | M5PFHxA          | 27313          | 3.490          | 101.68          | 94.1953                   | 94.20          | 37399.63                    | 1.36         |      |
| NMeFOSE       | 470680.566                  | 5.964          | d7-NMeFOSE       | 23530          | 5. <b>95</b> 3 | 101.13          | <b>191.313</b> 0          | 95.66          | 12614.68                    | 1.43         |      |
| PFLIxS        | 429403.475                  | 4.126          | M3PFI IxS        | 10536          | 4.126          | 105.51          | 90.9629                   | 99.74          | 13095.09                    | 1.58         | m    |
| PFNA          | 727157.778                  | 4.853          | M9PFNA           | 24794          | 4.853          | 93.11           | 94 <b>.</b> 19 <b>0</b> 1 | 94 <b>.</b> 19 | 216 <b>23.6</b> 7           | 1.85         |      |
| NETFOSE       | 446219.235                  | 6.244          | d9-NEtFOSE       | 21064          | 6.223          | 101.32          | <b>1</b> 92 <b>.</b> 2743 | 96.14          | 237160.12                   | 1.63         |      |
| PFOA          | 634692.290                  | 4.490          | M8PFOA           | 20319          | 4.488          | 9 <b>6.</b> 87  | 110.8409                  | 110.84         | 34897.69                    | 1.58         |      |
| PFOS          | 443085.729                  | 4.873          | M&PFOS           | 4797           | 4.872          | 101.80          | 101.4197                  | 109.58         | 18126.14                    | 1.94         | m    |
| PFPeA         | 385328.190                  | 1.637          | M5PFPeA          | 17046          | 1.635          | 101.37          | 96.1417                   | 96.14          | 2104.63                     | 1.23         |      |
| PFMPA         | 742898.114                  | 0.766          | M5PFPeA          | 17 <b>0</b> 46 | 1.635          | 101.37          | 191.5895                  | 95.79          | 12754.16                    | 1.17         |      |
| PFTA          | 630685.250                  | 6.635          | M2PFTA           | 33697          | 6.634          | 10 <b>6.</b> 02 | 105.4770                  | 105.48         | 59776.11                    | 1.26         |      |
| PFMBA         | 687525.863                  | 2.520          | M5PFHxA          | 27313          | 3.490          | 101.68          | 185.9688                  | 92.98          | 46271.05                    | 1.08         |      |
| PFTrDA        | 814485.346                  | 6.201          | MPFDoA           | 38062          | 5.828          | 101.09          | 99.9143                   | 99.91          | 8623.42                     | 1.57         |      |
| PFEEŞA        | 1721105.007                 | 3.253          | M3PFHxS          | 10536          | 4.1 <b>26</b>  | 105.51          | 177.0761                  | 99.48          | 72282.80                    | 1.42         |      |
| PFUnA         | 1014718.009                 | 5.486          | M7PFUnA          | 50272          | 5.485          | 95 <b>.80</b>   | 94 <b>.42</b> 71          | 94.43          | 24766.76                    | 1.94         |      |
| NFDHA         | 68317 <b>1</b> .736         | 3.382          | M4P <b>FH</b> pA | 35748          | 4.056          | 101.30          | <b>193.9</b> 770          | 96.99          | 86514.05                    | 1.27         |      |





4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS



# ADONA





#### d3-NMeFOSAA



#### d5-NEtFOSAA



BM (5.220-5.470 min. 25 scens) (498.0



FOSA MBM (495

.0) 220 1224A\_( 5.282 min.

6,2 8,7 6,8 6,6 Acquisition Line (min)

296 ∠o2

Musa-lo-Charge (m/z)

ł

8,2 6,1 6,6 6,8 Acquisition time (min)

Y


### M2PFTA







# M7PFUnA









# PFHxA





# PFHxS



# d7-NMeFOSE





Pace Guir Coast Repont 220122279



6

280 590 400 4'0 Musa-to-Charge (m/z)

4.2 4.4 4.6 4.8 Acquisition Time (min)

4

4.2 4.4 4.6 4.8 Acquisition Time (min)

4

# Quantitative Analysis Sample Report

# **Batch Data Path** Last Calib Update

Data File Acq Method Acc Date

## 2201224A\_08.d PFASWiscExpan.m

Position Vial 7 Inj Vol 2

12/24/2020 15:17

Samp Name 1207 Samp Type Calibration

D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin

Dilution Comment

1 MRA,QQQ1;Cal

Conc

Spike



#### ISTD/Surr %Rec Symm MInt Compound Response RT ISTD ISTD Resp ISTD RT %Rec (nq/mL)SNR 6603.43 M2PFDA 144209.311 5.176 84.28 16.8556 84.28 1.85 257494.076 96.59 38.6362 96.59 22415.82 1.43 M2PFH<sub>x</sub>A 3.491 6969.93 4.489 94.68 1.60 M2PFOA 119630.674 94.68 18.9369 5087.11 1.94 M4PFOS 60758.135 4.873 124.84 24.9676 124.84 97.56 235.73 1.50 6268,494 0.503 0.00 4.8781 M3PEBA MPFOA 366.494 4 4 8 9 0.00 17.9881 71.95 18.36 1.77 3257 590.0167 98.34 INF HEPO-DA 244642.805 3 684 M3HEPODA 3.683 111.05 1.42 3.458 101 01 INF 1 29 9337 84.31 188.8961 4:2 FTS 690741.474 3.458 M2 4·2 FTS 1.91 4.466 86.92 6:2 FTS 1203653.539 4.467 M2 6:2 FTS 21080 96.07 165.1474 11351.37 4.488 80.16 34437.63 ADONA 3428204.724 4.138 M8PEOA 16815 231.5784 115.79 1.40 92.22 156052.56 8:2 FTS 1255666.109 5.175 M2 8:2 FTS 10712 5.175 104.02 177.0708 1.43 FOSA 2153765.492 5.282 M8FOSA 22972 5.281 104.41 201.3796 100.69 34948.67 1.62 2.03 9CI-PF3ONS 8749125.353 5.059 M8PFOS 5535 4.872 117.46 163.0257 81.51 178673.51 PFDS 619520.637 5.494 M6PFDA 22810 5.176 73.80 514.3875 266.52 32448.06 1.23 11CI-PF3OUdS 87.97 2163719.429 5.669 M8PFOS 5535 4.872 117.46 175.9428 7959.91 1.98 1.188 178.07 PFHpS 861111.737 4.529 M8PFOA 16815 80.16 338.3328 37977.06 1.18 10:2 FTS 1104779.737 5.827 M2 8:2 FTS 10712 5.175 104.02 327.9278 85.04 108421.65 1.41 PFNS 587312.808 5.184 M9PFNA 22008 4.853 82.65 483.2840 251.71 72674.70 1.83 **PFDoS** 1229478.197 6.189 M8PEOS 5535 4,872 117.46 449.1911 116.01 10941.41 1.24 PFPeS 696240.080 3.647 M5PFHxA 24498 3.490 91.20 263.4563 140.14 40003.54 1.24 PFODA 1524511.751 8.216 M2PFHxDA 38621 7.596 114.15 352.4914 88.12 65775.12 1.64 **NEtFOSAA** 6**0**0113.**4**40 5.474 d5-NEtFOSAA 11417 5.474 90.91 187.4669 93.73 2925.92 2.13 **PFHxDA** 1428247.134 7.599 M2PFHxDA 38621 7.596 114.15 379.3150 94.83 16411.43 1.42 **NMeFOSAA** 681512.447 5.318 d3-NMeFOSAA 10546 5.317 110.68 199.6326 99.82 46404.22 1.88 PFBA 1692680.580 0.505 MPFBA 32375 0.501 91.62 202.8180 101.41 47159.99 1.38 PFBS 586216.162 2.475 M3PFBS 10684 2.452 90.58 178.1195 100.63 552.29 0.96 **NMcFOSA** 640458.902 5.928 d-NMcFOSA 17097 5.927 101.69 402.1936 100.55 3070.71 1.41 PFDA 1542792.741 5,176 M6PFDA 22810 5.176 73.80 224.2560 112.13 55815.37 1.84 PFDoA 1465098.246 5.818 MPFDoA 35127 5.818 93.29 201.5549 100.78 44158.70 1.59 **NEtFOSA** 655477.012 6.227 d-NEtFOSA 11753 6.216 99.04 404.7605 101.19 5850.96 1.63 1389123.925 4.057 M4PFHpA 33629 4.056 95.29 202.1969 101.10 3387.40 1.51 PFHpA PFHxA 1313898.674 3.493 M5PFHxA 24498 3.490 91.20 203.2512 101.63 20784.88 1.33 NMeFOSE 902409.365 5.964 d7-NMeFOSE 21294 5.943 91.52 405.3132 101.33 INF 1.25 **PFI I**xS 853053.364 M3PFI IxS 11701 4.126 117.18 162.7163 89.21 342171.63 1.40 4.126 m PENA 1393233.233 4.853 M9PFNA 22008 4.853 82.65 203.3100 101.65 17889.08 1.84 NETFOSE 6.244 6.223 94.39 404.5150 101.13 77044.72 1.27 874560.065 d9-NEtFOSE 19623 4.490 M8PFOA 16815 4.488 80.16 249.9497 124.97 5940.99 1.56 PFOA 1184441.681 PFOS 910615.064 4.873 M8PFOS 5535 4.872 117.46 180.6475 97.59 6130.21 1.91 m **PFPeA** 746852.098 1.627 M5PFPeA 15700 1.624 93.37 202.3119 101.16 5564.92 1.18 PEMPA 1445519.861 0.755M5PFPeA 15700 1.624 93.37 404.7363 101.18 6728.58 1.30 PFTA 1207135.881 6.624 M2PFTA 34498 6.623 108.54 197.1997 98.60 82948.51 1.27 101.99 PFMBA 1352794.610 2.500 M5PFH<sub>x</sub>A 24498 3.490 91.20 407.9613 41964.94 1.24 93.29 **PFTrDA** 1416994.519 6.201 **MPFDoA** 35127 5.818 188.3464 94.17 3428.71 1.21 PFEESA 3366210.725 3.253 **M3PFHxS** 11701 4.126 117.18 311.8532 87.60 154592.25 1.25 **PFUnA** 1798824.837 5.486 M7PFUnA 41440 5.485 78.97 203.0686 101.53 64880.57 1.66**NFDHA** 1338181.204 3.372 M4PFHpA 33629 4.056 95.29 403.9028 100.98 122605.70 1.88





4:2 FTS



# **M3HFPODA**



# 6:2 FTS



# ADONA



# 8:2 FTS

| - VIRM (627.0 → 607.0) 220 224/_08.d<br>= x10 <sup>-1</sup> + / 1 mir .<br>3.5 + / 1 mir .<br>2.5 + / 1 = / 1 mir .<br>0.5 + / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = / 1 = | 122/00 - y0/.0., 527/0 ≠ 1.0<br>2 ×10 <sup>-1</sup> = Reto = 17.0 ( 10.2 %)<br>C 3.6<br>2.5<br> | - VBM (G. 102-G.365 m1, 26 scans) (527C<br>∰ x10 '-<br>G - 307.0<br>- 4<br>- 10.0<br>- 4<br>- 10.0<br><br> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 4.8 5 5.2 5.4 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8 5 6.2 5.4 5.6                                                                               | 100 200 300 400 500                                                                                        |
| Acquisition Time (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acquisition Time (min)                                                                          | Mass-to-Charge (m/z)                                                                                       |

## d3-NMeFOSAA



### d5-NEtFOSAA





6,2 8,7 6,8 6,6 Acquisition Line (min)

ł

8,2 6,1 6,6 6,8 Acquisition time (min)

0.5-

Ţ

650.0

296 ∠o2 Musa-lo-Charge (m/z)



# M2PFOA



### M2PFTA









# M7PFUnA



BM (5.219-5.480 min. 25 scens) (505.



M8F0SA



e 6,2 6,4 Acquisition Line (min)

5,8

6 8,2 6,4 Acquisition time (min)

5,8

520 100 500

Viusa-lo-Charge (m/z)

A.







Mas

# d7-NMeFOSE



5.053 min. 26 r

nt) (463

419.0



PFNA

0) 220 224/ 08

9.0 --- 33.0 \*- 10

ato = 16.0 (

끋



Musa-to-Charge (m/z)

# **Quantitative Analysis Sample Report**

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

# **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_10.d PFASWiscExpan.m

12/24/2020 12:22

Position Vial 5 Inj Vol 2

12/24/2020 15:17

Samp Name 1205 Dilution Samp Type Calibration

1 Comment MRA,QQQ1;Cal



# Quantitation Results

| -            |                     |               |                  |                       |                | ISTD/Surr       | Conc                      | Spike             |                           |              |      |
|--------------|---------------------|---------------|------------------|-----------------------|----------------|-----------------|---------------------------|-------------------|---------------------------|--------------|------|
| Compound     | Response            | RT            | ISTD             | ISTD Resp             | ISTD RT        | %Rec            | (ng/mL)                   | %Rec              | SNR                       | Symm         | MInt |
| M2PFDA       | 173420.229          | 5.176         |                  |                       |                | 101.35          | 20.2698                   | 101.35            | 2397.05                   | 1.77         |      |
| M2PFH×A      | 265102.435          | 3.491         |                  |                       |                | 99.44           | 39 <b>.7</b> 779          | 99.44             | 4016.47                   | 1.38         |      |
| M2PFOA       | 125808.965          | 4.489         |                  |                       |                | 99.57           | <b>19.914</b> 9           | 99 <b>.57</b>     | 12809.95                  | 1.39         |      |
| M4PFOS       | 42115.399           | 4.873         |                  |                       |                | 86.53           | 17 <b>.</b> 30 <b>6</b> 6 | 86.53             | 3204.70                   | 1.78         |      |
| M3PFBA       | 6386.260            | 0.513         |                  |                       |                | 0.00            | 4.9698                    | 99.40             | 214.63                    | 1.16         |      |
| MPFOA        | 614.048             | 4.489         |                  |                       |                | 0.00            | 30.1384                   | 120.55            | 67.19                     | 1.43         |      |
| HFPO-DA      | 24194.377           | 3.684         | <b>M3HFPODA</b>  | 3243                  | 3.683          | 110.58          | 58.5964                   | 97.66             | INF                       | 1.40         |      |
| 4;2 FTS      | 86974.133           | 3.448         | M2 4:2 FTS       | 13263                 | 3.458          | 1 <b>19.</b> 77 | 16.7431                   | 88.12             | 204.12                    | 2.00         |      |
| 6:2 FTS      | 160 <b>22</b> 4.343 | 4.467         | M2 6:2 FTS       | <b>2</b> 417 <b>7</b> | 4.466          | 110.19          | 19.1676                   | 100.88            | 475 <b>1.</b> 42          | 1.68         |      |
| ADONA        | 366936.220          | 4.138         | M8PFOA           | 22924                 | 4. <b>4</b> 88 | 109.29          | 18.1813                   | 90.91             | 18562.63                  | 1.27         |      |
| 8:2 FTS      | 144147.125          | 5.175         | M2 8:2 FTS       | 10748                 | 5.175          | 10 <b>4.</b> 36 | 20.2599                   | 105.52            | 16708.75                  | 1.36         |      |
| FOSA         | 209221.881          | 5.282         | M8FOSA           | 21 <b>70</b> 4        | 5.281          | 98.65           | 20.7054                   | 103.53            | 200773.44                 | 1.52         |      |
| 9CI-PF3ONS   | 894234.049          | 5.059         | M8PFOS           | 4656                  | 4.872          | 98.81           | 19.8070                   | 99.03             | 18158.28                  | 1.91         |      |
| PFDS         | 36075.803           | 5.484         | M6PFDA           | 35160                 | 5.176          | 113.76          | 19.4324                   | 100.69            | 548.00                    | 2.04         |      |
| 11CI-PF3OUdS | 193707.899          | 5.669         | M8PFOS           | 4 <del>6</del> 56     | 4.872          | 98.81           | 18.7238                   | 93.62             | 12996.13                  | 1.85         |      |
| PFHpS        | 61158.751           | 4.529         | M8PFOA           | 22921                 | 1.188          | 109.29          | 18.5116                   | 97.13             | 2331.20                   | 1.30         |      |
| 10:2 FTS     | 127760.358          | 5.827         | M2 8:2 FTS       | 10748                 | 5.175          | 10 <b>4.</b> 36 | 3 <b>7.79</b> 70          | <del>9</del> 8.02 | 26864.33                  | 1.27         |      |
| PENS         | 31420.839           | 5.184         | M9PFNA           | 29221                 | 4.853          | 109.73          | 19.4732                   | 101.42            | 2 <b>325.7</b> 4          | 1.83         |      |
| PFDoS        | 89139.834           | 6.189         | M8PFOS           | 4656                  | 4.872          | 98.81           | 38.7131                   | 99.98             | 3441.86                   | 1.25         |      |
| PFPeS        | 59714.694           | 3.637         | M5PFHxA          | 29707                 | 3.490          | 110.59          | 18 <b>.63</b> 34          | 99.11             | 1555.02                   | 2.05         |      |
| PFODA        | 158887.410          | 8.216         | M2PFHxDA         | 34999                 | 7.596          | 103.44          | 40.53 <b>94</b>           | 101.35            | 8259.07                   | 1.62         |      |
| NEtFOSAA     | 77292.466           | 5.47 <b>4</b> | d5-NEtFOSAA      | 13866                 | 5.474          | 1 <b>10.4</b> 1 | 19.8795                   | 99.40             | 6084.87                   | 2.06         |      |
| PFH×DA       | 142337.192          | 7.599         | M2PFHxDA         | 34999                 | 7.596          | 103.44          | 41 <b>.714</b> 3          | 104.29            | 3283.40                   | 1.46         |      |
| NMeFOSAA     | 69827.229           | 5.318         | d3-NMeFOSAA      | 10 <b>90</b> 7        | 5.317          | 1 <b>14.</b> 46 | 1 <b>9.7</b> 778          | 98.89             | 3542.46                   | 1.80         |      |
| PFBA         | 166397.689          | 0.505         | MPFBA            | 36586                 | 0.511          | 103.54          | 17 <b>.6</b> 432          | 88.22             | 4925.54                   | 1.58         |      |
| PFBS         | 61418.812           | 2.465         | M3PFBS           | 12994                 | 2. <b>47</b> 3 | 1 <b>10.</b> 16 | 1 <b>5.</b> 3447          | 86.69             | 3 <b>17</b> 9.87          | 1.10         |      |
| NMeFOSA      | 612 <b>09.7</b> 78  | 5.928         | d-NMcFOSA        | 17370                 | 5.917          | 103.32          | 37.8342                   | 94.59             | 4977.65                   | 1.31         |      |
| PFDA         | 181850.151          | 5,176         | M6PFDA           | 35160                 | 5 176          | 113.76          | 17.1485                   | 85.74             | 2997.04                   | 1.80         |      |
| PFDoA        | 159258.506          | 5.818         | MPFDoA           | 42313                 | 5.818          | 112.38          | 18.1886                   | 90.94             | 1405.63                   | 1.43         |      |
| NETFOSA      | 60696.478           | 6.227         | d-NEtFOSA        | 11963                 | 6.21 <b>6</b>  | 100.80          | 36.8246                   | 92.06             | 1348.39                   | 1.62         |      |
| PFHpA        | 143370.649          | 1.057         | M4PF <b>H</b> pA | 39028                 | 4.056          | 11 <b>0.59</b>  | 17 <b>.98</b> 19          | 89.91             | 10971.52                  | 1.37         |      |
| PFHxA        | 134948.540          | 3.493         | M5PFH×A          | 29707                 | 3.490          | 11 <b>0.59</b>  | 17.2148                   | 86.07             | 2361.47                   | 1.28         |      |
| NMeFOSE      | 86513.759           | 5.953         | d7-NMeFOSE       | 25512                 | 5. <b>94</b> 3 | 109.65          | 32 <b>.43</b> 31          | 81.08             | 4333.09                   | 1.69         |      |
| PFLIxS       | 81059.438           | 4.126         | M3PFI IxS        | 9459                  | 4.126          | 94.73           | 19.1269                   | 104.86            | 3363.98                   | 1.27         | m    |
| PFNA         | 153813.490          | 4.853         | M9PFNA           | 29221                 | 4.853          | 109.73          | 16.9050                   | 84.53             | 1153.88                   | 1.72         |      |
| NETFOSE      | 87481.606           | 6.244         | d9-NEtFOSE       | 22376                 | 6.223          | 107.63          | 35.4845                   | 88.71             | 796.81                    | 1.31         |      |
| PFOA         | 130 <b>461</b> .801 | 4.490         | M8PFOA           | 22 <b>924</b>         | 4.488          | 109.29          | 20.1942                   | 100.97            | 1069.46                   | 1.37         |      |
| PFOS         | 77945.673           | 4.873         | M8PFOS           | 4656                  | 4.872          | 98.81           | 18.3808                   | 99.30             | 10868.35                  | 1.81         | m    |
| PFPeA        | 69745.658           | 1.627         | M5PFPeA          | 17313                 | 1.624          | 102.96          | 17.1337                   | 85.67             | INF                       | 1.24         |      |
| PFMPA        | 142350.124          | 0.755         | M5PFPeA          | 17313                 | 1.624          | 102.96          | 36.1455                   | 90.36             | 2224.96                   | 1 <b>.40</b> |      |
| PFTA         | 124986.842          | 6.624         | M2PFTA           | 34610                 | 6.623          | 108.90          | 20.3520                   | 101.76            | 1132.95                   | 1.45         |      |
| PFMBA        | 131100.669          | 2.510         | M5PFHxA          | 29707                 | 3.490          | 110.59          | 32.6027                   | 81.51             | 4639.12                   | 1.05         |      |
| PFTrDA       | 185337.721          | 6.201         | MPFDoA           | 42313                 | 5.818          | 112.38          | 20.4514                   | 102.26            | 1994.42                   | 1.21         |      |
| PFEESA       | 340936.552          | 3.253         | M3PFHxS          | 9459                  | 4.12 <b>6</b>  | 94.73           | <b>39.0</b> 72 <b>2</b>   | 109.75            | 7656.54                   | 1.22         |      |
| PFUnA        | 225929.330          | 5.486         | M7PFUnA          | 584 <b>21</b>         | 5.485          | 111.33          | 18.0918                   | 90.46             | 546 <b>5.0</b> 9          | 1.57         |      |
| NFDHA        | 137368.563          | 3.372         | M4PFHpA          | 39 <b>02</b> 8        | 4.056          | 1 <b>10.59</b>  | 35.7265                   | 89.32             | <b>1</b> 10 <b>47.7</b> 7 | 1.84         |      |





4:2 FTS



### **M3HFPODA**



### 6:2 FTS



# ADONA





## d3-NMeFOSAA



### d5-NEtFOSAA





# PFDoS

FOSA







# M2PFTA



400

(m/2)

soc





# M5PFPeA



# M6PFDA



# M7PFUnA





M8F0SA



5,4 5,6 5,8 Acquisition Line (min) 450

500 550 Musa-lo-Charge (m/z)

5,2

5,7 5,6 5,8 Acquisition time (min)

5,2



### d-NMeFOSA





# **NMeFOSE**

| VRM (616.0 -> 59.0) 2201224A_10.c | 616.0 - 59.0           | <ul> <li>MRM (5.880-6, 52 min, 27 scans) (615.0</li> </ul> |
|-----------------------------------|------------------------|------------------------------------------------------------|
| 2 x10 5.953 min.                  | ₩ ×10 <sup>4</sup>     | 2 x10 <sup>3</sup>                                         |
| 3 2.5-                            | 2 2 2 4                | 3 59.0                                                     |
| '.,」 //                           |                        | IP 91 I                                                    |
| · 1                               |                        | 1 1-1                                                      |
| 1,5-                              | · 5-                   |                                                            |
| -1 11                             |                        |                                                            |
|                                   |                        | 24                                                         |
| 0.5-                              | 0.5-                   | .]                                                         |
| 0                                 |                        |                                                            |
| · · · · · · · ·                   |                        |                                                            |
| 5.6 5.8 6 6.2 6.4                 | 5.6 5.8 6 6.2 6.4      | 200 400 600                                                |
|                                   | Acq.isition Time (min) | Mass-to-Charge (m/z)                                       |

# PFHxS



# d7-NMeFOSE









#### **Batch Data Path** D:\MassHunter\Data\2210104ACAL\QuantResults\22010104A.batch.bin Analysis Time 1/6/2021 9:00 AM **Analyst Name GCAL**\lcms Report Time 1/6/2021 9:05 AM **Reporter Name** GCAL\lcms Last Calib Update 1/5/2021 2:27 PM **Batch State** Processed **Calibration Info** Extracted ISTD **MPFBA** Exp Conc (ng/mL) Calibration STD Cal Type Level Enabled Response RF D:\MassHunter\Data\2210104ACAL\2210104B\_02.d Calibration 1 $\checkmark$ 24880 5.0000 4976.0919 D:\MassHunter\Data\2210104ACAL\2210104B\_03.d Calibration 2 V 26139 5.0000 5227.7289 D:\MassHunter\Data\2210104ACAL\2210104B\_04.d Calibration 3 25509 5.0000 5101.8870 Ø D:\MassHunter\Data\2210104ACAL\2210104B\_05.d Calibration 4 25001 5.0000 5000.1615 $\mathbf{V}$ 5 V D:\MassHunter\Data\2210104ACAL\2210104B\_06.d Calibration 23430 5.0000 4686.0867 D:\MassHunter\Data\2210104ACAL\2210104B\_07.d Calibration 6 V 24048 5.0000 4809.5059 7 Ø 22596 5.0000 D:\MassHunter\Data\2210104ACAL\2210104B\_08.d Calibration 4519.2994 M3PFBA Instrument ISTD Exp Conc Calibration STD Enabled (ng/mL) RF Cal Type Level Response D:\MassHunter\Data\2210104ACAL\2210104B 02.d 1 $\checkmark$ 3508 5.0000 701.6047 Calibration D:\MassHunter\Data\2210104ACAL\2210104B\_03.d Calibration 2 V 3953 5.0000 790.6111 D:\MassHunter\Data\2210104ACAL\2210104B\_04.d Calibration 3 Ø 4001 5.0000 800.1783 D:\MassHunter\Data\2210104ACAL\2210104B\_05.d Calibration 4 $\checkmark$ 3750 5.0000 750.0019 D:\MassHunter\Data\2210104ACAL\2210104B 06.d Calibration 5 5.0000 $\checkmark$ 3622 724.3927 D:\MassHunter\Data\2210104ACAL\2210104B\_07 d Calibration 6 $\checkmark$ 3524 5.0000 704.8608 7 ☑ 3303 D:\MassHunter\Data\2210104ACAL\2210104B\_08.d Calibration 5.0000 660.5665 M3PFBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 13 QCs x10 <sup>3</sup>.| y = 733.173713 \* x ses R^2 = 0.00000000 Respor Type:Average of Response Factors, Origin:Ignore, Weight:None 4.5-Avg. RF RSD = 6.869268 4 3.5 3 2.5 2 1.5 1 0.5 0 70 -70 -50 -30 -20 20 30 40 50 60 80 -90 -80 **-**60 -40 -10 Ò 10 90 1**0**0 Concentration (ng/ml)



| Target Compound                              | PFMPA       |       |                   |                |          |        |
|----------------------------------------------|-------------|-------|-------------------|----------------|----------|--------|
|                                              |             |       |                   |                | Exp Conc |        |
| Calibration STD                              | Cal Type    | Level | Enabled           | Response       | (ng/mL)  | RF     |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |                   | 1865           | 0.5000   | 1.1137 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V                 | 4758           | 1.2500   | 1.0833 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | $\checkmark$      | 19467          | 5.0000   | 1.0954 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | $\checkmark$      | 4 <b>06</b> 11 | 10.0000  | 1.1880 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |                   | 83096          | 20.0000  | 1.2268 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | $\checkmark$      | 439726         | 100.0000 | 1.2769 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\mathbf{\nabla}$ | 886885         | 200,0000 | 1,4298 |



Extracted ISTD

M5PFPeA

| Calibration STD                              | Cal Type    | Level | Enabled   | Response                       | Exp Conc<br>(ng/mL) | RF                         |
|----------------------------------------------|-------------|-------|-----------|--------------------------------|---------------------|----------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V         | 16 <b>74</b> 4                 | 5.0000              | 3348.8952                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | M         | 17570                          | 5.0000              | 3514.0632                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |           | 17 <b>7</b> 71                 | 5.0000              | 3554.1079                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | V         | 17 <b>092</b>                  | 5.0000              | <b>3</b> 41 <b>8.416</b> 4 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | $\square$ | 16933                          | 5.0000              | 3386.5699                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | R         | <b>1</b> 7 <b>2</b> 1 <b>9</b> | 5.0000              | 3443.8155                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |           | 15507                          | 5.0000              | 3101.4466                  |
| Target Compound                              | PFPeA       |       |           |                                |                     |                            |

| Calibration STD                              | Cal Туре    | Level | Enabled           | Response | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|-------------------|----------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |                   | 2239     | 0.5000              | 1.3374 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |                   | 5277     | 1.2500              | 1.2013 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |                   | 22503    | 5.0000              | 1.2663 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | V                 | 44608    | 10.0000             | 1.3049 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |                   | 94561    | 20.0000             | 1.3961 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |                   | 503591   | 100.0000            | 1.4623 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\mathbf{\nabla}$ | 1013294  | 200.0000            | 1,6336 |



Extracted ISTD

M3PFBS

| Calibration STD                              | Cal Type    | Level | Enabled | Response     | Exp Conc<br>(ng/mL) | RF                |
|----------------------------------------------|-------------|-------|---------|--------------|---------------------|-------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V       | 8833         | 5.0000              | 1766.6865         |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V       | 9742         | 5.0000              | 1948.4375         |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | 9690         | 5.0000              | 1938.0997         |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | V       | <b>920</b> 4 | 5.0000              | 1840.8388         |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |         | 9118         | 5.0000              | 1823.6643         |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V       | 9158         | 5.0000              | 1831.6863         |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | Ŋ       | 8318         | 5.0000              | <b>1663.52</b> 24 |
| Target Compound                              | PFBS        |       |         |              |                     |                   |

| Calibration STD                              | Сај Туре    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 910            | 0.4435              | 1.1608 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 2320           | 1.1088              | 1.0740 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | 8996           | 4.4350              | 1.0466 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | V       | 17888          | 8.8700              | 1.0956 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |         | 38102          | 17.7400             | 1.1777 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V       | 1 <b>91957</b> | 88.7000             | 1.1815 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | M       | 383552         | 177.4000            | 1,2997 |



PFMBA

Target Compound

Exp Conc Calibration STD Response (ng/mL) RF Cal Type Level Enabled D:\MassHunter\Data\2210104ACAL\2210104B\_02.d Calibration 2052 0.5000 0.9915 1  $\checkmark$ D:\MassHunter\Data\2210104ACAL\2210104B\_03.d Calibration 2  $\checkmark$ 5662 1.2500 1.0372 D:\MassHunter\Data\2210104ACAL\2210104B\_04.d Calibration 3  $\checkmark$ 22962 5.0000 1.1018 D:\MassHunter\Data\2210104ACAL\2210104B\_05.d Calibration 4  $\checkmark$ 46609 10.0000 1.1069 5 D:\MassHunter\Data\2210104ACAL\2210104B\_06.d Calibration  $\checkmark$ 97623 20.0000 1.2209 6 499713 100.0000 D:\MassHunter\Data\2210104ACAL\2210104B\_07.d Calibration  $\checkmark$ 1.2170 D:\MassHunter\Data\2210104ACAL\2210104B\_08.d Calibration 7  $\checkmark$ 1006765 200.0000 1.2521 PFMBA - 7 Levels, 7 Levels Used, 7 Points, 7 Points Used, 12 QCs



 

 Target Compound
 PFEESA

 Calibration STD
 Cal Type
 Level
 Enabled
 Response
 Exp Conc (ng/mL)
 RF

 QP02\_2210104B\_GCAL
 Cal Type
 Page 5 of 37
 Printed at: 5:34 PM onp 1/19/2021
 RF

# **Quantitative Analysis Calibration Report**



# Target Compound

NFDHA

| Calibration STD                              | Cal Type    | Leve | l Enabled    | l Response     | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|------|--------------|----------------|---------------------|----------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1    |              | 14 <b>96</b>   | 0.5000              | 0.7186         |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2    | $\checkmark$ | 3992           | 1.2500              | 0.7199         |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3    | $\checkmark$ | <b>16312</b>   | 5.0000              | 0.7643         |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4    | $\checkmark$ | 32716          | 10.0000             | 0.7781         |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5    | $\checkmark$ | 68203          | 20.0000             | 0.8482         |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6    | $\checkmark$ | <b>36</b> 1564 | 100.0000            | <b>0.916</b> 4 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7    |              | 738291         | 200.0000            | 1.0084         |





4:2 FTS

| Calibration STD                              | Cal Type    | Level | Enabled                 | Response       | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|-------------------------|----------------|---------------------|----------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V                       | 343            | 0.4685              | 1 <b>.4881</b> |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | $\checkmark$            | <b>94</b> 4    | 1.1713              | 1.5756         |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |                         | 3271           | 4.6850              | 1.3496         |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |                         | 6823           | 9.3700              | 1.3888         |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | $\mathbf{\nabla}$       | 13208          | 18.7400             | 1.3967         |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | $\checkmark$            | 68530          | 93.7000             | 1.6891         |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\mathbf{\overline{A}}$ | 1375 <b>71</b> | 187.4000            | 1.5529         |



 

 Extracted ISTD
 M2 4:2 FTS

 Calibration STD
 Cal Type
 Level
 Enabled
 Response
 Exp Conc (ng/mL)
 RF

# **Quantitative Analysis Calibration Report**

| 1     | M                                                                  | 24 <b>57</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 491.3673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2     | $\mathbf{\nabla}$                                                  | 2559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 511.7491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3     | V                                                                  | 25 <b>87</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 517.3580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4     | $\checkmark$                                                       | 2622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 524.3245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5     | V                                                                  | 2523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>504.625</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6     | V                                                                  | 2165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 433.0052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7     | V                                                                  | 2364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47 <b>2.719</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Level | Enabled                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exp Conc<br>(ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1     | V                                                                  | 191694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 <b>7</b> 92.3475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2     | Ø                                                                  | 202134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5053.3581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3     | V                                                                  | 207650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5191 <b>.250</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4     | X                                                                  | 1 <b>98751</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4968.7781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5     | V                                                                  | 181436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4535.9098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6     | V                                                                  | 200282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5007.0425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7     | V                                                                  | 1 <b>7</b> 7841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4446 <b>.02</b> 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60 70 | 80 90                                                              | 100 110 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 2<br>3<br>4<br>5<br>6<br>7<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7 | 2       •         3       ✓         4       ✓         5       ✓         6       ✓         7       ✓         1       ✓         2       ✓         3       ✓         1       ✓         2       ✓         3       ✓         4       ✓         5       ✓         1       ✓         2       ✓         3       ✓         4       ✓         5       ✓         6       ✓         7       ✓         3       ✓         4       ✓         5       ✓         6       ✓         7       ✓         7       ✓         7       ✓         7       ✓         7       ✓         9       ✓ | 2       E       2339         3       I       2587         4       I       2622         5       I       2523         6       I       2165         7       I       2364         7       I       2364         1       I       191694         2       I       202134         3       I       202134         3       I       202134         3       I       202134         3       I       202134         4       I       198751         5       I       181436         6       I       200282         7       I       177841 | 2       E       2339       5,0000         3       ☑       2587       5,0000         4       ☑       2622       5,0000         5       ☑       2165       5,0000         7       ☑       2364       5,0000         7       ☑       2364       5,0000         7       ☑       2364       5,0000         1       ☑       191694       40,0000         2       ☑       202134       40,0000         3       ☑       207650       40,0000         4       ☑       198751       40,0000         5       ☑       181436       40,0000         6       ☑       200282       40,0000         7       ☑       177841       40,0000         6       ☑       200282       40,0000         7       ☑       177841       40,0000         7       ☑       17841       40,0000         9       100       110       120       130         60       70       80       90       100       110       120       130         60       70       80       90       100 |

Extracted ISTD

M5PFHxA

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|-----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 20691    | 5.0000              | 4138.1094 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 21834    | 5.0000              | 4366.8745 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | 20841    | 5.0000              | 4168.1796 |

# **Quantitative Analysis Calibration Report**

| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                                                                                                             | Calibration | 4   | Ø         | 21 <b>05</b> 4          | 5.0000              | 4210.8188 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----------|-------------------------|---------------------|-----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                                                                                                             | Calibration | 5   | V         | 19991                   | 5.0000              | 3998.1441 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                                                                                                             | Calibration | 6   | V         | 20530                   | 5.0000              | 4106.0324 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                             | Calibration | 7   |           | 20102                   | 5.0000              | 4020.4117 |
| Target Compound                                                                                                                                                                                                                                                                                                          | PFHxA       |     |           |                         |                     |           |
|                                                                                                                                                                                                                                                                                                                          |             |     |           |                         |                     |           |
| Calibration STD                                                                                                                                                                                                                                                                                                          | Cal Type    | Lev | el Enable | d Response              | Exp Conc<br>(ng/mL) | RF        |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                                                                                                             | Calibration | 1   | M         | 2037                    | 0.5000              | 0.9843    |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                                                                                                             | Calibration | 2   |           | 5289                    | 1,2500              | 0,9690    |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                                                                                                             | Calibration | 3   | V         | 19829                   | 5.0000              | 0.9515    |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                                                                                                             | Calibration | 4   | V         | 41550                   | 10.0000             | 0.9868    |
| D;\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                                                                                                             | Calibration | 5   | V         | 84280                   | 20.0000             | 1.0540    |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                                                                                                             | Calibration | 6   | V         | <b>4</b> 47 <b>2</b> 76 | 100.0000            | 1.0893    |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                             | Calibration | 7   | V         | 928818                  | 200.0000            | 1.1551    |
| PFHxA - 7 Levels, 7 Levels Used, 7 Points, 7 Points U         9       x10 <sup>3</sup> y = 1.140861 * x         R^2 = 0.99909692       R^2 = 0.99909692         0.9       Type:Linear, Origin:Force, Weight:None         9       0.8         9       0.7         9       0.6         0.5       0.4         0.3       0.3 | sed, 12 QCs |     |           |                         |                     |           |

0.2 0.1-0-30 32 34 36 38 40 42 18 20 22 24 26 -2 2 8 10 12 14 16 28 ò 4 6 Relative Concentration

Target Compound

PFPeS

| Calibration STD                              |             | Lovel | Enabled  | Pachanca       | Exp Conc        | DF             |
|----------------------------------------------|-------------|-------|----------|----------------|-----------------|----------------|
|                                              | carrype     | Level | LINDDIEG | кезропзе       | (               |                |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |          | 820            | 0.4705          | 0.4210         |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V        | 2422           | 1.1763          | <b>0.4</b> 714 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | M        | 9293           | 4 <b>.7</b> 050 | 0.4739         |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |          | 19006          | 9.4100          | 0.4797         |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |          | 36549          | 18.8200         | 0.4857         |
| D;\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |          | 196 <b>177</b> | 94.1000         | 0.5077         |


### Target Compound

HFPO-DA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|--------------|----------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |              | 143      | 1.0000              | 1.8227 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |              | 489      | 2.5000              | 3.2231 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V            | 853      | 10.0000             | 1.2838 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | $\checkmark$ | 1698     | 20.0000             | 1.3029 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V            | 3318     | 40.0000             | 1.2436 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |              | 16332    | 200.0000            | 1.0493 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |              | 34681    | 400.0000            | 1.6364 |



Extracted ISTD

M3HFPODA

| Calibration STD                              | Cal Type    | Leve | Enable       | d Response             | Exp Conc<br>(ng/mL) | RF                      |
|----------------------------------------------|-------------|------|--------------|------------------------|---------------------|-------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1    | V            | 786                    | 10.0000             | 78.6470                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2    | V            | 607                    | 10.0000             | <b>60.729</b> 7         |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3    |              | 664                    | 10.0000             | 66.4049                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4    | V            | 651                    | 10.0000             | <b>65.</b> 14 <b>98</b> |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5    | Z            | 667                    | 10.0000             | 66.7101                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6    | V            | 778                    | 10.0000             | 77.8238                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7    |              | 530                    | 10.0000             | 52.9839                 |
| Extracted ISTD                               | M4PFHpA     |      |              |                        |                     |                         |
|                                              |             |      |              |                        | Exp Conc            |                         |
| Calibration STD                              | Cal Type    | Leve | Enable       | d Response             | (ng/mL)             | RF                      |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1    | V            | 2 <b>0</b> 81 <b>7</b> | 5.0000              | 4163.3773               |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2    | R            | 22182                  | 5.0000              | 44 <b>36.486</b> 4      |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3    | V            | 21 <b>342</b>          | 5.0000              | 4268.4851               |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4    | V            | <b>2</b> 1 <b>0</b> 24 | 5.0000              | 4204.7421               |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5    | M            | 20102                  | 5.0000              | 4020.4118               |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6    | V            | 19728                  | 5.0000              | 3945.5589               |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7    | V            | 18304                  | 5.0000              | <b>3660.76</b> 24       |
| Target Compound                              | PFHpA       |      |              |                        |                     |                         |
|                                              |             |      |              |                        | Eva Conc            |                         |
| Calibration STD                              | Cal Type    | Leve | Enable       | d Response             | (ng/mL)             | RF                      |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1    | V            | 2014                   | 0.5000              | 0.9673                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2    | V            | 5352                   | 1.2500              | 0.9651                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3    | Ø            | 19789                  | 5.0000              | 0.9272                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4    | $\checkmark$ | 40936                  | 10.0000             | 0.9736                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5    | V            | 82933                  | 20.0000             | 1 <b>.03</b> 14         |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6    |              | 443511                 | 100.0000            | 1,1241                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7    | V            | 884895                 | 200.0000            | 1.2086                  |



| Target Compound                                                                                                                                                                                                         | PFHxS       |       |         |               |                     |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------|---------------|---------------------|--------|
| Calibration STD                                                                                                                                                                                                         | Cal Type    | Level | Enabled | Response      | Exp Conc<br>(ng/mL) | RF     |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                            | Calibration | 1     | V       | 963           | 0.4570              | 1.0619 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                            | Calibration | 2     | V       | 2385          | 1.1425              | 1.0146 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                            | Calibration | 3     |         | 1019 <b>7</b> | 4.5700              | 1.1500 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                            | Calibration | 4     | Ø       | <b>203</b> 24 | 9.1400              | 1.1013 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                            | Calibration | 5     | Ø       | 41026         | 18.2800             | 1.1132 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                            | Calibration | 6     | M       | 208099        | 91.4000             | 1.3258 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                            | Calibration | 7     |         | 408253        | 182.8000            | 1.3686 |
| PFHxS - 7 Levels, 7 Levels Used, 7 Points, 7 Points U<br>x10 <sup>1</sup><br>y = 1.357485 * x<br>R^2 = 0.99927689<br>Type:Linear, Origin:Force, Weight:None<br>x = 3.5<br>x = 2.5<br>2-<br>1.5<br>1<br>0.5<br>0<br>-0.5 | sed, 11 QCs |       |         |               |                     |        |

Extracted ISTD **M3PFHxS** Exp Conc **Calibration STD** Cal Type Level Enabled Response (ng/mL) RF

16 18 20 22

24 26

28 30 34 36

Relative Concentration

38

32

10

12

14

6 8

-2 0 2 4

| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                                                                                                                          | Calibration |       | 1     | Ø            | 9925                    | 5.0000              | 1985.0109                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------|--------------|-------------------------|---------------------|----------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                                                                                                                          | Calibration |       | 2     | ☑            | 10289                   | 5.0000              | 2057.7628                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                                                                                                                          | Calibration |       | 3     | Ń            | <b>97</b> 02            | 5.0000              | 1940.3596                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                                                                                                                          | Calibration |       | 4     | $\checkmark$ | 10096                   | 5.0000              | 2019.1363                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                                                                                                                          | Calibration |       | 5     | V            | 10080                   | 5.0000              | 2015.9965                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                                                                                                                          | Calibration |       | 6     |              | 8586                    | 5.0000              | <b>17</b> 1 <b>7.</b> 2812 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                                          | Calibration |       | 7     | V            | 8159                    | 5.0000              | 1631.8005                  |
| Target Compound                                                                                                                                                                                                                                                                                                                       | ADONA       |       |       |              |                         |                     |                            |
|                                                                                                                                                                                                                                                                                                                                       |             |       |       |              |                         |                     |                            |
| Calibration STD                                                                                                                                                                                                                                                                                                                       | Cal Type    |       | Level | Enabled      | i Response              | Exp Conc<br>(ng/mL) | RF                         |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                                                                                                                          | Calibration |       | 1     | V            | 5310                    | 0.4725              | 2.5679                     |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                                                                                                                          | Calibration |       | 2     | V            | 13960                   | 1.1813              | 2.5792                     |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                                                                                                                          | Calibration |       | 3     | V            | 61355                   | 4.7250              | 2.8140                     |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                                                                                                                          | Calibration |       | 4     | Ø            | 12 <b>9</b> 52 <b>7</b> | 9.4500              | 2.9986                     |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                                                                                                                          | Calibration |       | 5     | V            | 265111                  | 18.9000             | 3.2002                     |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                                                                                                                          | Calibration |       | 6     | V            | 1308176                 | 94.5000             | 3.3468                     |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                                          | Calibration |       | 7     | V            | 2563250                 | 189.0000            | 3.3359                     |
| ADONA - 7 Levels, 7 Levels Used, 7 Points, 7 Points U<br>$\begin{array}{c} x \times 10^{4} \\ y = 3.336032 * x \\ R^{2} = 0.99992783 \\ Type:Linear, Origin:Force, Weight:None \\ \end{array}$ 1.4<br>$\begin{array}{c} y = 1.4 \\ y = 1.2 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \end{array}$ 0.6<br>0.4<br>0.2<br>0<br>-2 0 2 4 6 8 10 12 | sed, 13 QCs | •<br> | 24 26 | 28 30        | 32 34 36                | •<br>38 40          |                            |

Extracted ISTD

M2 6:2 FTS

| Calibration STD                              | Cal Type    | Level | Enabled | Response     | Exp Conc<br>(ng/mL) | RF       |
|----------------------------------------------|-------------|-------|---------|--------------|---------------------|----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 4656         | 5.0000              | 931.2841 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | <b>47</b> 18 | 5.0000              | 943.5207 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | 4880         | 5.0000              | 976.0484 |

| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4 | M                       | 4679 | 5.0000 | 935.7625          |
|----------------------------------------------|-------------|---|-------------------------|------|--------|-------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5 | $\overline{\mathbf{v}}$ | 4337 | 5.0000 | 86 <b>7.</b> 3450 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6 | $\checkmark$            | 4267 | 5.0000 | 853.3496          |
| D;\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7 |                         | 4106 | 5.0000 | 821.1489          |
| Target Compound                              | 6:2 FTS     |   |                         |      |        |                   |

| Calibration STD                              | Cal Type    | Level | Enabled   | Response     | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|-----------|--------------|---------------------|-----------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V         | <b>7</b> 40  | 0.4755              | 1 <b>.67</b> 17 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V         | 1654         | 1,1888              | 1,4748          |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |           | 643 <b>7</b> | 4 <b>.75</b> 50     | 1.3870          |
| D:\MassHunter\Data\2210104ACAL\22101048_05.d | Calibration | 4     |           | 13733        | 9.5100              | 1.5432          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | $\square$ | 26098        | 19.0200             | 1.5820          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V         | 130886       | 95.1000             | 1 <b>.6128</b>  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |           | 238506       | 190.2000            | 1.5271          |



### Target Compound

PFOA

|                                              | 6 I 7       |       |                   |                | Exp Conc | 55     |
|----------------------------------------------|-------------|-------|-------------------|----------------|----------|--------|
| Calibration STD                              | сагтуре     | Level | Enabled           | kesponse       | (ng/mL)  | KF     |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |                   | 2 <b>19</b> 8  | 0.5000   | 1.0046 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | $\mathbf{\nabla}$ | 5372           | 1.2500   | 0.9379 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V                 | 21 <b>7</b> 24 | 5,0000   | 0,9415 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |                   | 44149          | 10.0000  | 0.9659 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V                 | 87 <b>7</b> 65 | 20.0000  | 1.0011 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |                   | <b>454</b> 439 | 100.0000 | 1.0987 |



| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|--------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V       | 21881    | 5.0000              | 4376.2432          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V       | 22909    | 5.0000              | 4581 <b>.754</b> 4 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V       | 23073    | 5.0000              | 4614.5965          |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | Ø       | 22855    | 5.0000              | 4570.9745          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | R       | 21916    | 5.0000              | 4383.2179          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | Ø       | 20681    | 5.0000              | 4136.2730          |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |         | 20328    | 5.0000              | 4065.5062          |
| Instrument ISTD                              | M2PFOA      |       |         |          |                     |                    |

M8PFOA

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|--------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | Ø       | 79349    | 20.0000             | 3967.4271          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 84294    | 20.0000             | 421 <b>4.724</b> 7 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V       | 87606    | 20.0000             | 4380.3063          |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |         | 82680    | 20.0000             | 4133.9847          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V       | 73467    | 20.0000             | 3673.3680          |
| D:\MassHunter\Data\2210104ACAL\22101048_07.d | Calibration | 6     | M       | 78627    | 20.0000             | 3931,3691          |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |         | 67600    | 20.0000             | 3379.9991          |

Extracted ISTD



Instrument ISTD

MPFOA

| Calibration STD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cal Type             | Level | Enabled      | Response             | Exp Conc<br>(ng/mL)         | RF               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|--------------|----------------------|-----------------------------|------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calibration          | 1     |              | 235                  | 25.0000                     | 9.4021           |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calibration          | 2     | $\checkmark$ | 382                  | 25.0000                     | 15.2632          |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calibration          | 3     | V            | 261                  | 25.0000                     | 1 <b>0.43</b> 14 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calibration          | 4     | V            | 261                  | 25.0000                     | 1 <b>0.4551</b>  |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calibration          | 5     | $\checkmark$ | 232                  | 25.0000                     | 9.2673           |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calibration          | 6     | V            | 319                  | 25.0000                     | 1 <b>2.7408</b>  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calibration          | 7     | Ø            | 267                  | 25.0000                     | 10.6980          |
| $\begin{array}{c} \text{MPFOA} - 7  Levels, 7 Levels Used, 7 Points, 7 Points Used, 7 Points, 7 Points, 9 Points, 10 Point$ | Ignore, Weight: None |       |              | 90 100<br>Concentrat | 1<br>110 120<br>ion (ng/ml) |                  |

Target Compound **PFHpS** Exp Conc **Calibration STD** Cal Type Level Enabled Response (ng/mL) RF



Extracted ISTD

M9PFNA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response              | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|--------------|-----------------------|---------------------|--------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |              | 20036                 | 5.0000              | 4007.1649          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |              | 2230 <b>7</b>         | 5.0000              | 4461.3435          |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |              | <b>2</b> 1337         | 5.0000              | 4267.4363          |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | Ø            | <b>2</b> 1 <b>148</b> | 5.0000              | 4229.6022          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | $\checkmark$ | 21293                 | 5.0000              | 4258.5874          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V            | 19962                 | 5.0000              | 3992.3791          |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |              | 18620                 | 5.0000              | 3 <b>7</b> 23.9942 |
| Target Compound                              | PFNA        |       |              |                       |                     |                    |

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 1826     | 0.5000              | 0.9112 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 4671     | 1.2500              | 0.8375 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V       | 19191    | 5.0000              | 0.8994 |



| Extracted ISTD                               | M8PFOS      |       |              |               |                     |                            |
|----------------------------------------------|-------------|-------|--------------|---------------|---------------------|----------------------------|
| Calibration STD                              | Cal Type    | Level | Enabled      | Response      | Exp Conc<br>(ng/mL) | RF                         |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V            | 10771         | 5.0000              | 2154.1307                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V            | <b>10</b> 418 | 5.0000              | 2083.6060                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |              | 10700         | 5.0000              | 2139.9304                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |              | 10156         | 5.0000              | 2031.2627                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |              | 10428         | 5.0000              | 2085.6552                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |              | <b>102</b> 18 | 5.0000              | 2043.5772                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | Ø            | 9436          | 5.0000              | 1887.1666                  |
| Instrument ISTD                              | M4PFOS      |       |              |               |                     |                            |
|                                              |             |       |              |               |                     |                            |
| Calibration STD                              | Cal Type    | Level | Enabled      | Response      | Exp Conc<br>(ng/mL) | RF                         |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |              | 49705         | 20.0000             | 2485.2380                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V            | 52998         | 20.0000             | 2649.8922                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V            | 55599         | 20.0000             | 2779,9565                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |              | 52828         | 20.0000             | <b>2</b> 641 <b>.41</b> 84 |
|                                              |             |       |              |               |                     |                            |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | $\checkmark$ | 48670         | 20.0000             | 2433.5123                  |



### Target Compound

PFOS

| Calibration STD                                                                                                                | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF                      |
|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------|----------------|---------------------|-------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                   | Calibration | 1     | V       | 1236           | 0.4640              | 1.2363                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                   | Calibration | 2     |         | 3391           | 1.1600              | 1.4028                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                   | Calibration | 3     | V       | 13315          | 4.6400              | 1 <b>.</b> 341 <b>0</b> |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                   | Calibration | 4     |         | 26927          | 9.2800              | 1.4285                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                   | Calibration | 5     | V       | 5 <b>4</b> 499 | 18.5600             | 1.4079                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                   | Calibration | 6     | Ŋ       | <b>2846</b> 14 | 92.8000             | 1.5008                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                   | Calibration | 7     | V       | 566753         | 185.6000            | 1 <b>.6181</b>          |
| PFOS - 7 Levels, 7 Levels Used, 7 Points, 7 Points Use $\begin{cases} x 10^3 \\ z \\ $ | d, 13 QCs   |       |         |                |                     |                         |



#### Target Compound

9CI-PF3ONS



Extracted ISTD

M2 8:2 FTS

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF       |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 4170     | 5.0000              | 834.0666 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | Ø       | 4449     | 5.0000              | 889.7736 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V       | 4092     | 5.0000              | 818.4739 |
| D;\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |         | 4083     | 5.0000              | 816.5865 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V       | 4129     | 5.0000              | 825.8561 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |         | 4035     | 5.0000              | 806.9819 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | V       | 4067     | 5.0000              | 813.4435 |
| Target Compound                              | 8:2 FTS     |       |         |          |                     |          |
|                                              |             |       |         |          | <b></b>             |          |
| Calibration STD                              | Cal Type    | Level | Enabled | Response | (ng/mL)             | RF       |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V       | 820      | 0.4800              | 2.0476   |

| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2 | V                 | 1 <b>851</b>  | 1.2000   | 1 <b>.733</b> 2 |
|----------------------------------------------|-------------|---|-------------------|---------------|----------|-----------------|
| D;\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3 | $\mathbf{\nabla}$ | 7584          | 4.8000   | 1.9304          |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4 | $\square$         | <b>14</b> 465 | 9.6000   | 1.8452          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5 |                   | 28788         | 19.2000  | 1.8155          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6 | V                 | 139007        | 96.0000  | 1 <b>.7943</b>  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7 |                   | 256528        | 192.0000 | 1.6425          |



### Target Compound

PFDA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response                | (ng/mL)  | RF     |
|----------------------------------------------|-------------|-------|--------------|-------------------------|----------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |              | 142 <b>0</b>            | 0.5000   | 0.9172 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |              | 3929                    | 1.2500   | 0.9001 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | M            | 15951                   | 5.0000   | 0.9467 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |              | 30893                   | 10.0000  | 1.0191 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |              | 63544                   | 20.0000  | 0.9913 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | $\checkmark$ | 32 <b>4</b> 91 <b>7</b> | 100.0000 | 1.1246 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\checkmark$ | 636523                  | 200.0000 | 1.1725 |



| Extracted | ISTD |
|-----------|------|
|           |      |

M6PFDA

| Calibration STD                              | Cal Type    | Level | Enabled           | Response | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|-------------------|----------|---------------------|-----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V                 | 15479    | 5.0000              | 3095.7822 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |                   | 17462    | 5.0000              | 3492.3998 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |                   | 16850    | 5.0000              | 3369.9694 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | V                 | 15157    | 5.0000              | 3031.3195 |
| D;\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | $\mathbf{\nabla}$ | 16026    | 5.0000              | 3205.1517 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V                 | 14446    | 5.0000              | 2889.2995 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | Ø                 | 13572    | 5.0000              | 2714.4408 |
| Instrument ISTD                              | M2PFDA      |       |                   |          |                     |           |

| Calibration STD                              | Сај Туре    | Level | Enabled      | Response      | Exp Conc<br>(ng/mL) | RF                         |
|----------------------------------------------|-------------|-------|--------------|---------------|---------------------|----------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |              | 70990         | 20.0000             | 3549.4769                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |              | 73052         | 20.0000             | 3652.6184                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |              | <b>74</b> 336 | 20.0000             | <b>37</b> 16 <b>.</b> 8122 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | Ø            | 74992         | 20.0000             | <b>3749.60</b> 87          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |              | <b>649</b> 22 | 20.0000             | 3246.0755                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |              | 67585         | 20.0000             | 3379.2723                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\checkmark$ | 60228         | 20.0000             | 3011,4061                  |



#### Target Compound

PFNS

| Calibration STD                              | Cal Type    | Level | Enabled           | Response      | Exp Conc<br>(ng/mL) | RF                     |
|----------------------------------------------|-------------|-------|-------------------|---------------|---------------------|------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V                 | 1155          | 0.4810              | 0.5990                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | $\checkmark$      | 24 <b>4</b> 9 | 1.2025              | 0.4565                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |                   | 11032         | 4.8100              | 0.5375                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | V                 | 22046         | 9.6200              | <b>0.5</b> 41 <b>8</b> |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |                   | 45 <b>791</b> | 19.2400             | 0.5589                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V                 | 230499        | 96.2000             | 0.6002                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\mathbf{\nabla}$ | 458453        | 192.4000            | 0.6399                 |



Extracted ISTD M8FOSA Exp Conc Calibration STD Cal Type Level Enabled Response (ng/mL) RF

OOO2 22101045 GCAL Leventy Lemp xisx Pace Guil Coast Report#: 220122279

| Target Compound                              | FOSA        |   |              |               |        |                           |
|----------------------------------------------|-------------|---|--------------|---------------|--------|---------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7 | R            | 12370         | 5.0000 | <b>2</b> 47 <b>3.9049</b> |
| D;\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6 |              | 13502         | 5.0000 | 2700.3510                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5 |              | 13770         | 5.0000 | 2754.0795                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4 |              | 13500         | 5.0000 | 2 <b>70</b> 0.0431        |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3 | $\checkmark$ | <b>138</b> 14 | 5.0000 | 2 <b>762.73</b> 24        |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2 |              | 14091         | 5.0000 | 2818.2427                 |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1 | $\checkmark$ | 13392         | 5.0000 | 2678.3648                 |
|                                              |             |   |              |               |        |                           |

|                                              |             |       |                   |                 | Exp Conc |        |
|----------------------------------------------|-------------|-------|-------------------|-----------------|----------|--------|
| Calibration STD                              | Cal Type    | Level | Enabled           | Response        | (ng/mL)  | RF     |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |                   | 1376            | 0.5000   | 1.0275 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | $\mathbf{\nabla}$ | 3589            | 1.2500   | 1.0187 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V                 | 15244           | 5.0000   | 1.1036 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |                   | 29849           | 10.0000  | 1.1055 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V                 | <b>627</b> 34   | 20.0000  | 1.1389 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |                   | 340191          | 100.0000 | 1.2598 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\checkmark$      | 691 <b>2</b> 34 | 200.0000 | 1.3971 |



### Extracted ISTD

### d3-NMeFOSAA

| Calibration STD                              | Cal Type    | Level | Enabled | Response     | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|--------------|---------------------|-----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 7009         | 5.0000              | 1401.7346 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 7 <b>981</b> | 5.0000              | 1596.1713 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | Z       | 7968         | 5.0000              | 1593.6599 |

| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_05.d                                                                                           | Calibration      |       | 4     | Ø            | 7 <b>393</b>           | 5.0000              | 1478.5626         |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------|--------------|------------------------|---------------------|-------------------|
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_06.d                                                                                           | Calibration      |       | 5     | V            | 7685                   | 5.0000              | 1536.9521         |
| D:\MassH                                                               | unter\Data\2210104ACAL\2210104B_07.d                                                                                           | Calibration      |       | 6     | V            | 8048                   | 5.0000              | 1609.5345         |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_08.d                                                                                           | Calibration      |       | 7     | $\checkmark$ | 7941                   | 5.0000              | <b>15</b> 88.1409 |
| Target                                                                 | Compound                                                                                                                       | NMeFOSAA         |       |       |              |                        |                     |                   |
| Calibrati                                                              | on STD                                                                                                                         | Cal Type         |       | Level | Enabled      | Response               | Exp Conc<br>(ng/mL) | RF                |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_02.d                                                                                           | Calibration      |       | 1     | M            | 1353                   | 0.5000              | 1.9309            |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_03.d                                                                                           | Calibration      |       | 2     |              | 3877                   | 1,2500              | 1,9429            |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_04.d                                                                                           | Calibration      |       | 3     |              | 1 <b>4</b> 40 <b>7</b> | 5.0000              | 1.8080            |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_05.d                                                                                           | Calibration      |       | 4     | V            | 28815                  | 10.0000             | 1.9488            |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_06.d                                                                                           | Calibration      |       | 5     | V            | 60706                  | 20.0000             | 1.9749            |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_07.d                                                                                           | Calibration      |       | 6     | Ø            | 323211                 | 100.0000            | 2.0081            |
| D:\MassHi                                                              | unter\Data\2210104ACAL\2210104B_08.d                                                                                           | Calibration      |       | 7     | V            | 656 <b>99</b> 3        | 200.0000            | 2.0684            |
| NMeFOS.<br>sa x10 <sup>1</sup><br>8<br>4<br>5<br>4<br>3<br>2<br>1<br>0 | AA - 7 Levels, 7 Levels Used, 7 Points, 7 Po<br>y = 2.055384 * x<br>R^2 = 0.99976450<br>Type:Linear, Origin:Force, Weight:None | nts Used, 13 QCs | 22 24 | 26 28 |              |                        | 0 42                |                   |
|                                                                        | -2 0 2 4 6 8 10 12                                                                                                             | 14 16 18 20      | 22 24 | 26 28 | 30 32 34     | Belative Con           | centration          |                   |

### Extracted ISTD

d5-NEtFOSAA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response              | Exp Conc<br>(ng/mL) | RF                         |
|----------------------------------------------|-------------|-------|--------------|-----------------------|---------------------|----------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |              | 11069                 | 5.0000              | 2213.8547                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | $\checkmark$ | <b>1</b> 1 <b>995</b> | 5.0000              | 2398.9670                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | $\checkmark$ | <b>1</b> 1476         | 5,0000              | 2295,2075                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |              | 10554                 | 5.0000              | <b>2</b> 110 <b>.</b> 8476 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |              | 10983                 | 5.0000              | 2196.6341                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V            | 10000                 | 5.0000              | 1999.9328                  |

| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 7     | R        | 9753                    | 5.0000               | 1950.6855       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|----------|-------------------------|----------------------|-----------------|
| Target Compound                                                                                                                                                                                                                                                                                                                                                                                                       | NEtFOSAA                            |       |          |                         |                      |                 |
| Calibration STD                                                                                                                                                                                                                                                                                                                                                                                                       | Cal Type                            | Level | Enabled  | Response                | Exp Conc<br>(ng/mL)  | RF              |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 1     | Ø        | 1275                    | 0.5000               | 1.1515          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 2     | Ø        | <b>31</b> 1 <b>7</b>    | 1.2500               | 1 <b>.039</b> 6 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 3     |          | 13162                   | 5.0000               | 1.1469          |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 4     | R        | 27538                   | 10.0000              | 1.3046          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 5     | M        | 53165                   | 20,0000              | 1,2101          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 6     | V        | 284190                  | 100.0000             | 1 <b>.42</b> 10 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                                                                                                                          | Calibration                         | 7     |          | <b>55194</b> 4          | 200.0000             | 1 <b>.414</b> 7 |
| NEtFOSAA - 7 Levels, 7 Levels Used, 7 Points, 7 Point $x 10^{-1}$ $y = 1.413999 * x$ $55$ $R^2 = 0.99970714$ Type:Linear, Origin:Force, Weight:None $4.5$ $3.5$ $3.5$ $3.5$ $2-1$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ $0.5$ | s Used, 13 QCs<br>14 16 18 20 22 24 | 26 28 | 30 32 34 | 36 38 4<br>Relative Cor | 0 42<br>incentration |                 |

Extracted ISTD

### M7PFUnA

| Calibration STD                              | Cal Type    | Level | Enabled      | Response       | Exp Conc<br>(ng/mL) | RF                         |
|----------------------------------------------|-------------|-------|--------------|----------------|---------------------|----------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V            | 17171          | 5.0000              | <b>3434.</b> 1607          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |              | 18209          | 5.0000              | 3641.8237                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V            | 17240          | 5.0000              | <b>3</b> 44 <b>7.999</b> 7 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | Ø            | 16783          | 5.0000              | 3356.6142                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V            | <b>1644</b> 4  | 5.0000              | 3288.7399                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | Ø            | <b>1</b> 6274  | 5,0000              | 3254,7996                  |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | $\checkmark$ | 1 <b>47</b> 49 | 5.0000              | 2949 <b>.7</b> 047         |
| Target Compound                              | PFUnA       |       |              |                |                     |                            |



Target Compound

PFDS

| Calibration STD                              | Cal Type    | Level | Enabled           | Response | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|-------------------|----------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V                 | 1144     | 0.4825              | 0.7658 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |                   | 2731     | 1.2063              | 0.6482 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |                   | 10827    | 4.8250              | 0.6658 |
| D;\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | $\mathbf{\nabla}$ | 21007    | 9.6500              | 0.7181 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V                 | 43888    | 19.3000             | 0.7095 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |                   | 228697   | 96.5000             | 0.8202 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |                   | 447858   | 193.0000            | 0.8549 |



Target Compound

11CI-PF3OUdS

| Calibration STD                                                                                          | Cal Type               | Level | Enabled      | Response                | Exp Conc<br>(ng/mL)  | RF             |
|----------------------------------------------------------------------------------------------------------|------------------------|-------|--------------|-------------------------|----------------------|----------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                             | Calibration            | 1     | V            | 3634                    | 0.4715               | 3.5776         |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                             | Calibration            | 2     | M            | 959 <b>7</b>            | 1.1788               | 3.9073         |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                             | Calibration            | 3     |              | 42019                   | 4 <b>.7</b> 150      | 4.1645         |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                             | Calibration            | 4     | V            | 84796                   | 9.4300               | 4.4269         |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                             | Calibration            | 5     | $\checkmark$ | 179584                  | 18.8600              | <b>4.565</b> 4 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                             | Calibration            | 6     |              | 937078                  | 94.3000              | 4.8626         |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                             | Calibration            | 7     |              | 1858315                 | 188.6000             | 5.2212         |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} x \\ y \\ y \\ z \\ z$ | 0                      |       |              |                         | ə                    |                |
| -2 0 2 4 6 8 10 12                                                                                       | 14 16 <b>1</b> 8 20 22 | 24 26 | 28 30 32     | : 34 36<br>Relative Cor | 38 40<br>ncentration |                |
| _                                                                                                        |                        |       |              |                         |                      |                |

|                 |          |       |         | Brinied - | 1. 5.34 DM or       | . 1/18/202 |
|-----------------|----------|-------|---------|-----------|---------------------|------------|
| Calibration STD | Cal Type | Level | Enabled | Response  | Exp Conc<br>(ng/mL) | RF         |
| Target Compound | 10:2 FTS |       |         |           |                     |            |



#### Extracted ISTD

MPFDoA

| Calibration STD                              | Cal Type    | Level | Enabled                 | Response      | Exp Conc<br>(ng/mL) | RF                 |
|----------------------------------------------|-------------|-------|-------------------------|---------------|---------------------|--------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |                         | 13043         | 5.0000              | 2608.6455          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | $\mathbf{\overline{A}}$ | 13506         | 5.0000              | 2 <b>701.</b> 2111 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | Ø                       | 13532         | 5.0000              | <b>2706.47</b> 18  |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | Ø                       | <b>1279</b> 4 | 5.0000              | 2558.7619          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | $\checkmark$            | 12956         | 5.0000              | 2591.1020          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | $\mathbf{V}$            | 13980         | 5.0000              | 2796.0941          |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |                         | 14860         | 5.0000              | 2971.9948          |
| Target Compound                              | PFDoA       |       |                         |               |                     |                    |

| Calibration STD                              | Cal Type    | Level | Enabled | Response     | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------|-------------|-------|---------|--------------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 1 <b>177</b> | 0.5000              | 0.9027 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 2675         | 1.2500              | 0.7923 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V       | 12909        | 5.0000              | 0.9539 |



### d-NMeFOSA

|                                              |             |       |         |          | Exp Conc |           |
|----------------------------------------------|-------------|-------|---------|----------|----------|-----------|
| Calibration STD                              | Cal Type    | Level | Enabled | Response | (ng/mL)  | RF        |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 5632     | 5.0000   | 1126.4592 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 5932     | 5.0000   | 1186.4921 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | M       | 5768     | 5.0000   | 1153.6679 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |         | 6082     | 5.0000   | 1216.3172 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |         | 5670     | 5.0000   | 1133.9635 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |         | 6557     | 5.0000   | 1311.3794 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | V       | 6453     | 5.0000   | 1290.6029 |
| Target Compound                              | NMeFOSA     |       |         |          |          |           |

| Calibration STD                              | Cal Type    | Level | Enabled | Response               | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|---------|------------------------|---------------------|-----------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 47 <b>7</b>            | 0.5000              | 0.8467          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 1554                   | 1.2500              | 1 <b>.0</b> 475 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | M       | 5892                   | 5,0000              | 1,0214          |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |         | <b>1</b> 1 <b>7</b> 02 | 10.0000             | 0.9621          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |         | 23989                  | 20.0000             | 1.0578          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |         | 130887                 | 100.0000            | 0.9981          |



### Extracted ISTD

d7-NMeFOSE

| Calibration STD                                                                                                                                                                                                                                                                                                 | Cal Type                                                                                                  | Level                               | Enabled                                                                                                | Response                                                    | Exp Conc<br>(ng/mL)                                                     | RF                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                                                                                                    | Calibration                                                                                               | 1                                   | V                                                                                                      | 75 <b>41</b>                                                | 5.0000                                                                  | 1508.1067                                                             |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                                                                                                    | Calibration                                                                                               | 2                                   |                                                                                                        | 7616                                                        | 5.0000                                                                  | 1523.1836                                                             |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                                                                                                    | Calibration                                                                                               | 3                                   | V                                                                                                      | 7275                                                        | 5.0000                                                                  | 1454.9881                                                             |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                                                                                                    | Calibration                                                                                               | 4                                   |                                                                                                        | 7171                                                        | 5.0000                                                                  | 1434.2436                                                             |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                                                                                                    | Calibration                                                                                               | 5                                   | V                                                                                                      | 7351                                                        | 5.0000                                                                  | 147 <b>0.</b> 1912                                                    |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                                                                                                    | Calibration                                                                                               | 6                                   |                                                                                                        | 7253                                                        | 5.0000                                                                  | 1450.5447                                                             |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                                                                                                    | Calibration                                                                                               | 7                                   |                                                                                                        | 6963                                                        | 5.0000                                                                  | 1392.5755                                                             |
| Target Compound                                                                                                                                                                                                                                                                                                 | NMeFOSE                                                                                                   |                                     |                                                                                                        |                                                             |                                                                         |                                                                       |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                     |                                                                                                        |                                                             |                                                                         |                                                                       |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                     |                                                                                                        |                                                             |                                                                         |                                                                       |
| Calibration STD                                                                                                                                                                                                                                                                                                 | Cal Type                                                                                                  | Level                               | Enabled                                                                                                | Response                                                    | Exp Conc<br>(ng/mL)                                                     | RF                                                                    |
| Calibration STD<br>D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                                                                                 | <b>Cal Type</b><br>Calibration                                                                            | <b>Level</b><br>1                   | Enabled                                                                                                | <b>Response</b><br>911                                      | Exp Conc<br>(ng/mL)<br>0.5000                                           | <b>RF</b><br>1.2076                                                   |
| Calibration STD<br>D:\MassHunter\Data\2210104ACAL\2210104B_02.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                                 | <b>Cal Type</b><br>Calibration<br>Calibration                                                             | <b>Level</b><br>1<br>2              | Enabled<br>Ø                                                                                           | <b>Response</b><br>911<br>2342                              | Exp Conc<br>(ng/mL)<br>0.5000<br>1.2500                                 | <b>RF</b><br>1.2076<br>1.2301                                         |
| Calibration STD<br>D:\MassHunter\Data\2210104ACAL\2210104B_02.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_03.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                 | <b>Cal Type</b><br>Calibration<br>Calibration<br>Calibration                                              | <b>Level</b><br>1<br>2<br>3         | Enabled<br>Ø<br>Ø                                                                                      | <b>Response</b><br>911<br>2342<br>8709                      | Exp Conc<br>(ng/mL)<br>0.5000<br>1.2500<br>5.0000                       | <b>RF</b><br>1.2076<br>1.2301<br>1.1972                               |
| Calibration STD<br>D:\MassHunter\Data\2210104ACAL\2210104B_02.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_03.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_04.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                 | <b>Cal Type</b><br>Calibration<br>Calibration<br>Calibration<br>Calibration                               | Level<br>1<br>2<br>3<br>4           | Enabled<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | <b>Response</b><br>911<br>2342<br>8709<br>18683             | Exp Conc<br>(ng/mL)<br>0.5000<br>1.2500<br>5.0000<br>10.0000            | <b>RF</b><br>1.2076<br>1.2301<br>1.1972<br>1.3026                     |
| Calibration STD<br>D:\MassHunter\Data\2210104ACAL\2210104B_02.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_03.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_04.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_05.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                 | <b>Cal Type</b><br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration                | Level<br>1<br>2<br>3<br>4<br>5      | Enabled<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | Response<br>911<br>2342<br>8709<br>18683<br>39062           | Exp Conc<br>(ng/mL)<br>0.5000<br>1.2500<br>5.0000<br>10.0000<br>20.0000 | <b>RF</b><br>1.2076<br>1.2301<br>1.1972<br>1.3026<br>1.3285           |
| Calibration STD<br>D:\MassHunter\Data\2210104ACAL\2210104B_02.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_03.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_04.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_05.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_06.d<br>D:\MassHunter\Data\2210104ACAL\2210104B_07.d | <b>Cal Type</b><br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration<br>Calibration | Level<br>1<br>2<br>3<br>4<br>5<br>6 | Enabled<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | Response<br>911<br>2342<br>8709<br>18683<br>39062<br>197557 | Exp Conc<br>(ng/mL)<br>0.5000<br>1.2500<br>5.0000<br>10.0000<br>20.0000 | <b>RF</b><br>1.2076<br>1.2301<br>1.1972<br>1.3026<br>1.3285<br>1.3620 |



Target Compound

PFDoS

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF             |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|----------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V       | 1339           | 0.4840              | 1 <b>.2841</b> |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V       | 3434           | <b>1.</b> 2100      | 1.3619         |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | 13514          | 4.8400              | 1.3048         |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | V       | 275 <b>65</b>  | 9.6800              | 1.4019         |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V       | 56100          | 19.3600             | 1.3894         |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V       | <b>2866</b> 14 | 96.8000             | 1.4489         |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     | Ø       | 556629         | 193.6000            | 1.5235         |



Target Compound PFTrDA Exp Conc **Calibration STD** Cal Type Level Enabled Response (ng/mL) RF

QQQ2\_22101045\_GCAL Leveny\_lemp.xlsx



Extracted ISTD

d9-NEtFOSE

| Calibration STD                              | Cal Type    | Level | Enabled | Response               | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|------------------------|---------------------|-----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 9859                   | 5.0000              | 1971.8849 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     | V       | <b>1</b> 1 <b>0</b> 10 | 5.0000              | 2201.9581 |
| D;\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     | V       | 9901                   | 5.0000              | 1980.2637 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     | Ŋ       | 10054                  | 5.0000              | 2010.8979 |
| D;\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     |         | 9581                   | 5.0000              | 1916.2665 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V       | 9310                   | 5.0000              | 1862.0423 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7     |         | 9310                   | 5.0000              | 1862.0492 |
| Extracted ISTD                               | d-NEtFOSA   |       |         |                        |                     |           |

| Calibration STD                              | Cal Type    | Level | Enabled | Response | Exp Conc<br>(ng/mL) | RF        |
|----------------------------------------------|-------------|-------|---------|----------|---------------------|-----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 6595     | 5.0000              | 1319.0522 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 6126     | 5.0000              | 1225.1109 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | 6350     | 5.0000              | 1269.9796 |

| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4 | Ø                 | 6515 | 5.0000 | 1303.0688         |
|----------------------------------------------|-------------|---|-------------------|------|--------|-------------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5 | $\mathbf{\nabla}$ | 6015 | 5.0000 | 1203.0183         |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6 | Ø                 | 6624 | 5.0000 | 1324.8834         |
| D;\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7 | $\checkmark$      | 5630 | 5.0000 | <b>1</b> 126.0464 |
| Target Compound                              | NEtFOSA     |   |                   |      |        |                   |

| Calibration STD                              | Cal Type    | Level | Enabled | Response       | Exp Conc<br>(ng/mL) | RF              |
|----------------------------------------------|-------------|-------|---------|----------------|---------------------|-----------------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V       | 684            | 0.5000              | 1.0366          |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 1739           | 1,2500              | 1,1359          |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | 6292           | 5.0000              | 0.9909          |
| D:\MassHunter\Data\2210104ACAL\22101048_05.d | Calibration | 4     |         | 12783          | 10.0000             | 0.9810          |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | V       | 25573          | 20.0000             | 1.0629          |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     | V       | 1415 <b>53</b> | 100.0000            | 1 <b>.068</b> 4 |
| D:\MassHunter\Data\2210104ACAL\2210104B 08.d | Calibration | 7     | V       | 294579         | 200.0000            | 1.3080          |



### Target Compound

NEtFOSE

|                                              |             |       |         |                      | Exp Conc |                |
|----------------------------------------------|-------------|-------|---------|----------------------|----------|----------------|
| Calibration STD                              | Cal Type    | Level | Enabled | Response             | (ng/mL)  | RF             |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     |         | 1090                 | 0.5000   | 1.1056         |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2     |         | 2171                 | 1.2500   | <b>0.788</b> 7 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3     |         | <b>9</b> 63 <b>7</b> | 5,0000   | 0,9733         |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4     |         | 19913                | 10.0000  | 0.9903         |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5     | Ø       | 3 <b>97</b> 74       | 20.0000  | 1.0378         |
| D;\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6     |         | 212679               | 100.0000 | 1.1422         |



### Target Compound

PFTA

| Calibration STD C                              | al Type    | Level | Enabled      | Response       | Exp Conc<br>(ng/mL) | RF     |
|------------------------------------------------|------------|-------|--------------|----------------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d C | alibration | 1     | V            | 638            | 0.5000              | 0.6790 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d C | alibration | 2     |              | 1 <b>999</b>   | 1.2500              | 0.8507 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d C | alibration | 3     | $\checkmark$ | 7629           | 5.0000              | 0.8292 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d C | alibration | 4     | $\square$    | <b>1</b> 5413  | 10.0000             | 0.8427 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d C | alibration | 5     | V            | 32026          | 20.0000             | 0.8499 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d C | alibration | 6     | V            | 167016         | 100.0000            | 0.8617 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d C | alibration | 7     |              | 34308 <b>7</b> | 200.0000            | 0.8621 |



### Extracted ISTD

M2PFTA

| Calibration STD                                                                                                                                                                                                               | Cal Type     |          | Level | Enabled               | Response     | Exp Conc<br>(ng/mL) | RF        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------|-----------------------|--------------|---------------------|-----------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                  | Calibration  |          | 1     | Ø                     | 9400         | 5.0000              | 1880.0932 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                  | Calibration  |          | 2     | V                     | 9398         | 5.0000              | 1879.5027 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                  | Calibration  |          | 3     | V                     | 9200         | 5.0000              | 1839.9746 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                  | Calibration  |          | 4     | V                     | 9145         | 5.0000              | 1829.0901 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                  | Calibration  |          | 5     | V                     | 9421         | 5.0000              | 1884.1725 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                  | Calibration  |          | 6     | $\checkmark$          | 9691         | 5.0000              | 1938.1415 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                  | Calibration  |          | 7     | $\checkmark$          | 9950         | 5.0000              | 1989.9233 |
| Target Compound                                                                                                                                                                                                               | PFHxDA       |          |       |                       |              |                     |           |
|                                                                                                                                                                                                                               |              |          |       |                       |              |                     |           |
| Calibration STD                                                                                                                                                                                                               | Cal Type     |          | Level | Enabled               | Response     | Exp Conc<br>(ng/mL) | RF        |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                                                  | Calibration  |          | 1     |                       | 1 <b>087</b> | 0.5000              | 1.0497    |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                                                  | Calibration  |          | 2     | M                     | 2529         | 1.2500              | 0.9246    |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                                                  | Calibration  |          | 3     | Ø                     | 10380        | 5.0000              | 0.8989    |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                                                  | Calibration  |          | 4     | M                     | 20076        | 10.0000             | 0.8986    |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                                                  | Calibration  |          | 5     | ${\bf \underline{N}}$ | 38439        | 20.0000             | 0.9515    |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                                                  | Calibration  |          | 6     | Ø                     | 210082       | 100.0000            | 0.9172    |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                                                  | Calibration  |          | 7     |                       | 435001       | 200.0000            | 0.8655    |
| PFHxDA - 7 Levels, 6 Levels Used, 7 Points, 6 Points 0<br>\$ x10 <sup>-1</sup> y = 0.918264 * x<br>R^2 = 0.99991887<br>Type:Linear, Origin:Force, Weight:None<br>2.5-<br>2-<br>1.5-<br>1-<br>0.5-<br>0-<br>-2 0 2 4 6 8 10 12 | Jsed, 13 QCs | 20 22 24 | 26 28 |                       | 4 36 38 4    | 0<br>40 42          |           |
|                                                                                                                                                                                                                               |              | _~       | 20 20 |                       | Relative Cor | ncentration         |           |
|                                                                                                                                                                                                                               |              |          |       |                       |              |                     |           |

| Extracted ISTD                               | M2PFHxDA    |       |         |          |           |           |
|----------------------------------------------|-------------|-------|---------|----------|-----------|-----------|
|                                              |             |       |         |          | Even Come |           |
| Calibration STD                              | Cal Type    | Level | Enabled | Response | (ng/mL)   | RF        |
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d | Calibration | 1     | V       | 10351    | 5.0000    | 2070.1885 |
|                                              |             |       |         |          |           |           |

| D:\MassHunter\Data\2210104ACAL\2210104B_03.d | Calibration | 2 | V                 | 10943                 | 5.0000 | 2188.5574 |
|----------------------------------------------|-------------|---|-------------------|-----------------------|--------|-----------|
| D;\MassHunter\Data\2210104ACAL\2210104B_04.d | Calibration | 3 | $\mathbf{\nabla}$ | <b>1</b> 1547         | 5.0000 | 2309.4353 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d | Calibration | 4 | V                 | <b>1</b> 1 <b>171</b> | 5.0000 | 2234.1786 |
| D;\MassHunter\Data\2210104ACAL\2210104B_06.d | Calibration | 5 | $\mathbf{\nabla}$ | 10100                 | 5.0000 | 2019.9560 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d | Calibration | 6 | V                 | <b>1</b> 14 <b>53</b> | 5.0000 | 2290.5276 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d | Calibration | 7 |                   | 12565                 | 5.0000 | 2513.0390 |
|                                              |             |   |                   |                       |        |           |

PFODA

| Calibration STD                                                                                                                                                                                          | Cal Type    | Level | Enabled | Response      | Exp Conc<br>(ng/mL) | RF     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|---------|---------------|---------------------|--------|
| D:\MassHunter\Data\2210104ACAL\2210104B_02.d                                                                                                                                                             | Calibration | 1     |         | 536           | 0.5000              | 0.5175 |
| D:\MassHunter\Data\2210104ACAL\2210104B_03.d                                                                                                                                                             | Calibration | 2     | V       | 1 <b>661</b>  | 1.2500              | 0.6070 |
| D:\MassHunter\Data\2210104ACAL\2210104B_04.d                                                                                                                                                             | Calibration | 3     |         | 6433          | 5.0000              | 0.5571 |
| D:\MassHunter\Data\2210104ACAL\2210104B_05.d                                                                                                                                                             | Calibration | 4     | V       | 12351         | 10.0000             | 0.5528 |
| D:\MassHunter\Data\2210104ACAL\2210104B_06.d                                                                                                                                                             | Calibration | 5     |         | 260 <b>57</b> | 20.0000             | 0.6450 |
| D:\MassHunter\Data\2210104ACAL\2210104B_07.d                                                                                                                                                             | Calibration | 6     | V       | 135974        | 100.0000            | 0.5936 |
| D:\MassHunter\Data\2210104ACAL\2210104B_08.d                                                                                                                                                             | Calibration | 7     |         | 280200        | 200.0000            | 0.5575 |
| PFODA - 7 Levels, 6 Levels Used, 7 Points, 6 Points U<br>% ×10 <sup>-1</sup> y = 0.595113 * x<br>2.2 R <sup>2</sup> = 0.99952908<br>7 ype:Linear, Origin:Force, Weight:None<br>C 1.8 -<br>1.6 -<br>1.4 - | sed, 13 QCs |       |         |               | 0                   |        |

Target Compound

1.6 -1.4 -1.2 -0.8 -0.6 -0.4 -0.2 -0 --0.2 -

-2

 $\frac{1}{0}$   $\frac{1}{2}$ 

8 10

4 6

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Relative Concentration

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1201

Dilution

Samp Type Calibration Comment MRA,QQQ2;Cal

1

Data File Acq Method

#### PFAS40Poroshell093020 J Inj Vol 2 1/4/2021 17:03 Acq Date

Sample Chromatogram





Position P1-A1

2210104B\_02.d

### Quantitation Results

| •            |                   |               |                      |                        |                   | ISTD/Surr       | Conc             | Spike         |                |              |      |
|--------------|-------------------|---------------|----------------------|------------------------|-------------------|-----------------|------------------|---------------|----------------|--------------|------|
| Compound     | Response          | RT            | ISTD                 | ISTD Resp              | ISTD RT           | %Rec            | (ng/mL)          | %Rec          | SNR            | Symm         | MInt |
| M2PFDA       | 70989.538         | 4.149         |                      |                        |                   | 102.23          | 20.4452          | 102.23        | 133.15         | 1.58         |      |
| M2PFH×A      | 191693.899        | 2,152         |                      |                        |                   | 98.68           | 39.4725          | 98.68         | INF            | 1.59         |      |
| M2PFOA       | 79348.543         | 3.239         |                      |                        |                   | 100.33          | 20.0656          | 100.33        | 2723.87        | 1.70         |      |
| M4PFOS       | 49704.761         | 3.703         |                      |                        |                   | 98.33           | 19 <b>.666</b> 0 | 98.33         | 12102.57       | 1.52         |      |
| MPFOA        | 235.053           | 3.248         |                      |                        |                   | 0.00            | 21.0250          | 84.10         | 1.12           | 1.63         |      |
| M3PFBA       | 3508.023          | 0.464         |                      |                        |                   | 0.00            | 4.7847           | 95 <b>.69</b> | 129.94         | 1.57         |      |
| HFPO-DA      | 143.354           | 2.404         | M3HFPODA             | 786                    | 2.384             | 1 <b>17.5</b> 2 | 1.2021           | 120.21        | 0.11           | 0.85         |      |
| 4;2 FTS      | 342.577           | 2.114         | M2 4:2 FT\$          | 2457                   | 2. <b>0</b> 95    | 99.55           | 0.4418           | 94 <b>.29</b> | 9.22           | 1.11         |      |
| 6:2 FTS      | 740.285           | 3.226         | M2 6:2 FTS           | 4656                   | 3.216             | 103.01          | 0.4936           | 103.81        | 12.09          | 1.42         |      |
| ADONA        | 5309.869          | 2.878         | M8PFOA               | 21881                  | 3.247             | 99.69           | 0.3637           | 76.98         | 116.74         | 1.73         |      |
| 8:2 FTS      | 819.752           | 4.129         | M2 8:2 FTS           | 4170                   | 4.128             | 100.57          | 0.5473           | 114.01        | 32.52          | 1.65         |      |
| FOSA         | 1376.017          | 4.335         | M8FOSA               | 13392                  | 4.335             | 99.26           | 0.3758           | 75.16         | 42.92          | 1.57         |      |
| 9CI-PF3ONS   | 3770.919          | 3.979         | M8PFO\$              | 10771                  | 3,702             | 104.53          | 0.3659           | 78.42         | 34,72          | 1.42         |      |
| PFDS         | 1143.846          | 4.676         | M6PFDA               | 15479                  | 4.14 <b>9</b>     | 99.41           | 0.4535           | 94.0 <b>0</b> | 36.34          | 1.66         |      |
| 11CI-PF3OUdS | 3633.656          | 4.979         | M8PFOS               | 10771                  | 3.702             | 104.53          | 0.3734           | 79.19         | 38.80          | 1.57         |      |
| PFHpS        | 1023.982          | 3.288         | M8PFOA               | 21 <b>881</b>          | 3.217             | 99.69           | 0.1153           | 87.15         | 19.11          | 1.70         |      |
| 10:2 FTS     | 629.2 <b>0</b> 5  | 5.202         | M2 8:2 FTS           | 4170                   | 4.128             | 100.57          | 0.4187           | 86.87         | 26.38          | 1.27         |      |
| PENS         | 1154.576          | 4.181         | M9PFNA               | 20 <b>0</b> 36         | 3.669             | <b>96.9</b> 2   | 0.4565           | 94.92         | 45.08          | 1.49         |      |
| PFDoS        | 1338.753          | 5.614         | M8PFOS               | 10771                  | 3.702             | 104.53          | 0.4123           | 85.19         | 6.89           | 1.92         |      |
| PFPeS        | 819.663           | 2.332         | M5PFHxA              | 20691                  | 2.151             | 99.86           | 0.3940           | 83.73         | 26.16          | 1.36         |      |
| PFODA        | 535.671           | 6.697         | M2PFHxDA             | 10351                  | 6.348             | 92.74           | 0.4348           | 86.96         | 13.38          | 1.50         |      |
| NEtFOSAA     | 1274.638          | 4.670         | d5-NEtFOSAA          | 11069                  | 4.641             | 102.18          | 0.4072           | 81.44         | 13.67          | 0.88         | m    |
| PFH×DA       | 1086.577          | 6.342         | M2PFHxDA             | 10351                  | 6.348             | 92.74           | 0.5716           | 114.32        | 45.22          | 1.73         |      |
| NMeF0\$AA    | 1353.322          | 4.384         | d3-NMeFO\$AA         | 7009                   | 4.374             | 90.81           | 0.4697           | 93.94         | 25.77          | 0.85         | m    |
| PFBA         | 3585.649          | 0.466         | MPFBA                | 24880                  | 0.463             | 101.49          | 0.3883           | 77.67         | 38.77          | 1 <b>.40</b> |      |
| PFBS         | 909 <b>.54</b> 8  | 1.507         | M3PFBS               | 8833                   | 1.505             | 9 <b>6.</b> 52  | 0 <b>.4</b> 039  | 91.06         | 32.14          | 1.50         |      |
| NMcFOSA      | 476.892           | 5.354         | d-NMcFOSA            | 5632                   | 5.353             | 93.66           | 0.4088           | 81.76         | 19.37          | 1.50         |      |
| PFDA         | 1419.673          | 4.141         | M6PFDA               | 15479                  | 4.149             | 99.41           | 0.3949           | 78.99         | 51.78          | 1.66         | m    |
| PFDoA        | 1177.368          | 5.196         | MPFDoA               | 13043                  | 5.186             | 96.44           | 0.4715           | 94.31         | <b>47.1</b> 4  | 1.30         |      |
| NETFOSA      | 683.632           | 5.695         | d-NEtFOSA            | 6595                   | 5.684             | 105.27          | 0.4120           | 82.41         | 41.42          | 1.37         |      |
| PFHpA        | 2013.659          | 2.798         | M4PF <b>H</b> pA     | 20817                  | 2.797             | 101.55          | 0.4065           | 81.30         | 1 <b>7.1</b> 3 | 1.50         |      |
| PFHxA        | 2036.570          | 2.162         | M5PFHxA              | 20691                  | 2.151             | 99.86           | 0.4314           | 86.28         | 37.85          | 1.40         |      |
| NMeFOSE      | 910.600           | 5.388         | d7-NMeFOSE           | 7541                   | 5.3 <b>79</b>     | 103.16          | 0.4113           | 82.26         | 52.92          | 1.71         |      |
| PFLIxS       | 963.291           | <b>2.</b> 875 | M3PFI IxS            | 9925                   | 2.874             | 103.95          | 0.3575           | 78.22         | 9.36           | 0.78         | m    |
| PFNA         | 1 <b>825.</b> 597 | 3.670         | M9PFNA               | <b>2</b> 0 <b>0</b> 36 | 3. <b>6</b> 69    | 96.92           | 0.4117           | 82.34         | 39.20          | 1.69         |      |
| NETFOSE      | 1090.104          | 5.703         | d9-NEtFOSE           | 9859                   | 5.682             | 99.98           | 0.5393           | 107.87        | 45.96          | 1.54         |      |
| PFOA         | 2198.175          | 3.240         | M8PFOA               | 21881                  | 3.247             | 99.69           | 0.4621           | 92.42         | 10.82          | 1 <b>.70</b> | m    |
| PFOS         | 1235.725          | 3.694         | M&PFOS               | 10 <b>771</b>          | 3.702             | 104.53          | 0.3602           | 77.62         | 17.21          | 0.82         | m    |
| PFPeA        | 2239,372          | 1.265         | M5PFPeA              | 16 <b>7</b> 44         | 1.263             | 98.63           | 0.4187           | 83.75         | 17.26          | 1.33         |      |
| PFMPA        | 1864.870          | 0.688         | M5PFPeA              | 16744                  | 1.263             | 98.63           | 0.3985           | 79.71         | 71.21          | 1.67         |      |
| PFTA         | 638.299           | 5.957         | M2PFTA               | 9 <b>4</b> 00          | 5. <del>944</del> | 99.39           | 0.3939           | 78.79         | 7.55           | 1.30         |      |
| PFMBA        | 2051.541          | 1.547         | M5PFHxA              | 20691                  | 2.151             | 99.86           | 0.3984           | 79.67         | 2 <b>7.1</b> 0 | 1.48         |      |
| PFTrDA       | 968.309           | 5.634         | MPFDoA               | 13043                  | 5.186             | 96.44           | 0.4906           | 98.11         | 7.48           | 1.39         |      |
| PFEE\$A      | 3225.255          | 1.876         | M3PFH <sub>x</sub> S | 9925                   | 2.874             | 103.95          | 0.3718           | 83.54         | 44.56          | 1.30         |      |
| PFUnA        | 158 <b>2.01</b> 5 | 4.674         | M7PFUnA              | 1717 <b>1</b>          | 4.672             | 102.85          | 0.4386           | 87.71         | 15.8 <b>2</b>  | 1.50         |      |
| NFDHA        | 1495.926          | 2.027         | M4PFHpA              | 20817                  | 2.797             | 101.55          | 0.3636           | <b>72.7</b> 1 | <b>45.5</b> 4  | 1.36         |      |





4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS





407,0

### ADONA



#### 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA









#### M2PFTA





### M7PFUnA





#### NEtFOSAA







## PFHxS





#### d7-NMeFOSE



Cours

1.5

0.75 0.5

2.6 2.3




#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1202

Samp Type Calibration

Dilution

1

Comment MRA,QQQ2;Cal

Data File Acq Method

PFAS40Poroshell093020 J Inj Vol 2 Acq Date

1/4/2021 17:16





2210104B\_03.d

Position P1-A2

Quantitation Results

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISTD/Surr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Response          | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ISTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISTD Resp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISTD RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ng/mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Symm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MInt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 73052 368         | 4.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.0393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3306.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 202134.324        | 2,152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <b>4.</b> 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.6224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6623.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 84294.494         | 3.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 106.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.3163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1233.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 52997.845         | 3.703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <b>4.8</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.9690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3201.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 381.581           | 3.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34.1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 136.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3953.055          | 0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.3917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 489.352           | 2.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M3HFPQDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.3141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 212.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 944.456           | 2.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2 4:2 FT\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. <b>0</b> 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1654.246          | 3.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2 6:2 FTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37. <b>12</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13959.633         | 2.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M8PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 <b>4.3</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 502.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 <b>.</b> 4 <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1850.639          | 4.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2 8:2 FTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3588.747          | 4.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M8FOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 <b>0</b> 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10193,539         | 3,979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M8PFO\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,0224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 369,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2730,734          | 4.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M6PFDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 <b>462</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9597 <b>.0</b> 02 | 4,989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M8PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2759.005          | 3,288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M8PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 <b>1.</b> 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1978,027          | 5.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2 8:2 FTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2449,225          | 4.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M9PFNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3433.532          | 5.623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M8PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2421.608          | 2.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M5PFHxA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1660.563          | 6.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2PFHxDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 <b>943</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3117.359          | 4.642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d5-NEtFOSAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2529.417          | 6.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2PFHxDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38 <b>.1</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3876.521          | 4,384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d3-NMeFOSAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 <b>9</b> 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8903.317          | 0.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPEBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 114.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2320.283          | 1.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M3PFBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1553.590          | 5,354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d-NMcFOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 <b>9</b> 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3929.421          | 4,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M6PFDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2675.300          | 5.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPEDoA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1739.488          | 5.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d-NEtFOSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>97.</b> 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5352,244          | 2,798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M4PFHbA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 234.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5289.220          | 2.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M5PFHxA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 174.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2342.025          | 5.398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d7-NMeFOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.3 <b>79</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2385.297          | 2.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M3PFI IxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4670.521          | 3.670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M9PENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 488.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2170.922          | 5.703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d9-NEtFOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 <b>0</b> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5371.518          | 3.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M8PFOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 <b>4.</b> 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 153.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3390.525          | 3.704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M&PFOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5276.961          | 1.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M5PFPeA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4758.363          | 0.698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M5PFPeA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 <b>5</b> 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103 <b>.50</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 161.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1998.693          | 5.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2PFTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5661.657          | 1.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M5PFHxA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56 <b>4</b> 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2801.371          | 5.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MPFDoA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9317. <b>0</b> 07 | 1.877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M3PFHxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3853.950          | 4.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M7PFUnA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 <b>.0</b> 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3992.406          | 2.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M4PFHpA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Response         73052.368         202134.324         84294.494         52997.845         381.581         3953.055         489.352         944.456         1654.246         13959.633         1850.639         3588.747         10193.539         2730.734         9597.002         2759.005         1978.027         2449.225         3433.532         2421.608         1660.563         3117.359         2529.417         3876.521         8903.317         2320.283         1553.590         3929.421         2675.300         1739.488         5352.244         5289.220         2342.025         2385.297         4670.521         2170.922         5371.518         3390.525         5276.961         4758.363         1998.693         5661.657         2801.371         9317.007         3853.950         3992.406   < | ResponseRT73052.3684.149202134.3242.15284294.4943.24852997.8453.703381.5813.2483953.0550.464489.3522.404944.4562.0861654.2463.22613959.6332.6871850.6394.1383588.7474.33510193.5393.9792730.7344.6769597.0024.9892759.0053.2881978.0275.1742449.2254.172343.5325.6232421.6082.3231660.5636.6973117.3594.6422529.4176.3423876.5214.3848903.3170.4662320.2831.5071553.5905.3543929.4214.1502675.3005.1781739.4885.6955352.2442.7985289.2202.1532342.0255.3982385.2972.8664670.5213.6702170.9225.7035371.5183.2493390.5253.7045276.9611.2654758.3630.6981998.6935.9465661.6571.5472801.3715.6259317.0071.8773853.9504.6653992.4062.027 | Response         RT         ISTD           73052.366         4.149           202134.324         2.152           84294.494         3.248           52997.845         3.703           381.581         3.248           3953.055         0.464           489.352         2.404           944.456         2.086           944.456         2.086           13959.633         2.887           1850.639         4.138           19358.747         4.335           10193.539         3.979           3.79         M8PFOS           2730.734         4.676           4.676         M6PFDA           957.002         4.989           4.989         M8PFOS           2759.005         3.288           21759.005         3.288           3433.532         5.623           2449.225         4.172           978.027         5.174           2449.225         4.172           3117.359         4.642           45-NEFOSAA           2529.417         6.342           3876.521         4.384           3876.521         4.384 | Response         RT         ISTD         ISTD         RSTD         RSTD <thrstd< th="">         RSTD         RSTD         <t< td=""><td>Response         RT         ISTD         ISTD         ISTD Resp         ISTD RT           73052.366         4.149         202134.324         2,152         4294.494         3,248           3297.845         3,703         331.581         3,248         3953.055         0.464           499.352         2.404         M3HFPODA         607         2.393           944.456         2.086         M2 e12 FTS         2718         3.226           13959.633         2.687         M8PFOA         22009         3.247           1850.639         4.138         M2 8:2 FTS         4449         4.129           3588.747         4.335         M8FOA         22009         3.247           1850.639         4.138         M2 8:2 FTS         4449         4.129           9587.002         4.989         M8FOS         10418         3.702           2730.734         4.676         M6PFDA         17462         4.149           9597.002         4.989         M8FOS         10418         3.702           2730.734         4.676         M6PFDA         2307         3.669           3433.532         5.623         M8PFOS         10418         3.702           2449.2</td><td>Response         RT         ISTD         ISTD Resp         ISTD RT         %MRc           73052.366         4.149         105.20         104.06           84294.434         3.248         106.58           52997.845         3.703         0.00           9953.055         0.464         0.00           9953.055         0.464         0.00           9953.055         0.464         0.00           983.052         2.404         M3HFPODA         607         2.393         90.75           944.456         2.086         M2 4:2 FTS         2599         2.095         103.68           1654.246         3.226         M2 6:2 FTS         4718         3.226         104.37           1850.639         4.138         M2 8:2 FTS         4449         4.129         107.29           588.747         4.335         M6FOSA         14091         4.335         104.45           10193.539         3.979         M8PFOS         10418         3.702         101.11           2759.005         3.288         M8PFOA         22909         3.247         104.37           1978.027         5.174         M2 8:2 FTS         4449         129         107.29</td><td>Response         RT         ISTD         ISTD         Resp         ISTD Resp         ISTD R         Pore         Pore</td><td>Tesponse         Fr         ISTD         <thistd< th="">         ISTD         ISTD         <t< td=""><td>Hespones         FT         ISTD         ISTD Resp         ISTD Resp<!--</td--><td>Besponse         FT         ISTD         ISTD         ISTD         PARCE         (FW)         YMEE           20023.06         4.149         ISTD         ISTD         IBS.0         105.20         21.0393         105.20         3306.58         1.49           202134.324         2.152         IBS.0         104.63         41.163         106.58         123.48         1.52           25297.045         3.703         IBS.051         3.248         IBS.051         3.247         IBS.351         3.248         IBS.051         3.247         IBS.351         7.28.2         IBS.351         3.248         IAS.35         IBS.351         IBS.355         3.248         IBS.355</td></td></t<></thistd<></td></t<></thrstd<> | Response         RT         ISTD         ISTD         ISTD Resp         ISTD RT           73052.366         4.149         202134.324         2,152         4294.494         3,248           3297.845         3,703         331.581         3,248         3953.055         0.464           499.352         2.404         M3HFPODA         607         2.393           944.456         2.086         M2 e12 FTS         2718         3.226           13959.633         2.687         M8PFOA         22009         3.247           1850.639         4.138         M2 8:2 FTS         4449         4.129           3588.747         4.335         M8FOA         22009         3.247           1850.639         4.138         M2 8:2 FTS         4449         4.129           9587.002         4.989         M8FOS         10418         3.702           2730.734         4.676         M6PFDA         17462         4.149           9597.002         4.989         M8FOS         10418         3.702           2730.734         4.676         M6PFDA         2307         3.669           3433.532         5.623         M8PFOS         10418         3.702           2449.2 | Response         RT         ISTD         ISTD Resp         ISTD RT         %MRc           73052.366         4.149         105.20         104.06           84294.434         3.248         106.58           52997.845         3.703         0.00           9953.055         0.464         0.00           9953.055         0.464         0.00           9953.055         0.464         0.00           983.052         2.404         M3HFPODA         607         2.393         90.75           944.456         2.086         M2 4:2 FTS         2599         2.095         103.68           1654.246         3.226         M2 6:2 FTS         4718         3.226         104.37           1850.639         4.138         M2 8:2 FTS         4449         4.129         107.29           588.747         4.335         M6FOSA         14091         4.335         104.45           10193.539         3.979         M8PFOS         10418         3.702         101.11           2759.005         3.288         M8PFOA         22909         3.247         104.37           1978.027         5.174         M2 8:2 FTS         4449         129         107.29 | Response         RT         ISTD         ISTD         Resp         ISTD Resp         ISTD R         Pore         Pore | Tesponse         Fr         ISTD         ISTD <thistd< th="">         ISTD         ISTD         <t< td=""><td>Hespones         FT         ISTD         ISTD Resp         ISTD Resp<!--</td--><td>Besponse         FT         ISTD         ISTD         ISTD         PARCE         (FW)         YMEE           20023.06         4.149         ISTD         ISTD         IBS.0         105.20         21.0393         105.20         3306.58         1.49           202134.324         2.152         IBS.0         104.63         41.163         106.58         123.48         1.52           25297.045         3.703         IBS.051         3.248         IBS.051         3.247         IBS.351         3.248         IBS.051         3.247         IBS.351         7.28.2         IBS.351         3.248         IAS.35         IBS.351         IBS.355         3.248         IBS.355</td></td></t<></thistd<> | Hespones         FT         ISTD         ISTD Resp         ISTD Resp </td <td>Besponse         FT         ISTD         ISTD         ISTD         PARCE         (FW)         YMEE           20023.06         4.149         ISTD         ISTD         IBS.0         105.20         21.0393         105.20         3306.58         1.49           202134.324         2.152         IBS.0         104.63         41.163         106.58         123.48         1.52           25297.045         3.703         IBS.051         3.248         IBS.051         3.247         IBS.351         3.248         IBS.051         3.247         IBS.351         7.28.2         IBS.351         3.248         IAS.35         IBS.351         IBS.355         3.248         IBS.355</td> | Besponse         FT         ISTD         ISTD         ISTD         PARCE         (FW)         YMEE           20023.06         4.149         ISTD         ISTD         IBS.0         105.20         21.0393         105.20         3306.58         1.49           202134.324         2.152         IBS.0         104.63         41.163         106.58         123.48         1.52           25297.045         3.703         IBS.051         3.248         IBS.051         3.247         IBS.351         3.248         IBS.051         3.247         IBS.351         7.28.2         IBS.351         3.248         IAS.35         IBS.351         IBS.355         3.248         IBS.355 |





5,5 5,6 5,7 5,8 Acquieillor Hrre (mi

ο.

200

a 5,6 5,7 5,8 Acquisition Time (mir)

a,a



### M2PFTA





### M7PFUnA





#### NEtFOSAA







## PFHxS





#### d7-NMeFOSE



2.6 2.3



5,8 5,9 6 6,1 Acquieillor Hrre (r

0.5

5,8

5,9 6 8,1 Aquisi kin Tine (min

400 800 Vase-to-Charge (m/z)



#### Batch Data Path Last Calib Update

D:\MassHunter\Data\2210104ACAL\QuantResults\22010104A.batch.bin 1/5/2021 14:27

Samp Name 1203

Samp Type Calibration

Dilution

1

Comment MRA,QQQ2;Cal

Data File Acq Method

Acq Method Acq Date

Date 1/4/2021 17:29

Sample Chromatogram



PFAS40Poroshell093020 J Inj Vol 2

2210104B\_04.d

Position P1-A3

# **Quantitation Results**

| <b>L</b>         |            |       |                 |               |                | ISTD/Surr       | Conc             | Spike          |                |                       |      |
|------------------|------------|-------|-----------------|---------------|----------------|-----------------|------------------|----------------|----------------|-----------------------|------|
| Compound         | Response   | RT    | ISTD            | ISTD Resp     | ISTD RT        | %Rec            | (ng/mL)          | %Rec           | SNR            | Symm                  | MInt |
| M2PFDA           | 74336.243  | 4.149 |                 |               |                | 107.05          | <b>21.409</b> 1  | 107.05         | 142424.56      | 1.42                  |      |
| M2PFHxA          | 207650.027 | 2,152 |                 |               |                | 106.90          | 42.7581          | 106.90         | 7340.04        | 1.59                  |      |
| M2PFOA           | 87606.126  | 3.248 |                 |               |                | 110.77          | 22.1538          | 110.77         | 3683.92        | 1.42                  |      |
| M4PFOS           | 55599.130  | 3.703 |                 |               |                | 109.99          | 21.9982          | 109.99         | 161.75         | 1.52                  |      |
| MPFOA            | 260.785    | 3.257 |                 |               |                | 0.00            | 23.3266          | 93.31          | 6.49           | 1.18                  |      |
| M3PFBA           | 4000.892   | 0.464 |                 |               |                | 0.00            | 5.4569           | 109.14         | 162.78         | 1.63                  |      |
| HFPQ-DA          | 852.523    | 2.386 | <b>M3HFPODA</b> | 664           | 2.384          | 99.23           | 8.4668           | 84.67          | 4.41           | 1.66                  |      |
| 4:2 FTS          | 3271.125   | 2.095 | M2 4:2 FT\$     | 2587          | 2. <b>0</b> 95 | 104.81          | 4.0063           | 85.51          | 139.41         | 1.56                  |      |
| 6:2 FTS          | 6437.328   | 3.217 | M2 6:2 FTS      | 4 <b>8</b> 80 | 3.216          | 107.96          | 4 <b>.0</b> 953  | 86.13          | 455.65         | 1.60                  |      |
| ADONA            | 61355.420  | 2.887 | M8PFOA          | 23073         | 3.247          | 105.12          | 3.9856           | 84.35          | 524.46         | 1 <b>.</b> 4 <b>4</b> |      |
| 8:2 FTS          | 7583.961   | 4.129 | M2 8:2 FTS      | 4092          | 4.129          | 98.69           | <b>5.</b> 1594   | 107.49         | 5217.70        | 1.56                  |      |
| FOSA             | 15244.180  | 4.335 | M8FOSA          | 13814         | 4,335          | 102.39          | 4.0361           | 80.72          | 894.14         | 1.37                  |      |
| 9CI-PE3ONS       | 43091.325  | 3.970 | M8PEOS          | 10700         | 3.702          | 103.84          | 4.2084           | 90.21          | 1600.67        | 1.56                  |      |
| PEDS             | 10826.778  | 4.676 | M6PEDA          | 16850         | 4.149          | 108.22          | 3,9436           | 81.73          | 211.85         | 1.59                  |      |
| 110-PE3OUdS      | 42018.711  | 4 979 | M8PEOS          | 10700         | 3.702          | 103.84          | 4.3464           | 92.18          | 90.85          | 1.57                  |      |
| PEHpS            | 10790.938  | 3 288 | M8PEOA          | 23073         | 3.217          | 105.12          | 1.1501           | 87.10          | 149.13         | 1.12                  |      |
| 10-2 FTS         | 7363 561   | 5 183 | M2 8-2 FTS      | 4092          | 4 1 2 9        | 98.69           | 4 9937           | 103.60         | 510.27         | 1 4 3                 |      |
| PENS             | 11031 920  | 4 172 |                 | 21337         | 3 669          | 103.22          | 4 0962           | 85 16          | 67.66          | 1 49                  |      |
| PEDOS            | 13513 978  | 5.623 | M&PEOS          | 10700         | 3 702          | 103.84          | 4 1896           | 86 56          | 745 38         | 1 37                  |      |
| PEPes            | 9793 459   | 2 323 | M5PEHyA         | 70841         | 2 151          | 100.58          | 4 4345           | 94.75          | 98.07          | 1 50                  |      |
|                  | 6432 546   | 6.697 |                 | 11547         | 6 348          | 103.46          | 4 6803           | 03.61          | 25378.83       | 1.50                  |      |
|                  | 13161 617  | 4 651 |                 | 11476         | 4 641          | 105.40          | 4.0005           | 91.11          |                | 0.93                  |      |
|                  | 10270 020  | 4.001 |                 | 11547         | 6 340          | 103.46          | 4 9046           | 07.00          |                | 1 73                  |      |
|                  | 14407 076  | 0.342 |                 | 7069          | 4 265          | 102.75          | 4.0940           | 97.09<br>97.07 | 62 /1          | 1.70                  | -    |
|                  | 29460 210  | 4.375 |                 | 7900          | 0.462          | 103.23          | 4.3965<br>4 A61E | 0/.9/          | 100.42         | 1 21                  |      |
| PEDA             | 3045U.21U  | 0.466 | MADERS          | 23509         | 1.505          | 104.06          | 4.0015           | 01.23          | 100.00         | 1.31                  |      |
|                  | 5996.201   | 1.507 |                 | 9090          | 1.505          | 105.88          | 3.0412           | 82.10          | 102.15         | 1.50                  |      |
| NMCFUSA          | 5891.799   | 5.354 |                 | 5768          | 5.55           | 95.92           | 4.9316           | 98.63          | 192.15         | 1.58                  |      |
| PFDA             | 15950.945  | 4,150 |                 | 16850         | 4.149          | 108.22          | 4.0764           | 81.53          | 446.82         | 1.49                  |      |
| PFDOA            | 12908.951  | 5.18/ | MPFDOA          | 13532         | 5.1//          | 100.06          | 4.9831           | 99.66          | 396.10         | 1.48                  |      |
| NETHOSA          | 6291.918   | 5.695 | d-NETFOSA       | 6350          | 5.684          | 101.35          | 3.938/           | /8.//          | 15.68          | 1.43                  |      |
| PFHpA            | 19789.090  | 2.798 | M4PFHpA         | 21342         | 2.797          | 104.11          | 3.8963           | 77.93          | 78.92          | 1.42                  |      |
| PFHxA            | 19829.209  | 2.153 | M5PFHxA         | 20841         | 2.151          | 100.58          | 4.1699           | 83.40          | 613.83         | 1.46                  |      |
| NMeFOSE          | 8709.206   | 5.388 | d7-NMeFOSE      | 7275          | 5.379          | 99.52           | 4.0774           | 81.55          | 213.34         | 1.54                  |      |
| P <b>FI I</b> xS | 10197.146  | 2.875 | M3PFI IxS       | 9702          | 2.874          | 101.61          | 3.8713           | 84.71          | 470. <b>72</b> | 0.80                  | m    |
| PFNA             | 19190.530  | 3.670 | M9PFNA          | 21337         | 3. <b>6</b> 69 | 103.22          | 4 <b>.0</b> 636  | 81.27          | 677.35         | 1.52                  |      |
| NETFOSE          | 9636.742   | 5.703 | d9-NEtFOSE      | 9901          | 5 <b>.6</b> 82 | 100.41          | 4.7477           | 94.95          | 294.13         | 1 <b>.40</b>          |      |
| PFOA             | 21723.609  | 3.240 | M8PFOA          | 23073         | 3.247          | 105.12          | 4.3309           | 86.62          | 359.77         | 1 <b>.70</b>          |      |
| PFOS             | 13315.296  | 3.704 | M&PFOS          | 10700         | 3.702          | 103.84          | 3.9068           | 84.20          | INF            | 0 <b>.78</b>          | m    |
| PFPeA            | 22502.710  | 1.265 | M5PFPeA         | 17 <b>771</b> | 1.263          | 104.68          | <b>3.9</b> 647   | 79.29          | 1595.73        | 1.33                  |      |
| PFMPA            | 19466.667  | 0.698 | M5PFPeA         | 17 <b>771</b> | 1.263          | 104.68          | <b>3.920</b> 0   | 78.40          | 586.13         | 1.36                  |      |
| PFTA             | 7628.801   | 5.946 | M2PFTA          | 9200          | 5.954          | 97.27           | 4.8108           | 96.22          | 156.00         | 1.72                  |      |
| PFMBA            | 22962.442  | 1.547 | M5PFHxA         | 20841         | 2.151          | 100.58          | 4.4266           | 88.53          | 289.84         | 1.56                  |      |
| PFTrDA           | 10522.434  | 5.625 | MPFDoA          | 13532         | 5.177          | 100.06          | 5.1381           | 102.76         | 130.09         | 1.60                  |      |
| PFEESA           | 37674.793  | 1.876 | M3PFHxS         | 9702          | 2.874          | 101.61          | 4.4426           | 99.83          | 494.29         | 1.30                  |      |
| PFUnA            | 14767.910  | 4.665 | M7PFUnA         | 17240         | 4 <b>.6</b> 62 | 1 <b>03.2</b> 6 | 4 <b>.0</b> 775  | 81.55          | INF            | 1.57                  |      |
| NFDHA            | 16312.406  | 2.027 | M4PFHpA         | 21342         | 2.797          | 104.11          | 3.8668           | 77.34          | 905.36         | 1.43                  |      |



4,5

4,5

560 550 Vase-Io-Charge (m/z)

510









#### M2PFTA





### M7PFUnA





#### NEtFOSAA





5,3 5,4 5,5 Acquisitor Firre (r

5,5 5,2

0.2

•

52

0.5

200

a,3 a,4 a,a Aqquisi ion Time (min)

S20 400 500 Mass-to-Ctharge (m/2)

0.2



## **NMeFOSE**



## PFHxS





#### d7-NMeFOSE



2.6







C.3 0.4 0.5 0.6 Acquisition Line (min)

0.2

0.1

0.3 0.4 0.5 0.6 Acquisition Time (min)

٦

16C 190 200 210 V-#86-to-Ctharge (m/z)

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Data File Acq Method

PFAS40Poroshell093020 J Inj Vol 2 Acq Date

1/4/2021 17:42 Sample Chromatogram



2210104B\_05.d

Position P1-A4

Samp Name 1204

Dilution Samp Type Calibration

Comment MRA,QQQ2;Cal

1

|           |                    |                |                      |                |                  | ISTD/Surr       | Conc                     | Spike          |                  |              |      |
|-----------|--------------------|----------------|----------------------|----------------|------------------|-----------------|--------------------------|----------------|------------------|--------------|------|
| Compound  | Response           | RT             | ISTD                 | ISTD Resp      | ISTD RT          | %Rec            | (ng/mL)                  | %Rec           | SNR              | Symm         | MInt |
| M2PFDA    | 74992.174          | 4.149          |                      |                |                  | 107.99          | 21.5980                  | 107.99         | 1 <b>723.0</b> 0 | 1.42         |      |
| M2PFH×A   | 198751 124         | 2,152          |                      |                |                  | 102.31          | 40.9257                  | 102.31         | 2615.04          | 1.59         |      |
| M2PFOA    | 82679.694          | 3.248          |                      |                |                  | 104.54          | 20.9080                  | 104.54         | 2402.09          | 1.42         |      |
| M4PFOS    | 52828.369          | 3.703          |                      |                |                  | 104.51          | <b>20.9</b> 019          | 104.51         | 4085.93          | 1.52         |      |
| MPFOA     | 261.377            | 3.238          |                      |                |                  | 0.00            | 23.3796                  | 93.52          | 7.99             | 3.70         |      |
| M3PEBA    | 3750.010           | 0.464          |                      |                |                  | 0.00            | 5.1148                   | 102.30         | 38.05            | 1.52         |      |
| HEPO-DA   | 1697.622           | 2 376          | M3HEPODA             | 651            | 2,384            | 97.35           | 17.1846                  | 85.92          | 14. <b>1</b> 7   | 1.58         | m    |
| 4.2 FTS   | 6823 245           | 2 095          | M2 4·2 FTS           | 2622           | 2 095            | 106.23          | 8 2456                   | 88.00          | 527.65           | 1 64         |      |
| 6:2 FTS   | 13737 680          | 3 226          | M2 6:2 FTS           | 4670           | 2.000            | 103.51          | 9 1177                   | 05.87          | 1183 15          | 1 4 7        |      |
|           | 170576 814         | 2.887          | MSDEOA               | 72855          | 3,223            | 104.13          | 8 4047                   | 89.89          | 0835.49          | 1 44         |      |
|           | 14464 667          | 2.007          |                      | 4097           | 1 1 7 9          | 09.47           | 0.9621                   | 102.74         | 00.10<br>CC 77   | 1.43         |      |
| 5.2113    | 20040 075          | 4.136          | M9EOCA               | 12500          | 4,120            | 100.07          | 9.0051                   | 102.74         | 1707 44          | 1.42         |      |
|           | 23040.3/3          | 4.335          |                      | 10156          | 4,333<br>2 702 C | 100.07          | 0.0004                   | 00.00          | 2070 16          | 1.50         |      |
|           | 09094.002          | 3 <u>.</u> 970 | MOPFUS               | 10150          | 3,7UZ            | 90.5/           | 9.2265                   | 90.91          | 39/9.10          | 1.00         |      |
| PFDS      | 21007.123          | 4.685          | MOPFDA               | 15157          | 4,149            | 97.34           | 8.5066                   | 88.15          | 118.09           | 1.39         |      |
|           | 84/96.132          | 4.979          | MOPHOS               | 10156          | 3./02            | 98.57           | 9.2404                   | 97.99          | 5805.30          | 1.57         |      |
| PEHpS     | 21867 769          | 3.288          | M8PFOA               | 22855          | 3.217            | 104.13          | 8.1901                   | 89.09          | 2504.39          | 1.60         |      |
| 10:2 FTS  | 15103.372          | 5.183          | M2 8:2 FIS           | 4083           | 4 128            | 98.4/           | 10.2663                  | 106.50         | 160.55           | 1.43         |      |
| PFNS      | 22046.085          | 4.172          | M9PFNA               | 21148          | 3.669            | 102.30          | 8.2591                   | 85.85          | 1616.87          | 1.49         |      |
| PFDoS     | 27564.711          | 5.623          | M8PFOS               | 101.56         | 3.702            | 98.57           | 9 <b>.0</b> 028          | 93.00          | 1093.39          | 1.37         |      |
| PFPeS     | 19006.200          | 2.323          | M5PFHxA              | 21 <b>05</b> 4 | 2.161            | 101.61          | 8.9773                   | 95.40          | 671.83           | 1.50         |      |
| PFODA     | 12350.605          | 6.697          | M2PFHxDA             | 11171          | 6.348            | 10 <b>0.09</b>  | <b>9.</b> 28 <b>9</b> 0  | 92.89          | 1 <b>44</b> 6.22 | 1 <b>.60</b> |      |
| NETFOSAA  | 27537.940          | 4.651          | d5-NEtFOSAA          | 10554          | 4.641            | 9 <b>7.</b> 43  | 9.2263                   | 92.26          | 37.46            | 0.88         | m    |
| PFH×DA    | 20076.150          | 6.342          | M2PFHxDA             | 1117 <b>1</b>  | 6.348            | 100.09          | 9.7858                   | 97.86          | 883.91           | 1.63         |      |
| NMeF0\$AA | 28814.778          | 4.384          | d3-NMeFO\$AA         | 7393           | 4.374            | 95.79           | 9.4816                   | 94.82          | <b>37.1</b> 1    | 1.05         | m    |
| PFBA      | 80167.086          | 0.466          | MPFBA                | 25 <b>001</b>  | 0.463            | 101.98          | 8 <b>.6</b> 4 <b>0</b> 3 | 86.40          | 270.41           | 1.31         |      |
| PFBS      | 17888 <b>.4</b> 85 | 1.507          | M3PFBS               | 9204           | 1.505            | 10 <b>0.</b> 57 | 7.6228                   | 85 <b>.94</b>  | 135.19           | 1.36         |      |
| NMeFOSA   | 11701.624          | 5.364          | d-NMcFOSA            | 6082           | 5.344            | 101.13          | 9.2900                   | 92.90          | 167.62           | 1.28         |      |
| PFDA      | 30892.942          | 4.141          | M6PFDA               | 15157          | 4.149            | 97.34           | 8.7770                   | 87.77          | 696.69           | 1.66         |      |
| PFDoA     | 24806.757          | 5.187          | MPFDoA               | 12794          | 5.186            | 94.60           | 10.1287                  | 101.29         | 465.33           | 1.55         |      |
| NETFOSA   | 12783.469          | 5.695          | d-NEtFOSA            | 6515           | 5. <b>6</b> 84   | 103.99          | 7.7992                   | 77.99          | 52,99            | 1.50         |      |
| PFHDA     | 40936.365          | 2,798          | M4PFHbA              | 21024          | 2,797            | 102.56          | 8,1822                   | 81.82          | 269.88           | 1.42         |      |
| PFHxA     | 41550.419          | 2,153          | M5PFH <sub>x</sub> A | 21054          | 2.161            | 101.61          | 8.6492                   | 86.49          | 1607.08          | 1.62         |      |
| NMeFOSE   | 18682.596          | 5.398          | d7-NMeFOSE           | 7171           | 5.379            | 98.10           | 8.8732                   | 88.73          | 1839.70          | 1.47         |      |
| PELIxS    | 20323.935          | 2.866          | M3PELIxS             | 10096          | 2.874            | 105.73          | 7.4149                   | 81.13          | 396.84           | 0.83         | m    |
| PENA      | 39779 425          | 3 670          | MOPENIA              | 21148          | 3 669            | 102.30          | 8 4986                   | 84 99          | 1551 72          | 1 52         |      |
| NETEOSE   | 19912 927          | 5 703          | d9-NETEOSE           | 10054          | 5 682            | 101.96          | 96610                    | 96.61          | 299 72           | 1 40         |      |
|           | 44148 897          | 3 2/0          | MSPEOA               | 22855          | 3 247            | 104 13          | 8 8856                   | 88 86          | 338 77           | 1 70         |      |
| DEOS      | 26026 660          | 3.240          | MADEOS               | 10156          | 3,217            | 08.57           | 8 3231                   | 80.60          | 201.40           | 0.70         | m    |
| DEDaA     | 44607 038          | 1 265          | MSDEDoA              | 17092          | 1 263            | 100.68          | 8 1714                   | 81 71          | 2780 11          | 1 22         |      |
|           | 40611 777          | 0.609          | MEDEDoA              | 17092          | 1 200            | 100.00          | 9 5075                   | 01.71<br>9E 03 | 2703.11          | 1.75         |      |
|           | 10011.322          | 0.090          | MODETA               | 1/092          | 1.203            | 100.08          | 0.3025                   | 03.02          | 2003.39          | 1.50         |      |
|           | 15412.051          | 5.946          |                      | 9145           | 5,954            | 96.70           | 9.77/3                   | 97.77          | 07.09            | 1.52         |      |
| PEMBA     | 46608.528          | 1.547          | MSPFHXA              | 21054          | 2,101            | 101.61          | 8.8940                   | 88.94          | 0L.\8            | 1.48         |      |
| PETRUA    | 20434.843          | 5.625          | MPFDOA               | 12794          | 5.186            | 94.60           | 10.5543                  | 105.54         | 104.04           | 1.60         |      |
| PRESA     | /6620.398          | 1.876          | M3PFHxS              | 10096          | 2.874            | 105.73          | 8.6826                   | 9/ 56          | 2880.54          | 1.30         |      |
| PEUNA     | 29653.967          | 4.665          | M7PFUnA              | 16783          | 4.662            | 100.52          | 8.4105                   | 84.11          | 215.07           | 1.57         |      |
| NFDHA     | 32715.629          | 2.036          | M4PFHpA              | 21 <b>02</b> 4 | 2.797            | 102.56          | 7.8726                   | 78.73          | 123.86           | 1.25         |      |



#### d5-NEtFOSAA





### PFDoS







### M2PFTA





#### M7PFUnA





#### NEtFOSAA





5,3 5,4 5,5 Acquisitor Firre (r

5,5 5,2

0.2

•

52

0.5

200

a,3 a,4 a,a Aqquisi ion Time (min)

S20 400 500 Mass-to-Ctharge (m/2)

0.2



## PFHxS



## d7-NMeFOSE



200 300 400 V-ass-to-Charge (m/z)

200





0.3 0.4 0.5 0.6 Acquisition Time (min)

C.3 0.4 0.5 0.6 Acquisition Line (min) 16C 190 200 210 V-#86-to-Ctharge (m/z)

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1205

Samp Type Calibration

Dilution

1

Comment MRA,QQQ2;Cal

Data File Acq Method

Acq Date

1/4/2021 17:55

Sample Chromatogram



PFAS40Poroshell093020 J Inj Vol 2

2210104B\_06.d

Position P1-A5

## Quantitation Results

|              |                             |       |              |                |                   | ISID/Surr      | Conc                     | Spike         |                           |               |      |
|--------------|-----------------------------|-------|--------------|----------------|-------------------|----------------|--------------------------|---------------|---------------------------|---------------|------|
| Compound     | Response                    | RT    | ISTD         | ISTD Resp      | ISTD RT           | %Rec           | (ng/mL)                  | %Rec          | SNR                       | Symm          | MInt |
| M2PFDA       | 64921.511                   | 4.149 |              |                |                   | 93.49          | 18.6976                  | 93 <b>.49</b> | 197.34                    | 1.49          |      |
| M2PFH×A      | 181436.392                  | 2,152 |              |                |                   | 93 <b>.40</b>  | 37.3604                  | 93.40         | 7357.64                   | 1.59          |      |
| M2PFOA       | 73467.359                   | 3.248 |              |                |                   | 92.89          | 18.5784                  | 92.89         | 2655.39                   | 1.42          |      |
| M4PFOS       | 4 <b>8</b> 670 <b>.24</b> 6 | 3.703 |              |                |                   | 96.28          | 19 <b>.256</b> 7         | 96.28         | 1347.75                   | 1.60          |      |
| MPFOA        | 231.682                     | 3.266 |              |                |                   | 0.00           | 20.7234                  | 82.89         | 6.83                      | 0.89          |      |
| M3PFBA       | 3621.964                    | 0.464 |              |                |                   | 0.00           | <b>4.940</b> 1           | 98.80         | 18.02                     | 1.65          |      |
| HFPQ-DA      | 3318.357                    | 2.386 | M3HFPODA     | 667            | 2.384             | 99.68          | 32.8052                  | 82.01         | 5.48                      | 1.50          |      |
| 4:2 FTS      | 13208.375                   | 2.104 | M2 4:2 FT\$  | 2523           | 2.104             | 102.24         | 16.5849                  | 88.50         | 1 <b>1</b> 54. <b>9</b> 5 | 1.41          |      |
| 6:2 FTS      | 26097.677                   | 3.226 | M2 6:2 FTS   | 4337           | 3.225             | 95.94          | 18.6839                  | 98.23         | 118.01                    | 1.42          |      |
| ADONA        | 265111.101                  | 2.887 | M8PFOA       | 21916          | 3.247             | 99.85          | 18.1303                  | 95.93         | 9603.21                   | 1.44          |      |
| 8:2 FTS      | 28787.591                   | 4.129 | M2 8:2 FTS   | 4129           | 4.128             | 99.58          | 19 <b>.4</b> 093         | 101.09        | 20 <b>45</b> .21          | 1.49          |      |
| FOSA         | 62733.618                   | 4.335 | M8FOSA       | 13770          | 4.335             | 102.07         | 16.6618                  | 83.31         | 276.64                    | 1.50          |      |
| 9CI-PF3ONS   | 187980.451                  | 3.970 | M8PFO\$      | 10428          | 3,702             | 101.21         | 1 <b>8.836</b> 4         | 100.95        | 636.05                    | 1.56          |      |
| PFDS         | 43888.387                   | 4.676 | M6PFDA       | 16 <b>02</b> 6 | 4.14 <b>9</b>     | 102.93         | 16.8081                  | 87.09         | 14 <b>87.1</b> 0          | 1.59          |      |
| 11CI-PF3OUdS | 179583.953                  | 4.979 | M8PFOS       | 10 <b>42</b> 8 | 3.702             | 101.21         | 19.0593                  | 101.06        | 9236.88                   | 1.50          |      |
| PFHpS        | 10212.680                   | 3.288 | M8PFOA       | 21916          | 3.217             | 99.85          | 16.2817                  | 85.12         | 1139.02                   | 1.50          |      |
| 10:2 FTS     | 29791.317                   | 5.183 | M2 8:2 FTS   | 4129           | 4.128             | 99.58          | 20.0230                  | 103.85        | 1388.58                   | 1.43          |      |
| PENS         | 457 <b>91.29</b> 4          | 4.172 | M9PFNA       | 21293          | 3.669             | 103.00         | 17 <b>.03</b> 79         | 88.55         | 1557.28                   | 1.49          |      |
| PFDoS        | 56099.821                   | 5.623 | M8PFOS       | 10428          | 3.702             | 101.21         | 1 <b>7.8</b> 447         | 92.17         | 2816.53                   | 1.37          |      |
| PFPeS        | 36548.616                   | 2.323 | M5PFHxA      | 19991          | 2.151             | 9 <b>6.</b> 48 | 18.1815                  | 96.61         | 200.54                    | 1.50          |      |
| PFODA        | 26056.943                   | 6.697 | M2PFHxDA     | 10100          | 6.348             | 90.49          | 21.6761                  | 108.38        | 977.30                    | 1.70          |      |
| NEtFOSAA     | 53164.604                   | 4.651 | d5-NEtFOSAA  | 10983          | 4.641             | 101.39         | 17.1165                  | 85.58         | INF                       | 0.83          | m    |
| PFHxDA       | 38439.302                   | 6.342 | M2PFHxDA     | 10100          | 6.348             | 90.49          | 2 <b>0.723</b> 6         | 103.62        | 969.20                    | 1.63          |      |
| NMeFOSAA     | 60705.837                   | 4.375 | d3-NMeFO\$AA | 7685           | 4.374             | 99.57          | 19.2166                  | 96.08         | INF                       | 1.14          | m    |
| PFBA         | 162538.008                  | 0.466 | MPFBA        | 23430          | 0.463             | 95.58          | 18 <b>.6</b> 923         | 93.46         | 427.26                    | 1.31          |      |
| PFBS         | 381 <b>02.16</b> 9          | 1.507 | M3PFBS       | 9118           | 1.514             | 99.63          | 16 <b>.</b> 38 <b>94</b> | 92.39         | 3071.08                   | 1.50          |      |
| NMeFOSA      | 23989.084                   | 5.354 | d-NMcFOSA    | 5670           | 5.353             | 94.29          | 20.4283                  | 102.14        | 101.11                    | 1.44          |      |
| PFDA         | 63543.640                   | 4.141 | M6PFDA       | 16 <b>02</b> 6 | 4.149             | 102.93         | 17.0743                  | 85.37         | 2129.56                   | 1.74          |      |
| PFDoA        | 51421.139                   | 5.178 | MPFDoA       | 12956          | 5.186             | 95.79          | 20 <b>.7</b> 334         | 103.67        | 2147.57                   | 1.55          |      |
| NETFOSA      | 25572.665                   | 5.695 | d-NEtFOSA    | 6015           | 5. <b>6</b> 84    | 9 <b>6.</b> 01 | 16.8995                  | 84.50         | 829.77                    | 1.43          |      |
| PFHpA        | 82933.133                   | 2.798 | M4PFHpA      | 20102          | 2.797             | 98.06          | 17.3363                  | 86.68         | 4039.77                   | 1.42          |      |
| PFHxA        | 84279.890                   | 2.153 | M5PFHxA      | 19 <b>991</b>  | 2.151             | 96.48          | 18 <b>.4</b> 771         | 92.39         | 2622.01                   | 1.63          |      |
| NMeFOSE      | 39062.008                   | 5.398 | d7-NMeFOSE   | 7351           | 5.379             | 100.56         | 18.0986                  | 90.49         | 292.47                    | 1.35          |      |
| PFLIxS       | 41025.858                   | 2.866 | M3PFI IxS    | 10080          | 2.865             | 105.57         | 14.9911                  | 82.01         | 1 <b>749.7</b> 9          | 0.85          | m    |
| PFNA         | 81880.752                   | 3.670 | M9PFNA       | 21293          | 3. <b>6</b> 69    | 103.0 <b>0</b> | 17.3742                  | 86.87         | 2619.83                   | 1.52          |      |
| NETFOSE      | 39773.564                   | 5.703 | d9-NEtFOSE   | 9581           | 5 <b>.6</b> 82    | 97.16          | 20.2496                  | 101.25        | <b>74</b> 9.94            | 1 <b>.</b> 40 |      |
| PFOA         | 87765.109                   | 3.249 | M8PFOA       | 21916          | 3.247             | 99.85          | 18 <b>.420</b> 7         | 92.10         | 3228.56                   | 1.42          |      |
| PFOS         | 54498.763                   | 3.704 | M8PFOS       | 10428          | 3.702             | 101.21         | 16.4063                  | 88.40         | 419.44                    | 0.79          | m    |
| PFPeA        | 94561.013                   | 1.265 | M5PFPeA      | 16933          | 1,263             | 99.74          | 1 <b>7.4</b> 847         | 87.42         | 5232.57                   | 1.33          |      |
| PFMPA        | 83095.878                   | 0.698 | M5PFPeA      | 16933          | 1.263             | 99.74          | 1 <b>7.560</b> 7         | 87.80         | 3123.05                   | 1.36          |      |
| PFTA         | 32026.109                   | 5.946 | M2PFTA       | 9421           | 5. <del>944</del> | 99.61          | 19.7222                  | 98.61         | 1361.69                   | 1.52          |      |
| PFMBA        | 97622.979                   | 1.547 | M5PFHxA      | 19991          | 2.151             | 96.48          | 19.6198                  | 98.10         | 285.58                    | 1.56          |      |
| PFTrDA       | 40352.686                   | 5.625 | MPFDoA       | 12 <b>9</b> 56 | 5.186             | 95 <b>.</b> 79 | 20.5814                  | 102.91        | INF                       | 1.60          |      |
| PFEESA       | 157866.801                  | 1.876 | M3PFHxS      | 10080          | 2.865             | 105.57         | 17.9172                  | 100.66        | 5566.08                   | 1.43          |      |
| PFUnA        | 59368.012                   | 4.665 | M7PFUnA      | 16444          | 4.672             | 98.49          | 17.1856                  | 85.93         | 1861.10                   | 1.57          |      |
| NFDHA        | 68202.809                   | 2.027 | M4PFHpA      | 201 <b>02</b>  | 2.797             | 98.06          | 17.1646                  | 85.82         | 2893.48                   | 1.43          |      |



#### d5-NEtFOSAA





a,a 5,6 5,7 5,8 Acquisi ion Line (min)

5,5 5,6 5,7 5,8 Acquieillor Hrre (mi 400 800 Vass-lo-Charge (m/z)

200








#### M7PFUnA





#### NEtFOSAA









#### PFHxS





#### d7-NMeFOSE





5,9 6 8,1 Aquisi kin Tine (min

5,8

5,8 5,9 6 6,1 Acquieillor Hrre (r 100 800 Vass-to-Charge (m/z)







16C 190 200 210 V-#86-to-Ctharge (m/z)

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1206

Samp Type Calibration

Dilution

1

Comment MRA,QQQ2;Cal

Data File Acq Method

Acq Date

### 1/4/2021 18:08

Sample Chromatogram



PFAS40Poroshell093020 J Inj Vol 2

2210104B\_07.d

Position P1-A6

#### Quantitation Results

| <b>L</b>     |                                      |       |                  |                |                | ISTD/Surr       | Conc                      | Spike         |                       |               |      |
|--------------|--------------------------------------|-------|------------------|----------------|----------------|-----------------|---------------------------|---------------|-----------------------|---------------|------|
| Compound     | Response                             | RT    | ISTD             | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)                   | % <b>Rec</b>  | SNR                   | Symm          | MInt |
| M2PFDA       | 67585 <b>.447</b>                    | 4.149 |                  |                |                | 97.32           | 1 <b>9.4</b> 648          | 97.32         | <b>7317.8</b> 0       | 1.49          |      |
| M2PFHxA      | 200281.702                           | 2,152 |                  |                |                | 103.10          | 41.2409                   | 103.10        | 5 <b>54</b> 4.62      | 1.59          |      |
| M2PFOA       | 78627.381                            | 3.248 |                  |                |                | 99.42           | 19.8832                   | 99.42         | 3769.15               | 1.42          |      |
| M4PFOS       | 49323.496                            | 3.703 |                  |                |                | 97.58           | 19.5152                   | 97 <b>.58</b> | <b>376.1</b> 7        | 1.52          |      |
| MPFOA        | 318.519                              | 3.257 |                  |                |                | 0.00            | 28.4909                   | 113.96        | 9.97                  | 1.96          |      |
| M3PFBA       | 3524.304                             | 0.464 |                  |                |                | 0.00            | 4.8069                    | 96.14         | <b>4</b> 0.68         | 1.56          |      |
| HFPO-DA      | 16332.271                            | 2.386 | <b>M3HFPODA</b>  | 778            | 2.374          | 116.29          | 138.4029                  | 69.20         | INF                   | 1.42          |      |
| 4:2 FTS      | 68530.310                            | 2.095 | M2 4:2 FT\$      | 2165           | 2.104          | 87.73           | 100.2819                  | 107.02        | 2533.66               | 1.56          |      |
| 6:2 FTS      | 130886.481                           | 3.217 | M2 6:2 FTS       | 4267           | 3.216          | 94.39           | 9 <b>5.2</b> 411          | 100.15        | 5498.47               | 1.70          |      |
| ADONA        | 1308175.831                          | 2.887 | M8PFOA           | 20681          | 3.247          | 94.22           | 94 <b>.804</b> 0          | 100.32        | 68470.83              | 1.44          |      |
| 8:2 FTS      | 139007.070                           | 4.129 | M2 8:2 FTS       | 4035           | 4.138          | 97.31           | 9 <b>5.914</b> 0          | 99.91         | 13933. <del>9</del> 4 | 1.49          |      |
| FOSA         | 340190.510                           | 4.335 | M8FOSA           | 13502          | 4.335          | 100.08          | 92 <b>.</b> 15 <b>0</b> 8 | 92.15         | INF                   | 1.50          |      |
| 9CI-PF3ONS   | 964745.093                           | 3.970 | M8PFOS           | 10218          | 3,702          | 99.17           | 98 <b>.6</b> 620          | 105.75        | 4 <b>03</b> 84.45     | 1.65          |      |
| PFDS         | 228697.487                           | 4.676 | M6PFDA           | 14446          | 4.1 <b>49</b>  | 92.78           | 97.16 <b>0</b> 0          | 100.68        | 15610.40              | 1.59          |      |
| 11CI-PF3OUdS | 937 <b>0</b> 77.727                  | 4.979 | M8PFOS           | 10218          | 3.702          | 99.17           | 101.5003                  | 107.64        | 41780.51              | 1.57          |      |
| PFHpS        | 227395.256                           | 3.288 | M8PFOA           | 20681          | 3.217          | <b>91.</b> 22   | 97.5670                   | 102.38        | 15162.74              | 1.60          |      |
| 10:2 FTS     | 142262.715                           | 5.183 | M2 8:2 FTS       | 4035           | 4.138          | 97.31           | 97.8523                   | 101.51        | 158.24                | 1.43          |      |
| PENS         | 230499.243                           | 4.172 | M9PFNA           | 19962          | 3.669          | 96.57           | 91.4821                   | 95.10         | 8107.66               | 1.49          |      |
| PFDoS        | <b>28</b> 6614. <b>0</b> 52          | 5.623 | M8PFOS           | 10218          | 3.702          | 99.17           | 9 <b>3.0</b> 457          | 96.12         | 551.70                | 1.37          |      |
| PFPeS        | 196176.808                           | 2.323 | M5PFHxA          | 20530          | 2.151          | 99.08           | 9 <b>5.026</b> 0          | 100.98        | 175.79                | 1.50          |      |
| PFODA        | 135974.116                           | 6.697 | M2PFHxDA         | 11453          | 6.348          | 102.61          | 9 <b>9.7</b> 519          | 99.75         | 3818.05               | 1 <b>.70</b>  |      |
| NEtFOSAA     | 284190. <b>4</b> 43                  | 4.651 | d5-NEtFOSAA      | 10 <b>00</b> 0 | 4.641          | 92.31           | 100.4951                  | 100.50        | INF                   | 1.04          | m    |
| PFH×DA       | 210081.651                           | 6.342 | M2PFHxDA         | 11453          | 6 348          | 102.61          | 99.8815                   | 99.88         | 451.45                | 1.63          |      |
| NMeFO\$AA    | 323211.119                           | 4.375 | d3-NMeFOSAA      | 8 <b>0</b> 48  | 4.374          | 104.28          | 97 <b>.699</b> 7          | 97.70         | 151.57                | 1.50          | m    |
| PFBA         | 849227 679                           | 0.466 | MPFBA            | 24 <b>0</b> 48 | 0.463          | 98.09           | 95.1570                   | 95.16         | 2055.12               | 1 <b>.</b> 40 |      |
| PFBS         | 191956.68 <b>4</b>                   | 1.507 | M3PFBS           | 9158           | 1.505          | 10 <b>0.</b> 07 | 82.2074                   | 92.68         | 15915.64              | 1.36          |      |
| NMeFOSA      | 130886.566                           | 5.354 | d-NMcFOSA        | 6557           | 5.353          | 109.04          | 96.3793                   | 96.38         | INF                   | 1.58          |      |
| PFDA         | 324917.212                           | 4.150 | M6PFDA           | 14446          | 4.149          | 92.78           | 96 <b>.849</b> 9          | 96.85         | 18957.77              | 1.42          |      |
| PFDoA        | 277690.819                           | 5.187 | MPFDoA           | 13980          | 5.186          | 103.37          | 103.7581                  | 103.76        | 13050.39              | 1.48          |      |
| NETFOSA      | 141552.692                           | 5.695 | d-NEtFO5A        | <b>662</b> 4   | 5. <b>6</b> 84 | 105.73          | 84.9398                   | 84.94         | 12150.86              | 1.43          |      |
| PFHpA        | 443510.653                           | 2.798 | M4PF <b>H</b> pA | 19 <b>728</b>  | 2.797          | 96.23           | 94 <b>.4</b> 7 <b>0</b> 3 | 94.47         | 13587.61              | 1.42          |      |
| PFHxA        | 447275.808                           | 2.153 | M5PFHxA          | 20530          | 2.151          | 99.08           | 95 <b>.4</b> 818          | 95.48         | INF                   | 1.46          |      |
| NMeFOSE      | 197557.358                           | 5.398 | d7-NMeFOSE       | 7253           | 5.3 <b>79</b>  | 99.22           | 92 <b>.774</b> 1          | 92.77         | INF                   | 1.47          |      |
| PFLIxS       | 208098.642                           | 2.866 | M3PFI lxS        | 8586           | 2.865          | 89.93           | 89.2674                   | 97.67         | 8166.41               | 0.85          | m    |
| PFNA         | 421076.044                           | 3.670 | M9PFNA           | 19 <b>962</b>  | 3. <b>6</b> 69 | 9 <b>6.5</b> 7  | 9 <b>5.</b> 3053          | 95.31         | <b>13774.1</b> 1      | 1.52          |      |
| NETFOSE      | 212678.586                           | 5.703 | d9-NEtFOSE       | 9310           | 5 <b>.6</b> 82 | 9 <b>4.</b> 41  | 111.4325                  | 111.43        | 7556.93               | 1 <b>.</b> 40 |      |
| PFOA         | 454438.988                           | 3.249 | M8PFOA           | 20681          | 3.247          | 9 <b>4.</b> 22  | 101.0750                  | 101.07        | 8996.12               | 1.42          |      |
| PFOS         | 284613.660                           | 3.704 | M8PFOS           | 10218          | 3.702          | 99.17           | 87.4444                   | 94.23         | INF                   | 0.79          | m    |
| PFPeA        | 503591.016                           | 1.253 | M5PFPeA          | 17219          | 1,263          | 101.43          | 91.5682                   | 91.57         | 297.04                | 1.61          |      |
| PFMPA        | 4397 <b>25.934</b>                   | 0.698 | M5PFPeA          | 17219          | 1.263          | 101.43          | 91.3828                   | 91 <b>.38</b> | 39 <b>175.8</b> 4     | 1.36          |      |
| PFTA         | 167015.988                           | 5.946 | M2PFTA           | 9691           | 5.954          | 102.46          | 99.9871                   | 99.99         | 399.15                | 1.52          |      |
| PFMBA        | 499712.843                           | 1.547 | M5PFHxA          | 20530          | 2.151          | 99.08           | 97.7909                   | 97 <b>.79</b> | 32013.25              | 1.48          |      |
| PFTrDA       | 211194.681                           | 5.625 | MPFDoA           | 13 <b>9</b> 80 | 5.186          | 103.37          | 99.8199                   | 99.82         | INF                   | 1.59          |      |
| PFEESA       | 812030.756                           | 1.876 | M3PFHxS          | 8586           | 2.865          | 89.93           | 108.1932                  | 121.57        | 30242.98              | 1.30          |      |
| PFUnA        | <b>3</b> 17 <b>2</b> 4 <b>1</b> .383 | 4.665 | M7PFUnA          | 16 <b>2</b> 74 | 4 <b>.6</b> 62 | 9 <b>7.</b> 47  | 9 <b>2.7</b> 911          | 92.79         | 2831.50               | 1.57          |      |
| NFDHA        | 361563.510                           | 2.027 | M4PFHpA          | 19728          | 2.797          | 96.23           | 92.7211                   | 92.72         | 2375.88               | 1.43          |      |



#### d5-NEtFOSAA









#### M2PFTA





#### M7PFUnA





#### NEtFOSAA











#### PFHxS





#### d7-NMeFOSE



2.6







#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1207

Dilution

Samp Type Calibration Comment MRA,QQQ2;Cal

1

Data File Acq Method

Acq Date

#### 1/4/2021 18:21 Sample Chromatogram



2210104B\_08.d

PFAS40Poroshell093020 J Inj Vol 2

Position P1-A7

#### Quantitation Results

| •            |                     |       |                  |               |                | ISTD/Surr      | Conc              | Spike         |                  |                       |      |
|--------------|---------------------|-------|------------------|---------------|----------------|----------------|-------------------|---------------|------------------|-----------------------|------|
| Compound     | Response            | RT    | ISTD             | ISTD Resp     | ISTD RT        | %Rec           | (ng/mL)           | %Rec          | SNR              | Symm                  | MInt |
| M2PFDA       | 60228.122           | 4.149 |                  |               |                | 86.73          | 17.3459           | 86.73         | 25 <b>7</b> 3.17 | 1.42                  |      |
| M2PFHxA      | 177841.062          | 2,152 |                  |               |                | 91.55          | 36 <b>.620</b> 0  | 91.55         | 5226.61          | 1.59                  |      |
| M2PFOA       | 67599.982           | 3.248 |                  |               |                | 85.47          | 17.0946           | 85.47         | 3004.73          | 1.42                  |      |
| M4PFOS       | 44718.0 <b>62</b>   | 3.703 |                  |               |                | <b>88.</b> 47  | 17 <b>.6</b> 930  | 88.47         | 2009.37          | 1.52                  |      |
| MPFOA        | 267.450             | 3.248 |                  |               |                | 0.00           | 23.9228           | 95.69         | 6.02             | 2.79                  |      |
| M3PFBA       | 3302.832            | 0.464 |                  |               |                | 0.00           | 4.5048            | 90.10         | 69.27            | 1.53                  |      |
| HFPO-DA      | 34681.228           | 2.386 | <b>M3HFPODA</b>  | 530           | 2.393          | 79.17          | 431.6795          | 107.92        | INF              | 1.50                  |      |
| 4:2 FTS      | 137570.915          | 2.095 | M2 4:2 FTS       | 2364          | 2.104          | 95.77          | 184.3978          | 98.40         | 294.18           | 1.56                  |      |
| 6:2 FTS      | 238506.295          | 3.217 | M2 6:2 FTS       | 4106          | 3.226          | 90.83          | 180.3577          | 94.83         | 3573.06          | 1.70                  |      |
| ADONA        | 2563249.762         | 2.887 | M8PFOA           | 20328         | 3.247          | 92.61          | 188.9932          | 100.00        | 2085.12          | 1 <b>.</b> 4 <b>4</b> |      |
| 8:2 FTS      | 256528.289          | 4.129 | M2 8:2 FTS       | 4067          | 4.129          | 98.09          | 175.5969          | 91 <b>.46</b> | 53331.55         | 1.49                  |      |
| FOSA         | 691234.342          | 4.335 | M8FOSA           | 12370         | 4.325          | 91.69          | 204.3805          | 102.19        | INF              | 1.37                  |      |
| 9CI-PF3ONS   | 1918659.163         | 3.970 | M8PFOS           | 9436          | 3,702          | 91.58          | 212.4790          | 113.87        | 828.06           | 1.65                  |      |
| PFDS         | 447 <b>857.732</b>  | 4.676 | M6PFDA           | 13572         | 4.139          | <b>87.</b> 17  | 202.5249          | 104.94        | 12004.70         | 1.59                  |      |
| 11CI-PF3OUdS | 1858315.284         | 4.979 | M8PFOS           | 9436          | 3.702          | 91.58          | 217.9677          | 115.57        | 72918.30         | 1.57                  |      |
| PFHpS        | 131819.132          | 3.288 | M8PFOA           | 20328         | 3.217          | 92.61          | 189.8126          | 99 <b>.59</b> | 3931.13          | 1 <b>.70</b>          |      |
| 10:2 FTS     | 281321.632          | 5.183 | M2 8:2 FTS       | 4067          | 4.129          | 98.09          | <b>191.9</b> 639  | 99.57         | 12522.77         | 1.43                  |      |
| PENS         | 458452.929          | 4.172 | M9PFNA           | 18620         | 3.669          | 9 <b>0.</b> 07 | <b>195.0</b> 672  | 101.39        | 13308.57         | 1.49                  |      |
| PFDoS        | 556629.288          | 5.623 | M8PFOS           | 9436          | 3.702          | 91.58          | 195.6797          | 101.07        | 19072.32         | 1.45                  |      |
| PFPeS        | 379680.330          | 2.323 | M5PFHxA          | 20102         | 2.151          | 97.02          | 187.8299          | 99.80         | 10089.06         | 1.50                  |      |
| PFODA        | 280200. <b>4</b> 08 | 6.706 | M2PFHxDA         | 12565         | 6.348          | 112.58         | 187.3570          | 93.68         | 8418.67          | 1.42                  |      |
| NEtFOSAA     | 551944.118          | 4.642 | d5-NEtFOSAA      | 9753          | 4.632          | 9 <b>0.</b> 03 | 200.1054          | 100.05        | INF              | 1.57                  | m    |
| PFH×DA       | 435000.813          | 6.351 | M2PFHxDA         | 12565         | 6.348          | 112.58         | 188.5052          | 94.25         | 1590.34          | 1.63                  |      |
| NMeFO\$AA    | 656993.432          | 4.375 | d3-NMeFOSAA      | 7 <b>9</b> 41 | 4.365          | 102.89         | 201.27 <b>0</b> 0 | 100.63        | INF              | 1.09                  | m    |
| PFBA         | 1699385.753         | 0.466 | MPFBA            | 22596         | 0.463          | <b>92.</b> 17  | 202.6461          | 101.32        | 70397.32         | 1 <b>.</b> 4 <b>0</b> |      |
| PFBS         | 383551.72 <b>4</b>  | 1.507 | M3PFBS           | 8318          | 1.505          | 90.88          | 180.8648          | 101.95        | 15212.51         | 1.36                  |      |
| NMeFOSA      | 269716.258          | 5.354 | d-NMcFOSA        | 6453          | 5.353          | 107.31         | 201.8049          | 100.90        | INF              | 1.38                  |      |
| PFDA         | 636522.536          | 4.150 | M6PFDA           | 13572         | 4.139          | 87.17          | 201.9539          | 100.98        | 14928.35         | 1.49                  |      |
| PFDoA        | 563371.793          | 5.187 | MPFDoA           | 14860         | 5.186          | 109.87         | <b>198.0</b> 430  | 99.02         | 7066.99          | 1.36                  |      |
| NETFOSA      | 294579.249          | 5.695 | d-NEtFOSA        | 5630          | 5. <b>6</b> 84 | 89.87          | 207.9777          | 103.99        | 15420.39         | 1.43                  |      |
| PFHpA        | 884894.819          | 2.798 | M4PF <b>H</b> pA | 18304         | 2.797          | 89.29          | 203.1514          | 101.58        | 34468.35         | 1.42                  |      |
| PFHxA        | 928817.708          | 2.153 | M5PFHxA          | 20102         | 2.151          | 97.02          | 202.5011          | 101.25        | 26194.63         | 1.46                  |      |
| NMeFOSE      | 416809.385          | 5.398 | d7-NMeFOSE       | 6963          | 5.3 <b>79</b>  | 95.25          | 203 <b>.884</b> 0 | 101.94        | 15018.17         | 1.35                  |      |
| PFLIxS       | 408253.245          | 2.866 | M3PFI IxS        | 8159          | 2.874          | 85.45          | <b>184.3</b> 010  | 100.82        | 14374.41         | 0.87                  | m    |
| PFNA         | 835405.379          | 3.670 | M9PFNA           | 18620         | 3. <b>6</b> 69 | 9 <b>0.</b> 07 | 202 <b>.710</b> 6 | 101.36        | INF              | 1.52                  |      |
| NETFOSE      | 450551.808          | 5.703 | d9-NEtFOSE       | 9310          | 5 <b>.6</b> 82 | 9 <b>4.</b> 42 | 236.0648          | 118.03        | 25925.77         | 1 <b>.</b> 40         |      |
| PFOA         | 882475.367          | 3.249 | M8PFOA           | 20328         | 3.247          | 92.61          | 199.6941          | 99.85         | 12056.92         | 1.42                  |      |
| PFOS         | 566752.999          | 3.704 | M&PFOS           | 9436          | 3.702          | 91.58          | 188.5605          | 101.60        | INF              | 0.79                  | m    |
| PFPeA        | 1013293.662         | 1.265 | M5PFPeA          | 15507         | 1.263          | 91.34          | 204.5869          | 102.29        | 38907.16         | 1.33                  |      |
| PFMPA        | 886884.976          | 0.698 | M5PFPeA          | 15507         | 1.263          | 91 <b>.3</b> 4 | 204.6564          | 102.33        | 38969.60         | 1.36                  |      |
| PFTA         | 343087.191          | 5.946 | M2PFTA           | 9950          | 5.954          | 105.20         | 200.0505          | 100.03        | 14067.43         | 1.52                  |      |
| PFMBA        | 1006764.775         | 1.547 | M5PFHxA          | 20102         | 2.151          | 97.02          | 201.2138          | 100.61        | 48541.59         | 1.56                  |      |
| PFTrDA       | 41514 <b>1</b> .190 | 5.625 | MPFDoA           | 14860         | 5.186          | 109.87         | 184.6009          | 92.30         | 5178.76          | 1.60                  |      |
| PFEESA       | 1562891.532         | 1.876 | M3PFHxS          | 8159          | 2.874          | 85.45          | 219.1445          | 123.11        | 57307.32         | 1.37                  |      |
| PFUnA        | 63 <b>20</b> 43.370 | 4.665 | M7PFUnA          | 14749         | 4 <b>.6</b> 62 | <b>88.3</b> 4  | 203.9901          | 102.00        | 9155.70          | 1.57                  |      |
| NFDHA        | 738290.848          | 2.027 | M4P <b>FH</b> pA | 18304         | 2.797          | 89.29          | 204.0602          | 102.03        | 29881.62         | 1.43                  |      |









5,5 5,6 5,<sup>-</sup> 5,8 Acquieillor Ure (mi 0.2

a,a 5,6 5,7 5,8 Acquisi ion Line (min) 0.5

200

695.0 400 всо Макело-Слагув (т//

0.2



#### M2PFTA





#### M7PFUnA







#### NEtFOSAA



acu ia:ge (m/∕)









#### d7-NMeFOSE



2.6



5,9 6 8,1 Aquisi kin Tine (min

5,8

5,8 5,9 6 6,1 Acquieillor Hrre (r 100 800 Vass-to-Charge (m/z)





6-4-3-2-

ᅴ

с.з



# PFAS Isotope Dilution QSM B15

## Form 6I

# **ICAL** Verifications

6

#### ORGANICS INITIAL CALIBRATION VERIFICATION

| Report No:         | 220122279                    | Instrument ID:    | QQQ1          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 12/24/2020 13:04             | Lab File ID:      | 2201224A_13.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 700789        |

| ANALYTE                        | UNITS | TRUE  | FOUND        | % REC       | LCL | UCL | Q |
|--------------------------------|-------|-------|--------------|-------------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 10000 | 10900        | 109         | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 10100 | 10200        | 101         | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10000 | 91 <b>40</b> | 91          | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 10000 | 9010         | 90          | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10000 | 8800         | 88          | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10000 | 9150         | 91          | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10100 | 8860         | 88          | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 10000 | 11400        | 114         | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10000 | 9820         | 98          | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10100 | 11200        | <b>11</b> 1 | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 10000 | 9740         | 97          | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10100 | 9070         | 90          | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10000 | 8440         | 84          | 70  | 130 |   |

### **Quantitative Analysis Sample Report**

 $D:\ MassHunter\ Data\ 2201224 A CAL\ Quant Results\ 2201224 A. batch. bin$ 

Samp Name 1600

Samp Type Sample

Dilution

ISTD/Surr

Conc

Snike

1

Comment MRA,QQQ1

#### **Batch Data Path** Last Calib Update

Data File Acq Method Acq Date

2201224A\_13.d PFASWiscExpan.m

12/24/2020 13:04

Inj Vol 2

12/24/2020 15:17

Position Vial 9

### Sample Chromatogram =)2001224A\_10,0 (1900



#### Quantitation Results

|               |                              |                |             |                        |                       | 1310/ Juli      | Conc                      | SPIKE                     |              |      |
|---------------|------------------------------|----------------|-------------|------------------------|-----------------------|-----------------|---------------------------|---------------------------|--------------|------|
| Compound      | Response                     | RT             | ISTD        | ISTD Resp              | ISTD RT               | %Rec            | (ng/mL)                   | %Rec SNR                  | Symm         | MInt |
| M2PFDA        | 200701.953                   | 5.176          |             |                        |                       | 117.29          | 23.4586                   | 1922.20                   | 1.87         |      |
| M2PFH×A       | 306787.878                   | 3.481          |             |                        |                       | 115.08          | 46.0326                   | <b>1</b> 16 <b>81.1</b> 9 | 2.05         |      |
| M2PFOA        | 145226.560                   | 4.489          |             |                        |                       | 1 <b>14.</b> 94 | 22.9886                   | <b>75</b> 10.93           | 1.49         |      |
| M4PFOS        | 46473.087                    | 4.873          |             |                        |                       | 95.49           | 19 <b>.0</b> 974          | 6497.75                   | 1.88         |      |
| M3PFBA        | 6959.330                     | 0.503          |             |                        |                       | 0.00            | 5.4157                    | 364.24                    | 1.64         |      |
| MP <b>FOA</b> | 552 <b>.74</b> 3             | 4.489          |             |                        |                       | 0.00            | 27 <b>.</b> 12 <b>9</b> 5 | 6.98                      | 1.99         |      |
| HFPO-DA       | 3821.256                     | 3.673          | M3HFPODA    | 3218                   | 3.683                 | 109.71          | 9.3280                    | 26.49                     | 2.00         |      |
| 4:2 FTS       | 50286.432                    | 3.448          | M2 4:2 FT\$ | 13482                  | 3.447                 | 121.74          | 9.5235                    | 835.82                    | 1.73         |      |
| 6:2 FTS       | 89169.102                    | 4.467          | M2 6:2 FTS  | <b>2</b> 37 <b>2</b> 3 | 4 <b>.466</b>         | 108.12          | 10 <b>.8</b> 715          | 2084.02                   | 1.79         |      |
| ADONA         | 179 <b>8</b> 74. <b>4</b> 91 | 4.138          | M8PFOA      | 22832                  | 4.488                 | 108.84          | 8 <b>.9</b> 487           | 2717.73                   | 1.32         |      |
| 8:2 FTS       | 79770.607                    | 5 <u>.</u> 175 | M2 8:2 FTS  | 11820                  | 5.175                 | 1 <b>14.</b> 77 | 10.1953                   | 4568.18                   | 1.49         |      |
| FOSA          | 109286.593                   | 5.282          | M8FOSA      | 23286                  | 5.281                 | 105.84          | 10.0805                   | 15588.27                  | 1.57         |      |
| 9CI-PF3ONS    | 448796.376                   | 5.059          | M8PFOS      | 4298                   | 4.872                 | 91 <b>.20</b>   | 1 <b>0.770</b> 4          | 15819.29                  | 2.01         |      |
| PFDS          | 19229.592                    | 5.494          | M6PFDA      | <b>3</b> 8844          | <b>5.</b> 17 <b>6</b> | 125.68          | 9.3757                    | 2085.73                   | 1.27         |      |
| 11CI-PF3OUdS  | 94832.184                    | 5.669          | M8PFOS      | 4298                   | 4.872                 | 91 <b>.20</b>   | 9.9316                    | 10061.50                  | 1.88         |      |
| PFHpS         | 35507.093                    | 4.529          | M8PFOA      | 22832                  | 1.188                 | 108.81          | 10.2381                   | 2868.19                   | 1.12         |      |
| 10:2 FTS      | 29344.413                    | 5.827          | M2 8:2 FTS  | 11820                  | 5.175                 | 1 <b>14.</b> 77 | 7.8943                    | 1362.88                   | 1.30         |      |
| PENS          | 16612.529                    | 5.184          | M9PFNA      | 29757                  | 4.853                 | 111.74          | 10.1104                   | 1031. <b>0</b> 4          | 2.00         |      |
| PFDoS         | 15257.493                    | 6.189          | M8PFOS      | 4298                   | 4.872                 | 91 <b>.20</b>   | 7.17 <b>9</b> 4           | 13383.60                  | 1.17         |      |
| PFPeS         | 35267.231                    | 3.637          | M5PFHxA     | 31351                  | 3.480                 | 1 <b>16.</b> 71 | 1 <b>0.428</b> 0          | 2056.08                   | 1.84         |      |
| PFODA         | 36754.179                    | 8.216          | M2PFHxDA    | 34811                  | 7.596                 | 102.88          | 9.4284                    | 2091.03                   | 1 <b>.60</b> |      |
| NETFOSAA      | 36370.441                    | 5.484          | d5-NEtFOSAA | 13569                  | 5.474                 | 108.04          | 9.5596                    | 1991.22                   | 1.30         | m    |
| PFH×DA        | 32407.546                    | 7.599          | M2PFHxDA    | 34811                  | 7.596                 | 102.88          | 9.5489                    | 152.23                    | 1.46         |      |
| NMeFO\$AA     | 29310.935                    | 5.318          | d3-NMeFOSAA | 9 <b>96</b> 4          | 5.317                 | 1 <b>04.5</b> 7 | 9.0875                    | 1829.69                   | 1.76         | m    |
| PFBA          | 92178.361                    | 0.505          | MPFBA       | 39106                  | 0.501                 | 1 <b>10.6</b> 7 | 9.1438                    | 786.28                    | 1.51         |      |
| PFBS          | 38619.634                    | 2.465          | M3PFBS      | 13908                  | 2. <b>4</b> 63        | 1 <b>17.90</b>  | 9.0149                    | 1658.28                   | 1.10         |      |
| NMcFOSA       | 15437.687                    | 5.928          | d-NMcFOSA   | 18431                  | 5.917                 | 109.63          | 8.9927                    | 234.34                    | 1.33         |      |
| PFDA          | 103050.169                   | 5 <u>.</u> 176 | M6PFDA      | 38844                  | 5.176                 | 125.68          | 8.7959                    | 659.18                    | 1.84         |      |
| PFDoA         | 85305.782                    | 5.818          | MPFDoA      | 45264                  | 5.818                 | 120.21          | 9.1075                    | 2708.65                   | 1.47         |      |
| NETFOSA       | 14676.084                    | 6.227          | d-NEtFOSA   | 12747                  | 6.216                 | 107.42          | 8.3559                    | 991.06                    | 1.60         |      |
| PFHpA         | 71976.933                    | 1.057          | M4PFHpA     | 38509                  | 4.056                 | 109.12          | 9.1491                    | 1788.29                   | 1.38         |      |
| PFHxA         | 73329.495                    | 3.483          | M5PFHxA     | 31351                  | 3.480                 | 1 <b>16.</b> 71 | 8.8640                    | 1 <b>24</b> 9.51          | 1.90         |      |
| NMeFOSE       | 22730.838                    | 5.954          | d7-NMeFOSE  | 27895                  | 5.943                 | 119.89          | 7.7935                    | 1987.26                   | 1.75         |      |
| PFLIxS        | 51085.983                    | 4.126          | M3PFI IxS   | 10042                  | 4.126                 | 100.56          | 11.3546                   | 5782.94                   | 1.36         | m    |
| PFNA          | 91017 <b>.182</b>            | 4.853          | M9PFNA      | 29757                  | 4.853                 | 111.74          | 9.8233                    | 1063.29                   | 1.78         |      |
| NETFOSE       | 21454.866                    | 6.244          | d9-NEtFOSE  | 24980                  | 6.223                 | 120.16          | 7.7953                    | 1214.02                   | 1.28         |      |
| PFOA          | 72001.642                    | 4.490          | M8PFOA      | 22832                  | 4.488                 | 108.84          | 11.1902                   | 1241.55                   | 1.48         | m    |
| PFOS          | 38110.419                    | 4.873          | M&PFOS      | 4298                   | 4.872                 | 91.20           | 9.7372                    | 3107.94                   | 1.81         | m    |
| PFPeA         | 38786.671                    | 1.627          | M5PFPeA     | 18195                  | 1.624                 | 108.21          | 9.0661                    | 612.90                    | 1.22         |      |
| PEMPA         | 34786.019                    | 0.755          | M5PFPeA     | 1819 <b>5</b>          | 1.624                 | 108.21          | 8.4044                    | 583.23                    | 1.30         |      |
| PFTA          | 74083.315                    | 6.624          | M2PFTA      | 35199                  | 6. <b>62</b> 3        | 1 <b>10.</b> 75 | 1 <b>1.8</b> 613          | 651.04                    | 1.55         |      |
| PFMBA         | 32232.143                    | 2.510          | M5PFHxA     | 31351                  | 3.480                 | 1 <b>16.</b> 71 | 7.5955                    | 1 <b>345</b> .38          | 1.03         |      |
| PFTrDA        | 90529.013                    | 6.190          | MPFDoA      | 45264                  | 5.818                 | 120.21          | 9.3384                    | 1151.10                   | 1.96         |      |
| PFEESA        | 83812.124                    | 3.242          | M3PFHxS     | 10 <b>0</b> 42         | 4.126                 | 100.56          | <b>9.0</b> 475            | 334.63                    | 1.74         |      |
| PFUnA         | 116392.939                   | 5.486          | M7PFUnA     | 64 <b>4</b> 97         | 5.485                 | 122.91          | 8.4424                    | 2584.94                   | 1.70         |      |
| NFDHA         | 34010.148                    | 3.372          | M4PFHpA     | 38509                  | 4.056                 | 109.12          | 8.9644                    | 2584.01                   | 1.60         |      |
|               |                              |                |             |                        |                       |                 |                           |                           |              |      |





4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS



#### ADONA



#### 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA





#### PFDoS







#### M2PFTA







#### M6PFDA



#### M7PFUnA



BM (5.219-5.469 min. 24 scens) (505.



M8F0SA

Musa-lo-Charge (m/z)



#### d-NMeFOSA





#### d-NEtFOSA



#### PFHxA



#### **NMeFOSE**



#### PFHxS



#### d7-NMeFOSE




PFNA

Pace Culf Coast Report#: 220122279





6

#### ORGANICS INITIAL CALIBRATION VERIFICATION

| Report No:         | 220122279                    | Instrument ID:    | QQQ2          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 01/04/2021 19:00             | Lab File ID:      | 2210104B_11.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 701166        |

| ANALYTE                        | UN/TS | TRUE  | FOUND        | % REC | LCL | UCL | Q |
|--------------------------------|-------|-------|--------------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 10000 | 10300        | 103   | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 10100 | 12500        | 124   | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10000 | 9420         | 94    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 10000 | 9360         | 94    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10000 | 9300         | 93    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10000 | 8930         | 89    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10100 | 9240         | 91    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 10000 | 10200        | 102   | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10000 | 10300        | 103   | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10100 | 9260         | 92    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 10000 | 81 <b>90</b> | 82    | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10100 | 9340         | 93    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10000 | 8600         | 86    | 70  | 130 |   |

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1600

Samp Type Sample

Dilution

1

Comment MRA,QQQ2;Cal

Data File Acq Method

PFAS40Poroshell093020 J Inj Vol 2 Acq Date

#### 1/4/2021 19:00 Sample Chromatogram



2210104B\_11.d

Position P1-A9

# Quantitation Results

| •            |                             |                |                |                |                   | ISTD/Surr       | Conc            | Spike |                         |       |      |
|--------------|-----------------------------|----------------|----------------|----------------|-------------------|-----------------|-----------------|-------|-------------------------|-------|------|
| Compound     | Response                    | RT             | ISTD           | ISTD Resp      | ISTD RT           | %Rec            | (ng/mL)         | %Rec  | SNR                     | Symm  | MInt |
| M2PFDA       | 857 <b>9</b> 0. <b>5</b> 50 | 4.149          |                |                |                   | 123.54          | 24.7080         |       | 2662.86                 | 1.49  |      |
| M2PFHxA      | 226142.706                  | 2,152          |                |                |                   | 116.42          | 46.5660         |       | 12064.82                | 1.59  |      |
| M2PFOA       | 95676.405                   | 3.248          |                |                |                   | 120.97          | <b>24.194</b> 6 |       | 3656. <b>1</b> 0        | 1.42  |      |
| M4PFOS       | 60749 <b>.3</b> 14          | 3.703          |                |                |                   | 120.18          | <b>24.035</b> 9 |       | 155.53                  | 1.52  |      |
| MPFOA        | 280.051                     | 3.238          |                |                |                   | 0.00            | <b>25.050</b> 0 |       | 2.78                    | 2.17  |      |
| M3PFBA       | 4024.515                    | 0.464          |                |                |                   | 0.00            | 5.4892          |       | 25.63                   | 1.60  |      |
| HFPQ-DA      | 816.668                     | 2.395          | M3HFPODA       | 798            | 2.384             | 119.18          | 6.7527          |       | 4.51                    | 1.06  |      |
| 4:2 FTS      | 8632.551                    | 2.095          | M2 4:2 FT\$    | 2948           | 2.104             | 119.46          | 9.2766          |       | 308.39                  | 1.56  |      |
| 6:2 FTS      | 164 <b>92.</b> 859          | 3.226          | M2 6:2 FTS     | 4966           | 3.225             | 109.85          | 10.3120         |       | 55.03                   | 1.42  |      |
| ADONA        | 162238.144                  | 2.887          | M8PFOA         | 25574          | 3.247             | 1 <b>16.</b> 51 | 9.5083          |       | 1697.91                 | 1.36  |      |
| 8:2 FTS      | 19275.519                   | 4.138          | M2 8:2 FTS     | 4278           | 4.128             | 103.18          | 12.5431         |       | 12965.15                | 1.37  |      |
| FOSA         | 33923.168                   | 4.335          | M8FOSA         | 14584          | 4.335             | 108.10          | 8.5072          |       | 1473.36                 | 1.50  |      |
| 9CI-PF3ONS   | 114 <b>529.3</b> 91         | 3.979          | M8PFOS         | 11149          | 3.702             | 108.20          | 10,7343         |       | 3406.17                 | 1.35  |      |
| PFDS         | <b>26</b> 773.481           | 4.676          | M6PFDA         | 17 <b>465</b>  | 4.149             | 1 <b>12.</b> 17 | 9.4084          |       | 188.06                  | 1.59  |      |
| 11CI-PF3OUdS | 103983.366                  | 4.979          | M8PFOS         | 11149          | 3,702             | 108.20          | 10.3222         |       | 3876,33                 | 1.57  |      |
| PFHpS        | 26221.614                   | 3,288          | M8PFOA         | 25571          | 3,217             | 116.51          | 9.0985          |       | <b>17</b> 9. <b>1</b> 7 | 1.70  |      |
| 10:2 FTS     | 7243.599                    | 5.183          | M2 8:2 FTS     | 4278           | 4.128             | 103.18          | 4.6988          |       | 425.19                  | 1.43  |      |
| PENS         | 27701.508                   | 4,172          | M9PENA         | 22687          | 3.669             | 109.75          | 9.6736          |       | 1085.73                 | 1.42  |      |
| PEDoS        | 14233.717                   | 5.623          | M8PEOS         | 11149          | 3.702             | 108.20          | 4.2348          |       | 48.93                   | 1.45  |      |
| PEPeS        | 24034.476                   | 2.323          | M5PEHxA        | 22641          | 2,151             | 109.27          | 10.5568         |       | 238.00                  | 1.50  |      |
| PEODA        | 6623.168                    | 6 706          | M2PFHxDA       | 11585          | 6.348             | 103.80          | 4.8032          |       | 310.11                  | 1.42  |      |
| NETEOSAA     | 30869 639                   | 4 651          | d5-NEtEOSAA    | 12529          | 4 641             | 115.66          | 8 7123          |       | 85 27                   | 0.85  | m    |
|              | 10056 084                   | 6 351          |                | 11585          | 6 348             | 103.80          | 4 7264          |       | 171 43                  | 1.63  |      |
| NMeEOSAA     | 34628 114                   | 4 375          | d3-NMeFOSAA    | 8737           | 4 374             | 106.66          | 10 2332         |       | 4187 19                 | 0.88  | m    |
| DEBA         | 07769 034                   | 4.070<br>0.466 | MDERA          | 76304          | 0.463             | 107.66          | 9 4198          |       | 3020 05                 | 1 40  |      |
| DEBS         | 24166 178                   | 1 507          | MIDERS         | 10122          | 1 505             | 110.60          | 9 3640          |       | 881.80                  | 1 50  |      |
| NMAEOSA      | 5441 303                    | 5 354          | d-NMAEOSA      | 6127           | 5 344             | 101.80          | 4 2877          |       | 60.41                   | 1.50  |      |
| DEDA         | 37727 076                   | 4 150          |                | 17465          |                   | 112.17          | 9.20/7          |       | 1442.02                 | 1 4 3 |      |
|              | 20101 457                   | 4.130<br>5.197 |                | 15633          | F 177             | 112.1/          | 10.0052         |       | 11204.00                | 1.42  |      |
|              | 50191.457                   | 5.167          |                | 13022          | 5.17/             | 102.25          | 4.0730          |       | 715 74                  | 1.72  |      |
|              | 47547 657                   | 0.095          |                | 00+00          | 5.00 <del>1</del> | 102.25          | 4.0739          |       | 215,24                  | 1.50  |      |
| РЕПРА        | 4/342.03/                   | 2.798          | М4РГНРА        | 22369          | 2./9/             | 109.12          | 8.9313          |       | 1706 76                 | 1.42  |      |
|              | 4//21.395                   | 2.153          |                | 22641          | 2,151             | 109.27          | 9.23/6          |       |                         | 1.40  |      |
| NMERUSE      | 9351.932                    | 5.398          | d7-INMEFUSE    | /96/           | 5.3/9             | 108.99          | 3.9980          |       | 105.47                  | 1.4/  |      |
| PEIXS        | 28501.904                   | 2.866          | MOPFILIXS      | 10299          | 2.8/4             | 107.86          | 10.1937         |       | 2051.20                 | 1.54  | m    |
| PFNA         | 51952.337                   | 3.670          | MISTER         | 22687          | 3.669             | 109.75          | 10.3461         |       | 2681.69                 | 1.52  |      |
| NETFOSE      | 10140.159                   | 5.703          | d9-NETFOSE     | 10881          | 5.682             | 110.35          | 4.5458          |       | /565.82                 | 1.40  |      |
| PFOA         | 51485.801                   | 3.249          | M8PFOA         | 255/4          | 3.247             | 116.51          | 9.2607          |       | 5129.31                 | 1.42  | m    |
| PFOS         | 29102.741                   | 3.704          | M&PFOS         | 11149          | 3.702             | 108.20          | 8.1946          |       | 3661.05                 | 0.78  | m    |
| PFPeA        | 55133,299                   | 1.265          | M5PFPeA        | 18476          | 1.263             | 108.83          | 9.3431          |       | 3177.37                 | 1.33  |      |
| PFMPA        | 18874.861                   | 0.698          | M5PFPeA        | 18 <b>4</b> 76 | 1.263             | 108.83          | 3.6557          |       | 600.39                  | 1.36  |      |
| PFTA         | 21292.453                   | 5.957          | M2PFTA         | 10 <b>86</b> 4 | 5.954             | 1 <b>14.</b> 87 | 11.3708         |       | 244.12                  | 1.39  |      |
| PFMBA        | 22164.416                   | 1.547          | M5PFHxA        | 22641          | 2.151             | 109.27          | 3 <b>.9</b> 331 |       | 872.15                  | 1.56  |      |
| PFTrDA       | 22637.034                   | 5.625          | MPFDo <b>A</b> | 15622          | 5.177             | 115.51          | 9.5748          |       | 581.88                  | 1.60  |      |
| PFEESA       | 36126.852                   | 1.876          | M3PFHxS        | 10299          | 2.874             | 107.86          | 4.0132          |       | 1246.67                 | 1.30  |      |
| PFUnA        | 33761.460                   | 4.665          | M7PFUnA        | 18686          | 4. <b>6</b> 62    | 111.92          | 8.6006          |       | 2974.40                 | 1.57  |      |
| NFDHA        | 16964.566                   | 2.027          | M4PFHpA        | 22369          | 2.797             | 109.12          | 3.8369          |       | 711.94                  | 1.43  |      |



4,8 4.7 4,8 Acquisition three (m

0.5-

4,5

4,6 4.7 4,8 Acquisition Line (min)

1-0.75-0.5-0.25-

4,5

560 550 Vase-Io-Charge (m/z)

510









#### M2PFTA





#### M7PFUnA





#### NEtFOSAA





5,5 5,4 5,5 Acquisition Line (n

5,5 5,2

0.1 0.2

•

52

0,5-

200

a,3 a,4 a,a Aqquisi ion Time (min)

S20 400 500 Mass-to-Ctharge (m/2)

0.4

0,2





5

3 2 1

### PFHxS





### d7-NMeFOSE









0.3 0.4 0.5 0.6 Acquisi km time (min)

C.3 0.4 0.5 0.6 Acquisition Line (min) 16C 190 200 210 V-#86-to-Ctharge (m/z)

# PFAS Isotope Dilution QSM B15

# Form 7E

# **CCAL** Verifications

#### 7E ORGANICS CALIBRATION VERIFICATION

| Report No:         | 220122279                    | Instrument ID:    | QQQ1          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 12/24/2020 20:30             | Lab File ID:      | 2201224A_34.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 700789        |

| ANALYTE                        | UNITS | TRUE  | FOUND | % REC | LCL | UCL | Q |
|--------------------------------|-------|-------|-------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 9500  | 9840  | 104   | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 9600  | 8450  | 88    | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10000 | 8630  | 86    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 8850  | 7160  | 81    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10000 | 8250  | 83    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10000 | 8530  | 85    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10000 | 8770  | 88    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 9120  | 8560  | 94    | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10000 | 7760  | 78    | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10000 | 9860  | 99    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 9260  | 9290  | 100   | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10000 | 8520  | 85    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10000 | 8970  | 90    | 70  | 130 |   |

# **Quantitative Analysis Sample Report**

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

#### **Batch Data Path** Last Calib Update

#### Data File Acq Method Acq Date

2201224A\_34.d PFASWiscExpan.m

12/24/2020 20:30

Samp Name 1400

12/24/2020 15:17

Position Vial 27

Inj Vol 2

Samp Type QC

Dilution 1 Comment MRA,QQQ1;CCV



| •                     |                    |       |                 |                |                | ISTD/Surr       | Conc                      | Spike         |                         |              |      |
|-----------------------|--------------------|-------|-----------------|----------------|----------------|-----------------|---------------------------|---------------|-------------------------|--------------|------|
| Compound              | Response           | RT    | 1STD            | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)                   | %Rec          | SNR                     | Symm         | MInt |
| M2PFDA                | 203212.719         | 5.186 |                 |                |                | 118.76          | 23.7520                   | 118.76        | 15106.79                | 1.45         |      |
| M2PFHxA               | 329273.643         | 3,491 |                 |                |                | 123.52          | 49 <b>.4</b> 066          | 123.52        | 10589.98                | 1.29         |      |
| M2PFOA                | 152069.719         | 4.499 |                 |                |                | 120.36          | 24.0718                   | 120.36        | 19842.91                | 1.50         |      |
| M4PFOS                | 51488.502          | 4.883 |                 |                |                | 105.79          | 21.1584                   | 105.79        | 49 <b>41.</b> 47        | 1.80         |      |
| M3PFBA                | 6817.732           | 0.503 |                 |                |                | 0.00            | 5.3056                    | 106.11        | 306.11                  | 1.27         |      |
| MPF <b>OA</b>         | 658.902            | 4.499 |                 |                |                | 0.00            | 32 <b>.</b> 3399          | 129.36        | 40.10                   | 1.91         |      |
| HFPO-DA               | 13140.459          | 3.684 | <b>M3HFPODA</b> | 3018           | 3.683          | 102.9 <b>0</b>  | 34 <b>.</b> 20 <b>0</b> 9 | 114.00        | INF                     | 1.40         |      |
| 4:2 FT\$              | 43619.754          | 3.448 | M2 4:2 FT\$     | 14678          | 3.447          | 132.55          | 7.5875                    | 81.15         | 2100.44                 | 1.78         |      |
| 6:2 FTS               | 8 <b>0</b> 446.610 | 4.477 | M2 6:2 FTS      | 23656          | 4.477          | 107.81          | 9.8359                    | 103.54        | 4038.00                 | 1.84         |      |
| ADONA                 | 186083.990         | 4.138 | M8PFOA          | 24296          | 4.499          | 115.82          | 8.6998                    | 87.00         | 4251.35                 | 1.93         |      |
| 8:2 FTS               | 69202.166          | 5.175 | M2 8:2 FTS      | 12375          | 5.175          | 12 <b>0.</b> 16 | 8 <b>.4</b> 479           | 88.00         | 52 <b>47.</b> 31        | 1.98         |      |
| FOSA                  | 109793.063         | 5.293 | M8FOSA          | 21 <b>067</b>  | 5.291          | 95.75           | 11.1938                   | 111.94        | 6069.71                 | 1.25         |      |
| 9CI-PF3ONS            | 437635.023         | 5.069 | M8PFO\$         | 5028           | 4,882          | 1 <b>06.69</b>  | <b>8.9</b> 777            | 89.78         | 16809.93                | 1.73         |      |
| PFDS                  | 16736.552          | 5.494 | M6PFDA          | 36891          | 5.186          | 119.36          | 8.5921                    | 89.04         | 1 <b>778.42</b>         | 1.43         |      |
| 11 <b>CI-</b> PF3OUdS | 97408.608          | 5.669 | M8PFOS          | 5 <b>02</b> 8  | 4.882          | 106.69          | 8.7203                    | 87.20         | 98083.52                | 1.85         |      |
| PFHpS                 | 36322.503          | 4.539 | M8PFOA          | 21296          | 1.199          | 115.82          | 9.8125                    | 103.61        | 1982.11                 | 1.11         |      |
| 10:2 FTS              | 58839.046          | 5.816 | M2 8:2 FTS      | 12375          | 5.175          | 12 <b>0.</b> 16 | 1 <b>5.119</b> 0          | 78.42         | 8858.69                 | 1.91         |      |
| PFNS                  | 13491.225          | 5.194 | M9PFNA          | 30591          | 4.863          | 114.88          | 7 <b>.986</b> 9           | 83.20         | 1 <b>167.0</b> 9        | 1.85         |      |
| PFDoS                 | <b>39</b> 746.725  | 6.179 | M8PFOS          | 5 <b>02</b> 8  | 4,882          | 106.69          | 1 <b>5.9</b> 873          | 82.58         | <b>28</b> 54, <b>22</b> | 1.41         |      |
| PFPeS                 | 31561.382          | 3.647 | M5PFHxA         | 31280          | 3.490          | 1 <b>16.</b> 45 | 9.3533                    | 99.50         | 1734.44                 | 1.23         |      |
| PFODA                 | 74224.403          | 8.216 | M2PFHxDA        | 34757          | 7.585          | 102.73          | 1 <b>9.070</b> 0          | 95.35         | 5163.28                 | 1.36         |      |
| NETFOSAA              | 38654.970          | 5.484 | d5-NEtFOSAA     | 13304          | 5.484          | 105.93          | 10.3624                   | 103.62        | 49495.97                | 1.48         |      |
| PFH×DA                | 666 <b>04.3</b> 84 | 7.589 | M2PFHxDA        | 34757          | 7.585          | 102.73          | 19.6555                   | 98.28         | 2284.83                 | 1.42         |      |
| NMeF0\$AA             | <b>36603.1</b> 74  | 5.329 | d3-NMeFO\$AA    | 11432          | 5.317          | 119.98          | 9.8911                    | 98.91         | 5234.67                 | 1.28         |      |
| PFBA                  | 89494.355          | 0.505 | MPFBA           | 40227          | 0.501          | 113 <b>.84</b>  | 8.6301                    | 86.30         | 1146.60                 | 1.26         |      |
| PFBS                  | 34304.650          | 2.465 | M3PFBS          | 15549          | 2. <b>4</b> 63 | 131.82          | 7.1622                    | 80.93         | 1872.34                 | 1.05         |      |
| NMcFOSA               | 32593.640          | 5.917 | d-NMcFOSA       | 18 <b>0</b> 74 | 5.917          | 107.51          | 19.3611                   | 96.81         | 1153.37                 | 1.75         |      |
| PFDA                  | 9183 <b>2.5</b> 35 | 5,187 | M6PFDA          | 36891          | 5.186          | 119.36          | 8 2534                    | 82.53         | 59 <b>7</b> 0.07        | 1.44         |      |
| PFDoA                 | 78024.395          | 5.818 | MPFDoA          | 38538          | 5.818          | 102.35          | 9.7841                    | 97.84         | 1859.07                 | 1.34         |      |
| NETFOSA               | 29927.230          | 6.227 | d-NEtFOSA       | 12189          | 6.21 <b>6</b>  | 102.71          | 1 <b>7.819</b> 7          | 89.10         | 2683.84                 | 1.21         |      |
| PFHpA                 | 75208.410          | 4.057 | M4PFHpA         | 43174          | 4.056          | 122.34          | 8.5269                    | 85.27         | <b>5</b> 30. <b>1</b> 1 | 1.99         |      |
| PFHxA                 | 72377.588          | 3.483 | M5PFHxA         | 31280          | 3.490          | 116.45          | 8.7687                    | 87.69         | 963.37                  | 1.97         |      |
| NMeFOSE               | 46209.246          | 5.953 | d7-NMeFOSE      | 25400          | 5.943          | 109.17          | 17.3995                   | 87.00         | 3025. <b>1</b> 1        | 1.54         |      |
| PFI IxS               | 41866.786          | 4.126 | M3PFI IxS       | 10916          | 4.136          | 109.32          | 8.5601                    | 93.86         | 1441.15                 | 2.00         | m    |
| PFNA                  | 73874.505          | 4.864 | M9PFNA          | 30591          | 4.863          | 114.88          | 7.7557                    | 77.56         | 634. <b>1</b> 1         | 1.70         |      |
| NETFOSE               | 434 <b>42.4</b> 30 | 6.233 | d9-NEtFOSE      | 241 <b>63</b>  | 6.212          | 1 <b>16.2</b> 3 | 16.3182                   | 81 <b>.59</b> | 1968.27                 | 1.51         |      |
| PFOA                  | 67529.687          | 4.500 | M8PFOA          | 24296          | 4.499          | 115.82          | 9.8629                    | 98.63         | 25 <b>4</b> 0.98        | 1.47         |      |
| PFOS                  | 42553.054          | 4.883 | M&PFOS          | 5028           | 4.882          | 106.69          | 9.2938                    | 100.42        | 475.22                  | 1.82         | m    |
| PFPeA                 | 37246.778          | 1.627 | M5PFPeA         | 18592          | 1.624          | 1 <b>10.5</b> 7 | 8.5204                    | 85.20         | 808.93                  | 1.12         |      |
| PFMPA                 | 75835.492          | 0.755 | M5PFPeA         | 18 <b>5</b> 92 | 1.624          | 1 <b>10.5</b> 7 | 1 <b>7.93</b> 10          | 89.66         | 1 <b>768.1</b> 8        | 1.17         |      |
| PFTA                  | 60036.980          | 6.614 | M2PFTA          | 33314          | 6.613          | 104.82          | 10.1563                   | 101.56        | 907.67                  | 1.30         |      |
| PFMBA                 | 69901.757          | 2.500 | M5PFHxA         | 31280          | 3.490          | 116.45          | 16.5095                   | 82.55         | 4337.21                 | 1.22         |      |
| PFTrDA                | 93955.436          | 6.190 | MPFDoA          | 38538          | 5.818          | 102.35          | 11.3834                   | 113.83        | 706.79                  | 1.34         |      |
| PFEESA                | 176509.479         | 3.242 | M3PFHxS         | 10916          | 4.136          | 109.32          | 17.5280                   | 98.47         | 7946.35                 | 1.65         |      |
| PFUnA                 | 116312.918         | 5.486 | M7PFUnA         | 60640          | 5.485          | 115.56          | 8.9732                    | 89.73         | 3513.74                 | 1 <b>.90</b> |      |
| NFDHA                 | 73199.366          | 3.372 | M4PFHpA         | 43174          | 4.056          | 122.34          | 17.2092                   | 86.05         | 5882.39                 | 1.59         |      |

285.0

30

ke (m/2







#### ADONA





#### d3-NMeFOSAA



#### d5-NEtFOSAA





FOSA





#### M2PFOA



#### M2PFTA





#### M6PFDA



#### M7PFUnA





M8F0SA

## Pace Guir Coast Repont: 22012229



**PFHxDA** 





### PFHxS



#### d7-NMeFOSE









#### 7E ORGANICS CALIBRATION VERIFICATION

| Report No:         | 220122279                    | Instrument ID:    | QQQ1          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 12/25/2020 04:50             | Lab File ID:      | 2201224A_69.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 700789        |

| ANALYTE                        | UNITS | TRUE  | FOUND        | % REC | LCL | UCL | Q |
|--------------------------------|-------|-------|--------------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 9500  | 8310         | 87    | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 9600  | 9130         | 95    | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10000 | 8570         | 86    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 8850  | 6460         | 73    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10000 | 857 <b>0</b> | 86    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10000 | 8470         | 85    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10000 | 861 <b>0</b> | 86    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 9120  | 8210         | 90    | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10000 | 7930         | 79    | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10000 | 9850         | 98    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 9260  | 8830         | 95    | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10000 | 8350         | 84    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10000 | 8150         | 82    | 70  | 130 |   |

# **Quantitative Analysis Sample Report**

 $D:\MassHunter\Data\2201224ACAL\QuantResults\2201224A.batch.bin$ 

#### **Batch Data Path** Last Calib Update

#### Data File Acq Method

Acq Date

2201224A\_69.d 12/25/2020 4:50

Position Vial 60 PFASWiscExpan.m Inj Vol 2

12/24/2020 15:17

Samp Name 1400

Samp Type QC

1 Comment MRA,QQQ1;CCV

Dilution



### Quantitation Results

| •             |                    |               |                  |                |                | ISTD/Surr       | Conc             | Spike          |                 |              |      |
|---------------|--------------------|---------------|------------------|----------------|----------------|-----------------|------------------|----------------|-----------------|--------------|------|
| Compound      | Response           | RT            | ISTD             | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | %Rec           | SNR             | Symm         | MInt |
| M2PFDA        | 202889.154         | 5.197         |                  |                |                | 118.57          | 23.7142          | 118.57         | 13508.50        | 1.76         |      |
| M2PFH×A       | 334693.055         | 3.501         |                  |                |                | 125.55          | 50.2197          | 125.55         | 15676.17        | 1.33         |      |
| M2PFOA        | 153565.557         | 4.510         |                  |                |                | 121.54          | 24.3086          | 121.54         | 7673.05         | 1.67         |      |
| M4PFOS        | 68134.401          | 4.893         |                  |                |                | 139.99          | <b>27.998</b> 7  | 139.99         | <b>722</b> 4.71 | 2.01         |      |
| M3PFBA        | 6976.545           | 0.503         |                  |                |                | 0.00            | 5.4291           | 108.58         | 280.67          | 1.52         |      |
| MPF <b>OA</b> | 494.733            | 4.509         |                  |                |                | 0.00            | 24.2822          | 97.13          | 10.22           | 1.64         |      |
| HFPO-DA       | 12137.210          | 3.694         | <b>M3HFPODA</b>  | 3688           | 3.693          | 125.77          | 25.8458          | 86.15          | 19.57           | 1.63         |      |
| 4:2 FTS       | 37934.840          | 3.458         | M2 4:2 FT\$      | 12449          | 3.458          | 112.42          | 7.78 <b>0</b> 1  | 83.21          | 3680.54         | 1.87         |      |
| 6:2 FTS       | 66881.939          | 4.487         | M2 6:2 FTS       | 23283          | 4. <b>4</b> 87 | 106.11          | 8.3083           | 87.46          | 1353.63         | 2.02         |      |
| ADONA         | 194 <b>727</b> 175 | 4.159         | M8PFOA           | 23868          | 4 <b>.509</b>  | 113.78          | 9.2671           | 92.67          | 8392.44         | 1.40         |      |
| 8:2 FTS       | 64895.878          | 5.196         | M2 8:2 FTS       | 10742          | 5.195          | 10 <b>4.30</b>  | 9.1264           | 95.07          | 5727.65         | 1.34         |      |
| FOSA          | 116750.403         | 5.303         | M8FOSA           | 25664          | 5.302          | 116.64          | 9.7713           | 97.71          | 5919.67         | 1.41         |      |
| 9CI-PF3ONS    | 464918 912         | 5.080         | M8PFO\$          | 6102           | 4,893          | 129 <b>.50</b>  | 7.8579           | 78.58          | 39680.25        | 1.97         |      |
| PFDS          | 21694.683          | 5.504         | M6PFDA           | 36120          | 5.196          | 1 <b>16.8</b> 7 | 1 <b>1.</b> 3753 | 1 <b>17.88</b> | 1782.97         | 1.83         |      |
| 11CI-PF3OUdS  | 109669.224         | 5.689         | M8PFOS           | 6102           | 4.893          | 129 <b>.50</b>  | 8.0889           | 80.89          | 10683.82        | 1.33         |      |
| PFHpS         | 15337.139          | 4.549         | M8PFOA           | 23868          | 1.509          | 113.78          | 12.5051          | 131 <b>.61</b> | 2112.65         | 1.56         |      |
| 10:2 FTS      | 56564.744          | 5.837         | M2 8:2 FTS       | 10742          | 5.195          | 104.30          | 16 <b>.744</b> 0 | 86.85          | 332.63          | 1.39         |      |
| PENS          | 19901.201          | 5.205         | M9PFNA           | 2 <b>999</b> 4 | 4.874          | 112.64          | 12 <b>.016</b> 0 | 125.17         | 2847.19         | 1.93         |      |
| PFDoS         | 53215.500          | 6.189         | M8PFOS           | 6102           | 4.893          | 129 <b>.50</b>  | 17.6354          | 91.09          | 2362.70         | 1.49         |      |
| PFPeS         | <b>39</b> 070.124  | 3.657         | M5PFHxA          | 32327          | 3.501          | 12 <b>0.3</b> 5 | 11.2034          | 1 <b>19.18</b> | 1963.00         | 1 <b>.36</b> |      |
| PFODA         | 75280.653          | 8.216         | M2PFHxDA         | 34972          | 7.596          | 103.36          | 1 <b>9.</b> 2223 | 96.11          | 6471.01         | 1.92         |      |
| NETFOSAA      | 40465.702          | 5.495         | d5-NEtFOSAA      | 15085          | 5.495          | 120.12          | 9.5668           | 95.67          | 3514.74         | 1.91         |      |
| PFH×DA        | 67553.155          | 7.599         | M2PFHxDA         | 34972          | 7.596          | 103.36          | 1 <b>9.81</b> 29 | 99.06          | 1301.73         | 1.25         |      |
| NMeF0\$AA     | <b>3</b> 8768.111  | 5.339         | d3-NMeFOSAA      | 10398          | 5.339          | 109.12          | 11.5182          | 115.18         | 4167.03         | 1.51         |      |
| PFBA          | 96656.608          | 0.505         | MPFBA            | 43774          | 0.501          | 123.88          | 8.5655           | 85.66          | 1267.31         | 1.43         |      |
| PFBS          | 36454.875          | <b>2.48</b> 5 | M3PFBS           | 18315          | 2. <b>4</b> 83 | 155.27          | 6 <b>.4</b> 618  | 73.01          | 1301.32         | 1.10         |      |
| NMeFOSA       | 30878.578          | 5.938         | d-NMcFOSA        | 17 <b>70</b> 6 | 5.927          | 105.32          | 18.7232          | 93.62          | 1803.58         | 1.42         |      |
| PFDA          | 93311.633          | 5,197         | M6PFDA           | 36120          | 5.196          | 116.87          | 8.5654           | 85.65          | 1545.64         | 1.76         |      |
| PFDoA         | 7794 <b>2.3</b> 33 | 5.828         | MPFDoA           | 40907          | 5.828          | 108.64          | 9.2077           | 92.08          | 1127.92         | 1.59         |      |
| NETFOSA       | 32265.661          | 6.237         | d-NEtFOSA        | 13 <b>48</b> 2 | 6.226          | 113.61          | 17.3698          | 86.85          | 1645.95         | 1.42         |      |
| PFHpA         | 76475.824          | 1.078         | M4PF <b>H</b> pA | 4421 <b>1</b>  | 4.077          | 125.28          | 8 <b>.4</b> 672  | 84.67          | 1882.07         | 1.48         |      |
| PFHxA         | 73430.369          | 3.493         | M5PFH×A          | 32327          | 3.501          | 120.35          | 8.6080           | 86.08          | 366.97          | 2.02         |      |
| NMeFOSE       | 45254.231          | 5.964         | d7-NMeFOSE       | 24689          | 5,953          | 106.11          | 17.5311          | 87.66          | 2701.07         | 1.84         |      |
| PFLIxS        | 47968.458          | 4.147         | M3PFI IxS        | 13047          | 4.147          | 130.66          | 8.2057           | 89.97          | 2838.07         | 1.43         | m    |
| PFNA          | 74098.433          | 4.874         | M9PFNA           | 29994          | 4.874          | 1 <b>12.64</b>  | <b>7.934</b> 0   | 79.34          | 1500.03         | 1 <b>.86</b> |      |
| NETFOSE       | 44090.197          | 6.244         | d9-NEtFOSE       | 23301          | 6.223          | 112.08          | 17.1741          | 85.87          | 6251.65         | 1.68         |      |
| PFOA          | 66251.065          | 4.510         | M8PFOA           | 23868          | 4.50 <b>9</b>  | 113.78          | 9.8495           | 98.50          | 4597.53         | 1 <b>.64</b> |      |
| PFOS          | 49091.568          | 4.894         | M&PFOS           | 6102           | 4.893          | 129.50          | 8.8337           | 95.45          | 308.01          | 1.93         | m    |
| PFPeA         | 38954.371          | 1.637         | M5PFPeA          | 19840          | 1.635          | 117.99          | 8.3505           | 83.50          | 1086.25         | 1.30         |      |
| PFMPA         | 789 <b>42.</b> 773 | 0.755         | M5PFPeA          | 19840          | 1.635          | 117.99          | 17.4916          | 87.46          | 3153.36         | 1.30         |      |
| PFTA          | 58254.896          | 6.624         | M2PFTA           | 31962          | 6.623          | 100.56          | 10.2718          | 102.72         | 366.54          | 1.46         |      |
| PFMBA         | 75013.382          | 2.531         | M5PFH×A          | 32327          | 3.501          | 120.35          | 17.1427          | 85.71          | 3695.85         | 1.00         |      |
| PFTrDA        | 87270.215          | 6.201         | MPFDoA           | 40 <b>907</b>  | 5.828          | 108.64          | 9.9611           | 99.61          | 857.16          | 1.46         |      |
| PFEEŞA        | 194996.277         | 3.253         | M3PFHxS          | 1 <b>30</b> 47 | 4.147          | 130.66          | 16.2010          | 91.02          | 10407.54        | 1.54         |      |
| PFUnA         | 108095.985         | 5.507         | M7PFUnA          | 6 <b>20</b> 36 | 5.506          | 118.22          | 8.1515           | 81.51          | 3638.06         | 1.39         |      |
| NFDHA         | 76220.990          | 3.382         | M4PFHpA          | 44Z1 <b>1</b>  | 4.077          | 125.28          | 17 <b>.4992</b>  | 87.50          | 5521.98         | 1.56         |      |





4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS



#### ADONA



#### 8:2 FTS

| - VRM (627.0 → 507.0) 220 224 A_1<br>= x10 - 5. VR mb.<br>3 2 - 5. VR mb.<br>1.5-<br>1.5-<br>1.5-<br>0.5-<br>0.5-<br>0.5-<br>0.5- | 69.d<br>527.0 → 507.0 , 1<br>⇒ x10.4 Rato<br>C 2<br>1.74 -<br>1.75 -<br>1.75 -<br>0.75 -<br>0. | -27.0 -> 21.0<br>= \$1.9 (~20.8 %) | - MRM (6.122-0.331 m)<br>≝ ⊼10 <sup>3</sup><br>3 5-<br>1-<br>5-<br>81,0<br>2-<br>- | a, 21 scans) (527.C<br>a07.0 |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------|------------------------------|
| 4.8 5 5.2 54                                                                                                                      | 4 5.6 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 5.2 5.4 5.6                      | 0                                                                                  | 300 400 500                  |
| Acquistion Tim                                                                                                                    | ne (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acquisition Time (min)             |                                                                                    | ass-to-Charge (m/z)          |

#### d3-NMeFOSAA



#### d5-NEtFOSAA





Musa-lo-Charge (m/z)



#### M2PFTA



400

(m/2)

soc



#### M5PFHxA



#### M5PFPeA



#### M6PFDA



#### M7PFUnA





M8F0SA

78 0) 220 12244 6

5,2 5,4 5,6 5,8 Acquisition time (min)

0-

450

=0. 4 =50 Musa-lo-Charge (m/z)

5,4 5,6 5,8 Acquisition Line (min)

5,2





#### NMeFOSA

### PFDA



#### d-NMeFOSA







#### PFHxA

**PFDoA** 



#### NMeFOSE



#### PFHxS



#### d7-NMeFOSE










#### 7E ORGANICS CALIBRATION VERIFICATION

| Report No:         | 220122279                    | Instrument ID:    | QQQ2          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 01/04/2021 23:21             | Lab File ID:      | 2210104B_31.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 701166        |

| ANALYTE                        | UNITS | TRUE  | FOUND | % REC | LCL | UCL | Q |
|--------------------------------|-------|-------|-------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 9510  | 9050  | 95    | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 9600  | 10600 | 110   | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10000 | 8550  | 85    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 8870  | 7680  | 87    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10000 | 8840  | 88    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10000 | 8410  | 84    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10000 | 8820  | 88    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 9140  | 7210  | 79    | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10000 | 8500  | 85    | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10000 | 9020  | 90    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 9280  | 7980  | 86    | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10000 | 8530  | 85    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10000 | 8200  | 82    | 70  | 130 |   |

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1400

Samp Type QC

Dilution

1

Comment BMH,QQQ2;CCV

Data File Acq Method

PFAS40Poroshell093020 J Inj Vol 2 1/4/2021 23:21 Acq Date

Sample Chromatogram



2210104B\_31.d

Position P1-C9

#### Quantitation Results

| -                     |                            |       |                      |                |                | ISTD/Surr       | Conc            | Spike         |                           |              |      |
|-----------------------|----------------------------|-------|----------------------|----------------|----------------|-----------------|-----------------|---------------|---------------------------|--------------|------|
| Compound              | Response                   | RT    | ISTD                 | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)         | %Rec          | SNR                       | Symm         | MInt |
| M2PFDA                | 73882.075                  | 4.149 |                      |                |                | 106.39          | 21.2783         | 106.39        | 3331.87                   | 1.49         |      |
| M2PFH×A               | 204253.567                 | 2,152 |                      |                |                | 105.15          | 42.0587         | 105.15        | 9 <b>14</b> 0. <b>7</b> 6 | 1.36         |      |
| M2PFOA                | 84210.320                  | 3.248 |                      |                |                | 106.48          | 21.2951         | 106.48        | 764.88                    | 1.60         |      |
| M4PFOS                | 55091.501                  | 3.703 |                      |                |                | 108.99          | <b>21.</b> 7973 | 108.99        | 94.04                     | 1.52         |      |
| MPFOA                 | 421.996                    | 3.248 |                      |                |                | 0.00            | 37.7466         | 150.99        | 4.71                      | 2.19         |      |
| M3PFBA                | 3673.125                   | 0.464 |                      |                |                | 0.00            | 5.0099          | 100.20        | INF                       | 1.61         |      |
| HFPO-DA               | 1945.925                   | 2.386 | M3HFPODA             | 644            | 2.375          | 96.26           | 19.9208         | 99.60         | 53.76                     | 1.57         |      |
| 4:2 FTS               | 7141. <b>614</b>           | 2.095 | M2 4:2 FT\$          | 2633           | 2. <b>0</b> 95 | 106.68          | 8.5938          | 91.72         | 257.36                    | 1.41         |      |
| 6:2 FTS               | 14598.557                  | 3.226 | M2 6:2 FTS           | 5006           | 3.226          | 1 <b>10.75</b>  | 9.0537          | 95.20         | 4 <b>88.1</b> 1           | 1.42         |      |
| ADONA                 | 132607.275                 | 2.887 | M8PFOA               | 23839          | 3.247          | 108.61          | 8.3371          | 88.22         | 138.26                    | 1.36         |      |
| 8:2 FTS               | 17227.312                  | 4.129 | M2 8:2 FTS           | 4529           | 4.129          | 109.23          | 10.5890         | 110.30        | 2681.53                   | 1.65         |      |
| FOSA                  | 32329.619                  | 4.335 | M8FOSA               | 13246          | 4.335          | 98.18           | 8.9266          | 89.27         | INF                       | 1.57         |      |
| 9CI-PF3ONS            | 94874.822                  | 3.979 | M8PFO\$              | 11 <b>0</b> 74 | 3.702          | 107.48          | 8 9523          | 95,95         | 6414.63                   | 1.35         |      |
| PFDS                  | 22941.672                  | 4.685 | M6PFDA               | 15 <b>827</b>  | 4.149          | 101.65          | 8.8966          | 92.19         | <b>168</b> 14.59          | 1.39         |      |
| 11 <b>CI</b> -PF3OUdS | 92648.514                  | 4.989 | M8PFOS               | 11 <b>0</b> 74 | 3.702          | 107.48          | 9.2593          | 98.19         | 358.32                    | 1.37         |      |
| PFHpS                 | 23220.767                  | 3.297 | M8PFOA               | 23839          | 3.217          | 108.61          | 8.6131          | 90.70         | 1262.27                   | 1.12         |      |
| 10:2 FTS              | 173 <b>9</b> 6.021         | 5.183 | M2 8:2 FTS           | 4529           | 4.129          | 109.23          | 10.6591         | 110.57        | 1 <b>14</b> 6. <b>1</b> 7 | 1.56         |      |
| PENS                  | 23285.151                  | 4.172 | M9PFNA               | 22562          | 3.678          | 109.15          | 8.1764          | 84.99         | <b>94.1</b> 2             | 1.49         |      |
| PFDoS                 | 30009.600                  | 5.623 | M8PFOS               | 11 <b>0</b> 74 | 3.702          | 107.48          | 8.9889          | 92.86         | 911.98                    | 1 <b>.60</b> |      |
| PFPeS                 | 18703.054                  | 2.323 | M5PFHxA              | 20900          | 2.151          | 10 <b>0.</b> 87 | 8 8992          | 94.57         | 897.85                    | 1.36         |      |
| PFODA                 | 13511.196                  | 6.706 | M2PFHxDA             | 11860          | 6.348          | 106.26          | 9.5715          | 95.71         | 6 <b>4</b> 6.27           | 1.42         |      |
| NETFOSAA              | 29821.974                  | 4.651 | d5-NEtFOSAA          | 11 <b>92</b> 6 | 4.641          | 110.09          | 8.8425          | 88.43         | 732.74                    | 1.00         | m    |
| PFH×DA                | 21781.612                  | 6.351 | M2PFHxDA             | 11860          | 6.348          | 106.26          | 10.0001         | 100.00        | 940.49                    | 1.63         |      |
| NMeF0\$AA             | 32761.326                  | 4.375 | d3-NMeFO\$AA         | 8 <b>0</b> 44  | 4.365          | 104.23          | <b>9.9</b> 078  | 99.08         | INF                       | 0.85         | m    |
| PFBA                  | 7947 <b>2.</b> 465         | 0.466 | MPFBA                | 25 <b>0</b> 46 | 0.463          | 1 <b>02.</b> 17 | 8.54 <b>9</b> 9 | 85.50         | 2728.27                   | 1.31         |      |
| PFBS                  | 18847.007                  | 1.497 | M3PFBS               | 9622           | 1.496          | 105.13          | 7.6825          | 86.61         | 89.60                     | 1.50         |      |
| NMcFOSA               | 12277.624                  | 5.364 | d-NMcFOSA            | 6097           | 5.353          | 101.39          | 9.7229          | 97.23         | 266.98                    | 1.38         |      |
| PFDA                  | 32496.714                  | 4.150 | M6PFDA               | 15827          | 4.149          | 101.65          | 8.8417          | 88.42         | 169.44                    | 1.49         |      |
| PFDoA                 | 28353.712                  | 5.187 | MPFDoA               | 14841          | 5.186          | 109.73          | 9.9802          | 99.80         | 1005.55                   | 1.55         |      |
| NETFOSA               | 13816.874                  | 5.704 | d-NEtFOSA            | 6045           | 5.694          | 96.49           | 9.0851          | 90.85         | 425.71                    | 1.43         |      |
| PFHpA                 | 42237.016                  | 2.798 | M4PFHpA              | 21109          | 2.797          | 102.97          | 8.4081          | 84.08         | 1691.72                   | 1.42         |      |
| PFHxA                 | 42051.078                  | 2 153 | M5PFHxA              | 20 <b>90</b> 0 | 2.151          | 100.87          | 8.8180          | 88.18         | 161 <b>1.7</b> 7          | 1.46         |      |
| NMeFOSE               | 18734.514                  | 5.407 | d7-NMeFOSE           | 7410           | 5.37 <b>9</b>  | 101.37          | 8.6113          | 86.11         | 81.58                     | 1.35         |      |
| PFLIxS                | 21145.899                  | 2.875 | M3PFI IxS            | 10809          | 2.874          | 113.21          | 7.2054          | 78.83         | 799.23                    | 0.78         | m    |
| PFNA                  | 42455.933                  | 3.670 | M9PFNA               | 22562          | 3 <b>.6</b> 78 | 109.15          | 8.5018          | 85.02         | 59.43                     | 1.82         |      |
| NETFOSE               | 19983.556                  | 5.703 | d9-NEtFOSE           | 10415          | 5. <b>6</b> 93 | 105.62          | 9.3595          | 93 <b>.59</b> | 776.51                    | 1.55         |      |
| PFOA                  | 46741.392                  | 3.249 | M8PFOA               | 23839          | 3.247          | 108.61          | 9.0190          | 90.19         | 180.08                    | 1.42         |      |
| PFOS                  | 28161.180                  | 3.704 | M8PFOS               | 11074          | 3.702          | 107.48          | 7.9831          | 86.03         | 297.23                    | 0.81         | m    |
| PFPeA                 | 47053.377                  | 1.253 | M5PFPeA              | 17277          | 1,248          | 101.77          | 8.5271          | 85.27         | 1597.64                   | 1.38         |      |
| PFMPA                 | <b>398</b> 17 <b>.24</b> 9 | 0.698 | M5PFPeA              | 17277          | 1.248          | 101.77          | 8.2470          | 82.47         | 962.65                    | 1.36         |      |
| PFTA                  | 17047.912                  | 5.957 | M2PFTA               | 9 <b>92</b> 0  | 5.954          | 104.88          | 9.9704          | 99.70         | <b>1</b> 19.77            | 1.38         |      |
| PFMBA                 | 46576.728                  | 1.547 | M5PFHxA              | 20900          | 2.151          | 100.87          | 8.9535          | 89.53         | 30 <b>45.9</b> 0          | 1.34         |      |
| PFTrDA                | 21585.292                  | 5.634 | MPFDoA               | 14841          | 5.186          | 109.73          | 9.6109          | 96.11         | 914.65                    | 1.44         |      |
| PFEE\$A               | 78487.844                  | 1.867 | M3PFH <sub>x</sub> S | 10809          | 2.874          | 113.21          | 8.3069          | 93.34         | 3299.84                   | 1.51         |      |
| PFUnA                 | 31739 <b>.24</b> 1         | 4.665 | M7PFUnA              | 18430          | 4.672          | 11 <b>0.39</b>  | 8.1975          | 81.97         | 856.93                    | 1.57         |      |
| NFDHA                 | 33558.096                  | 2.027 | M4PFHpA              | 21109          | 2.797          | 102.97          | 8.0427          | 80.43         | 105.18                    | 1 <b>.36</b> |      |



d5-NEtFOSAA







5,8

5,6 5,7 Acquisition tim

5,5

2

5,5 5,6 5,7 5,8 Acquisition Line (min)

3-2-

699.0 ADC 600 Mass-In-Charge (m

thange (m/z)

2**00** 



#### M2PFTA











6.5 6.6 6.7 6.8 6.0 Acquisition time (min)

min

4,6 4,8 Acquisilion Lime (m

NEtFOSAA

4

Suns.

0

Cours

6.5

4.4

6.6 6.<sup>-</sup> 8.8 6.9 Acquisi km ⊺ime (min)

Z,6 4,8 Acquisition ∃ime (min)

800

500 550 Mass-lo-Charge (m/z)

n (n.77)

400 600 200

×10 °]

0.0-0.8-0.6-0.5-0.1-0.3-0.2-0.1-

(sc

Cuns











#### PFHxA



#### NMeFOSE



#### PFHxS



#### d7-NMeFOSE











#### 7E ORGANICS CALIBRATION VERIFICATION

| Report No:         | 220122279                    | Instrument ID:    | QQQ2          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 01/05/2021 02:10             | Lab File ID:      | 2210104B_44.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 701166        |

| ANALYTE                        | UNITS | TRUE  | FOUND | % REC | LCL | UCL | Q |
|--------------------------------|-------|-------|-------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 9510  | 9060  | 95    | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 9600  | 9330  | 97    | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10000 | 8850  | 88    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 8870  | 7690  | 87    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10000 | 8400  | 84    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10000 | 8150  | 82    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10000 | 8620  | 86    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 9140  | 7320  | 80    | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10000 | 8280  | 83    | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10000 | 8950  | 90    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 9280  | 7690  | 83    | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10000 | 8460  | 85    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10000 | 8950  | 89    | 70  | 130 |   |

#### **Batch Data Path** Last Calib Update

1/5/2021 14:27

Samp Name 1400

Samp Type QC

Dilution

1

Comment MRA,QQQ2;CCV

Data File 2210104B\_44.d PFAS40Poroshell093020 (Inj Vol 2 Acq Method

1/5/2021 2:10 Acq Date

Sample Chromatogram



Position P1-E4

#### Quantitation Results

| -            |                              |       |             |                |                | ISTD/Surr       | Conc            | Spike          |                  |              |      |
|--------------|------------------------------|-------|-------------|----------------|----------------|-----------------|-----------------|----------------|------------------|--------------|------|
| Compound     | Response                     | RT    | ISTD        | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)         | %Rec           | SNR              | Symm         | MInt |
| M2PFDA       | 84226.934                    | 4.158 |             |                |                | 121.29          | 24.2576         | 121 <b>.29</b> | 2865.91          | 1.42         |      |
| M2PFHxA      | 237097.251                   | 2,152 |             |                |                | 122.05          | 48.8217         | 122.05         | 10266.10         | 1.36         |      |
| M2PFOA       | 99291.608                    | 3.258 |             |                |                | 125.54          | 25.1088         | 125.54         | 5734.50          | 1.42         |      |
| M4PFOS       | 66729.020                    | 3.712 |             |                |                | 132.01          | <b>26.4</b> 018 | 132.01         | 4685.94          | 1.52         |      |
| MPFOA        | 335.057                      | 3.248 |             |                |                | 0.00            | <b>29.970</b> 1 | 119.88         | 3.16             | 2.33         |      |
| M3PFBA       | 4827.077                     | 0.464 |             |                |                | 0.00            | 6.5838          | 131.68         | 108.04           | 1.65         |      |
| HFPQ-DA      | 2334.229                     | 2.376 | M3HFPODA    | 986            | 2.384          | 147.39          | 15.6067         | 78.03          | 4.89             | 0.99         |      |
| 4:2 FTS      | 9265.478                     | 2.095 | M2 4:2 FT\$ | 3189           | 2. <b>0</b> 95 | 129.22          | 9.2047          | 98.24          | 27.78            | 1.41         |      |
| 6:2 FTS      | 17846.587                    | 3.226 | M2 6:2 FTS  | 6113           | 3.225          | 135.24          | 9.0637          | 95.31          | 1717.07          | 1.50         |      |
| ADONA        | 162316.819                   | 2.887 | M8PFOA      | 27077          | 3.256          | 123.36          | 8.9847          | 95.08          | 8833.67          | 1.36         |      |
| 8:2 FTS      | 19279.552                    | 4.147 | M2 8:2 FTS  | 5751           | 4.147          | 1 <b>38.70</b>  | 9.3330          | 97.22          | 27354.89         | 1.35         |      |
| FOSA         | 37213.190                    | 4.345 | M8FOSA      | 15 <b>741</b>  | 4.353          | 116.68          | 8.6462          | 86.46          | 1689.90          | 1.50         |      |
| 9CI-PF3ONS   | 112592,813                   | 3,988 | M8PFOS      | 13589          | 3,711          | 131.88          | 8,6584          | 92,80          | 4525,35          | 1,36         |      |
| PFDS         | 27623.225                    | 4.685 | M6PFDA      | 19120          | 4,158          | 122.8 <b>0</b>  | 8.8671          | 91.89          | 4122.27          | 1.51         |      |
| 11CI-PF3OUdS | 1 <b>1</b> 01 <b>28.4</b> 82 | 4,989 | M8PFOS      | 13589          | 3,711          | 131.88          | 8.9698          | 95.12          | 420,74           | 1.50         |      |
| PFHpS        | 27033.651                    | 3,297 | M8PFOA      | 27077          | 3,256          | 123.36          | 8.8591          | 92.96          | 5121.11          | 1.12         |      |
| 10:2 FTS     | 20833.960                    | 5,192 | M2 8:2 FTS  | 5751           | 4,147          | 138.70          | 10.0538         | 104.29         | 10536.03         | 1.37         |      |
| PFNS         | 28100.291                    | 4.181 | M9PENA      | 25654          | 3.678          | 124 <b>.</b> 10 | 8.6781          | 90.21          | 993.39           | 1.42         |      |
| PFDoS        | 34595.551                    | 5.623 | M8PFOS      | 13589          | 3.711          | 131.88          | 8.4452          | 87.24          | 1507.72          | 1.60         |      |
| PFPeS        | 21744.843                    | 2.314 | M5PFHxA     | 24906          | 2.151          | 120.20          | 8.6826          | 92.27          | 169.58           | 1.50         |      |
| PFODA        | 14980.693                    | 6.706 | M2PFHxDA    | 13327          | 6.348          | 119.41          | 9.4440          | 94.44          | 718.36           | 1.33         |      |
| NETFOSAA     | 33833.611                    | 4.651 | d5-NEtFOSAA | 13605          | 4.650          | 125.59          | 8.7937          | 87.94          | 201.22           | 0.88         | m    |
| PFH×DA       | 24793.690                    | 6.351 | M2PFHxDA    | 13327          | 6.348          | 119.41          | 10.1297         | 101.30         | 1116.35          | 1.63         |      |
| NMeFOSAA     | 37137.544                    | 4.384 | d3-NMeFOSAA | 9725           | 4.374          | 126.01          | 9,2898          | 92.90          | INF              | 0.85         | m    |
| PFBA         | 98323.160                    | 0.466 | MPEBA       | 29953          | 0.463          | 122.18          | 8.8452          | 88.45          | 3990.70          | 1.31         |      |
| PFBS         | 23226.525                    | 1,497 | M3PFBS      | 11854          | 1.496          | 129.52          | 7.6852          | 86.64          | 1543.03          | 1.50         |      |
| NMeFOSA      | 14410.841                    | 5.364 | d-NMcFOSA   | 7062           | 5,363          | 117.44          | 9.8525          | 98.53          | 692.09           | 1.44         |      |
| PFDA         | 37307.966                    | 4.159 | M6PFDA      | 19120          | 4,158          | 122.80          | 8.4025          | 84.02          | 2374.61          | 1.49         |      |
| PFDoA        | 30880.281                    | 5.187 | MPEDoA      | 1665 <b>1</b>  | 5.186          | 123.12          | 9.6875          | 96.88          | 1025.26          | 1.55         |      |
| NETFOSA      | 15422.059                    | 5.704 | d-NEtFOSA   | 7340           | 5.694          | 117.15          | 8.3524          | 83.52          | 137.90           | 1.43         |      |
| PFHDA        | 49962.233                    | 2,798 | M4PFHbA     | 25749          | 2.797          | 125.60          | 8.1538          | 81.54          | 2195.80          | 1.42         |      |
| PFHxA        | 49002.640                    | 2.153 | M5PFHxA     | 24906          | 2.151          | 120.20          | 8.6231          | 86.23          | INF              | 1.39         |      |
| NMeFOSE      | 19657.809                    | 5.407 | d7-NMeFOSE  | 7585           | 5,388          | 103.76          | 8.8270          | 88.27          | 50,62            | 1.35         |      |
| PFLIxS       | 24673.348                    | 2.866 | M3PFI IxS   | 12409          | 2,874          | 129.96          | 7.3238          | 80.13          | 830.20           | 0.83         | m    |
| PENA         | 47037.890                    | 3.679 | M9PENA      | 25654          | 3.678          | 124.10          | 8.2842          | 82.84          | 2084.71          | 1.52         |      |
| NETFOSE      | 22311.324                    | 5.703 | d9-NEtFOSE  | 112 <b>21</b>  | 5 <b>.6</b> 93 | 113.79          | 9.69 <b>9</b> 7 | 97.00          | 58.97            | 1.63         |      |
| PFOA         | 52703.424                    | 3.249 | M8PFOA      | 27 <b>0</b> 77 | 3.256          | 123.36          | 8.9533          | 89.53          | 471.34           | 1 <b>.70</b> |      |
| PFOS         | 33269.285                    | 3.713 | M&PFOS      | 13589          | 3.711          | 131.88          | 7.6862          | 82.82          | INF              | 0.79         | m    |
| PFPeA        | 56940.283                    | 1,253 | M5PFPeA     | 21073          | 1,248          | 124,13          | 8,4601          | 84.60          | 489,15           | 1.38         |      |
| PFMPA        | 477 <b>72.5</b> 32           | 0.698 | M5PFPeA     | 21073          | 1.248          | 124.13          | 8.1124          | 81.12          | 3166.35          | 1.36         |      |
| PFTA         | 18291.648                    | 5.957 | M2PFTA      | 11192          | 5.954          | 118.34          | <b>9.4</b> 815  | 94.82          | 233.03           | 1.38         |      |
| РЕМВА        | 56670.224                    | 1.54/ | M5PFHxA     | 24906          | 2.151          | 120.20          | 9.1418          | 91.42          | 183.88           | 1.34         |      |
| PFTrDA       | 24096.089                    | 5.634 | MPFDoA      | 16651          | 5.186          | 123.12          | 9.5621          | 95.62          | 890.04           | 1.37         |      |
| PFEESA       | 94413.729                    | 1.867 | M3PFHxS     | 12409          | 2.874          | 129.96          | 8.7046          | 97.80          | 54 <b>70.0</b> 4 | 1.51         |      |
| PFUnA        | 37357.891                    | 4.674 | M7PFUnA     | 19869          | 4.672          | 119.01          | 8 9497          | 89.50          | INF              | 1.57         |      |
| NFDHA        | 40216.038                    | 2.027 | M4PFHpA     | 25749          | 2.797          | 125.60          | 7.9016          | 79.02          | 3206.87          | 1.36         |      |
|              |                              |       | 1.1.1       |                |                |                 |                 |                |                  |              |      |



#### d5-NEtFOSAA





### PFDoS





#### M2PFTA





#### M7PFUnA









### d-NMeFOSA







#### PFHpA



#### d-NEtFOSA



## PFHxA



#### NMeFOSE



#### PFHxS



### d7-NMeFOSE



300 400 to-Charge (m/z)

20c





Pace Cull Coast Report 1220922293



QPace Cliff Coast Repont 1220922279

0.3

c.a

180 90 200 210

# PFAS Isotope Dilution QSM B15

## Form 7S

# Sensitivity Check

#### 7S

#### ORGANICS INSTRUMENT SENSITIVITY CHECK

| Report No:         | 220122279                    | Instrument ID:    | QQQ1          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 12/24/2020 14:12             | Lab File ID:      | 2201224A_16.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 700789        |

| ANALYTE                        | UNITS | TRUE | FOUND | % REC | LCL | UCL | Q |
|--------------------------------|-------|------|-------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 9.52 | 9.76  | 103   | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 9.60 | 8.88  | 93    | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10.0 | 8.16  | 81    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 8.88 | 7.22  | 81    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10.0 | 8.24  | 82    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10.0 | 8.88  | 89    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10.0 | 8.80  | 88    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 9.12 | 8.80  | 97    | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10.0 | 7.27  | 73    | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10.0 | 8.72  | 87    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 9.28 | 8.88  | 96    | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10.0 | 8.56  | 85    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10.0 | 7.88  | 79    | 70  | 130 |   |

## **Quantitative Analysis Sample Report**

#### **Batch Data Path** Last Calib Update

12/24/2020 15:17

Samp Name 1450

Samp Type QC

Dilution

1

Comment MRA,QQQ1

| Data File   | 2201224A_16.d    | Position | Vial 10 |
|-------------|------------------|----------|---------|
| Acq Method  | PFASWiscExpan.m  | Inj Vol  | 2       |
| Acq Date    | 12/24/2020 14:12 |          |         |
| Sample Chro | matogram         |          |         |



## Quantitation Results

| <b>L</b>      |                   |                |             |                |                | ISTD/Surr       | Conc             | Spike          |                           |              |      |
|---------------|-------------------|----------------|-------------|----------------|----------------|-----------------|------------------|----------------|---------------------------|--------------|------|
| Compound      | Response          | RT             | ISTD        | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)          | % <b>Rec</b>   | SNR                       | Symm         | MInt |
| M2PFDA        | 197455.090        | 5.176          |             |                |                | 1 <b>15.40</b>  | 23.0791          | 1 <b>15.40</b> | 9 <b>7</b> 18. <b>1</b> 6 | 1.77         |      |
| M2PFH×A       | 287663.157        | 3,491          |             |                |                | 107.91          | 43.1630          | 107.91         | 73215.95                  | 1.40         |      |
| M2PFOA        | 138338.927        | 4.489          |             |                |                | 109.49          | 21.8983          | 109.49         | 22585.88                  | 1.55         |      |
| M4PFOS        | 43371.660         | 4.873          |             |                |                | 89.11           | 1 <b>7.822</b> 9 | 89.11          | 2959.46                   | 1.94         |      |
| M3PFBA        | 6191.703          | 0.503          |             |                |                | 0.00            | 4.8184           | 96.37          | 414.96                    | 1.60         |      |
| MPF <b>OA</b> | 529.027           | 4.489          |             |                |                | 0.00            | 25.9654          | 103.86         | 6.20                      | 1.68         |      |
| HFPO-DA       | 1729.689          | 3.684          | M3HFPODA    | 3113           | 3.683          | 106.14          | 4.3646           | 116.39         | 22.42                     | 1.02         |      |
| 4:2 FTS       | 5083.412          | 3.458          | M2 4:2 FTS  | 13009          | 3.458          | 117.48          | 0.9977           | 85.27          | INF                       | 1.32         |      |
| 6:2 FTS       | 9658.194          | 4.467          | M2 6:2 FTS  | 22847          | 4 <b>.4</b> 66 | 104.13          | 1.2227           | 102.75         | 253.55                    | 1.90         |      |
| ADONA         | 19302.056         | 4.138          | M8PFOA      | 23947          | 4.488          | 114.16          | 0.9156           | 73.24          | 1675.98                   | 1.35         |      |
| 8:2 FTS       | 7685.067          | 5 <u>.</u> 175 | M2 8:2 FTS  | 10439          | 5.175          | 101.36          | 1.1121           | 92.68          | 969.71                    | 1.34         |      |
| FOSA          | 11045.233         | 5.282          | M8FOSA      | 20686          | 5.281          | 9 <b>4.</b> 02  | 1.1469           | 91.75          | 990.77                    | 1.54         |      |
| 9CI-PF3ONS    | 50246.300         | 5.059          | M8PFOS      | 4292           | 4.872          | 91.07           | 1.2076           | 96.61          | 7410.30                   | 1.91         |      |
| PFDS          | 1967. <b>03</b> 1 | 5.494          | M6PFDA      | 35560          | 5.176          | 115.05          | <b>1.0</b> 476   | 86.58          | 230.41                    | 1.26         |      |
| 11CI-PF3OUdS  | 11622.250         | 5.669          | M8PFOS      | 4292           | 4.872          | 91.07           | 1.2189           | 97.51          | 932 <b>.6</b> 3           | 1.92         |      |
| PFHpS         | 3529.476          | 4.529          | M8PFOA      | 23917          | 1.188          | 1 <b>11.</b> 16 | 0.9703           | 81.51          | 383.27                    | 1.36         |      |
| 10:2 FTS      | 6388.551          | 5.827          | M2 8:2 FTS  | 10 <b>439</b>  | 5.175          | 101.36          | <b>1.9</b> 460   | 80.75          | 451.21                    | 1.36         |      |
| PFNS          | 1530.595          | 5.194          | M9PFNA      | 28989          | 4.853          | 108.86          | 0.9562           | 79.68          | 173.68                    | 1.4 <b>0</b> |      |
| PFDoS         | 4704.434          | 6.189          | M8PFOS      | 4292           | 4.872          | 91.07           | 2,2168           | 91.61          | 438.20                    | 1.39         |      |
| PFPeS         | 3227.655          | 3.647          | M5PFHxA     | 28589          | 3.490          | 10 <b>6.</b> 43 | 1.0466           | 88.69          | 230.70                    | 1.24         |      |
| PFODA         | 9305.639          | 8.216          | M2PFHxDA    | 34139          | 7.596          | 100.90          | 2 <b>.434</b> 1  | 97.37          | 485.71                    | 1.61         |      |
| NEtFOSAA      | 4271.677          | 5.484          | d5-NEtFOSAA | 12441          | 5.474          | 99.07           | 1.2245           | 97.96          | 559.99                    | 1.27         |      |
| PFH×DA        | 8213.012          | 7.599          | M2PFHxDA    | 34139          | 7.596          | 10 <b>0.90</b>  | 2.4676           | 98.70          | 69.21                     | 1.40         |      |
| NMeF0\$AA     | 3899.529          | 5.318          | d3-NMeFOSAA | 9569           | 5.317          | 100.43          | 1.2589           | 100.71         | 590.21                    | 1.99         |      |
| PFBA          | 9382.308          | 0.505          | MPFBA       | 35830          | 0.511          | 101.4 <b>0</b>  | 1.0158           | 81.26          | 197.32                    | 1.49         |      |
| PFBS          | 3731.138          | 2 <u>.</u> 465 | M3PFBS      | 13 <b>4</b> 36 | 2 <b>.4</b> 63 | 1 <b>13.90</b>  | 0 <b>.9</b> 016  | 81.22          | 253.32                    | 1.10         |      |
| NMcFOSA       | 3440.706          | 5.928          | d-NMcFOSA   | 16378          | 5.927          | 97.42           | 2.2555           | 90.22          | 748.69                    | 1.43         |      |
| PFDA          | 11016.058         | 5,176          | M6PFDA      | 35560          | 5.176          | 115.05          | 1.0271           | 82.17          | 203.68                    | 1.69         |      |
| PFDoA         | 8711.744          | 5.818          | MPFDoA      | 37283          | 5.818          | 99.02           | 1.1292           | 90.34          | 706.01                    | 1.81         |      |
| NETFOSA       | 3282.326          | 6.227          | d-NEtFOSA   | 11740          | 6.226          | 9 <b>8.</b> 92  | 2.0292           | 81.17          | 307.02                    | 1.67         |      |
| PFHpA         | 8593.214          | 1.057          | M4PFHpA     | 37 <b>887</b>  | 4.056          | 107.36          | 1.1102           | 88.82          | 70.66                     | 1.48         |      |
| PFHxA         | 8327.423          | 3.493          | M5PFHxA     | 28589          | 3.490          | 106.43          | 1.1038           | 88.31          | 166.49                    | 1.29         |      |
| NMeFOSE       | 6015.001          | 5.953          | d7-NMeFOSE  | 23 <b>97</b> 9 | <b>5.94</b> 3  | 103.06          | 2.39 <b>9</b> 1  | 95.96          | 786.49                    | 1.83         |      |
| PFLIxS        | 4666.840          | 4.126          | M3PFI IxS   | 9432           | 4.126          | 9 <b>4.</b> 46  | 1.1043           | 96.87          | 303.35                    | 1.37         | m    |
| PFNA          | 8201.431          | 4.853          | M9PFNA      | 28989          | 4.853          | 108.86          | 0.9086           | 72.69          | 78.25                     | 1.94         |      |
| NETFOSE       | 4809.851          | 6.244          | d9-NEtFOSE  | 22019          | 6.223          | 105.92          | 1.9826           | 79.30          | 206.04                    | 1.47         |      |
| PFOA          | 7367.210          | 4.489          | M8PFOA      | 23947          | 4.488          | 1 <b>14.</b> 16 | 1.0917           | 87.33          | 97.04                     | 1.55         |      |
| PFOS          | 4344. <b>67</b> 2 | 4.8 <b>7</b> 3 | M&PFOS      | 4292           | 4.872          | 91.07           | 1.1117           | 95.83          | 450.54                    | 1.85         | m    |
| PFPeA         | 4266.916          | 1.627          | M5PFPeA     | 17001          | 1.624          | 101 <b>.10</b>  | 1.0675           | 85.40          | 90.48                     | 1.21         |      |
| PFMPA         | 7661. <b>75</b> 7 | 0.755          | M5PFPeA     | 17 <b>001</b>  | 1.624          | 1 <b>01.10</b>  | 1.9812           | 79.25          | 182.45                    | 1.30         |      |
| PFTA          | 7394.875          | 6.624          | M2PFTA      | 32554          | 6. <b>62</b> 3 | 102.43          | 1.2802           | 102.41         | 361.28                    | 1.62         |      |
| PFMBA         | 7767.379          | 2.500          | M5PFHxA     | 28589          | 3.490          | 106.43          | 2.0072           | 80.29          | 530.75                    | 1.31         |      |
| PFTrDA        | 11627.412         | 6.201          | MPFDoA      | 37283          | 5.818          | <b>99.</b> 02   | 1.4562           | 1 <b>16.49</b> | 195.16                    | 1.41         |      |
| PFEE\$A       | 19801.023         | 3.253          | M3PFHxS     | 9432           | 4.126          | 94.46           | 2.2757           | 102.28         | 173.46                    | 1.30         |      |
| PFUnA         | 13416.087         | 5.486          | M7PFUnA     | 63729          | 5.485          | 1 <b>2</b> 1.44 | 0.9848           | 78.79          | 829.77                    | 1 <b>.60</b> |      |
| NFDHA         | 7787.555          | 3.372          | M4PFHpA     | 37887          | 4.056          | 107.36          | 2.0863           | 83.45          | 283.98                    | 1.91         |      |





#### d5-NEtFOSAA





8,2 6,1 6,6 6,8 Acquisition time (min)

0-

Y

0.5-0-

296 ∠o2

6,2 8,7 6,8 6,6 Acquisition Line (min)

1

650.0

Musa-lo-Charge (m/z)





#### M2PFTA







#### M7PFUnA

M3PFBS





5,4 5,6 5,8 Acquisition Line (min)

450

=0^ - == Musa-lo-Charge (m/z)

5,2

5,4 5,6 5,8 Acquisition time (min)

0-

5,2



#### PFBS



#### NMeFOSA



#### PFDA



#### d-NMeFOSA





**PFDoA** 



#### **NMeFOSE**



#### PFHxS



#### d7-NMeFOSE







QUOI - CONFCOAST Repont 220122279

0,5 0.25

4

4.2 4.4 4.6 4.8 Acquisition Time (min)

280 590 400 4'0

Musa-to-Charge (m/z)

4.2 4.4 4.6 4.8 Acquisition Time (min)

4

#### 7S

#### ORGANICS INSTRUMENT SENSITIVITY CHECK

| Report No:         | 220122279                    | Instrument ID:    | QQQ1          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 12/25/2020 00:19             | Lab File ID:      | 2201224A_50.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 700789        |

| ANALYTE                        | UNITS | TRUE | FOUND | % REC | LCL | UCL | Q |
|--------------------------------|-------|------|-------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 9.52 | 8.00  | 84    | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 9.60 | 8.40  | 88    | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 10.0 | 8.16  | 82    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 8.88 | 6.50  | 73    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 10.0 | 9.12  | 92    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 10.0 | 7.94  | 79    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 10.0 | 8.88  | 89    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 9.12 | 8.72  | 95    | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 10.0 | 7.62  | 76    | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 10.0 | 9.92  | 99    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 9.28 | 8.00  | 87    | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 10.0 | 8.32  | 83    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 10.0 | 8.64  | 86    | 70  | 130 |   |

## **Quantitative Analysis Sample Report**

#### **Batch Data Path** Last Calib Update

#### 12/24/2020 15:17

| Data File           | 2201224A_50.d   | Position | Via <b>l 4</b> 3 |  |  |  |  |  |
|---------------------|-----------------|----------|------------------|--|--|--|--|--|
| Acq Method          | PFASWiscExpan.m | Inj Vol  | 2                |  |  |  |  |  |
| Acq Date            | 12/25/2020 0:19 |          |                  |  |  |  |  |  |
| Sample Chromatogram |                 |          |                  |  |  |  |  |  |

Samp Name 1450

Samp Type QC

1 Comment MRA,QQQ1;CCV

Dilution



### Quantitation Results

| <b>L</b>      |                   |                |              |                |                | ISTD/Surr       | Conc            | Spike  |                  |              |      |
|---------------|-------------------|----------------|--------------|----------------|----------------|-----------------|-----------------|--------|------------------|--------------|------|
| Compound      | Response          | RT             | ISTD         | ISTD Resp      | ISTD RT        | %Rec            | (ng/mL)         | %Rec   | SNR              | Symm         | MInt |
| M2PFDA        | 203764.311        | 5.186          |              |                |                | 119.08          | 23.8165         | 119.08 | 10128.64         | 1.53         |      |
| M2PFH×A       | 323696.386        | 3.491          |              |                |                | 121.42          | 48.5697         | 121.42 | 6983.31          | 1.34         |      |
| M2PFOA        | 148988.833        | 4.499          |              |                |                | 1 <b>17.</b> 92 | 23.5841         | 117.92 | 19991.82         | 1.33         |      |
| M4PFOS        | 51533.860         | 4.883          |              |                |                | 105.88          | <b>21.</b> 1770 | 105.88 | 3638.13          | 1.71         |      |
| M3PFBA        | 7089.077          | 0.503          |              |                |                | 0.00            | 5.5167          | 110.33 | 239.30           | 1.53         |      |
| MP <b>FOA</b> | 465.703           | 4.499          |              |                |                | 0.00            | 22.8574         | 91.43  | 25.45            | 2.30         |      |
| HFPO-DA       | 2090.702          | 3.684          | M3HFPODA     | 3505           | 3.683          | 119.52          | 4.6849          | 124.93 | 8.79             | 1.92         | m    |
| 4:2 FTS       | 4897. <b>659</b>  | 3.448          | M2 4:2 FTS   | 13436          | 3.447          | 121.33          | 0.9307          | 79.55  | 241.46           | 1.98         |      |
| 6:2 FTS       | 83 <b>25.8</b> 91 | 4.477          | M2 6:2 FTS   | 24001          | 4.477          | 109.38          | 1.0034          | 84.32  | 373.86           | 1.64         |      |
| ADONA         | 23152.791         | 4.138          | M8PFOA       | 23367          | 4.499          | 1 <b>11.40</b>  | 1.1254          | 90.04  | 1458 <b>.1</b> 4 | 1.99         |      |
| 8:2 FTS       | 8053.931          | <b>5</b> .185  | M2 8:2 FTS   | 11585          | 5.185          | 112.49          | 1.0502          | 87.52  | 552.99           | 1.28         |      |
| FOSA          | 14755.194         | 5.293          | M8FOSA       | 24464          | 5.291          | 111.19          | 1.2955          | 103.64 | 1228.31          | 1.31         |      |
| 9CI-PF3ONS    | 54474.241         | 5.069          | M8PFO\$      | 4 <b>9</b> 85  | 4.882          | 105.78          | 1,1272          | 90.17  | 5 <b>784.0</b> 7 | 1.75         |      |
| PFDS          | 2500.903          | 5.494          | M6PFDA       | 35099          | 5.186          | 113.56          | 1.3495          | 111.53 | 812.96           | 1.66         |      |
| 11CI-PF3OUdS  | 11963.999         | 5.669          | M8PFOS       | 4985           | 4.882          | 105.78          | 1.0803          | 86.43  | 9 <b>45.9</b> 9  | 1.87         |      |
| PFHpS         | 1692.878          | 4.539          | M8PFOA       | 23367          | 1.199          | 111.40          | 1.3222          | 111.11 | 511.93           | 1.33         |      |
| 10:2 FTS      | 654 <b>9.</b> 367 | 5.816          | M2 8:2 FTS   | 11585          | 5.185          | 112.49          | 1.7976          | 74.59  | 602.21           | 1.89         |      |
| PENS          | 1887.094          | 5.194          | M9PFNA       | 28176          | 4.863          | 105.81          | 1.2129          | 101.08 | 415.74           | 1.72         |      |
| PFDoS         | 5420.019          | 6.168          | M8PFOS       | 4 <b>9</b> 85  | 4.882          | 105.78          | 2.1990          | 90.87  | 351.15           | 1.70         |      |
| PFPeS         | 4371.382          | 3.647          | M5PFHxA      | 32644          | 3.490          | 121.52          | 1.2413          | 105.20 | 240.88           | 1.29         |      |
| PFODA         | 8732.866          | 8.206          | M2PFHxDA     | 35564          | 7.585          | 105.11          | 2.1928          | 87.71  | 688.42           | 2.06         |      |
| NETFOSAA      | 4748.388          | 5.48 <b>4</b>  | d5-NEtFOSAA  | 13517          | 5.474          | 10 <b>7.</b> 63 | 1.2529          | 100.23 | 565.72           | 1.44         |      |
| PFH×DA        | 8358.239          | 7.579          | M2PFHxDA     | 35564          | 7.585          | 105.11          | 2 <b>.410</b> 6 | 96.43  | 50.20            | 1.66         |      |
| NMeF0\$AA     | 417 <b>9.3</b> 61 | 5.329          | d3-NMeFO\$AA | 11784          | 5.328          | 123.67          | 1.0956          | 87.65  | 475.71           | 1.26         |      |
| PFBA          | 11466.918         | 0.505          | MPFBA        | 43642          | 0.501          | 123.51          | 1.0193          | 81.54  | 180.87           | 1.39         |      |
| PFBS          | 4390.153          | 2.465          | M3PFBS       | 17 <b>541</b>  | 2. <b>4</b> 52 | 1 <b>48.70</b>  | 0.8125          | 73.20  | 108.77           | 1 <b>.00</b> |      |
| NMeFOSA       | 3614.252          | 5 <u>9</u> 17  | d-NMcFOSA    | 17784          | 5.917          | 105.78          | 2.1819          | 87.28  | 58.97            | 1.75         |      |
| PFDA          | 12119.703         | 5 <u>.</u> 187 | M6PFDA       | 35099          | 5.186          | 113.56          | 1.1449          | 91.59  | 959.31           | 1.59         |      |
| PFDoA         | 8326.775          | 5.818          | MPFDoA       | 41379          | 5.818          | 109.89          | 0.9725          | 77.80  | 8312.94          | 1.46         |      |
| NETFOSA       | 3891.388          | 6.227          | d-NEtFOSA    | 12508          | 6.205          | 105.40          | 2.2580          | 90.32  | 256.45           | 1.16         |      |
| PFHpA         | 8614.854          | 1.057          | M4PFHpA      | 42464          | 4.067          | 120.33          | 0.9931          | 79.45  | 156.83           | 1.97         |      |
| PFHxA         | 956 <b>9.994</b>  | 3.493          | M5PFHxA      | 32644          | 3.490          | 121.52          | 1.1110          | 88.88  | <b>4</b> 5.44    | 1.30         |      |
| NMeFOSE       | 5391.031          | 5.953          | d7-NMeFOSE   | 26678          | 5. <b>94</b> 3 | 1 <b>14</b> .66 | 1.9327          | 77.31  | 531.07           | 1.60         |      |
| PFLIxS        | 5756.728          | 4.126          | M3PFI IxS    | 11832          | 4.136          | 118.49          | 1.0859          | 95.25  | 160.18           | 1.98         | m    |
| PFNA          | 8355.985          | 4.864          | M9PFNA       | 28176          | 4.863          | 105.81          | 0.9524          | 76.20  | 78.06            | 1.58         |      |
| NETFOSE       | 5427.036          | 6.233          | d9-NEtFOSE   | 23863          | 6.212          | 1 <b>14.</b> 79 | 2.0642          | 82.57  | 659.82           | 1.16         |      |
| PFOA          | 8161.827          | 4.500          | M8PFOA       | 23367          | 4.499          | 1 <b>11.40</b>  | 1.2394          | 99.15  | 2 <b>45.9</b> 7  | 1.27         |      |
| PFOS          | 4546.573          | 4.883          | M8PFOS       | 4985           | 4.882          | 105.78          | 1.0016          | 86.34  | 405.26           | 1.68         | m    |
| PFPeA         | 4786.824          | 1.617          | M5PFPeA      | 19 <b>591</b>  | 1.624          | 116.51          | 1.0392          | 83.14  | 54.09            | 1.38         |      |
| PFMPA         | 9215.251          | 0.755          | M5PFPeA      | 19 <b>5</b> 91 | 1.624          | 116.51          | <b>2.0</b> 679  | 82.71  | 279.92           | 1.17         |      |
| PFTA          | 7009.742          | 6.603          | M2PFTA       | 32584          | <b>6.6</b> 02  | 102.52          | 1.2124          | 96.99  | 159.39           | 1.55         |      |
| PFMBA         | 9122.135          | 2.500          | M5PFH×A      | 32644          | 3.490          | 121.52          | 2.0645          | 82.58  | 518.64           | 1.07         |      |
| PFTrDA        | 10823.866         | 6.179          | MPFDoA       | 41379          | 5.818          | 109.89          | 1.2214          | 97.71  | 207.06           | 1.76         |      |
| PFEESA        | 23502.842         | 3.242          | M3PFHxS      | 11832          | 4.136          | 118.49          | 2.1532          | 96.77  | 877.93           | 1.57         |      |
| PFUnA         | 13985.688         | 5.486          | M7PFUnA      | 60525          | 5.496          | 115.34          | <b>1.0</b> 810  | 86.48  | 388.20           | 1.94         |      |
| NFDHA         | 9689.718          | 3.372          | M4PFHpA      | 4 <b>246</b> 4 | 4. <b>0</b> 67 | 120.33          | 2.3162          | 92.65  | 993.07           | 1.61         |      |
|               |                   |                |              |                |                |                 |                 |        |                  |              |      |




4:2 FTS



#### **M3HFPODA**



#### 6:2 FTS



#### ADONA



#### 8:2 FTS



#### d3-NMeFOSAA



#### d5-NEtFOSAA





2 8/ 6,8 6,6 Acquisition Linee (min)

296 ∠o2 Musa-lo-Charge (m/z)

Ţ 6,2

8,2 6,1 6,6 6,8 Acquisition time (min)





#### M2PFTA







#### M5PFHxA

M3PFBS



#### M5PFPeA



#### M6PFDA



#### M7PFUnA





#### NEtFOSAA











#### d-NEtFOSA

**PFDoA** 



#### PFHxA



#### NMeFOSE



#### PFHxS



#### d7-NMeFOSE





PFNA



#### 7S

#### ORGANICS INSTRUMENT SENSITIVITY CHECK

| Report No:         | 220122279                    | Instrument ID:    | QQQ2          |
|--------------------|------------------------------|-------------------|---------------|
| Analysis Date:     | 01/04/2021 19:26             | Lab File ID:      | 2210104B_13.d |
| Analytical Method: | EPA 537 Mod Isotope Dilution | Analytical Batch: | 701166        |

| ANALYTE                        | UNITS | TRUE | FOUND | % REC | LCL | UCL | Q |
|--------------------------------|-------|------|-------|-------|-----|-----|---|
| 6:2 Fluorotelomersulfonic acid | ng/L  | 3.81 | 3.84  | 101   | 70  | 130 |   |
| 8:2 Fluorotelomersulfonic acid | ng/L  | 3.84 | 4.00  | 104   | 70  | 130 |   |
| Perfluorobutanoic acid         | ng/L  | 4.00 | 3.22  | 81    | 70  | 130 |   |
| Perfluorobutanesulfonic acid   | ng/L  | 3.55 | 2.96  | 83    | 70  | 130 |   |
| Perfluorodecanoic acid         | ng/L  | 4.00 | 3.17  | 79    | 70  | 130 |   |
| Perfluoroheptanoic acid        | ng/L  | 4.00 | 3.36  | 84    | 70  | 130 |   |
| Perfluorohexanoic acid         | ng/L  | 4.00 | 3.42  | 86    | 70  | 130 |   |
| Perfluorohexanesulfonic acid   | ng/L  | 3.66 | 2.76  | 75    | 70  | 130 |   |
| Perfluorononanoic acid         | ng/L  | 4.00 | 2.98  | 74    | 70  | 130 |   |
| Perfluorooctanoic acid         | ng/L  | 4.00 | 3.74  | 94    | 70  | 130 |   |
| Perfluorooctanesulfonic acid   | ng/L  | 3.71 | 3.45  | 93    | 70  | 130 |   |
| Perfluoropentanoic acid        | ng/L  | 4.00 | 3.20  | 80    | 70  | 130 |   |
| Perfluoroundecanoic acid       | ng/L  | 4.00 | 2.95  | 74    | 70  | 130 |   |

### **Quantitative Analysis Sample Report**

#### **Batch Data Path** Last Calib Update

#### 1/5/2021 14:27

Samp Name 1450

Samp Type QC

Dilution

1

Comment MRA,QQQ2;Cal

Data File Acq Method

PFAS40Poroshell093020 J Inj Vol 2 Acq Date

1/4/2021 19:26





2210104B\_13.d

Position P2-A1

#### Quantitation Results

| -            |                   |                |              |                        |                | ISTD/Surr       | Conc             | Spike          |                  |                       |      |
|--------------|-------------------|----------------|--------------|------------------------|----------------|-----------------|------------------|----------------|------------------|-----------------------|------|
| Compound     | Response          | RT             | ISTD         | ISTD Resp              | ISTD RT        | %Rec            | (ng/mL)          | %Rec           | SNR              | Symm                  | MInt |
| M2PFDA       | 70628.034         | 4.149          |              |                        |                | 101.71          | 20.3411          | 101.71         | 2002.15          | 1.49                  |      |
| M2PFHxA      | 193244.909        | 2,152          |              |                        |                | 99.48           | 3 <b>9.7</b> 919 | 99.48          | 5622.86          | 1.59                  |      |
| M2PFOA       | 80471.654         | 3.248          |              |                        |                | 101.75          | 20.3496          | 101.75         | 3 <b>373.1</b> 9 | 1.42                  |      |
| M4PFOS       | 50831.405         | 3.703          |              |                        |                | 100.56          | 20.1118          | 100.56         | 7800.45          | 1.52                  |      |
| MPFOA        | 375.916           | 3.248          |              |                        |                | 0.00            | 33.6249          | 134 <b>.50</b> | 3.41             | 3.50                  |      |
| M3PFBA       | 3802.000          | 0.464          |              |                        |                | 0.00            | 5.1857           | 103.71         | 66.81            | 1.58                  |      |
| HFPO-DA      | 152.459           | 2.569          | M3HFPODA     | 903                    | 2.384          | 134.99          | 1.1130           | 111.30         | 0.33             | 0.63                  |      |
| 4:2 FT\$     | 338.239           | 2.086          | M2 4:2 FT\$  | <b>246</b> 4           | 2. <b>0</b> 95 | 99.84           | 0.4349           | 92.83          | 5.94             | 2.19                  |      |
| 6:2 FTS      | 695.015           | 3.226          | M2 6:2 FTS   | 4 <b>4</b> 98          | 3.225          | 99.51           | 0.4797           | 100.88         | 12.34            | 1.35                  |      |
| ADONA        | 5608.958          | 2.887          | M8PFOA       | 23485                  | 3.247          | 10 <b>7.00</b>  | 0.3580           | 75.76          | 210.84           | 1 <b>.</b> 4 <b>4</b> |      |
| 8:2 FTS      | 745.624           | 4.138          | M2 8:2 FTS   | 4155                   | 4.138          | 100.20          | 0.4996           | 104.09         | 5.44             | 1.61                  |      |
| FOSA         | 1784.022          | 4.335          | M8FOSA       | 13561                  | 4.335          | 100.51          | 0.4812           | 96.23          | 68.34            | 1.57                  |      |
| 9CI-PF3ONS   | 417 <b>5.293</b>  | 3.970          | M8PFO\$      | 10244                  | <b>3</b> ,711  | 99.42           | 0.4259           | 91.30          | 67,92            | 1.65                  |      |
| PFDS         | 1 <b>0</b> 48.297 | 4.685          | M6PFDA       | 15 <b>8</b> 4 <b>3</b> | 4.149          | 101.75          | 0.4061           | 84.17          | 35.62            | 1.32                  |      |
| 11CI-PF3OUdS | 3840.192          | 4.989          | M8PFOS       | 102 <del>44</del>      | 3.711          | 99.42           | 0.4149           | 87.99          | 116.28           | 1.37                  |      |
| PFHpS        | 1101.872          | 3.297          | M8PFOA       | 23185                  | 3.217          | 10 <b>7.00</b>  | 0.1163           | 87.37          | 23.93            | 1.12                  |      |
| 10:2 FTS     | 726.669           | 5.192          | M2 8:2 FTS   | 4155                   | 4.138          | 100.20          | 0.4854           | 100.70         | 23.89            | 1.37                  |      |
| PENS         | 1054.718          | 4.172          | M9PFNA       | 21355                  | 3.669          | 103.30          | 0.3913           | 81.35          | 19.50            | 1.49                  |      |
| PFDoS        | 1238.126          | 5.623          | M8PFOS       | 10244                  | 3.711          | 99.42           | 0.4009           | 87.83          | 29.77            | 1.59                  |      |
| PFPeS        | 936.979           | 2.323          | M5PFHxA      | 20562                  | 2.151          | 99.24           | 0.4532           | 96.31          | 16. <b>1</b> 1   | 1.43                  |      |
| PFODA        | 656 <b>.14</b> 6  | 6.706          | M2PFHxDA     | 10 <b>769</b>          | 6.348          | 96.49           | 0.5119           | 102.38         | 30.24            | 1 <b>.60</b>          |      |
| NEtFOSAA     | 119 <b>5.07</b> 1 | 4.651          | d5-NEtFOSAA  | 11968                  | 4.641          | 110.48          | 0.3531           | 70.62          | 9.50             | 0.96                  | m    |
| PFHxDA       | 1110.585          | 6.351          | M2PFHxDA     | 10769                  | 6.348          | 96.49           | 0.5615           | 112.30         | 25.94            | 1.73                  |      |
| NMeFOSAA     | 1641.208          | 4.394          | d3-NMeFO\$AA | 8417                   | 4.374          | 109.06          | 0.4743           | 94.87          | 27.51            | 0.91                  | m    |
| PFBA         | 3518.899          | 0.466          | MPFBA        | 23556                  | 0.463          | 96.09           | 0.4025           | 80.50          | 128.31           | 1 <b>.</b> 4 <b>0</b> |      |
| PFBS         | 904.874           | 1.516          | M3PFBS       | 9604                   | 1.505          | 10 <b>4.94</b>  | 0.3695           | 83.32          | 14.23            | 1.13                  |      |
| NMeFOSA      | 550.612           | 5.345          | d-NMcFOSA    | 5729                   | 5.353          | 95.26           | 0.4641           | 92.81          | 2.04             | 1.65                  |      |
| PFDA         | 1458.181          | 4.150          | M6PFDA       | 15843                  | 4.149          | 101.75          | 0.3963           | 79.27          | 20.59            | 1.83                  |      |
| PFDoA        | 1236.154          | 5.178          | MPFDoA       | 14236                  | 5.186          | 105.26          | 0.4536           | 90.72          | 1.62             | 1.55                  |      |
| NETFOSA      | 569.285           | 5.685          | d-NEtFO5A    | 6045                   | 5. <b>6</b> 84 | 9 <b>6.</b> 49  | 0.3743           | 74.87          | 7.80             | 1.68                  |      |
| PFHpA        | 2137.772          | 2.808          | M4PFHpA      | 21 <b>4</b> 08         | 2.797          | 10 <b>4.</b> 43 | 0.4196           | 83.92          | 73.40            | 1.29                  |      |
| PFHxA        | 2009.284          | 2.143          | M5PFHxA      | 20562                  | 2.151          | 99.24           | 0.4283           | 85.65          | 8.45             | 1.89                  |      |
| NMeFOSE      | 939.838           | 5.398          | d7-NMeFOSE   | 6984                   | 5.3 <b>79</b>  | 95.54           | 0.4584           | 91.67          | 32.34            | 1.48                  |      |
| PFLIxS       | 952.348           | 2.875          | M3PFI IxS    | 10176                  | 2.874          | 106.57          | 0.3447           | 75.43          | 41.92            | 1.35                  | m    |
| PENA         | 1760.263          | 3.679          | M9PFNA       | 21355                  | 3.669          | 103 <b>.30</b>  | 0.3724           | 74.49          | 2.05             | 1.44                  |      |
| NETFOSE      | 951 <b>.30</b> 0  | 5.703          | d9-NEtFOSE   | 9252                   | 5. <b>6</b> 82 | 93.82           | 0.5016           | 100.31         | 38.97            | 1.47                  |      |
| PFOA         | 238 <b>7.6</b> 87 | 3.249          | M8PFOA       | 23485                  | 3.247          | 10 <b>7.00</b>  | 0 <b>.4</b> 677  | 93.53          | 95.45            | 1.67                  |      |
| PFOS         | 1406.696          | 3. <b>7</b> 13 | M8PFOS       | 10244                  | 3.711          | 99.42           | 0.4311           | 92.90          | 9.48             | 0.75                  | m    |
| PFPeA        | 2165.872          | 1.265          | M5PFPeA      | 16936                  | 1.263          | 99.76           | 0.4004           | 80.08          | 15.32            | 1.33                  |      |
| PFMPA        | 181 <b>0.63</b> 7 | 0.698          | M5PFPeA      | 16936                  | 1.263          | 99.76           | 0.3826           | 76 <b>.5</b> 1 | 58.83            | 1.43                  |      |
| PFTA         | 878.589           | 5.957          | M2PFTA       | 9293                   | 5.944          | 98.26           | 0.5485           | 109.70         | 58.00            | 1.40                  |      |
| PFMBA        | 2104.727          | 1.547          | M5PFHxA      | 20562                  | 2.151          | 99.24           | 0.4112           | 82.25          | 35.96            | 1.56                  |      |
| PFTrDA       | 921.685           | 5.625          | MPFDoA       | 14236                  | 5.186          | 105.26          | 0.4278           | 85.56          | 20.46            | 1.79                  |      |
| PFEE\$A      | 3360.539          | 1.876          | M3PFHxS      | 10176                  | 2.874          | 1 <b>06.5</b> 7 | 0.3778           | 84.90          | 1 <b>1.1</b> 9   | 1.37                  |      |
| PFUnA        | 1354.239          | 4.665          | M7PFUnA      | 17 <b>452</b>          | 4 <b>.6</b> 62 | 104.53          | 0.3694           | 73.87          | 30.7 <b>2</b>    | 1.57                  |      |
| NFDHA        | 1509.358          | 2.027          | M4PFHpA      | 21408                  | 2.797          | 10 <b>4.</b> 43 | 0.3567           | 71.34          | 26.02            | 1.43                  |      |



#### d5-NEtFOSAA





5,5 5,6 5,7 5,8 Acquisition Litre (mi

0.0

0.5

699.0

400 800 Vass-lo-Charge (m/z)

ο.

260

a 5,6 5,7 5,8 Acquisition Time (min)

a,a



#### M2PFTA





#### M7PFUnA





#### NEtFOSAA









#### **NMeFOSE**



x'0 <sup>v</sup>. 2.25

> .76 1,5 25

0.75-0.5-

2.6

#### PFHxS





#### d7-NMeFOSE







#### EXTRACTED INTERNAL STANDARD RECOVERY

Report No:

220122279

|                                | LAB                 |              |   |              |   |               |   |              |   |              |   |               |   |              |   |
|--------------------------------|---------------------|--------------|---|--------------|---|---------------|---|--------------|---|--------------|---|---------------|---|--------------|---|
| Client Sample ID               | SampleID            | EIS1         | # | EIS2         | # | EI <b>S</b> 3 | # | EIS4         | # | EIS5         | # | EI <b>S</b> 6 | # | EIS7         | # |
| SMP 1, EXP 12C                 | 22012227901         | 1 <b>0</b> 0 |   | 103          |   | 94            |   | 96           |   | 95           |   | 98            |   | 97           |   |
| SMP 2, EXP 12T                 | 22012227902         | 104          |   | 109          |   | 101           |   | 1 <b>0</b> 0 |   | 107          | П | 107           |   | 103          |   |
| SMP 3, EXP 13C                 | 22012227903         | 102          |   | 108          |   | 97            |   | 1 <b>01</b>  |   | 1 <b>02</b>  |   | 1 <b>04</b>   |   | 105          |   |
| SMP 4, EXP 13T                 | <b>220122279</b> 04 | 14 <b>9</b>  |   | 69           |   | 77            |   | 1 <b>24</b>  |   | 90           | П | <b>8</b> 5    |   | 83           |   |
| SMP 5, EXP 12, IMP 1A REP A,B  | 22012227905         | 1 <b>0</b> 4 |   | 1 <b>0</b> 4 |   | 136           |   | 111          |   | 1 <b>17</b>  | П | 1 <b>14</b>   |   | 109          |   |
| SMP 6, EXP 12, IMP 3A REP A-F  | 22012227906         | 106          |   | 107          |   | 137           |   | 108          |   | 1 <b>11</b>  |   | 107           |   | 107          |   |
| SMP 6, EXP 12, IMP 3A REP A-F- | <b>22012227</b> 907 | 104          |   | 106          |   | 137           |   | 1 <b>1</b> 5 |   | 1 <b>1</b> 7 | П | 112           |   | 108          |   |
| SMP 6, EXP 12, IMP 3A REP A-F- | 22012227908         | 107          |   | 106          |   | 140           |   | 1 <b>1</b> 9 |   | 120          |   | 1 <b>1</b> 7  |   | 1 <b>1</b> 2 |   |
| SMP 7, EXP 13, IMP 1A REP A,B  | 22012227909         | 1 <b>0</b> 4 |   | 103          |   | 128           |   | 110          |   | 109          | Π | 106           |   | 102          |   |
| SMP 8, EXP 13, IMP 3A REP A,B  | 22012227910         | 103          |   | 121          |   | 132           |   | 1 <b>11</b>  |   | 1 <b>14</b>  | П | 107           |   | 106          |   |
| MB2127843                      | 2127843             | 112          |   | 1 <b>1</b> 8 |   | 14 <b>1</b>   |   | 1 <b>11</b>  |   | 1 <b>14</b>  | П | 1 <b>1</b> 7  |   | 1 <b>13</b>  |   |
| LCS2127844                     | 2127 <b>8</b> 44    | 92           |   | 103          |   | 127           |   | 1 <b>04</b>  |   | 100          |   | 105           |   | 98           |   |
| LCSD2127845                    | 2127845             | 9 <b>7</b>   |   | 96           |   | 12 <b>7</b>   |   | 1 <b>14</b>  |   | 10 <b>7</b>  |   | 107           |   | 103          |   |
| MB2128031                      | 2128031             | 11 <b>1</b>  |   | 1 <b>1</b> 5 |   | 106           |   | 1 <b>1</b> 0 |   | 108          |   | 105           |   | 101          |   |
| LCS2128032                     | 2128032             | 119          |   | 117          |   | 1 <b>0</b> 5  |   | 1 <b>0</b> 8 |   | 106          |   | 105           |   | 98           |   |
|                                | LAB                 |              |   |              |   |               |   |              |   |              |   |               |   |              |   |
| Client Sample ID               | SampleID            | EIS8         | # | EIS9         | # | EIS10         | # | EIS11        | # | EIS12        | # | E/S13         | # |              |   |
| SMD 1 EVD 12C                  | 22012227001         | 07           |   | 06           |   | 07            |   | 07           |   | 101          |   | 06            |   |              |   |

| SMP 1, EXP 12C                 | 22012227901                   | 97  | 96           | 97           | 97           | 101          | 96           |  |
|--------------------------------|-------------------------------|-----|--------------|--------------|--------------|--------------|--------------|--|
| SMP 2, EXP 12T                 | 22012227902                   | 108 | 108          | 1 <b>0</b> 5 | 1 <b>0</b> 5 | 107          | 102          |  |
| SMP 3, EXP 13C                 | 22012227903                   | 106 | 111          | 1 <b>04</b>  | 1 <b>0</b> 2 | 102          | 101          |  |
| SMP 4, EXP 13T                 | 22 <b>01</b> 222 <b>7</b> 904 | 130 | 96           | 109          | 90           | 1 <b>1</b> 3 | 92           |  |
| SMP 5, EXP 12, IMP 1A REP A,B  | 22012227905                   | 118 | 111          | 1 <b>1</b> 3 | 120          | 107          | 114          |  |
| SMP 6, EXP 12, IMP 3A REP A-F  | 22012227906                   | 115 | 110          | 1 <b>0</b> 5 | 1 <b>0</b> 5 | 101          | 1 <b>1</b> 1 |  |
| SMP 6, EXP 12, IMP 3A REP A-F- | 22 <b>01</b> 2227907          | 112 | 1 <b>1</b> 4 | 107          | 111          | 101          | 1 <b>1</b> 3 |  |
| SMP 6, EXP 12, IMP 3A REP A-F- | 22012227908                   | 115 | 1 <b>1</b> 4 | 1 <b>13</b>  | 128          | 103          | 113          |  |
| SMP 7, EXP 13, IMP 1A REP A,B  | 22012227909                   | 113 | 111          | 102          | 1 <b>1</b> 6 | 101          | 106          |  |
| SMP 8, EXP 13, IMP 3A REP A,B  | <b>22012227</b> 910           | 114 | 113          | 103          | 1 <b>1</b> 0 | 100          | 1 <b>1</b> 0 |  |
| MB2127843                      | 2127843                       | 109 | 118          | 106          | 1 <b>1</b> 6 | 109          | 117          |  |
| LCS2127844                     | 2127844                       | 100 | 104          | 96           | 89           | 89           | 102          |  |
| LCSD2127845                    | 2127845                       | 107 | 60           | 104          | 91           | 98           | 105          |  |
| MB2128031                      | 2128031                       | 108 | 111          | 109          | 112          | 1 <b>1</b> 3 | 96           |  |
| LCS2128032                     | 2128032                       | 107 | 110          | 1 <b>1</b> 0 | 1 <b>0</b> 9 | 109          | 95           |  |

| EIS1: M2 6:2 FTS | EIS2: M2 8:2 FTS |
|------------------|------------------|
| EIS5: M4PFHpA    | EI\$6: M5PFHxA   |
| EIS9: M7PFUnA    | EIS10: M8PFOA    |

EIS3: M3PFBS EIS7: M5PFPeA EIS11: M8PFOS EIS4: M3PFHxS EIS8: M6PFDA EIS12: M9PFNA

EIS13: MPFBA

#### EXTRACTED INTERNAL STANDARD RECOVERY

Report No:

220122279

Recovery Limits: 50 - 150

| Client Sample ID  | LAB<br>SampleID           | EIS1 | #                 | EIS2 | #       | EIS3 | # | EIS4 | #       | EIS5 | # | EIS6 | # | EIS7 | # |
|-------------------|---------------------------|------|-------------------|------|---------|------|---|------|---------|------|---|------|---|------|---|
| LCSD2128033       | 2128033                   | 116  | $\prod_{i=1}^{n}$ | 115  | $\prod$ | 105  |   | 106  | $\prod$ | 112  |   | 105  | Π | 99   | Ϊ |
| SMP 1, EXP 12CDUP | 2 <b>1</b> 31 <b>5</b> 64 |      |                   |      |         | 101  | Η | 96   |         | 96   | Η |      | H |      |   |
| SMP 1, EXP 12CMS  | <b>21</b> 31 <b>56</b> 5  | 97   |                   | 100  | H       |      |   |      |         |      |   | 95   | П | 95   |   |
| SMP 2, EXP 12TDUP | 2 <b>1</b> 31 <b>566</b>  |      |                   |      |         | 100  |   | 99   |         |      |   |      | Π |      |   |
| SMP 2, EXP 12TMS  | 2 <b>1</b> 31 <b>567</b>  | 106  |                   | 105  |         |      |   |      |         | 106  |   | 103  | Π | 100  |   |
| SMP 3, EXP 13CDUP | 2 <b>1</b> 31 <b>5</b> 68 |      |                   |      |         | 99   |   | 104  |         | 99   |   |      | Π |      |   |
| SMP 3, EXP 13CMS  | <b>21</b> 31 <b>56</b> 9  | 97   |                   | 105  |         |      |   |      |         |      |   | 94   |   | 93   |   |

LAB

SampleID EIS8 # EIS9 # EIS10 # EIS11 # EIS12 # EIS13 #

| LCSD2128033       | 2128033                   | 112 | 1 <b>1</b> 0 | 1 <b>1</b> 0 | 109          | 1 <b>11</b> | 99  |  |   |
|-------------------|---------------------------|-----|--------------|--------------|--------------|-------------|-----|--|---|
| SMP 1, EXP 12CDUP | <b>21</b> 31 <b>56</b> 4  |     |              | 1 <b>04</b>  | 99           | 1 <b>02</b> |     |  |   |
| SMP 1, EXP 12CMS  | 2131 <b>56</b> 5          | 98  | 99           |              |              |             | 98  |  |   |
| SMP 2, EXP 12TDUP | 2 <b>1</b> 31 <b>56</b> 6 |     |              |              | 1 <b>0</b> 2 |             |     |  | Π |
| SMP 2, EXP 12TMS  | 2 <b>1</b> 31 <b>567</b>  | 105 | 108          | 108          |              | 107         | 100 |  |   |
| SMP 3, EXP 13CDUP | 2 <b>1</b> 31 <b>5</b> 68 |     |              | 108          | 1 <b>0</b> 6 | 100         |     |  |   |
| SMP 3, EXP 13CMS  | 2131 <b>56</b> 9          | 96  | 95           |              |              |             | 95  |  |   |

| EIS1: M2 6:2 FTS | EIS2: M2 8:2 FTS | EIS3: M3PFBS  | EIS4: M3PFHxS |
|------------------|------------------|---------------|---------------|
| EIS5: M4PFHpA    | EIS6: M5PFHxA    | EIS7: M5PFPeA | EIS8: M6PFDA  |
| EIS9: M7PFUnA    | EIS10: M8PFOA    | EIS11: M8PFOS | EIS12: M9PFNA |

EIS13: MPFBA

Client Sample ID

# PFAS Isotope Dilution QSM B15

## Form 8I

# Injection Internal Std

81

#### INJECTION INTERNAL STANDARD AREA SUMMARY

| Report No:         | 22012227 <b>9</b>             | Standard ID:      | 1205 (ICAL Midpoint) |
|--------------------|-------------------------------|-------------------|----------------------|
| Analyst:           | MRA                           | Instrument ID:    | QQQ1                 |
| Analysis Date:     | 12/24/20 12:22                | Lab File ID:      | 2201224A_10.d        |
| Analytical Method: | PFAS Isotope Dilution QSM B15 | Analytical Batch: | 700789               |

|          | M2PFDA | M2PFHxA | M2PFOA | M4PFOS |
|----------|--------|---------|--------|--------|
|          | Area   | Area    | Area   | Area   |
| STANDARD | 173420 | 265102  | 125809 | 42115  |

| CLIENT SAMPLE ID               | LAB SAMP ID     |        | # |        | # |                 | # |                | # |
|--------------------------------|-----------------|--------|---|--------|---|-----------------|---|----------------|---|
| MB2127843                      | <b>212</b> 7843 | 213892 |   | 351309 |   | 158138          |   | 59 <b>2</b> 66 |   |
| LCS2127844                     | 2127844         | 185266 |   | 315434 |   | 144963          |   | 53381          |   |
| LCSD2127845                    | 2127845         | 193372 |   | 315000 |   | 148449          |   | 52290          |   |
| SMP 5, EXP 12, IMP 1A REP A,B  | 22012227905     | 228055 |   | 370802 |   | 173123          |   | 65326          | * |
| SMP 6, EXP 12, IMP 3A REP A-F  | 22012227906     | 179052 |   | 283730 |   | 129203          |   | 46984          |   |
| SMP 6, EXP 12, IMP 3A REP A-F- | 22012227907     | 211600 |   | 357544 |   | 1 <b>60471</b>  |   | 59186          |   |
| SMP 6, EXP 12, IMP 3A REP A-F- | 22012227908     | 203696 |   | 340553 |   | 159 <b>378</b>  |   | 59820          |   |
| SMP 7, EXP 13, IMP 1A REP A,B  | 22012227909     | 206472 |   | 335707 |   | 15 <b>751</b> 4 |   | 56740          |   |
| SMP 8, EXP 13, IMP 3A REP A,B  | 22012227910     | 203306 |   | 335168 |   | 155655          |   | 59958          |   |

\*for information only

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits

\* Value outside QC limits

81

#### INJECTION INTERNAL STANDARD AREA SUMMARY

| Report No:         | 220122279                     | Standard ID:      | 1205 (ICAL Midpoint) |
|--------------------|-------------------------------|-------------------|----------------------|
| Analyst:           | MRA                           | Instrument ID:    | QQQ2                 |
| Analysis Date:     | 01/04/21 17:55                | Lab File ID:      | 2210104B_06.d        |
| Analytical Method: | PFAS Isotope Dilution QSM B15 | Analytical Batch: | 701166               |

|          | M2PFDA | M2PFHxA         | M2PFOA | M4PFOS |
|----------|--------|-----------------|--------|--------|
|          | Area   | Area            | Area   | Area   |
| STANDARD | 64922  | 18 <b>1</b> 436 | 73467  | 48670  |

| CLIENT SAMPLE ID  | LAB SAMP ID                   |               | # |                | # |                | # |       | # |
|-------------------|-------------------------------|---------------|---|----------------|---|----------------|---|-------|---|
| MB2128031         | 2128031                       | 78795         |   | 206846         |   | 86232          |   | 55196 |   |
| LCS2128032        | 2128032                       | <b>761</b> 14 |   | 205763         |   | 85981          |   | 55147 |   |
| LCSD2128033       | 2128033                       | 76610         |   | 207089         |   | 85605          |   | 55148 |   |
| SMP 1, EXP 12CDUP | 2131564                       | 68597         |   | 196781         |   | 77025          |   | 48978 |   |
| SMP 1, EXP 12CMS  | <b>21</b> 31 <b>5</b> 65      | 64600         |   | <b>1801</b> 67 |   | 72035          |   | 44918 |   |
| SMP 2, EXP 12TDUP | 2 <b>1</b> 31 <b>56</b> 6     | 88880         |   | 242564         |   | 102274         |   | 62279 |   |
| SMP 2, EXP 12TMS  | 2131567                       | 90303         |   | 248842         |   | 10727 <b>6</b> |   | 65232 |   |
| SMP 3, EXP 13CDUP | 2 <b>1</b> 31 <b>5</b> 68     | 73476         |   | 202367         |   | 82542          |   | 50963 |   |
| SMP 3, EXP 13CMS  | 2131569                       | 67606         |   | 188337         |   | 76767          |   | 48024 |   |
| SMP 1, EXP 12C    | 22012227901                   | 62826         |   | 177012         |   | 71725          |   | 45361 |   |
| SMP 2, EXP 12T    | 22 <b>01</b> 222 <b>7</b> 902 | 91858         |   | 245330         |   | 98408          |   | 62469 |   |
| SMP 3, EXP 13C    | 22012227903                   | 74222         |   | 205684         |   | 83601          |   | 50580 |   |
| SMP 4, EXP 13T    | <b>2201222</b> 7904           | 71319         |   | 197172         |   | 79104          |   | 48869 |   |

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area # Column used to flag values outside QC limits

\* Value outside QC limits

# PFAS Isotope Dilution QSM B15

### RunLogs

QQQ1 Run Log

| Analyst:           | BMH                       | Expiration: |                                                 |      |
|--------------------|---------------------------|-------------|-------------------------------------------------|------|
| Instrument:        | QQQ1                      |             |                                                 |      |
| Batch:             | 2201224A                  |             |                                                 |      |
| Current ICAL Bath: | 2201224ACAL/2201224ACALDW |             |                                                 |      |
| 20mM Amm Acetate   | 016-5-5                   | 12/26/2020  |                                                 |      |
| Methanol           | 2129592                   | 6/30/2025   |                                                 |      |
| Calibration Std    | 016-3-6                   | 6/2/2021    |                                                 |      |
| ICV Std            | 012-68-1                  | 3/25/2021   |                                                 |      |
| EIS Mix            | 016-4-8                   | 6/11/2021   |                                                 |      |
| IIS Mix            | 016-4-7                   | 6/21/2021   |                                                 |      |
| Name               | Data File                 | Туре        | Acq. Date-Time Comment                          | Dil. |
| MeOH Shot          | 2201224A_01.d             | MeOH Shot   | 12/24/2020 10:04 MRA, MeOH SHOT/INSTRUMENT IDLE | 1    |
| 1201               | 2201224A_02.d             | Cal         | 12/24/2020 10:18 MRA,QQQ1;Cal                   | 1    |
| 1202               | 2201224A_03.d             | Cal         | 12/24/2020 10:32 MRA,QQQ1;Cal                   | 1    |
| 1203               | 2201224A_04.d             | Cal         | 12/24/2020 10:46 MRA,QQQ1;Cal                   | 1    |
| 1204               | 2201224A_05.d             | Cal         | 12/24/2020 11:00 MRA,QQQ1;Cal                   | 1    |
| 1205               | 2201224A_06.d             | Cal         | 12/24/2020 11:15 MRA,QQQ1;Cal                   | 1    |
| 1206               | 2201224A_07.d             | Cal         | 12/24/2020 11:29 MRA,QQQ1;Cal                   | 1    |
| 1207               | 2201224A_08.d             | Cal         | 12/24/2020 11:43 MRA,QQQ1;Cal                   | 1    |
| MeOH Shot          | 2201224A_09.d             | MeOH Shot   | 12/24/2020 12:08 MRA, MeOH SHOT/INSTRUMENT IDLE | 1    |
| 1205               | 2201224A_10.d             | Cal         | 12/24/2020 12:22 MRA,QQQ1;Cal                   | 1    |
| MeOH Shot          | 2201224A_11.d             | MeOH Shat   | 12/24/2020 12:36 MRA, MeOH SHOT/INSTRUMENT IDLE | 1    |
| 1500               | 2201224A_12.d             | Sample      | 12/24/2020 12:50 MRA,QQQ1                       | 1    |
| 1600               | 2201224A_13.d             | Sample      | 12/24/2020 13:04 MRA,QQQ1                       | 1    |
| 1450               | 2201224A_14.d             | QC          | 12/24/2020 13:19 MRA,QQQ1                       | 1    |
| MeOH Shot          | 2201224A_15.d             | MeOH Shot   | 12/24/2020 13:58 MRA, MeOH SHOT/INSTRUMENT IDLE | 1    |
| 1450               | 2201224A_16.d             | QC          | 12/24/2020 14:12 MRA,QQQ1                       | 1    |
| MeOH Shot          | 2201224A_17.d             | MeOH Shot   | 12/24/2020 16:28 MRA, MeOH SHOT/INSTRUMENT IDLE | 1    |
| 2127908            | 2201224A_18.d             | Sample      | 12/24/2020 16:42 MRA,QQQ1;700395 DW             | 1    |
| 2127909            | 2201224A_19.d             | QС          | 12/24/2020 16:56 MRA,QQQ1;700395 DW             | 1    |
| 2127910            | 2201224A_20.d             | QC          | 12/24/2020 17:10 MRA,QQQ1;700395 DW             | 1    |

| 220122279 |
|-----------|
| Report#:  |
| lf Coast  |
| Pace Gu   |

| 22012226501<br>22012226502 | 2201224A_21.d<br>2201224A_23.d | Sample<br>Sample | 12/24/2020 17:25<br>12/24/2020 17:39 | MRA,QQ1;700395 DW<br>MRA.0001:700395 DW |     |
|----------------------------|--------------------------------|------------------|--------------------------------------|-----------------------------------------|-----|
| 22012226401                | 2201224A_23.d                  | Sample           | 12/24/2020 17:53                     | MRA, QQQ1;700395 DW                     |     |
| 22012226503                | 2201224A_24.d                  | Sample           | 12/24/2020 18:07                     | MRA,QQQ1;700395 DW                      | -   |
| 22012226801                | 2201224A_25.d                  | Sample           | 12/24/2020 18:22                     | MRA,QQQ1;700395 DW                      |     |
| 22012226802                | 2201224A_26.d                  | Sample           | 12/24/2020 18:36                     | MRA,QQQ1;700395 DW                      |     |
| 2127813                    | 2201224A_27.d                  | Sample           | 12/24/2020 18:50                     | MRA,QQQ1;700356                         |     |
| 2127814                    | 2201224A_28.d                  | gc               | 12/24/2020 19:05                     | MRA,QQQ1;700356                         | -   |
| 2127815                    | 2201224A_29.d                  | gc               | 12/24/2020 19:19                     | MRA,QQQ1;700356                         |     |
| 22012226601                | 2201224A_30.d                  | Sample           | 12/24/2020 19:33                     | MRA,QQQ1;700356                         |     |
| 22012226602                | 2201224A_31.d                  | Sample           | 12/24/2020 19:48                     | MRA,QQQ1;700356                         |     |
| 22012226603                | 2201224A_32.d                  | Sample           | 12/24/2020 20:02                     | MRA,QQQ1;700356                         |     |
| 22012226604                | 2201224A_33.d                  | Sample           | 12/24/2020 20:16                     | MRA,QQQ1;700356                         |     |
| 1400                       | 2201224A_34.d                  | gc               | 12/24/2020 20:30                     | MRA, QQQ1; CCV                          |     |
| 22012226605                | 2201224A_35.d                  | Sample           | 12/24/2020 20:45                     | MRA,QQQ1;700356                         |     |
| 22012226201 x10            | 2201224A_36.d                  | Sample           | 12/24/2020 20:59                     | MRA,QQQ1;700356                         |     |
| 22012226701                | 2201224A_37.d                  | Sample           | 12/24/2020 21:13                     | MRA,QQQ1;700356                         | ~ 1 |
| 22012226702                | 2201224A_38.d                  | Sample           | 12/24/2020 21:28                     | MRA,QQQ1;700356                         | -   |
| 22012226703                | 2201224A_39.d                  | Sample           | 12/24/2020 21:42                     | MRA,QQQ1;700356                         | ~ 1 |
| 22012226704                | 2201224A_40.d                  | Sample           | 12/24/2020 21:56                     | MRA,QQQ1;700356                         |     |
| 2127843                    | 2201224A_41.d                  | Sample           | 12/24/2020 22:11                     | MRA,QQQ1;700361                         |     |
| 2127844                    | 2201224A_42.d                  | gc               | 12/24/2020 22:25                     | MRA,QQQ1;700361                         |     |
| 2127845                    | 2201224A_43.d                  | QC               | 12/24/2020 22:39                     | MRA,QQQ1;700361                         |     |
| 22012227905                | 2201224A_44.d                  | Sample           | 12/24/2020 22:53                     | MRA,QQQ1;700361                         |     |
| 22012227906                | 2201224A_45.d                  | Sample           | 12/24/2020 23:08                     | MRA,QQQ1;700361                         |     |
| 22012227907                | 2201224A_46.d                  | gc               | 12/24/2020 23:22                     | MRA,QQQ1;700361                         |     |
| 22012227908                | 2201224A_47.d                  | gc               | 12/24/2020 23:37                     | MRA,QQQ1;700361                         |     |
| 22012227909                | 2201224A_48.d                  | Sample           | 12/24/2020 23:51                     | MRA,QQQ1;700361                         |     |
| 22012227910                | 2201224A_49.d                  | Sample           | 12/25/2020 0:05                      | MRA,QQQ1;700361                         | -   |
| 1450                       | 2201224A_50.d                  | gc               | 12/25/2020 0:19                      | MRA, QQQ1;CCV                           |     |
| 22012174401                | 2201224A_51.d                  | Sample           | 12/25/2020 0:34                      | MRA,QQQ1;700361                         |     |
| 22012174402                | 2201224A_52.d                  | Sample           | 12/25/2020 0:48                      | MRA,QQQ1;700361                         |     |
| 22012174403                | 2201224A_53.d                  | Sample           | 12/25/2020 1:02                      | MRA,QQQ1;700361                         |     |
| 22012174404                | 2201224A_54.d                  | Sample           | 12/25/2020 1:17                      | MRA,QQQ1;700361                         |     |

2

.

.

\_

\_\_\_\_

\_\_\_\_

| Т               | 1               | 1                | 1               | 1                | 1                | Ч                              | 1               | 1                              | Η                | 1                | 1                | 50               | 50               | 1               |
|-----------------|-----------------|------------------|-----------------|------------------|------------------|--------------------------------|-----------------|--------------------------------|------------------|------------------|------------------|------------------|------------------|-----------------|
| MRA,QQQ1;700361 | MRA,QQQ1;700361 | MRA, QQQ1;699027 | MRA,QQQ1;699027 | MRA, QQQ1;699027 | MRA, QQQ1;699027 | MRA, MeOH SHOT/INSTRUMENT IDLE | MRA,QQQ1;699027 | MRA, MeOH SHOT/INSTRUMENT IDLE | MRA, QQQ1;699273 | MRA, QQQ1;CCV   |
| 12/25/2020 1:31 | 12/25/2020 1:45 | 12/25/2020 2:00  | 12/25/2020 2:14 | 12/25/2020 2:28  | 12/25/2020 2:42  | 12/25/2020 2:57                | 12/25/2020 3:11 | 12/25/2020 3:25                | 12/25/2020 3:39  | 12/25/2020 3:53  | 12/25/2020 4:07  | 12/25/2020 4:22  | 12/25/2020 4:36  | 12/25/2020 4:50 |
| Sample          | Sample          | Sample           | QC              | QC               | Sample           | MeOH Shot                      | Sample          | MeOH Shot                      | Sample           | QC               | gc               | Sample           | Sample           | дс              |
| 2201224A_55.d   | 2201224A_56.d   | 2201224A_57.d    | 2201224A_58.d   | 2201224A_59.d    | 2201224A_60.d    | 2201224A_61.d                  | 2201224A_62.d   | 2201224A_63.d                  | 2201224A_64.d    | 2201224A_65.d    | 2201224A_66.d    | 2201224A_67.d    | 2201224A_68.d    | 2201224A_69.d   |
| 22012174405     | 22012174406     | 2120624          | 2120625         | 2120626          | 22012042801      | MeOH Shot                      | 22012042802     | MeOH Shot                      | 2121815          | 2121816          | 2121817          | 22012042803 x50  | 22012042804 x50  | 1400            |

QQQ2 Run Log

| Analyst:               | BMH           | Expiration: |                |                                    |      |
|------------------------|---------------|-------------|----------------|------------------------------------|------|
| Instrument:            | QQQ2          |             |                |                                    |      |
| Batch:                 | 2210104B      |             |                |                                    |      |
| Current ICAL Bath:     | 2210104BCAL   |             |                |                                    |      |
| 20mM Amm Acetate       | 016-9-3       | 1/6/2021    |                |                                    |      |
| Methanol               | 2129592       | 6/30/2025   |                |                                    |      |
| <b>Calibration Std</b> | 016-7-2       | 6/29/2021   |                |                                    |      |
| ICV Std                | 012-68-1      | 3/25/2021   |                |                                    |      |
| EIS Mix                | 016-8-3       | 6/11/2021   |                |                                    |      |
| IIS Mix                | 016-9-1       | 6/31/2021   |                |                                    |      |
| Name                   | Data File     | Type        | Acq. Date-Time | Comment                            | Dil. |
| MeOH Shot              | 2210104B_01.d | MeOH Shot   | 1/4/2021 16:50 | MRA,QQQ2;MeOH SHOT/INSTRUMENT IDLE | 1    |
| 1201                   | 2210104B_02.d | Cal         | 1/4/2021 17:03 | MRA,QQQ2;Cal                       | 1    |
| 1202                   | 2210104B_03.d | Cal         | 1/4/2021 17:16 | MRA,QQQ2;Cal                       | 1    |
| 1203                   | 2210104B_04.d | Cal         | 1/4/2021 17:29 | MRA,QQQ2;Cal                       | 1    |
| 1204                   | 2210104B_05.d | Cal         | 1/4/2021 17:42 | MRA,QQQ2;Cal                       | 1    |
| 1205                   | 2210104B_06.d | Cal         | 1/4/2021 17:55 | MRA,QQQ2;Cal                       | 1    |
| 1206                   | 2210104B_07.d | Cal         | 1/4/2021 18:08 | MRA,QQQ2;Cal                       | 1    |
| 1207                   | 2210104B_08.d | Cal         | 1/4/2021 18:21 | MRA,QQQ2;Cal                       | 1    |
| MeOH Shot              | 2210104B_09.d | MeOH Shot   | 1/4/2021 18:34 | MRA,QQQ2;MeOH SHOT/INSTRUMENT IDLE | 1    |
| 1500                   | 2210104B_10.d | Sample      | 1/4/2021 18:47 | MRA,QQQ2;Cal                       | Ч    |
| 1600                   | 2210104B_11.d | Sample      | 1/4/2021 19:00 | MRA,QQQ2;Cal                       | 1    |
| 1450                   | 2210104B_12.d | QC          | 1/4/2021 19:13 | MRA,QQQ2;Cal                       | Ч    |
| 1450                   | 2210104B_13.d | QC          | 1/4/2021 19:26 | MRA,QQQ2;Cal                       | 1    |
| MeOH Shot              | 2210104B_14.d | MeOH Shot   | 1/4/2021 19:39 | MRA,QQQ2;MeOH SHOT/INSTRUMENT IDLE | Ч    |
| 2121815                | 2210104B_15.d | Sample      | 1/4/2021 19:52 | MRA,QQQ2;699273                    | 1    |
| 2121816                | 2210104B_16.d | QC          | 1/4/2021 20:05 | MRA,QQQ2;699273                    | 1    |
| 2121817                | 2210104B_17.d | QC          | 1/4/2021 20:18 | MRA,QQQ2;699273                    | 1    |
| 22012043201 x10        | 2210104B_18.d | Sample      | 1/4/2021 20:31 | MRA,QQQ2;699273                    | 10   |
| 22012043202 x10        | 2210104B_19.d | Sample      | 1/4/2021 20:44 | MRA,QQQ2;699273                    | 10   |
| 22012043203 x10        | 2210104B_20.d | Sample      | 1/4/2021 20:57 | MRA,QQQ2;699273                    | 10   |

**1** 50

 $\overline{\phantom{a}}$ 

-

- -

 - -

Ч

-

- -

- -

- -

μ

Ч

Ч

- -

----

| 0D 2_S | 0 S | 00  |
|--------|-----|-----|
| LOD    | 00  | 140 |

| 1/5/2021 4:34 | 1/5/2021 4:47 | 1/5/2021 5:00 |
|---------------|---------------|---------------|
| Sample        | Sample        | QC            |
| 2210104B_55.d | 2210104B_56.d | 2210104B_57.d |

# PFAS Isotope Dilution QSM B15

## **Prep Sheets**



### **PFAS DOD Water Extraction**



| an<br>Te | IALYST/<br>Ch | DWB  | START<br>Date/Time | 1 <b>2/23/</b><br>10: | 2020  <br>17                  | end<br>Date/Time | 1       | 12/23/2020<br>14:25 | BATCH  | 700361                    |
|----------|---------------|------|--------------------|-----------------------|-------------------------------|------------------|---------|---------------------|--------|---------------------------|
| #        | CLIENT        | TYPE | CLIENT ID          |                       | LAB ID                        | INITIAL V        | OL (mL) | FINAL VOL (mL)      | COMMEN | STANDARDS\<br>IT REAGENTS |
| 1        | QC            | MB   | MB 2127843         |                       | 212 <b>784</b> 3              | 125              | 5       | 1.0                 |        | PFAC24 (LCS) Spike - 25ul |
| 2        | QC            | LCS  | LCS 2127844        |                       | 21278 <b>44</b>               | 125              | 5       | 1.0                 |        | 016-3-6                   |
| 3        | QC            | LCSD | LCSD 2127845       | 5                     | 21278 <b>4</b> 5              | 125              | 5       | 1.0                 |        | MPFAC (EIS) Spike - 50ul  |
| 4        | 4769          | SAMP | SMP 5, EXP 12      | 2, IMP 1A             | 22012227905                   | 125              | 5       | 1.0                 |        | 016-4-8                   |
| 5        | 4769          | SAMP | SMP 6, EXP 12      | 2, IMP 3A             | 22012227906                   | 125              | 5       | 1.0                 |        | Inst IS Spike - 10ul      |
| 6        | 4769          | MS   | SMP 6, EXP 12      | 2, IMP 3A             | 22012227907                   | 125              | 5       | 1.0                 |        | 016-4-7                   |
| 7        | 4769          | MSD  | SMP 6, EXP 12      | 2, IMP 3A             | 22012227908                   | 125              | 5       | 1.0                 |        | UHPLC Methanol            |
| 8        | 4769          | SAMP | SMP 7, EXP 13      | 3, IMP 1A             | 22012227909                   | 125              | ō       | 1.0                 |        | 2129814                   |
| 9        | 4769          | SAMP | SMP 8, EXP 13      | 3, IMP 3A             | 2201222 <b>7</b> 9 <b>1</b> 0 | 125              | 5       | 1.0                 |        | Basic Methanol            |
| 10       | 2962          | SAMP | IDW WATER 2        | 020 SS-45             | 22012174 <b>401</b>           | 125              | 5       | 1.0                 |        | 016-2-2                   |
| 11       | 2962          | SAMP | IDW WATER 2        | 020 LF-15             | 22012174402                   | 125              | 5       | 1.0                 |        |                           |
| 12       | 2962          | SAMP | IDW WATER 2        | 019 <b>SS-4</b> 5     | 22012174403                   | 125              | 5       | 1.0                 |        |                           |
| 13       | 2962          | SAMP | IDW WATER 2        | 019 L <b>F-</b> 15    | 220121 <b>7</b> 4 <b>40</b> 4 | 125              | 5       | 1.0                 |        | WAX Column                |
| 14       | 2962          | SAMP | IDW WATER 2        | 018                   | 22012174 <b>40</b> 5          | 125              | ō       | 1.0                 |        | 2454/1244/G               |
| 15       | 2962          | FB   | FB PFAS            |                       | 22012174 <b>40</b> 6          | 125              | 5       | 1.0                 |        | ENVI-CARB                 |
| 16       |               |      |                    |                       |                               |                  |         |                     |        | NA                        |
| 17       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 18       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 19       |               |      |                    |                       |                               |                  |         |                     |        | Sample Load Start         |
| 20       |               |      |                    |                       |                               |                  |         |                     |        | 10:17                     |
| 21       |               |      |                    |                       |                               |                  |         |                     |        | Sample Load End           |
| 22       |               |      |                    |                       |                               |                  |         |                     |        | 10:58                     |
| 23       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 24       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 25       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 26       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 27       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 28       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 29       |               |      |                    |                       |                               |                  |         |                     |        |                           |
| 30       |               |      |                    |                       |                               |                  |         |                     |        |                           |

#### NOTES

Sample preparation includes determination of initial volume, loading and elution of analytes via wax column, ENVI-CARB cleanup, and evaporation of solvent to <1.0ml. Final volume is adjusted to 1.0ml with methanol.



### **PFAS DOD Solid Extraction**



| ANALYST/<br>TECH |        | TJT  | START     12/24/       DATE/TIME     13:1 |            | / <b>2020</b><br>00 | end<br>Date/Time | 12/24/2020<br>16:00 | BATCH           |         | 700444                    |  |  |
|------------------|--------|------|-------------------------------------------|------------|---------------------|------------------|---------------------|-----------------|---------|---------------------------|--|--|
| #                | CLIENT | TYPE |                                           |            | LAB ID              | INITIAL WGT (    | g) FINAL VOL (mL)   | COMMENT         |         | STANDARDS\<br>REAGENTS    |  |  |
| 1                | QC     | MB   | MB 2128031                                |            | 2128031             | 5.00             | 1.0                 |                 |         | PFAC24 (LCS) Spike - 25ul |  |  |
| 2                | QC     | LCS  | LCS 2128032                               |            | 2128032             | 5.00             | 1.0                 |                 |         | 012-98-4                  |  |  |
| 3                | QC     | LCSD | LCSD 2128033                              | 3          | 2128033             | 5.00             | 1.0                 |                 |         | MPFAC (EIS) Spike - 50ul  |  |  |
| 4                | 4769   | SAMP | SMP 1, EXP 12                             | 2C         | 22012227901         | 0.66             | 1.0                 | 5000X serial di | ilution | 016-1-2                   |  |  |
| 5                | 4769   | SAMP | SMP 2, EXP 12                             | 2 <b>T</b> | 22012227902         | 0.51             | 1.0                 | 500X serial dil | lution  | Inst IS Spike - 10ul      |  |  |
| 6                | 4769   | SAMP | SMP 3, EXP 13                             | 3C         | 22012227903         | 0.73             | 1.0                 | 5000X serial di | ilution | 012-99-5                  |  |  |
| 7                | 4769   | SAMP | SMP 4, EXP 13                             | ЗТ         | 22012227904         | 0.57             | 1.0                 |                 |         | Methanol                  |  |  |
| 8                | QC     | DUP  | DUP 2131564                               |            | 2131564             | 0.66             | 1.0                 | 5000X serial di | ilution | 2129773                   |  |  |
| 9                | QC     | MS   | SMP 1, EXP 12                             | 2C(2127801 | 2131565             | 0.66             | 1.0                 | 5000X serial di | ilution | Basic Methanol            |  |  |
| 10               | QC     | DUP  | DUP 2131566                               |            | 2131566             | 0.51             | 1.0                 | 500X serial dil | lution  | 016-5-9                   |  |  |
| 11               | QC     | MS   | SMP 2, EXP 12T(2127802                    |            | 2131567             | 0.51             | 1.0                 | 500X serial dil | lution  |                           |  |  |
| 12               | QC     | DUP  | DUP 2131568                               |            | 2131568             | 0.73             | 1.0                 | 5000X serial di | ilution |                           |  |  |
| 13               | QC     | MS   | SMP 3, EXP 13C(2127803                    |            | 2131569             | 0.73             | 1.0                 | 5000X serial di | ilution | WAX/GCB Cartridge         |  |  |
| 14               |        |      |                                           |            |                     |                  |                     |                 |         | 2454/1244/G               |  |  |
| 15               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 16               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 17               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 18               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 19               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 20               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 21               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 22               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 23               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 24               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 25               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 26               |        |      | ļ                                         |            |                     |                  |                     |                 |         |                           |  |  |
| 27               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 28               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 29               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |
| 30               |        |      |                                           |            |                     |                  |                     |                 |         |                           |  |  |

#### EQUIPMENT\CONDITIONS

| BALANCE ID |  |
|------------|--|
| BAL23      |  |

#### NOTES

Sample preparation includes determination of weight, solvent extraction and centrifugation, cleanup using a WAX/GCB combination cartridge, and evaporation of solvent to <1.0ml. Final volume is adjusted to 1.0ml with methanol.

|                            |                                                                      | -                                                                        | 1                   | No.                      | -                                                                | d                                                                    | m                                                                               | 1                                                                                       |                | 10                                     | 815                                              | 5                                      | 0                                      | TE | T                      | 1             |                     |
|----------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------|--------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|----------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------|----|------------------------|---------------|---------------------|
| SDG: 220122279             | custody South Laces To yus The No the Internation S. 2 E34           | Districtioned Arrelysian Ringcamented Trivite Projection Lass Projection |                     | - Preservative / Notes _ | -0.65 g IDW witerpried<br>PFBSAPRissaPrOSPPHpAPFOAPFINA -1 nugly | -0.5 9 KDW wrespected PSILS/PFSILS/PFSILS/PFSILS/PFILA/PFSILA/PFILA/ | -0.7 g (DW w/30 mg/g Ca/OH/2 and expected<br>PFBS/PFH-GS/PFHpA/PFOA/PFNA ~1ng/g | -0.33 g IDW =00 mg/g Ca/OH/2 and appetted<br>PFBS/PFHKu/PFOS/PFHpA/PFOA/PFNA v0.43 mg/g | -              | 2 for sample: aspected PFAS < 200 mg/L | Z for sample, 2 for MSD, expected PFAG < 200 ngL | 2 for sumplei expected PFA5 < 200 rg/L | 2 for sample: espected PFAS < 200 tpjL |    |                        |               |                     |
| RECORD                     | Amilytical Requests & Method                                         | PA 10                                                                    | 2444                |                          | *                                                                | ×                                                                    | *                                                                               | ×                                                                                       |                | *                                      | ×                                                | ×                                      | ×                                      |    |                        | Notest        | PFAS list per PO SC |
| USTODY                     |                                                                      |                                                                          |                     | two of Constitution      |                                                                  | 1                                                                    | 4                                                                               | ÷                                                                                       | Ŧ              | 2 x 125 mL                             | 8 x 125 mL                                       | 2 x 125 mL                             | 2 x 125 mL                             |    |                        | Castine .     | adicha 1200         |
| CHAIN OF C                 | Bill To:<br>Client As per PO<br>Address<br>Contact<br>Phone:<br>Emai |                                                                          | ndee                | Sample Description       |                                                                  |                                                                      |                                                                                 |                                                                                         |                | Rep A.B                                | Rop A.E<br>Rop A.F                               | top A.B                                | 8 Y do                                 |    | and Denied Contraction | Diverses      | 2 Junto             |
| (CEI)<br>Reage LA TRACEFOC | m<br>ss Road<br>van Groos<br>5-5367<br>reprose@tablim.com            | ord NamesTainfeet                                                        | an Grocs / Chuck Co |                          | Smit 1, Ekp  2C                                                  | Emp 2, Exp 127                                                       | 6mp 3, Exp 130                                                                  | Ship 4, Exp 13T                                                                         | -Line Skeped - | Smp S. Exp 12, Imp 1a                  | Smp 5, Esp 12, imp 34                            | Seep 7, Exp 13, Imp 14                 | Smp B. Exp 13, imp 3a                  |    | L                      | And Aller And | ind and an          |
| allyfiles                  | Apt<br>Apt<br>Prince<br>roevile<br>(oster<br>(0) 89                  | NO1                                                                      | ster va             | 8                        | ×                                                                | ×                                                                    | ×                                                                               | ×                                                                                       |                | ×                                      | ×                                                | ×                                      | ×                                      | -  |                        | dutio         |                     |
| O An                       | Rep<br>171<br>2Mren<br>Paul N<br>(80<br>(80                          |                                                                          | aul Ko              | 100                      | 50:11                                                            | 3:00                                                                 | 1:00                                                                            | 2:00                                                                                    | 1              | 00:44                                  | 13:00                                            | 11:00                                  | 13:00                                  |    |                        | 11 Island     |                     |
| Pace                       | Client<br>Address<br>Contast<br>Phone<br>Email                       | 10-                                                                      |                     | - Call                   | 00127/200                                                        | OBIZTIZO O                                                           | 06/04/20 1                                                                      | 05/04/20                                                                                | ł              | 05/27/20 0                             | 05/27/20 0                                       | 06/04/20                               | 06/04/20                               |    | umber:                 | y Same        | ity figures         |
| 6 -                        |                                                                      | 0. Num                                                                   | PT CAOD             | Mark.                    | -00                                                              | a                                                                    | 03                                                                              | 50                                                                                      | 1              | 4                                      | 4                                                |                                        | 4                                      |    | Thur N                 | WWW N         | 3                   |

Page 627 of 628

Pace Gulf Coast Report#: 220122279
Pace Analytical

# SAMPLE RECEIVING CHECKLIST



|                                                  |                         |                                                                                  | 20122 | 2 7 9 ×     |
|--------------------------------------------------|-------------------------|----------------------------------------------------------------------------------|-------|-------------|
| SAMPLE DELIVERY GROU                             | JP 220122279            | CHECKLIST                                                                        | YES   | ð           |
| Client PM AEC<br>4769- APTIM                     | Transport Method<br>UPS | Samples received with proper thermal preservation?                               | >     |             |
|                                                  |                         | Radioactivity is <1600 cpm? If no, record cpm value in notes section.            | >     |             |
| Profile Number                                   | Received By             | COC relinquished and complete (including sampleIDs, collect times, and sampler)? | >     |             |
| 0000                                             |                         | All containers received in good condition and within hold time?                  | >     |             |
| Line Item(s)                                     | Receive Date(s)         | All sample labels and containers received match the chain of custody?            | >     |             |
| 1 - S-537 Table 1 list<br>2 - W-537 Table 1 list | 12/22/20                | Preservative added to any containers?                                            |       | >           |
|                                                  |                         | If received, was headspace for VOC water containers < 6mm?                       | >     |             |
|                                                  |                         | Samples collected in containers provided by Pace Gulf Coast?                     |       | >           |
| COOLERS                                          |                         | DISCREPANCIES LAB PRESERVATIONS                                                  |       |             |
| Airbill Thermome                                 | ter ID: E34 Temp'       | oC None None                                                                     |       |             |
|                                                  | 5.2                     |                                                                                  |       |             |
| NOTES                                            |                         |                                                                                  |       |             |
| Revision 1.6                                     |                         |                                                                                  |       | Page 1 of 1 |

Pace Gulf Coast Report#: 220122279

Page 628 of 628



17 Princess Rd Lawrenceville, New Jersey 08648 Tel: 609/895-5357 Fax: 609/895-1858

**Limited Chemistry Deliverables** 

Prepared for IR&D

## Lab ID RD2784

Project Number: 501150

Samples Received 2-Jun-20

Reported 4-Jun-20

Paul Hedman Laboratory Director

Date

# 1.0 Chain of Custody

2.0 Sample Results

<u>APTIM</u> <u>Analytical and Treatability Laboratories</u> 17 Princess Road Lawrenceville, New Jersey 08648 Tel; 609/895-5370 Fax: 609/895-1858

| Sample Inform          | mation       |       |   |       |   |       |   |       |   |       |                   |                                      |                                        |                      |      |                    |                |
|------------------------|--------------|-------|---|-------|---|-------|---|-------|---|-------|-------------------|--------------------------------------|----------------------------------------|----------------------|------|--------------------|----------------|
| Lab ID RD<br>Matrix Aa | D2784        |       |   |       |   |       |   |       |   |       | Dat<br>Dat<br>Dat | e Sampleo<br>e Receiveo<br>e Analyze | 06/02/2020<br>06/02/2020<br>06/03/2020 | 2020<br>2020<br>2020 |      |                    |                |
|                        | ucous        |       |   |       |   |       |   |       |   |       | Dat               | c mary zc                            | u                                      |                      |      | 00/03/2020         | ,              |
| Limited Chen           | nistry       |       |   |       |   |       |   |       |   |       |                   |                                      |                                        |                      |      |                    |                |
| Lab ID                 | -            | PFHpA | Q | PFOA  | Q | PFNA  | Q | PFBS  | Q | PFHxS | Q                 | PFOS                                 | Q                                      | Units                | PQL  | Dilution<br>Factor | Method<br>Code |
| std                    | 20ppb        | 20.91 |   | 19.36 |   | 19.92 |   | 20.17 |   | 20.17 |                   | 20.17                                |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 1              | Impinger 1A  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 2              | Impinger 1B  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 3              | Impinger 2A  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 4              | Impinger 2B  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 5              | Impinger 3A  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 6              | Impinger 3B  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 7              | Impinger 4A  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 8              | Impinger 4B  | 0.05  | U                 | 0.05                                 | U                                      | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 9              | Con 1st Wash | 11.26 |   | 33.23 |   | 21.58 |   | 20.65 |   |       |                   | 23.55                                |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 10             | Con 2nd Wash | 1.12  |   | 3.59  |   | 2.63  |   | 1.44  |   |       |                   | 2.75                                 |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 11             | Con 3rd Wash | 0.16  |   | 0.31  |   | 0.25  |   | 0.13  |   |       |                   | 0.15                                 |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 12             | Exp 1st Wash | 0.05  | U | 0.05  | U | 0.05  | U | 3.14  |   | 1.40  |                   | 2.61                                 |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 13             | Exp 2nd Wash | 0.05  | U | 0.05  | U | 0.05  | U | 0.56  |   | 0.21  |                   | 0.23                                 |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 14             | Exp 3rd Wash | 0.05  | U | 0.05  | U | 0.05  | U | 0.15  |   | 0.05  |                   | 0.07                                 |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784- 15             | Con Boat     | 0.04  |   | 0.12  |   | 0.07  |   | 0.14  |   | 0.05  | U                 | 0.08                                 |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |
| RD2784-16              | Test Boat    | 0.05  | U                 | 0.02                                 |                                        | mg/L                 | 0.05 | 1.0                | ATL073         |

U

0.05

U

mg/L

0.05

1.0

ATL073

0.05

Combination of co-eluted PFOA/PFHxS peaks.

0.05

Concentrations are below PQL

Tube Wash

RD2784- 17

Impinger volumes were 20 mL

1st and 2nd wash volumes were 45 mL, 3rd wash and boat volumes were 50 mL

U

0.05

U

0.05

U

0.05

U

Tube wash volume was 200 mL



17 Princess Rd Lawrenceville, New Jersey 08648 Tel: 609/895-5357 Fax: 609/895-1858

**Limited Chemistry Deliverables** 

Prepared for IR&D

## Lab ID RD2787

Project Number: 501150

Samples Received 9-Jun-20

> Reported 12-Jun-20

> > Paul HedmanDLaboratory Director

Date

# 1.0 Chain of Custody

2.0 Sample Results

Analytical and Treatability Laboratories

17 Princess Road Lawrenceville, New Jersey 08648 Tel; 609/895-5370 Fax: 609/895-1858

| Sample I | nformation |                  |          |
|----------|------------|------------------|----------|
| Lab ID   | RD2787     | Date Sampled 06  | /09/2020 |
|          |            | Date Received 09 | /09/2020 |
| Matrix   | Aqueous    | Date Analyzed 06 | /10/2020 |
|          |            |                  |          |

| Limited Chemi | stry         |       |   |       |   |       |   |       |   |       |   |       |   |       |      |                    |                |
|---------------|--------------|-------|---|-------|---|-------|---|-------|---|-------|---|-------|---|-------|------|--------------------|----------------|
| Lab ID        |              | PFHpA | Q | PFOA  | Q | PFNA  | Q | PFBS  | Q | PFHxS | Q | PFOS  | Q | Units | PQL  | Dilution<br>Factor | Method<br>Code |
| std           | 20ppb        | 20.91 |   | 19.36 |   | 19.92 |   | 20.17 |   | 20.17 |   | 20.17 |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 1     | Impinger 1A  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 2     | Impinger 1B  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 3     | Impinger 2A  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 4     | Impinger 2B  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 5     | Impinger 3A  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 6     | Impinger 3B  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 7     | Impinger 4A  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 8     | Impinger 4B  | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 9     | Con 1st Wash | 21.29 |   | 31.03 |   | 2.23  |   | 91.79 |   |       |   | 0.91  |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787-10     | Con 2nd Wash | 2.45  |   | 19.94 |   | 19.69 |   | 2.85  |   |       |   | 24.74 |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 11    | Con 3rd Wash | 0.31  |   | 3.49  |   | 4.93  |   | 0.09  |   |       |   | 5.37  |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787-12     | Exp 1st Wash | 0.05  | U | 0.05  | U | 0.05  | U | 2.17  |   | 0.46  |   | 0.14  |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787-13     | Exp 2nd Wash | 0.05  | U | 0.05  | U | 0.05  | U | 0.05  | U | 0.06  |   | 0.15  |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 14    | Exp 3rd Wash | 0.05  | U | 0.05  | U | 0.05  | U | 0.05  | U | 0.01  |   | 0.08  |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787-15     | Con Boat     | 0.27  |   | 0.54  |   | 0.25  |   | 0.38  |   | 0.05  | U | 0.14  |   | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 16    | Test Boat    | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |
| RD2787- 17    | Tube Wash    | 0.05  | U | mg/L  | 0.05 | 1.0                | ATL073         |

Combination of co-eluted PFOA/PFHxS peaks.

Concentrations are below PQL

Impinger volumes were 20 mL

1st and 2nd wash volumes were 45 mL, 3rd wash and boat volumes were 50 mL Tube wash volume was 200 mL