

An Intelligent Tutoring Framework for
Simulation-based Training

Dave Gomboca, H. Chad Lanea, Mark Corea, Ashish Karnavata,
Daniel Auerbacha, Milton Rosenberga

aInstitute for Creative Technologies, University of Southern California, U.S.A.
gomboc@ict.usc.edu

Abstract: Truly generic, reusable intelligent tutoring software frameworks remain elusive.
As part of our effort to develop ITSs for simulations, a software framework with minimal
dependencies on domain specifics has emerged. Herein, we describe this framework, its
functionality, components, configurability, and use of natural language generation.

Keywords: Intelligent tutoring systems, architecture, framework, simulation, training

Introduction

The Intelligent Guided Experiential Learning (IGEL) project focuses on supporting stu-
dents�’ learning while practicing skills and problem solving using simulations. A primary
goal of the IGEL framework is to minimize dependency upon domain specifics. IGEL is
integrated into ELECT BiLAT [5, 10], an immersive simulation teaching cross-cultural
trust-building and negotiation strategies. Our work is informed by prior research [4] that
used other simulators such as OneSAF Objective System [2] and Full Spectrum Command.

Simulation runs are represented as a sequence of actions and the resulting changes in
the state of the world. In BiLAT, states correspond to mental representations of meeting
partners and deals being made; actions correspond to meeting actions (e.g., saying some-
thing, making an offer in a negotiation).

The learning objectives (LOs1) that IGEL attempts to impart are encoded hierarchi-
cally. For example, BiLAT has a top-level LO that represents all aspects of socialization.
One child of this LO represents �“making small talk�”, which in turn is subdivided further.
Within the LO tree, direct siblings are more related than more distant nodes.

Expert opinions (EOs), formed by the expert model both in anticipation of and in re-
action to student actions, indicate what guidance can be provided. In BiLAT, the user action
making small talk concerning culture yields positive evidence that the student understands
the LO regarding socializing by discussing culture. Evidence against comprehension of a
different LO regarding conversational pacing is also yielded if such small talk is mistimed.

IGEL components run in their own processes and communicate over TCP/IP, enabling
Wizard of Oz experiments and other multi-machine setups. Generic code employs Java
reflection to convert in-memory objects to and from canonical XML and RDBMS repre-
sentations as required. In Figure 1, we classify components as either domain-dependent or
-independent. Arrow labels indicate most message types sent between components. Do-
main knowledge is often stored as external data to preserve code domain-independence.

1 Learning Objectives are not to be confused with the IEEE LTSC�’s Learning Objects.

Obtain Expert Opinion

Expert Opinion
Obtained

Coaching Topics

Begin Tutoring;
Continue Tutoring;

Multiple Choice
Question Answered

Coaching Action

State
Reported;
Say Prose;
Ask Multiple

Choice Question

Request System Startup;
Set Desired Activation Level;

Report Activation State

Activation State

Report State;
Action Performed;

Obtain
Coaching Action

Simulation Event
Processor

Process Control
Daemons

Student
Model

Coach GUI

Reflective
TutorNLG

Coach /
Wizard of Oz

Scenario Data
Loader

Inform Student Model

Coaching
Action

Say Prose;
Ask Multiple

Choice Question;
Tutoring Complete

Begin Tutoring;
Continue Tutoring;

Multiple Choice
Question Answered

Obtain
Coaching

Action

Obtain Coaching
Utterance

Student Model Informed
Coaching
Utterance

Display Expert Opinions;
Display Character Actions

Dispatcher

Report State;
Action Performed

Obtain Coaching Action

Set Desired Activation Level;
Report Activation State

Request System Startup

Messaging
Bridge

Expert
Model Simulation

Coaching
Advice

Templates

Configuration
Preferences

Tutor Action
Paraphrases

Tutoring
Tactic

Templates

Learning
Objectives

Scenario
Data

Obtain Coaching Action

Begin Tutoring;
Continue Tutoring;

Multiple Choice
Question Answered

Display Scoreboard

Set Desired Activation Level;
Report Activation StateActivation State

Expert Opinion Obtained

Obtain Coaching
Topics

Message between components

XML data file read by component

IGEL Component
(executing process) IGEL XML

data file(s)

Begin Tutoring;
Continue Tutoring;

Multiple Choice
Question Answered

Display Scoreboard

State Reported;
Say Prose;

Ask Multiple Choice Question

Report State; Action Performed

Domain-dependent

Domain-independent

Reduce

Reduction

Figure 1: IGEL System Architecture

1. Domain-dependent framework components

1.1 Expert Model

The expert model performs domain-dependent reasoning on behalf of the tutoring system.
Its two major roles are as critic and problem solver: assessing student actions at a state, and
recommending actions to perform given a state. Both of these procedures create expert
opinions that are recorded in our database for our coach and tutor to make use of.

Integrating the expert model with, or even within, the simulator is desirable to ensure
the fidelity of the expert model to the simulation, but requires tight collaboration between
the simulation and ITS builders. Organizational and geographical disparity, differences in

development funding and timing, and incentive disparity between developers may make
such collaboration infeasible.

Nothing precludes the expert model from itself hiding multiple, specialized expert
models. BiLAT�’s expert contains two modules that specialize on culturally appropriate
meeting conversation and negotiation (haggling), respectively. Experts could also be used
collectively (e.g., each expert contributing a vote to the final decision): see Littman et al. [9]
for an effective use of this technique for solving crossword puzzles.

1.2 Messaging Bridge

If the simulation�’s and IGEL�’s representation of scenario data, states, actions, and software
control messages differ, then format conversion is necessary. The bridge adjusts messages
appropriately on the fly during communication between IGEL and the simulation.

2. Domain-independent framework components

In BiLAT, we distinguish between coaching (giving advice during problem solving) and
reflective tutoring (review subsequent to problem solving), because we believe the types of
student interactions appropriate in each case are different. We reason that the student, while
actively engaged with the simulation, will typically lack the additional cognitive resources
required to answer questions or have time to comprehend lengthy guidance. In contrast, the
learner�’s complete attention can be focused upon our after-action review (AAR), where the
reflective tutor engages the student in extended dialogue regarding their experience. Katz et
al. [7, 8] goes some way towards supporting this reasoning.
 In other domains, the distinction between the roles of coach and tutor may be less
clear-cut, because the training opportunities are not as obviously separable. In such cases,
both roles could be assigned to the same component.

2.1 Coaching

IGEL requires notification from the simulation when the student has opportunity to perform
one or more actions, when the user interface indicates the student intends to or has in fact
performed any actions, and also when the student requests a hint, so that the coach may
choose to give hints and feedback to the student at any of these appropriate moments.

IGEL supports multiple versions of our scaffolding algorithm inspired by cognitive
apprenticeship [1]. The coach provides hints and feedback very frequently at first, then
pulls support away gradually as the student demonstrates increasing skill, until the student
succeeds without assistance. We support both deterministic and probablistic scaffolding;
both the initial rate of guidance and how quickly guidance is faded are configurable. Also,
strategies to always or never attempt to give advice assist debugging. Advice provision is
never guaranteed: we cannot insist that all potentially relevant remarks be authored.

At any advice-giving moment, IGEL can choose to either comment about a learning
objective, or directly describe why a particular action was, was not, or would be beneficial.
Our default content selection strategy is to give LO-based commentary when it has not been
given previously for LOs relevant to the situation at hand, and to give action-based com-
mentary otherwise (assuming the action-based commentary has not been given previously).
It is also possible for the instructor to specify that commentary for specific LOs should be
prohibited or preferred while the coach is running via the coach�’s internal GUI. The NLG
templates used for coaching commentary are specified in spreadsheets to make them readily
authorable by non-programmers.

Initial research regarding the coach�’s effectiveness is reported elsewhere within these
proceedings [11]. A Wizard of Oz (WoZ) version of our coach provides its user full access
to the simulation history as perceived by IGEL, the library of possible actions the user can
perform, and what the automated coach would have said to the student were it being used.

2.2 Simulation Event Processor

IGEL�’s main loop during the simulation�’s execution lies in the simulation event processor.
The processor coordinates the activities of the expert model and the coach with the simu-
lation, ensuring that each component is signalled to provide its input at the appropriate time.

2.3 Student Model

Our rudimentary, work-in-progress student model is based upon the hierarchical set of LOs
defined for the domain. IGEL records all states encountered, actions performed, and each
action�’s accordance or discordance with relevant LOs, as determined dynamically by the
expert model. The student model is retained through multiple simulation executions during
the same simulation software instantiation, but not yet between program instantiations.

2.4 Reflective Tutoring

At the conclusion of a distinct problem-solving episode in the simulation, our reflective
tutor conducts an AAR with the student that reviews the student�’s performance. The AAR
provides an opportunity for our software to discuss topics more deeply and interact with the
student regarding decisions made while practicing with the simulation.

The AAR�’s agenda is derived from the EOs formed during practice. Discussion topics
may be prioritized by different metrics, including error magnitude and action chronology.
EOs sharing LOs are clustered so that closely related issues relating to different points of
time during the simulation are juxtaposed in the AAR. Ideally, IGEL would also create EOs
during the AAR. Student selection of a wrong answer to a multiple choice question that the
tutor presents provides evidence that the student misunderstands not only the topic of dis-
cussion, but also the distractor wrongly selected. Updating our student model to reflect this
mistake would ideally cause the tutor to consider addressing this revealed misconception.

While prototypes of our tutor used JShop2 [6] and Jess [3], currently IGEL�’s tutoring
capabilities stem from a simple reactive planner written in Java. Tutoring tactic templates
are specified in an external data file that trained non-programmers may modify, allowing
tutoring improvements without recompilation. Available tutoring tactics include making
remarks and asking multiple-choice questions about why something the student did during
the simulation was incorrect. Distractors for multiple-choice questions may be dynamically
selected based upon the LO hierarchy (but not yet the student model), or hand-authored, at
the content author�’s discretion. Plausible future extensions include a tactic to ask the stu-
dent to �“act again�”, and to dynamically select the tactic applied to address a particular EO.

NLG templates embedded within tutoring tactics (and also coaching advice) combine
hard-coded text with XML elements; at runtime, repeated application of NLG substitution
operators eventually reduces all elements to plain text. About forty distinct low-level NLG
operators are supported, each of which accept an NLG template (and frequently, additional
information), and return a suitably adjusted template for further processing. Typically,
domain-dependent substitutions precede domain-independent substitutions in our pipeline.

Key operators permitting the repeated application of an NLG operator and the com-
position of multiple NLG operators allow us to rapidly and flexibly assemble compound
operators, and refer to and invoke them in the aggregate. Such substitutions may be nested

arbitrarily deeply. Typical compound substitutions include: a) filling out appropriate ref-
erences to actions, themes, topics, etc. with appropriate English phrases, punctuating lists,
plus looking up and inserting the names of people referenced in the conversation; b) in-
flecting verbs and nouns, introducing pronouns, and regularizing spacing and capitalization.

2.5 Process Control Daemons and Tracer

The global machine daemon (GMD) manages system tasks (e.g., starting and stopping the
RDBMS, loading system configuration data) and co-ordinates with the (one-per-machine)
local machine daemons to start and stop components as required. In any system configu-
ration, each participating component is assigned an even-numbered, though not usually
unique, activation level (AL). Receipt of a message indicating that the system should transit
to a particular, odd-numbered system AL causes the process control daemons to conduct an
AL-ordered starting or stopping of sets of components that continues until the components
executing are once again precisely just those components with ALs less than the system AL.

The tracer collects logging messages from each component and records them into a
single, time-stamped file, simplifying post-session analysis of learner behaviour.

Acknowledgements

This research was sponsored by the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed herein do not necessarily re-
flect positions or policies of the U.S. Government; no endorsement should be inferred.

References

[1] Collins, A., Brown, J. S., and Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of

reading, writing, and mathematics. In L. B. Resnick (Ed), Knowing, learning, and instruction: Essays in
honor of Robert Glaser (pp. 453-493). Mahwah, New Jersey, U.S.A.: Lawrence Erlbaum Associates.

[2] Courtemanche, A. and Wittman, R. (2002). OneSAF: A Product-Line Approach for a Next-Generation
CGF. Proceedings of the Eleventh SIW Conference on Computer-Generated Forces and Behavioral
Representations, 349-361. Orlando, Florida, U.S.A.: SISO.

[3] Friedman-Hill, E. (2003). Java Expert System Shell. Greenwich, Connecticut, U.S.A.: Manning.
[4] Gomboc, D., Solomon, S., Core, M. G., Lane, H. C., and van Lent, M. (2005). Design Recommendations

to Support Automated Explanation and Tutoring. Proceedings of the Fourteenth Conference on
Behavior Representation in Modeling and Simulation. Universal City, California, U.S.A.: SISO.

[5] Hill, R. W., Belanich, J., Lane, H. C., Core, M. G., Dixon, M., Forbell, E., Kim, J., and Hart, J. (2006).
Pedagogically structured game-based training: development of the ELECT BiLAT simulation.
Proceedings of the 25th Army Science Conference. Orlando, Florida, U.S.A.: United States Office of the
Under Secretary of Defense Acquisition, Technology and Logistics.

[6] Ilghami, O. (2006). Documentation for JSHOP2. Technical Report CS-TR-4694, Department of
Computer Science, University of Maryland, College Park, Maryland, U.S.A.

[7] Katz, S., O�’Donnell, G., and Kay, H. (2000). An Approach to Analyzing the Role and Structure of
Reflective Dialogue. International Journal of Artificial Intelligence in Education, 11, 320-343.

[8] Katz, S., Allbritton, D., and Connelly, J. (2003). Going Beyond the Problem Given: How Human Tutors
Use Post-Solution Discussions to Support Transfer. International Journal of Artificial Intelligence in
Education, 13(1), 79-116. ISSN 1560-4292.

[9] Littman, M. L., Keim, G. A., and Shazeer, N. (2002). A probabilistic approach to solving crossword
puzzles. Artificial Intelligence: Chips challenging champions: games, computers, and Artificial
Intelligence, 134(1-2), 23-55. ISSN 0004-3702.

[10] Lane, H. C., Core, M. G., Gomboc, D., Karnavat, A., and Rosenberg, M. (2007). Intelligent Tutoring for
Interpersonal and Intercultural Skills. Proceedings of the Interservice/Industry Training, Simulation,
and Educational Conference (I/ITSEC 2007). Orlando, Florida, U.S.A: NTSA.

[11] Lane, H. C., Hays, M., Core, M., Gomboc, D., Forbell, E., and Rosenberg, M. (2008). Coaching
Intercultural Communication in a Serious Game. Proceedings of the Sixteenth International Conference
on Computers in Education (ICCE 2008). Taipei, Republic of China (Taiwan): APSCE.

