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RPA remotely piloted aircraft
RPD recognition primed decision-making 
RPM revolutions per minute

S&T science and technology
SA situation awareness 
SAA sense-assess-augment 
SADM situation assessment and decision-making
SAE Society of Automotive Engineers 
SCADA supervisory control and data acquisition 
SDB Small Diameter Bomb 
SDPE Strategic Development Capabilities and 
 Experimentation
SEAD suppression of enemy air defenses
SIGINT signals intelligence 
SIPE System for Interactive Planning and Execution 
SME subject matter expert
SOM self-organizing (feature) map 
SOM Society of Mind 
SoS system of systems
SQL Structured Query Language
SVM support vector machine
SWAP size, weight, and power

T&E test and evaluation
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TB terabyte
TCP Transmission Control Protocol
TIE technical integration experiment
TPED tasking, processing, exploitation, and dissemination
TRL Technology Readiness Level
TSA team situation awareness
TTP tactics, techniques, and procedures
TWEANN topology and weight-evolving ANN

UAV unmanned aerial vehicle
UCT upper confidence bounds applied to trees 
UDP User Datagram Protocol
UI user interface 
UUV unmanned <undersea/underwater> vehicle
UXV unmanned <air/ground/sea/undersea> vehicle

V&V verification and validation
VAST Visual Analytics Science and Technology 

XAI eXplainable artificial intelligence

ZB zettabyte
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Executive Summary
As the Air Force realigns itself from a counterterrorism focus to 

dealing with near-peer rivalries with potential existential consequences, 
a “business as usual” approach to systems development will no longer 
suffice: we will not be able to continue with incremental advances on 
concepts developed decades ago. Instead, we need new technologies, 
affording us new capabilities, and new operational concepts to employ 
them. Fortunately, there now exists a broad and deep technology push 
in the information sciences, particularly in the area of autonomous 
system (AS) development and its associated foundational technology, arti-
ficial intelligence (AI). Our knowledge of cognition and neurophysiology—
the basis of what makes us “smart,” most of the time—grows at a dizzy-
ing pace, while our ability to build autonomous systems—like 
self-driving cars and game-playing robots—continues to make front-
page news, as new AI algorithms and learning techniques are devel-
oped and employed in novel ways. And these advances are compounded 
by explosive gains in the underlying computational infrastructure 
afforded by Moore’s law growth in computational power, memory, net-
working, and data availability.

Our goal here is twofold: to provide a vision for Air Force senior 
leaders of the potential of autonomous systems and how they can be 
transformative to warfighting at all levels and to provide the science 
and technology community a general framework and roadmap for ad-
vancing the state of the art while supporting its transition to existing 
and to-be acquired systems. Like others, we believe the payoff from the 
employment of these systems will be considerable, simply because the 
individual capabilities of these autonomous systems will afford us 
greater degrees of freedom in employment and opportunities for novel 
concepts of operations. But this is a traditional view. A potentially more 
far-reaching payoff will come from becoming more information-
centric and aided by proliferating autonomous systems, so that we can 
leave our legacy platform-centric way of thinking behind and become 
an enterprise that is service oriented, ubiquitously networked, and in-
formation intensive. 

Our approach in this document is to first lay out what we need in the 
way of AS “behaviors”: that is, no matter what the underlying technical 
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means, what are the resultant behaviors of these systems across the key 
dimensions of proficiency, trust, and flexibility? We then focus on 
architectural approaches that have the potential of bringing together 
several different communities working on the problem and then dis-
cuss enabling technologies that could bring these architectures to life. 
We close with recommendations that are not only technical but also 
that touch on the kinds of problem sets we should be addressing, the 
developmental processes and organizational structures needed to at-
tack them, and the broader structuring of a knowledge platform that 
enables the vision we have put forth.

Our recommendations cover six specific areas, summarized as follows.1

R1 . Behavioral Objectives

These are basically generalized design requirements specifying how 
we want an AS to behave, in terms of proficiency, trustworthiness, and 
flexibility.

•  Recommendation 1a: ASs should be designed to ensure proficiency 
in the given environment, tasks, and teammates envisioned dur-
ing operations. Desired properties of proficiency include situated 
agency, a capacity for adaptive cognition, an allowance for multiagent 
emergence, and an ability to learn from experience.

•  Recommendation 1b: ASs should be designed to ensure trust when 
operated by or teamed with their human counterparts. Desired 
tenets of trust include cognitive congruence and/or transparency 
of decision making, situation awareness, design that enables natural 
human-system interaction, and a capability for effective human-
system teaming and training.

•  Recommendation 1c: ASs should be designed to achieve proficiency 
and trust in a fashion that drives behavioral flexibility across tasks, 
peers, and cognitive approaches. Desired principles of flexibility 
for an AS include an ability to change its task or goal depending on 
the requirements of the overall mission and the situation it faces. 

1. Specific details are to be found in the body of the report and the accompanying 
appendices.



It should be able to take on a subordinate, peer, or supervisory role 
and change that role with humans or other autonomous systems 
within the organization. And it should be able to change how it 
carries out a task, both in the short term in response to a changing 
situation and over the long term with experience and learning.

R2 . Architectures and Technologies

This covers unifying frameworks and architectures that will support 
cross-disciplinary research and development, along with the technol-
ogy investments needed to support desired functionalities within an 
architecture.

•  Recommendation 2a: Develop one or more common AS architec-
tures that can subsume multiple frameworks currently used across 
disparate communities. Architectures should, at a minimum, pro-
vide for “end-to-end” functionality, in terms of providing the AS 
with a sensory ability to pick up key aspects of its environment; a 
cognitive ability to make assessments, plans, and decisions to 
achieve desired goals; and a motor ability to act on its environ-
ment, if called upon. The architecture should be functionally 
structured to enable extensibility and reuse, make no commit-
ment on symbolic versus subsymbolic processing for component 
functions, incorporate memory and learning, and support human-
teammate interaction as needed. Whatever the form, an architec-
ture should be extensible to tasks assigned, peer relationships engaged 
in, and cognitive approaches used. A key metric of an architec-
ture’s utility will be its capability of bridging the conceptual and 
functional gaps across disparate communities working autonomy 
issues.

•  Recommendation 2b: Pursue the development of enabling technolo-
gies that provide the needed functionality at the component level. 
This includes technologies that support not only the basic “see/
think/do” functions but also those that enable effective human-
computer interfaces (HCI), learning/adaptation, and knowledge-base 
management, both of a general purpose and of a domain-specific 
nature. The nature of technology development should range from 
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basic research to exploratory development to early prototyping, 
depending on the maturity of the specific technology and its envi-
sioned application.

•  Recommendation 2c: Develop and promulgate a multitiered hard-
ware and multilayered software architecture to support AS develop-
ment, validation, operation, and modification, where each tier 
provides for physical structuring across distinct hardware imple-
mentations/hosts for given high- and low-level functions and each 
layer provides distinct software implementations of similar func-
tions. A variety of complex architectural patterns may be needed 
to take full advantage of emerging technology trends, particularly 
in the commercial sector.

R3 . Challenge Problems

Addressed here are both domain-independent (or functional) problems 
such as dynamic replanning and domain-dependent (or mission-
oriented) problems, such as multidomain fusion.

•  Recommendation 3a: Drive basic behavior, architecture, and func-
tion development of ASs with an appropriately scoped, scaled, and 
abstracted set of functionally oriented challenge problems that al-
low different members of the science and technology (S&T) com-
munity to focus down on different contributors to AS behavior. 
Select the set of challenge problems based on an initially nomi-
nated architecture and function set, in a fashion that spans the full 
set of functionalities represented in the architecture (exhaustive-
ness) and that minimizes the overlap in functionalities needed to 
address any two challenge problems (exclusivity).

•  Recommendation 3b: Select mission-oriented challenge problems 
with the two objectives of: a) addressing current or future opera-
tional gaps that may be well-suited for AS application; and b) chal-
lenging the S&T community to make significant advances in the 
science and engineering of AS functionality. Ensure that the challenge 
problems can be addressed within the context set by the architectures 
and functions selected earlier, to ensure consistent efforts between the 



domain-independent and domain-dependent efforts and to avoid 
“one off ” application efforts that end up having little to contribute 
to other mission-oriented problem sets. Consider both “partial” 
mission-focused challenge problems as well as “end-to-end” chal-
lenge problems. Finally, do not allocate S&T resources to solving 
operational problems that have close analogs in other sectors, un-
less the AF-specific attributes make the problem so unique that it 
can’t be solved in an analogous fashion.

R4 . Development Processes

This includes processes—in contrast to our traditional waterfall pro-
cess of requirements specification, milestone satisfaction, and end-state 
test and evaluation (T&E)—that support innovation, rapid prototyping, 
and iterative requirements development to support rapid AS develop-
ment and fielding.

•  Recommendation 4a: Create an educational and intern-like per-
sonnel pipeline to send selected staff to the Air Force Institute of 
Technology for an introductory autonomy short course, focusing 
on AI enablers. Individual members would then be embedded 
into an AI-focused special operations activity: an Autonomy Ca-
pabilities Team (ACT) to learn how to apply the skillsets they ac-
quired in addressing USAF autonomy needs. Support this effort 
over the course of four years to grow AI manpower by an order of 
magnitude over today’s level. Assure retention via a number of 
special incentive programs. Supplement this cadre with appropri-
ate and long-term support of key extramural researchers.

•  Recommendation 4b: Use a three-phase framework for iterative se-
lection of challenge problems, for modeling the impact of poten-
tial solutions, and for solution development, prototyping, and as-
sessment. Conduct an initial phase of wargaming–based 
assessment with the goal of identifying key challenge problems 
and AS-based solutions that can address those threats or take ad-
vantage of potential opportunities. Provide a deeper assessment of 
promising AS candidates via formalization of those concepts with 
quantitative models and simulations (M&S) and parameters of 
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performance. Finally, focus on the design of one or more engi-
neering prototypes of promising AS candidates identified in the 
M&S studies. Develop and experimentally evaluate a prototype 
AS that can serve as: a) design prototype for acquisition; and b) a 
design driver for additional needed S&T. 

•  Recommendation 4c: Through the Air Force Chief Data Officer, 
acquire space to store USAF air, space, and cyber data so that AI 
professionals can use it to create autonomy solutions to challenge 
problems. Establish data curator roles in relevant organizations to 
manage the data and to create streamlined access and retrieval ap-
proaches for data producers and consumers.

•  Recommendation 4d: Support the movement to cloud-based com-
puting while also leveraging quantum computing as a general 
computational paradigm that can be exploited to meet embedded 
and high-performance computing processing demands.

R5 . Organizational Structures

This includes organizing around a project (or outcome) focus, rather 
than, for example, along traditional technical specialty domains.

•  Recommendation 5: Establish the ACT within the Air Force Re-
search Laboratory (AFRL), incorporating a “flatarchy” business 
model to bring 6.1–6.4 experts into a single product-focused or-
ganization to develop the science of autonomous systems while 
delivering capabilities to the warfighter. Collaborate with Air 
Force Office of Scientific Research and other key AFRL Technical 
Directorates, and coordinate with USAF organizations outside 
AFRL, including the DOD Autonomy Community of Interest 
(COI), AFWERX, and other offices that can facilitate technology 
transition to the warfighter. Within the ACT, incorporate product-
focused business processes based on a Skunk Works–like set of 
“guiding rules” and facilitate the move towards an information-
centric business platform model for the future Air Force.



R6 . Knowledge Platform

This provides us with a holistic means of integrating across AS be-
havioral principles, architectures/technologies, challenge problems, 
developmental processes, and organizational structures.

•  Recommendation 6: Develop a Knowledge Platform (KP) centered 
on combining an information technology (IT) platform approach, 
with a platform business model. A KP designed for the multido-
main operating Air Force should monopolize the connection of 
observation agents with knowledge creation agents and with war-
fighting effects agents, which can be either human or machine-
based agents (ASs). The KP provides the ecosystem necessary to 
create capabilities, and those capabilities are used to create combat 
effects. This ecosystem will come to fruition by exploiting the 
three behavioral principles of autonomy; the architectures and 
technologies that enable those behaviors; the driving challenge 
problems; the developmental processes across people, architec-
tures/applications, data, and computational infrastructures; and, 
finally, the organizational structures that need to be in place to 
advance the technology, exploit it, and deliver capability. This ap-
proach will provide us with the means of transitioning the USAF 
from the traditional tools-based approach that solves a small 
number of problems to a Knowledge Platform approach applica-
ble to a far greater set of problems. 

Summary

In summary, our recommendations for AS development and appli-
cation cover: 

•  The behaviors these systems must have if they are to be proficient 
at what they do, trusted by their human counterparts, and flexible 
in dealing with the unexpected

•  The unifying frameworks, architectures, and technologies we need 
to bridge across not only insular S&T communities but also op-
erational stovepipes and domains
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•  The focused challenge problems, both foundational and opera-
tional, needed to challenge the S&T community while providing 
operational advantages that go far beyond our traditional platform-
centric approach to modernization

•  New processes for dealing with people, systems, data, and compu-
tational infrastructures that will accelerate innovation, rapid 
prototyping, experimentation, and fielding

•  A new organizational structure, the Autonomy Capabilities Team, 
that brings together technical specialties into a single organization 
focused on innovative product development, with outreach to 
other organizations and communities, as needed

•  A Knowledge Platform for holistically integrating across AS be-
havioral principles, architectures/ technologies, challenge prob-
lems, developmental processes, and organizational structures

The AFRL, and specifically the ACT, cannot simply limit its attention 
to the research space of autonomous systems—nor can it simply perpet-
uate the model of applying modern AI and AS technology to provide 
incremental mission capability improvement in one-off demonstrations. 
Challenge problems must be chosen to advance the Knowledge Plat-
form’s ability to provide, in an agile fashion, ASs that exhibit proficient, 
trustworthy, and flexible behaviors, in transformational applications. In 
addition to project-focused efforts, the ACT can serve to prioritize and 
coordinate AFRL’s entire autonomy S&T portfolio—synchronizing ef-
forts to maximize investment impact—bringing AS capabilities to mission 
challenges at scale, and in a timely fashion, all while “sharing the wealth” 
of new architectures, technologies, and processes across the S&T direc-
torates. Finally, when successful, the ACT can serve as an “existence 
proof” of how AFRL can transform itself from its legacy of a discipline-
focused organization to one that is more cross disciplinary and project 
oriented, solving transformative, USAF enterprise–wide problems.

We have a unique opportunity to transform the Air Force from an 
air platform–centric service, where space and cyber often take a back 
seat, to a truly multidomain and knowledge-centric organization. By 
delivering autonomous systems to the warfighter by way of a Knowledge 
Platform, every mission in air, space, and cyber will be improved—and 



not just incrementally, but multiplicatively. We will become an enter-
prise that is service oriented, ubiquitously networked, and information 
intensive. In short:

An agile, information-centric enterprise making timely decisions exe-
cuted via friction-free access to exquisitely effective peripherals.
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Chapter 1

Introduction

As the Air Force realigns itself from a counterterrorism focus to dealing 
with near-peer rivalries with potential existential consequences, a business-
as-usual approach to systems development will no longer suffice. We will not 
be able to continue with incremental advances on concepts developed de-
cades ago. Instead, we need new technologies, affording us new capabilities, 
and new operational concepts to employ them. Fortunately, there now exists 
a broad and deep technology push in the information sciences, particularly in 
the area of autonomous system (AS) development and its associated founda-
tional technology, artificial intelligence (AI). Our knowledge of cognition and 
neurophysiology—the basis of what makes us “smart,” most of the time—
grows at a dizzying pace, while our ability to build ASs—like self-driving cars 
and game-playing robots—continues to make front-page news, as new AI al-
gorithms and learning techniques are developed and employed in novel ways. 
And these advances are compounded by explosive gains in the underlying 
computational infrastructure afforded by Moore’s law growth in computa-
tional power, memory, networking, and data availability (Moore 1965).

Our goal here is twofold: to provide a vision for USAF senior leaders of the 
potential of ASs and how they can be transformative to warfighting at all levels, 
and to provide the science and technology (S&T) community a general 
framework and roadmap for advancing the state of the art while supporting 
its transition to existing and to-be-acquired systems. Like others, we believe 
the payoff from the employment of these systems will be considerable, simply 
because the individual capabilities of these ASs will afford us greater degrees 
of freedom in employment and opportunities for novel concepts of opera-
tions. But this is a traditional view. A potentially more far-reaching payoff will 
come from becoming more information-centric as we are aided by proliferat-
ing ASs, enabling us to leave our legacy platform-centric way of thinking be-
hind and becoming an enterprise that is service oriented, ubiquitously net-
worked, and information intensive. Our vision is:

An agile, information-centric enterprise making timely decisions executed 
via friction-free access to exquisitely effective peripherals.

Our approach in this document is to first lay out what we need in the way 
of AS “behaviors”: that is, no matter what the underlying technical means, 
determine the resultant behaviors of these systems across key dimensions of 
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proficiency, trust, and flexibility. We then focus on architectural approaches 
that have the potential of bringing together several different communities 
working on the problem and then discuss enabling technologies that could 
bring these architectures to life. We close with recommendations that are not 
only technical but also touch on the kinds of problem sets we should be ad-
dressing, the developmental processes and organizational structures needed 
to attack them, and the broader structuring of a knowledge platform that ad-
dresses the vision we have put forth.

The remainder of this chapter focuses on the potential benefits of ASs 
(section 1.1), attempts to define them and summarizes past studies in this 
area (1.2), identifies operational challenges (1.3) and developmental opportu-
nities (1.4), and presents a future vision of where we should be going (1.5). 
This chapter closes with a chapter-by-chapter outline (1.6).

1.1 Motivation and Benefits

Over the last decade the United States has witnessed a renewal of a Great 
Power Rivalry (Thompson 1999), with Russia in the Eurasian continent and 
China in the Pacific, both of which are making investments and technological 
progress in weapons systems that may not only provide parity with our own 
systems (e.g., via stealthy air platforms and precision-guided munitions) but 
also may counter existing US advantages (e.g., via advanced integrated air 
defenses [IADS] and antisatellite weapons). A primary finding of the Office of 
the Secretary of Defense (OSD) is that the United States is facing a diminishing 
gap in relative technology advantage, due to a number of potential factors, 
including a multidecade focus on counterinsurgency warfare, a relative lack 
of investment in game-changing technologies, and the rapid and global diffu-
sion of technology outside of the defense community—a community which 
has had a long heritage of innovation. Compounding these advancements by 
our adversaries is our own adherence to a linear/incremental development 
approach to next-generation systems, which has led to increasingly expensive 
weapons-systems costs and development/fielding times.

In 2016, Secretary of Defense Carter proposed to address these short-
comings via a threefold approach (Carter 2016):

•  Drive smart and essential technological innovation

•  Update and refine warfighting strategies, operational concepts, and tactics

•  Build the force of the future and reform the Department of Defense 
(DOD) enterprise
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Deputy Secretary of Defense Work expanded upon this with a “framework-
to-solution space” bringing together technology, concepts, and culture as 
illustrated in figure 1.1, under the rubric of the Third Offset Strategy (Pellerin 
2016). It is as much a process as it is a product, with wargaming, simulation, 
experimentation, and analysis iteratively generating solutions to provide us 
with the operational, and not just technological, advantage.

Feedback

Org & 
Culture

Wargame
Simulate
Experiment
Analyze So

lu
�o

ns

“A combination of technology, operational concepts, 
and organizational constructs to maintain our ability 
to project combat power into any area, at a time and 
place of our own choosing.”*

*Speech by Defense Deputy Secretary Robert Work at the European Policy Center, 29 April 2016

Figure 1.1. DOD Framework-to-Solution space under the Third Offset Strategy

Secretary Work also gave as an example the following Third Offset “building 
blocks” that could support the transformation of all the services (illustrative 
examples included) (Work 2015):

•  Autonomous deep-learning systems

○  Coherence out of chaos: Analyzes overhead constellation data to 
queue human analysts

•  Human-machine collaboration

○  F-35 helmet: portrayal of 360 degrees on heads-up display

•  Assisted human operations

○  Wearable electronics, heads-up displays, and exoskeletons

• Human-machine combat teaming
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○  Army’s Apache and Gray Eagle unmanned aerial vehicles (UAV), and 
Navy’s P-8 aircraft and Triton UAV

•  Network-enabled semi-autonomous weapons

○  Air Force’s Small Diameter Bomb (SDB)

Four of the above five items clearly identify the importance of AS, human-
machine teaming, and machine-assisted human augmentation. Our focus in 
this report is on ASs1—how they interact with humans and how they can aug-
ment human capabilities.

In parallel with the OSD efforts to transform the department, the Air Force 
developed the “Air Force Future Operating Concept” (AFFOC; US Air Force 
2015) to envision how the future USAF in 2035 will conduct its five core mis-
sions across air, space, and cyber domains.2 In the document are included 
many illustrative vignettes, but a key product is the generation of 19 “implica-
tions” for future capabilities. These are illustrated in figure 1.2. many illustra-
tive vignettes, but a key product is the generation of 19 “implications” for fu-
ture capabilities. These are illustrated in figure 1.2.

Highlighted in red are those implications that could benefit from ASs, acting 
independently or in concert with humans. Clearly, autonomy can be an en-
abler across a broad swath of future functionality.

There have been several studies addressing the use and development of 
autonomy for DOD systems over the last decade, and we summarize some of 
the findings in the next section; one of the more recent studies supported by 
the Intelligence Advanced Research Projects Activity (IARPA) and conducted 
at Harvard’s Belfer Center for Science and International Affairs highlights its 
“transformative” potential—along with that of AI and machine learning 
(ML)—equating it to earlier revolutionary technologies including aircraft, 
nuclear weapons, computers, and biotechnology (Allen and Chan 2017). But 
it is clear our adversaries have come to the same conclusions regarding the 
potential for AS development.

China opened a new AI “Development Planning Office” in July 20173 with 
a multibillion-dollar budget (Mozur 2017) in which several goals are laid out, 

1. Which we will define at greater length in the next section. For now, we can think of an 
AS as an agent that can accomplish a task on its own, once told what to do, but not necessarily 
how to do it.

2. These are: adaptive domain control, global integrated ISR, rapid global mobility, global 
precision strike, and multidomain command and control.

3. As announced at “Guówùyuàn guānyú yìnfā xīn yīdài réngōng zhìnéng fāzhan guīhuà 
de tōngzhī (guó fā [2017] 35 hào)_zhèngfu xìnxī gōngkāi zhuānlán” 国务院关于印发新一
代人工智能发展规划的通知（国发〔2017〕35号）_政府信息公开专栏 [Notice of the 
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 Diverse portfolio of air/ space/cyber 
capabilities

 Multi-domain counters to A2/AD 
environments

 Modern munitions, emitters, and 
platforms

 Tailored forward presence and 
streamlined logistics

 Autonomous processing, 
exploitation, dissemination

 Reduced classification barriers
 Advanced decision aids for 

human/system teaming
 Advanced M&S for multi-domain ops
 Human/computer systems and 

networks for secure collaboration

 Improved trust relationships for 
enhanced teaming

 Mix of manned, remotely operated, 
and autonomous systems

 Modular and configurable 
systems/components

 Balanced pool of airmen expertise 
and experience

 Organic additive manufacturing
 Cognitively-ready airmen
 LVC training for multi-domain 

operations
 Optimized Human-Systems 

Integration (HSI)
 Human-System teaming for ISR/C2
 Strong external partnerships

Figure 1.2. Air Force Future Operating Concept—19 implications

including international parity with the United States by 2020 and world dom-
inance by 2030, targeting a $150B market by then. Social stability—that is, 
maintenance of the Communist Party’s power—is a major emphasis through 
internal monitoring and security measures (Larson 2018), but so is national 
security. A whole-of-government approach is outlined, including encourage-
ment of the domestic AI enterprises to “go global” and provide facilities and 
services for the powerful AI enterprises to carry out overseas mergers and 
acquisitions, equity investment, venture capital investment, and establishment 
of overseas research-and-development (R&D) centers, as well as encouragement 
of foreign AI enterprises and research institutes to set up R&D centers in China.4

It is noteworthy that this is already happening with significant Chinese-
backed venture-capital investments in Silicon Valley and with Google opening 
an AI lab in China in December 2017.5 China is also making large investments 
in specialized AI chips to speed computations (Yuan 2018) and has access to 
large datasets needed for training the current generation of artificial neural 

State Council on Printing and Distributing a New Generation of Artificial Intelligence De-
velopment Plan (Guo Fa [2017] No. 35, Government Information Disclosure Column), 
via Google Translate], accessed 12 October 2018, http://www.gov.cn/zhengce/content/2017 
-07/20/content_5211996.htm.

4. Ibid.
5. Jon Russell, “Google Is Opening a China-Based Research Lab Focused on Artificial In-

telligence,” TechCrunch, accessed 12 October 2018, https://techcrunch.com/2017/12/12 
/google-opening-an-office-focused-on-artificial-intelligence-in-china/.https://techcrunch 
.com/2017/12/12/google-opening-an-office-focused-on-artificial-intelligence-in-china/.



6 │ AUTONOMOUS HORIZONS

networks (ANN) behind many of the recent successes in AI. As noted by 
(Schenechner et al. 2017), Yitu Tech, a Shanghai-based AI startup, won a 2016 
face recognition contest hosted by the US intelligence community partly, if 
not totally, because the company “works on behalf of multiple security 
agencies in China and has access to a database of 1.8 billion photos of faces.”

Although we do not have the same insight into the direction and investments 
planned for Russia, it is clear what President Putin thinks about this area. Ac-
cording to CNBC, on 15 June 2017 Putin noted, “The one who becomes the 
leader in this [AI] sphere will be the ruler of the world” (CNBC 2018). And that, 
when drones fight future wars, “when one party’s drones are destroyed by 
drones of another, it will have no other choice but to surrender” (CNBC 2018).

It is therefore appropriate that we move forward briskly in the develop-
ment of the AI technology and the ASs that incorporate it. The Belfer Study 
cited above recommends a whole-of-government approach (although not 
nearly as encompassing as the Chinese Plan outlined above), including funding 
activities that ensure technological leadership for national security, supporting 
dual-use technologies, and “managing catastrophic risks” via treaty restric-
tions, development of “fail-safe” systems, and so forth (Allen and Chan 2017). 
Our goal with this study is much narrower, with a focus on the performance 
and architectural aspects of these systems, including recommendations on 
challenge problems, development processes, and organizational structures.

Complementing this capability-pull driven by national security concerns, 
by both us and our adversaries, is a concurrent technology-push, driven 
mainly by the commercial sector. What we have seen over the last few years 
are the dramatic achievements of autonomy and AI, in “challenge” applica-
tions that have yet to reach their full commercial potential: Self-driving cars 
like those produced by Waymo (2018) that embody the “see/think/do” paradigm 
of robotics and promise an order-of-magnitude reduction in traffic accidents 
(Bertonocello and Wee 2015); predictive analytics for logistics management 
like GE’s Predix platform that can provide insight across the entire lifecycle of 
industrial assets;6 voice-recognition software that understands human speech 
at a 95-percent accuracy level like Google’s Assistant;7 facial-recognition pro-
grams that boast of 99 percent database-matching accuracy and that are be-
coming omnipresent, such as Face++’s video surveillance-and-recognition 
software (Knight 2017a); language-translation programs that are almost rival-

6. “Predix Platform,” GE Digital, accessed 12 October 2018, https://www.ge.com/digital 
/iiot-platform.

7. iamcarolfierce13, “Google Improves Voice Recognition, Hits 95% Accuracy,” Android-
Headlines.Com (blog), 2 June 2017, https://www.androidheadlines.com/2017/06/google-im 
proves-voice-recognition-hits-95-accuracy.html.
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ing expert human translators, like Google Translate (Turner 2017); and game-
playing programs that beat the best human players in the world, like IBM’s 
Deep Blue in chess8 and IBM’s Watson in Jeopardy! (Markoff 2011; Ferrucci 
et al. 2010), and Deep Mind’s AlphaGo and AlphaGo Zero in Go (Moyer 
2016; Silver et al. 2016; Silver et al. 2017).

Behind these application achievements are several “converging” technolo-
gies, one of which is robotics-influenced agency that includes improved sensors, 
such as “smart” hybrid sensors being developed for self-driving cars (Condliffe 
2017); onboard computational resources that continue to drop in price due to 
Moore’s law (Moore 1965); motors and effectors that proliferate to provide 
greater interaction with the “real world”; and networks and communication 
protocols that enable novel paradigms such as “fleet learning” across large 
numbers of autonomous or semi-autonomous vehicles, such as used by Tesla 
(Frommer 2016), taking advantage of Metcalfe’s law (Hendler and Golbeck 1997). 
Another enabling technology, of course, is the exploding field of ANNs, par-
ticularly in the development of many-layered networks (“deep networks”), 
associated ML algorithms that allow deep networks to be “trained” on sample 
datasets, and large datasets (“big data”) that facilitate that training—all of 
which will be discussed at greater length in chapter 4. These ANN advances in 
algorithms and data, in turn, have been made possible by the continuing 
growth in computational power and memory, particularly by the proliferation 
of graphics processing units (GPU)9 that provide the kind of parallel com-
putational architectures called for by the parallelism of the ANN algorithms 
themselves and the exponential growth of cloud-based storage, expected to 
double this year over last year to exceed a ZB10 in size (Puranik 2017).

We discuss these technologies at greater length below in section 1.4 and 
later in chapter 4. The key point, however, is that we are in the midst of a 
paradigm-shifting approach to bringing “intelligence” to computing, with a 
convergence of techniques, technologies, and infrastructure. We must take 
advantage of it if we, as an Air Force, are to move from the industrial age to 
the information age.

Clearly, there will be far-reaching implications for Air Force capabilities 
with the development and application of ASs that embrace advanced AI tech-

8. “IBM Archives: Deep Blue,” TS200, 23 January 2003, https://www-03.ibm.com/ibm/history 
/exhibits/vintage/vintage_4506VV1001.html.

9. Originally developed for the videogaming industry; see, for example, Graham Singer, “The 
History of the Modern Graphics Processor,” TechSpot, accessed 15 October 2018, https://www 
.techspot.com/article/650-history-of-the-gpu/.

10. A zettabyte (ZB) is 1 billion terabytes (TB), where a TB is roughly the size of a modern 
laptop hard drive.
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nologies. Major benefits, at a generic or functional level, include extending 
and complementing human performance and proficiency, and not necessarily 
simply replacing humans, in functional areas such as (Endsley 2015c):

• Extending human reach (e.g., operating in riskier areas)

• Operating more quickly (e.g., reacting to cyberattacks)

•  Permitting delegation of functions and reduction of manpower (e.g., in-
formation fusion, intelligent information flow, assistance in planning/
replanning)

• Providing operations with denied or degraded communications links

• Expanding into new types of operations (e.g., swarms)

•  Synchronizing activities of platforms, software, and operators over wider 
scopes and ranges (e.g., manned-unmanned aircraft teaming)

Figure 1.3 illustrates more specific areas that could benefit from the introduc-
tion of ASs, with the top row illustrating platform-centric applications (“auton-
omy in motion” as coined by Defense Science Board [DSB] Chair Dr. Fields dur-
ing a recent DSB study on autonomy [DSB 2016]), and the bottom row illustrating 
more pervasive and enterprise-centric applications (“autonomy at rest”).

Remotely Piloted Vehicles

Air Traffic ControlCyber Opera�ons C2&ISR

SpaceManned Cockpits

Figure 1.3. Autonomy could transform many Air Force missions
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Regarding the top row of applications, we are all well aware of the fact that 
current-generation remotely piloted vehicles are in no sense autonomous. 
They could greatly benefit from more onboard awareness, platform self-
tasking, and autonomous payload processing. Manned cockpits are already 
seeing benefits from greater levels of automation in sensor fusion, guidance, 
navigation, and control and subsystem management, but true autonomous 
decision-aiding, as envisioned by the Pilot’s Associate program of the 1990s 
(Banks and Lizza 1991) and the Intelligent Autopilot System under way now 
(Baomar and Bentley 2016), is still a long way off. Finally, our orbiting space 
platforms are very much situationally unaware of much beyond their mission 
focus (for example, nuclear detonation detections via Defense Support Pro-
gram satellites) (USAF Space Command 2015); more situation awareness 
(SA) and autonomous capabilities would not only provide a capability for 
self-defense in an increasingly contested environment but would also provide 
needed flexibility for mission success under changing operating conditions.

Regarding the bottom row of applications in figure 1.3, cyber defenses de-
mand sub-millisecond response times; bringing the cyber operator out of the 
loop via autonomy would not only increase speed of response but also support 
dealing with the complexity of dealing with multiple attack surfaces subject to 
multiple types and numbers of attacks (Corey et al. 2016). The fundamental 
information management tasks of the current air operations center (AOC) 
and the future multidomain operations center—in both intelligence, surveil-
lance, and reconnaissance (ISR) and command and control (C2)—are cur-
rently accomplished via a manually intensive, procedure-driven cycle that is 
not designed to take advantage of the full datasets available to it, is stovepiped 
by its organizational structures, and is slowed by manual interventions. The 
AOC could benefit enormously with a redesign built around autonomous 
processing capabilities. Finally, we show an air traffic control center as an 
exemplar of many of the support functions needing manual oversight and 
supervision, functions which, with the introduction of ASs, could not only 
reduce manning requirements but also improve system performance and 
flexibility through rapid adaptivity to changing conditions.

Other applications of autonomy have been identified by several other studies, 
which we summarize in section 6.3 and review in appendix A. As noted above, 
the AFFOC also presents several vignettes that incorporate a variety of AS 
concepts, although for a vision that purports to look out 20 years, it is, in our 
opinion, a conservative view of what could be accomplished with autono-
mous capabilities in that time frame. For an example of a more forward-looking 
vignette, see appendix H, which includes both “at rest” and “in motion” AS 
assets and progresses from an ISR mission to an area-defense mission and, 
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finally, to a humanitarian recovery mission. The vignette displays key AS task, 
peer, and cognitive flexibilities that we will discuss at greater length below and 
later in this chapter.

To appreciate the potential for the introduction of ASs in future engage-
ments, also consider the following vignette illustrated in figure 1.4. Here, an 
antiaccess/area-denial (A2/AD) environment precludes the ability of Blue 
(our forces) to operate with impunity in Red’s air, ground, maritime, and cyber 
domains. This can be attributed to Red’s advances in, for example, advanced 
active and passive sensing (e.g., radar and electro-optic [EO]), digital signal-
processing, networking, C2, and cyber capabilities, which will constrain Blue 
to operate in more permissive environments hundreds of miles from Red. 
How can Blue use ASs, for example, in the areas of ISR, battle management C2 
(BMC2), electronic warfare/cyber (EW/Cyber), and strike, to “push back the 
bubble” of A2/AD-defended domains to operate freely or with limited adver-
sary impact in all domains?

Figure 1.4. Antiaccess/Area-Denial (A2/AD) operational space 

The advances of Red IADS and continued improvements in surface-to-air 
missiles (SAM) are daunting challenges. Blue can counter those advances by 
leveraging disruptive advances in multidomain “sense-making,” combining 
intelligence from air, space, and cyberspace assets; fusing different data feeds; 
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detecting critical “events” and “signals” of key activities; and assessing the 
situation in real time to manage the multidomain infosphere while calling for 
collection assets when key information is missing or there exists a need for, 
for example, battle damage assessment (BDA). Advances in understanding 
quickly, proficiently, and flexibly and being able to respond quickly to changes 
in the battlespace will enable Blue to selectively shrink and/or eliminate Red’s 
previously imposed A2/AD zone. Blue’s ability, teaming with AS partners, to 
rapidly collect, update, replan, and disseminate changes to Blue forces operating 
in the previously imposed A2/AD zone will change the balance of outcomes.

A successful strike package, mixing manned and unmanned autonomous 
platforms (e.g., a “Loyal Wingman” [Kearns 2016]), could take advantage of 
autonomously coordinated attacks designed to dynamically interfere with, 
say, Red long-range passive sensors by integrating cyber and EW attacks. As 
the package closes in, ASs organic to the strike package can provide real-time 
updates on threat information and propose (and manage) targeted cyber/
EW/kinetic attacks against long-range SAM search-and-acquisition radars, 
updating attack vectors as these Red assets are nullified. These coordinated 
attacks would then have served to push the A2/AD bubble back to a point 
where integrated suppression of enemy air defenses (SEAD)/destruction of 
enemy air defenses (DEAD) could be conducted using strike assets and cruise 
missiles to neutralize the Red IADS. A key to all of these capabilities is ensur-
ing high levels of flexibility in our AS designs, across different command 
structures, mission taskings, and solution approaches, in a fashion similar to 
that embraced by our most experienced and proficient operators today. This 
is illustrated in the graphic of figure 1.5, in which a number of ASs (e.g., ISR 
assets that are also jammers, long-range strike assets that can retask them-
selves depending on how the mission evolves, etc.) behave flexibly in terms of 
dealing with different taskings, coordinating with their peers to meet overall 
mission intent, and taking on different approaches to accomplish tasks within 
a given peer structure. We summarize these flexibilities as task, peer, and cog-
nitive flexibility and will discuss these general requirements at greater length 
in section 1.3.
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Figure 1.5. Autonomy behaviors and task, peer, and cognitive flexibilities

1.2 Definitions and Summary of Past Studies

The definitions for the terms autonomy and autonomous systems have under-
gone continuous refinement as the research and engineering communities 
further their understanding of the concepts and applications of the evolving 
technology. Early beginnings of autonomy are rooted in automation, refer-
ring to mechanical operation of equipment, a process, or a system with 
minimal human interference and interaction, completing well-defined tasks 
traditionally accomplished manually (e.g., an autoland system performing a 
“hands off” landing in a modern jetliner). As automation systems have become 
more complex and adept at dealing with more complex situations, the term 
autonomous has often been applied to such systems, but this is an incorrect 
intertwining of terms. Autonomy is defined in the Merriam-Webster dictionary 
as “the quality or state of being self-governing; the state of existing or acting 
separately from others.”11 In practical terms, for example, working with col-
leagues or subordinates, the term refers to a degree or level of freedom and 
discretion to an employee over the conduct of his/her job; note the distinction 
from the dictionary definition, in which complete freedom and separate ac-
tion is not presumed, since such factors as task assignments, performance 

11. Merriam-Webster, 2016, s.v. “autonomy,” https://www.merriam-webster.com/dictionary/ 
autonomy.
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quality, timeliness, and trust are all explicitly stated or implicitly assumed in a 
workplace environment.

When we turn our attention to describing ASs, initial attempts were made 
to have autonomy anchor one end of a scale of machine-aided sophistication, 
ranging from no autonomy (complete human decision making or manual 
control), to automatic (where the system takes on some limited range of well-
defined tasks), to fully autonomous (where the system makes all decisions 
and/or actions, often ignoring the human) (Parasuraman and Miller 2004). 
Because of the difficulty in defining different levels that could be of use in 
designing or analyzing these systems, and because of the complexity of inter-
actions that can arise between human and machine (e.g., humans often adapt 
to automation in unexpected ways), a more subtle approach is evolving in the 
community. In 2012, the DSB task force recommended that the DOD abandon 
the notion of defining levels of autonomy and replace it with a framework that 
(DSB 2012):

•  Focuses design decisions on the explicit allocation of cognitive functions 
and responsibilities between the human and computer to achieve specific 
capabilities

•  Recognizes that these allocations may vary by mission phase as well as 
echelon (or place in the organization chart)

•  Makes visible the high-level system trades inherent in the design of au-
tonomous capabilities

In 2013, the Air Force Research Laboratory (AFRL) defined autonomy as 
“systems which have a set of intelligence-based capabilities that allow it to 
respond to situations that were not pre-programmed or anticipated in the 
design (i.e., decision-based responses). Autonomous systems have a degree of 
self-government and self-directed behavior (with the human’s proxy for deci-
sions)” (Masiello 2013).

The Autonomy Community of Interest (ACOI) also adopted this definition 
(DOD R&E 2015). More recently, in 2016, a second DOD autonomy task 
force noted that an AS “must have the capability to independently compose 
and select among different courses of action to accomplish goals based on its 
knowledge and understanding of the world, itself, and the situation” (DSB 2016).

These last three definitions are certainly driving in the right direction when 
we think in terms of operational desires when interacting with ASs. As when 
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working with peers or subordinates in an interdependent task-focused envi-
ronment, we would like to be able to “tell” ASs12

•  WHAT to do, in terms of the task goals/objectives and the context of the 
overall mission

•  WHAT NOT to do, specified as operating constraints or rules of engage-
ment (ROE)

•  And perhaps some of the WHYs, specified as the supervisor’s objectives 
or commander’s intent

•  But NOT be required to provide details on HOW to do it, that is, the meth-
ods, nor HOW to deal with “unplanned for” conditions, such as when 
dealing with system failures or an adversary’s actions

Referring to the earlier “definitions,” we see that being able to interact in 
this fashion calls on the capability for task sharing and allocation highlighted 
in the 2012 DSB definitions above, the adaptability and self-direction called 
out in the AFRL definition, and the situation understanding and course-of-
action composition called for in the 2016 DSB study. All of these are clearly 
relevant attributes of autonomous behavior.

In this report we will not attempt a formal definition of autonomy. Rather, we 
propose initially that we accept the above working definition as a placeholder—
that is, the (WHAT, WHAT-NOT, WHY, and NOT-HOW) interaction dimen-
sions and expectations of working with ASs. In the next section, instead of a 
definition, we will propose three sets of attributes we believe to be central to 
autonomous behavior as envisioned in the context of a military organization 
and mission. But first, to provide additional context, we will summarize some 
of the key findings and recommendations of several prior studies in this area.

1.2.1 Summary of Past Studies

In appendix A we review seven past studies of ASs for military applications 
and summarize and categorize major findings and recommendations across 
the studies. We have structured the study findings into five categories:

Behavioral objectives: These are basically generalized design requirements 
specifying how we want an AS to behave, in terms of proficiency, operator 
interactions, and so forth. These requirements, which take up the bulk of the 
study findings, can be broken down into two subcategories. The first deals 
with the performance of the AS itself, such as ensuring task proficiency, that 

12. And certainly, we would like reciprocity in the relationship, so that ASs can “tell” us 
relevant information when appropriate. We discuss this further in chapter 3.
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behaviors are directable and predictable, and that the AS can accomplish tasks 
with adequate flexibility and adaptivity. The second focuses on human-system 
teaming, including the desirability of being able to set mutual goals, to main-
tain adequate mutual shared awareness of the team and the adversary, and to 
communicate and coordinate effectively.

Architectures and technologies: This covers unifying frameworks and archi-
tectures that will support cross-disciplinary research and development, along 
with the technology investments needed to support desired functionalities 
within an architecture. These were covered in only one of the studies that we 
reviewed, with recommendations in the areas of hybrid frameworks (e.g., 
classical algorithmic approaches combined with more contemporary deep-
learning network approaches) and biomimetic architectures that are inspired 
by animal anatomy and physiology.

Challenge problems: Addressed here are domain-independent (or functional) 
problems—like dynamic replanning—and domain-dependent (or mission-
oriented) problems—like multidomain fusion across air, space, and cyber. 
The domain-independent problems cover a range of general functional areas 
like collection/sensing/fusion of information, decision-aiding (with a human) 
and decision-making (autonomous) subsystems, and operation in adversarial 
environments that demand improvisation. The domain-dependent problems 
range from generic concepts like autonomous swarms and fractionated platforms 
to specific operations in air (including ISR, air operations planning, EW, and 
logistics), space (including fractionated platforms and embedded health diag-
nostics), and cyber (defensive operations, offensive operations, and network 
resiliency).

Development processes: This includes processes that support innovation, 
rapid prototyping, and iterative requirements development to support rapid 
AS development and fielding. A broad span of recommendations is put forward 
covering the following: (1) the need to actively track adversarial AS capabili-
ties; (2) the importance of human-capital recruiting, retention, and alliances 
in the AS and AS-related specialties; (3) continued support of basic and ap-
plied research in a broad area of underlying technologies (not just deep learn-
ing [DL]), coordinated across research communities, and informed by opera-
tional experience and requirements; (4) support of advanced systems 
development that separates the development of platforms from the autonomy 
software that governs them; (5) establishing processes for upgrading legacy 
systems with new AS capabilities; and (6) recognizing the difficulty of con-
ducting test and evaluation of these systems and the need to establish a re-
search program in this area.
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Organizational structures: This includes organizing around a project (or 
outcome) focus, rather than, say, along traditional technical specialty domains. 
In our survey of past studies summarized in appendix A, we found no recom-
mendations in this specific area but include it to highlight the lack of the 
research community’s concern in this area.

The above four sets or categories of findings associated with previous studies, 
along with the fifth set called out regarding organizational structures, will 
form the framework for our recommendations later in chapter 6. But first, we 
will focus much of this report on the first two areas noted above, behaviors (in 
chapters 2 and 3) and architectures and technologies (in chapters 4 and 5), 
since these design requirements and potential solutions will influence the 
other three sets of recommendations. In the next section, we outline the be-
havioral objectives driven by the operational challenges and introduce the 
need for AS proficiency, trust, and flexibility.

1.3 Operational Challenges and Behavioral Implications

Endsley (2015c) presents in Autonomous Horizons, volume I, a summary 
of challenges in dealing with automation and autonomous systems, including:

•  Difficulties in creating autonomy software that is robust enough to function 
without human intervention and oversight. After years of dealing with 
hand-coded (and hard-coded) software, this is starting to be addressed 
via the resurgence of AI applications, discussed later in this chapter and 
in chapter 4.

•  The lowering of human SA that occurs when using automation/autonomy, 
leading to out-of-the-loop performance decrements. Dramatic examples 
occurred with the introduction of highly automated commercial cock-
pits in the 1990s, with many lessons learned by the aviation community 
(Wiener 1989; Sarter and Woods 1995); the automobile industry is now 
in the process of relearning some of these same design issues, with the 
introduction of “autonomous” or “autopilot” modes (Casner et al. 2016; 
Mitchell 2018).

•  Increases in cognitive workload required to interact with the greater 
complexity associated with automation/autonomy. Reducing one kind of 
workload (e.g., task workload) via the introduction of an autonomous 
“workmate” may introduce another (e.g., management workload).

•  Increased time (for the human) to make decisions when decision aids 
are provided, often without the desired increase in decision accuracy. A 
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simple advisory by a decision aid, without the underlying rationale and/
or an estimate of the uncertainty in the answer, may add a cognitive load 
and extra decision time to evaluate the “goodness” of the advice.

•  Challenges with developing a level of trust that is appropriately calibrated 
to the reliability and functionality of the AS in various circumstances. 
Overtrust by the operator can lead to AS misuse and incidents and acci-
dents, because the AS is not proficient enough with the task assigned; 
undertrust by the operator can lead to nonuse, even when the AS could 
be a useful aide. Appropriate levels of trust are always called for, whether 
high or low.

Note that the first issue above focuses on the unaided proficiency of an AS, 
while the remaining four issues focus on human-system interaction and trust 
in that interaction. This is appropriate, since Endsley notes, “Given that it is 
unlikely that autonomy in the foreseeable future will work perfectly for all 
functions and operations, and that airman interaction with autonomy will 
continue to be needed at some level, each of these factors works to create the 
need for a new approach to the design of autonomous systems that will allow 
them to serve as an effective teammate with the airmen who depend on them 
to do their jobs” (Endsley 2015c).

When we look more deeply into issues that limit automatic or AS proficiency, 
we can identify four classes of shortcomings:13

•  Inadequate “loop closures” with the environment, in terms of sensing 
the key aspects of the environment, reasoning about it, and then acting 
on it with appropriate effectors (Wiener 1948). Thermostatic control of 
room temperature is a classic example. Initially designed to sense the 
current temperature and open or close a heating switch in response, 
thermostats have evolved to now include the time (for multiple time-
dependent set points), to the Nest that detects when people are in the 
room,14 so that temperature control becomes more context sensitive 
(and remotely accessible via the internet). As we noted in the previous 
section, we expect this trend to continue as sensors, computational 
power/memory, effectors, and networking drop in price, a trend we have 
seen embodied in the exponential growth of self-driving cars, for example.

13. We include automatic systems because of the human-factors community’s long history 
of dealing with automation and its experience in automation’s many shortcomings, as pointed 
out by Endsley.

14. “A Better Thermostat,” Carnegie Mellon University, accessed October 19, 2018, https://
www.cmu.edu/homepage/environment/2012/winter/the-nest-thermostat.shtml.
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•  Single-strand and often brittle approaches to “reasoning” about a prob-
lem, including how to deal with multiple, possibly conflicting, feeds of 
sensor information, “understanding the meaning” of the sensed data in 
the context of the AS’s tasking or goal objectives, and deciding on an ap-
propriate action (Domingos 2015). At each one of these stages of pro-
cessing, it has been the tradition to embrace a single “best” approach to 
processing, based on the designer’s knowledge or experience. But expe-
rience shows that it is impossible to anticipate all potential operating 
scenarios, so that what may be best in the anticipated design envelope/
situation may not be optimal outside that envelope/situation, especially 
under operating conditions where an adversary is deliberately trying to 
degrade system performance.

•  A focus on single-agent approaches to autonomy, under the assumption 
that developing a single agent that “does it all” is easier and results in 
more predictable behaviors, vice dealing with multiple interacting agents 
that are simpler and possibly more limited in their repertoire, but whose 
collective behavior may be harder to anticipate (Mataric 1993). Multiagent 
approaches also incur communications limitations, both on a syntactic 
level as well as a semantic level—especially if the agents are fundamen-
tally different in their internals.

•  A lack of a capability for learning over time and with experience or, over 
a multiagent ensemble, over the ensemble, as we noted with “fleet learning” 
in the previous section.15 We as humans do this as individuals via experi-
ence and as part of a larger culture via education. In contrast, most of our 
automation and fledging efforts in autonomy are hand coded and fixed 
for the life of the system. It has only been recently with the collection of 
“big data” and the development of DL neural networks operating on that 
data (Najafabadi et al. 2015; also see chapter 4) that we are beginning to 
see evolving systems that learn over time and experience.

In chapter 2, we address these issues and outline four key properties for 
proficiency in ASs. While the list may not be exhaustive, we believe these to be 
necessary for ASs to realize their full potential in future defense systems. 
These properties are:

15. That is, when one agent learns something, it transmits that “learning instance” to all the 
others, as Tesla autos do now: “The whole Tesla fleet operates as a network. When one car 
learns something, they all learn it.” Elon Musk quoted by Fehrenbacher (2015); http://fortune 
.com/2015/10/16/how-tesla-autopilot-learns/.
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•  Situated Agency. Embedding the AS within the environment, with compo-
nent abilities to sense or measure the environment, assess the situation, 
reason about it, make decisions to reach a goal, and then act on the envi-
ronment, to form a closed loop of “seeing/thinking/doing,” iteratively 
and interactively.

•  Adaptive Cognition. A capability to use several different modes of “think-
ing” about the problem (i.e., assessing, reasoning, and decision making), 
from low-level rules to high-level reasoning and planning, depending on 
the difficulty of the problem, with sufficient flexibility for dealing with 
unexpected situations.

•  Multiagent Emergence. An ability to interact with other ASs via commu-
nications and distributed function allocations (e.g., sensing, assessing, 
decision making, etc.), either directly or through a C2 network, in a 
manner that can give rise to emergent behavior of the group, in a fashion 
not necessarily contemplated in the original AS design.

•  Experiential Learning. A capability to “learn” new behaviors over time 
and experience, by modifying internal structures of the AS or parameters 
within those structures, based on an ability to self-assess performance 
via one or more performance metrics (e.g., task optimality, error robust-
ness, etc.), and an ability to optimize that performance via appropriate 
structural/parametric adjustments over time.

In chapter 2, we describe these properties for proficiency at greater length. 
But as noted by many, we can anticipate significant human-system interactions 
over the foreseeable future and, therefore, need to address human-system inter-
actions (HSI) and associated trust issues (Dahm 2011; DSB 2012; DSB 2016; 
Endsley 2015c). Many HSI design issues will be similar to those that arise 
when dealing with traditional non-ASs, such as dealing with the “ilities” 
(e.g., usability, maintainability, etc.; deWeck et al. 2011), and with the issues 
raised by Endsley (2015c) under the second, third, and fourth bullets at the top 
of this section. Of particular concern here, however, are the trust issues identi-
fied in Endsley’s (2015c) last bullet—issues that arise particularly because of the 
properties that are unique to, or that strongly characterize, ASs, including:

•  Lack of analogical “thinking” by the AS. When the AS approaches and/or 
solves a problem in a fashion that is not at all like a human would attack 
the problem, trust can become an issue because of human concern that 
the approach may be faulty or unvalidated.
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•  Low transparency and traceability in the AS solution. Lacking an ability to 
“explain” itself, in terms of assumptions held, data under consideration, 
reasoning methods used, and so forth, it is difficult for the AS to justify 
its solution set and thus engender human trust.

•  Lack of self-awareness or environmental awareness by the system. In the 
former, this might include AS health and component failure modes, 
while in the latter, this might include environmental stressors or adversary 
attacks. Either may unknowingly affect performance and proficiency 
and overstate the confidence in an AS-based solution made outside of its 
nominal “operating envelope.”

•  Low mutual understanding of common goals. When a human and AS are 
working together on a common task, a lack of understanding of the 
common goals, task constraints, roles, and so forth can lead to a lack of 
trust on the part of the human in terms of the system’s anticipated profi-
ciency over the course of task execution.

•  Non-natural communications interfaces. The lack of conventional bidirectional 
multichannel communications between human and system (e.g., verbal/
semantic, verbal/tonal, facial expressions, body language, etc.) not only 
reduces communications data rates but also reduces the opportunity to 
convey nuances associated with operations by well-practiced and trusting 
human-only teams.

•  Lack of applicable training and exercises. Lack of common training and 
practice together reduce the opportunities for the human to better under-
stand the system’s capabilities and limitations and how it goes about 
problem solving and thus diminishes opportunities for understanding a 
system’s “trust envelope,” that is, where it can be trusted and where it cannot.

In chapter 3, we address these issues and outline four key tenets of trust for 
ASs. As with the proficiencies listed above, the list may not be exhaustive, but 
we believe these to be necessary for ASs to realize their full potential in future 
defense systems. These tenets are:

•  Cognitive Congruence and Transparency. At a high level, the AS operates 
congruently with the way humans parse the problem, so that the system 
approaches and resolves a problem in a manner analogous to the way a 
proficient human does. Whether or not this is achievable, there should 
be some means for transparency or traceability in the system’s solution, 
so that the human can understand the rationale for a given system decision 
or action.
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•  Situation Awareness. Employing sensory and reasoning mechanisms in a 
manner that supports SA of both the system’s internal health and com-
ponent status and of the system’s external environment, including the 
ambient situation, friendly teammates, adversarial actors, and so forth. 
Using this awareness for anticipating proficiency increments/decrements 
within a nominal system’s operating envelope to support confidence in 
estimates of future decisions and actions.

•  Human-Systems Integration. Ensuring good HSI design to provide natural 
(to the human) interfaces that support high-bandwidth communications 
if needed, subtleties in qualifications of those communications, and ranges 
of queries/interactions to support not only tactical task performance but 
also more operational issues dealing with goal management and role 
allocation (in teams).

•  Human-System Teaming and Training. Adapting or morphing human-
system team training programs and curricula to account for the special 
capabilities (and associated limitations) of humans teaming with ASs. 
Conducting extensive training so that the team members can develop 
mutual mental models of each other, for nominal and compromised be-
havior, across a range of missions, threats, environments, and users.

As a final note, we wish to introduce the broader notion of flexibility, de-
pendent on both proficiency and trust and that often characterizes our notion 
of autonomy when dealing with human agents. Several studies, including 
three reviewed in appendix A (Klein et al. 2005; Dahm 2011; DSB 2012) and 
Endsley (2015c), call for flexible autonomy in terms of the scope of tasks 
taken on by the AS; the outcomes that could ensue in pursuing or failing at 
those tasks; the levels of interaction with other agents, particularly humans; 
and the control granularity of an AS and its design for ensuring robustness to 
uncertainty and changing conditions. We take a slightly simpler approach 
here, generalizing upon Scharre’s (2015) “dimensions of autonomy,” and focus 
on three aspects of AS flexibility associated with task scope, peer relations, 
and solution approaches. These are driven by our working definition of 
autonomy given in the previous section and by a strong consideration of how 
we, as humans, expect flexibility in the behavior of other humans, whom we 
consider autonomous in some fashion. Specifically, we introduce three principles 
of flexibility:

•  Task Flexibility. An AS should be able to change its task or goal depend-
ing on the requirements of the overall mission and the situation it faces. 
Humans are not optimizers designed for only accomplishing one task, 
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even if they are experts in one (e.g., Olympic athletes or world-class 
chess players); rather, they are sufficers in many tasks, flexibly changing 
from one to another as the need arises. Humans can accomplish multiple 
tasks, serially and in parallel, dynamically changing priorities over time, 
shedding tasks and taking on new ones, depending on the situation and 
motivation (rewards). We believe the same task flexibility needs to be 
embodied in ASs and that this capability is enabled by situated agency: 
sensing the environment, assessing the situation, deciding on a course of 
action to accomplish its tasking, and acting on that course of action, all 
the while closing the loop by monitoring the outcome and communicat-
ing with the other agents in its team.16

•  Peer Flexibility. An AS should be able to take on a subordinate, peer, or 
supervisory role, depending on the situation and the other agents, hu-
man or machine, populating the environment. Humans accomplish this 
type of relational flexibility as they move through different roles through-
out the day, dynamically changing their relationships depending on the 
situation and the peers they are interacting with. We believe the same 
peer flexibility needs to be embodied in an AS, changing its relationship 
role with humans or other autonomous systems within the organization 
as the task or environment demands. An AS should participate in the 
negotiation that results in the accepted peer-relation change, requiring 
the autonomous system to understand the meaning of the new peer rela-
tionship to respond acceptably. This capability is enabled by situated 
agency providing environmental and task awareness, an understanding 
of its peer population (humans and machines), and learning over time to 
develop proficiency.17

•  Cognitive Flexibility. An AS should be able to change how it carries out a 
task, both in the short term in response to a changing situation and over 
the long term with experience and learning. Humans accomplish tasks 
in multiple different ways, using visualization, verbalization, rote memory, 
solutions from first principles, and so forth (Davidson et al. 1995; Casakin 

16. Examples include an AS capable of changing its role from ISR to jamming; from close 
air support to search and rescue; from route navigation to targeting; from data compression to 
image super-resolution; and from ISR analysis to tasking, processing, exploitation, and dis-
semination (TPED).

17. The F-16 Auto Ground Collision Avoidance (Auto-GCAS) is an example system. It is 
subordinate to the pilot until a potential ground collision is detected, and if the pilot does not 
respond to system warnings, Auto-GCAS then takes over (now acting as the pilot-in-control) 
to put the aircraft on a safe trajectory. Once the pilot takes over control, Auto-GCAS becomes 
a subordinate team member again.
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and Goldschmidt 1999; Dixon 2011). They also change their approaches 
as they become more expert in tasks, with learning and skill acquisition 
over time. Finally, they may employ parallel approaches to problem solu-
tions (e.g. Minsky’s Society of Mind [Minsky 1988]), and they may also act 
consciously or unconsciously (Kahneman 2011b). We believe that an AS 
should embrace this type of cognitive flexibility in addressing a problem by 
bringing to bear a variety of techniques to assess and then decide, selecting 
those techniques based on the current situation, past experience with 
given methods, the need to trade optimality versus timeliness, and so 
forth. In the long term, the AS can also learn new “solution methods” over 
time, assessing and readjusting a technique’s contribution to task perfor-
mance for a given situation and mission tasking.18

Figure 1.6 attempts to show the relationships among the three major behavioral 
dimensions needed in ASs, linking together properties for proficiency, tenets of 
trust, and principles of flexibility. On the left, we have the four properties for pro-
ficiency discussed earlier and covered in more detail later in chapter 2. On the 
right, we have the four tenets of trust, also discussed above and covered in more 
detail in chapter 3. In the middle, we have the three principles of flexibility, which 
depend both on proficiency and trust. Peer flexibility is driven mainly by an 
awareness of the environment and the other agents populating it, subserved by 
situated agency; an ability to communicate with and team within its multiagent 
environment; and learning over time and experience. Task flexibility depends on 
a knowledge of the environment and tasking, subserved by situated agency, and 
learning over time and experience, to support the development of a broad range 
of skills, including multitask management. Finally, cognitive flexibility depends 
on a knowledge of the problem being addressed, subserved by situated agency; 
adaptive cognition, which brings to bear one or more appropriate problem-solving 
methods; and learning over time and experience to develop meta-problem-solving 
skills. We discuss these properties for proficiency at greater length in chapter 2. 
On the right-hand side of the figure we show how the four tenets of trust con-
tribute to overall trust in the AS and how, in turn, increasing trust levels can 
support additional flexibility as other agents (human and machine) allow for a 
greater span of task assignments, peer relationships, and problem-solving ap-
proaches engaged in on the part of the AS.

18. Two well-known examples in the AI community are IBM’s Watson (Ferrucci et al. 
2010) and Deep Mind’s AlphaGo (Silver et al. 2016), both employing multiple approaches to 
problem solving—Watson with hundreds of question-answering “experts” and AlphaGo with 
a complementary combination of tree searching and specialized deep neural networks. We 
discuss these at greater length in chapter 4.
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Figure 1.6. Relationships among AS proficiency, trust, and flexibility

1.4 Development Challenges and Opportunities

There exists a broad range of challenges to the development and use of 
autonomy in DOD systems in general and Air Force systems specifically. We 
discuss here four of these major challenges and the opportunities we have in 
dealing with them, including:

•  The difficulty of defining what the term autonomy even means and the 
opportunity that is afforded us when we think in terms of behavioral 
requirements across the dimensions of proficiency, trust, and flexibility.

•  The challenge we face in understanding and designing these systems 
because of the many different S&T communities working on different as-
pects of the problem, with different objectives, concepts, methods, and 
languages; and the opportunity afforded us with greater awareness of one 
another’s efforts and results, a rapid proliferation of “best practices”—such 
as computational modeling, computer simulations, and rigorous statistical 
analysis—and a common vision instantiated by one or more unifying 
frameworks that can span across communities, improve collaboration, 
and accelerate progress.

•  The inherent difficulty in attempting, in some fashion, to mimic biologically 
based animal cognition, with all the uncertainties of how these existing 
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systems operate, learn, replicate, and evolve in a digital software/hardware 
environment that brings many constraints with it; counterbalanced with 
rapid advances in AI architectures (e.g., deep neural networks [DNN]), 
new learning paradigms afforded by new training schemes and “big 
data,” and continuing growth in the software and hardware (e.g., GPUs 
that make these computational approaches all possible).

•  And, finally, the challenge we face as an institution in bringing innova-
tive approaches to designing and developing these systems, which are 
fundamentally different from the industrial age products the DOD and 
USAF are accustomed to developing and deploying; and the opportunity 
we have to change that legacy approach with the introduction of thought-
provoking challenge problems, new development processes that em-
brace prototyping and experimentation, and cross-disciplinary organiza-
tion structures that bring together the needed skill sets to effectively tackle 
the S&T and development challenges facing us.

In the remainder of this section, we discuss these four areas at greater 
length and point to opportunities for overcoming these challenges, which are 
arising now and will evolve rapidly over the next several years.

We noted earlier in section 1.2 that several past attempts have been made 
to define the term autonomy, with differing degrees of granularity and, frankly, 
success. For this reason, we chose a working definition based on the (WHAT, 
WHAT-NOT, WHY, and NOT-HOW) interaction dimensions and expecta-
tions of working with autonomous systems, assuming that humans and other 
ASs would not be operating in a vacuum but, rather, in a network of other 
agents, both human and machine. However, even a working definition is not 
sufficiently fine-grained if we are expected to build and use these systems. We 
were therefore motivated to build on Endsley’s (2015c) work and present, in 
the previous section, three categories of behavioral requirements to which de-
signers of ASs should aspire—three sets of attributes we believe to be central 
to autonomous behavior, as envisioned in the context of a military organiza-
tion and mission:

•  Properties for Proficiency, covering situated agency, adaptive cognition, 
multiagent emergence, and experiential learning

•  Tenets of Trust, covering cognitive congruence and transparency, SA, 
human-systems integration, and human-system teaming/training

•  Principles of Flexibility, covering task, peer, and cognitive flexibility
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So rather than attempt to define autonomy or what an AS is, we propose to 
set requirements on an AS’s behavior in a way that supports recursively finer 
requirements in each of these categories and their components, as discussed 
further chapters 2 and 3.

A second issue facing the AS-development community is the fact that there 
is no single such community. Work in this area is distributed across many dif-
ferent communities, ranging from those developing psychological models of 
human perception, cognition, and behavior—unconstrained by any theories 
of the underlying neural processes supporting cognition and behavior—to 
software engineers developing decision algorithms for “autonomous” vehi-
cles, perhaps unaware of how humans operate as autonomous driving agents. 
Even within the engineering-development community, there are numerous 
stovepipes of isolated efforts. We should expect this in a competitive commer-
cial environment, but a casual review of ongoing efforts within the DOD—in-
cluding the DOD ACOI—reflects similar issues associated with low aware-
ness of other efforts; a lack of cross-transference of concepts, frameworks, and 
technologies; multiple “one-off ” prototypes that do not make it through the 
S&T “valley of death” (see, for example, GAO 2015); and slow overall progress 
toward the development of fieldable and useful ASs for military applications. 
There are likely a number of contributing factors to this situation, but a fun-
damental one has to do with a deficiency of awareness due to the lack of com-
munication between disparate communities (e.g., the cognitive scientist not 
collaborating with the algorithm designer), and this, in turn, may be due to a 
lack of even a common language to describe similar autonomous behaviors 
and mechanisms observed or developed by different communities.19

Mitigating against this situation is, we believe, a gradual convergence 
toward very broad common frameworks that describe the problem of autono-
mous behavior from radically different viewpoints. Figure 1.7 attempts to illus-
trate, at a very high level, how six distinct communities (with, alas, different 
languages) may be converging onto a common understanding of cognition 
and autonomous behavior, whether human- or machine-based. The six com-
munities are as shown:

•  At the top, the robotics and cybernetics communities, which have driven 
a better understanding of machine-based autonomy and human-system 
integration

19. This becomes readily apparent when members of these disparate communities become 
part of a project-oriented team and are forced to communicate and collaborate.
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•  At the bottom, the cognitive psychology and neurosciences communities, 
which bring us closer to understanding human cognition via concepts, 
cognitive architectures, models, and simulations

•  In the middle, the AI communities, both “hard” and “soft,” which con-
tinue to provide us with nontraditional computational approaches to 
perceptual/cognitive problems that only recently were thought to be un-
addressable via machines (e.g., the game of Go [Silver et al. 2016])

In chapter 4 we go into greater detail regarding this “convergence” and dis-
cuss how each community can contribute to our understanding of what con-
stitutes autonomous behavior; how perception, cognition, and action drive 
that behavior; and how research and engineering can work in tandem to ad-
vance understanding of existing systems (e.g., humans) and support more 
rapid development of robust, trustworthy, and flexible machine-based systems. 
We believe the time is right to make the effort to reach out to a diverse set of 
communities and embrace a cross-disciplinary approach to the engineering 
of future ASs.

robotics

neurosciences

human-systems
interaction

cognitive
architectures

symbolic & subsymbolic
computational methods

cybernetics

“hard” AI

“soft” AI

cog psych
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for systems

Framework for
Autonomous
Systems

Figure 1.7. Multiple streams of research and development leading to a common 
framework for ASs

The figure above also indicates the potential for this convergence to yield 
one or more computational models of how humans perform “cognition” as 
well how systems might be designed to perform in a like manner.20 What this 
requires is some sort of convergence of terms across the different languages 
used by the different research/engineering communities or at least some 

20. Or even in an improved manner as some of our “idiot-savant” machines do now, in 
narrowly restricted tasks.
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means of translating from one set of terms into another.21 We believe this 
could be facilitated by a common framework that encompasses the basic 
functions enabling perception, cognition, and autonomous behavior, for both 
humans and machines. Such a framework would include not only the compo-
nent functions underlying a full repertoire of behaviors attributed to an au-
tonomous/cognitive system but also the “data flow” (or signals) between these 
component functions and the “control flow” (or executive function), which 
serves to orchestrate component function execution, whether explicitly pro-
grammed or implicitly driven as an emergent quality of the framework.

We discuss these ideas at greater length in chapter 5, where we present an 
example framework, albeit engineering focused and with some shortcomings, 
to illustrate what the community should be considering, to help bridge the 
conceptual gaps and focus the effort. We have several communities research-
ing different (and oftentimes the same) aspects of human and machine intel-
ligence, and if we are to accelerate their convergence to a common under-
standing, we need to create a common framework to express common 
concepts, to test different theories, and to explore different paths toward 
building ASs with all the behavioral properties we discussed earlier.

We believe that the payoff in striving toward a common AS framework is 
threefold:

•  From a theoretical point of view, it would be particularly appealing to 
attempt to unify a wide range of research efforts now under way exploring 
what constitutes autonomous behaviors and an equally diverse number 
of efforts attempting to build and test such systems. The unification of 
some of these efforts under a common “architectural umbrella” would 
drive the research and the engineering and perhaps support faster develop-
ment along both fronts, with lasting tenets that might eventually serve as 
the basis of a “science of autonomy.”

•  From a practical point of view, common architectures can provide in-
sight into best practices in terms of explaining observed behaviors and/
or supporting the development of new ASs across different domains and 
for different applications. Common architectures can also make possible 
the “reuse” of solutions in one domain that have already been developed 
in another. At the very least, they can encourage, through the introduc-
tion of common constructs and nomenclature, greater communication 

21. In appendix B, we provide a brief set of “Frequently Asked Questions” developed by the 
AFRL and aimed at the engineering/operational community, which begins to address some of 
these issues, but we recognize that it is only a start at attempting to bridge the communications 
gaps across S&T communities.
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among different groups pursuing what, on the surface, may appear to be 
significantly disjointed aspects of the same or closely related problem.

•  And in terms of the opportunity, we believe that the time is ripe for at-
tempting to develop one or more unifying architectural views, because 
of the long-term and now rapidly accelerating “convergence” across multiple 
R&D communities focusing on many different aspects of what may very 
well be a common problem, that of understanding the behavior of existing 
ASs (e.g., humans) and the development of new ones, in the biosciences 
and engineering worlds.

This opportunity can take advantage of the exponential growth in the en-
abling computational infrastructure and technology platforms being developed 
outside of the autonomy community. Specifically, we call out the “architectural 
patterns” afforded by multitier hardware and multilayer software architectures, 
where we use the terms tier to refer to physical hardware segmentation of some 
of the AS functions and layer to refer to the logical software segmentation of AS 
functions (Fowler 2002). An example of such a pattern is illustrated in figure 
1.8, composed of four hardware/software tiers/layers:

•  Human-Machine Interface (HMI). Advances in HMI designs will better 
enable effective human-systems integration and close human-AS team-
ing in a manner that engenders communications, task sharing, and trust. 
This will allow us to communicate effectively and team with these sys-
tems, doing tasks that neither man nor machine excel at singularly and 
that are best served by a team effort, for example, “cyborg chess” or, as it 
was originally introduced, “consultation chess” (Michie 1972).

•  Autonomous System Architecture. This is primarily a software layer de-
signed to provide the modularity and functionality of a selected AS ar-
chitecture, as we just described. Ideally, it is a reusable domain-indepen-
dent plug-and-play architecture that can be used across different domains 
with expandable/contractible functionality. The software community 
typically refers to this as an application service or business logic layer. In 
terms of a hardware tier, this service would likely be hosted on one or 
more embedded computers associated with a host platform, for example.

•  Computational Methods/Algorithms. This is primarily a software layer—
although special purpose processors could be used here as additional hard-
ware tiers22—providing multiple common computational approaches to 

22. Such as the GPUs mentioned earlier that provide the parallelism needed by ANN 
algorithms (Janakiram 2017) or neuromorphic chips that mimic the way neurons are con-
nected in the brain (Gomes 2017).
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implementing a given function in the AS architecture, for several func-
tions. The software community typically refers to this as a business services 
layer, or low-level business layer, supporting one or more higher-level 
functions. Included here would be not just big-data statistics/learning and 
probabilistic modeling/reasoning approaches (e.g., Bayesian reasoning) 
but also symbolic AI (e.g., rule-based systems) and subsymbolic AI meth-
ods (e.g., neural networks)—and, naturally, a variety of ML approaches to 
improve AS performance over time. We describe these in much greater 
detail in chapter 4.

•  Hardware/software platforms. At the bottom of figure 1.8 we show hard-
ware/software tiers and layers providing any needed software services 
(e.g., operating systems), computational power, and memory to instantiate 
the overall AS architecture, its layers and services, and sensors and effectors 
needed to support situated agency (see chapter 2), multi-AS operations, 
and human-AS teaming, augmented by high-speed and ubiquitous com-
munications links (across agents and back to “the cloud” serving as a 
shared cognitive node), as well as individual “smart” nodes made possible 
by new software architectures, cheap computational resources, and memory 
(basically the Internet of Things, or IoT [Vermesen and Friess 2013]).

Human Machine Interface

Autonomous System Architecture

Computa�onal 
Methods/Algorithms

Hardware/So�ware Pla�orms effectorssensors

OUTSIDE WORLD

Figure 1.8. Example architectural pattern for AS development
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Several benefits accrue with the definition of a well-designed architectural 
pattern for AS development, particularly because of the independent growth 
in capability in all of these areas—especially in the last two: computational 
methods and hardware/software platforms. To cite one example, which sum-
marizes work by four groups at the University of Toronto, Microsoft, Google, 
and IBM in the application of ANNs23 to automatic speech recognition, the 
researchers note, “Two decades ago, researchers achieved some success using 
artificial neural networks with a single layer of nonlinear hidden units. . . . At 
that time, however, neither the hardware nor the learning algorithms were 
adequate for training neural networks with many hidden layers on large 
amounts of data, and the performance benefits of using neural networks with 
a single hidden layer were not sufficiently large to seriously challenge [con-
ventional approaches at the time]” (Hinton et al. 2012).

But significant progress over the last several decades has been made in 
speech recognition precision (Hinton et al. 2012) with the introduction of the 
following:

•  DNNs incorporating many layers (tens or hundreds of layers) (Schmidhuber 
2014).

•  Improvements in the ML algorithms used to “train” the networks, espe-
cially in DNNs, where the large number of layers makes credit assignment 
and parameter selection difficult (Schmidhuber 2014).

•  The availability of large datasets (big data) for training, made available via 
the internet and cloud-based storage—over the past 30 years, the cost per 
GB of hard disk data storage has halved every 14 months (Accenture 2016).

•  Improvements in the underlying hardware used to host the algorithms, for 
example by Nvidia GPUs (Nvidia 2018) and other specialized chips (Metz 
2018; Schneider 2017) for accelerated parallel processing that is particu-
larly well suited to many ANN computational approaches.

All of these improvements—software algorithms, training data, and hard-
ware memory and processors—have resulted in an explosion in performance 
of these systems, as evidenced in consumer products introduced recently, for 
example, Amazon’s Alexa (Pierce 2018) and Google’s Assistant (Bohn 2018). 
And they have expanded the scope of applications, from simple passive pat-
tern recognition (including visually based object recognition) to active game 
play situations, like Atari (Mnih et al. 2013) and Go (Silver et al. 2016), both 
demonstrated by Google’s Deep Mind (2018) group. It is anticipated that 

23. Which we describe at greater length in chapters 4 and 5.
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these tiers/layers will continue to evolve rapidly with the continued growth in 
cloud computing and data storage; improvements in communications band-
width; the push toward fog computing for special purpose applications, for 
example, mobile population surveillance/identification aids deployed by Chi-
nese police foot patrols, integrating Google Glass-Like technology, belt-worn 
databases, and facial recognition technology (Chin 2018); and the inevitable 
rise in commercial IoT applications, where MarketsandMarkets (2017) pre-
dicts a 27-percent compound annual growth rate in IoT volume, from $171B 
in 2017 to $561B by 2022.

To summarize, we believe that not only is there a convergence of R&D 
across disparate communities happening now (as illustrated in fig. 1.7) but 
also an acceleration of the enabling technologies and platforms occurring in 
a broader technology and commercial arena, supporting the layered architec-
tures and platform-centric business models needed for effective development 
of ASs (as illustrated in fig. 1.8).

There is, however, one final challenge that needs to be overcome if ASs are to 
be developed rapidly and employed effectively by the Air Force: the need for 
innovation in our development of these systems. We believe that these informa-
tion-focused systems are qualitatively different than the systems that we have 
developed and acquired in the past and that new methods and approaches are 
called for if we are to be successful in bringing ASs into the inventory. Specifi-
cally, we need to overcome limitations that we now have in three areas:24

•  First, we need to overcome our desire to minimize development risk for 
new systems and our focus on incremental improvements in legacy systems, 
whether those efforts focus on truly legacy systems (e.g., reengining the 
nearly 70-year-old B-52) or are legacy in concept (e.g., recapitalizing the 
Joint Surveillance Target Attack Radar System [JSTARS] concept with 
new hardware [Deptula 2016]). A first step in overcoming this creeping 
incrementalism and lack of vision is to embrace challenge problems that 
would, at first glance, appear unapproachable with current systems and 
manning concepts. This is particularly appropriate for the introduction 
of ASs, given the long history of the AI community in posing and then 
solving what originally appeared to be intractable problems in computer 
vision, music synthesis, chess playing, and so forth. But it does require 
discarding the constraints imposed by existing systems and envisioning 
an entirely new way of approaching operational problem sets.

24. And these are by no means sufficient, since there are other issues in acquisition, logis-
tics, training, and so forth that must also be addressed. However, they are necessary from a 
design-and-development standpoint.
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•  Second, we need to rethink our processes for exploring new technologies 
and applying them to the development of new materiel solutions. We 
need to move out from a waterfall approach in which requirements are 
formulated, technology solutions evaluated, systems designed, systems 
developed, and systems tested against requirements—all in a rigid 
sequential approach, often “late to market” with the original require-
ments made obsolete by a changing world situation. Rather, we need a 
much more agile set of development processes, with iterative wargam-
ing, simulation, prototyping and evaluation—all constantly driving the 
evolution of new systems to meet changing operational needs. Learning 
at all steps in the process is at the center of this type of process innovation 
and is also at the heart of many of the newest AI techniques.25 This is an 
opportunity to bring the attributes of the thing being developed (e.g., an 
AS) to the process used for its development.

•  Finally, we need to move out of our technical discipline-focused stove-
pipes and take an honest, cross-disciplinary approach to the development 
of this new class of systems. The current AFRL structure of discipline-
segregated directorates encourages this kind of stovepiping and discourages 
the kind of cross-disciplinary organizational structure and systems en-
gineering viewpoint needed for successful early prototyping and evalua-
tion of systems concepts. Fortunately, the development and application of 
autonomous systems demands a cross-disciplinary approach. The former 
demands it because of the need for a wide range of AS capabilities, in 
sensing, cognition and computation, human-system interfaces, commu-
nications, robotics, and so forth, and the latter affords it because many 
systems can benefit from the application of autonomy, whether they operate 
in the air, space, or cyberspace, as we have pointed out earlier.

Because this report is focused on the technical issues associated with AS 
development, we will save our discussion and recommendations regarding 
the above three areas until the recommendations in chapter 6. However, it 
seems clear to us that successful development of ASs not only demands a 
change in the way we do business along these three dimensions (challenge 
problems, development processes, and organizational structures) but also af-
fords many new out-of-the-box opportunities for developing new systems that 
incorporate autonomy.

25. As demonstrated by AlphaGo Zero (Silver et al. 2017), in which the AI game player 
became its own teacher, not needing supervision by a human to perfect its play.
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1.5 Future Vision

While we dominate the air, space, and cyber domains today, our adver-
saries have invested heavily in technologies to deny us the superiority 
we have come to rely on. To counter this, we must integrate our advan-
tages across the domains in new and dramatically effective ways.

—Gen David L. Goldfein, Chief of Staff of the Air Force

At the beginning of this chapter we described a range of benefits that could 
accrue with the successful development and deployment of ASs. This includes 
impact on future materiel solutions across different physical platforms, in the 
air (e.g., Loyal Wingman), in space (e.g., self-defending satellites), and in cyber-
space (e.g., autonomous rapid response defenders), as illustrated in figure 1.3. 
This also includes potential changes in operational concepts, as described in 
the AFFOC (USAF AFFOC 2015), which foresees considerable human-ma-
chine teaming with autonomous and semi-autonomous systems, primarily 
physical platforms (although, see below). The AFFOC makes little mention of 
changes in organizational structures that might result in the introduction of 
ASs or of potential cultural changes, except for an exhortation to embrace in-
novation and individual initiative, but that could well be accomplished in the 
absence of the introduction of ASs in the inventory. Finally, it is appropriate 
to point out that—while we are enthusiastic about the potential benefits of 
ASs in terms of providing improvements in situational awareness, decision 
quality, and speed of response, as well as supporting the removal of operators 
from the “dull, dirty, dangerous” mission tasks (The Economist 2011)—we, as 
an enterprise, have yet to conduct a quantitative assessment of the potential 
impact on overall mission success of the introduction of ASs, let alone de-
velop comparative return-on-investment figures across different technology 
options.26

Despite this, we believe that the development and introduction of ASs will 
change not only how our physical (air and space) and virtual (cyber) plat-
forms behave and operate in a larger organizational environment but also our 
operational concepts and organizational structures in ways not considered or 
foreseen in the AFFOC.27 And much of this change will come not from turn-

26. Again, the AFFOC provides a few illustrative vignettes but nothing of a quantitative 
analytic nature (AFFOC 2015).

27. For a more forward-looking vignette, see appendix H, which includes both “at-rest” 
and “in-motion” AS assets that progress from an ISR mission to an area-defense mission and, 
finally, to a humanitarian recovery mission. The vignette displays key AS task, peer, and cognitive 
flexibilities discussed earlier.



INTRODUCTION │ 35

ing our manned platforms (in air, space, and cyber) into unmanned ones but 
from introducing greater autonomy and its fundamental enabler, AI, into the 
information-intensive functions of warfighting, including multidomain ISR, 
situational understanding, operational planning and targeting, battle man-
agement, and mission assessment. The AFFOC envisions “human battle man-
agers in control of large numbers of self-coordinating vehicles or programs 
[for cyber payloads]” (USAF AFFOC 2015). This is probably upside down; 
for a far outlook of 20 years, we should be considering ASs as central partici-
pants in the battle-management function and not merely platform-operating 
peripherals.28

The basic question then becomes: “How do we get there?” One way is to 
pursue the conventional physical/cyber platform-focused approach: build auton-
omy into our legacy manually controlled platforms (or their next-generation 
variants), along the lines vignetted in the AFFOC (USAF AFFOC 2015)—but 
build on an integrated hardware/software environment (such as that illus-
trated earlier in fig. 1.8) for commonality across systems, easing development 
time and enabling cross talk across systems, operators, missions, and do-
mains. At the same time, pursue a platform-based business model, where 
platform in this context refers not to the physical/cyber platforms the USAF 
employs in its operations but rather a more generic platform that provides the 
services expected of the USAF as a component of the joint force. In the com-
mercial sector, these kinds of platforms have become an industry best practice 
that concentrate on connecting consumers to vendors in high-value exchanges 
(Parker and Van Alystyne 2016; Morvan et al. 2017). The high-value exchange 
can be, for example, an exchange of goods for money, starkly different from 
the more traditional information technology view we described in the previous 
section since the platform business model is not necessarily focused on the 
specifics of a product. For example, Amazon connects vendors selling mer-
chandise to people who want to purchase merchandise. What is it that the 
platform provides? In the Amazon case, it provides a way for consumers to 
find, review, research, purchase, and ship products of interest—all while pro-
viding buyer and seller protection, offering shipping options, collecting sales 
tax, and supporting several other buyer and seller experiences. Amazon also 
offers web services that connect organizations to big-data solutions through 
their scalable, reliable, big-data platform. Other commercial examples in-
clude Uber, which connects people needing transport services to people 

28. Although in the AFFOC’s favor is a callout for AS-based, front-end ISR collection and 
processing: “Fully integrated information systems that allow aggregation of data from a variety 
of classified and unclassified sources, sensors, and repositories, and a degree of autonomous 
processing, exploitation, and dissemination” (USAF AFFOC 2015).
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capable of providing transport services in the needed timeframe. Facebook 
has revolutionized people-to-people connections through its social media 
platform. TaskRabbit connects homeowners to safe and reliable local help. On 
the government side, the National Security Agency (NSA) and the Defense 
Information Systems Agency (DISA) similarly have the Big Data Platform 
(BDP) that enables efficient capability development and deployment for cyber 
operations, which has been made available to the entire department. These 
are all modern platform business models that are enabled by information 
technology and the knowledge associated with it.

Knowledge is what an AS uses to create the meaning from its observations. 
An AS is a system that creates the knowledge necessary to remain flexible in 
its relationships with humans and machines, the tasks it undertakes, and how 
it solves those tasks. This concept of knowledge creation is echoed in Domingos’s 
recent (2015) book, The Master Algorithm, and provides foundational under-
standing of knowledge representation, management, and learning. Tool-based 
solutions have provided considerable value over the years, but the solutions 
only work for a limited set of problems, since they do not scale. Knowledge 
provides the right mechanism to transform the traditional tools-based approach, 
which solves a small number of problems, to a knowledge-platform approach 
that is applicable to a far greater set of problems.

An Air Force Knowledge Platform (KP) should monopolize the connec-
tion of observation vendors (e.g., ISR assets, both human- and AS-based) 
with knowledge creation vendors (e.g., battle managers) and warfighting effects 
vendors (e.g., strike assets) to deliver multidomain effects. Collaborative ASs 
would be able to dynamically and opportunistically team and separate as nec-
essary and as dictated by the unfolding battlespace events. Each AS would be 
able to communicate with other ASs to achieve some particular desired multi-
domain effect, through a dynamic and variable vocabulary.29 ASs can then be 
focused on creating knowledge and appropriately applying that knowledge—
across the AS population—to maximize their contributions to a range of air, 
space, and cyber operations at the strategic, operational, and tactical levels 
of warfare.

In essence, the KP provides the ecosystem necessary to create capabilities, 
and those capabilities can be used to create combat effects. We will discuss the 
specifics of this KP in greater detail in section 6.6. However, here we wish to 
merely point out its potential for transforming the USAF from an industrial-
age organization focused on its hardware platforms to an information-age, 

29. This move from a specialized mission-specific representation of knowledge to a more 
flexible representation and creation of knowledge is cited as what facilitated animal species in 
nature expanding their purview (Newell 1990).
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service-oriented enterprise, enabled by AS-mediated knowledge creation and 
application. Figure 1.9a illustrates the Air Force’s current platform-centric 
view of itself. Four categories of platforms—by which we mean physical entities, 
specifically vehicles and operations centers—are shown:

•  On the left-hand side are the sensor platforms, including unmanned plat-
forms like Predator, Reaper, and GlobalHawk, and manned platforms 
like Airborne Warning and Control System (AWACS), RivetJoint, and 
Compass Call.

•  On the right-hand side are the shooter platforms, including close-air-
support assets, bombers, fighters, and EW platforms.

•  On the bottom are support platforms, including transport and tanker 
platforms.

•  In the middle are C2 platforms, including airborne platforms like AWACS 
and JSTARS, and groundborne or fixed platforms like the AOCs.

shooter 
pla�orms

(A10, AC130, B1, B2, 
B52, F15, F16, F22, 
F35, CompassCall…)

sensor
pla�orms

(MQ1, MQ9, RQ4, 
U2, AWACS, 
RivetJoint, 

CompassCall, …)

support pla�orms
(C5, C17, C130, KC10, KC46, KC135,…)

C2 pla�orms
(AWACS, 

JSTARS, AOC,…)

Space and Cyber take a back seat in this view

Figure 1.9a. Today’s platform-centric view of the Air Force

Finally, although not called out explicitly but illustrated by the black lines, 
a jumble of communications networks connects some platforms to some 
other platforms (but none that connect all to all), with different frequencies, 
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bandwidths, and networking protocols (Dougherty and Saunders 2003). And 
because this platform-centric viewpoint is focused on air platforms, space 
and cyber assets take a back seat.

But imagine if the sensor, shooter, and support platforms got off center 
stage, and we grew the C2 assets in the middle, as shown in figure 1.9b. We 
now have three categories of platforms:

•  On the left-hand side, we have the sensor/collector platforms (labelled as 
such to emphasize the importance of space and cyber assets), collecting 
all domains available from the world cloud shown at the bottom.

•  On the right-hand side, we have shooter/supporter platforms (combining 
the shooters and supporters from earlier because of their similar action 
roles), acting across all domains via their direct impact on the world 
cloud.

•  In the middle, we have the critical information-processing and knowledge-
management functions—functions that comprise multidomain C2—
working across all domains and connecting sensor/collector platforms 
with shooter/supporter platforms to carry out the mission.

•  Connecting them, we have C2 guidance driving the shooters/supporters 
via the feedforward path and the sensors/collectors via the (inner loop) 
feedback path.
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We now have an information-centric view of the Air Force system—one 
that is air/space/cyber agnostic and implicitly assumes all domains contribute 
to all components.30 This view also forces us to focus on and deal with the 
critical information-processing and knowledge-management issues associ-
ated with a service organization—one built on a platform-based business 
model, where platform in this context is distinctly different from the physical 
platforms we focused on in figure 1.9a (and which we focus on today), where 
platform in this context is distinctly different from the physical platforms we 
focused on in figure 1.9a (and which we focus on today).

To move from a platform-centric, industrial-age organization to a net-
worked, information-age enterprise requires us to focus on the following:

•  Knowledge movement: collection, communications, and dissemination
•  Knowledge creation: information fusion and exploitation and dynamic SA
•  Decision management: resource allocation, planning, and scheduling

•  Execution management: acting and monitoring

While doing this, we focus on the goals of maximizing information utility, 
reducing friction, accelerating processes, and winning faster and more deci-
sively. We can leverage the best of commercial advances in information pro-
cessing relying on Moore’s law (Moore 1965), networking and Metcalfe’s law 
(Hendler and Golbeck 1997), and platform-based business models (Morvan 
et al. 2017). However, it does require a broad architectural view centered on a 
knowledge platform, the introduction of greater automation and ASs through-
out the organization, an infrastructure that supports ubiquitous machine-to-
machine communications, and improved human-systems integration. Our 
vision is:

An agile, information-centric enterprise making timely decisions executed 
via friction-free access to exquisitely effective peripherals.

1.6 Outline

This report is organized into six chapters and nine appendices.
Chapter 1 has attempted to provide general background for the study, in 

30. It also assumes much better connectivity than we now have, a separate technology 
problem that we must address if we want truly multidomain operations that are (vehicle) plat-
form agnostic.
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terms of overall motivation for the introduction of ASs into the Air Force in-
ventory and the potential benefits that could accrue operationally. We began 
with a general discussion of past attempts to define the term autonomy and 
summarized the major findings of several past studies. We then focused on 
the operational challenges and opportunities associated with developing and 
introducing these systems, converging on three dimensions of desired AS be-
haviors, namely properties for proficiency, tenets of trust, and principles of flex-
ibility. As outlined here and described in greater detail in chapters 2 and 3, 
these serve to define ASs in a behavioral fashion in lieu of more formal defini-
tions proposed elsewhere. We then outlined key development challenges that 
must be addressed to develop these systems but also pointed out the opportu-
nities for significant advancements in this area, including a convergence of 
research communities, described in greater detail in chapter 4, and the poten-
tial of one or more unifying functional frameworks coupled with a broad set 
of enabling technologies, discussed at greater length in chapter 5. Finally, we 
closed this chapter with a vision of how ASs, coupled with a global architec-
ture incorporating a knowledge platform, could transform today’s Air Force 
from a platform-centric, industrial-age organization to tomorrow’s net-
worked, information-age enterprise.

Chapter 2 presents four key properties for proficiency in ASs. While the list 
may not be exhaustive, we believe these to be a necessary set for ASs to realize 
their full potential in future defense systems. These properties are: situated 
agency, embedding the autonomous system within the environment and giv-
ing an AS access to that environment; adaptive cognition, providing an AS 
several different ways of problem solving; multiagent emergence, enabling AS-
to-AS interactions and emergence of multi-AS behaviors; and experiential 
learning, supporting the evolution of AS behaviors based on past experience.

Chapter 3 describes four key tenets of trust in ASs. Again, this may not be an 
exhaustive list, but it is one we believe necessary for ASs to be trusted participants 
with humans in critical mission operations (and for ASs to be trusted by other 
ASs), based on our knowledge of human-human interaction and our experience 
in operating automated systems. These tenets are cognitive congruence and 
transparency, to support human understanding of AS behaviors; situation 
awareness of both the external environment and the internal state of the AS, 
to support knowledgeable decision making; good human-system integration, 
to support effective human-system interaction under adverse conditions; and 
human-system teaming and training, to support effective team operations under 
a range of missions and threats.

Chapter 4 provides greater background on the multiple communities 
that have contributed to, and continue to contribute to, the science and 
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technology underlying our understanding of perception, cognition, learning, 
and action, both animal- and machine-based. The chapter describes how six 
distinct communities may be converging onto a common understanding of 
how to either develop new ASs, or understand the behaviors of existing 
ones, via frameworks, architectures, and even computational models and 
simulations. The six communities are the robotics and cybernetics commu-
nities, the cognitive psychology and neurosciences communities, and the 
“hard” AI and “soft” AI communities. We see all of these communities as key 
to the development of proficient, trustworthy, and flexible ASs, in the sense 
that we discussed earlier.

Chapter 5 discusses frameworks for the development of ASs, focusing on 
the category of cognitive architectures and their computational instantiations. 
One potential framework is described in detail, which is functionally struc-
tured rather than unstructured, makes no commitment on symbolic versus 
subsymbolic processing, and incorporates learning. It is deliberately engi-
neering-focused with a strong dataflow orientation that has its basis in a cy-
bernetics view of the world. In addition to identifying the broad range of 
functionality we believe is needed for proficient, trustworthy, and flexible AS 
behavior, the chapter discusses several promising technologies for achieving 
these different functionalities. The chapter closes with a brief enumeration of 
functions not explicitly represented in the framework, which may also be 
critical to AS development success and usage, to serve as motivation for ad-
ditional research in this area.

Chapter 6 closes with five categories of high-level recommendations cover-
ing behavioral objectives that specify generalized design requirements for au-
tonomous systems; cognitive architectures and enabling technologies for AS 
design and implementation; challenge problems for the R&D community to 
engage in to push forward the state of the art; development processes that 
incorporate more rapid prototyping, experimentation, and iterative develop-
ment; and cross-disciplinary organizational structures that cut across tradi-
tional stovepipes. Also presented is the concept of a Knowledge Platform, 
which helps to integrate these different recommendations into a broader 
and more unified effort across technologies, processes, and organizational 
structures.





Chapter 2

Properties for Proficiency

In this chapter we outline four key properties for proficiency in ASs. Though 
the list may not be exhaustive, we believe these to be necessary for ASs to real-
ize their full potential in future defense systems. As introduced earlier in sec-
tion 1.3, these properties are:

•  Situated Agency. Embedding the AS within the environment, with com-
ponent abilities to sense or measure the environment, assess the situa-
tion, reason about it, make decisions to reach a goal, and then act on the 
environment, to form a closed loop of “seeing/thinking/doing,” itera-
tively and interactively.

•  Adaptive Cognition. A capability to use several different modes of “think-
ing” about the problem (for example, assessing, reasoning, and decision 
making), from low-level rules to high-level reasoning and planning, de-
pending on the difficulty of the problem, with sufficient flexibility for 
dealing with unexpected situations.

•  Multiagent Emergence. An ability to interact with other ASs via commu-
nications and distributed function allocations (e.g., sensing, assessing, 
decision making, etc.), either directly or through a C2 network, in a 
manner that can give rise to emergent behavior of the group, in a fashion 
not necessarily contemplated in the original AS design.

•  Experiential Learning. A capability to “learn” new behaviors, over time 
and experience, by modifying internal structures of the AS or parame-
ters within those structures, based on an ability to self-assess perfor-
mance via one or more performance metrics (e.g., task optimality, error 
robustness, etc.), and an ability to optimize that performance via appro-
priate structural/parametric adjustments over time.

We describe these at greater length in the following four sections of this 
chapter.

2.1 Situated Agency

2.1.1 Agency and Autonomy

We start this section with the goal of trying to separate the notion of agency 
from the concept of autonomy, since the two are often intertwined in terms
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like autonomous agents and agent autonomy or a relationship is implied via 
definitions associated with intelligent agents. For example, Franklin and 
Graesser (1996) make note of several (then current) definitions, specifically:

•  Autonomous agents are computational systems that inhabit some com-
plex dynamic environment, sense and act autonomously in this environ-
ment, and by doing so realize a set of goals or tasks for which they are 
designed (Maes 1995).

•  Intelligent agents continuously perform three functions: perception of 
dynamic conditions in the environment; action to affect conditions in 
the environment; and reasoning to interpret perceptions, solve prob-
lems, draw inferences, and determine actions (Hayes-Roth 1995).

•  An agent is anything that can be viewed as perceiving its environment 
through sensors and acting upon that environment through effectors 
(Russell and Norvig 1995).

•  An autonomous agent is a system situated within and a part of an envi-
ronment that senses that environment and acts on it, over time, in pur-
suit of its own agenda and so as to effect what it senses in the future 
(Franklin and Graesser 1996).

From these consistent but not identical definitions, we can infer that 
agency has to do with interacting with the environment, in a way most clearly 
stated by the definitions formulated by Maes (1995) and Hayes-Roth (1995): 
sensing the environment, reasoning about the environment and some desired 
goals to be achieved in that environment, and acting upon that environment 
in a way that tries to achieve those goals. Because of the importance of the 
environment in this definition, we call this situated agency. Note that all four 
definitions above are consistent with this view of agency.

As a side note, we are specifically not endorsing the viewpoint that agency 
has to do with acting in a manner to serve the goals or desires of another 
agent, as, for example, the way a real estate agent might act to serve the house-
hunting goals of a client (agent). This then precludes the consideration of 
definitions such as the following:1

Intelligent agents are software entities that carry out some set of operations on behalf of a 
user or another program, with some degree of independence or autonomy, and in so doing, 
employ some knowledge or representation of the user’s goals or desires. (Smith et al. 1994)

This acting to satisfy the goals/desires of another adds another degree of 

1. Aside from the fact that the definition limits agency to software instantiations.
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confounding of concepts and will be addressed shortly when we talk about 
human-system teaming. For now, we assume that agency can occur with the 
existence of a single agent.

Autonomy or autonomous behavior arises in the goal-seeking behavior 
implicit in the Maes (1995) definition of autonomous agent given above, in the 
ability to “solve problems” in the Hayes-Roth definition of intelligent agent, 
and in the phrase “in pursuit of its own agenda” employed by Franklin and 
Graesser (1996). The Russell and Norvig (1995) definition of agent avoids the 
confounding of autonomy and could properly apply to a thermostat—an 
agent we would not consider autonomous. Essentially, then, autonomous 
agency implies everything we just said about agency but where the goals are 
effectively “owned” by the agent, unlike the situation, say, with the thermostat, 
where the goal is set by the human operating that thermostat.

2.1.2 Agency in Multiple Situations

The notion of situated agency has a long history, but one of the first serious 
considerations of engineering such systems was formulated by Wiener in 
1948 in his treatise on cybernetics (Wiener 1948), in which he noted,

It has long been clear to me that the modern ultra-rapid computing machine was in prin-
ciple an ideal central nervous system to an apparatus for automatic control; and that its in-
put and output need not be in the form of number or diagrams, but might very well be, 
respectively, the readings of artificial sense-organs, such as photoelectric cells or thermom-
eters, and the performance of motors or solenoids. With the aid of strain-gauges or similar 
agencies to read the performance of these motor organs and to report, to “feedback,” to the 
central control system as an artificial kinaesthetic sense, we are already in a position to 
construct artificial machines of almost any degree of elaborateness of perfor-
mance. (emphasis added)

To graphically represent this concept of agency, consider the following 
sequence of figures, in which a single AS, our situated agent, is interacting 
with its environment. In accord with Wiener’s formulation expressed in the 
preceding block quote, we have, in figure 2.1a, a single AS in the middle of the 
diagram, with sensors that are driven by some aspects of the environment 
(light, heat, etc.) and provide the system with “inputs.” This system’s effectors 
serve to act on the environment in some fashion (force, laser beams, etc.) and 
provide the system with a means of generating “outputs” to the environment. 
Inside the gray cloud could be other ASs and human entities, both red and 
blue, as well as other entities not represented in this diagram (e.g., neutrals, 
weather, etc.). This, in a nutshell, is situated agency as we have defined it 
earlier.
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At the top of the diagram is also shown a human “teammate” plus a 
human-computer interface (HCI) connecting the two. The human teammate 
may be a peer (true teammate) or a supervisor (e.g., a flight lead) or a subordi-
nate (e.g., a member of a flight package led by an autonomous package lead). 
Note that the human teammate is also connected to the outside world via 
separate channels, implying possible (and likely) disparate sources of sensory 
information and means of effectuation. This simple extension then lets us 
consider issues of human-system teaming (later in section 3.4), which we 
know will be central to any development and use of these ASs.
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Figure 2.1a. Situated agent with a human teammate

Clearly, this graphical representation can be expanded in multiple ways to 
accommodate multiple ASs and/or human teammates. One way is simply as 
shown, with multiple entities in the cloud. Another way is to add blocks rep-
resenting additional ASs and/or human teammates to the upper half of the 
figure, as shown in figure 2.1b.
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In either case, we are recognizing that we can have any combination of 
humans working in concert with one or more agents:
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Figure 2.1b. Situated agent with multiple human teammates and agents

•  1-to-1 (1 human working with 1 agent), such as one human driver work-
ing with one situated agent, overseeing, for example, driving safety in 
traffic, through a variety of sensors and collision avoidance algorithms 
and braking/steering effectors.2

•  1-to-N (1 human working with N agents), such as a “swarm controller” 
flying a formation of agents at a high level, for example, flying the “center 
of gravity” of the swarm, rather than all the individual elements of the 
swarm, leaving the agents to move together and deconflict on their own 
(Zigoris 2003).

•  M-to-1 (M humans working with 1 agent), such as is currently de-
manded of remotely piloted aircraft (RPA) operations, involving on the 
order of 170 humans to maintain flight operations of a single agent plat-
form (Predator or Reaper) over extended periods of time (Zacharias and 
Maybury 2010).

•  M-to-N (M humans working with N agents), a teaming situation that is 
now beginning to be explored (Chen and Barnes 2014).

2. The Ground Collision Avoidance System (GCAS) developed by the AFRL is an extended 
example of this, applied to pilot rather than driver safety (Norris 2017). 
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As the number of agents N becomes large, the dynamics of the inter-agent 
interactions start to dominate the behavior of the agent “group” (relative 
tothe internals of the individual agents). We discuss this at greater length in 
section 2.3. In addition, as both M and N become large, we are entering a hu-
man-machine teaming situation where it may become difficult to ascertain 
who is controlling whom.

One other extension of the basic situated agency concept of figure 2.1a can 
accommodate the current focus on enhancing human performance and/or 
mitigating human limitations under stressors associated with the level of 
tasking, the time on task, the environment, and so forth. The Sense-Assess-
Augment (SAA) framework described by Parasuraman and Galster (2013) 
and Galster and Johnson (2013) essentially involves the following:

•  Sensing of the human’s physical, physiological, and psychological state
•  Assessing the overall state in terms of the performance objectives given 

the human under specific task objectives
•  Augmenting the human’s capabilities based on the assessed state, via a 

variety of means, including changes in the HCI, decision aiding, or even 
biochemical enhancers

Clearly, if the augmentation is appropriate, the effect of stressors should be 
reduced so the resultant sensing and assessment of the human’s state should 
reflect this, necessitating less augmentation over time. The closed-loop nature 
of the process is clear.

This is illustrated in figure 2.1c, in which the SAA function is assigned to 
our situated agent. The inner loop arrows indicate how the situated agent 
might sense behavioral or physiological attributes of the human (given proper 
instrumentation/sensors emplaced/embedded with the human), assess the 
task-relevant states of the human (given appropriate situation awareness algo-
rithms and human physiological/behavioral models), and augment the hu-
man in some fashion that maintains or improves human performance in the 
given task (via direct biochemical stimuli or indirect means through the  
HCI).3 As in the earlier figures, both the human and the agent may be en-
gaged in closed-loop interactions with the environment and with each other.

 From the above discussion, situated agency can take on a number of roles 
and interactions with other agents—both human and machine.

3. A third option exists for augmentation if the human is operating a system to which the 
situated agent has access via direct interaction with the system itself, such as occurs in driving 
with antilock braking, stability augmentation systems, and so forth.
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Figure 2.1c. Situated agent implementing the SAA paradigm

2.2 Adaptive Cognition

In the previous chapter, we noted the importance of cognitive flexibility in 
AS behavior, in how an AS should be able to change how it carries out a task, 
in its short-term response to a changing situation, and in its long-term expe-
rience and learning. Here, we attempt to more fully develop this idea with a 
brief discussion of what is meant by adaptability in terms of different cogni-
tive approaches to problem solving, models of learning how to problem solve, 
and, finally, how metacognition and consciousness may contribute to adapt-
ability. Note that we will be intertwining theories of how we think humans 
solve cognitive problems (cognitive science) and how we might build ASs to 
exhibit similar adaptive behaviors (artificial intelligence), since both areas are 
closely intertwined, as discussed later in chapter 4.
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To preface this discussion, consider Minsky’s insight as to why humans are so 
cognitively resourceful, with our shorthand tagging in brackets (Minsky 2006):

•  [knowledge representation] We have multiple descriptions of things—
and can quickly switch among them.

•  [experience/memory/introspection] We make memory-records of what 
we’ve done—so that later we can reflect on them.

•  [problem solving] Whenever one of our Ways to Think fails, we can 
switch to another.

•  [goal seeking/management] We split hard problems into smaller parts 
and keep track of them with our context stacks.

•  [conscious/unconscious motivation] We manage to control our minds 
with all sorts of bribes, incentives, and threats.

•  [learning/metalearning] We have many different ways to learn and can 
also learn new ways to learn.

We will touch on a few of these components of adaptive cognition in this sec-
tion.

Consider the YouTube video published by Boston Dynamics on 12 Febru-
ary 2018 in which the company’s SpotMini dog-like robot exhibits incredible 
dexterity by opening a closed door using its 3-D vision system and its single 
attached arm to turn the handle and hold the door open for another SpotMini 
lacking such an arm (Boston Dynamics 2018). On the surface, the vignette 
plays out as if these two robots were engaging in adaptive cognition, cognitive 
and peer-to-peer flexibility, and team problem solving, in the short space of 
the half-minute this takes to play out. If these were truly autonomous robots 
and not controlled at some high level by off-screen human operators, one 
might interpret the vignette as follows:

•  The first (armless) SpotMini1 enters the room and heads to the (closed) 
door. It stops in front of the door and stares at the door handle for a bit. 
As humans watching this assuming autonomous agency at work here, we 
might assume the following: SpotMini1 wants to go out the door.4 Spot-
Mini1 sees the door is closed but realizes it cannot get out because it has 
no arm/hand to turn the door handle.

•  SpotMini1 then turns to another part of the room, and soon SpotMini2, 
sporting an arm/hand manipulator, enters the scene. From our human

4. In this context, wanting is equivalent to “having the goal of.”
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perspective, it appears that what has happened is that SpotMini1 rea-
soned that it could get out of the room by calling on SpotMini2 to open 
the door, effectively solving the problem in a team fashion, adding re-
sources it did not have on its own, and changing its peer-to-peer rela-
tionship on the fly.

•  SpotMini1 backs away from the door, giving access to SpotMini2, which 
then turns the door handle, opens the door, and, using its arm, holds the 
door open for SpotMini1 to go through. SpotMini2 then follows, again 
holding the door open for itself, letting the door close gently, and, thus, 
ending the vignette with both robots having left the room.5

We applaud the dexterity of these robots—but we should not read too much 
into their problem-solving abilities in this vignette, given the behind-the-
scenes control by human operators that was almost certainly exercised.

However, had these robots been operating on their own—with no human 
supervision—and, using the working definition of the term presented in the 
previous chapter, acting autonomously, one would certainly ascribe some sort 
of adaptive cognition to them. By this, we mean goal-seeking behavior, which 
adapts as the conditions change, either in the short term in response to a 
changing situation or over the long term with experience and learning. In this 
vignette, SpotMini1, having a goal of leaving the room through the doorway, 
faced with a closed door and being unable to manipulate the handle, engaged 
in a behavior that adapted to the situation—calling upon its colleague Spot-
Mini2, which had the resources to help.

2.2.1 Multiple Cognitive Approaches

Consider now multiple cognitive approaches to solving this type of problem.6 

One of the earliest efforts in this area was the General Problem Solver (GPS) 
paradigm (and program) put forward by Newell and colleagues (1959) and 
later extended by Laird and Rosenbloom with their Soar cognitive model 
(Laird et al. 1993; Laird 2012): a “production rule” framework in which goals 
are achieved by the successive application of IF-THEN statements (produc-
tion rules) to transform a current state or situation into some desired future 
state or goal. In our vignette, a (complex) rule might be IF (you are in the 
room) AND (the door is open) THEN (exit room through the doorway). One 
aspect of these systems is how they handle an impasse—that is, when a goal

5.  Engendering online cries of “robotic Armageddon,” with robots escaping the labs where 
they’re being created and endangering humanity.

6. We will not attempt to describe the potential approaches here, since these and others are 
noted in section 4, and the focus here is about selection and switching among approaches.
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cannot be readily accomplished by the successive application of productions. 
What they do, loosely speaking, is create a subgoal that will support achieve-
ment of the original goal. In our vignette, we can use this approach to reinter-
pret what we saw in our vignette as follows:

•  SpotMini1’s goal is to leave the room through the doorway, which is 
blocked by the closed door. Knowing that one cannot walk through a 
closed door (an impasse), a subgoal of opening the door is generated.

•  However, another impasse is reached because there are no resources in 
SpotMini1’s production rule set to open that door directly. So another 
subgoal is generated: enlist the help of SpotMini2 by establishing a new 
peer-to-peer relationship by “teaming up.”

•  Which then triggers another set of productions and subgoals executed 
by SpotMini2: to open the door, let SpotMini1 out, and follow.

This kind of adaptive cognition formalized in the context of production 
rule systems has its limits, however: if the rules do not encompass potential 
resources or actions that may be available to the AS to accomplish its goal 
(that is, the AS is effectively unaware of them), then an impasse may be 
reached even when the AS may be physically (if not cognitively) capable of 
reaching its goal. For example, to extend the vignette, suppose that SpotMini2’s 
battery died just as it was about to open the door, thus doubly blocking access 
for SpotMini1’s egress from the room. If, at this point, SpotMini1 could 
change the context of the goal-seeking behavior it is engaging in, a simple solu-
tion might be found. For instance, if instead of fixating on its initial goal of 
going through the doorway, it instead generalized the goal to be that of exiting 
the room by any manner (in effect creating a supergoal rather than a subgoal), 
it might then explore other options—for instance, seeing if other doors might 
be open. If successful in achieving this supergoal, it could leave its nonfunc-
tioning teammate behind and leave the room. This type of adaptive cognition 
does not require any change of basic problem-solving technique, but it does 
necessitate a reframing of the problem to change the context—something that 
humans, let alone goal-seeking AI programs, have a hard time doing.7

GPS and Soar are two examples of a cognitive model built on “productions” 

7. For humans, this is exemplified by the cottage industry in the business world focused on 
reframing problems. (See, for example, Wedell-Wedellsborg 2017.) In regard to the goal-seeking 
AI programs, this is one of the main criticisms of early expert system implementations of pro-
duction rule systems: the human designer needs to keep adding rules to account for “off nominal” 
situations that were not considered during the initial design, like battery failures of a teammate. 
(See, for example, Duda and Shortliffe 1983; Bell 1985.) 
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to get us from one problem state to another, based on a few simple but unify-
ing concepts and mechanisms (and many “rules”). At the other end of the 
spectrum lies Minsky’s Society of Mind (SOM) theory of cognition (Minsky 
1986, 1991, 2006), in which the mind is viewed as an interacting society of 
agents, each agent performing some simple and specialized mental function; 
their interactions and resulting “societal” behavior—that is, communicating, 
cooperating, interfering, and so forth are the bases for cognition, in Minsky’s 
view (Minsky 1986, 1991, 2006). This almost ad hoc assembly of different 
agents is justified by Minsky in the following passage:8

Mental activities are not the sorts of unitary or “elementary” phenomenon that can be de-
scribed by a few mathematical operations on logical axioms. Instead, the functions per-
formed by the brain are the products of the work of thousands of different, specialized 
sub-systems, the intricate product of hundreds of millions of years of biological evolution. 
We cannot hope to understand such an organization by emulating the techniques of those 
particle physicists who search for the simplest possible unifying conceptions. Constructing 
a mind is simply a different kind of problem—of how to synthesize organizational systems 
that can support a large enough diversity of different schemes, yet enable them to work to-
gether to exploit one another’s abilities. (Minsky 1991)

The span of SOM behaviors is large, encompassing not just rational goal-
based reasoning (like the door-opening problem above) but also a wide range 
of human mental activities, including perception, language, learning, emo-
tion, consciousness, and goal setting. Moreover, Minsky proposes, for each of 
these mental activities there are likely many different ways of performing them, 
since no one approach is likely to work in all contexts. This notion of adaptive 
cognition, with multiple types of agents available to perform the same mental 
function, across a range of mental functions, is at the heart of SOM. Minsky 
justifies this approach with the following hypothetical discussion among dif-
ferent specialties (Minsky 2006):

•  Mathematician: It is always best to express things with logic.

•  Connectionist: No, logic is far too inflexible to represent commonsense 
knowledge. Instead you ought to use Connectionist Networks.

•  Linguist: No, because Connectionist Nets are even more rigid. They represent 
things in numerical ways that are hard to convert to useful abstractions. 
Instead, why not use everyday language—with its unrivaled expressiveness.

•  Conceptualist: No, language is much too ambiguous. You should use Semantic

8. While the first sentence may appear to be aimed squarely at GPS and Soar, Minsky goes on 
to castigate “pure” connectionists as well—that is, those looking for neural network models of cog-
nition untainted by other methods. His major point is made in the last sentence of this passage.
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   Networks instead—in which ideas get connected by definite concepts!

•  Statistician: Those linkages are too definite and don’t express the uncer-
tainties we face, so you need to use probabilities.

•  Mathematician: All such informal schemes are so unconstrained that 
they can be self-contradictory. Only logic can ensure us against these 
circular inconsistencies.

However, avoiding a cacophony of individual agents (or teams of agents) 
proclaiming a solution to a given problem becomes a central problem for 
SOM. Minsky proposes a variety of approaches, including sensor and suppressor 
agents to squash unproductive approaches based on past experience in similar 
situations, self-reflective agents that terminate bad internal processes (like loop-
ing), specialized experience-based agents that can remember roughly analo-
gous situations—or cases—that can serve as the basis of a close solution in a 
similar situation,9 and mental managers that control how we select specific 
knowledge instances and specific problem-solving techniques (Singh 2003). 
Clearly, a plethora of solution approaches that provide cognitive flexibility 
comes with the mental cost of solving another problem: figuring out how to 
manage and adjudicate across the solution options.10 But if we want that flex-
ibility in our ASs, we need to invest in this aspect of the problem.

Unfortunately, there has been little follow-on work to turn the SOM theory 
into computational models of cognition (like Soar did with GPS), so it is unclear, 
for example, how one might best develop an appropriate computational 
executive “selection” mechanism or intervention by other agents. However, 
IBM’s Watson, developed to address the game of Jeopardy!, provides some 
insight how this might be accomplished in the confines of a “question answering” 
(QA) function. This may, at first blush, sound like a rather narrow application, 
but the team that developed it brought to the problem backgrounds in “natural 
language processing, information retrieval, machine learning, computational 
linguistics, and knowledge representation and reasoning” (Ferrucci et al. 
2010). At the heart of the design is the use of “more than 100 different techniques 
for analyzing natural language, identifying sources, finding and generating 
hypotheses, finding and scoring evidence, and merging and ranking [poten-
tial answers]” (Miner et al. 2012). Final selection of an answer, from among 
those provided by many different experts/specialists, is based on a selector

9. As implemented in an approach called case-based reasoning (Carbonell 1983; Kolodner 
1992, 1993); see also chapter 5.

10. We discuss this further in section 2.3 on multiagent emergence and its relation to con-
sciousness in a SOM context.
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developed via a machine-learning approach (Jacobs et al. 1991) and trained 
over a known set of answers; confidence estimates (in the answer) are also 
generated to support the actual game-playing strategy (e.g., to answer or not). 
Many Watson-based QA applications have been initiated since (Olavsrud 
2014; Keim 2015), with this same multi-expert selector concept for answer 
adjudication.

2.2.2 Learning How to Problem Solve

However, adjudication and switching are not the only problems in managing 
multiple cognitive approaches to knowledge representation and problem solv-
ing. The community now recognizes that, for any given single approach, it is 
unlikely that we will be “hand coding” all the knowledge needed by an AS to 
operate in anything but a toy environment;11 we will need to provide an AS with 
models for learning how to problem solve and improve proficiency over time and 
tasks, operating as a situated agent as discussed in the previous section.12

We discuss learning at greater length in section 2.4 below, but here we wish 
to point out that each knowledge representation approach calls for its own 
learning method. Domingos (2015) makes this quite explicit in his vision of a 
master algorithm, when he, like Minsky above, describes five different “tribes” 
of knowledge representors:

•  Symbolists: symbolic representation, reasoning via deduction, and learning 
via induction

•  Connectionists: artificial neural networks, inferencing via forward prop-
agation, and learning via backpropagation

•  Evolutionaries: genetic/evolutionary algorithms, and learning by selec-
tion for fitness

•  Bayesians: Bayesian belief networks, inferencing by forward propaga-
tion, and learning of network structure/parameters via training

•  Analogizers: case-based (or analogical) reasoning and learning via sup-
port vector machine (SVM) techniques

Each tribe comes with its own way of representing knowledge, making in-
ferences, and learning across experience (or memories of experiences). So, 

11.  For example, in a “Tower of Hanoi” problem solving instance; see Butterfield (2017).
12. And, of course, learning how to solve problems is only one aspect of learning for the 

mind, including learning “percepts” from sensory clusters (Modayil and Kuipers 2008), build-
ing mental models that correspond with events and entities in the outside world (Johnson-
Laird 1983), and so forth.
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with multiple representations comes multiple learning algorithms. Domingos 
(2015) reasons that, because some representational approaches excel over 
others in certain situations (e.g., Bayesians over Symbolists when uncertainty 
is a key feature of the problem set), perhaps some learning approaches excel 
over others in certain situations. He goes further, however, in proposing that 
one might use a single hybridized and structured master algorithm, which 
builds on specific learning methods associated with the five reasoning ap-
proaches cited above, suitable for learning across all specialist reasoners. We 
will not detail the approach here, since it is a conjecture and an active area of 
research; however, it may provide a way forward for an efficient learning algo-
rithm that can support multiple knowledge representation approaches, foun-
dational to cognitive flexibility. 

Finally, we should note that when we look for insight by closely examining 
human inferencing processes and learning across experiences,13 we see many 
issues, especially when humans are faced with judgment and decision making 
under uncertainty. As Tversky and Kahneman discovered and explained over 
a nearly 50-year span of research (Tversky and Kahneman 1973, 1974; Kahneman 
et al. 1982; Kahneman 2011a, 2011b), humans can be notoriously illogical, 
biased, overly influenced by stories rather than data, and overly dependent on 
heuristics as a short-cut to “logical” reasoning of the sort espoused by 
Domingos’s five tribes or Minsky’s five specialists. Kahneman, in more than 
400 pages, describes the many different heuristics that humans use that often 
drive them to “non-rational” choices.14 How those heuristics are learned is an 
entirely different field of study but may be deeply influenced by human desire 
to make sense of the world in a most economical and believable story-like form.

Confidence is a feeling, one determined mostly by the coherence of the story and by the ease 
with which it comes to mind, even when the evidence for the story is sparse and unreliable. 
The bias toward coherence favors overconfidence. An individual who expresses high confi-
dence probably has a good story, which may or may not be true. (Kahneman 2011a)

Creating new stories—and fitting them into the tapestry of earlier ones—may 
be one of our fundamental learning mechanisms as humans, quite different from 
the ones noted above (see, for example, Herman [2013]). This may provide us 
with additional insight into how we model our future learning mechanisms in 
ASs, where storage efficiencies and recall speed could be of the essence.

13. In contrast to when we appeal to “first principles” of knowledge representation and 
inferencing.

14. Kahneman won the Nobel prize in economics in 2002 for having created the field of 
behavioral economics, which models actual human economic behavior more closely than ide-
alized earlier versions (see Kahneman 2011b).



PROPERTIES FOR PROFICIENCY │ 57

2.2.3 Metacognition and Consciousness

We close this section with a very brief foray into metacognition and con-
sciousness, two attributes that may have a potential for improving adaptive 
cognition in ASs.

The term metacognition was introduced by Flavell (1979) to describe 
the act of “thinking about thinking,” specifically one’s own thinking, a 
concept that is probably centuries old, with informal names like reflection, 
introspection, and so forth. Metacognition is modeled with two compo-
nents (Flavell 1979):

•  Metacognitive knowledge (both declarative and procedural) is defined 
as “that segment of your . . . stored world knowledge that has to do with 
people as cognitive creatures and with their diverse cognitive tasks, 
goals, actions, and experiences.”

•  Metacognitive experiences are defined as “any conscious cognitive or affec-
tive experiences that accompany or pertain to any intellectual enterprise.”

According to Flavell, metacognition can occur consciously or uncon-
sciously, but when the experience enters consciousness, it can have an impor-
tant impact on cognitive goals, cognitive actions, and metacognitive knowl-
edge. For example, recognizing that your cognitive actions are getting you 
nowhere in a given task may change your goals (as we ascribed to our robots 
in the opening of this section) or your methods for achieving those goals. It 
may also be saved for future tasks of a similar nature as new metacognitive 
knowledge.

Computational theories and models of metacognition have been in devel-
opment in the AI community since at least the 1950s. As noted in an extensive 
review of metacognition by Cox (2005):

From the very early days of AI, researchers have been concerned with the issues of machine 
self-knowledge and introspective capabilities. Two pioneering researchers, Marvin Minsky 
and John McCarthy, considered these issues and put them to paper in the mid-to-late 1950’s. 
. . . Minsky’s [1968] contention was that for a machine to adequately answer questions 
about the world, including questions about itself in the world, it would have to have an 
executable model of itself. McCarthy [1968] asserted that for a machine to adequately be-
have intelligently it must declaratively represent its knowledge. These two positions have 
had far-reaching impact.

Cox goes on to review more recent efforts in the AI community, covering 
areas like belief introspection (both about the “outside world” and about an 
agent’s internal states), metareasoning (that is, reasoning about the reasoning 
system itself), thinking versus doing via anytime systems (that is, trading off 
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more contemplation of an action/answer vs acting/answering now), and, fi-
nally, functional models of the self ’s mental reasoning processes, particularly 
for model-based reasoning and case-based reasoning approaches (Cox 2005). 
Current trends, as of the time of the publication, are also covered and show 
promise, but as Cox notes:

Thus again I emphasize that metacognition in its many forms has limitations. As noted 
above in the general case metareasoning is intractable. But at the same time, it has the 
potential to provide a level of decision making that can make an intelligent system robust 
and tolerant of errors and of dynamic changing environments. (Cox 2005)

We close with a few comments on consciousness, since it seems to be inex-
tricably intertwined with metacognition, self-awareness, self-reflection, and 
deliberative mental activities in general. For instance, Flavell (1979) claims 
that metacognitive experiences are primarily conscious experiences, and con-
sciousness is required to understand the experience and, from a learning 
point of view, benefit from that experience. Likewise, Cox (2005) points to the 
extensive literature on consciousness in philosophy, cognitive science, and 
the neurosciences (Metzinger and Chalmers 1995), and the beginnings of try-
ing to understand how to provide machine self-awareness and self-reflection, 
via metaphors with human consciousness.

As Evans and Stanovich (2013) point out, there is strong evidence for a 
“dual-process” theory of the mind—commonly referred to as the conscious/
unconscious nature of the mind—in which clusters of attributes are associ-
ated with each process. Those attributes are detailed in table 2.1 below, which 
is a slightly modified version of one presented by Evans and Stanovich (2013). 
It is not our intent to discuss this duality of mind in any detail but simply to 
point out that much of our mental processing occurs under the auspices of the 
Type 1 intuitive/unconscious system.15 This makes many of the “snap deci-
sions” that occur in the (usually) successful pursuit of our daily lives but can 
result in many types of errors and biases—behavior that is well-documented 
by Kahneman (2011a). In contrast, much of our work in cognitive modeling 
and artificial intelligence has focused, since the 1950s, on the activities of the 
Type 2 rational/conscious system,16 presumably because: (a) it is easier to do, 
being founded on “rational” first-principle logic and mathematics; and (b) it 
holds the promise of coming up with the “right” answers in reflective and 
“conscious” decision making (e.g., winning at a series of Go games). However,

15. Although Evans and Stanovich are quick to point out that there may not actually exist 
any systems per se but merely types of processing.

16. See, for example, the links Stanovich (2011) makes between rationality and conscious-
ness and introspection.
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it is worth noting the dichotomy between what seems to drive much of hu-
man “intelligent behavior and common sense” and what the AI community is 
pursuing.

Table 2.1. Clusters of attributes associated with dual-process theories of cognition

Dual-Process Systems Type 1: Intuitive/ 
Unconscious

Type 2: Reflective/ 
Conscious

Key Features
Does not require working 
memory

Requires working memory

Autonomous Uses mental simulation

Typical Correlates

Fast Slow

High capacity Low capacity

Parallel processing Serial processing

Uses implicit knowledge Uses explicit knowledge

Biased responses Unbiased responses

Contextualized Abstracted

Automatic Controlled

Associative Rule-based

Experience-driven decision 
making

Algorithmically driven 
decision making

Independent of cognitive 
ability

Dependent on cognitive 
ability

Deals with simple emotions Deals with complex  
emotions

Evolutionary History Evolved early Evolved late

Building on this apparent duality of mind, Sloman (2001) introduced a 
three-level model,17 in which, starting from the bottom, a reactive “A-Brain” 
interacts with the external world (for example, in traditional stimulus/ 
response fashion). Above that, a deliberative “B-Brain” introduces conscious-
ness of what is happening with the A-Brain activities and engages in more 
“thoughtful” activities (for example, solving calculus problems). Finally, 
above that, a reflective “C-Brain” provides the introspection needed to im-
prove on B-Brain performance (for example, learning from B-Brain errors in 
inferencing). This layered view was compared with others in a review by McCarthy 
et al. (2002) and extended by Singh (2005) in an architecture including five 

17. The A-, B-, and C-Brain nomenclature used here follows the terminology provided by 
Minsky (2006) in his description of the same model.
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layers: reactive, deliberative, reflective, self-reflective, and self-conscious, with 
methods for “activating” and “deactivating” each layer. These early modeling 
efforts have spawned many others and resulted in two broad reviews of the 
area of “artificial consciousness” conducted over the last decade: one by Chella 
and Manzotti (2007) and one by Reggia (2013), covering a growing community 
working in this area. These efforts have served as a means to understand 
human consciousness (for example, Gelepithis 2014; Sloman and Chrisley 
2003), and to provide machine intelligence with greater self-awareness (for 
example, Brown 1995; McCarthy and Chaudhri 2004; Hesslow and Jirenhed 
2007; Haikonen 2013; da Silva Simoes et al. 2017; Sanz et al. 2007), as has 
been our focus here.

We conclude our brief comments on metacognition and consciousness by 
noting that, for our purposes of developing resourceful and adaptive ASs, the 
term artificial consciousness may be far too loaded, given that human con-
sciousness covers a broad span of activities, mental states, and philosophies, 
including a “sense of self,” “free will,” and illusions of same (Dennett 1991, 
2017). However, we do believe that some form of metacognition, perhaps 
implemented in a layered architecture that supports self-reflection, will be 
necessary for adaptive cognition in future cognitively resourceful ASs.18

To conclude this section, we believe that we need to address the question 
posed by Hernandez (2017): Can robots learn to improvise? We believe they 
need to, by embracing cognitive flexibility in addressing a problem; bringing 
to bear different cognitive approaches, learning new ones and improving on 
old ones; and using metacognition for self-reflective improvement. Different 
cognitive approaches can range from simply reframing a task’s intent or goal 
to bringing to bear multiple, simultaneous cognitive techniques and adjudi-
cating among multiple candidate solutions that differently account for the 
situation, the need to trade optimality for timeliness, and a number of other 
contextual factors. Learning can range from acquiring new heuristics to hon-
ing existing skills to learning entirely new techniques for problem solving. 
Finally, metacognition can range from simple postmortem reviews of what 
went wrong (or right) to elaborate self-reflection on how to improve on fram-
ing a problem, goal setting, decision making, and task execution monitoring.

18. We discuss some of these issues in other sections, including in section 3.2, where we 
note that situation awareness pertains to awareness of the external world and the internal world 
of the AS. In section 5, we describe several different modes of thinking about the problem, 
from low-level rules to high-level reasoning and planning—depending on the difficulty of the 
problem—and the need for flexibility in dealing with unexpected situations.
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2.3 Multiagent Emergence

The ability to reduce everything to simple fundamental laws does not 
imply the ability to start from those laws and reconstruct the universe. . . . 
At each level of complexity entirely new properties appear. Psychology is 
not applied biology, nor is biology applied chemistry. We can now see 
that the whole becomes not merely more, but very different from the 
sum of its parts.

— Philip W. Anderson

Anderson writes about how the “laws” of science that we have identified 
tend toward a reductionist view and do not equate to a constructivist ap-
proach (P. Anderson 1972). These laws do not inform us about what happens 
as the number of entities or agents increases and they interact with each other. 
From an observer’s perspective, complex systems and patterns will arise out 
of multiple and relatively simple interactions among entities in a system. The 
externally observed behavior of the multiple entities is an emergent behavior 
or emergent property.

Note that emergent is not resultant (Mill 1843)—composites are not mere 
aggregates of the simples. This captures that emergence is not simply laws of 
how single entities interact but concerns itself with the definition of the single 
entities and their interactions manifesting in an unexpected outcome.

Emergence has been a topic of research in multiple fields including psy-
chology (P. Anderson 1972), biology (Braitenberg 1984), philosophy (Bedau 
and Humphreys 2008), and computing (Woolridge 2009; Brooks 1986). It is 
the discussions and developments in philosophy and computing that we fo-
cus on here, since they are most relevant to the topic of autonomy and inter-
acting autonomous agents.

2.3.1 Emergence within ASs: Consciousness

The previous section discussed metacognition and consciousness from a 
perspective of relatively recent work on “intuitive” and “reflective” mental 
processes. But there exists a longer history—starting in the 1800s—in the phi-
losophy of the mind discourse, centered on emergentism, which seeks com-
patibility with physicalism while also being nonreductive and a means for 
discussing the underpinnings of qualia (Korf 2014). The connection here is 
that the qualia—subjective nonphysical qualities experienced by an individual 
via stimuli—are the core of consciousness (Cowell 2001) and may originate in 
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an emergent system. This places emergentism in the middle ground between 
these two camps on the road to explaining and, for our purposes developing, 
consciousness in ASs.19

There are three concepts that are prevalent in the discussion of emergent 
intelligence. They are supervenience, downward causation, and reductionism.

Broadly, supervenience is a relation between upper-level properties being 
determined by their lower-level properties. In emergentism, this appears in 
the argument that mental states can occur only in states that have physical 
properties (Humphreys 1997) and is the property that connects emergence 
with physicalism. Formal definitions of supervenience tend to reject reduc-
tionism, or the ability to describe the behavior of the collective whole from 
the sum of its parts.

Downward causation is the connection between macro causation and mi-
cro causation (Bedau 2008). For example, we may describe an agent in emer-
gent terms—it is afraid of the light—and then note the micro causations: that 
because it is afraid, the way that the effectors are adjusted results in the agent 
going to the same location each time the light appears. The macro cause is 
also responsible for the micro piece. This argument combats the physical de-
terminism argument that for every physical event y, some physical event x is 
causally sufficient for y (Humphreys 1997).

The terms weak and strong emergence are common in the discussion of 
downward causation and directly relate to the third concept of emergent in-
telligence: reductionism. Weak emergence is when the agent is reactive rather 
than proactive. In weak emergence, there is a potential to derive knowledge of 
the macro behavior (anticipate what the emergence behavior will be) from 
the system’s microdynamics and external conditions. But when we observe 
the interactions of the microstates, we still witness unexpected phenomena 
(Bedau 1997; Chalmers 1996). In the case of weak emergence, a reductionism 
that explores the micro causations and connections to the macro causations 
can yield some insights (Silberstein and McGeever 1999). Strong emergence 
applies when the behavior observed is not deducible from the component 
truths (Chalmers 1996). Reductionism fully breaks down in the face of strong 
emergence that is irreducible (O’Connor 1994). Strong emergence is associ-
ated with higher-level cognition.

In addition to the argument that all emergence is weak and reducible, another 
argument against emergentism is the causal exclusion argument (Kim 2006); 

19.  We describe qualia as the “vocabulary of consciousness” at greater length in appendix 
F.1.3, where we outline a challenge problem focused on developing a conscious computing 
framework for advanced-and-aware autonomous agents.
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a detailed discussion and responses surrounding this complex argument is 
found in Wong (2010).

Because consciousness is an emergent property of the brain (Bedau and 
Humphreys 2008), and because we know that consciousness is critical to hu-
man rationality and metacognition (as discussed in the previous section), it 
would seem that investments in understanding emergence could significantly 
benefit the development of cognitively resourceful ASs.

2.3.2 Emergence across ASs

One of the most common examples of emergence in nature is the flying-
wedge behavior exhibited by flocking birds. This begins when a bird flaps its 
wings downward, so that as it pushes air downward, it creates a low-pressure 
region above one of higher pressure (due to the added air). This pressure dif-
ference produces a small updraft that a bird that is trailing and to the side can 
use to lift its own wing, thus saving some energy. In addition, if birds prefer 
seeing the horizon ahead of them, instead of another bird, then they will seek 
out locations that both save energy and provide an unobstructed view. When 
all birds have these motivations, the group self-organizes into a flying wedge.

The flying-wedge emergent behavior has been demonstrated in robotics 
(Mataric 1995; Balch and Arkin 1998; Fredslund and Mataric 2002; Spears et 
al. 2004). The manner of developing the agents tends to focus on four primary 
rules that the robots use to generate their next motor command. They are:

•  Homing: navigate to a specific place

•  Dispersion: maintain distance to avoid conflicts

•  Aggregation/Attraction: stay together to make a group

•  Self-wandering: avoid collisions with obstacles

From these four simple rules, swarming, flocking, and formation traversals 
have all been demonstrated. The resultant system is robust to changes in terms 
of the number of available robots, failing robots, and environmental changes 
in terms of obstacles (Mataric 1997). In addition, this is all achieved through 
the emergence of collective, without having explicitly accounted for all of the 
environmental dynamics when developing the individuals. These advantages 
have motivated many of the recent investments in unmanned swarming sys-
tems in the air, on the ground, and on the water by the military services and 
the Defense Advanced Research Projects Agency (DARPA), and development 
and experimentation continue (Pomerleau 2015).
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The flocking example covers a number of the points just presented. First, 
the observer is a requirement to describe the emerged behavior (the flying 
wedge). Second, we define the component, the bird/robot, in terms of its mi-
cro causalities (distances to goal, neighbors, and obstacles), and that the inter-
actions between the components result in the macro causality.

However, we should not be misled into assuming that the components 
must be homogeneous. Robot and agent development in behavior-based ro-
botics (Brooks 1986) explores the philosophical discussion of how emergence 
can lead to intelligence. Braitenberg, a biologist, refers to emergence with the 
following: “Get used to a way of thinking in which the hardware of the realiza-
tion of an idea is much less important than the idea itself ” (Braitenberg 1984). 
In essence, the macro observed behavior supersedes the micro.

The example we will use is Vehicle #3, “Love,” from Braitenberg’s study 
entitled Vehicles: Experiments in Synthetic Psychology, in which he uses sim-
ple connections between light sensors and motor actuators to discuss how the 
micro engineering we do results in emerged macro behaviors. In the case of 
Love, left and right light sensors are connected to left and right motor actua-
tors, respectively. The connection allows for excitation and inhibition. The 
motors receive an excitation signal when the light is far away and an inhibi-
tion signal when the light approaches an ideal distance for Love to charge its 
batteries. The robot will be observed to move toward the light, approach it, 
and then stop. If the light moves, the robot will follow it. The observed behav-
ior is that the robot loves the light (fig. 2.2).

Note that when we talked about the design of the swarm bird/robot above, 
we leveraged Love: the robots were both attracted to and repelled by their 
friends. In designing swarm robots, behavior-based robots and the emer-
gence in the individual are commonly used as a layer in the larger collective 
emergence (Brambilla et al. 2013). The layering of emergence that results in 
ever-more capable behaviors is pervasive in the philosophical literature.20

The first demonstration of emergence in a robot with a behavior-based sys-
tem is Brooks’ subsumption architecture (Brooks 1986), which tightly couples 
sensory information to action selection in a bottom-up layered fashion. These 
systems incorporate several sub-behaviors that are small and simple to imple-
ment. An example behavior is “avoid an obstacle”: when an obstacle is sensed, 
the behavior component outputs an action command that ensures the robot 
does not move closer to it. Other behaviors include wander, explore the world, 

 

20. As it is in the layered cognitive architectures we discussed in the previous section, going 
from a two-layered structure of unconscious/conscious to a five- or six-layered one, including 
deep self-reflection and metacognition. 
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Figure 2.2. Braitenberg’s vehicle “Love”

or find the charging station. Each behavior examines the current sensory in-
formation and makes an action choice. The final action choice emerges from 
the inhibition and subsumption structure in the layers. The inhibition and 
subsumption layers allow the robot to balance goal-seeking behaviors with 
critical safety behaviors. For example, the robot avoids (avoid obstacle) the 
person walking down the hall on the way to the mailroom (go to location). 
The iRobot Roomba uses a subsumption architecture consisting of more than 
60 behaviors (Cagnon 2014).

There have been several behavior-based systems developed. They all lever-
age emergence, combining multiple simple behaviors to result in a complex 
macro behavior (Arkin 1998). Common to all of the systems are robots that 
are situated, embodied, and emergent. By leveraging the combination of be-
haviors and focusing more on the protocol interconnection and letting the 
“world be its own best model” (Brooks 1986), they are able to act in situations 
the designer may have not had the forethought to explicitly program them to 
address (Woolley 2009). This is in direct contrast to “model-based approaches” 
that are predicated on developing an internal mental model of the external 
world, “solving” for a goal-seeking behavior against the mental model, and 
then acting out the solution against the “real world”; see for example Johnson-
Laird (1983) and Gentner and Stevens (1983).
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We believe that further research into emergence across ASs is called for, for 
two major reasons. First, the assemblage of multiple simple agents or compo-
nents has the potential for dealing with larger, more complex, and/or unan-
ticipated problems than originally envisioned by the designers working on 
the individual agent designs. This creates an interesting situation where many 
simple systems working together with emergent behaviors can achieve more 
than one massively engineered system. Second, because it is unlikely that 
there will be a single “designer” in charge of an assemblage of heterogeneous 
friendly ASs (say, converging in an operation involving the separate services)—
even without considering additional interacting humans and adversary systems—
the potential for the emergence of unanticipated outcomes is multiplied far 
beyond what we might expect with a homogeneous set of ASs under our “con-
trol.” As the DOD Office of Net Assessment (ONA) has recognized,

The prospect of unintended interactions among intelligent machines, and between intelli-
gent machines and humans, is one of the largest risks associated with AI in the years ahead. 
This risk can be manifested in almost countless ways—which is exactly the problem. (DOD 
ONA 2016)

Significant additional research will need to be conducted to address this 
potential explosion of possible emergent outcomes to, in some way, bound 
the outcome space, especially in the face of adversary actions deliberately 
aimed at degrading the performance of our AS teams.

2.3.3 Design for Emergence

The key to designing emergent systems is considering how the entities in-
teract, not just in terms of the internals of the entity and how it interacts with 
the fixed environment (Mitchell 2006). Some of the characteristics are a de-
centralization of control, component connectivity, environmental dynamism, 
redundancy, coherence, and diversity. Consistent across the literature is that 
the development of emergent systems focuses on two primary concerns: the 
relationships between the entities and the shared rules and utilities that guide 
the resultant emergent system toward the designer’s goal.

Couture adds to these two concerns a third: the number of items (Couture 
2007). Mitchell considers it from a networking perspective and as four prin-
ciples of the emergent systems, as follows (Mitchell 2006):

1.  Global information is encoded as statistics and dynamics of patterns 
over the system’s components

2. Randomness and probabilities are essential

3. The system carries out a fine-grained, parallel search of possibilities
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4.  The system exhibits a continual interplay of bottom-up and top-down 
processes

Mitchell also notes that complexity and emergence rarely depend on the 
number of entities and how intricate they are—but rather more on their inter-
action protocols (Mitchell 2006). The four principles are also useful for con-
sidering the application of emergent systems to optimization problems.

Emergent agents have been developed to aid in the design of complex sys-
tems because their flexibility and scalability allow for expansion and contrac-
tion of the systemic environments, such as smart cities (Patrascu et al. 2014; 
Ishtiaq 2012) and aircraft (Balestrini-Robinson et al. 2009).

The most complicated design decision is in the social rules: What local 
utilities—those objectives/goals that an individual entity seeks to achieve—
do we create to enable the emergence of an entity-wide behavior that achieves 
the large-scale goal that we are after? Not surprisingly, this is an open research 
question (Chatty et al. 2013). Said another way, “The problem is to determine 
the individual agents’ local utilities and the strategies that they use to select 
actions that maximize their utilities in such a way that the overall system util-
ity is maximized” (Kroo 2004). The identification of the utilities and rules is 
most often accomplished in a trial-and-error fashion, via simulation (Os-
mundson et al. 2008; Balestrini-Robinson et al. 2009).

One conceptual hurdle that designers must overcome, which is often quite 
hard, is to keep the entities themselves behaviorally simple and let the emer-
gence happen by appropriate design of the interactions available. In teaching 
students about developing emergent systems, many of the assignments are 
about moving from sequential control toward more parallel and emergent 
controls (Horswill 2000; Ziegler et al. 2017). This is done by providing means 
to quickly experiment with multiple interaction strategies and providing tools 
that do provide some reducibility to aid in debugging when the global emer-
gent property is not as intended.

Finally, we should note that not all emergent behavior needs to be “de-
signed in” from the beginning. If we provide a capability of experiential learn-
ing at the individual agent level, then new behaviors can be acquired, which, 
in turn, can lead to desired systemic behaviors over time. We discuss this 
further in the next section on learning.

2.3.4 Evaluation of Emergence

The formalization of an emergence test is the Design, Observation, and 
Surprise test (Ronald et al. 2007). In this test, the designer first describes the 
local elementary interactions in a language L1. The observer is aware of the 
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design but describes global behaviors of the running system using a different 
language L2. Because the design language L1 and the observation language L2 
are distinct and the causal link between the elementary interaction in L1 and 
the behaviors observed in L2 is “non-obvious” to the observer, the observer 
experiences surprise because of the cognitive dissonance between the observ-
er’s mental image of the individual’s design and his observations of group 
behaviors. The test has been used to evaluate both the flocking and Braiten-
berg’s Love vehicle as exhibiting emergence.

A demonstration of an implementation of the test in an air combat system 
appears in Mittal et al. (2013). They specifically developed their environment 
abstraction to be able to detect emergence that is only at a level above the local 
interacting agents situated in their environment.

Other research topics related to emergentism and emergent systems are 
complexity theory, complex adaptive systems, and chaotic systems. An ex-
ample relationship is that a hallmark of a chaotic system is sensitive depen-
dence upon initial conditions whereby two initial states infinitesimally close 
can result in very different evolved states later in time. We can see the same 
divergence in multiagent systems and the performance of those agents when 
implemented with a behavior-based system (Islam and Murase 2005).

2.3.5 Implications of Multiagent Emergence

In addition to consciousness being an emergent system, humans them-
selves in social conditions—and in interactions with objects21—exhibit emer-
gent behaviors. In particular, research and development is an emergent 
knowledge process: problem interpretations, deliberations, and actions un-
fold unpredictably, over time and society, in a uniquely human-driven way 
(Markus et al. 2002). Human society and organizations have also been shown 
to repeat emergent patterns throughout history (Read 2002). The question 
naturally arises: can we better develop artificial intelligence as an emergent 
property of several agents interacting, along, say, the lines espoused by Min-
sky (1986)? As noted by Pfeifer and Bongard,

Embodied artificial intelligence is closely connected to the philosophy of embodied cognition 
which postulates that intelligence is not a discrete, centralized property that exists within an agent, 
but instead is an emergent property of an inherently distributed system that possesses many 
loosely coupled, system-wide processes. (Pfeifer and Bongard 2007)

In discussing emergence, it is important to temper the idea that more of the 
same will lead to consciousness. This is because each computational approach 

21. Emergent behavior can be quite complex when a user adapts a product to support tasks 
that designers never intended for the product (Johnson 2016). 
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is within a supervenience level. What this means, for example, is that ever 
deeper deep-learning neural networks of the same layer types will not lead to 
consciousness or a cognitively flexible AS. This is illustrated in behavior-
based robotics: when used in conjunction with other components (such as 
planners, sequencers, coordination mechanisms), the result is more capable 
AS behaviors (Gat 1998; McGinn et al. 2015).

The examples we have for robotics (Gat 1998) and the considerations of 
embodied intelligence (Pfeifer and Bongard 2007) underscore that we should 
explore how emergence occurs in multiagent systems. Emergence also plays a 
role in other artificial intelligence research areas. In machine learning, en-
semble methods are individually trained statistical machine-learning algo-
rithms that, when combined, perform better than the individuals (Optiz and 
Maclin 1999). These ensemble methods also appear in planning (Helmert et al. 
2011), constraint satisfaction (Xu et al. 2011), and in IBM’s Watson (Ferrucci et 
al. 2010), where multiple solvers are combined into what are commonly 
termed portfolio-based systems. The combined strength of the portfolio en-
ables them to solve problems that are more complex than addressable by a 
single approach. An interconnection issue these portfolio systems must ad-
dress is load balancing and tuning of parameters in terms of which algorithm 
gets compute resources and when. This problem is related to the utility as-
signment problem discussed earlier.

Another example of supervenience is the collective migration problem: 
how the destination-setting behavior comes from emergence of leaders in a 
collective. In a flock, the migratory behavior is often led by a small group 
(Guttal and Couzin 2010). To develop ASs with emergent properties, we must 
explore how to achieve strong emergence over the weak emergence that is 
demonstrated with simple swarming behaviors (Pais 2012).

In closing, we note that emergence can lead to an AS (or systems) that exhib-
its all three behavioral flexibilities. For example, peer flexibility could arise with 
a change in multiagent swarm leadership as conditions change (Pais 2012). Task 
flexibility appears in autonomous robot systems (Gat 1998). Finally, cognitive 
flexibility arises directly from the structure and behavior of portfolio-based 
GPSs (Optiz and Maclin 1999; Helmert et al. 2011; Xu et al. 2011).

2.4 Experiential Learning

Learning in humans refers to a relatively permanent change in behavior 
due to experience and not due to fatigue nor maturation. As we touched on 
briefly in section 2.2 in our discussion of adaptive cognition, the cognitive 
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process guides acquisition and adaptation of knowledge and understanding. 
Learning and the development of real-world expertise involves a shift in cog-
nitive processing from an initial blend of analytical cognition (conscious de-
liberation) and intuitive cognition (unconscious situational pattern recogni-
tion) to a blend that emphasizes more intuitive cognition as expertise 
progresses (Reyna and Lloyd 2006; Reyna et al. 2014). Thus, as expertise de-
velops, human cognition becomes more unconscious. This shift in cognitive 
processing toward intuitive cognition is driven by the accumulation of situa-
tional patterns whose structure and meaning have been implicitly encoded 
over time as an individual engages with, and navigates, his/her domain of 
expertise (Klein 1997, 1998, 2008).

In nature, knowledge is created in only one of three ways. Knowledge is 
created via evolution where species capture knowledge and pass it to their 
progeny. Knowledge is also created by experience. An agent that learns cap-
tures experiences and subsequently uses that knowledge to respond appropri-
ately to a stimulus. In nature, knowledge can also be created by culture: e.g., 
agents use communication to pass knowledge to each other. Each source of 
knowledge creation is an order of magnitude faster than the prior one (Do-
mingos 2015). It is conjectured that in the future machines will create most of 
the new knowledge on Earth:

[N]ow or in the near future most of the knowledge in the world will be extracted by ma-
chine and reside in machines. It’s inevitable. An entire industry is building itself around 
this, and a new academic discipline is emerging. (Zajac 2014)

The encoding of knowledge in an AS enables it to generate meaning and 
understanding. The meaning of an object or event would be its interpretation 
by an agent as a sign denoting some other object or event. For example, the 
meaning of a traffic jam during a morning commute could be its interpreta-
tion by the traveler as a sign denoting that he or she will be late for work (Pat-
terson and Eggleston 2017). Understanding refers to the capability and 
knowledge, based on meaning making, to assess a given situation to accom-
plish a task. In an ANN, that meaning can be taken to be the activation of the 
“neurons,” and understanding would be how those activations are used to 
accomplish some task, like identifying an object. However, artificial meaning 
making in any kind of machine is thought to require, at a minimum, the 
grounding of the internal symbol system to objects and events in the outside 
real world (Harnad 1990).

Machines create knowledge faster even than culture, nature’s fastest solu-
tion to knowledge generation (LeCun 2016). The development of a means to 
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refine machine-generated knowledge to achieve understanding and improve 
the ability to accomplish complex tasks is a key remaining challenge.

ASs create knowledge through ML where the learning portion of ML con-
sists of two components: representation and search (Russel and Norvig 2010). 
Both representation and search are system design considerations left to the 
designer to define. Representation has embedded in it a fixed model and a 
fixed approach to search. These have as consequence a fixed representation. 
For example, the designer could choose an ANN as the model (LeCun et al. 
2015), where the designer encodes knowledge using that model’s representa-
tion language, for example, the values of the interconnection weights, the 
connections themselves, and the mechanism to present the stimuli and feed 
those stimuli through the network. The designer uses search to encode the 
knowledge via learning the weights that enable the system to do a specific task 
more proficiently over time. For example, in an ANN, the designer can use 
Gradient Descent by way of the backpropagation training algorithm (Werbos 
1974) or a stochastic search, such as Generalized Simulated Annealing (GSA)  
(Fletcher 2016) to update the weights in a regression or classification task. 
Once the model is selected and the learning has occurred (or is allowed to 
continue learning during use), the learned knowledge can be used to perform 
the task for which training was originally provided.

ML can be parsed in a fashion similar to nature’s knowledge acquisition 
alternatives: evolutionarily, experientially, or culturally. In an evolutionary ap-
proach, machine knowledge can be embedded into the machine, based on 
what the designer knows when creating the machine. In this case, the human 
designer provides the machine with all the wired-in knowledge that the de-
signer thinks those machines need to function acceptably. This off-line pre-
programmed approach has dominated ML research and fielding (Winston 
1992; Vapnik 1998; Russel and Norvig 2010). With an experiential approach, 
machines capture knowledge by having been programmed to learn during 
use. A recent spectacular success in this type of (reinforcement) learning is 
the Google Deep Mind AlphaGo system that defeated a human, world cham-
pion Go player (Silver et al. 2016). This on-line approach relies on machines 
that interact with their environment, using those interactions and experi-
ences to change their stored knowledge. Lastly, with a cultural approach, ma-
chines can provide knowledge to each other or from human teammates if 
they are designed to accept those sources of new knowledge after fielding. 
Exciting research vectors attempting to reduce the impedance between ma-
chines and humans exist and could facilitate human-machine teaming (dis-
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cussed further in section 3.4), to include capabilities like zero-shot and one-
shot learning (Russel and Norvig 2010).

ML is one of the disciplines in the field of AI,22 and we discuss much of the 
history of AI later in section 4.3. However, it is worth pointing out here that 
there is a rich history in the development of AI-based systems, closely driven 
by ML, and which can be described in a series of waves: describe, classify, and 
explain as illustrated in figure 2.3 (Launchbury 2016).

DESCRIBE

Handcrafted knowledge Statistical learning Contextual adaptation

CLASSIFY EXPLAIN

Engineers create sets of rules
to represent knowledge in
well-defined domains

Enables reasoning over
narrowly defined problems

No learning capability
and poor handling of
uncertainty

Engineers create statistical
models for specific problem
domains and train them on
big data

Nuanced classification and
prediction capabilities

No contextual capability and
minimal reasoning ability

Engineers create systems that
construct explanatory
models for classes of
real world phenomena

Natural communication among
machines and people

Systems learn and reason as
they encounter new tasks
and situations

Figure 2.3. Waves of artificial intelligence. (Launchbury 2016)

The first wave of AI (“describe”) was characterized by humans handcrafting 
the knowledge that was put into machines (Winston 1992). Expert systems 
epitomize this wave; an example is given in figure 2.4. Engineers create sets of 
rules (based on what a domain expert tells them) to represent knowledge, and 
these systems function acceptably in well-defined applications for precisely 
defined problems. Traditionally, they have been costly to build and have exhibited 
little flexibility to a changing environment and are thus brittle since they are 
poor at handling situations that were not anticipated in the original design 
(Winston 1992). To “learn” from new situations, the developers themselves 
adapt the AI system to performance shortcomings by adjusting or extending 
the machine’s knowledge base; there is no ML, so that performance improve-
ment is limited by the learning/adaptation effort expended by the developer.  

22. Which can be generally described as the field of computer science concerned with try-
ing to get computers to “behave” like humans, in terms of perception, comprehension, decision 
making, and action.
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Figure 2.4. Expert Systems TurboTax®, an example of the first wave of AI. 
(Winston 1992)

The second wave of AI (“classify”) is taking place now and is dominated by 
statistical, analogical, evolutionary, and neural-inspired ML approaches (Vap-
nik 1998; Fogel 2002; Russell and Norvig 2010; Keller et al. 2016). For exam-
ple, statistical approaches have brought great value in recommender systems 
in extraction of patterns of life in real-world data (Liao et al. 2015). Analogi-
cal approaches include SVMs and have been popular because of their ability 
to learn using a small number of examples (Vapnik 1998); early spam filters 
and recommender systems are typical applications. Evolutionary approaches 
leverage knowledge of how nature adapts to changing environmental pres-
sures evolving life to fill niches of opportunity; they have brought value to 
many areas including new drug development (Ecemis et al. 2008). Neural-
inspired approaches, particularly deep-learning neural networks, have pro-
vided the most recent breakthroughs and are currently dominating second 
wave AI (LeCun et al. 2015); see figure 2.5.

Systems in this second wave of AI are at the core of most of the recent in-
novations in speech processing, image processing, speech translation, and the 
sensory processing at the core of autonomous vehicles (LeCun et al. 2015). As 
impressive as the second wave solutions are on average, individually they are 
often unreliable or unacceptable, since the knowledge generated by these sys-
tems is not readily aligned with human knowledge on related tasks. This is an 
inherent flaw in designing systems that generate knowledge driven by an ob-
jective function (such as minimizing the mean squared error), versus under-
standing a task from the perspective of the human. For example, image clas-
sifiers can be easily fooled into misclassifying an object with the addition of 
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appropriate classes of noise, whereas a human seeing the same noisy image is 
not fooled (Amodei et al. 2016; Tran 2016; Savage 2016).

Figure 2.5. Example of second wave of AI: deep learning. (Tran 2016)

Systems in this second wave of AI are at the core of most of the recent in-
novations in speech processing, image processing, speech translation, and the 
sensory processing at the core of autonomous vehicles (LeCun et al. 2015). As 
impressive as the second wave solutions are on average, individually they are 
often unreliable or unacceptable, since the knowledge generated by these sys-
tems is not readily aligned with human knowledge on related tasks. This is an 
inherent flaw in designing systems that generate knowledge driven by an ob-
jective function (such as minimizing the mean squared error), versus under-
standing a task from the perspective of the human. For example, image clas-
sifiers can be easily fooled into misclassifying an object with the addition of 
appropriate classes of noise, whereas a human seeing the same noisy image is 
not fooled (Amodei et al. 2016; Tran 2016; Savage 2016).

Many in the AI community believe that these (and other) shortcomings 
will be overcome with a third wave of AI (“explain”) characterized by ma-
chines that not only learn over time but that are also more compatible as 
teammates with humans (Launchbury 2016). They will be able to learn and 
reason as they encounter new tasks, including tasks with few examples, in 
situations they were not programmed to address. They will also be able to 
generate knowledge that includes explanatory models (i.e., be able to explain, 
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to a human, the basis of their reasoning) and more natural forms of human-
machine communications for real-world applications; see, for example, figure 
2.6. We discuss these issues further in section 3.3 and 3.4.

Figure 2.6. The need for explainable AI. (Gunning 2016)

The general principles that will guide the third wave have yet to be identi-
fied. Some believe it may be a hybrid of the first two, that is, the more tradi-
tional semantically based and logically driven “descriptive” wave and the cur-
rent statistical and neural-inspired “classification” wave (Launchbury 2016). 
To develop such systems, the issue of meaning making within a common 
frame and context, by both human and machine, must be solved.

The discussion to this point has focused on single ASs or agents. There is a 
school of thought that another “wave” could best be based on multiagent sys-
tems (MAS) (Balestrini-Robinson et al. 2009) that are coupled together and 
that interact for the completion of far more complicated tasks (as discussed 
earlier in section 2.3). The idea is that if appropriately constructed, such sys-
tems can overcome the limitations of an individual agent’s limited knowledge 
base and/or capacity for reasoning. MAS also offers some protection from 
failure because there is more than one agent working to complete a task or set 
of tasks.
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One of the complicating issues that arises, however, is in MAS learning 
(Panait and Luke 2005). For MAS success, each agent has to account for the 
agency of the other agents as they form competitive-cooperative teams—self-
driving cars that not only have to deal with the relatively fixed road environ-
ment but also with the agency of the other vehicles in the environment, both 
self-driving and manually driven; personal AI assistants that have to interact 
with the world on behalf of their humans; or swarms of UAVs that must coor-
dinate and negotiate and learn—to be effective as a team. As discussed earlier, 
the cultural approach to learning, that is, transmitting learned knowledge 
from one agent to another, suggests that learning in a MAS environment 
could be major step toward advancing the development of AI. This assumes, 
of course, not only compatible agent-to-agent communications channels but 
also common representational frameworks for expressing and transmitting 
learned knowledge. Another issue concerns the limited “field of view” of any 
one agent in a MAS: each agent only observes a portion of the environment. 
The observations may overlap or may be mutually exclusive, and as such, the 
learning problem is partially observable. The implication is that conventional 
learning approaches that assume stationarity are no longer valid; the MAS is 
unable to integrate the partially learned models of the individual agents into 
a cohesive whole. New approaches to learning that address the stability of 
representation and the globalization of individually learned knowledge are 
required if we are to identify the principles that will guide the theory and 
practice of MAS learning.

It is our belief that the discovery of the principles and practices of the third 
wave of AI and MAS learning is likely to occur through the convergence of 
several communities: robotics and cybernetics, hard AI and soft AI, and cog-
nitive psychology and neurosciences. The convergence of these communities 
may result in a common understanding of how to either develop new ASs or 
understand the behaviors of existing ones, via frameworks, architectures, 
computational models, and simulations. This is discussed at greater length in 
chapter 4.



Chapter 3

Tenets of Trust

Chapter 2 has just described the necessary properties for proficiency needed 
in autonomous systems, but, based on our considerable experience with sim-
pler automated systems, simple proficiency will not be sufficient for system ac-
ceptance and wide-scale usage within the DOD without human user trust in 
these systems (Kirlik 1993; Muir 1994; Dzindolet et al. 2001; Lee and See 
2004). Accordingly, this chapter examines tenets of trust that will contribute 
to user acceptance of, and reliance on, future ASs.

Many commercial AS applications take place in relatively benign environ-
ments where the system accomplishes well-understood, safe, and repetitive 
tasks, as illustrated in figure 3.1a. Not only does this set a relatively low bar for 
performance and therefore a relatively low expected failure rate in the system’s 
mission/tasking, but also, even if the system does fail, the consequences of 
failure are low (e.g., a pallet may fall off an autonomous forklift). A low failure 
rate and a low cost of failure naturally lead to a low expected utility (loss) 
function. In contrast, many DOD missions and tasks (such as illustrated in 
fig. 3.1b) occur in dynamic, uncertain, complex, and contested environments—
setting a relatively high bar for performance of both humans and ASs—and 
with potential life-and-death consequences. In other words, the expected 
utility (loss) function is high, and a decision by an AS could lead to high-regret 
actions. As a consequence, trust will become central to any future employ-
ment of an AS by the DOD.

Figure 3.1. (a) Benign commercial environment; (b) adversarial defense environ-
ment

We can gain insight into key trust issues in dealing with ASs by recognizing 
that trust is a fundamental social psychology concept and is a critical factor in 
a number of areas outside of autonomy, including interpersonal relationships, 
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economic exchanges (among firms, customers, management, and staff), 
organizational productivity, cross-disciplinary and cross-cultural collaboration, 
and electronically mediated transactions (Lee and See 2004). Moorman et al. 
(1993) note that the importance of trust will grow with environmental uncer-
tainty, task flexibility, and team structures as organizations move away from 
hierarchical structures.

There are many different definitions of trust, but one that is widely cited is 
willingness of a party to be vulnerable to the action of another party based on the expecta-
tion that the other will perform a particular action important to the trustor, irrespective 
of the ability to monitor or control that party. (emphasis added) (Mayer et al. 1995)

The emphasized portion of the quote is particularly relevant given our focus 
on ASs.

Hoff and Bashir (2015) suggest three different types of trust, namely: dis-
positional trust, situational trust, and learned trust. Hergeth (2016) showed 
that trust in automation can sometimes be assessed via eye movements and 
gaze behavior (e.g., frequency of monitoring the automation). Interestingly, 
in a brain imaging study, Adolphs (2002) obtained results that suggested 
judgments about trustworthiness may involve both deliberate and emotional 
evaluations, which are processed in different brain regions. This dual-
processing account of trust judgments seems very similar to the analytical 
versus intuitive cognition distinction found in the decision-making literature 
and discussed earlier in section 2.2.

There is also a significant body of research in trust determinants, based on 
human-human interactions, which have been applied to assessing human-
system trust; see, for example, the extensive review by Madhaven and Wiegmann 
(2007). Lee and See (2004) conclude, for example, that human trust of a system 
is enhanced when the system appears to have the following positive attributes:

•  Competence: the system is competent in its domain and is used by its human 
partner as intended

•  Dependability: the system operates reliably (i.e., no surprises) and has a 
good past history of performance

•  Integrity: the system is not failed or compromised

•  Predictability: the operator has a good mental model of system behavior 
(e.g., state transitions)

•  Timeliness: the system can provide an anytime response, where longer 
times yield better answers
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•  Uncertainty reduction: the system works to reduce uncertainty, not add to it

Clearly, these are all closely related to system proficiency—and the properties 
discussed in the previous chapter—so that the more proficient a system ap-
pears to the human, the greater the level of trust accorded it.

However, there are additional barriers associated with human trust of systems, 
several of which were identified in the 2016 DSB report on ASs (DSB 2016). 
These include:

•  Lack of analogical “thinking” by the AS. When the AS approaches and/or 
solves a problem in a fashion that is not at all like a human would attack 
the problem, trust can become an issue because of human concern that 
the approach may be faulty or unvalidated.

•  Low transparency and traceability in the AS solution. Lacking an ability to 
“explain” itself, in terms of assumptions held, data under consideration, 
reasoning methods used, etc., it is difficult for the AS to justify its solu-
tion set and, thus, engender human trust.

•  Lack of self-awareness or environmental awareness by the system. In the 
former, this might include AS health and component failure modes, 
while in the latter, this might include environmental stressors or adversary 
attacks. Either may unknowingly affect performance and proficiency and 
overstate the confidence in an AS-based solution made outside of its 
nominal “operating envelope.”

•  Low mutual understanding of common goals. When a human and AS are 
working together on a common task, a lack of understanding of the 
common goals, task constraints, roles, etc., can lead to a lack of trust on 
the part of the human in terms of the system’s anticipated proficiency 
over the course of task execution.

•  Non-natural communications interfaces. The lack of conventional bidi-
rectional multichannel communications between human and system (e.g., 
verbal/semantic, verbal/tonal, facial expressions, body language, etc.) not 
only reduces communications data rates but also reduces the opportunity to 
convey nuances associated with operations by well-practiced and trusting 
human-only teams.

•  Lack of applicable training and exercises. Lack of common training and 
practice together reduces the opportunities for the human to better under-
stand the system’s capabilities and limitations, as well as how it goes about 
“problem solving” and, thus, opportunities for understanding a system’s 
“trust envelope”—that is, where it can be trusted and where it cannot. 
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Expanding on the last item, figure 3.2 illustrates a very simple model of a par-
titioned trust-reliability space, based on the work by Kelly et al (2003). Along 
the x-axis is a measure of system proficiency, in this case reliability; along the 
y-axis is the human’s trust in that system. The upper-right quadrant shows 
appropriately high trust by the human of a high-reliability system; conversely, 
the lower-left quadrant shows appropriately low trust in a low-reliability system. 
The two other quadrants show cases of inappropriate trust by the human: the 
upper left designating a situation of overtrusting a system and the lower right 
a situation of undertrusting a system. Both of these situations are to be 
avoided, since the former can lead to catastrophic errors and the latter to un-
deruse of the system (Parasuraman and Riley 1997).

Figure 3.2. Trust-reliability space and quadrants of appropriate and inappropriate 
trust

Inappropriate trust in systems has historically led to many operational errors 
and some outright catastrophes that could have been avoided (Mosier et al. 
1998). For example, two different DC-10 mishaps were a result of overtrust. 
In one, a DC-10 landed at Kennedy Airport, touching down about halfway 
down the runway and about 50 knots over target speed. A faulty auto-throttle 
was probably responsible. The flight crew, who apparently were not monitoring 
the airspeed, never detected the overspeed condition (Ciavarelli 1997). In a 
more serious incident, a DC-10 crashed into Mount Erebus in Antarctica. The 
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accident was primarily due to incorrect navigation data that was inserted into 
a ground-based computer and then loaded into the onboard aircraft naviga-
tion system by the flight crew. The inertial navigation system, erroneously 
programmed, flew dutifully into the mountain (Ciavarelli 1997). Other ex-
amples are articulated by Weyer (2006) and are representative of the problems 
faced with the introduction of automation in the commercial cockpit in the 
1990s. More recently, the automotive industry experienced its first death due 
to overtrust and misuse of an automotive autopilot system in a Tesla Model S 
(Yadron and Tynan 2016). The driver was reportedly watching a movie and 
relying solely on the autopilot system to safely deliver him to his final destina-
tion. The driver was killed in an otherwise avoidable accident when the sys-
tem failed to identify a tractor trailer blocking its path; the National Trans-
portation Safety Board (NTSB) blamed the truck driver for failing to yield the 
right of way but also blamed the Tesla driver for overtrusting the system, citing 

the car driver’s inattention due to overreliance on vehicle automation, which resulted in the 
car driver’s lack of reaction to the presence of the truck. Contributing to the car driver’s 
overreliance on the vehicle automation was its operational design, which permitted his 
prolonged disengagement from the driving task and his use of the automation in ways in-
consistent with guidance and warnings from the manufacturer. (NTSB 2017)

Casner et al. (2016) provide additional examples of “driver error” and overtrust 
induced by different levels of automation/autonomy in self-driving automobiles. 
The automotive industry is now learning what the commercial aviation in-
dustry has already learned. We can expect this trend to accelerate as more 
semi-autonomous and autonomous systems are fielded, in both the commercial 
and military arenas.

Certainly, the current focus is on autonomous automobiles. Many ques-
tions are being raised, including whether the onboard ASs are sufficiently 
proficient to make the “right” decisions all the time1 and what the “value sys-
tem” behind those decisions is, especially when it must select a course of ac-
tion when all outcomes are less than ideal (Kirkpatrick 2015)? And how do 
humans “take over” if they need to, especially given the issues we have had 
with aircraft automation failures, misapprehensions of the situation, and fail-
ures of control transfer? Some of these issues are already being addressed via 
extensive simulation testing: Waymo simulates, on a daily basis, up to 25,000 
virtual cars driving 8 million miles (Cerf 2018); and by “fleet learning,” as 
each Tesla “learns” something new about the environment, all other Teslas 
acquire the same knowledge through big-data processing and networking 

1. And if they do not, who is legally to blame? See Greenblatt (2016).
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(Frommer 2016)—and certainly by extensive accident investigations con-
ducted by NTSB and others, as we noted earlier.

We expect to see similar trends as weapon systems incorporate more autono-
mous capabilities. Right now, in the infancy of development of these systems, 
articles are being published with controversial headlines. The Association of 
Computing Machinery (ACM), in its flagship publication, Communications 
of the ACM, had these five article titles in recent years:

•  “Potential and Peril” (Underwood 2017)

•  “Toward a Ban on Lethal Autonomous Weapons” (Wallach 2017)

•  “Can We Trust Autonomous Weapons?” (Kirkpatrick 2016)

•  “The Case for Banning Killer Robots” (Goose and Arkin 2015)

•  “The Dangers of Military Robots” (Arquilla 2015)

And, from one of the fathers of AI, Stewart Russell, in Scientific American:

•  “Should We Fear Supersmart Robots?” (Russell 2016)

To deal with these concerns, many have begun proposing a variety of 
guidelines, for both design and operation. Horne (2016) recognizes the cen-
trality of trust and proposes that we develop systems with the following three 
characteristics: ability, integrity, and benevolence. Ability refers to compe-
tence and proficiency, aspects of which we discussed in the previous chapter. 
Integrity refers to the values held by the system as well as the transparency of 
that system (i.e., a trusted AS should have no hidden values2). As noted by 
Dietterich and Horvitz (2015), integrity of ASs can be compromised by de-
sign or programming errors in the software or by the unanticipated impact of 
cyberattacks by adversaries. Conventional software design approaches of 
adding on security after the functional design is completed may fail us com-
pletely in situations where part of the design is completed by training the 
software (as in deep ANN learning algorithms) on patterns or situations it 
needs to recognize:

Malicious inputs specially crafted by an adversary can “poison” a machine learning algo-
rithm during its training period, or dupe it after it has been trained. (Klarreich 2016)

This area of “adversarial machine learning” has only recently gained the 
attention it deserves, especially given the “black box” nature of deep and 
highly trained ANNs (McDaniel et al. 2016; Papernot et al. 2016). Kott et al. 

2. Unlike the HAL 9000 sentient computer in Arthur C. Clarke’s 2001: Space Odyssey.
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(2015) point out that the integrity of these systems can also be compromised 
via conventional cyberattacks on AS members of the C2 network.

Finally, benevolence refers to a belief that the AS wants to do no harm to 
the human teammate, a concept that combines intent and values. Dietterich 
and Horvitz (2015) note that AS formation of intent, or understanding of its 
human teammate’s intent, is key to “intelligent behavior,” an aspect of general 
autonomous behavior we noted in section 1.2 earlier. And not fully under-
standing a machine’s intent can be troublesome, which Russell (2016) made 
clear in an article quoting Wiener: 

If we use, to achieve our purposes, a mechanical agency with whose operation we cannot 
efficiently interfere . . . we had better be quite sure that the purpose put into the machine is 
the purpose which we really desire. (Russell 2016)

The values held by an AS are also beginning to receive attention by the re-
search community, with Kaplan (2017) calling for “programmatic notions of 
basic ethics to guide actions in unanticipated circumstances, Etzioni and Etzioni 
(2016) exploring ways of designing systems to obey our laws and values using 
“AI guardians,” and Scharre (2016) reporting on the operational risk of 
employing these weapon systems and the potential of exacerbating a given 
situation. More recently, Kuipers (2018) points to the need for programming 
in social norms, including morality and ethics, perhaps directly via tech-
niques like case-based reasoning. Finally, the DOD Directive 3000.09 (2012) 
provides broad guidance, which “establishes DoD policy and assigns respon-
sibilities for the development and use of autonomous and semi-autonomous 
functions in weapons systems.” All three components of ability, integrity, and 
benevolence contribute to the trust of these systems.

Lastly, several recent autonomy studies have also made suggestions on how 
to ensure appropriate trust in these systems (e.g., DSB 2012, 2016). For those 
studies reviewed in appendix A, we have summarized, in table A.2, desirable 
AS behavioral objectives for effective and trusting human-system teaming; 
these focus primarily on SA (of the environment, of any teammates, and of 
self), good human-systems integration design practices, effective communi-
cations across teammates, and peer flexibility.

Trust is critical to effective human-system teaming, and it will have a signifi-
cant impact on the development, proliferation, and use of future ASs. Human-
system trust is not a resolved problem. Trust is not absolute; it can change 
over time, is different for each human, and will depend on the proficiency and 
transparency of a given AS. Trust is also situationally dependent, and it should 
be taken into consideration when balancing the tradeoffs of the cost and benefit 
of designing for trust. It is our goal that the Air Force not relearn the importance 
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of trust in dealing with automation and its impact to fielding new AS capabili-
ties. So what can be done to enable trust? It is our position that, in designing 
ASs, trust considerations need to be addressed from the beginning of the 
design process, concentrating on four areas, which we label tenets of trust:

•  Cognitive congruence and transparency. At a high level, the AS operates 
congruently with the way humans parse the problem, so that the system 
approaches and resolves a problem in a manner analogous to the way a 
proficient human does. Whether or not this is achievable, there should 
be some means for transparency or traceability in the system’s solution, 
so that the human can understand the rationale for a given system deci-
sion or action.

•  Situation awareness. Employing sensory and reasoning mechanisms in a 
manner that supports situation awareness of both the system’s internal 
health and component status and of the system’s external environment, 
including the ambient situation, friendly teammates, adversarial actors, etc. 
Using this awareness for anticipating proficiency increments/decrements 
within a nominal system’s “operating envelope” to support confidence 
estimates of future decisions and actions.

•  Human-systems integration. Ensuring good human-systems interaction 
design to provide natural (to the human) interfaces that support high-
bandwidth communications if needed, subtleties in qualifications of 
those communications, and ranges of queries/interactions to support 
not only tactical task performance but also more operational issues deal-
ing with goal management and role allocation (in teams).

•  Human-system teaming and training. Adapting or morphing human-
system team training programs and curricula to account for the special 
capabilities (and associated limitations) of humans teaming with ASs. 
Conducting extensive training so that the team members can develop 
mutual mental models of each other, for nominal and compromised be-
havior, across a range of missions, threats, environments, and users.

We now address each of these areas in the remainder of this chapter.

3.1 Cognitive Congruence and Transparency

In this section, we discuss two important factors contributing to trust in 
human-system teaming, namely cognitive congruence and cognitive transpar-
ency. Cognitive congruence refers to the degree to which the AS and human 
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possess correspondence in their underlying cognitive representations and 
processes. It is an extension of the notion of cognitive (or psychological) 
consistency within an individual and the problems that occur when that 
individual has to deal with cognitive dissonance (Festinger 1957). A lack of 
cognitive congruence can influence joint meaning making (i.e., sense-making) 
and subsequent trust by the human of the AS’s understanding of the situation, 
and acting on it, in a fashion similar to what the human would do in a similar 
situation. Cognitive transparency refers to the degree to which the reasoning 
and actions taken by the AS are intelligible and obvious to the human, even if 
there is little cognitive congruence. Transparency provides the human with a 
means of following and validating the AS’s assessment and reasoning “audit 
trail” and will also contribute to trust, even if the AS approach to the problem 
differs from the human approach. We begin with the topic of congruence, fol-
lowed by transparency.

3.1.1 Cognitive Congruence

The degree of congruence between the AS and human cognitive represen-
tations can affect joint meaning making. This is important because, in many 
applications, both the AS and human may need to come to a common under-
standing of the situation, that is, make the same meaning about the same objects, 
events, or situations presented them, for the team to be successful. Brooks, 
founder of iRobot, presents a number of compelling instances of potential 
human-machine misunderstandings likely to occur between self-driving cars 
and human drivers/pedestrians when confronted with the same traffic situa-
tion, because of a lack of congruence between human and machine cognitive 
representations: 

If a semiautonomous car is not playing by the unwritten rules, bystanders will probably 
blame the person using the car. But they won’t have that choice if the car is fully autonomous. 
So in that case, they will blame the car. (Brooks 2017)

Understanding meaning making is therefore critical if we are to provide for 
correspondence.

Many studies have shown that human cognition strives to make meaning 
of objects, events, and situations in the world (Klein 1998; Patterson 2012). 
Meaning making can be conceptualized as sign interpretation, which is called 
semiosis (Hoopes 1991; Peirce 1960). The meaning of an object, event, or 
situation lies in its interpretation by an individual as a sign denoting some 
other (determining) object, event, or situation. In a sense, meaning making 
via sign interpretation involves relationships (Bains 2006), namely, the relation 
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between the sign and its denoted object or event. Humans are very adept at 
meaning making via sign interpretation (Patterson and Eggleston 2017).

Meaning making in the real world can involve linguistic sign systems. In 
such a system, for example, human language can be grounded to an AS’s in-
ternal representation of the physical world, and to perception and action, by 
the use of collaborative techniques (Chai et al. 2016). However, meaning 
making in the real world also involves nonlinguistic sign systems. Collectively, 
environmental sights, sounds, smells, and so forth can serve as situational 
patterns (signs) whose recognition can denote some outcome. For example, the 
meaning of a traffic jam during a morning commute would be—in its inter-
pretation as a sign—denoting that the person will be late for work.

Meaning making can also be conceptualized as frames (Minsky 1975). 
Frames are remembered data structures representing stereotypical situations 
adapted to a given instance of reality. Higher levels of a frame represent con-
text (things that are always true about a given situation), and lower levels 
represent terminals instantiated by specific data. Concepts such as scripts and 
plans are frame-based (Schank and Abelson 1977). During meaning making, 
frames may help define relevant data, while data may drive changes to exist-
ing frames (Klein et al. 2006).

Sign interpretation and frames can be seen to represent complementary 
approaches to meaning making. Assigning meaning to an object, event, or 
situation by an individual in terms of a sign denoting some outcome would 
depend on context or frame. Alternatively, the context or frame can help de-
termine which objects, events, or situations are interpreted as signs and what 
those signs denote. In the previous example, the meaning of a traffic jam in 
the context or frame of a morning commute would be its interpretation as a 
sign denoting lateness for work. If the frame were different (e.g., en route to 
dinner or a movie), the sign would still denote lateness, but it would be late-
ness for a different event, which would be contingent upon the given frame.

For the AS to work effectively with the human, the actions of the AS and 
human need to be generated within a common frame (i.e., recognize the same 
context at any given moment). This is what we mean by congruent cognitive 
representations between the AS and human. A common frame would enable 
several ways for the AS and human to interact:

•  The AS and human could interpret the same objects, events, and situa-
tions as the same signs denoting the same outcome.

•  The AS and human could interpret different but correlated objects, 
events, or situations as the same sign denoting the same outcome.
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•  The AS and human could interpret different (and unrelated) objects, events, 
or situations as different signs (still in the same frame) denoting different 
outcomes, a conflicted situation that would then have to be resolved.

In general, the AS and human may need to make the same meaning of common 
or related objects, events, or situations; to do so, the reasoning and actions of the 
AS and human must be generated within the same frame or context—they 
must have cognitive congruence. The challenge here is to define at the appro-
priate level of abstraction, and with the appropriate elements, exactly what is 
frame or context and how it could be common to both AS and human.

3.1.2 Cognitive Transparency

Cognitive transparency can also affect trust in the use of automated systems 
and in working with ASs. Trust can be enabled by designing the AS so that its 
reasoning—from perception to goal generation to action selection—is ac-
complished by understanding how the system works (transparency) and the 
ability to trace any decision it makes (traceability). When transparency does 
not exist, humans can not only fail to understand the AS’s reasoning behind 
an assessment or decision, but they also may attribute capabilities to the AS 
that it does not have.3 This happened early on with Weizenbaum’s ELIZA pro-
gram in the 1960s that simulated a psychoanalyst, using a very shallow natural 
language processing program based on simple pattern matching and substitu-
tion, but that fooled many a “patient” interacting with the program (Weizen-
baum 1966). This has currently raised issues in the community about devel-
oping anthropomorphic robots that appear and behave like humans: they 
may facilitate human-machine interaction (Duffy 2003), but they may also 
hinder transparency and understanding of their limitations (Zlotowski et al. 
2015). Walsh (2016) has gone so far as to propose a “Turing Red Flag Law”:

An autonomous system should be designed so that it is unlikely to be mistaken for anything 
besides an autonomous system, and should identify itself at the start of any interaction 
with another agent. (Walsh 2016)

Were this guidance to be followed by designers of future systems, it re-
mains to be seen how this will balance out against the human tendency to 
anthropomorphize animals and nonliving agents, in general.

Which brings us back to transparency. Current research supports the idea 
that the more humans accurately understand the AS’s decision-making pro-
cess, the more humans will trust them (Wang et al. 2015; Lyons et al. 2016a; 

3. Which brings us squarely into the “overtrusting” region of the trust space sketched in the 
previous section.
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Knight 2017b). This view is also supported in recent studies related to the 
Auto Ground Collision Avoidance System (Auto-GCAS) used in the Air 
Force F-16 (Lyons et al. 2016b). Transparency has been effectively imple-
mented by, for example, hand-crafted explanations as described by Dzindolet 
et al. (2003). Support for traceability also occurs for ethical reasons, as de-
scribed by Microsoft CEO Satya Nadella in his 10 Rules for Ethical AI (Reese 
2016). DARPA also places emphasis in this area through its Explainable Arti-
ficial Intelligence (XAI) program, a program that concentrates on explainable 
models, interfaces, and the psychology of explanation (Gunning 2016).

Some authors have argued that designing for transparency and traceability 
for improved human-autonomy trust could result in nonoptimal results. 
Norvig makes this observation as it relates to the success of probabilistic 
models trained with statistical methods for language modeling (Norvig 2016). 
Similarly, LeCun recently said that for the most part it does not matter: “How 
important is the interpretability of your taxi driver?”4 (LeCun 2016). LeCun’s 
statement suggests that interpretability of the machine may not be important, 
at least for certain applications. However, there are many applications where 
decision explanation, understanding, and an ability to correct the decision-
making process—and not optimality—are the primary motivating factors.

In the early adoption of any AS, trust will be a key issue to get people to use 
the system. Building systems with transparency will likely improve early 
adoption. Care must be taken so that systems do not appear to be too human-
like (too much transparency), otherwise users may overestimate the system’s 
capabilities. As research in this area grows, there will be instances where sig-
nificant improvements in trust will occur that also result in optimal solutions, 
making them even more valuable to the warfighter.

3.2 Situation Awareness

Situation awareness is a term that has been the subject of considerable re-
search and attention over the past 30 years (Endsley 2015c). It is a topic that 
has contributed to several domains, including the aviation community. But 
what is it? In its basic form, SA is being aware of your surroundings and 
understanding the impact of those surroundings. Often images of awkward 
(and often deadly) situations are tied to poor SA. For example, birdwatching 
in a prime location only to not realize the bird you are watching for is watch-
ing you (fig. 3.3a). Other, more serious, examples include a cat hunting a bird, 

4. Until, of course, he takes you to the wrong local airport when you’re in a rush to catch 
your flight.
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but the bird is a bald eagle (fig. 3.3b). The former is a possible missed oppor-
tunity while the latter likely a fatal error.

Figure 3.3. (a) A case where a lack of situation awareness has comical consequenc-
es. (b) A case where a lack of situation awareness has potential fatal conse-
quences.

SA has roots in psychology, but there is a difference of opinion within the 
psychology community centered on two dominant frameworks: the percep-
tual-cycle framework (PCF) and the Human Information Processing Frame-
work (HIPF).

The PCF is based on the work in Neisser (1976), which also has roots in 
applied perception (Gibson 1947) and fundamental areas of perception (Gib-
son 1966). Neisser’s PCF model contains three elements: schema, exploration, 
and object. The interaction of those is represented in figure 3.4. The schema is 
the internal human process that directs the exploration of the human with the 
environment. Exploration is the use of the senses (e.g., sight, sound, touch, 
etc.) to gather representative samples of objects the human interacts with. 
Object is the thing that is explored, and what the senses gather about that object 
is used to update the schema. Significantly, PCF places emphasis on environ-
ment interaction in a closed-loop control perspective. It does provide less detail 
within the schema, which represents internal human processes. However, the 
work by Neisser (1976) does state that there is no attempt to deny the exis-
tence of an internal cognitive process and that it would be highly structured.
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Figure 3.4. Example perceptual-cycle model. (Redrawn from [Neisser 1976].)

The HIPF was popularized by Neisser’s cognitive psychology work (Neisser 
1967), which is inspired by the use of the computer as an analogy to how humans 
process information. HIPF-based approaches use symbolic representations 
for human information processing and then manipulate that representation 
(Lachman et al. 1979); an example model is presented in figure 3.5.5 In this  
model construct, the symbolic components one would manipulate are per-
ception, attention, working memory, and long-term memory.

The most popular HIPF-based SA model is Endsley’s 1995 model, shown 
in figure 3.6, which forms the basis for the material in Autonomous Horizons, 
volume I (Endsley 2015c). This model provides a theory of SA for a single hu-
man in a dynamic environment, such as an air traffic controller or a pilot. In 
this model, SA is defined as (Endsley 1995a):

the perception of the elements in the environment within a volume of time and space, the 
comprehension of their meaning, and the projection of their status in the near future.

Here, one should consider that volume of time and space could be logical 
and is not necessarily restricted to being physical. It is also important to note 
that Endsley defines SA relative to dynamic decision making, as is shown in 
the figure, via the closed loop activity of performing actions on the environ-
ment, and then perceiving the consequences of those actions, as illustrated in 

5.  Note that this is a special case of the situated agent model construct of section 2.1.
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figure 3.5 and as described earlier in section 3.1 on situated agency (Endsley 
2015c).6

Figure 3.5. Example Human Information Processing Model that demonstrates 
the interaction of a human with the environment. (Lachman et al. 1979).

An important takeaway is that SA is relative to a specific task and takes into 
account goals and objectives. Also shown in figure 3.6 are a number of external 
“moderators” that affect SA, including system capabilities and automation, 
operator stress and workload, interface design, and so forth, as well as several 
internal processing functions, including information processing, long-term 
memory, skill levels, and more.

As noted by Endsley (Endsley 2015c), many systems have not been de-
signed to provide operators with adequate SA regarding a system’s internal 
status. This has led to a poor understanding—on the part of the human—of a 
system’s intent, current behavior, and potential future actions and, as noted at 
the beginning of this chapter, lead to disastrous consequences. This issue is 

6. A 2015 Journal of Cognitive Engineering and Decision Making special issue is dedicated 
to the Endsley SA model. The diversity of material in support of and in disagreement with the 
model demonstrates the existence of the disagreement between the PCF and HIPF approaches. 
This special issue is bookended by two papers by Endsley. The opening paper (Endsley 2015b) 
reviews and responds to criticisms of the SA model, while the closing paper (Endsley 2015a) 
provides closing remarks and final comments. 
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compounded by increased system complexity,7 poor interface design, and a 
lack of human-machine training.

Figure 3.6. Model of situation awareness in dynamic decision making. (Endsley 
1995a)

Significant research (Endsley 1987, 1995b) has been conducted on what 
factors drive “good” SA (that is, awareness that corresponds with the actual 
situation and the likely fashion in which it will unfold over time). For example, 
traditional approaches to automation can lead to “out-of-the-loop” errors 
where the human has low situational awareness of the mission (Endsley 
2015c), because of the human’s lack of vigilance and complacency at his/her 
mission or task. Changes to information feedback also have an impact on out-
of-the-loop problems, which highlights the importance of balancing tightly 
coupled versus loosely coupled human-autonomy interaction. Finally, there 
sometimes is a need to embed the human “in the loop” so he/she can take an 

7. Especially as AI systems become more complex and widespread.
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active vice passive role. When the human is out of the loop, he/she tends to be 
slow to detect, diagnose, and fix problems.8 

We hypothesize that any AS, like any independent human agent, will also 
need good SA to: (a) proficiently perform complex tasks in dynamic uncertain 
environments in an autonomous fashion and (b) be perceived as trustworthy by 
any human agents engaged in the same task. We illustrate this notion in figure 
3.7, which shows, in the upper left quadrant, a human and AS teaming to ac-
complish the same mission while operating in a common environment. In the 
lower right quadrant, we show that, for the human to be successful, he/she 
needs to have adequate SA of the environment, the mission, his/her own status, 
and, critically, awareness of the status of system he/she is teaming with. Like-
wise, the AS needs adequate awareness of the environment, the mission, its 
own status, and, ideally, awareness of the status of the human it is teaming 
with. In effect, SA needs are mirrored between human and AS. In an ideal 
situation, we would have human and system SA of the environment and mis-
sion the same: the human’s SA of self the same as the system’s SA of the human; 
and the human’s SA of the system the same as the system’s SA of self. This is 
exceedingly unlikely in all but the most trivial of situations. The key design 
issue, of course, is how much “SA correspondence” is needed for both profi-
cient human-system team performance and human-system trust. Certainly, 
the system must have some level of self-awareness (e.g., understanding of its 
health or ability to complete a task) and it must have some awareness of the 
environment the human and the system are operating in. Otherwise, the human 
will not trust the system and likely not use it.

In considering SA of the self, whether human or machine, we naturally 
touch on metacognition, that is, thinking about one’s own thinking, and con-
sciousness, two topics briefly touched on earlier in section 2.2. As noted there, 
we have some qualitative understanding of what these terms mean from a 
human standpoint, based on our experience in engaging in metacognition 
and in being conscious agents. What these terms mean in terms of developing 
and operating ASs is, however, quite another matter. But we realize some sort 
of self-assessment function is needed for metacognitive behavior, and some 
sort of consciousness function (called “artificial consciousness” in the lit-
erature, which may be a misnomer) is needed for self-awareness.9 We 

8. As we recounted earlier with the introduction of automation in the commercial aviation 
cockpit and will no doubt see with the introduction of more “self-driving” cars.

9. SA, of both the environment and the self, has been traditionally defined as a Type 2 
mental process (recall discussion in section 2.2) involving conscious awareness (Endsley 
1995b). Its measurement frequently relies on an individual’s working memory and verbalization 
(e.g., Durso et al. 2007; Endsley 1995a). Accordingly, conceptualizations and measurements of 
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Figure 3.7. SA is critical to human-autonomy teaming. (Endsley 2015c)

have described, albeit briefly, in sections 2.2 and 2.3 how artificial conscious-
ness might arise, via multilayer architectures and “emergentism,” respectively. 
Here we describe a third, promulgated by Tononi over the last decade (Tononi 
et al. 2016; Oizumi et al. 2014). He calls it Integrated Information Theory 
(IIT), which has five essential properties (Koch and Tononi 2017):

•  Every experience exists intrinsically (for the subject of that experience, not for an 
external observer).

•  Each experience is structured (it is composed of parts and the relations among them).

•  It is integrated (it cannot be subdivided into independent components).

•  It is definite (it has borders including some content and excluding others).

•  It is specific (every experience is the way it is, and thereby different from trillions of 
possible others).

In essence, IIT starts with the characteristics of consciousness and then derives 
mathematically “the requirements that must be satisfied by any physical sub-
strate [system] for it to support consciousness” (Koch and Tononi 2017). IIT 
turns on its head the conventional approach of building an AS that is suffi-
ciently complex and behaviorally adept and hoping that consciousness—or 

SA may not be reflecting Type 1 intuitive cognition and, thus, may be capturing only a portion 
of an individual’s SA; this is an open area of research. 
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some partial form of it—emerges; rather IIT starts with the consciousness 
phenomenon and specifies—in principle—the system that needs to be built 
that will provide that consciousness. The operative phrase here is in principle 
since IIT is still a theory, but its continuing development may provide us with 
an alternative to “building and hoping on the outcome” of some measure of 
consciousness and self-situation awareness in future ASs.10

Returning to the issue of mutual human-system SA, figure 3.8 provides a 
more detailed view, in which the three stages of SA are illustrated (perception, 
comprehension, and projection) and some of the components for each stage 
are indicated (Endsley 2015c). The essential message is that most of the 
components for both human and AS are the same, except for the reciprocal 
components indicated by the highlighted boxes: the human’s need for SA on 
the status of the system, like the system’s need for status of the human; and the 
human need for understanding the impact his or her tasks will have on those 
of the AS, and conversely the AS need regarding its own task activity impact 
on the human.

• Impact of Tasks on 
Autonomy Tasks

• Impact of Tasks on 
System/Environment

• Impact of Tasks on Goals
• Ability to Perform 

Assigned Tasks

• Impact of Tasks on 
Human Tasks

• Impact of Tasks on 
System/Environment

• Impact of Tasks on Goals
• Ability to Perform 

Assigned Tasks

• Data validity
• Human Status
• Task Assignments
• Task Status
• Current Goals

• Data validity
• Automation Status
• Task Assignments
• Task Status
• Current Goals

AutonomyHuman

Perception

Comprehension

Projection • Strategies/Plans
• Projected actions

• Strategies/Plans
• Projected actions

Figure 3.8. SA stages for both humans and AS and their components. (Recreated 
from [Endsley 2015c].)

10. In fact, IIT predicts that “conventional digital computers running software will experience 
nothing like the movie we see and hear inside our heads” (Koch and Tononi 2017).
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The main takeaway here, of course, is that if we expect the system to be as 
proficient and trustworthy as another human teammate, we need to provide 
it with the same span and depth of information needed by the human to 
maintain adequate levels of SA. But there’s a secondary message here as well: 
if either agent (human or machine) needs to have some understanding of the 
other agent, it necessarily must have some representation or model of the 
other agent. But if the other agent must likewise have a model of its teammate, 
then the first agent needs a model of the model. And so on.11 This infinite re-
gression of modeling needs for SA related to a teammate is illustrated in figure 3.9, 
in which Alice has a model of the rabbit having a model of Alice having a 
model of the rabbit, and so forth; any practical implementation will likely stop 
at a single depth of models.

Figure 3.9. Infinite regression of two teammates’ internal models of one another

Shared SA, as described in (Endsley 2015c), which also appears as Team 
SA (TSA) in (Endsley 1995a),

is fundamental to supporting coordinated actions across multiple parties who are involved 
in achieving the same goal and who have inter-related functions such as those that occur 
with flexible autonomy. (Endsley 2015c)

This is an important topic in human-autonomy teams. Some approaches to 
TSA consider it as the intersection of each team member’s individual SA (see, 
for example, Endsley 1995a, fig. 2). A key to establishing and maintaining 
TSA in human-human teams is communication between the team members 
(Endsley 1995a; Salas 1995). Demir and colleagues demonstrated this experi-

11.  And the problem quickly grows as the number of teammates multiplies, because of the 
combinatorics.
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mentally with human-autonomy teams and concludes that information push 
(anticipating a teammate’s needs) is more important than information pull 
(teammates requesting information) in human-human teams (Demir et al. 
2017). Interestingly, they also found that human-autonomy teams had less 
pushing and pulling than all-human teams, clearly pointing to a lack of ade-
quate communication. Work by Salas (1995) also considers a team situation 
assessment process that incorporates information processing functions, team 
processes, preexisting knowledge, predispositions, task interdependence, and 
team characteristics.

Others working in team SA suggest there is a need to integrate individual 
SA into cooperative activity by way of mutual awareness (Shu 2005). Although 
the work of Demir et al. (2016) can form the foundations for understanding 
human-autonomy TSA, there exists a need for additional research emphasis 
in human-autonomy teams in both the experimental and theoretical domains 
so that adequate models can be created and used by an AS to improve TSA. 
Other areas to be explored concern the method and frequency of interaction 
between the human and the AS: when initiating communications, the AS 
must know when the interaction is too much or too little, so as not to over-
burden the human teammate while still supplying him or her with adequate 
information to maintain adequate levels of SA.

The discussion of these key issues of human-systems integration and team-
ing is continued in the next two sections.

3.3 Human-Systems Integration

3.3.1 General Considerations

HSI is “a robust process by which to design and develop systems that effectively 
and affordably integrate human capabilities and limitations” (DHPI 2008). 
HSI covers nine specific domains: personnel, training, human factors engi-
neering (HFE), manpower, occupational health, environment, safety, habit-
ability, and human survivability.12 Of these, the first three are particularly 
relevant to engendering human trust in AS operation. For example, the per-
sonnel’s dispositional trust and other individual differences and skills can in-
fluence the extent to which the human relies on autonomy when operating a 
system (recall fig. 3.2). Training is important to ensure the human under-

12. By incorporating the study of multiple domains, HSI helps assess the complex relationship 
between humans and system components (automated and otherwise) being operated, supervised, 
and maintained. See also (Booher 2003).
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stands the capabilities and limitations of autonomous components, to better 
maintain an appropriate level of trust, as system capabilities vary over situa-
tions; we discuss training at greater length in section 3.4. Finally, HFE is espe-
cially critical in that it is the mechanism for how the other tenets of trust are 
enabled. Informing the human’s trust with cognitive congruence/system 
transparency (section 3.1) and SA (section 3.2) is only possible by providing 
the appropriate display of information to the human operator/teammate and 
enabling the human to make appropriate control inputs into the system, both 
of which are key design objectives in HFE. The remainder of this section will 
focus on HFE and its impact on system trust.

Much of HFE is centered on the design of the user interface (UI), the set of 
the displays and controls with which a human user interacts with a device or 
a system. For simpler mechanical interfaces associated with a single platform, 
the term human-machine interface is often used (Nelson-Miller 2016). For 
more complex systems where the interface is more computationally driven, 
the term HCI is often used (Farooq and Grudin 2016); we will use this latter 
term because of the complexity and computational intensity of current and 
projected ASs.

The usability of a system’s HCI is paramount to engendering an appropriate 
level of human trust. Moreover, the human’s reliance on an AS can be influ-
enced by interface design. For instance, the human may have an appropriate 
suspicion of the AS’s decision accuracy and want to intervene, but cumber-
some interfaces can impede the human’s efficiency, resulting in increased 
workload or the human electing not to inform or redirect the AS (resulting in 
potential safety implications). The degree to which HCIs are intuitive also has 
implications with respect to other HSI domains. Interfaces that are well de-
signed with respect to HFE principles will reduce manpower, personnel, and 
training requirements (Dray 1995). Moreover, intuitive usable interfaces can 
lower error rates and improve efficiency that, in turn, can reduce task execu-
tion time (Hardman 2008).

However, HFE also reflects “under the hood aspects” of a system’s design, 
such as the type of “cognitive aiding” it might be providing (see below), its 
reliability, its cognitive congruence (as discussed in section 3.1), and other 
less visible design aspects of a system. The HFE of both the surface aspects 
and the deeper constructs of an AS can therefore drive usability, comprehen-
sibility, and ultimately trust in AS operations. But HFE considerations must 
also account for the human’s capabilities and limitations as well. Consider the 
following example: A system’s autonomous component presents its mathe-
matical calculations on a display in the workstation with the intention of 
making the AS more transparent (as recommended in section 3.1) and en-
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hancing the human’s SA of the AS (as recommended in section 3.2). But this 
can instead have negative impacts. First, the additional information may add 
clutter to displays, making the human’s retrieval of critical information more 
difficult and workload intensive. Also, the computational information may 
impose new demands on personnel selection and training for the human to 
be able to understand how the calculations relate to the AS’s decision making 
and system state. Clearly, the HFE aspects need to be taken into consideration 
in AS design.

Most basically, good HFE design should help support ease of interaction 
between humans and ASs. For example, better “etiquette” often equates to 
better performance, causing a more seamless interaction (Parasuraman et al. 
2004; Dorneich et al. 2012). This occurs, for example, when an AS avoids in-
terrupting its human teammate during a high workload situation or cues the 
human that it is about to interrupt—activities that, surprisingly, can improve 
performance independent of the actual reliability of the system. To an extent, 
anthropomorphism can also improve human-AS interaction, since people often 
trust agents endowed with more human-like features (Waytz et al. 2014). 
However, as we discussed in section 3.1, anthropomorphism can also induce 
overtrust, as demonstrated early on by Weizenbaum’s 1960s-era program 
ELIZA, which emulated a psychotherapist with a shallow program that merely 
parroted and transformed the human patient’s statements (Weizenbaum 
1966) and more recently by a security piggybacking agent successfully dis-
guising itself as a food delivery robot (Booth et al. 2017).

HSI has been conceptualized over the years with the use of taxonomies. 
One of the more successful taxonomies of HSI interaction, based on sugges-
tions by Sheridan and Verplank (1978) and Riley (1989), comes from Para-
suraman et al. (2000); but see also Kaber and Endsley (2003). In Parasuraman 
et al.’s taxonomy, types and levels of automation both influence the degree of 
automation. Types of automation represent various aids that can assist certain 
cognitive functions, a scheme based on a multistage framework of human 
information processing. Four types of automation were proposed, with each 
linked to a different stage of information processing: information acquisition 
(filtering of external information, helping selective attention), information 
analysis (integrating information, assisting perception and working memory), 
decision and action selection (deciding action, based on the information 
analysis stage), and action implementation (implementing action, based on 
the decision stage). Within each automation type, the level of automation can 
range from low (full manual) to high (full automation). An extension of this 
approach has been proposed by Miller and Parasuraman (2003) to bring in 
task dependence (in addition to dependence on information processing stage 
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dependence) and a more direct ability to “delegate” tasks to automation systems 
that can support those tasks.13

We discussed metacognition and consciousness earlier in section 2.2, in 
the context of a “dual process” theory of mind described by Evans and Stanovich 
(2013): a Type 1 intuitive/unconscious system and a Type 2 rational/conscious 
system.14 Recently, Patterson (2017) considered the implications of this dual 
process model on Parasuraman’s automation taxonomy (Parasuraman 2000), 
noting that Type 1 intuitive cognition may be closely related to unconscious 
situational pattern recognition, whereas Type 2 rational or analytic cognition 
may be focused more on deliberation associated with decision making and 
action implementation. As a result, Parasuraman’s taxonomy may be too sim-
plistic, since intuitive cognition needs to be included in the scheme. When 
one does so, it becomes apparent that the characteristics of intuitive cognition 
match up well with automation aids focusing on information acquisition and 
information analysis. Here, intuitive cognition could be encouraged when-
ever the AS fosters a quick grasp of the meaningful gist of information based 
on experience or perceptual cues, without placing demands on the human’s 
working memory or requiring precise analysis. This type of cognition may 
lend itself well to automation developed at lower levels of the taxonomy, 
where the computer can organize and integrate inputs using meaningful per-
ceptual cues, especially in light of the recent advances in machine-based pattern 
recognition. Conversely, the characteristics of analytical cognition seem to fit 
in well with decision-making and action-implementation automation types. 
Here, analytical cognition should be encouraged whenever the AS requires 
the human to read, remember information via working memory, or engage in 
rule-based reasoning, hypothetical thinking, deliberation, or precise analysis. 
This type of cognition may lend itself well to automation developed at higher 
levels of the taxonomy where the AS could offer various decision alternatives 
or the AS could execute an action under varying constraint and interact with 
the human using text or other symbols or rules. Figure 3.10 summarizes how 
Parasuraman’s taxonomy might be modified by these considerations.

13. In contrast, a simpler approach has been taken by the Society of Automotive Engineers 
(SAE), in which a six-level framework is used to define automobile automation (https://www 
.sae.org/misc/pdfs/automated_driving.pdf), where zero denotes full manual, five denotes fully 
autonomous, and levels in between progressively aid the driver in driving. This is a start at 
clarifying what the industry is offering the consumer but has a way to go in terms of the subtler 
aspects of aiding, automation, and autonomy (Shladover 2016).

14. Although, as we pointed out earlier, Evans and Stanovich (2013) are quick to point out 
that there may not actually exist any systems per se, but merely rather types of processing.
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Figure 3.10. Modified automation taxonomy. (Parasuraman et al. 2000, including 
intuitive cognition. Figure taken from Patterson et al. 2017.)

There are a number of implications with the introduction of the concept of 
intuitive cognition to the design of human-ASs. For example, consider mental 
workload, which has been linked to working memory (Parasuraman et al. 
2008). Because working memory seems to play little or no role in intuitive 
cognition (Patterson and Eggleston 2017), performance of tasks that rely 
mostly on intuitive cognition should contribute less to workload, and such 
performance should remain relatively unaffected if workload increases due to 
other factors. However, because working memory plays a large role in analytical 
cognition, performance of tasks that rely mostly on analytical cognition 
should contribute significantly to workload, and such performance should 
become degraded if workload increases.

3.3.2 HFE Design Approaches for Human-AS Teaming Interfaces

For human-AS teaming to be a success, an HFE design process needs to be 
executed to ensure that any associated HCIs provide coordination and col-
laboration support functions. Woods and Hollnagel (2006) have described 
these as:

•  Observability into the assumptions, objectives, processing, roles, and actions 
of all team members to serve as a basis of a shared mental model

•  Directability via mechanisms by which the human can interact with the 
autonomous components to set limits, provide updates, set priorities, 
and guide processing



102 │ AUTONOMOUS HORIZONS

•  Ability for teammates to attract each other’s attention or processing to 
critical information and required actions

•  Shifting perspectives whereby each team member’s involvement in joint 
problem solving ensures multiple courses of actions and a variety of 
viewpoints are considered for system operations

These support functions are aligned with characteristics of successful mul-
tiagent teams working together, sharing responsibility for ensuring successful 
system operation and capitalizing on their joint knowledge and skills so that 
system operation is improved with teamwork and better able to react to novel 
situations. HCI design needs to support the development of mutual trust 
between team members (humans and ASs) by providing mechanisms such 
that each can suggest, prioritize, remind, critique, and caution each other 
during task performance, with the result being optimized human-system 
team operation. This includes ensuring that the communications do not 
negatively interrupt task completion (e.g., not burden the human with a 
suggestion that is not critical to system operation when workload is high or 
the human is tending to a critical process).

To design HCIs that better support human-AS collaboration and coordi-
nation, it is first important to understand the respective capabilities and 
limitations of each team member. For the skills and backgrounds of humans, 
both experienced subject-matter-experts (SME) as well as those not as expe-
rienced but slated for the application environment need to be examined. 
SMEs can identify challenging environmental situations and plausible off-
nominal, unplanned events to inform HCI design requirements, in addition 
to training and evaluation protocols. In contrast, understanding candidate 
human members will help recognize contemporary skills that should be con-
sidered in HCI design (e.g., cell phone touch-based gestures for display ma-
nipulation). To support this examination, there are a variety of useful user 
and task analysis instruments (Hackos and Redish 1998), including cognitive 
task analysis techniques to identify cognitively demanding tasks in the appli-
cation environment and the cognitive skills required to perform tasks (Klein 
1989; Militello 1997; Nehme 2006). These approaches also identify features 
and events in the application environment pertinent to developing a cognitive 
domain ontology that represents the knowledge that an AS can use to catego-
rize situations, develop hypotheses, and plan and recommend alternative 
courses of action (Atahary 2015). For instance, for a mission planning appli-
cation involving multiple unmanned vehicle types, a task analysis can identify 
that the AS needs to be able to determine which vehicle is most likely to find 



TENETS OF TRUST │ 103

a specified target, versus which would utilize the least fuel reaching the search 
area or reach the search area in the least amount of time (Hansen 2016).

The affordances and constraints of each AS component also need to be 
understood. There are a variety of taxonomies that have been used to describe 
the features, compositions, and computational approaches of intelligent 
agents, in addition to their ability to interact with external sources. However, 
most of these taxonomies reflect the total system in the context of its applica-
tion. Instead, a taxonomy designed to guide human-AS HCI design can help 
evaluate the relevant tradeoffs in terms of the AS’s agility (ability to respond 
in an effective manner to new inputs within a short time), directability (ability 
for an external party [e.g., the human] to influence the AS’s operation), ob-
servability (level to which the exact state of the AS can be determined), and 
transparency (ability to provide information about why and/or how the AS is 
in its current state) (Hooper 2015). These descriptors augment the AS princi-
ples described earlier in section 1.3: task flexibility, peer flexibility, and cogni-
tive flexibility. Armed with these characterizations of the AS, the designer is 
better equipped to determine how HCIs should be designed. Additionally, the 
ability of the AS to report the degree to which it is functioning within its com-
petency boundaries (i.e., providing a self-assessment of its confidence in any 
recommendation or action) (Hutchins 2015; Guerlain 1999; McGuirl 2016) 
would help calibrate the human’s trust of the AS.

Typically, the next step in developing a new HCI is to employ a user-centered 
(Norman 1986) design process where the end-user influences how the design 
takes shape. However, the Air Force’s emphasis on human-AS teaming for 
future decision making and system operations (USAF AFFOC 2015) com-
plicates the notion of a “user.” Instead, an alternative use-centered design is 
recommended that focuses on the application’s mission or goal rather than 
distinct user properties (Flach 1995). With this perspective, attention can be 
better devoted toward the integration of the human and AS team members in 
joint problem solving and task completion, rather than concentrating on the 
distinctions between human and AS team members. Application-focused use 
cases, scenario vignettes, and task analyses can help guide HCI designs that 
provide the needed mechanisms for human-AS teams to work together and 
adapt to meet dynamic requirements of future complex Air Force missions.

For identifying detailed HCI specifications, there are excellent sources that 
can provide guidance (Wickens 2004; Federal Aviation Administration, n.d.). 
The principles of Ecological Interface Design should also be applied to better 
support direct perception (Vicente 1990) and direct manipulation (Schneider-
man 1983) concepts intended to lessen the human team member’s cognitive 
demands (Kilgore 2014). This approach also helps maximize stimulus-response 
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compatibility and increases the predictability of the system’s response. To help 
ensure the usability of designed HCIs, the heuristics suggested by Nielsen and 
Mack (1994) should be consulted. Six of the heuristics address human errors 
when interacting with HCIs: steps to prevent errors (e.g., macros for frequent 
tasks, use of consistent platform conventions, and help documentation) and 
recover from errors (undo functionality and detailed error messages). Two 
deal with information presentation: employing a minimalist design by ensuring 
only necessary information is presented (with supplementary information 
easily retrievable), and offering option choices and examples to minimize the 
human’s memory load.

The final two heuristics are particularly relevant to human-AS teaming inter-
faces: feedback and communications. Feedback of system status is critical. 
The example provided by Nielsen and Mack (1994) is to present a progress 
indicator to communicate the degree to which a task is completed. For engen-
dering a human’s trust in an AS teammate, the HCI design needs to also pro-
vide feedback on the AS’s purpose, process, and performance with respect to 
task completion (Lee 2004; Hoff 2015). Feedback is also needed on the cur-
rent progress of respective human and AS agents in jointly performed tasks, 
including who is doing which tasks or which of multiple steps of the same 
task. Finally, the “real-world agreement” or communications heuristic is par-
ticularly challenging to address for systems centered on human-AS teaming 
(Nielsen and Mack 1994). The heuristic recommends that the system’s com-
munication should be in the user’s language rather than computer-oriented 
terms and that the information communicated should be consistent and not 
mislead the user’s mental model. This requirement is difficult to address for 
future systems, given the increasing capabilities of ASs along with the limited 
progress toward achieving natural language processing/dialog. To date, dialog 
systems (both speech- and chat-based) for human-AS teaming are rigid and 
limited in the activities, team processes, and tasks they support. Current ap-
proaches fail to enable the fluid and timely coordination interactions required 
for dynamic task management whereby the human-AS team can adapt on a 
moment-by-moment basis to changes in the application environment. Thus, 
besides addressing the language used, significant articulation work is needed 
before the human and AS team members can perform task management activities 
“aimed at functionally decomposing a task, negotiating goals, identifying de-
pendencies, and divvying up who will do what and when” (Rothwell 2017).

The Air Force’s Future Operating Concept (USAF AFFOC 2015) centers 
on future systems supporting mixed-initiative interaction (subsuming adap-
tive and adaptable autonomy [Calhoun 2016]) such that the complementary 
strengths of both human and autonomous team members can be harnessed. 
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To this end, AFRL has engaged in a long-term program focused on human-
AS teaming in the C2 of multiple UAVs. More recently, a system was designed 
to implement a “playbook” delegation type architecture (Parasuraman 2005; 
Miller and Par 2007) extended to enable more seamless transition between 
control levels (from manual to fully autonomous). At one extreme the human 
can manually control a specific unmanned vehicle (UXV).15 At another level, 
the operator makes numerous inputs to specify all the details of a “play” that 
defines the tasking that one or more UXVs autonomously perform once the 
play is initiated. At the other extreme, the human can quickly task UXVs by 
specifying only two essential details (play type and location) and then a “C2” 
AS determines all the other tasking details. For example, if the human opera-
tor calls a play to achieve air surveillance on a building, the C2 AS recom-
mends which UXV to use (based on sensor payload, estimated time en route, 
fuel use, environmental conditions, etc.), a cooperative control algorithm—
another limited-capability AS—provides the shortest route to get to the build-
ing (taking into account no-fly zones, etc.), and the C2 AS monitors the play’s 
ongoing status (e.g., alerting if the vehicle will not arrive at the building on 
time) (Draper 2017). The HCIs also support the human communicating any 
other play detail, and this additional information informs the AS on how to 
optimize the recommended plan for the play. For example, the human may 
have information that the AS does not, like the target size and current visibility. 
With these HCIs, the human operator can, at any time, tailor the role of the 
AS depending on the task, vehicle, mission event, or the human’s trust in the 
AS (or a unique combination of these dimensions). More detailed descrip-
tions of the HCIs and the rationale for their design are available in appendix 
D (Calhoun 2017).

There are still many challenges in developing effective HCIs as systems 
grow in complexity and exhibit more autonomous behaviors. There exists, for 
example, a clear need for advances in display design to effectively fuse, for the 
operator, information coming from a variety of sources (e.g., multiple ASs), 
without simply multiplying the number of display interfaces; likewise, there’s 
a need to limit the number of controls or interaction modalities when the 
number of AS entities increases (Calhoun et al. 2016). This becomes increasingly 
important as the roles of multi-UXV missions continue to develop and ma-
ture. Likewise, as data increases with these multirole missions, there exists a 
need for better collection, analysis, and display back to the operator, with 
more integrated displays (and controls). We discuss these and other AS-related 
HCI design issues further in section 5.3.

15.  X is used to denote Air, Ground, Sea, or Undersea vehicle (A, G, S, U).
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Regarding trust calibration, one critical element to realize effective human-AS 
teaming is bidirectional communication that approximates the characteristics 
of human teams. Additionally, the human must have efficient access to any 
information desired, and the AS needs to be programmed to reason and re-
spond to the human’s inputs based on the current context of the task or ap-
plication environment. Explicit cues for supporting a shared mental model 
with respect to the current system state and task allocation can be gleaned by 
the ongoing human-AS dialog, the displayed information, and the human’s 
interactions with the HCIs. To engender joint problem solving, “what-if ” 
querying needs to be supported (Calhoun 2016). In this manner, the human-AS 
team can pool resources to explore predicted consequences of system state 
changes or events in the application environment. This capability can also be 
used as a tool for the human-AS team when negotiating the next actions for 
system operation.

In terms of real-time operations, the HCIs need to support ongoing com-
munications of intent, i.e., mechanisms by which the human and the AS can 
frequently share their respective assumptions and bases for proposed tasks 
including recommendations on how to accomplish system goals. The means 
by which an expressed intent/goal is translated into actionable tasks depends 
on the established role and/or authority of each human and AS team member. 
The terms “on the loop” versus “in the loop” have been used to differentiate 
systems where the human supervises the AS’s operation, versus being directly 
involved in task completion. For the vision of human-AS teaming, this di-
chotomy is less useful. Rather, the HCIs should support a wide spectrum of 
control levels such that, depending on specific task demands, either the hu-
man determines how much to be directly involved in task completion or the 
human-AS team negotiates how the tasks are shared. Thus, the HCIs need to 
provide functionality by which the human can specify exactly what level of 
AS support is desired (per task, event, resource, etc.), from absolutely none to 
having the AS completely responsible.

To capitalize on joint human and AS capabilities, many tasks will involve 
both human and AS team members. The extent to which the AS is relied upon 
can be influenced by the human’s corresponding trust in the AS, although 
there are other mediating variables (e.g., workload, task criticality, control 
modality, etc.). Actually, the more the human is involved in task completion, 
the higher the human’s engagement and awareness of the degree to which the 
AS’s recommendation/action is accurate and appropriate (Endsley 2015c). A 
human’s inappropriate reliance on the AS has been described as automation 
complacency. However, there are a host of “unintended and unanticipated” 
ways in which the AS can impact the human’s role in system operation (Para-
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suraman and Manzey 2010). A more detailed examination indicates that the 
“brittleness” of ASs can influence a human’s attention, perceptual, memory, 
and/or problem solving processes (Smith 2017). For instance, the AS can in-
duce a perceptual framing effect when presenting recommended courses of 
action to the operator. The bias is that the human is likely to only consider the 
AS’s honed list of candidate options and fail to consider other options despite 
the known difficulties implementing an AS that is resilient to real-world un-
certainties. Further research is needed to explore how to minimize the potential 
for hypothesis/plan fixation by the human, such as determining the ideal content 
and timing of the AS’s support provided via the human-AS interfaces (Smith 2017).

The work station’s HCIs, including the dialog functionality, need to sup-
port a flexible, mixed-initiative approach (Bradshaw 2008) by minimizing the 
cognitive demands and workload involved in establishing who is doing what 
and when. Ideally, for an effective human-AS team, some division of tasks is 
prespecified (each member starts with assigned tasks, e.g., certain task types, 
environmental events, resources, and/or geographical areas). During system 
operation the HCIs should provide the means by which the operator and the 
AS can suggest task reassignments, recommend changes in how tasks are 
completed, as well as propose entirely new tasks/actions. To help inform task 
sharing/coordination as well as calibrate trust levels, each team member’s 
state, actions, and rationale need to be available/communicated (via displays 
or dialog). One example is the AS warning the human operator that its rec-
ommendation is based on stale data. Any ongoing feedback serves as the 
means by which trust between team members is established and reinforced 
and can be verified. In fact, without effective human-AS teaming interfaces, 
informed by HFE, the human’s trust in the AS will be degraded, increasing the 
likelihood that subsequent support from the AS will be discounted and the 
human’s workload will increase.

3.4 Human-System Teaming and Training

We now discuss human-system teaming and training and the importance 
of accounting for special issues associated with teaming between humans and 
ASs. We begin by extending the discussion of the previous section on human-
system integration, focusing on design for effective human-AS teaming. We 
then explore general issues associated with teams and team training and dis-
cuss how they may be extended to human-system team training, in particular. 
We conclude with recommendations for research into how system designs 
and training protocols might be best evaluated.
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3.4.1 Design for Effective Human-AS Teaming

In addition to the basic HFE procedures described in the previous section, 
there are also design considerations unique to human-AS teaming. Fortu-
nately, a body of relevant research as well as thoughtful proposed guidelines 
inform the design and evaluation process. Here, four of note are briefly intro-
duced. The first was published over a decade ago: Klein and coauthors identified 
10 challenges for making autonomy a teammate (Klein et al. 2004). We list 
these below, reordered, aggregated, and with pointers to relevant sections of 
this report where these are discussed further:

1.  Forming and maintaining the basic contract (between teammates; see 
this section, 3.4)

a.  Engagement in goal negotiation

b.  Controlling the costs of coordinated activity

2.  Forming and maintaining adequate models of others’ intentions and 
actions (3.2)

a.  Effective signaling of pertinent aspects of status and intentions

b.  Observing and interpreting signals of status and intentions

3. Maintaining predictability without hobbling adaptivity (2.3)

a. Maintaining adequate directability

4.  Autonomy and planning technologies that are incremental and collab-
orative (5.3)

5.  Attention management (2.2)

A publication by O’Hara and Higgins (2010) includes a tabular summary 
of general principles for supporting teamwork with machine agents. More 
recently, design principles for human-AS teamwork have been discussed with 
an applications focus by including lessons learned from a robotics challenge 
sponsored by DARPA (Johnson et al. 2014). A publication (Joe et al. 2014) 
examines in more depth the differences between envisioned human-AS teams 
and teams where all members are human. New insights are provided as to 
whether or not design principles will translate well to both human and AS 
team members. Finally, a recent study by the DOD ONA points to the success 
of “centaur” chess, in which human-AS teaming is most effective when tasking 
is broken down hierarchically (DOD ONA 2016):

Human strategic guidance combined with the tactical acuity of computer was overwhelming.
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If this generalizes, it may provide additional task-specific design guidance for 
human-AS teaming.

In addition to these studies, the studies reviewed in appendix A have also 
made recommendations for ensuring effective human-system teaming, which 
we have summarized in table A.2. As noted earlier in this chapter, these rec-
ommendations focus primarily on SA (of the environment, of any teammates, 
and of self), good HSI design practices, effective communications across 
teammates, and peer flexibility.

We have also noted, in section 3.3.2 above, four key design issues that enable 
effective human-AS teaming:

•  Effective bidirectional communication that approximates the character-
istics of human teams, to support team-member trust

•  Some means of communicating task intent, ongoing assumptions for 
task accomplishment, and general approaches to task completion

•  Task sharing agreements on how to share the workload, according to 
task criticality, trust, workload, and so forth

•  Incorporation of a flexible mixed-initiative approach that can suggest 
task reassignments and recommend changes in how tasks are completed 
as well as propose entirely new tasks/actions

Workload and cognitive demands under team operation can also be influ-
enced by the modalities utilized for human-AS interfaces. For instance, re-
search has shown that that use of auditory and tactile displays may help avoid 
overloading the human’s visual channel. Likewise, there are multiple input 
modalities (speech, touch, gesture) that leverage the human’s natural com-
munication capabilities to make inputs to the system (Oviatt 1999; Calhoun 
and Draper 2006). Before applying these to human-AS interfaces, however, 
candidates need to be evaluated to ensure that they will support quick and 
accurate inputs. The human’s trust in system operation can be undermined if 
a speech system’s recognition of an utterance is poor or a touchscreen’s detec-
tion of an input is imprecise. Moreover, speech-based control is most ideal 
when the human’s hands and/or eyes are busy or there is limited screen real 
estate to exercise control (Cohen and Oviatt 1995). Touch input is more use-
ful with smaller reach distances or when inputs are not frequent (Vizer and 
Sears 2015). In a recent evaluation, mouse and keyboard inputs were found 
more efficient than both speech and touch input for a seated human making 
frequent inputs on a monitor (Calhoun et al. 2017a, 2017b). These results sug-
gest that the emphasis should be on determining which input modalities are 
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optimal for specific types of tasks/application environments, rather than 
spending resources to implement multiple modalities across all tasks. There 
are also combinations of input modalities that merit further examination. 
One example is the integration of sketch and speech inputs on a computer-
generated map, whereby verbal commands can be efficiently associated with 
spatial locations indicated with gesture inputs (Chun et al. 2006; Taylor et al. 
2015). Any candidate control modality, though, should also be evaluated with 
an HSI perspective by considering the entire system environment (e.g., auditory 
alerts may be less useful for task environments with frequent auditory com-
munications).

There are still many challenges to be addressed for effective human-AS 
teaming. A fundamental issue focuses on how tasks are shared and roles al-
located and how that is communicated/displayed across multiple human and 
AS team members. Dynamic hand-off or swapping of subtasks across team 
members can help balance task loading and has the potential to improve sys-
tem operation. However, it can also complicate the ability to maintain shared 
awareness across team members. Besides the coordination involved in role 
allocation and task assignments, interfaces that support human-autonomy 
collaboration in other joint problem-solving activities in the work domain are 
required (Bruni et al. 2007). The implications of co-located team members 
versus those working in a more distributed system also need to be addressed.

Another challenge already mentioned is the need to improve natural language 
processing and dialog capabilities, especially with unanticipated dialogue-
mediated tasks (Rothwell and Shalin 2017). For example, design instances 
should be employed where the existing human-AS teaming strategy is per-
turbed by introducing a problem or manipulating information available to 
each partner. This will drive requirements for team members to engage in 
give-and-take communications to determine what task steps should be 
changed (Rothwell and Shalin 2017). It would be useful to also leverage other 
domains in developing effective dialog systems such as Clark’s theory of Common 
Ground (1996) and Grice’s Conversational Maxims (1975). Incorporation of 
natural multimodal inputs in dialog may also help communicate intent, such 
as when a human designates an area on a map with sketch- and gesture-based 
input concurrent with a human speech utterance “loiter here” (Chun et al. 
2006; Taylor et al. 2015) or an AS’s reply with speech-generated status infor-
mation specific to an AS-highlighted map region. 

Another challenge reflects the limited focus of most current HCI designs 
on the next immediate step to be accomplished in task completion. Further 
research is needed on how interfaces can best support communication of 
temporal parameters, for example, specifying when each human and AS team 
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member ideally should complete each substep of a task, if not immediately. 
This could be accomplished, for example, by having temporal details com-
municated by adjusting symbology on a simple timeline interface, where past, 
current, and projected time-related information is shown, or via the use of 
other novel temporal interfaces (Cummings and Brzezinski 2010; Cook et al. 
2015). Because there may be instances when the communication link between 
the human and AS is interrupted or degraded, such timelines could also sup-
port querying between human and AS team members to regain a shared SA 
of the system’s past operation.

Exploring human-AS HCI design for more complex applications will likely 
complicate information portrayal necessary for maintaining shared SA. Typi-
cally, a central display serves as a common operating picture showing the sta-
tus of all resources as well as the current tasks under way (for example, the 
role of a map display in multi-unmanned vehicle management). Such a dis-
play helps ground system-relevant communications between the human and 
AS and support queries to obtain more detailed information on the status of 
resources as well as task progress and system status. But such displays can 
become rapidly cluttered and difficult to understand when the number of en-
tities increases; individual entity status is displayed, for example, using a sin-
gle glyph to depict entity type, current tasking, fuel state, payload state, and 
overall status in supporting the mission (Calhoun and Draper 2006); or other 
mission functions are “layered on,” such as showing future mission plans or 
conducting “what-if ” queries between team members. Continued research 
and development will be required to address the trade-off between an HCI’s 
information density and its rapid comprehensibility.

3.4.2 Training for Effective Human-AS Team Performance

As human-AS teams are brought into operations, it will be necessary to adapt 
or morph training programs and curriculums to account for the capabilities 
and limitations unique to the human-AS team. Extensive human-AS team 
training will be required so that the team members can develop mutual mental 
models of each other, for nominal and compromised behavior, across a range of 
missions, adversaries, and environments. This training will be necessary for the 
team to understand common team objectives, individual roles, and how they 
co-depend. Effective human-AS teaming will be accomplished by enabling mu-
tual understanding of common and complementary roles and goals, to support 
ease of interaction between humans and ASs. Evidence appears to suggest that 
training can help calibrate human-machine trust, as it provides operators with 
an understanding of the limits of the AS capabilities (Lyons et al. 2016a). 
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Team performance (among humans) has been a subject of research at least 
since the 1950s, as tasks became more complex, teams became more common-
place, and errors became more consequential. Salas et al. (2008) summarized 
some of the main research findings over that time span, beginning with some 
basic definitions, including

•  Teams are social entities composed of members with high task interde-
pendency and shared and valued common goals (Dyer 1984).

•  Taskwork is defined as the components of a team member’s performance 
that do not require interdependent interaction with other team members.

•  Teamwork is defined as the interdependent components of performance 
required to effectively coordinate the performance of multiple individuals.

•  Team performance [arises] as team members engage in managing their 
individual and team-level taskwork and teamwork processes (Kozlowski 
and Klein 2000).

A number of research themes are identified by Salas et al. (2008), including 
the importance of “shared cognition” as a driver of performance, where com-
ponents of shared cognition include shared mental models, common or 
“team” SA, and understandable communications, components that have been 
discussed in earlier sections. One finding of particular importance, however, 
is simply that “team training promotes teamwork and enhances team perfor-
mance,” a fact not lost on high-performing teams in, for example, professional 
sports or small-unit military teams. While team training may support prac-
tice and improvement in an individual team member’s taskwork, the main 
focus is (or should be) a focus on developing the component competencies 
associated with teamwork—that is, with coordination across members of the team.

Stevens and Campion (1994) propose a knowledge, skill, and ability (KSA) 
framework for defining the necessary competencies covering both self-
management (individual-focused) and interpersonal (team-focused) KSAs, 
composed of, for the latter category, conflict-resolution KSAs, collaborative 
problem-solving KSAs, and communication KSAs. A more recent review of 
the literature by Salas et al. (2005) identifies the following needed team 
competencies:

•  Team leadership, or the ability to direct, motivate, and coordinate other 
team members and provide them with the necessary KSAs

•  Mutual performance monitoring, or the ability to assess teammate per-
formance and develop a common understanding of the environment
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•  Backup behavior, or the ability to assess others’ needs and provide sup-
port and workload balance as needed

•  Adaptability, or the ability to adjust team strategies or reallocate intrateam 
resources in response to environmental demands

•  Team orientation, or the belief in the importance of the team’s goals over 
that of the individual’s

With these team-focused component competency definitions, it then be-
comes a question of how to select or train for them. A meta-analysis of team 
interventions conducted by McEwan et al. (2017) identifies four classes of 
interventions aimed at improving team performance:

•  Didactic education in a classroom setting of “good” team behaviors, such 
as clear communications or supportive workload balancing.

•  Team training in an interactive workshop format, with discussions of 
common goals, specific issues, and so on.

•  Simulation-based training, involving all members of the team, with 
experiential enactment of specific scenarios and situations.

•  After-action reviews of actual team performance and individual behaviors 
experienced in the “real” team operating environment.

Based on a review of 51 studies that covered 72 unique interventions, McEwan 
et al. (2017) concluded that while classroom education of good team behaviors 
was ineffective, the latter three interventions could be used, to varying degrees, 
to good effect to improve team performance.

If we now consider these results in terms of their applicability to training 
for effective human-AS team performance, we immediately recognize that, 
without a well-developed set of natural language processing skills on the part 
of the AS team members, neither the workshop format nor the after-action 
reviews can be used for team training. This leaves us with simulation-based 
training as our only feasible means for human-AS team training, at least for 
the near future.

Two distinct simulation-focused communities have contributions to make 
in this area. The first, simulation-based training in the military, has a long his-
tory, going back to the original Link Trainer developed in 1929 to teach pilots 
basic instrument flying skills (American Society of Mechanical Engineers 
[ASME] 2000). Over time, these simulators grew more sophisticated, and 
with the advent of SIMNET in the 1980s (Miller and Thorpe 1995) and the 
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support of the Defense Modeling and Simulation Office in the 1990s,16 they 
became networked and much more interactive (National Research Council 
2006). This allowed for the development of today’s complex real-time simula-
tions of thousands of entities (both actual and computer generated, or “con-
structive”) interacting over large swaths of territory. The focus of these Live-
Virtual-Constructive (LVC) simulations17 has been on training and, 
specifically, training human operators of conventional systems like aircraft 
and decision makers in INTEL and operations. The other simulation com-
munity, one with a much shorter history, is the AI/AS community, which can 
be broken down into two subgroups. The AI community, particularly the 
two-person game-focused community (e.g., Chess, Go) has made good use of 
learning by having its AI play against itself, in effect, simulating its opponent 
with a clone of itself.18 In this way, thousands or millions of games can be 
played in a short period of time without having to endure the slow response 
times of a human opponent. Likewise, the AS community, particularly those 
developing self-driving cars, simulate a driving environment filled with other 
simulated pedestrians and cars and embed a simulation of the AS to learn 
and/or be “tested” (see, for example, Cerf 2018). Again, by running these 
“constructive” simulations (that is, ones that are void of “slow thinking” humans) 
at many times real-time, the AS can experience millions of virtual hours of 
driving time, something that would take years of actual road time. 

If we can bring these two communities together effectively, we will be able to 
continue the successes we have already had in the traditional military simulation-
based training community. One approach is to add simulated and trained ASs 
into existing LVC simulations; conceptually, this is merely an extension of 
current efforts with “constructive” agents, where the next generation of agents 
would be autonomous. Another approach would be to embed simulated 
humans into existing AS simulations, as those simulations and their agents 
get developed; again, this is not a great leap from what is being done on the 
commercial side, when self-driving car simulations embed simulations of 
thoughtless pedestrians, children playing in the street, and so forth. The former 
approach would help train humans to deal with introduced ASs at a pace that 
matches the human’s learning rate. The latter would help train the ASs to team 

16. Now the DOD Modeling and Simulation Coordination Office (DMSCO), https://www 
.msco.mil/.

17. Live: A simulation involving real people operating real systems. Virtual: A simulation 
involving real people operating simulated systems. Constructive: A simulation involving simulated 
people operating simulated systems.  http://www.acqnotes.com/Attachments/DoD%20
M&S%20Glossary%201%20Oct%2011.pdf.

18. For the game of Go, for example, see Silver et al. (2016, 2017).
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with humans at rates that would be much faster than real-time, assuming 
adequate modeling fidelity of human actions in these situations.19

3.4.3 Evaluation of Human-AS Team Performance

All HCI designs and training paradigms should undergo evaluation, ideally 
using human-in-the-loop testing methods with the actual autonomous tech-
nologies integrated in the system. If the latter are not yet mature, it may be 
possible that the anticipated autonomous capabilities can be simulated or rep-
resented with “Wizard of Oz” techniques (Riek 2012). The experimental setting 
should also include instances in which the AS’s reliability is imperfect, as 
would be the case when the data utilized by the AS is inaccurate/stale or the 
AS is operating outside its competency boundaries. Likewise, unexpected 
events should be included as well as off-nominal operations to challenge the 
human-AS team. Experimental manipulations that enable the examination of 
how the human and AS handle disagreements or lapses in their shared mental 
model would also be informative.

Research is also needed to determine how best to evaluate the performance 
and effectiveness of human-AS teams (Bradshaw et al. 2004; Billman 2000). 
Examining task performance that reflects the joint contributions of human 
and AS team members may not provide information at the level of detail 
needed to indicate, for example, how the HCI can be improved. Another chal-
lenge to consider is that of how the data will highlight the relative contributions 
of each AS member participating in the mission, relative to the human team’s 
involvement. Besides task performance and joint problem-solving ability, defini-
tive methods for assessing the human’s trust are also needed. However, the 
dynamic nature of trust complicates its measurement, and research is still 
ongoing to better understand the myriad variables that can influence how an 
appropriate level of trust can be gained and maintained (Hoff 2015). Consid-
eration also needs to be given regarding how the HCIs can be better designed/
employed, and/or the training paradigms modified, to support better SA 
through better mutual mental models and the long-term development of 
trust during human-AS team operation.

19. Modeling of human behavior in military environments is discussed further in Pew and 
Mavor (1998) and Zacharias et al. (2008).





Chapter 4

Convergence of Communities

We believe the time is right to begin to develop a common framework for 
describing, developing, and assessing autonomous systems, motivated by the 
research activities of a number of seemingly disparate communities. In our 
view, these communities appear to be converging toward very broad common 
frameworks that describe the problem of autonomous behavior from radi-
cally different viewpoints—but that may provide the basis for architectures 
and functional components that can enable the more rapid development of 
conceptually well-founded future autonomous systems. To motivate more 
discussion across these communities, we present here very brief and broad-
brushstroke histories of these communities, their achievements, and their im-
plications for framework development.

Figure 4.1 (which repeats fig. 1.7 introduced earlier in section 1.4) attempts 
to illustrate, at a very high level, how six distinct communities may be con-
verging onto a common understanding of human behavior and autonomous 
system behavior via the development of common computational models of 
cognition. This, in turn, can provide the basis for developing new autonomous 
systems and understanding the behaviors of existing ones, via frameworks, 
architectures, computational models, simulations, and fully instantiated sys-
tems. The six communities are:

•  At the top, the robotics and cybernetics communities, which have driven 
a better understanding of machine-based autonomy and human-system 
integration

•  At the bottom, the cognitive psychology and neurosciences communities, 
which bring us closer to understanding human cognition via concepts, 
cognitive architectures, models, and simulations

•  And in the middle, the AI communities, both “hard” and “soft,” which 
continue to provide us with nontraditional computational approaches to 
perceptual/cognitive problems that only recently were thought to be 
unaddressable via machines

In the sections to follow, we provide a brief history of each of these com-
munities, along with observations of what we believe to be future trends toward 
one or more common frameworks.
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We believe that the payoff in striving toward a common autonomous sys-
tem framework is threefold:

•  From a theoretical point of view, it would be particularly appealing to 
attempt to unify a wide range of research efforts now under way, exploring 
what constitutes autonomous behaviors, as well as an equally diverse 
number of efforts attempting to build and test such systems. The unification 
of some of these efforts under a common “architectural umbrella” would 
drive both the research and the engineering, and perhaps support faster 
development along both fronts, with lasting tenets that might eventually 
serve as the basis of a “science of autonomy.”

•  From a practical point of view, common architectures can provide insight 
into “best practices” in terms of explaining observed behaviors and/or 
supporting the development of new autonomous systems across different 
domains and for different applications. Common architectures can also 
make possible the “reuse” of solutions in one domain that have already 
been developed in another. And, at the very least, they can encourage, 
through the introduction of common constructs and nomenclature, 
greater communication between different groups pursuing what, on the 
surface, may appear to be significantly disjointed aspects of the same or 
a closely related problem.

•  And in terms of the opportunity, we believe that the time is ripe for attempt-
ing to develop one or more unifying architectural views, because of the 
long-term and now rapidly accelerating “convergence” across multiple 
R&D communities focusing on many different aspects of what may very 
well be a common problem—that of understanding the behavior of existing 
autonomous systems (e.g., humans) and the development of new ones, 
in both the biosciences and the engineering world.

We recognize the pitfalls that can accrue in adopting an architectural view-
point before the basic science is well understood or the fundamental engineer-
ing guidelines are well developed. On the other hand, attempting to develop 
one or more architectures may serve to drive the research and support the engi-
neering in a more focused fashion, providing for a more general approach to 
the understanding and development of autonomous systems, in contrast to the 
“one-off” approach characterizing many of the efforts ongoing in the (different) 
communities today.
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Figure 4.1. Multiple streams of research and development leading to a common 
framework for autonomous systems

4.1 Robotics and Cybernetics

The robotics stream, shown at the top of figure 4.1, has a long history, going 
back, in the defense world alone, to the late 1800s with remote control torpedoes 
(wired and wireless), followed in the early 1900s with remote control air-
planes (Yuste 2004; Torres 1903) and rockets. This focus on telerobotics 
(basically, remote control via a human operator in the loop) gave rise to more 
autonomously operating robots, starting in the 1930s with “open-loop” (pre-
programmed) industrial robots performing repetitive industrial tasks in a 
well-controlled environment. The flexibility of setup and manipulation accu-
racies improved with the introduction of numerically programmed industrial 
robots in the 1950s, but the real advances in behavior repertoires came with 
the gradual introduction of sensors, including imaging, on (or near) the robot. 
Most of these industrial robots have been stationary and nonlocomoting but 
have most recently taken on locomotion in certain situations (e.g., Kiva’s mobile 
robots in Amazon warehouse distribution centers [Kim 2016]).

Robotics focused on locomotion got started in the 1940s with Machina 
Speculatrix, which searched for light and power sources in its environment 
(Walter 1950). Other simple robots followed, but most were limited by com-
putational power. More autonomous locomoting robots came on the scene in 
the 1970s, enabled by better sensors and on-board computers that were 
sufficiently low size weight and power (SWAP). Some focused on using symbolic 
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processing as their “thinking” part (see section 4.3 below), but Brooks in 1990 
finally put that dependence to rest with effective mobile robots that did not 
rely on symbolic processing; rather they depended on the classic “see/think/
do” loops (illustrated earlier in chapter 2), where the actual world kept its own 
model of itself and the robot sensed what it needed in order to locomote and 
interact with it (Brooks 1990). With this “actionist” approach, we are now see-
ing an explosion of robotic locomotion applications, particularly in the com-
mercial sector, focusing on ground vehicles (personal, taxi, trucking, etc.). 
The DOD sector is pushing this forward as well, via such activities as DARPA’s 
Robotics Challenge (Guizzo and Ackerman 2015), but at a considerably 
slower pace, in the ground, air, sea and undersea, and space domains.

As these systems become more sophisticated in their sensor, computa-
tional, and locomotion capabilities and exhibit a greater range of behavioral 
repertoires, there exists a greater demand for assisting the human operator, 
teammate, or passenger to better understand the intent of the system (i.e., 
goals), its understanding of its environment (situation awareness), and its antici-
pated future actions (plan). This has led to a greater emphasis on human-systems 
interaction research and development to provide the necessary interfaces and 
control modes for interacting with these systems (Murphy 2002).

The cybernetics stream, also shown at the top of figure 4.1, started in the 
1940s, when Wiener defined cybernetics “as the scientific study of control and 
communication in the animal and the machine” or what we would now call 
“human-system interaction” (1948). It was heavily based on a systems theory 
framework, incorporating signal processing, closed-loop feedback, and estimation/
control theory and treated each element of the “total system” (human or 
machine) as a functional block with inputs/behaviors/outputs with commu-
nications lines between blocks supporting the flow on information through-
out the system. From the 1950s through the 1970s, manual control research 
and modeling dominated the cybernetics branch, focusing on “continuous 
signal” man-machine problems like bike riding, aircraft piloting, the develop-
ment of realistic flight simulators, and so forth (Ashby 1956). The focus was 
largely on a single operator operating with a single system, with continuous 
control as the dominant mode of operation (Diamantides 1958).

As systems became more complex starting in the 1970s and as more automated/
digitized systems came on board (e.g., flight management systems in com-
mercial cockpits, nuclear power plant management systems, etc.), the research 
focus shifted toward “supervisory control” where loop closures were done by 
automation and the human operator focused on how the automation was 
controlling the basic system (Sheridan 1976). In effect, the focus went from 
the human “in the loop” to “on the loop.” In addition, because of increasing 
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system complexity with time and the need for a team of operators, efforts have 
been increasingly devoted to understanding team interactions and multi-
operator supervision of modern systems (Cooke et al. 2000, 2006).

In both the early phase of manual control and the later and current phase 
of multi-operator supervisory control, a major focus of research has been 
understanding effective human-system integration,1 from the basic human 
factors of effective controls and displays design, to the “shaping” of systems 
dynamics (e.g., an aircraft’s handling qualities), to the development of an 
understanding of “joint cognitive systems” (Woods and Hollnagel 2006) as 
the human-system tasks become increasingly cognitive and less manually focused.

There has also been a parallel progression in the development of computa-
tional models used to describe the interactions of humans with systems. Early 
work in the manual control area in the 1950s onward saw the rise of the 
classical “crossover model,” a frequency domain approach to modeling human-
system dynamics in relatively simple systems (McRuer et al. 1965); more 
complex systems were later modeled starting in the 1960s using the “optimal 
control model,” a modern control theory approach to dealing with more com-
plex dynamic systems (National Research Council 1990). More recent efforts 
in supervisory control modeling that started in the 1980s focused on developing 
“cognitive models” of the operator(s) whose structures were heavily influ-
enced by systems theory and engineering (National Research Council 1990; 
Sun et al. 2006). Reviews are provided by the National Research Council (Pew 
and Mavor 1998; Zacharias et al. 2008). In short, the cybernetics stream gave 
rise to the development of a series of computational models of human “cogni-
tion,” when humans are faced with extremely well-defined tasks and situations 
(e.g., aircraft flight control, supervisory detection of automation anomalies, etc.).

4.2 Cognitive Psychology and the Neurosciences

The cognitive psychology stream, shown at the bottom of figure 4.1, focuses 
on the study of mental processes such as attention, working and long-term 
memory, perception, problem solving, the development and use of language, 
metacognition, creativity, and so forth. The definitive text of its time, Cogni-
tive Psychology by Neisser, defines cognitive psychology as fundamentally a 
mental information-processing function occurring in the brain:

The term “cognition” refers to all processes by which the sensory input is transformed, reduced, 
elaborated, stored, recovered, and used. It is concerned with these processes, even when they 
operate in the absence of relevant stimulation, as in images and hallucinations. (Neisser 1967)

1. As discussed earlier in section 3.3.
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Starting in the 1950s and 1960s Broadbent and colleagues (Broadbent 
1958; Treisman 1964) began measuring human attention and developing theories 
of attentional processes: how they worked across multiple sensory modalities 
(e.g., vision, audition, tactile, etc.), how attention can be driven by external 
cues (e.g., alarms) or by internally directed deliberation, and how theories of 
attention can be expanded beyond sensory processing and applied to multi-
tasking. Attentional models served to predict human performance under a 
wide variety of attention-focused tasks, such as display vigilance tasks (e.g., 
that of a sonar operator).

Models of perception were also being developed at that time, with theories 
to account for how one or more sensory channels of information are “fused” 
(in today’s terminology) to give rise to a “percept” of an object existing or an 
event occurring in the world outside of the observer (Russell and Norvig 
2010). Concurrent development of models of memory broke down memory 
into short-term (now labeled working) memory and long-term memory. In 
recent times, memory systems have been subdivided into declarative memory 
(composed of episodic and semantic memory, both involving conscious rec-
ollection), procedural memory (unconscious memory of invariant, relational 
knowledge that supports skill development and behavioral dispositions and is 
acquired and tuned through experience), and several other memory systems 
(Squire 2004, 2009). In combination, perception and memory models set the 
basis for understanding procedure-guided actions in the face of event-driven 
sensation, in effect providing a path parallel to that afforded by a cybernetics 
viewpoint of human-system interaction. A good summary of many of these 
efforts was provided by Newell’s Unified Theories of Cognition (1994).

More recently, there has been a focus on metacognition, that is, thinking 
about thinking, as we discussed earlier in sections 2.2 and 2.3; for example, 
identifying one’s own shortcomings about problem solving and developing 
“workarounds” to compensate. This type of executive cognition, thinking 
about “how” to go about solving a problem—more than just diving in and at-
tempting to solve it directly—can lead to significantly improved performance 
(Swanson 1990); it also may have significant implications for the development 
of synthetic cognitive systems, for example, in the identification of a system’s 
limits in a given situation and the bringing forth of alternate cognitive strategies 
to deal with the situation.

Starting in the 1980s and continuing into the present, significant efforts 
have been devoted to converting many conceptual cognitive models into com-
putational cognitive models whose goal is to explain, replicate, and “predict” 
human behavior under different circumstances and tasking. Card et al. (1986) 
described their Model Human Processor (MHP), which draws a direct analogy 
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between human processing (with its limited perceptual, cognitive, and motor 
capabilities) and computer processing (with its finite central processing unit 
[CPU] speeds and memory limits) and, via appropriate parameterization, 
provided a means of modeling response times and error rates for a given set 
of tasks. Around the same time, significant effort was devoted to developing 
the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture 
(Anderson et al. 2004). A perceptual module serves to connect outside world 
events to perceptions, a cognitive module uses procedural and declarative 
memory to generate desired actions, and a motor module serves to translate 
those desired actions into actual effects on the outside world (e.g., verbaliza-
tions, motor control actions, etc.). Central to its operation is a production 
rule system (see section 4.3 below) operating on symbolic (i.e., linguistic) 
knowledge. A very large research community has expanded its application 
domains over the years, covering basic human performance in attention, 
memory, natural language, as well as more complex tasks like driving cars and 
flying UAVs. The Soar cognitive architecture (Laird et al. 1993; Laird 2012), 
based on Newell’s unified theories of cognition work, is also fundamentally a 
production rule system, with “problem solving” afforded by effectively discov-
ering the path from a “current state” to a desired “goal state.” Soar has recently 
been extended to incorporate nonsymbolic approaches to information process-
ing (Laird and Mohan 2018).

As discussed earlier in section 2.2, human cognition can be considered in 
terms of two cognitive systems2: analytical cognition (conscious deliberation) 
and intuitive cognition (unconscious situational pattern recognition), the lat-
ter of which is likely subserved by procedural memory and developed, in part, 
via implicit (unconscious) learning of statistical regularities in the environ-
ment (Patterson and Eggleston 2017). It turns out that the simulation of im-
plicit learning and intuitive cognition cannot be implemented in a straight-
forward way in the ACT-R framework, which may need to be expanded to 
include abstract representations of statistical regularities (Kennedy and Pat-
terson 2012). A recent model of human cognition involving both the analyti-
cal and intuitive components comes from Helie and Sun (2010).

A wide variety of other cognitive architectures, models, and simulations 
have been developed over the years since the 1980s. Extensive surveys are 
provided by Pew and Mavor (1998), Sun (2003, 2004, 2006, 2007), and 
Zacharias et al. (2008).

2. Clearly an oversimplification, but a useful one for many studies, for example, human 
decision-making (Tversky and Kahneman 1973, 1974).
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The neurosciences stream, shown at the bottom of figure 4.1, focuses on 
the functioning of the nervous system via a number of approaches, including 
analysis of the neuroanatomy though observation, correlation of deficits in 
cognition associated with postmortem brain damage, and through the use of 
modern imaging techniques such as functional magnetic resonance imaging 
(fMRI) (Kandel, 1992).

In the late 1800s, with the development of a staining procedure by Golgi, 
Ramon y Cajal determined that the functional unit of the brain is the neuron 
(illustrated in fig. 4.2),3 which became known as the neuron doctrine (Kandel 
2013). This doctrine was supported by the experiments by Galvani (Galvani 
1791), who conducted electrical stimulation of muscles, and by Helmholtz, 
who later demonstrated that neurons were electrically excitable and that their 
activity affected the electrical states of neighboring neurons (Kandel 2013). 
Much later, the introduction of electron microscopic imaging revealed the 
structure of synapses both on dendrites and on axons and provided a means 
for understanding how neurons communicate and a basis for a possible model 
for learning via synaptic efficacy. Neurons communicating via both electrical 
and chemical means along with experiments demonstrating that the activity 
of one cell not only impacts the activity of connected cells but also facilitates 
a more efficacious impact on those subsequent neurons’ activity (Hebb 1949).

In the last half of the nineteenth century, there was a rapid sequence of 
discoveries that dramatically advanced the neurosciences and laid the basis 
for the concept of functional modules of the brain. The first advance was in 
1861 when Broca, a French neurologist, theorized—based upon his work 
with brain-damaged patients—that functions were located in specific regions 
of the brain (Broca 1865). He demonstrated that the left frontal lobe was re-
sponsible for speech in several patients who understood speech but could not 
talk. And the fact that some of these patients could sing clearly demonstrated 
the speech motor apparatus was fine. Postmortem examination of the brain 
revealed a lesion in the posterior region of the frontal lobe, later named Broca’s 
Area. The next step was taken in 1876 by Wernicke, who described a stroke 
victim who could speak, but the speech made no sense; in effect, he could 
execute speech but not in a comprehensible fashion (Wernicke 1908). These 
works added to the concept of functional localization in the brain, since the 
Wernicke lesions were in a different location than the Broca lesions, as illus-
trated in figure 4.3.

3. Golgi and Ramon y Cajal later shared the 1906 Nobel Prize for their descriptions and 
categorizations of neurons. The neuron doctrine is the principle that neurons are the building 
blocks of the nervous system.
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Figure 4.2. Neuron. (From medicalsciencenavigator.com)

Figure 4.3. Broca’s and Wernicke’s Areas. (From http://www.strokecenter.org/)

Around 1952 Hodgkin and Huxley conducted experiments at the cellular 
level (using the neurons of the giant squid) and developed a nonlinear dif-
ferential equation model of how action potentials in neurons are initiated and 
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propagated (the Hodgkin-Huxley model) (Hodgkin 1952). Barlow later ex-
perimented with the horseshoe crab using optical fibers in direct contact with 
the cornea, delivering light to a single retinal receptor (Barlow 1977). His 
work revealed the use of lateral inhibition and excitation in neural networks, 
setting the foundations for postulating the existence of complex interactions 
among large numbers of neurons and providing a conceptual basis for func-
tional specialization and localization identified in the earlier cited studies.

In the 1950s neurosurgeon Penfield—sometimes called a “neural cartogra-
pher”—revolutionized brain surgery and made major discoveries about cog-
nition, memory, and sensation (Penfield 1950). Applying only local anesthe-
sia, he would probe exposed brain tissue, and, guided by the response of the 
patients, he would decide what parts of the brain could be removed in an at-
tempt to treat epilepsy. During these surgeries, he demonstrated that electri-
cally stimulating human patients produced specific memories. For example, a 
particular stimulation would cause the patient to call out the word “grandma,” 
leading Lettvin to propose around 1969 in his MIT course titled “Biological 
Foundations for Perception and Knowledge” the idea of a grandmother cell, a 
specific location where all the information about a person’s grandmother was 
located (Barlow 1995; Gross 2002). Support for this notion has since been 
provided by the activity of a subset of medial temporal lobe (MTL) neurons 
that fire selectively to “strikingly different” facial images of a specific individ-
ual and even their names (Quiroga 2005). It is not much of a leap to speculate 
that the MTL serves as a repository for people that one “remembers” and 
recognizes when cued. The nervous system does not represent an object by 
the activity of a single cell but rather does so by an ensemble, distributed 
code. This distributed code can involve many neurons and requires complex 
connectivity.

The notion of receptive fields helps bridge the gap between what we know 
about low-level individual neurons and what appear to be higher level, func-
tionally specific regions of the brain. Basically, sensory neurons respond 
(i.e., change firing rates) to changes of the associated stimulus in the neuron’s 
receptive field, so that, for example, a retinal neuron will change firing rates to 
changes in levels of brightness of a visual stimulus, if that stimulus is in the 
receptive field of that cell (Alonso and Chen 2008). Hubel and Wiesel (1962) 
extended this concept by noting that more complex visual receptive fields of 
cells at one level could be formed by taking in the outputs of cells at a lower 
level, with this “bottom-up” signal flow structure replicated all the way down 
to the lowest level sensory cells—in this case, retinal cells. Hubel and Wiesel 
also determined that neurons collectively were connected in a columnar fashion 
(roughly normal to the surface of the visual cortex) with each column tuned 
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to a particular type visual stimulus, as illustrated in figure 4.4. Their discovery 
of the orientation selectivity of cortical columns led to their Nobel Prize 
award in 1981.

L
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Figure 4.4. Columnar organization of visual receptive fields4

There have also been attempts at defining the neural basis for higher func-
tions like consciousness. Most famously Crick and Koch (1990) did ground-
breaking work on an approach based on synchronized oscillations of neuron 
firing. Although there has been considerable speculation about what con-
sciousness is and how it is supported by the physics of the neural substrate 
(e.g. the mind-brain dichotomy), there are no currently accepted models that 
provide a definitive explanation of mechanisms of consciousness—or even of 
its function. This may prove to be the ultimate barrier to developing truly 
autonomous agents modeled after what we understand to be the basic neural 
circuits and capabilities of the mammalian brain: a highly complex and capable 
agent that is unconscious may never satisfy our trust in its capabilities to under-
stand and act under a wide range of unforeseen situations and assigned tasks.

As we have attempted to illustrate, cognitive science is not a new field.5 Many 
have sought to extract information about the relationship between the brain 

4. Kate Fehlhaber, “Hubel and Wiesel and the Neural Basis of Visual Perception.” Knowing 
Neurons, 29 October 2014, https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-
neural-basis-of-visual-perception/.

5. For a review of modern neural science principles, the textbook by Kandel (2013) is regularly 
revised and up to date. For an introduction to the nervous system, see Hilyard (1993); informa-
tion about how neurons communicate, Catterall (2012); early perceptual processing, Hilyard et 
al. (1998); object recognition, Haxby (1991); spatial cognition, Whalley (2013); language, McGetti-
gan and Scott (2012); memory, Montalbano et al. (2013); attention, Posner (2012); executive func-
tion, Dong and Potenza (2015); and emotion and social cognition, Schupp et al. (2006).
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and the mind by observation and experiments. The concept of functional mod-
ules had its original basis in observations that combined neuroanatomy and 
coarse functionality deduced from examples of brain damage. And, up until 
recently, the idea that different regions of the central nervous system are spe-
cialized for different functions has been the accepted cornerstone of modern 
brain science. However, an increasing number of neural scientists believe that 
cognitive functions cannot be understood when considered as separate entities 
(e.g., memory relies both on attention and perception). Much current work is 
thus focused on attempting to define neural assemblies that coordinate activity 
from disparate regions of the cortex (Fuster et al. 2000).

Nonetheless, we believe that the neurosciences can provide us with plau-
sible structures and perhaps even an architecture for understanding cogni-
tion, one that can serve as a basis for developing synthetic analogs for agents 
that can behave in an “autonomous” fashion, working with human team-
mates across a limited set of tasks and situations. The vision is that these 
neurally inspired cognitive architectures will converge to the behaviorally 
inspired architectures developed by the cognitive psychology community 
discussed above and provide a sufficiently robust and detailed framework for 
follow-on autonomous agent development.

4.3 Symbolic Logic and Subsymbolic Logic

The “hard” AI stream shown in the middle of figure 4.1 is so named be-
cause of its strong foundations in symbolic logic and linguistics and the clar-
ity (“hardness”) with which inferences or deductions are made on the basis of 
declarative knowledge (i.e., facts, data) and procedural knowledge (logic and 
processes) for dealing with that declarative knowledge.6 The tag also serves to 
differentiate this branch of AI from the “soft” branch (see below).

One could claim beginnings going back to Euclid’s geometrics proofs and 
Aristotle’s formalized logic, but hard AI got its initial beginnings as a “chal-
lenge problem” when, in 1950, Turing introduced the dialog-based Turing 
Test (Turing 1950) as a way of asking if machines can think, which effectively 
reduced the question to one of assessing input/output language-based behaviors—
that is, “understanding” a human query and responding appropriately. This 
naturally attracted researchers with strong logic and linguistics backgrounds 
as computational capabilities grew and as the underlying hardware and soft-

6. For a more in-depth history of the development of hard AI, see “History of Artificial 
Intelligence” entry in Wikipedia, accessed 9 January 2019, https://en.wikipedia.org/wiki/History 
_of_artificial_intelligence.
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ware demanded just these backgrounds for the development of the underlying 
logic circuits, operating systems, and programming language compilers. In 
1956, AI got its formal start at the Dartmouth Summer Research Project on 
Artificial Intelligence (McCarthy et al. 1955), with discussions covering com-
puter-based intelligence, natural language processing, neural networks, and 
other computer-based approaches to “intelligence.” In 1959, Newell and Simon 
introduced General Problem Solver as a “universal problem solver” program 
based on symbolic processing and logic (Newell et al. 1959). It could solve toy 
problems (or “microworlds” as they were labeled) like the Tower of Hanoi7 
but few “real-world” problems that we would consider of interest today.

However, this groundbreaking work set the stage for much of the AI research 
conducted in the 1960s and 1970s, which was symbolically/linguistically fo-
cused, with formal algorithms used to propagate declarative knowledge and 
generate conclusions (Fikes and Nillson 1971; Schank and Tesler 1969). Sig-
nificant optimism followed early successes, but the first “AI winter” (so named 
because of dramatic reductions in research funding starting around 1975) 
soon followed after a number of research failures due to combinatorial explo-
sions associated with formal logic approaches, a lack of being able to imbue 
machines with “common sense” knowledge and reasoning (McCorduck 
2004), and limited computational/software resources to execute programs, 
among other factors. There were also a number of failures at building robots 
that depended on symbolic processing for functions such as visual percep-
tion, route planning, and locomotion, all to be done in real-time (McCorduck 
2004; Moravec 1988). This led to a “branching off ” of robotics researchers 
using different paradigms for perception and control, epitomized by Brooks’ 
pioneering work in the 1980s and onward (see earlier section 4.1). 

Hard AI found success, however, in the 1970s and 1980s with the develop-
ment and application of “expert systems” (ES), which explicitly separated de-
clarative and procedural knowledge via the incorporation of a production rule 
engine and a separate knowledge base of given and declared (produced) 
knowledge (Hayes-Roth et al. 1983). Successes were initially demonstrated by 
Feigenbaum and colleagues in the 1970s with the AI programs DENDRAL 
and MYCIN for analysis of spectrophotometer readings and diagnosis of 
blood diseases, respectively (Lindsay et al. 1980; Buchanan and Shortliffe 
1984). Later in the 1980s, specialized Lisp-based machines were built for im-
proved programming and processing, and industry invested millions in 
highly specialized ESs for their operations (Dyer, n.d.). These efforts also 

7. For more on the background of this puzzle, see the “Tower of Hanoi” entry in Wikipedia, 
accessed 22 December 2018, https://en.wikipedia.org/wiki/Tower_of_Hanoi.
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drove the need for “knowledge engineers” to painstakingly populate an ES 
with the domain-specific declarative facts and production rules for each ap-
plication, based on interviews with domain experts, incremental development, 
and re-interviews, as the knowledge engineer discovers increasingly deeper 
knowledge constructs/models as the process unfolds (McCorduck 2004; Cre-
vier 1993).

A second “AI winter” followed in the early 1990s, with a significant drop in 
research funding and industry interest in ESs. There were several factors con-
tributing to this, including:

•  The cost of an extensive knowledge engineering effort to deal with “all” 
possible situations occurring in real-world applications and the need to 
update the ES as system changes were introduced

•  Issues associated with “brittle” production rules that effectively “broke” 
when provided with combinations of declarative knowledge rule ante-
cedents that were not anticipated in the initial design8

•  Limitations in dealing with uncertainty and probabilities that characterize 
dealing with the real world, that is, uncertainties in perception and un-
certainties of action outcomes9

•  A lack of “common sense” knowledge about the world, which restricts 
generalization by any domain-specific ES

•  And, perhaps most critically, the inability of ESs to encapsulate knowledge 
that was simply not amenable to semantic encoding, like visual or auditory 
perception, manual control, locomotion, and the like, all critical func-
tions to the robotics and HCI communities

With respect to the “common sense” issue, it is worth noting that a heroic at-
tempt at encapsulating common sense knowledge in a hard AI system10 has 
been going on since 1984 under the Cyc project (Lenat 1998; Curtis et al. 
2005). The goal is to encode, via knowledge engineering, enough declarative 
facts in Cyc’s knowledge base to give the system the same level of common 
sense about the world as is held by a human. Currently, the system is esti-
mated to hold over a million common sense assertions. Unfortunately, little is 
known about the details of the knowledge base, the “engine,” or the overall 

8. The tag of “hard” AI is also associated with the brittleness of ESs, a subset of same.
9. Even though certainty factors introduced by MYCIN (Buchanan et al. 1984), Dempster-

Shafer theory (Sentz and Ferson 2002), and fuzzy expert systems (see below) were introduced 
to overcome these limitations.

10. In this case, one running an engine based on predicate calculus.
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performance of the system, and it is the subject of considerable criticism and 
controversy (see, for example, Davis and Marcus 2015; Domingos 2015).

Although these issues reduced the level of research and broader applica-
tion of ESs (and traditional hard AI systems in general), a wide variety of 
other hard AI-based or related technologies grew, starting around the 1990s, 
including case-based reasoning (Aamodt and Plaza 1994), intelligent tutoring 
systems (Nwana 1990; Freedman et al. 2000; Nkambou et al. 2010), forward/
backward chaining systems (Feigenbaum 1988), constraint-based program-
ming (Mayoh et al. 2013), planning and scheduling systems (Ghallab et al. 
2004; Allen and Hendler 1990), and the like, even though the AI tag was (and 
is) often missing because of past “bubbles” and “winters.” In effect, significant 
hard AI work is still going on, even though the AI tag is often no longer used.

Finally, we note that the cognitive modeling community has benefited 
from the basic work done in hard AI. We noted earlier how the ACT-R and 
Soar cognitive models (Polk 2002; Laird 2012) rely on ES-inspired procedural 
rules and declarative memories. Other cognitive models do as well, including 
the Belief-Desire-Intention (BDI) family of models (Jennings 1993; Rao and 
Georgeff 1995; Georgeff et al. 1998), the GOMS (goal, operator, method, 
selection) model family (John and Kieras 1996), the Executive-Process/Interactive 
Control (EPIC) model (Kieras et al. 1997), and Connectionist Learning with 
Adaptive Rule Induction ON-line (CLARION) (Sun 2002; Sun and Zhang 2006).

The “soft” AI stream, also shown in the middle of figure 4.1, stands in 
contrast to the hard AI approach just discussed, with its focus on reasoning in 
a nonsymbolic fashion and addressing issues of uncertainty. In addition, it is 
identified with “biologically inspired” approaches separate from those associated 
with language.

Predating the Dartmouth Conference noted above, McCulloch and Pitts 
developed computational models of idealized or “artificial” neural networks 
and described, in 1943, how a Turing Machine11 might be implemented with 
such a network, thus providing broad motivation for the eventual development 
of an AI that was inspired by the brain’s basic neural components (Mc-
Culloch and Pitts 1943). In 1947, they demonstrated how ANNs might be 
used to model specific perceptual functions, namely audition and vision, in 
their groundbreaking paper (Pitts and McCulloch 1947), which was theoreti-
cally significant but of limited use in solving practical neural processing prob-
lems. Their work did, however, spur a number of efforts through the 1950s, 
including work by Hebb explaining “associative” or unsupervised learning in 

11. An abstract model of computation based on symbolic manipulation, invented by Turing 
in 1936.
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neural networks (1949), which led to simulation-based analyses of this type of 
“Hebbian learning” by Rochester12 and Holland13 (Rochester et al. 1956). The 
seminal McCulloch and Pitts ideas also inspired many other works such as 
that of modeling frog vision in Wiener’s group at MIT (Lettvin et al. 1959), 
notions for finite automata (Piccinini 2006), and many other efforts that used 
ANNs and their ability to learn patterns over time to model human percep-
tion and cognition.

Rosenblatt’s simple perceptron (1958) was also a significant development 
as it was the first well-formed computational-oriented ANN. The simple per-
ceptron learned by associating a stimulus with a response—an associative 
model, unlike most of those proceeding it. Significantly, the learning ap-
proach with Rosenblatt’s two-layer model modified the synaptic weights in a 
connected network to minimize the difference between the desired output 
and the achieved output, dividing the error among the weights proportional 
to their size—this is the credit assignment problem. However, there were limi-
tations in this approach. Predicting the correct response from a stimulus was 
correct only when the responses were correlated. In 1962, Block published 
two specific findings on Rosenblatt’s simple perceptron that were important 
(Block 1962): (1) the simple perceptron required linearly separable classes if 
it were to achieve perfect classification (the perceptron convergence theorem); 
and (2) if two classes were linearly separable, Rosenblatt’s simple perceptron 
would find the solution. Despite the progress and the findings by Block, MIT 
researchers Minsky and Papert (1969) published findings that demonstrated 
there were several classes of problems single-layered perceptrons could not 
address and then extended their (incorrect) judgment to the multilayer per-
ception (as well as others). These conclusions were likely the cause of a sig-
nificant reduction of funding for ANN research for many years following 
(Anderson 1988).

Despite the conclusions published by Minsky and Papert (1969), other sig-
nificant works in the early 1970s occurred. Anderson (J. Anderson 1972) and 
Kohonen (1972) developed generalizations of Rosenblatt’s perceptron that 
became known as “linear associative neural networks.” Van der Malsburg 
(1973) demonstrated self-organized learning, which also was the first effort to 
directly compare computer simulation to physiological data (Anderson 1988). 
As a result, self-organized learning became an important area in neural net-
works, which took off in the early 1980s. Additionally, Brodie and colleagues 
(Brodie et al. 1978) successfully modeled the eye of the Limulus polyphemus 

12. Designer of the IBM 701 computer.
13. Developer of genetic algorithms, which we discuss later in this section.
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(horseshoe crab) as a linear system, a significant success in modeling a neuro-
physiological system. However, such a model did not scale to larger problems.

Feed-forward ANNs saw an important breakthrough in updating the in-
ternal (or hidden) weights in a network with arbitrary layer depth, using the 
error backpropagation algorithm (“BackProp”), a recursive solution to the 
structural credit assignment problem for multilayered networks. As noted by 
LeCun (1988), Bryson and Ho (1969) had figured out how to do this using 
LaGrange theory applied to layered control problems. The basic approach was 
rediscovered by Werbos (1974) and then again by Parker (1985). But Back-
Prop did not become mainstream in the ANN community until Rumelhart 
and colleagues applied it to pattern recognition problems and demonstrated 
its significant utility (Rumelhart 1986). In 1989, Cybenko demonstrated that 
ANNs were universal function approximators so long as a nonlinear activa-
tion function is used (Cybenko 1989). This is a significant insight validating 
the utility of ANNs in a broad variety of applications.

Other advances in feed-forward ANNs occurred with breakthroughs in 
understanding the “internals” of neural activity. The so-called “spiking neu-
ron,” originating with work by Hodgkin and Huxley (1952), used the precise 
firing times associated with neurons to encode information (Paugam-Moisy 
2006). Previously, temporal data was not well represented in feed-forward 
ANNs, but spiking neurons are an active area of research, even with their 
significant computational challenges.

In 1982, Hopfield published a significant work on neural networks (Hopfield 
1982) often credited with the renaissance of research in ANNs (Anderson 
1988). Significantly, Hopfield treated the network as a state space of activa-
tions for each neuron in the network. The goal was to change the activation 
pattern to minimize the gradient toward an “attractor” state; Hopfield 
achieved this with a recurrent network architecture and a form of Hebbian 
learning, consistent with previous works by others. The significance of Hop-
field’s approach was that he observed that the energy equation he minimized 
was analogous to an Ising model used in statistical mechanics models of mag-
netic spins (Fletcher 2016). This observation had two significant impacts: (1) 
it provided a way to apply theoretical mechanisms to ANNs; and (2) made 
ANNs a legitimate field of study once again, opening the door for participa-
tion in theory development by the physics community.

Ackley et al. (1985) extended the Hopfield network model by using a sto-
chastic state transition approach instead of the traditional gradient descent 
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approach.14 The work by Ackley and colleagues turned to simulated annealing 
(SA) to minimize the error function, an algorithm modeled after the name-
sake statistical mechanical process. Under certain conditions, SA can be guar-
anteed to find a global minimum of the objective function and may obtain a 
lower-error network than the gradient descent form, which only guarantees a 
local minimum.15 Fletcher has since extended SA in two areas (Fletcher 2016; 
Fletcher and Mendenhall 2016); Fast Simulated Annealing (FSA) has been 
introduced by Szu and Hartley (Szu 1987); and Generalized Simulated An-
nealing (GSA) from Tsallis and Stariolo (1996) has been proposed for feed-
forward ANN weight updates. The FSA and GSA algorithms were derived 
from physical models of annealing, which incorporate both a thermal and a 
quantum mechanical phenomenon.16 Both FSA and GSA have been shown to 
reduce training time required and to find lower-error solutions, compared 
with gradient descent. Additionally, GSA brings stronger guarantees of con-
verging to a minimum energy state (Dall’Igna et al. 2004).

Kohonen introduced the Self-Organizing (Feature) Map (SOM) in 1981 
(Kohonen 1981). Kohonen’s SOM (also called the “K-SOM” or the “K-SOFM”) 
is motivated not by the interworking of a cell body and the process by which 
cells fire; rather it is motivated by the projection of the organization of sound 
frequency in the tonotopic map in the auditory cortex and the spatial organi-
zation of sensory control in the somatopic portion of the mammalian brain. 
The SOM is used primarily in data clustering where its supervised learning 
dual, Learning Vector Quantization (LVQ), is used for classification problems 
(Kohonen 1988). Although seemingly not as popular as feed-forward net-
works, theoretical and application-based research in SOMs and LVQs is ongo-
ing with a strong following (Kohonen et al. 1997; Merenyi et al. 2016).

In the 1990s and 2000s, many researchers pursued the development of 
other network forms. These include hybridized approaches using genetic al-
gorithms (GA) to create topology and weight evolving ANNs (TWEANN). 
This includes significant works by Stanley and Mikkulainen (2002) at the Uni-
versity of Texas in Austin, on the neuroevolution of augmenting topology 
(NEAT). Concurrently, researchers have been working with larger and 
“deeper” multilayered ANNs—with many applications focused on audition 
and vision—enabled by three major growth areas in ANN learning: (1) un-
derlying computational and memory increases associated with Moore’s law; (2) 

14. Under certain forms of the state transition probability, it is analogous to the Boltzmann 
distribution and is referred to as a “Boltzmann machine” (Fletcher 2016).

15. When those conditions are not met, only a local optimum can be achieved.
16. The quantum phenomenon included in the models enables the algorithms to tunnel 

through the barriers on the potential surface instead of “hopping” over it as is done in SA.
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vast increases in datasets available for training (e.g., images of cats on the 
web); and (3) algorithmic improvements, especially the ability to train multi-
layer networks layer by layer. Three researchers are notable for developing 
methods of “deep” learning across large datasets: Hinton of the University of 
Toronto, who is now a distinguished researcher at Google (see, for example, 
Hinton et al. [2006]); his (former) student LeCun of New York University, 
who is now leading the AI effort at Facebook (see, for example, LeCun et al. 
[1998]); and Bengio of the University of Montreal (see, for example, Bengio 
[2009, 2016]). An excellent recent summary of the state of the art has been 
provided by these three in LeCun et al. (2016). The many successes of deep 
learning ANNs operating over big datasets over the last few years has re-ener-
gized the community (Edwards 2015; Krakovsky 2015; Anthes 2017). As 
noted by Hinton in Wired magazine (Hernandez 2014):

We’ve ceased to be the lunatic fringe. We’re now the lunatic core.

A very different approach to dealing with reasoning under uncertainty was 
pioneered by Zadeh in the 1960s with his introduction of fuzzy logic (Zadeh 
1965), basically an extension of classical logic (of hard AI) to deal with sets that 
are subjectively defined, as humans do in their day-to-day activities. Thus, in a 
classical sense, a day might be considered warm or cool if the temperature is 
above 70°F or below that, respectively, so that a 68°F day would be a member 
of the cool set and not the warm set. The respective membership function—the 
relative “strength” of a day being in one set or the other—is a simple binary 
function, zero or one. In fuzzy logic, a membership function is defined over an 
interval, say, in this example, from 60° to 80°F, where, as the day’s temperature 
rises, its membership strength in the warm set rises from zero to one, while 
membership strength in the cool set correspondingly decreases. This concep-
tual framework then allows us to deal with continuous variables characterized 
by uncertainty (“noise”) in the following three-stage fashion:

•  Fuzzify these “input” variables into different sets as just described, gen-
erating one or more linguistic variables (e.g., cool, warm) with associ-
ated membership strengths

•  Use some form of a propositional logic to operate on those linguistic vari-
ables, for example, an expert system with a procedural rulebase and in-
ferencing engine, to generate additional linguistic variables desired as 
the linguistic “output” of the system

•  If there are desired continuous “output” variables, recover them via a 
process of defuzzification, a process analogous to the inverse of the initial 
fuzzification
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Fuzzy logic also allows for the combination of other variables (e.g. purely 
linguistic ones) and with extensions can deal with dynamic time series and 
dynamic systems. Although theoretical development and practical application 
of fuzzy logic—also called “fuzzy expert systems”—probably peaked around 
2000, there is still a significant community working in this area, based on the 
publications of the IEEE Computational Intelligence Society.17

Alternatives to this type of fuzzy or, more generally, probabilistic reasoning 
have grown significantly, as application areas initially dealt with in the “hard” 
AI community (i.e., “toy” microworlds) have graduated into domains character-
ized by uncertainty, both discrete and continuous variables, and complex sys-
tem dynamics. The very term probabilistic reasoning gained significant visibil-
ity with Pearl’s (1988) publication describing Bayesian belief networks (BBN). 
BBNs are composed of nodes that effectively represent a system’s states (which 
may be discrete or continuous), and the links between the nodes represent the 
probabilistic, and usually causal, relationships between the node variables. 
These causal relationships are, in turn, represented by conditional probability 
tables, which, when used with Bayes’ theorem,18 provide a means of updating the 
variables associated with one node when another node’s variables change. In 
effect, probabilities or likelihoods can be propagated throughout the network 
when any single node variable is updated, in a fashion that follows the rigorous 
rules of probability theory described by Bayes’ theorem and that supports a sparse 
decomposition of high-order joint probability distributions via limited network 
nodes and links. More practically, the graphical representation of the BBN allows 
for rapid construction of network diagrams by domain experts that under-
stand the underlying causality of key variables in a system. Alternatively, meth-
ods have been developed to “learn” both the structure of the networks and the 
values of the parameters, given a large enough and sufficiently rich dataset to 
drive the learning algorithm (Cheng et al. 1997). BBNs have been used primar-
ily for estimation/diagnosis of a system’s state (i.e., “beliefs”) in a wide number 
of domains, including genetic counseling (Uebersax 2004), behavioral model-
ing (Hudlicka and Zacharias 2005), and failure analysis (Weber et al. 2012). 
Dozens of software packages exist to ease implementation efforts as well.19

Because BBNs deal with probabilistic variables and not with their associated 
objects or entities in a specific domain, BBNs can be limited in their ability to 

17. See IEEE Computational Intelligence Society, https://cis.ieee.org/.
18. A method for using new evidence to update old beliefs, based on probabilities. See, for 

example, “Bayes’ Theorem” entry in Wikipedia, accessed 9 February 2019, https://en.wikipedia.
org/wiki/Bayes%27_theorem.

19. See, for example, “Bayes’ Network” entry in Wikipedia, accessed 9 February 2019, 
https://en.wikipedia.org/wiki/Bayesian_network.
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represent complex domains with multiple and possibly varying entities. Proba-
bilistic relational models (PRM) were developed to overcome these limitations 
via the specification of two templates: a relational component defining the ob-
ject schema (as one would do with a relational database) and a probabilistic 
component, defining the probability distribution of the attributes of any given 
object in the schema (Friedman et al. 1999). This greatly facilitates the “min-
ing” of large relational databases to learn underlying patterns or relationships 
across objects, thus supporting, among other efforts, “big data” processing that 
goes beyond simple object recognition, for example, toward the understanding 
of probabilistic relationships among entities in a given dataset.

One last soft AI technique of note has its beginnings in biologically inspired 
evolutionary theory. Early work in the 1950s focused on the development of a 
variety of computer simulations of evolution, many of which eventually be-
came abstracted, formalized, and popularized as GAs by Holland in the mid-
1970s (Holland 1975). The basic notion is that we have a population of indi-
viduals, each having a different fitness relative to some objective function we 
are trying to optimize. An individual’s fitness, in turn, is determined by its 
gene, which is essentially a vector of parameters to be adjusted for maximum 
fitness. A GA-based solution consists of “evolving” the population over a num-
ber of discrete time steps, where, at each time step: (1) sections of genes are 
“crossed over” to produce new genes, mimicking the process of sexual repro-
duction, and population mixing; (2) some genes are subject to “mutations” 
that change a small number of parameters in its genes, to mimic the random 
introduction of good and bad traits in a population; and (3) based on the gene 
pool, new individuals are created that live or die based on their fitness, so that 
the more fit individuals are available to propagate their genes at the next time 
step. This continues until a sufficient number of individuals are sufficiently fit, 
effectively finding a “soft” optimum in the population space. A wide variety of 
GA variants have been developed beyond this basic approach, including evo-
lutionary algorithms, which provide more structure to the underlying genes 
(Back 1996) and evolutionary programming (McDonnell et al. 1995) and 
many application domains have been explored for optimization (Goldberg 
1989).

Holland continued to generalize the GA approach and push it beyond simple 
“soft” optimization by focusing on populations of individuals interacting, not 
just at the genetic level but as individual “cognitive” agents interacting with one 
another (Forrest and Mitchell 2016). The result was the development of the re-
search area of complex adaptive systems (CAS) (Holland 1996, 2006) in the 
1980s, which evolved into an area generally labeled as “Complex Systems The-
ory,” where large numbers of possibly “simple” entities interact to give rise to 
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complex patterns of group behavior, such as one sees in insect swarms (Bo-
nabeau et al. 1999).

The discussion in this section is not meant to imply that there is a clear 
dichotomy between “hard” and “soft” AI techniques. On the contrary, in several 
instances the boundaries blur, going back many years, including attempts to 
“soften” hard AI approaches with the development of Gaifman’s (1964) proba-
bilistic propositional logic, Zadeh’s (1965) fuzzy logic, Shapiro’s (1983) cer-
tainty factor, and Nilsson’s (1986) probabilistic logic, among others. On the 
converse side, attempts to provide some underlying semantics to the “soft” 
approaches are more recent, with a key publication by Andrews, Diederich, 
and Tickle (1995) that surveyed attempts at merging ANNs with ES-type rule 
sets in three areas: (1) using rules to insert knowledge into ANNs; (2) extracting 
rules from trained ANNs; and (3) refining existing rule sets using ANNs. This 
has motivated significant effort in ruleset extraction of high-performance of 
ANNs of today: for example, DARPA’s current Explainable AI program is 
aimed at providing a human with the “why” behind a decision or recommen-
dation made by “soft” approaches, particularly ANNs that have undergone 
learning beyond the knowledge given to them by their original developers.20 
Strong interest in unifying hard and soft approaches has motivated a text in 
neural-symbolic learning systems (Garcez et al. 2012) and, more recently, a 
review by Russell21 (2015) aimed at “unifying logic and probability” and a plea 
by Booch (2016) for “hybrid AI”: 

So, whereas Watson was symbolic and Alpha Go was neural, I’m a proponent of hybrid AI, 
involving the coming together of symbolic computation and neural networks. (Booch 2016)

4.4 Basis of a Common Framework

Referring back to the original figure that began this discussion, figure 4.1, we 
believe that the different research and development communities shown can 
provide the impetus for the development of one or more “common frameworks,” 
each having dual uses: one to describe human perception, cognition, and action 
at a computational level (i.e., via modeling and simulation), and one to prescribe 
engineering systems designs, that, in limited domains and tasks, can replicate 
human perceptual, cognitive, and motor performance with levels of fidelity ade-
quate to declare them “autonomous” in the sense described earlier in section 1.2.

More specifically, the long histories of robotics and cybernetics have em-
phasized the importance of situated agency and human-system teaming, both 

20. See DARPA, http://www.darpa.mil/program/explainable-artificial-intelligence.
21. Of hard AI fame with the co-authorship of Russell and Norvig (1995).
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from a practical and theoretical standpoint. Both are clearly critical to the 
development of usable and reliable autonomous systems. But in addition, ac-
tive work in the robotics area has identified the need for internalized “mental 
models” of the outside world, a trend that is likely to lead to the development 
of more cognitive structures to move beyond simple sense-and-locomote 
strategies that have dominated many recent autonomous robotic efforts. In 
parallel, the cybernetics stream has, as noted, evolved into a community fo-
cusing on the development of cognitive architectures and models that can 
simulate human behavior in a wide variety of tasks and environments.

In parallel, the cognitive psychology and neurosciences communities have 
also driven the evolution of cognitive architectures, the former from a “top-down” 
behavioral point of view and the latter from a “bottom-up” understanding of 
the neural substrate. Both are advancing the state of the art in developing 
cognitive architectures and computational models that can be used to: (a) in 
a descriptive mode, compactly describe empirical findings; and (b) in a pre-
scriptive mode, support hypothesis-driven experimentation into new areas. 
As a side benefit, discoveries of both communities help drive both the hard 
and soft AI communities, who often look to psychological or neural inspiration 
for their constructs (e.g., expert systems, multilayered neural networks).

Finally, the hard and soft AI communities are rapidly evolving, especially 
in domains that were once considered the province of human intelligence—
specifically, competitive games.22 They are also likely to start converging more 
rapidly, as each community sees potential advantages in the other’s capabili-
ties as we have just described. However, the applications are still very nar-
rowly focused (e.g., image classification, financial trend predictions, “perfect 
information” games, etc.), and some recent successes may be more a function 
of growth in computational capability and training set size (in the case of 
ANNs) than of the introduction of truly revolutionary AI concepts, hard or 
soft. Nevertheless, these techniques, in conjunction with the more “tradi-
tional” computational techniques and methods (e.g., dynamic state estima-
tion and control theory, systems identification, quadratic optimization, 
constraint-based programming, etc.), are likely to form the key to effective 
and efficient computation of any behavioral function (human- or machine-
based models) that we choose to implement in the foreseeable future.

We see all of these communities as key to the development of proficient and 
trustworthy autonomous systems, in the sense that we have discussed those 
terms earlier in chapters 2 and 3. Bringing them together will necessitate 

22. For example, IBM’s Deep Blue for Chess (McPhee 1997), Deep Mind’s AlphaGo and 
AlphaGoZero for Go (Silver et al. 2016, 2017), and Libratus for Texas Hold’em (Maetz 2017).
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common frameworks to bridge the gap across communities, support the de-
velopment of a common language to describe similar and related concepts in 
the different fields, and provide the foundation for developing autonomous 
systems in the future. As we noted earlier, we believe the time is right to reach 
across these communities and begin the effort to develop a common framework.



Chapter 5

Framework and Functions

In the previous chapter, we described the convergence of a number of di-
verse research and development communities in the cognitive sciences and 
engineering application areas that have far-reaching implications for the de-
velopment of future ASs. As we noted, all of these communities could benefit 
from the development of one or more “common frameworks” that would fa-
cilitate not only better communications across communities but also a trans-
fer of concepts, models, and computational representations, accelerating our 
understanding of existing systems and supporting the development of new 
ones. More specifically, if we are successful, a common framework could help 
us accomplish the following:

•  Identifying the fundamental structure common to most or all autono-
mous systems in terms of the internal component functions, their rela-
tionship to each other and the environment, the principles governing 
their design, and overall control-flow and data-flow

•  Finding a place in the autonomy “universe” for those working subsets of 
the general problem (e.g., data fusion, image classification, path plan-
ning, motor control, etc.) and providing connectivity to others working 
complementary subsets of the problem

•  Helping develop a unifying “science of autonomy” underpinning the 
thousands of “one-offs” we now have in the engineering community

•  Separating functionality from enabling technologies so that architecture 
design can go on in parallel with technology development

•  Pointing to where the S&T community needs to invest to develop “miss-
ing” functionalities and/or improve technology capabilities

•  Dealing with the issue of meaning making and the need for a common 
frame or context

And, in the longer term:
•  Serving as the foundation of a common open systems architecture (OSA) 

to encourage reuse of developed software modules across applications 
and domains
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•  Supporting interoperability across DOD1

As we noted earlier, we believe the time is right to begin developing a com-
mon framework.

We note that we have used the word “framework” as the title of this chapter 
to indicate a rather looser notion of an architecture—one that is focused more 
on broad functions rather than on detailed component diagrams, such as one 
might think of in terms of, say, software architectures. The goal is to think in 
terms of the functionalities needed to provide the autonomous system with 
the task proficiencies, elements of trust, and behavioral flexibilities described 
in the earlier chapters, particularly if those functionalities/attributes can be 
generalized across domains and applications. We begin with a brief discussion 
of some broad considerations for a framework (section 5.1) and then illus-
trate this notion with a “composite” framework based on concepts drawn 
from a number of the communities just discussed (section 5.2). We then de-
scribe detailed component functionalities within the framework, along with 
promising approaches to implementation (section 5.3). We close with a brief 
discussion of “what’s missing” from this given framework to motivate further 
research (section 5.4).

5.1 Considerations for a Framework

There exists a number of architectures, models, and even development 
toolsets that could serve as a starting point as a common framework for de-
veloping autonomous systems across a number of communities. However, we 
believe (and have argued in the previous chapter) that the best starting point 
is one grounded in the many cognitive architectures that have been developed 
to describe human behavior and performance, simply because if they are suf-
ficiently accurate in a descriptive sense, they are likely to also be very useful in 
a prescriptive sense in guiding the scientific and engineering development of 
synthetic autonomous systems that perform on par with humans, likely satis-
fying our proficiency considerations at a performance level. Equally impor-
tant, the potential similarity provided by common human and engineering 
frameworks motivates the development of similar underlying behaviors, 
likely satisfying many of our trust considerations at a behavioral level. We are 
thus motivated to look at cognitive architectures and models as inspiration 
for a framework.

1. For example, Air Force UAVs conducting ISR missions for Navy Attack unmanned un-
dersea vehicles (UUV).
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Even when we limit our scope to cognitive architectures that can be instan-
tiated as models in a computational environment—as opposed to qualitative 
models that provide little guidance to the engineer trying to develop an 
autonomous system—there still exists a wide variety of architectures and a 
large number of computational models, given the long history of research in this 
area cited in the previous section. Extensive surveys have been provided by Pew 
and Mavor (1998), Sun (2006), Ritter et al. (2003), and Zacharias et al. (2008), 
including a comparative table of a number of cognitive architectures hosted 
online by the Biologically Inspired Cognitive Architecture (BICA) Society 
(http://bicasociety.org) and reviewed by Samsonovich and colleagues (Samso-
novich et al. 2010). A more recent listing of about 40 cognitive architectures is 
given at https://en.wikipedia.org/wiki/Cognitive_architecture. Architectures 
can provide “end-to-end” functionality covering perception, cognition, and 
action (Thelen and Smith 1996; Cassimatis et al. 2004) or they can focus only 
on cognition (e.g., early ACT-R models; Anderson 1983); they can be func-
tionally structured (e.g., SPAUN; Eliasmith et al. 2012) or unstructured (e.g., 
NARS; Wang 2006); they can be symbolic (e.g., ACT-R; Anderson 1983) or 
subsymbolic, that is, connectionist (e.g., CLARION; Coward and Sun 2004) 
or a hybrid of the two (Sun 2006, 2010); they can incorporate learning (e.g., 
Soar; Laird 2012) or not (e.g., 4D-RCS; Prokhorov 2008); and finally, they can 
control processing (or attention or activation) in a centralized fashion (e.g., 
Soar, ACT-R) or in a decentralized fashion (e.g., Google DeepMind; Graves et 
al. 2014).

What we propose here is an abstract framework that provides “end-to-end” 
functionality that is functionally structured rather than unstructured, that 
makes no commitment on symbolic vs. subsymbolic processing, and which 
incorporates learning. It is deliberately engineering focused with a strong 
“dataflow” orientation that has its basis in a cybernetics view of the world; 
processing control is not explicitly represented, nor, in fact, is “goal genera-
tion,” likely a key consideration if we are to eventually develop autonomous 
systems with initiative and inventiveness. There are many other arguments 
that could be made about the framework’s shortcomings,2 most notably about
its functional dataflow orientation, and the difficulty of reconciling that choice 
with a looser, nonfunctional approach provided by, say, nonpartitioned rule-
based systems3 or distributed ANN structures.4 Nonetheless, we put this forth

2. And we address some of these in greater detail in section 5.5 below.
3. For example, where declarative knowledge is not even partitioned from procedural knowledge.
4. For example, where a layer’s “function” in a multilayered network is not even defined, if 

ever, until after learning stops.



144 │ AUTONOMOUS HORIZONS

as one example of a framework that may be able to bridge the gaps across the 
several communities we noted in the previous section and serve as a basis for 
further development of truly autonomous systems. At the very least, it pro-
vides us with an integrated framework for discussing the functionality an au-
tonomous system needs to be proficient, trustworthy, and flexible in future 
operational scenarios.

5.2 Example Framework

Figure 5.1 illustrates one of many frameworks that we might consider. Fig-
ure 2.1b earlier showed a single autonomous system interacting with an “out-
side world” and a human teammate via an HCI; the figure below effectively 
provides an “under-the-hood” view of the autonomous system central to that 
earlier figure. Thus the “outside world” cloud elements of figure 2.1b drive the 
input sensors shown on the left side of the figure below, and the effectors on 
the right-hand side of the figure below drive the cloud elements of figure 2.1b 
in a closed loop, providing us with the desired attribute of “situated agency” 
described earlier. There is a similar correspondence between the two HCI 
blocks of both figures,5 providing two-way interactions between the autonomous 
systems and the human teammate, who is not illustrated in this “under-the-
hood” view.

Proceeding in a left-to-right fashion, we see that sensors and databases drive 
(i.e., provide inputs to) a sensor/data fusion block,6 which drives a “layer” of the 
framework called the situation assessment and decision-making (SADM) layer, 
whose outputs eventually drive an effectors block so that the autonomous sys-
tem can effect or take action upon the outside world, again closing the loop on 
the outside world “cloud.” A quick look inside the SADM layer shows a very 
stylized, staged set of processes, where one block’s output serves as another 
block’s input; we will discuss this shortly, but for now it serves as a simplified 
representation of many of the basic functions that we believe an autonomous 
system must accomplish to be proficient in its performance.

Proceeding in a right-to-left fashion, we see that the SADM layer also drives 
information-seeking functions via sensor management and data mining 
(“collection management” in ISR terms), learning activities, and HCI functions—
relations we will expand upon shortly.

5.  Figure 5.1 expands on the HCI theme by including “collaborative environments” (CE) 
to allow multiple humans to interact with the autonomous systems (and with each other).

6. “Block” is used interchangeably with “function” in this section, given this framework’s 
inherent “block diagram” rendition.
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Proceeding in a top-to-bottom fashion, the HCI/CE block supports interac-
tion between human teammates (at top of diagram, not shown) with the sen-
sor/data fusion block as well as with all of the blocks in the SADM layer, 
providing for a closer look into the inner workings of the autonomous system 
by its human teammate(s) at all stages of processing. Also shown are inter-
actions between blocks in the SADM layer and a learning/adaptation layer, 
which provides for learning across all functions comprising this layer. The 
learning layer also drives sensor/data fusion and serves to update the domain 
knowledge layer. The domain-specific knowledge base layer contains knowledge 
needed by the autonomous system, whether it is structural/parametric knowledge 
needed by an ANN for image processing, dynamic model-based knowledge 
about a specific platform, “declarative” knowledge about a given mission, 
“procedural” knowledge about a specific role/task, etc. Finally, as illustrated, 
toolsets and technologies underlie all of the other layers, supporting a variety 
of implementations of the functions/processes illustrated. We now describe 
the components illustrated in the figure, what functionality they provide, and 
possible technical approaches for their implementation.

Figure 5.1. Example autonomous systems framework
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5.3 Component Functions

In this section, we describe the component functions within the example 
framework just introduced, block by block, along with promising approaches 
to implementation. We also note, where appropriate, how the given func-
tionalities can support the three major behavioral dimensions needed for 
autonomy: the properties of proficiency, the tenets of trust, and, especially, the 
principles of flexibility.

We start left-to-right with databases (section 5.3.1) and sensors (5.3.2) and 
proceed to sensor/data fusion (5.3.3), situation assessment and decision-
making (5.3.4) and effectors (5.3.5). We then go top-to-bottom, starting with 
human-computer interfaces and collaborative environments (5.3.6) and pro-
ceed to learning and adaptation (5.3.7), domain-specific knowledge bases 
(5.3.8), and toolsets and technologies (5.3.9).

5.3.1 Databases

The database block represents the long-term recall and real-time working 
memory of the autonomous system. Across multiple heterogeneous sources, 
using content-optimized data structures and indexes (Manolopoulos et al. 
2000), the database function provides the AS with time- and space-efficient 
information storage and retrieval to support long lead-time and real-time de-
cisions.7 Data stores may be organic to the AS, that is, resident or on-board; 
remote from the AS, such as part of a “cloud” (as illustrated in figures 2.1a, 
2.1b, and 2.1c and as described by Deptula [2006]); or resident in the on-
board stores of other platforms (Baldwin and Talbert 2005).

Operationally, inputs to the database function are of three fundamental 
types: data flows, data requests, and data manipulation:

•  Data flows (not shown in fig. 5.1) are sensor, user, and internal system 
input streams representing time-stamped events or object states. In the 
process of input, data can be clustered, correlated, and stored in highly 
structured or unstructured collections. Low-loss/no-loss compressive 
sensing techniques applied to data streams enable high density storage 
(Eldar and Kutyniok 2012), though with added computational cost and  
operational degradation (Hytla et al. 2012). Beyond compression, autono-
mous operations require trusted, responsive, predictive models for deciding 
what data to keep, compress, or let “fall the floor.” Research is required to 

7. The state of the art in heterogeneous data indexing and retrieval is largely attributable to 
industry leaders IBM, Oracle, and Google and their operationalization of decades of work in 
academia.



FRAMEWORK AND FUNCTIONS │ 147

develop these models as a function of time, resources, and mission objectives. 
Further, research in adaptive interfaces and human-computer interaction 
conditioned on cognitive loading will be essential for time-critical, human-
machine teaming functions in an AS (Blaha et al. 2016).

•  Data retrieval requests (queries) are data store accesses spanning pos-
sibly multiple heterogeneous data stores (Bonnet 2000). Supporting 
broad flexibility in cognitive load and task partitioning, queries can be 
user-generated, system-generated, or standing subscriptions. Data ac-
cesses may also be triggered by scheduled or anomalous events. For 
example, in an ISR-supporting system, an AS can query the database(s) 
for static, dynamic, historical, or graphical products in response to the 
detection of an unrecognized ground object or activity. In full autono-
mous modes, an AS may query system logs and event histories to control 
on-board or off-board system resources, with or without operator inter-
vention. This function illustrates still-to-be-achieved “trusted automation,” a 
research area needed to enable complex autonomous warfighting systems 
to act with lethality or put humans at risk. 

•  Data manipulation inputs are directives to a database system to, for 
example, reconstitute indexes, adjust the degree of compression, or cluster 
contents physically or logically according to mission-relevant, possibly 
dynamic relationship structures (schemas). Dynamic database manipu-
lation is an area ripe for research to reduce the cognitive load on humans 
teaming with the system and balance system resource task loading. Em-
ployed in an autonomous system, advanced manipulation inputs could 
invoke the execution of downstream analytical applications, such as extract-
ing object movement tracks from stores of video or imagery sequences. 
Many such stand-alone imagery analytical functions exist (see, for 
example, Blasch et al. 2014) and are recognizable in DARPA’s Insight 
program (http://www.darpa.mil/program/insight) and OSD’s Data-to-
Decisions initiative (Schwartz 2011). However, additional research is re-
quired to ensure trusted, platform-specific, mission-scalable performance 
of these embedded techniques. This is especially critical when they are 
invoked during closed-loop autonomous system operation. 

In the diagram, we show outputs from the data stores as serving the down-
stream functions of the sensor/data fusion block, which could be used to support 
a variety of AS functions—for example, for a platform-based ISR mission, map 
data for navigation, or, for a rapid-response cyber defense mission, a catalog 
of previously observed attack maneuvers. In addition, outputs could include 
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reactive responses to intentional queries—for example, summarized and cor-
related system health event trends or time-space-geo-referenced location his-
tories of a cluster of related objects. Triggered outputs could also support a 
rapid-response cyber defense mission by automatically generating likelihood 
estimates of attack source and path from a model based on previously ob-
served attack vectors (Simmons et al. 2014). Intuitively, engagement with a 
smart database system should enable task, peer, and cognitive flexibility as the 
mission demands; in the cyber defense realm, system-generated alerts would 
be accompanied by access to a user-readable explanation of the events that 
prompted it.

Of course, the outputs from, say, a data-mining exercise conducted by an AS 
could be the penultimate output of the AS—for example, the use of clustering/
classification algorithms to identify “groups” within the data or the use of as-
sociation rule learning to identify underlying relations between variables (Ag-
garwal 2015). A vibrant community within the ACM focuses on just this area: 
the Special Interest Group (SIG) on Knowledge Discovery and Data Mining 
(http://www.kdd.org/), a group that has been partly responsible for the current 
excitement regarding “big data” mining with machine learning algorithms.8 
Though typically a manually supervised effort, an AS-supervised effort would 
have a number of interesting applications in the ISR and cyber communities.

As the examples above suggest, the line begins to blur between “smart” 
data storage/access functions and downstream analytics functions. While a 
robust body of data analytics R&D supports a broad spectrum of industrial 
and military applications, lines of inquiry in data analytics scalability, trust-
ability, and transparency for autonomous systems remain underserved. 
DARPA’s “Explainable AI” program9 and Office of the Director of National 
Intelligence’s In-VEST initiatives10 are positioned to tackle some of these chal-
lenges, but follow-on efforts should extend them to autonomous applications.

5.3.2 Sensors

The sensors block serves as a general placeholder for three separate classes 
of sensors:

•  Those driven by aspects or entities of the external environment associ-
ated with the “cloud” of figure 2.1. On an aircraft platform, say, this 

8. See, for example, the paper by Levine of Andreessen Horowitz, http://a16z.com/2015/01/22 
/machine-learning-big-data/.

9. See DARPA, http://www.darpa.mil/program/explainable-artificial-intelligence.
10. Intelligence Ventures in Exploratory Science and Technology, https://www.dni.gov/index 

.php/resources/in-vest.
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might include environmental sensors like an altimeter, a passive sensor 
like an electro-optic camera, or an active sensor like an active electroni-
cally scanned array (AESA) radar.

•  Those driven by components or subsystems directly associated with the 
AS itself. Again, on a platform, this might include an engine RPM monitor, 
a temperature monitor supporting internal system health assessment, or 
a CPU computational load monitor.

•  Those associated with explicit communications from entities outside of 
the AS. Again, on a platform, this could be a tasking update from a 
ground control element or a flight formation coordination update from 
a swarming teammate.11

Clearly, there exists a wide variety of sensors spanning many modalities and 
levels of complexity, ranging from simple transducers of physical aspects of the 
environment (e.g., an angle-of-attack sensor) to complex subsystems of their 
own (e.g., an electro-optic/infrared [EO/IR] sensor ball on a UAV. We wish 
only to note that, at a sufficiently high level of abstraction for AS consider-
ations, a sensor may be regarded as an element that “transduces” one form of 
energy into a suitably encoded electrical signal that can be subsequently pro-
cessed by the AS. In addition (and this is shown on the diagram), we assume 
that some or all sensors can be “managed” in some fashion—for example, a 
platform-associated EO/IR sensor ball can be aimed or its field of view changed 
or its sensitivity adjusted to meet AS tasking needs; likewise, a distributed sen-
sor network associated with a cyber intrusion detection system (IDS) might 
have its configuration changed depending on the operating mode of the IDS. 
This is not simply a “nice to have” feature in a sensor but can be critical to sup-
porting “active sensing,” in which a sensor interacts with its environment over 
time (e.g., as a camera might maintain track on a moving target) to gain a 
richer representation of the signal or object being sensed (Bajcsy 1988).12

At an abstract level, then, inputs to the sensors block consist of (typically) 
physical/electromagnetic variables in either the outside environment sur-
rounding the AS or in the internal environment within the AS. Additional 
inputs come from communications to the AS from outside entities as well as 

11. We have “bundled” communications channels as part of the sensors (and effectors) 
blocks for expository simplicity, recognizing that the C2 communications aspects may very 
well deserve their own explicit representation in the proposed framework at some later point. 
For the discussion here, however, we will stand with a simpler representation format.

12. This is not to be confused with “active sensors” in which a sensor may generate a signal 
to interrogate its environment, like RADAR or LIDAR. Active sensing can use active or passive 
sensors to make rich inferences of its environment.
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sensor management signals from inside the AS. Outputs from the sensors 
block are either transduced signals or communications, both available for 
follow-on processing by other AS modules.

Sensors are a key autonomy enabler since they provide the foundational 
information used by an AS to understand and react to the environment, as 
we have outlined earlier in section 2.1 on situated agency. For example, in 
platform-associated electronic warfare/electronic attack (EW/EA) context, 
changing the sensor mode (such as the waveform), the platform flight path, 
or the EW jamming based on the local environment will provide a core ca-
pability for adapting to red force countermeasures. Evolution of sensors—
whether RF or optical—has come a long way from the analog-based systems 
of the past, and the very flexible and fast digitally based systems used today 
could benefit significantly from AS-based agility in hostile environments 
(Kirk et al. 2017).

Sensor interaction with the environment can be facilitated by machine 
learning and information theoretic techniques that can provide high-accuracy 
closed-loop understanding of the situation. This capability—on either a plat-
form or in a ground-based facility—enables operation of sensing systems to 
produce ISR products in complex and perhaps contested environments. 
Jointly interactive estimation and control techniques can enable an AS to de-
termine the quality of the sensor information generated as a function of, say, 
the sensor mode or terrain geometry and then provide the capability to im-
prove that information through sensor mode/parameter settings and/or or 
controlled flight path changes. Changing sensor parameter settings—such as 
sensitivity, field of view, waveform output countermeasures, and selectivity—
can broaden sensor performance across operating conditions while adding to 
the task and cognitive flexibility of the AS (Anaya et al. 2014).

Miniaturization, performance improvements, and cost reductions of of-
fensive, defensive, and internal sensors have been marching forward for de-
cades as a result of new metamaterials for antennas, sensor digitization, and 
advancements in low-noise amplifiers. Capabilities such as passive geoloca-
tion of threat emitters, active radar, and countermeasures systems, which 
used to require complete aircraft to carry the associated sensors and proces-
sors, now occupy a fraction of the physical space and use significantly less 
power (Langley et al. 2011).

Because of these trends, the deployment of platform-based sensing systems 
can range from the exquisitely simple to the traditionally complex. Risk can 
now be transferred to less expensive forward-deployed systems to improve 
situation understanding of the adversarial environment and serve to cue more 
discriminatory (but more expensive) systems that are not placed in harm’s 



FRAMEWORK AND FUNCTIONS │ 151

way. In addition, AS-based techniques for coupled sensor management and 
platform control for mission execution and weapons delivery can now be better 
synchronized for greater mission effects—for example, improvements in de-
tection, geolocation, identification, and tracking of mobile target/threats em-
ploying concealment, camouflage, and deception (CCD) activities. Likewise, 
the use of AS-based techniques for coordinating distributed, networked, and 
multiphenomenology sensors has the potential for revolutionizing traditional 
single-sensor, single-platform ISR collection practices.

Sensors are also critical to AS health management, detecting drops in sub-
system performance and outright failures. Once detected and identified, in-
ternal failures can be mitigated by accounting for a subsystem’s contribution 
to overall mission success and deciding on a prioritized reallocation of re-
sources, such as power, cooling, processing, or even mission planning. For 
example, during a threat engagement, one might balance the use of high-
power EW countermeasures against executing a high-g evasive maneuver. 
Clearly, both internal and external sensor interplay will be critical in the in-
ternal resource management of the platform subsystems as well as the external 
management of the platform’s trajectory, its vulnerability to adversary weapons, 
and its own weapons capabilities (Schumann et al. 2013).

Digital processing has ushered in a new era of selectivity, accuracy, and 
precision for sensing systems, and new commercial processing hardware and 
advanced digital software techniques will accelerate the growth of next-
generation systems. Flexibility provided by digital architectures also enables 
the implementation of a suite of sensors ranging from the exquisite but 
expensive to the simple but expendable. In addition, the maturation of multi-
function sensor systems will enable the sharing of significant portions of the 
processing chain to perform, in parallel, diverse tasks such as radar, data links, 
electronic support measures and countermeasures, which, in turn, should 
support distributed and risk-variable sensing. Finally, new digital processing 
techniques for sensor product formation will continue to remain a rich field 
of research as new machine learning techniques are incorporated (see, for 
example, section 5.3.7). Orchestrating the capabilities of these enhancements 
will call on the many of the AS capabilities outlined in this section (e.g., sen-
sor fusion, SA, planning, execution monitoring) but will also provide the AS 
with the critical real-time, sensor-based information needed to operate effec-
tively in its environment (Chabod and Galaup 2012).
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5.3.3 Sensor/Data Fusion

The sensor/data fusion block provides the first step in processing available 
data from the sensors to generate knowledge and higher levels of information 
needed by the AS for mission and task understanding.

5.3.3.1 Sensor Processing and Fusion. The sensor processing and fusion 
function refers to a process by which digital representations13 of the sensed 
environment, created via multiple sensors or classes of sensors, are processed 
independent of each other and then are combined or “fused” to infer or esti-
mate information concerning the sensed environment. Figure 5.2 illustrates 
the overall construct of both sensor processing and sensor fusion, each of 
which can have a series of processes that can be application-independent or 
application-dependent. As shown, sensor processing can occur internal to the 
sensor or external to the sensor. Sensor fusion can occur either as an “up-
stream” function working on externally processed sensor data (black lines); 
or as a “near sensor” function working on internally processed sensor data 
(gray lines) (Zheng 2015). 

Figure 5.2. Example processing chain for multiple sensors that sense different as-
pects of the same environment and ultimately are used to produce a fused result

13. As described in section 5.3.2 above, the front end of a sensor is analog and typically 
converts (or transduces) a physical variable into a voltage “signal” that then undergoes an 
analog-to-digital conversion, sometimes outside of the sensor, but, increasingly commonly, 
inside the sensor. The result is a digital representation of the sensed environment for that sensor’s 
transduction modality and can be numerical, categorical, textual, or any mixture of the three 
and can also be dynamically varying over time.
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Internal sensor processing is driven by the type of sensor. For example, im-
aging sensors require different internal processing than audio sensors. For 
imaging sensors, internal sensor processing could include adjusting the inte-
gration time to change the amount of photons the focal plane array can collect, 
which could be followed by an analog-to-digital conversion, which is then 
followed by bad pixel mapping (bad elements in the focal plane array) and 
then a bad pixel signal re-estimated using, for example, bi-linear interpola-
tion. These processes can be chained together to meet the needs of the sensor 
and the application, and some may be required and some may be optional. In 
hyperspectral remote sensing, some sensors attempt to determine the center 
wavelengths for each of the spectral bins by locating known atmospheric ab-
sorption features, adjust for propagation loss in the optical chain, stitch the 
results between the two primary focal plane arrays (one that captures visible-
to-near-infrared energy and one that captures near-infrared-to-shortwave 
infrared energy), and then correct for atmospheric conditions. In this example, 
atmospheric correction might be optional. These same processing steps could 
occur off the sensor.

External sensor processing is driven by the application. Whether a series of 
chained processing steps occurs on the sensor or off the sensor depends on 
the maturity of the technology and the application. Much of the processing 
external to the sensor is also chained together, and some processing tech-
niques are common irrespective of the application. Processing off the sensor 
includes signal denoising, signal compression, and prototypical machine 
learning tasks such as feature extraction, classification, and clustering. To be 
more specific, consider change detection, which takes a reference and compari-
son image and preprocesses them, performs change detection, then performs 
an assessment that terminates after reporting potential changes between the 
image pairs (Vongsy et al. 2009). The images are acquired at different times, 
from different views, and possibly from different sensors and need to undergo 
atmospheric compensation, coincidence image matching, spatial and spectral 
interpolation, and illumination correction before change detection. The 
change detector can be as simple as image differencing but often includes 
more sophisticated techniques such as the generalized likelihood ratio test 
that builds in correction for misregistration (Vongsy et al. 2015) and image 
parallax (Vongsy et al. 2012). Assessment uses the change detector output and 
applies post processing to identify likely changes from the reference image to 
the comparison image (Vongsy and Mendenhall 2010). All of this processing 
is external to the sensor and chained together. In many cases, as with change 
detection, the processing chain terminates after the sensor processing tasks 
are finished, and the results are provided to the end user or system. However, 
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improvements can be made by integrating the results from sensor processing 
in a meaningful way. This is the goal of sensor fusion.

Sensor fusion generically refers to a process by which data from several 
sensors are combined or “fused” in some meaningful way to produce some-
thing more than could be produced by any one sensor alone. More specifi-
cally, the type of fusion processing of interest is sensor data fusion, or com-
bining the outputs from the several sensors and not combining the sensors. As 
with many topics, the literature appears to vary on the use of the term fusion. 
Some use “fusion” and “combining” synonymously. Some use “integration” to 
define “fusion,” and vice versa for others. The action of combining is a special 
process in the processing chain presented above in figure 5.2 and is more than 
just a process like denoising and compression. The first definition of fusion 
was given in 1991 by the Joint Directors of Laboratories (JDL 1991) then re-
vised in 1997, which is the most accepted definition of data fusion (Hall and 
Llinas 1997): “Combining things for better results.”14 For example, one could 
combine the video of a person speaking with the audio of what is spoken for 
better transcription of the person’s speech, by combining video-based lip-
reading results with audio-based speech-to-text conversion results. The ef-
fectiveness of both would depend on the contents and quality of the associ-
ated databases (Noda et al. 2015). If video-based affect is also interpreted, 
then further refinement of the transcript might result by the inclusion of 
inferred emotional state of the speaker (Picard 1997). This kind of multimodal-
ity fusion is very much like what humans do naturally in a variety of situa-
tions, including shape perception (Krauthamer 1968), self-motion perception 
(Zacharias and Young 1981), or when enjoying the illusion of a ventriloquist’s 
act (Soto-Faraco et al. 2002).

Fusion can occur at the signal, feature, or decision level. Regardless of 
where the fusion occurs, one of the main challenges is the need to weight the 
various inputs and combine them appropriately for the task at hand. Hence, 
either an implicit or explicit performance model is needed for each sensor (or 
INT) as a function of the current context or set of operating conditions. As a 
trivial example, the performance model would suggest additional weight on 
an infrared (IR) sensor during the nighttime condition verses a signal coming 
from a sensor operating at a visible wavelength. In general, battlefield condi-
tions make these performance models much more complex than the example 
but nonetheless extremely important for fusion. As can be surmised, the perfor-
mance model allows the fusion algorithm to weight which sensor is providing 
the more accurate call given the current situation. The performance model is 

14.  See appendix C for a more formal definition, discussion, and examples.



FRAMEWORK AND FUNCTIONS │ 155

also central to choosing a sensor and tasking the sensor to make the necessary 
additional measurements required to make mission critical decisions.

Another challenge of fusion is the need for a common representation and 
the need to fuse at multiple levels of abstraction, to include control levels. In 
many cases, the representations are reasonably clear as the sensors are of the 
same type (e.g., various imaging sensors). In such cases, the simplest approach 
to fusion concatenates the sensor features, but sometimes this leads to a reduc-
tion in performance (Mura et al. 2011) because the features can be redundant, 
or there is not enough labeled to accommodate the increase in dimensionality, 
or in fact the representation is not the right one. Such a simple approach likely 
does not accommodate the fusion of disparate information sources such as 
text, imagery, signals, cyber, and so on. For these disparate information 
sources, the common representation is not at all clear; however, representa-
tion is central to the ability to fuse key sources of information. A particularly 
promising approach to fusion is using graph-based feature fusion (Liao et al. 
2015), which includes the data mining necessary for the appropriate processing 
of the streaming sensor data.

Addressing the challenges fusion presents, along with those associated 
with the use of machine learning and adaptive sensor management algo-
rithms, is one that can be aided by simulation. The number of situations that 
arise in combat and the number of information sources that need to be com-
bined are far greater than our ability to gather measured data to represent all 
these combinations. In addition, the fusion processes and the sensors that 
feed them need to interact with, adapt, and stimulate the environment to per-
form the mission. Hence, given the combinatorics of the moving parts and 
the need to interact with the environment including the adversary, simulation 
is vital to the development and test of any fusion technology. However, there 
are challenges associated with the simulation technology as well. Fundamental 
to effective simulation is the fidelity verses computational complexity trade-
off in representing and controlling the sensors, platforms, environments, and 
adversary elements. It is likely that the simulation environment and fusion 
algorithms will share many of the technical challenges delineated above and, 
therefore, the concurrent development of both the fusion algorithms and the 
simulation environment may be the most effective way forward.

The three principles of flexibility are directly applicable to sensor processing 
and fusion; some of the key considerations are as follows:

•  Task flexibility: A key attribute for the AS will be the ability to change the 
task at hand depending on the current state and the predicted state, 
based on existing performance models embedded in the sensor processing 
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block. Simulation will be important as training trials can deliberately 
expose the AS to conditions outside the bounds of its models to teach it 
to adapt or, importantly, to abandon the current task to perform a higher 
payoff task or, perhaps, to multitask to achieve important mission objec-
tives. Common representations will be vital not only for combining the 
variety of sensor information available but also for achieving task flexibility.

•  Peer flexibility: Performance models/functions are central to making dis-
tributed fusion decisions to achieve mission objectives. In addition, simu-
lation of multiple scenarios will allow AS teams to learn to adapt to differ-
ent conditions and learn how to rely on each other and adapt to the 
adversary, the environment, and potential attrition of their teammates. 
Common representations will be necessary for a common situation aware-
ness, based on an ability to jointly reason and fuse distributed sensor in-
formation at the signal, feature, and decision level.

•  Cognitive flexibility: Different situations will require different represen-
tations, different fusion approaches, and different solution strategies. 
Cognitive flexibility will address such issues as: what sensors should be 
tasked to provide an actionable decision, at what level should they be 
combined, and how should they be weighted? These questions will not 
yield to a single algorithm or single processing strategy, so there will be 
a need to adaptively change representations and decisions based on in-
ternally held performance models. In addition, an ability to simulate 
multiple scenarios and environments will be needed to develop and test 
the system’s cognitive flexibility under different situations.

The development of fusion systems will build on the underpinnings of statis-
tics and machine learning to combine information rigorously and reliably for 
key mission decisions. The challenge, however, is to determine how to use 
these technologies to represent the large space of dependencies driven by the 
interaction of environment, sensor, and adversary states. Without the ability 
to model these dependencies, the combination of sensor information, the 
ability to predict next states, and the ability to prescribe an action will con-
tinue to rely solely on human judgment, thus undermining the autonomy vi-
sion. In addition to modeling these dependencies via performance models, 
however, the need to develop robust systems that can react to situations that 
have not been modeled is also key to developing effective ASs. Common repre-
sentations that not only combine disparate information but also provide a 
common situational awareness will be paramount. Finally, the use of simula-
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tion is the only viable method foreseen to both develop and evaluate fusion ap-
proaches and ASs’ ability to achieve task, peer, and cognitive flexibility.

5.3.3.2 Data Mining and Fusion. This block also supports the data mining 
and fusion function,15 which begins with attention to what actual databases 
are used to support the mining function. Data mining is a process used to 
solve problems by analyzing existing data stored in a database through auto-
matic or semiautomatic approaches (Witten et al. 2011; Aggarwal 2016). Data 
analytics is also a process of examining data to draw conclusions about what 
is in the data (Rouse 2008). This process relies on, for example, machine 
learning, pattern recognition, artificial intelligence, etc., as the processing 
mechanism; for the purposes of this document, the terms data mining and 
data analytics are synonymous. The importance of data mining cannot be 
understated; it is used by high-profile commercial and governmental organi-
zations and companies. It is critical in fraud detection and in high-profile le-
gal cases such as the Enron scandal and is used by some of the world’s largest 
online retailers (e.g., Amazon.com) for recommending products to would-be 
customers, by Facebook AI to mine imagery data, and by thousands of others 
for various uses.

Until recently, the key to data mining was selectively choosing what data to 
store and how to index the data for efficient access when it was needed. But 
that has changed with the revolution in big data processing (also called big 
data analytics), which, in its most basic form, deals with massive data volumes 
(e.g., petabytes) useful in executing some task (Reed and Dongarra 2015; 
Agrawal et al. 2011). It is most often characterized by the 4Vs: volume (how 
much), variety (how different), velocity (how fast), and veracity (how good). 
However, it is the actual machine learning and pattern recognition (ML/PR)—
the underlying mechanisms in the (semi)automatic “mining” of the data that 
is seeing the patterns—that has generated the most interest in recent years. 
The ML/PR literature is vast, and many effective approaches to solving practical 
problems of interest exist and can be found in various sources (Witten et al. 
2011; Duda et al. 2012; Hastie et al. 2009; Schölkopf and Smola 2002; Bishop 
2006; Mitchell 1997; Kohonen 2001; Haykin 2009).

The approach to data mining is not one that should be done haphazardly. 
A sound process should be followed in order to improve the rate of success of 
the data mining task. One of the most prominent data mining constructs is 
the Cross-Industry Standard Process for Data Mining (CRISP-DM). CRISP-DM 
was developed as a joint venture between NCR, DaimlerChrysler (formerly 

15. We introduce the term “fusion” here to indicate that data mining may occur over multiple 
heterogeneous databases, to highlight the parallel with sensor fusion across multiple poten-
tially heterogeneous sensors.
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Daimler-Benz), and SPSS (formerly ISL) and was funded by the European 
Commission. The project ended in 1999 with the finalization of the CRISP-DM 
process (Chapman et al. 2000). According to a 2011 survey, CRISP-DM remains 
the most popular methodology for data mining (Piatetsky 2014). CRISP-DM 
is a data-centric data mining methodology that captures business under-
standing through deployment (Shearer 2000).

 Figure 5.3 illustrates the relationship of the six components of CRISP-DM:
•  Business understanding is where one develops an understanding of the 

problem and the data mining goals of the organization and then fleshes 
out any requirements.

•  Data understanding looks at representative data to increase the data 
mining professional’s understanding of what the data physically looks 
like and gain any early insights as to what it might be able to inform.

•  Data preparation includes such tasks as data cleaning, data transformation 
(e.g., data whitening, application of a wavelet transform or a Fourier 
transform, Principal Component Analysis, etc.), and attribute selection 
(e.g., feature selection) prior to being ingested by the modeling engine 
(e.g., density estimators, classification tools, or regression tools).

•  Modeling consists of model investigation to determine which models work 
well for the data and the task and then doing parameter tuning (e.g., select-
ing learn rates and schedules in a Back Propagation Neural Network).

Business
Understanding

Data
Understanding

Data
Preparation

Deployment

Modeling

Evaluation

Data

Figure 5.3. CRoss-Industry Standard Process for Data Mining (CRISP-DM). 
(Image used with permission from Jensen [2012])



FRAMEWORK AND FUNCTIONS │ 159

•  In evaluation, one ensures the model(s) actually enables one to meet the 
original requirements or business objectives; at this stage a determina-
tion will be made if the results of the data mining task should be used.

•  Deployment is as it sounds, deploying the model(s) within the organization 
so that it serves its intended purpose. This phase may also require customer 
training/education so they know how to use the model and correctly 
interpret the results.

Figure 5.4 (next page) summarizes the six component of CRISP-DM and 
the tasks and outputs associated with each (Chapman et al. 2000).

A critical USAF capability gap that data mining is particularly well suited 
to address exists in the USAF core function of global integrated ISR (GIISR). 
The current generation of intelligence products generated from ISR data is 
dominated by a process of manual data analysis, occasionally augmented by 
automated “event” detections. This process can often take hours. Autonomous 
systems incorporating data mining and fusion could, instead, automatically 
extract patterns of interest and generate products in minutes (Bomberger et 
al. 2012). If these patterns were extracted using only predefined signatures, 
they would be valuable simply because of their potential to reduce the human 
analyst’s drudgery work and free him/her to accomplish “higher” cognitive 
analytical tasks.

A significantly greater potential could accrue with a truly autonomous data 
mining solution demonstrating cognitive flexibility, which could develop an 
understanding of novel yet still relevant patterns that need to be recognized, 
captured, and disseminated. These ISR-focused AS decision aids, driven by 
extracted information, would be able to change their tasking in a variety of 
ways, such as initiating new ISR captures, engaging in peer-to-peer flexibility 
as task demands change, and reprioritizing tasking based on changed mission 
situations and objectives. These ASs could learn patterns hierarchically in a 
graph structure by adaptively clustering track reports in a fused feature space 
merging similar paths, as has been demonstrated in field exercises (Bomberger 
et al. 2012). Another midterm application of AS-enabled ISR includes link 
analysis, that is, identifying the relationships between nodes that represent 
people, places, or events (Picoh et al. 2004). The current manual approach 
includes taking fragments of evidence from multiple databases and “linking” 
them together using inductive reasoning and heuristics; but because of human 
limitations in searches and making connections, the analysis is limited to 
small datasets. In contrast, an AS-enabled data mining approach could deal 
with a large number of heterogeneous datasets encompassing a vast array of 
data, taking fragments of confirming and conflicting evidence from multiple 
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databases and autonomously accomplishing the link analysis. A big chal-
lenge here is what is called the graph association problem (Tauer et al. 2013): 
the generation of separate graphs that capture a description of possibly the 
same entities and relationships requires merging into a single graph. One 
AF-relevant application of correct association is the assigning of labels to 
unlabeled individuals (actors) in a large heterogeneous social network (Bui 
and Honavar 2013).

Recent advances in AI, for example IBM’s Watson and Google’s AlphaGo 
(Ferrucci et al. 2010; Silver 2016), rely heavily on their ability to make infer-
ences across large datasets. The accuracy of these inferences is related to the 
model’s accuracy. In lieu of having access to the underlying processes that 
generated the data, data mining algorithms need significant amounts of vary-
ing data types to build accurate model estimates (inferences of the underlying 
processes), such as with deep-learning approaches. Big data environments 
and the analytics that sit on top have served and continue to serve a pivotal 
role in the advancement of data mining and machine learning. Advances in 
this area will have significant potential for advancing AS capabilities in deal-
ing with large datasets in the future as well as enabling more efficient and ef-
fective machine learning to improve AS behaviors over time (see below).

5.3.4 Situation Assessment and Decision-Making

The SADM layer is composed of five serial blocks as illustrated in figure 5.1.16 
We provide a brief overview of each, in the following.

5.3.4.1 Perception and Event Detection. The perception and event detection 
block provides the basic function of transforming the products of sensor 
processing and data mining into higher level “percepts” or “events” that are 
important at some level to the tasking and performance of the AS.17 A percept 
or an event is any part of the representation of the environment compre-
hended as a whole; defining how a percept or an event is related to or can 
interact with other percepts or other events is comprehension of that percept 
or event (Endsley 1995b). 

Variables associated with perception can be continuous variables, such as 
the six coordinates defining a platform’s location and orientation (x, y, z, roll, 
pitch, yaw), or they can be discrete, such as presence or absence of a user’s 
log-on. Providing good estimates of these variables is the function of percep-

16. Again, we recognize that these functions are most likely more interconnected, but we 
have deliberately simplified the flow for exposition purposes.

17. This is the equivalent of the Level 1 function of Endsley’s model of Situation Awareness, 
“Perception of Elements in Current Situation” (Endsley 1995a).
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tion at its lowest level, and engineers have accomplished this in a variety of 
fashions: using the sensor signal itself as the estimate, assuming the sensor is 
relatively “noise free,” or using multisensory, multivariable optimal estima-
tors, such as the Kalman Filter frequently used in flight control systems (Kalman 
1960; Gelb 1974). The Optimal Control Model of the human operator/pilot 
incorporates a version of the Kalman Filter for its perceptual “front end” and 
has been shown to replicate human behavior in a wide variety of “human-in-
the-loop” tasks of the type noted in section 4.1 (Kleinman et al. 1970).

Variables associated with event detection can be thought of as semantic 
variables or states such as “high altitude” or “illegal log-on.” As such, detected 
events can also be thought of as a generalization of recognized objects at some 
point in time. A variety of methods might be contemplated for mechanizing 
the event detection function. For example, to transform perceived (estimated) 
continuous variables, one could simply “bin” values, for example, so an altitude 
could be categorized as either low, medium, or high. That binning function, in 
turn, can be accomplished with simple “hard-edged” threshold functions or via 
the use of “softer” fuzzy logic categorization and event set membership 
strength (Zadeh 1965, 1996). 

Perception and event detection functions do not need to be separated and 
sequential as just described. For example, in the application of ANNs to image 
recognition, we might have a sensor’s pixelated array as inputs to the block we 
are describing and a single output node of the ANN driving the output of the 
block, declaring the presence or absence of a cat video, based on a simple 
scalar value between zero and one. The net result is the same: sensor inputs in 
and a semantically categorized event/object out. Naturally, with the appropriate 
mechanisms to accomplish the task, this block might also combine several 
events into a higher-level event—for example, a simple rule-based system or 
a more complex fuzzy logic inferencing engine. This is discussed shortly. 

Three key issues in developing an effective perception and event detection 
block are dealing with: (1) dynamic changes in the input over time and main-
taining proper semantic categorization; (2) noise in the inputs; and (3) unexpected 
events, that is, events that the system was not designed to detect (e.g., a dog 
video) but that are still important to handle to complete the task or mission 
assigned the AS. Current approaches that use fixed dynamic models to esti-
mate continuous variables buried in noisy signals, and that use predefined 
“templates” or “detection rules” to categorize the input signals from the sensor 
and data mining blocks, may run into trouble when systems fail and/or the 
unexpected or the previously undefined situation occurs. 

To achieve the cognitive flexibility in the area of detection of novel events, 
solutions for the “zero-shot” learning problem have to be developed (Burlina 
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et al. 2015). Direct classification is not normally achievable without training 
exemplars for all the classes of objects to be encountered. One approach to 
solving this problem is the extraction of semantic attributes that can be asso-
ciated with attribute relationships. Another extremely promising approach to 
zero-shot learning is via cross-modal transfer (Socher et al. 2013). By extracting 
the distribution of words in texts as a semantic representation, generating 
knowledge about the visual world through natural language, and applying 
that to classify untrained objects, a reasonable level of performance is possible 
on unseen classes of objects or events, where accuracy for known classes is 
traded for accuracy in novelty detection. 

5.3.4.2 Situation Assessment. The SA block serves to transform the events 
(and associated perceived states as needed) into SA that supports the successful 
accomplishment of the task/mission assigned to the AS. In effect, this block 
supports the comprehension of what the events mean with respect to accom-
plishing the task/mission, that is, understanding the current situation and 
how the current situation is likely to evolve into the future, that is, the pro-
jected situation.18

As described in section 3.2, the first component, “current SA,” refers to 
awareness based on signs denoting elements in the environment external to 
the AS, including the AS mission and task (which may change over time via 
the associated C2 system with which it interacts), the overall environment/
context in which the AS is operating (especially if it is a platform), the basic 
task/mission SA elements needed for success, the status of its teammates (if 
any), and, if available, the status of its adversaries. SA also depends on signs 
from the environment internal to the AS, including self/health awareness (includ-
ing the health of all associated subsystems that the AS “owns”), the behavior 
and performance relative to what is expected normally, and the AS capability 
margins based on a knowledge of the AS’s self-knowledge of its nominal operat-
ing envelope and where it is currently operating within that envelope. Ideally, all 
or most of these components of both external and internal SA would have 
associated confidence assessments to provide indications of uncertainty in 
the assessments, so that future decisions based on these assessments can fold 
uncertainties into the risk calculus underlying decision-making. How those 
confidence assessments are calculated will obviously depend on the scheme 
used for generating SA, which we discuss shortly.

18. This is the equivalent of the Level 2/3 functions of Endsley’s model of Situation Awareness, 
“Comprehension Current Situation” and “Projection of Future Status” (Endsley 1995a).
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The second component, “projected SA,” refers to an understanding of how 
the current situation19 is likely to evolve into the future, based on relevant 
signs, over the mission/task time horizon of interest. This is relatively straight-
forward for, say, simple physical systems in which the dynamics can be well-
modeled (e.g., an orbital flight path of a satellite), but as the underlying systems 
dynamics become less determined by well-known physical laws (e.g., indi-
vidual adversarial decision-maker behavior) and/or the systems become more 
intentional and complex (e.g., teams of adversaries and defensive systems), pre-
dictions become increasingly difficult to make with confidence for a given 
time horizon. Nevertheless, projections are often made, at least by humans, 
based on experience, qualitative “mental models” of the underlying drivers of 
situational evolution based on that experience, and an ability to “run” those 
mental models on the current situation to generate one or more likely out-
comes, to project the current situation into the most likely one, some period 
of time into the future (Klein 1998, 2008). Naturally, as the time horizon 
grows, predictions also become more difficult to make, as happens with even 
well-grounded models of purely physical systems.

Various techniques have been used in developing quantitative models of 
human SA, as described in the Situation Awareness chapter of Pew and Mavor 
(NRC 1998). For example, production rule systems have been used to match a 
current set of events (e1, e2, e3, …) to a predefined situation S1, when all the 
events are deemed to be “true” or “sufficiently true.” Closely related approaches 
that attempt to account for close but not perfect matches between event sets 
and situations include expert systems (with confidence factors; Nikolopoulos 
1997), complex event processing (CEP; Luckham 2002), and case-based reason-
ing (CBR; Kolodner 1993). More sophisticated approaches taking a probabi-
listic approach to “matching” event sets with situations, where the events have 
associated likelihoods or probabilities of being true, include Bayesian belief 
networks (Cooper 1990), in which a node in a BBN network may define a 
situation and assign it a probability of “trueness, depending on the event 
states and the network model employed by the SA model. Such models or ap-
proaches could serve as the basis for an AS’s implementation of the “current 
SA” component block. Comparable models of how humans develop projected 
SA are less well developed, most likely because of a fundamental lack of un-
derstanding of how humans actually project current situations into the fu-
ture—for example, whether they rely on temporal projections or simply base 
future forecasts on current/future pair matching based on past experience. 

19. Actually, the assessed current situation, which, for any number of reasons (e.g., poor 
sensors, adversary deception, etc.) may significantly deviate from the “actual” or “ground 
truth” situation.
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This may be less of a constraint in developing a capability for “projected SA” in 
an AS, however, since there exist well-understood methods of simulation-based 
temporal projection (extrapolation), assuming the existence of quantitative mod-
els underlying the projection (Ziegler et al. 2000).

Whatever method is used for implementing an SA function, present or 
future, two key features already exist that can extend the basic functionality of 
assessment based on simple component events/objects. First is the capability 
to reverse the assessment function so that, given a hypothesis of the current 
situation, one can infer “missing” events that were either not detected or 
were associated with low probabilities of occurrence. This capability can 
then provide guidance to the perception and event detection function to go 
look for evidence confirming the missing events and the overall assessment 
(or, conversely, confirming that the events have not occurred and that the 
hypothesized situation is not true). In an ES mechanization, this might be 
implemented via backward chaining, starting with the hypothesized situa-
tion and inferring which antecedent events must be true, given the ruleset; in 
a BBN implementation, this might be accomplished via a sensitivity analysis 
of the network, to effectively generate the first partial derivative of a given 
situation relative to a given event (or evidence, in BBN parlance). Related to 
this capability to reverse the current assessment function is that of reversing 
a future hypothesized assessment to generate an associated current hypoth-
esized situation that could evolve into the future situation. In a current/fu-
ture pair matching scheme this would be straightforward; with a simulation-
based temporal projection scheme, this could be considerably more difficult, 
since the projection models would have to work in reverse. The second key 
feature that could extend functionality is the ability to provide some associ-
ated probabilistic assessment of current and projected SA. For continuous 
variables, this could be simple statistical measures of variance or covariance, 
either static or growing over time; for discrete variables, this could be associ-
ated likelihoods or probabilities of “trueness.” This kind of information as-
sociated with one or more assessed situations could then be used “down-
stream” in subsequent decision making and planning activities, where 
decisions and plans can be informed by the likelihood of—and possibly the 
confidence in—one assessed situation over another. How these probabilistic 
measures are generated will depend strongly on the underlying method em-
ployed for generating the SA estimates themselves.

5.3.4.3 Reasoning and Decision-Making. The reasoning and decision-
making block serves to transform the assessed situation(s) into decisions for 
planning and replanning as well as for current and/or future actions. The 
basic problem can be broken down as one of how does one “reason” to an 
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appropriate decision. Reasoning can occur in one of several ways. For ex-
ample, reasoning can involve judgments that maintain coherence among sets 
of symbols (linguistic, numerical), such as when rules of logic are employed 
or a mathematical equation is solved. The coherence approach can be found 
in the literature on rational choice theory (e.g., von Neumann and Morgen-
stern 1944; Bernoulli 1954). As another example, reasoning can entail judg-
ments that establish correspondence with elements in the real world when 
recognizing situational patterns (Klein 1997, 1998, 2008), such as when infer-
ring the occurrence of a robbery when entering a restaurant based on a com-
plete absence of staff.

With increasing automation, many tasks that were solely correspondence-
driven for the human—such as pilots navigating using an out-the-window 
view—become supported by coherence-driven approaches—such as pilots 
navigating by looking at numerical displays that represent aspects of an out-
the-window view (Mosier 2009). Either reasoning approach can then be taken 
to render a decision.

If one is to base reasoning on the coherence approach, one would consider 
issues such as probability, rules, and utility. Accordingly, one would consider:

•  The current and projected situation or the set of situations and their like-
lihoods

•  The mission/goal/task objectives

•  The resources available

•  The constraints, either physical or those imposed by rules of engagement 
(ROE)

•  The likely outcome of the decision taken and its associated value or “utility” 
(see below)

The answer might be in the form of a simple and single decision or in the 
development of a multistep plan (see section 5.3.4.4, below).

A range of decisions can be considered, but here we make the simple dis-
tinction between fast/reflexive decisions and slow/deliberative reasoning, 
based on findings in the human decision-making literature. In the former 
category, a leading model of human decision-making is recognition primed 
decision-making (RPD), which describes how seasoned experts make timely 
decisions in complex situations that are often characterized by uncertainty: 
they identify the salient features of a problem, quickly assess the situation, 
and then decide, based on their expertise and experience (Klein 1998). In the 
latter category, a number of “rational actor” models exist that are based on 
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work conducted by the operations research, game theory, and economic analysis 
communities, which focus on expected utility to determine an optimum deci-
sion. Expected utility is based on the situation, its likelihood, and the utility 
(or payoff) for making a given decision. The optimum decision is then chosen 
on the basis of maximizing the expected utility across the set of all possible 
decisions (von Neumann and Morgenstern 1944).

For both general approaches, there are several variants. For example, under 
RPD theory, there are three basic variants: the most basic, in which an as-
sessed situation leads directly to a recommended decision and action plan; 
one of an intermediate level of complexity, in which a given situation leads to 
a recommended “family” of decisions/actions, which then need to be more 
closely evaluated and selected from based on the specifics of the given situa-
tion; and a more complex mode in which humans effectively conduct mental 
“simulations” of potential decisions/actions to select a “best” decision based 
on the projected outcome (Klein 1998; Pew and Mavor 1998). Likewise, there 
exists a number of variants under utility-based decision theory: utility itself 
can be a complex function of an individual’s personal preferences (Kahneman 
and Tversky 1979); the selection of the “optimum” decision need not actually 
be optimizing but rather simply satisficing, as in rank-dependent utility opti-
mization (Tversky and Kahneman 1992); incorporating multiple dimensions 
of preferences via multi-attribute utility (Keeney and Raiffa 1993); and using 
game theory to project future actions by competing entities over a number of 
“moves” or a specific time horizon (Aumann 1989). With a utility-based decision-
theory approach, several optimization techniques can be applied, and the 
selection of the best will depend on the characteristics of the utility function 
being optimized, such as convexity, linearity, and so on (e.g., Aoki 1971; 
Onwubolu and Babu 2004).

If one is to base reasoning on the correspondence approach, situational pat-
tern recognition would play a key role. One reasoning method involving situa-
tional pattern recognition is case-based reasoning (Russell and Norvig 2010). 
Generally, pattern-recognition-based reasoning can be implemented with 
straightforward production rule models if a single situation is plainly evident. 
More sophisticated methods need to be brought to bear for situational uncer-
tainties or if a single decision or course of action needs to be selected from 
several candidates, via optimization, “fast time” simulation to assess potential 
outcomes, or alternative methods for elaborating on basic decisions and 
outcomes. 

For either of the approaches, if the decision is not a simple single-step deci-
sion yielding a single outcome, a more complex series of sequential actions—
and thus planning—may need to be initiated.
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Future technology development will need to mature decision-support 
tools based on an assessment of the advantages and disadvantages of coher-
ence versus correspondence approaches to reasoning—for example, the in-
ability of coherence approaches to handle unforeseen circumstances and the 
lack of statistical relevance found in correspondence approaches. These dis-
advantages may be overcome, however, if the AS has the cognitive flexibility 
to choose the appropriate approach or combination of approaches and capacity 
to carry out the more complex tasks generated by this “hybrid” reasoning 
approach.

With respect to hybrid design, Murphy and colleagues describe a hybrid 
robotic design in which both reactive and deliberative processes are present 
in the system (Murphy et al. 2002). Reactive processes refer to robots operat-
ing in real-time using sensors, actuators, and processors with no memory. 
Deliberative processes refer to more cognitive-oriented functions, such as 
planning, remembering, monitoring self-performance, or reasoning about 
the state of the robot relative to the world. Because planning covers a long 
time horizon and requires global knowledge, it is assumed that planning 
should be decoupled from real-time execution. Thus, one would first PLAN—
involving deliberation, global world modeling, task or path planning—and 
then SENSE-ACT—involving innate and learned behaviors. The hybrid archi-
tecture may be one of the best general architectural solutions (Murphy et al. 
2002). An example of a hybrid robotic architecture is the Autonomous Robot 
Architecture (Arkin 1989), which is based on schema theory and is the oldest 
of the hybrids. 

The hybrid reactive/deliberative design appears analogous to human cog-
nition: human reasoning and decision making are governed by two sets of 
cognitive processes that can be dissociated experimentally and neurologically 
(Patterson 2017). One system is called Analytical Cognition, which entails 
conscious deliberation drawing on limited working memory resources: it is 
effortful, rule-based, symbolic, limited in capacity, and slow. The other system 
is Intuitive Cognition, which entails unconscious situational pattern recogni-
tion unconstrained by working memory limitations: it is independent of con-
scious “executive” control, large in capacity, and fast (Patterson and Eggleston 
2017). It is tempting to draw a comparison between deliberative robotic de-
sign and human analytical cognition on the one hand and between reactive 
robotic design and human intuitive cognition on the other. Whereas the cog-
nitive-oriented functions of deliberative design do seem to match up well 
with the characteristics of human analytical cognition, the reactive design 
does not match up well with the properties of human intuitive cognition. In 
the latter case, reactive design is relatively low-level whereas human intuitive 
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cognition is surprisingly high-level and involves situated meaning making 
(Patterson and Eggleston 2017). Thus, to approach the level of sophistication 
offered by human intuitive cognition, reactive robotic design would have to 
be refashioned as a form of anticipatory, proactive design based on situated 
meaning making. 

5.3.4.4 Planning and Replanning. The planning and replanning block 
provides a means of elaborating on a decided course of action, in which 
multiple steps comprise that course of action. This block is composed of the 
following subsidiary functions: (a) planning, which is essentially determining 
the sequence of actions that need to be taken to move from an initial situation 
or “state” to a desired goal condition that may exist in one or more states, to 
satisfy the objectives of the previously described reasoning and decision-making 
activities; (b) scheduling, the temporal assignment of the action sequence to a 
timeline, overlapping actions depending on their interdependence; and (c) re-
planning, which occurs to adjust the plan based on changed objectives, failed 
plans, changed circumstances (as seen in the assessed situation), etc.

A broad survey of human military planning activities is provided by the 
Planning chapter in Pew and Mavor (1998), covering information collection, 
SA, course of action (COA) development, COA analysis and selection, plan 
monitoring, and replanning.20 A dozen different computational models of 
these planning-specific activities are also reviewed, with underlying methods 
that fall into one of four general approaches: (1) production rules or decision 
tables that closely follow written planning doctrine; (2) combinatorial search 
or genetic algorithms, to develop, respectively, sufficing or optimal plans; (3) 
planning templates or CBR to support plan elaboration; and (4) simulation-
based planning to quickly generate, evaluate, and iteratively modify plans.

Pew and Mavor (1998) also review more generic planning methods developed 
by the AI community, based on means-end analysis,21 in which a plan is 
viewed as simply “a sequence of operators transforming a problem’s initial 
state into a goal state.” Work since then has attempted to address these short-
comings that limit applicability to “real world” problems (e.g., real-time sensor-
driven path planning for robotics), with approaches including reactive planning 
to deal with a changing environment, short time horizons, and continuous 
feedback on plan success/failure; refinement methods for plan elaboration at 
different abstraction levels; incorporation of domain heuristics to speed plan-
ning; temporal modeling for dealing with plan dynamics; and nondeterministic 

20. Which is a broader range of activities considered here, namely on COA development, 
analysis/selection, and replanning as required.

21.  Starting with the General Problem Solver means-ends analysis paradigm introduced 
by Newell and Simon (1963).
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methods for dealing with noisy partially observable information and nondeter-
ministic systems (Ghallab et al. 2004, 2016). Underlying many of these ap-
proaches are several different computational techniques and methods, too 
numerous to list here but well described by Ghallab et al. (2004, 2016).

Planners can exhibit task flexibility through the generation of plans or policies 
that better cover all possible contingencies. This occurs as contingent, condi-
tional, or conformant planning or as a form of planning under uncertainty 
(probabilistic planning) (Ghallab et al. 2004). A contingent plan is a plan that 
includes action sequences for situations in which the goal state is not reached 
and how to correct to meet the goal condition. A conditional plan is one that 
includes branches in the action sequence solution for actions that may result 
in multiple outcomes. Executing a conditional plan requires that the system 
be able to determine which state the system is in (observable) to execute the 
correct action. A conformant plan is a plan that includes actions that will 
reach a goal state when the actions may have multiple outcomes but does not 
require observability of the state.

Conformant planning can be conducted through model checking or 
through classical techniques operating on transformations of the problem 
space into other representations such as Binary Decision Diagrams (Ghallab 
et al. 2016). The output of a conformant planner is considered a strong plan. 
A strong plan is one in which the resulting plan includes all nondeterministic 
branches and has solutions that lead to the goal state or a set of goal states that 
all meet the goal condition. This is in contrast to the “classical” weak plans 
that are a single shot plan from initial to goal conditions and rely on execution 
management in the face of nondeterminism.

The planning community has not conducted a conformant plan planning 
competition within the last 10 years. However, there have been significant 
planning advancements that are related to cognitive flexibility. These advance-
ments, discussed in the next section, can be directly applied to this domain 
through recent advancements in polynomial time algorithms that convert con-
tingent plans to problems that can be solved with classical planning algorithms 
(Palacios et al. 2014).

Planning under uncertainty often formulates the problem as a Markov de-
cision problem (MDP) or partially observable Markov decision problem 
(POMDP; Kaebling et al. 1998). Both formulations leverage the Markov as-
sumption, that the current state captures the history of past states and actions, 
as well as solve for some form of a policy that captures which action should be 
taken in every state to maximize future expected utility.

The most recent developments have included the development of the Rela-
tional Dynamic Influence Diagram Language (RDDL) used in the 2014 Inter-
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national Probabilistic Planning Competition (IPPC; Vallati et al. 2015). The 
RDDL extends research on the abstract decision diagram (ADD; St-Aubin et 
al. 2001) and binary decision diagram (BDD; Hoey et al. 1999). These ap-
proaches use influence diagrams to represent more concisely the domain and 
increase the speed of solution. The current best-performing planners, PROST 
(Keller and Helmert 2013) and G-Pack (Kolobov et al. 2012), leverage either 
a variant of Upper Confidence Bound 1 applied to trees (UCT; Kocsis and 
Szepesvari 2006) or modification to the Labeled RTDP algorithm (Bonet and 
Geffner 2003). The UCT algorithm performs a search by sampling paths from 
the start to the goal and updating policy values based upon the rewards re-
ceived. The Labeled RTDP algorithm leverages heuristics and learns the 
policy through repeated greedy searches of the policy space, labeling states as 
solved as they converge to improve convergence.

Peer flexibility with planners has tended to focus on multiagent and distrib-
uted planners. It does introduce several difficulties, such as interagent con-
straints, distributed planning techniques, preferences and resource demands, 
human interaction, and privacy (de Weerdt and Clement 2009). Several of 
these interactions are formalized in the coalition formation (Chalkiadakis et 
al. 2009) and multirobot task allocation (Gerkey and Mataric 2004) literature. 
More applicable to AS peer flexibility is dealing with failures in the plan, the 
peer, or interacting with human participants. Failures in the plan and peer 
require an execution monitor and replanning and repair mechanism (Komenda 
et al. 2012). Alternatively, having the agents be entities in an emergent system 
leads to a very robust implementation but due to homogeneous implemen-
tations lacks a leader that can set intent (Genter and Stone 2016). Work on 
understanding how social leader emergent and goal setting can be done is an 
area of future research.

When working with humans, recent work leverages probabilistic plan recogni-
tion that identifies possible plans of the human and then looks at compromise, 
opportunism, and negotiation as possible deconflictions (Chakraborti et al. 2016). 
This does require models of the domain and of the user.

Cognitive flexibility–related research has focused on systems that consist of 
several search algorithms, called planning portfolios (Nunez et al. 2012; Helmert 
et al. 2011; Roger et al. 2014; Valenzano et al. 2013), and heuristics (Torralba 
et al. 2014). These planners perform a computational load balancing during the 
search to identify the algorithm or heuristic subset that appears to be solving 
the problem quickest.

The planners that won the most recent International Conference on Auto-
mated Planning and Scheduling competition in 2014 tended to leverage this 
strategy. For example, in the sequential optimal category, SymBA* (Torralba 
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et al. 2014) alternated between searching using heuristics and performing a 
reverse direction search to construct abstract heuristics to improve the search 
results. Similarly, IBACOP2 (Cenamor et al. 2014) leveraged 11 planning al-
gorithms and learned heuristics to identify the subset of planning algorithms 
to use on a domain based on features in the domain description. 

The organizers of the competition did note that “we observed a worrying 
small number of planners able to deal with preferences and temporal 
models.”22 We would like to add to this by noting that the planning portfolios 
also tend to be missing algorithms exhibiting the latest developments from 
the evolutionary computation community (Kim et al. 2003). There are also 
significantly fewer planners competing in the uncertainty tracks.

In summary, although Ghallab et al. (2014) discuss the broadening and 
crossover between different subcommunities, there is still need for further 
encouragement in this area. Example areas include:

•  The multiagent systems research that focuses on peer flexibility does not 
appear in the planning research that is predominantly deterministic; 
there isn’t a planner submitted spanning the gap between deterministic 
and uncertainty planning domains.

•  The developments in the evolutionary computation community on sat-
isficing algorithms do not seem to be being incorporated into the satis-
ficing planners and planning portfolios.

•  Portfolio planners have not migrated into the stochastic planning domains.
A way to encourage this cross flow of ideas is to encourage the planning 

community to tackle all three of the flexibility principles in their competi-
tions, rather than specialized pipelines.

5.3.4.5 Execution Management. Execution management serves two 
purposes. The first is as an effector manager, a method that converts planned 
actions into commands and reacts to events. It serves as a manager and 
coordinator of the effectors that execute the plan. The second is as a plan 
execution monitor, monitoring the situation, the status of the system, and the 
success or failure of the steps of the plan being executed. 

As an effector manager, this block issues a range of commands, from very 
high-level subsystem commands (e.g., locomote to a specified waypoint) to 
very low-level component commands (e.g., set the arm’s joint angles as specified). 
The level of specificity will depend on the AS and the level of effectors being 

22. See ICAPS 14 results at https://helios.hud.ac.uk/scommv/IPC-14/repository/slides.pdf.
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managed. In hybrid robot architectures, this is often termed a sequencer 
(Murphy et al. 2002).

As a plan execution monitor this block depends on inputs from the other 
blocks in the SADM layer. For example, it relies on detecting events that signal 
success or failure of a step in the plan, a change in the current state that may 
change one or more of the broader conditionals upon which the plan was 
based, a change in the goals that motivated the generation of the plan, a re-
consideration of plan step sequencing, or some combination of these factors. 
Murphy et. al (2002) groups the large number of approaches available into a 
performance monitoring and problem-solving component. Often, in three-
layer architectures the sequencer includes these capabilities (Gat 1998; 
Pettersson 2005).

Effector management and plan execution monitoring have been key func-
tions in many AI planning and autonomous robotics efforts, and there is a 
mature technical basis for these functions. For example, the System for Interactive 
Planning and Execution (SIPE; Wilkins 1988) is a goal-oriented hierarchical 
planner that can deal with different levels of abstraction, so it can effectively 
decompose higher abstractions into lower level effector commands, serving 
as an effector manager. SIPE also replans during execution, based on its mon-
itoring of how well the plan is being executed, so that it can conduct “plan 
repair.” Building on SIPE is the Continuous Planning and Execution Frame-
work (CPEF; Myers 1998) developed for planning and replanning in a highly 
dynamic and unpredictable environment—for example, one supporting a 
“Joint Forces Air Component Commander (JFACC) in the execution of re-
alistic air campaigns” (Myers 1998). CPEF uses a plan manager to oversee 
execution of the planning, execution monitoring, and plan repair functions. 
O-Plan (Tate et al. 2000), another hierarchical planning system, similarly pro-
vides for goal-oriented plan generation and plan repair in the face of dynamically 
changing situations that were not anticipated in the original plan, via moni-
toring of plan execution. A multiagent system approach to plan monitoring 
is discussed by Dix et al. (2003), in which the plan generated by a declarative 
planner is compared with one achieved by the MAS, to detect possible agent 
collaboration failures. 

In addition to these direct plan manager and monitor functions, this block 
can also serve as a more general monitor of higher-level assessment of AS 
behavior and performance. On the behavior side, the block could serve to 
monitor, for example, where in the “design operating envelope” the AS is cur-
rently operating—specifically, how close it is to an envelope boundary (in 
terms of capability, expertise, training, etc.) and the likelihood of violating 
that boundary over some future temporal window. On the performance side, 
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the block could assess higher-level mission/task performance (not just plan 
success) to provide the AS with self-awareness of overall performance for po-
tential correction or remediation, via, say, reconfiguration or repair. How 
these self-assessment functions are divided up between this block and that of 
the SA block is clearly a design decision that needs to be made for the specific 
domain and application of the AS, but it should be clear that self-awareness 
and behavior/performance awareness need to be closely linked.

Recent surveys specific to execution management include Pettersson 
(2005), which leverages the industrial control application taxonomy for exe-
cution management to robotics and autonomous systems related work. The 
more recent survey by Ingrand and Ghallab (2017) finds that even in systems 
since Murphy et al. (2002) there are three primary functions of planning, act-
ing, and monitoring and that future work needs to include additional design 
dedicated to integration that allows for more flexible relationships as well as 
sharing and comparative testing.

5.3.5 Effectors

The effectors block provides for the major “output” of the AS, here serving 
as a general placeholder, based on the situation and the desired outcome, for 
three separate classes of effectors:

•  Those driven by the execution management block as just described, covering 
a range of effectors “internal” to the AS itself,23 from high-level subsystems 
to low-level electromechanical components. On an aircraft platform, for 
example, this might include a flight control subsystem (FCS) given “loco-
motion” commands to achieve higher level goals by the AS, an auxiliary 
power unit (APU) given start up commands under a power failure sce-
nario, or low-level actuator commands given to a bomb bay door opening 
component. Alternatively, in a supervisory control and data acquisition 
(SCADA) environment, this might include networked SCADA sub-
systems; and within a SCADA subsystem, this might include lower-level 
programmable logic controllers (PLC) or digitized proportional-integral-
derivative (PID) controllers that serve to control the SCADA process.

•  Those effectors “external” to the AS, directly interacting with elements or 
entities outside of the AS (as shown in the “cloud” portion of figures 2.1a, 
2.1b, and 2.1c). Again, in a platform application this might include an 

23. We exclude here actively controlled sensors, even though they are actively controlled 
subsystems, since sensor management is intimately tied to sensor processing, “active” sensing, 
and situation assessment. We provide for this separate loop closure via the feedback loop in 
figure 5.1, from the execution management block directly to the sensor management block. 
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EW subsystem (for example, a defensive chaff/flare subsystem or an ac-
tive radar countermeasure subsystem) or a more traditional kinetic 
weapons resource management subsystem that serves to prioritize tar-
gets and conduct weapons-target pairing to maximize probability of tar-
get kill at minimum expense of weapons (e.g., missiles). Alternatively, 
in offensive cyber operations, this might include hundreds of thousands 
of infected computers to launch a distributed denial of service (DDOS) at-
tack, or a single well-crafted packet to analyze and exploit vulnerabilities 
in a network, or new zero-day exploits that have not been patched yet.

•  Those associated with explicit communications to entities outside of the 
AS. Again, on a platform, this could be an ISR download to a ground 
control element or a flight formation coordination update to a swarming 
teammate.24 In a networked C2 environment, this could include battle 
management communications from commanders, between peers, and 
to subordinates. A wide variety of machine-to-machine protocols already 
exists to support these communications, from standards associated with 
the internet (TCP, UDP, TCP/IP, etc.) to specialized application protocols 
serving particular services and devices (MQTT, CoAP, LWM2M, etc.). 
However, if these standards and protocols are to be used, then they will 
need to be encrypted and secured to prevent eavesdropping and/or data 
tampering during transmission.

As we noted in section 5.3.2 on sensors, a wide variety of actuators exists 
spanning many modalities and levels of complexity. However, at a sufficiently 
high level of abstraction for AS considerations, an actuator may be regarded 
basically as an element that translates an output “command” generated by the 
AS to an entity, subsystem, or component existing in either the outside environ-
ment surrounding the AS or in the internal environment of the AS itself. Ad-
ditional outputs come from communications from the AS to outside entities.

We should also note that with the use of all kinetic and nonkinetic effec-
tors, timely and reliable BDA is called for if the AS is to efficiently execute its 
mission. The situated agency provided by the AS’s closed-loop sensor feed-
back can provide the needed measurements for this assessment.

We now discuss four layers in the AS diagram, going from the top down: 
The Human-Computer Interfaces and Collaborative Environments layer, 

24. Again, we have “bundled” communications with the effectors block, this time out-
bound, as we did with the sensors blocks for expository simplicity, recognizing that the C2 
communications aspects may very well deserve their own explicit representation in the pro-
posed framework at some later point.
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the Learning and Adaptation layer, the Domain-Specific Knowledge-Base 
layer, and the Toolsets and Technologies substrate.

5.3.6 Human-Computer Interfaces and Collaborative Environments

The HCI and CE layer provides a multipath interface between the AS and 
one or more human operators, where the HCIs provide multiple human-AS 
interfaces and where the collaborative environment provides multiple human-
human interfaces needed for collaboration among human members of a 
team. Because the CE portion is basically outside the scope of AS functional-
ity, we will focus on the HCI portion in the discussion here.25 This combined 
block is basically an elaboration of the simpler HCI block shown earlier in 
figure 2.1b, extended to support multiple interfaces with multiple human op-
erators, serving as supervisors, peer-to-peer teammates, or subordinates. 

The importance of well-designed AS HCIs was discussed in 2015 by the 
Air Force Office of the Chief Scientist in Autonomous Horizons, volume I 
(Endsley 2015c), a work based on decades of experience with automated sys-
tems. Issues that arise with poorly designed systems include the following:

•  Difficulties in creating autonomy software that is robust enough to func-
tion without human intervention and oversight

•  The lowering of human situation awareness that occurs when using au-
tomation, leading to out-of-the-loop performance decrements

•  Increases in cognitive workload required to interact with a greater level 
of complexity associated with automation

•  Increased time to make decisions when decision aids are provided, often 
without the desired increase in decision accuracy

•  Challenges with developing a level of trust that is appropriately cali-
brated to the reliability of the system in various circumstances

As noted in chapter 3, these issues can be addressed and ameliorated by 
developing robust and proficient ASs, providing cognitive congruence and 
transparency, enabling mutual situation awareness, training for human-

25. Although one might consider the need for a full-scope CE—including the AS—in situations 
in which collaborative AS-dependent teaming is critical for task success, for example in multi-
operator machine-aided planning. The general design requirements of such a CE is beyond the 
scope of this report, however.
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system teaming, and ensuring the incorporation of “good” human factors 
engineering when developing HCIs. Here we focus on HCI requirements.

Given that the development of effective HCIs, in general, has received con-
siderable attention for many decades and in several professional organiza-
tions (e.g., ACM, HFES, IEEE, NDIA, etc.), we focus here on the design re-
quirements for AS-specific HCIs. Based on the general recommendations of 
chapter 3, AS HCIs should accomplish the following:

•  Because AS proficiency is key to engendering human trust, an AS HCI 
needs to provide a sufficiently broad range of behavioral and perfor-
mance metrics (as noted above in the execution management discussion 
above), associated with both internal system “health” and external mis-
sion-related accomplishment. The HCI needs to provide both a broad 
overview of AS health/mission status and a means for “drill down” by the 
operator/teammate to support diagnosis, reconfiguration, or other activi-
ties needed to deal with anomalies, system failures, or the like. 

•  If cognitive congruence and transparency (explainability) are built into 
the system as recommended in section 3.1, then the HCI should support 
both. For example, providing congruence may be a simple as providing, at 
a high level, a graphic depiction of the framework or architecture of the 
AS, with tags of current activity occurring at each “block” in the graphic, 
with drill-down capability supported at each block. Providing transpar-
ency via the HCI may require higher levels of interaction between the AS 
and the human teammate, in which “conversations” might address ques-
tions like “Why do you assume that?” or “Why do you want to do that?” 
To allow some level of inspection into any functional block of the autono-
mous system would also likely be desirable operationally.26 For example, 
an operator may request to know all of the events that were detected by 
the AS, what operating assumptions the AS is holding, what its SA is 
given those events and assumptions, how confident the AS is in terms of 
assessing alternative courses of action, and then perhaps how well the AS 
thinks the execution of a plan is going, relative to the desired outcome. 
This detailed look into separate functional blocks of the AS is indicated 
in figure 5.1 by the several arrows connecting the HCI/CE to the blocks 
in the SADM layer.

•  Because AS situation awareness of self and environment is so critical for 
proficiency, the HCI needs to be able to support accurate displays of 

26. And likely during development for troubleshooting, and during test and evaluation, for 
verification and validation.
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same. As noted earlier, SA spans a range of key knowledge, from health 
of individual AS subsystems, to overall AS health and location in the AS 
design envelope, to task- and mission-related performance. How this 
information is portrayed to the human teammate via HCI displays is a 
significant design problem in itself, with a considerable literature begin-
ning with alarms and warnings (Fitts and Jones 1947) and evolving to 
more insightful status displays of system operation (Card et al. 1983; 
Kieras and Meyer 1997). Going the other direction, an HCI would ide-
ally provide the AS with any relevant and potentially useful SA held by 
the human and not readily available to the AS. How this would be visu-
alized or verbalized by the human, through the HCI, is a matter of de-
sign and probably highly domain dependent. However accomplished, 
the design goal of the HCI would be to enable the passing of relevant SA 
information in both directions, to facilitate the holding of mutual SA 
needed for team proficiency, as discussed earlier in section 3.2 and il-
lustrated in figure 3.7.

•  To support timely and effective human-system teaming, the HCI needs 
to enable straightforward and relatively effortless (on the part of the hu-
man) bi-directional communication during task planning and execu-
tion. This will likely involve a combination of verbal and visual cues 
generated by the AS, and verbal and graphical user interface (GUI) ac-
tivities on the part of the human, necessitating speech synthesis and 
understanding on the part of the AS. The HCI will also need to support 
more abstract communications associated with the explication and ad-
aptation of common and complementary roles and goals, especially in 
dynamic retasking situations when C2 relationships may change. Fi-
nally, because the HCI needs to be able to support virtual and live hu-
man-system training prior to fielding, considerations should be given 
to augmenting the HCI with information that can accelerate developing 
proficiency, such as augmented displays providing “truth” data, deci-
sion aids that can make suggestions, planning aids that can guide re-
tasking decisions, etc.

These are desired generic HCI functions and characteristics. Ones that are 
more specific to “in-motion” AS applications include the following (Endsley 
2016):

•  Pilot control interfaces that adhere to military standards for human 
factors of vehicle control systems

•  Data integration to reduce workload
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•  Multisensory cues to compensate for loss of haptic and auditory information

•  Improved spatial awareness of the environment and relevant objects in 
the environment to include self-orientation, wayfinding, contextual 
awareness, and an understanding of SA limitations

•  Predictive displays to help compensate for time lags

•  Displays to support understanding and projection of AS operations (including 
monitoring, diagnosis, and mission/payload management), rapid shifts 
in level of control between the pilot and the AS for various functions, 
and real-time assessments of trust in the AS

•  Displays to support coordinated action with manned platforms, multiple 
AS platforms, and other teammates (e.g., analysts and commanders)

HCI requirements specific to “at rest” AS applications, are, unfortunately, 
not nearly as well characterized. For example, in applications supporting air 
operations in general (e.g., ISR collection management and analysis, air tasking 
order [ATO] generation and updating, BDA, etc.) and in non-air operations 
(e.g., cyber defense/offense, space operations) HCI designs are often “one-
offs” with little standardization across applications and systems. However, 
there are still several HCI design principles—for visual displays at least—to be 
followed to support intuitive understanding and efficient use of screen space; 
as noted by Gouin et al. (2004), these include:

•  Interface design. Careful design of the screen real estate and interface 
widgets to ensure an efficient interface

•  Hierarchical representation. Outline/tree views to present information 
using a hierarchical representation, with the ability to expand or collapse 
certain hierarchies selectively

•  Object explorer widget. Also used to present a hierarchical view of objects, 
but selecting an object leads to a different visual representation

•  Information categories. Subdivision of the information into meaningful 
categories, using sub-areas and tab folders

•  Multimedia information. Use of multimedia (video, imagery, alarms) 
such as TV feeds, reconnaissance video, and collateral imagery to enhance 
situation awareness

•  Hyperlinks. Use of hyperlinks to provide association between information 
elements and a capability to drill down into the information
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•  Multiple views. Information must be presentable in multiple views

•  Drag and drop. The user can pass information easily between two applica-
tions or tools using drag-and-drop operations

•  Animation. Use of animation to display temporal information, for example, 
animating a plan as it evolves over time

More recent efforts in more abstract data visualization have not only incor-
porated good HCI design but also taken advantage of an understanding of 
human visual perception (Ware 2013), the use of good design principles 
(Steele and Iliinsky 2010), and the availability of faster, cheaper digital graphics. 
A wide variety of texts guides designers of more complex displays in which 
the data is more abstract, multidimensional, interrelated, dynamic, and sto-
chastic; in addition, there are a number of professional societies and conferences 
devoted to data visualization, including the IEEE Visual Analytics Science and 
Technology (VAST) conference, and the ACM Special Interest Groups on Com-
puter-Human Interaction and Computer GRAPHics (SIGCHI and SIG-
GRAPH). Designers of modern displays of an increasingly information-cen-
tric Air Force, with or without deployed ASs, would do well to be guided by 
these texts and to be active participants in these professional societies.

The sister function to data visualization, direct data manipulation, has pro-
gressed little from the basic desktop object functionality (selecting, dragging, 
changing size, etc.) developed in the 1970s by Xerox PARC among others, 
commercialized in the 1980s by Apple, and described by Shneiderman (1983), 
and it certainly has not reached anything near the envisioned functionality 
portrayed in the science fiction movie “Minority Report” (2002) where an 
operator can directly manipulate “swarms” of data objects in three dimen-
sions while simultaneously visualizing it. Significant opportunities therefore 
exist for innovative developments, especially as big data starts to dominate 
areas such as multi-INT fusion, logistics trend analysis, and so on.

Complementing data visualization and manipulation is natural language 
interaction between human and machine. Clearly, a wide variety of speech UI 
systems exists, from limited implementations like text-to-speech generators 
for verbal alarms and word recognition systems that can support menu selec-
tion, to more advanced implementations that can support an approximation 
of a conversation between human and machine, like the original ELIZA pro-
gram developed by Weizenbaum (1966), to more recent efforts aimed at pro-
viding semantically and syntactically correct conversational responses (e.g., 
Litman et al. 2000; Shang et al. 2015) or interactive machine translation 
(Green et al. 2015). Such systems can support limited speech interactions 
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with ASs, but progress still needs to be made if the conversations are to be 
made more “natural”—that is, for the human—and “deeper,” in terms of the 
machine truly understanding what’s in an image and describing it accurately 
or providing a rationale for the concepts that lie below the surface of simple 
statements in a conversation. Significant progress is being made, however, via 
the use of vector spaces to characterize individual words taken from a large 
dataset of sentences, followed by the use of deep neural network learning on 
those vectors to cluster and classify entire sentences, discovering analogies, 
and what might be considered concepts along the way (Goth 2016). This may 
bring machine-based speech understanding closer to reality, which is certainly 
a prerequisite for AS explainability and, eventually, trust (Knight 2016).

5.3.7 Learning and Adaptation

The learning and adaptation layer in our AS framework facilitates both 
initial development of AS behaviors (offline) and flexible or adaptive behavior 
once in the environment (online). This function, in general, requires a knowledge 
of “ground truth” and an assessment of a function’s (or an entire AS’s) performance 
with respect to that ground truth, relative to the overall goals of the AS. It also 
requires some reasoning and manipulation of the representation being used 
for the accomplishment of the tasks associated with those goals. The advantage 
of learning and adapting either before or after fielding is threefold:

•  Reduction of “knowledge engineering” on the part of the designer, since 
all possible contingencies need not be anticipated nor engineered (hand 
coded) for 

•  Matching the information structure of the environment, or adapting to 
environment, after initial fielding

•  Acquiring/integrating new knowledge with “experience,” thereby becoming 
more skilled/expert over time

This approach does, however, require the system being designed to acquire 
new knowledge and to be able to integrate that knowledge so it can effectively 
be used to drive the learning/adaptation function. The subfunctions of acqui-
sition, integration, and learning/adapting are tied to whatever representation 
the AS uses. That choice of a cognitive approach determines how the initial 
knowledge is provided to the system and how during learning over time that 
knowledge can be modified. 

When building a learning AS, there are three key phases. First, the designer 
must choose a technical implementation to support a given functionality. For 
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example, the designer might decide to use an ANN as a means of detecting 
specific events (in the perception and event detection block, for example). 
Second, the designer must encode the function in the representation language 
of the technical implementation, deciding on key architectural parameters 
and the learning mechanism. For example, if the model is a feed-forward 
ANN, then the designer would specify the architecture (e.g., number of neu-
rons per layer, the number of layers, interconnectivity density, and node 
characteristics) and the process used to set the weight values within a given 
node (e.g., backpropagation using gradient descent with an error-based ob-
jective function, the specification of a “training” dataset, and any preprocessing 
such as vectorization). This phase could be considered the initial “knowledge 
acquisition” phase of learning by the AS. The last phase is the use of the result-
ing function to accomplish one or more tasks assigned to the AS. If additional 
adaptation is called for (“with experience”), then learning will continue as the 
AS performs its assigned functions after initial fielding. This phase could be 
considered the ongoing “skill refinement” phase of learning by the AS.

Note that in figure 5.1 we show the learning/adaptation layer (potentially) 
interacting with all blocks in the SADM layer as well as the Sensor and Data 
Fusion layer so that learning can occur almost anywhere in the AS structure. 
This supports both initial knowledge acquisition as well as experience-based 
skill development across a broad range of AS functions, but to accomplish 
this requires learning structures and algorithms tuned to the particular im-
plementation technology used for a given block. We described some of the 
learning features above in terms of ANN learning, but there are clearly others. 
As described by Domingos (2015), there are at least five fundamentally different 
approaches to learning (and associated “tribes”), based on the underlying approach 
to knowledge representation and reasoning:

•  Symbolic representation and reasoning via deduction, and learning via 
induction

•  Neural networks and learning of node weights via backpropagation

•  Genetic/evolutionary algorithms and learning by evolving

•  Bayesian networks inferencing, and learning of network structure/parameters 
via Bayesian inferencing

•  Case-based (or analogical) reasoning and learning via SVM techniques

Thus, one might provide, in the learning/adaptation layer, five or more 
separate learning mechanisms to cover all possible technical implementations 
of the functional blocks of the AS. This sort of ensemble learning is used very 
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successfully in other works (Dietterich 2000). Alternatively, as proposed by 
Domingos (2015), one could use a single hybridized and structured “master 
algorithm”—which builds on specific learning methods associated with the 
five reasoning approaches cited above—suitable for learning across all the 
functional blocks. Currently, this is a conjecture and an active area of research. 
We believe, however, that other, more novel approaches of generating and 
sharing knowledge will be required.

Learning will be critical for the AS to exhibit task, peer, and cognitive flexibility. 
It will need to learn about its task and how it relates to other tasks so that it 
can maintain task flexibility. It will need to learn how to interact with each 
individual to maximize performance and ensure trust. And it will need to 
modify its internal representation so that it can exhibit cognitive flexibility. 
Moreover, an AS must be able to learn beyond the knowledge it gains from its 
own sensors and experience: it must learn via shared knowledge (cultural 
learning) in an environment where humans and ASs enter and depart at will. 
To accomplish this calls for an agency constructed of humans and ASs: an 
Agile System of Systems (ASoS). Because strict communications protocols 
limit the advancement of cooperative AS, learning will need to be inherent in 
communications between ASs to enable knowledge sharing. This last statement 
cannot be understated.

Task flexibility provides a ready example of the importance of shared 
knowledge. Consider an AS platform that is physically capable of perform-
ing several tasks but may not have the knowledge to do so. For example, the 
AS could possess the knowledge on how to complete a series of combat 
search and rescue (CSAR) tasks, which necessitates the AS to have its own 
on-board fire support and sensors to locate and support the recovery opera-
tion. The AS is therefore equipped with the sensors and the processing, in-
cluding algorithms, to support locating individuals within its region of con-
cern and thus much of what is necessary to do manhunting—but not possess 
the necessary tracking models to support the manhunting mission. In this 
case, transfer learning could address the training requirement for developing 
tracking models (Pan 2010). Transfer learning could be a way that knowl-
edge is shared from the ASoS cultural perspective, and some level of mental 
simulation (internal to the AS) could be used for the AS to generate an un-
derstanding of task completion without external stimuli. A broad range of 
technologies could be exploited to support machine-generated knowledge 
creation; we cover some of them here. Natural language processing (NLP) as 
used in the IBM Watson question-answer architecture is also useful for task 
flexibility (Ferrucci et al. 2010). Here, the AS might change its peer flexibility 
in a question-answer interaction with humans or other ASs to gain insight 
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into the current battlefield conditions and then change its task based on that 
interaction. Graphical models, in general, could be used to enable task flex-
ibility by maintaining tasks mapped to agents while maintaining task depen-
dencies and metadata that could be used to determine when task flexibility 
may be enabled. For example, a high-priority task may not be switched to if 
it is dependent on the completion of another high-priority task that is not 
already complete. The fact that graphical models are used in decision sup-
port systems is indicative of their utility in task-change decision-making.

Peer flexibility emphasizes the necessity for ASs to learn the necessary 
communications approach to share their knowledge among other ASs in the 
ASoS so they can negotiate changes to their peer relationships. A broad range 
of technologies could be exploited to support peer flexibility; we note a few 
from a machine-learning perspective here. For example, peer flexibility could 
be enabled by way of the question-answering architecture employed in IBM 
Watson. For example, the AS could use this architecture to interact with the 
AS or human to improve system performance or acquire information from 
the operations community that the AS may not already possess. This interaction 
changes the peer relationship between the human and the AS. Furthermore, 
it could use a series of questions and answers to determine if, for example, a 
human operator is too fatigued to carry out his or her duties safely and as-
sume control of the mission until the operator recovered or a relief operator 
is provided. Graphical models, in general, could serve an important role in 
peer flexibility, where the model maintains relationship status, as well as other 
metadata (e.g., peer status cannot be changed, etc.), between subordinates, 
peers, and supervisors so that the AS is more informed about how or when to 
change peer relationships.

Cognitive flexibility is currently significantly hindered by the ASs knowl-
edge representation not being accessible by other ASs. Knowledge in current 
cognitive solutions is encoded as a model, model parameters, and the algo-
rithms used to manipulate the model and is internal to that AS. A common 
knowledge substrate accessible by all agents in the ASoS is key to cognitive 
flexibility. Although the best approach to developing this knowledge sharing 
is still a matter of research, some existing technologies could support devel-
opment in this area. Transfer learning could be used to transfer knowledge 
from agents in an ASoS (cultural knowledge creation between ASs). Rein-
forcement learning can contribute greatly to cognitive flexibility by allowing 
the system to learn by playing out simulations internal to the AS. This ap-
proach was used by Google DeepMind to train its system to play Atari 2600 
games against humans with good success (Mnih et al. 201) and by the Google 
DeepMind AlphaGo system to play the game of Go against humans (Silver et 
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al. 2016). Google DeepMind uses DL in its solution with a large degree of 
success. DL has demonstrated its ability to solve a wide variety of problems 
and should be considered in cognitively flexible solutions. IBM Watson uses 
a question-answering architecture (Ferrucci et al. 2010) that would be help-
ful for an AS to determine, from an operator, if its current performance is 
acceptable and, if not, make changes to the underlying cognitive approach 
until the operator is satisfied with the results the system is producing. 
Graphical models, in general, fit well in a system that requires cognitive flex-
ibility. Not only are graphical models good for various machine learning 
tasks, but they also are used in decision support systems and could be used 
to make a decision regarding a change in cognitive approach in completion 
of a task. Finally, ensemble learning (Dietterich 2000) and mixed neural ar-
chitectures (Merényi et al. 2014) could be integral in a system needing cogni-
tive flexibility. 

The technologies described above and elsewhere (e.g., NLP, question-answer 
architectures, DL, transfer learning, reinforcement learning, ensemble 
learning, and mixed neural architectures) are important to AS learning and 
adaptation, whether singly or as a member of an ASoS construct. However, 
knowledge acquisition, adaptation, and dissemination are still areas in which 
concepts and technologies are not sufficiently mature and are deserving of 
additional basic and applied research to advance the state of the art. This is 
clearly a fertile area for investment.

5.3.8 Domain-Specific Knowledge Base

The domain-specific knowledge base layer supports storage of and access 
to domain-specific knowledge that different modules need to perform their 
functions. There are several options a designer has for the knowledge base 
design, and the approach to a knowledge base depends on the domain and the 
problem. By segmenting the knowledge base layer from the other functions, 
it is possible to separate out as much domain-specific knowledge as possible 
and leave domain-independent “engines” in other modules of other layers of 
the AS.

Such an approach was pioneered in ESs in the early 1980s: separate “infer-
ence engines” applied rules (from a domain-specific ruleset) to a domain-spe-
cific “fact base” to generate additional facts (i.e., knowledge) and eventually 
conclusions sought by the user of the ES (Barr and Feigenbaum 1981; Hayes-
Roth et al. 1983). This supports the reapplication of the ES framework, its func-
tions, and their component engines in different domains, with most of the ap-
plication-specific changes localized to the knowledge base layer.
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More contemporary AI approaches continue in this tradition. Currently, 
statistical relational models provide a mechanism to overcome the fragile nature 
of the traditional rule-based ES (Getoor and Taskar 2007; Pfeffer 2016), but 
they also allow for two primary types of domain knowledge: structural and 
parametric. The most common statistical relational model is the Bayesian Belief 
Network, which links domain states together based on their dependencies 
(directly causal or simply associated); the probabilities associated with those 
dependencies are stored as conditional probability tables (CPT; Russell and 
Norvig 2010).

To illustrate, consider an SA function implemented using a BBN represen-
tation of the situation, where each node of the network represents a specific 
variable defining the situation or a component of it, the links connecting the 
nodes represent the primary causal linkages between nodes, and the CPTs 
within a node represent the conditional dependencies between variables 
within a given node. In this case, the structural knowledge consists of the variables 
or nodes, the links between nodes, and the dimensions of the CPTs (rows and 
columns); the parametric knowledge consists of the conditional probabilities 
comprising the CPTs. All of these BBN attributes, both structural and parametric, 
can be stored in the knowledge base to represent the domain-specific 
situations of interest and their interdependencies. The actual SA inferencing 
conducted by the BBN-based SA module would be done by a domain-independent 
BBN “engine” (or data-independent algorithm) implementing Bayes’s law across 
the BBN node array in some prespecified fashion. Parameters associated with the 
engine’s operation or algorithmic rules could be stored with the engine itself or 
within the knowledge base partition associated with the BBN SA function.

A similar parsing of a function’s engine/algorithm from its data is envisioned 
for other functions in the AS, such as an expert system’s partitioning of in-
ference engine from its ruleset and fact set; a case-based reasoning function 
partitioning of its assessment of “case similarity” from its full set of cases; or 
even a lower-level estimation and control function used for traditional closed-
loop or robotic control of, say, key AS mobility functions. 

A simple engineering example of this last function is a model-based FCS, 
where the FCS structure is fixed across multiple aerodynamically similar plat-
forms, all having architecturally similar dynamic equations of motion, and 
where the FCS parameters (the flight control “gains”) are chosen on the basis 
of the parameters of the equations of motion of the specific platform for which 
the FCS is being developed. The FCS design effort then becomes one in which 
most of the effort is focused on developing a sufficiently accurate structured 
and parametrized model of the platform and then simply calculating FCS 
gains based on the model parameters (Zacharias 1974). Redesign of the FCS 
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for a new aerodynamically similar platform is then simply a matter of specifying 
the new set of platform parameters.

This separation into structure and parameters also affords us the potential 
for more focused “learning” of the structure and parameters associated with 
the task and the environment, providing us with a means of conducting systems 
identification and model development of the outside world in which the 
autonomous system is to operate. For example, one could envision an initial 
learning phase focused on systems identification to define the basic structure 
of the task/environment, including major and minor subsystems and their 
interlinkages. Subsequent learning phases could refine the components and 
parameters to extend the knowledge of the outside world to gain greater 
knowledge of the operating environment and the goals of the AS. This same 
approach could be focused internally, on the AS itself, to support health main-
tenance monitoring, growth of expertise, and similar self-assessment functions.

The ideas of task, peer, and cognitive flexibility are best addressed in the 
functional components described earlier, because of the specificity of this 
particular knowledge base. However, the idea that code can modify itself, and 
that data and code are referential, means that there are research ideas that 
could result in the domain-specific knowledge base layer manifesting these 
flexibilities. The primary mechanism that could introduce all three forms of 
flexibility into the domain-specific knowledge base layer is self-modifying 
code, where the code modifies its own instructions while it is executing (Ortiz 
2008). This is often implemented in assembly language and instruction sets 
but is also a core idea in s-expressions in the list processing (LISP) functional 
programming language (McCarthy 1960). Since everything in LISP (code and 
data) is a list, LISP macros can restructure the lists and, in essence, rewrite the 
executing program. Functional programming in general has experienced an 
upsurge with Javascript becoming the most in-demand programming lan-
guage for developers.27 This can lead to a better understanding of how to de-
velop self-modifying programs.

At a higher abstraction level, researchers have been leveraging Bayesian 
probabilistic languages (Ellis et al. 2016) and abduction in inductive logic sys-
tems (Cropper et al. 2016). These are more often presented as statistical ma-
chine learning algorithms but are unique in that during learning, they are 
learning and revising a program or rulesets and not just modifying the data 
representation (Schmidhuber 2007).

27. See, for example, Stack Overflow, https://insights.stackoverflow.com/survey/2016.
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5.3.9 Toolsets and Technologies

The toolsets and technologies substrate of our AS framework provides a 
general repository for toolsets (e.g., MATLAB at https://www.mathworks 
.com/products/matlab.html), technologies (e.g., optimization algorithms), 
and data repositories (e.g., those available at http://deeplearning.net/datasets/) 
to be used by one or more component functions illustrated in figure 5.1. Al-
though it is not feasible to provide an up-to-date and exhaustive list of toolsets/
technologies/databases applicable to the design and implementation all of the 
functions shown in figure 5.1, there are several that currently exist that will 
keep researchers from starting from scratch. In some cases, a toolset or data 
repository may be useful for more than one function. As an example, the 
Stanford Natural Language Processing toolbox (https://nlp.stanford.edu/soft 
ware/) is useful for the Learning and Adaption layer as well as the Human Computer 
Interfaces and Collaboration Environments layer.

Table 5.1 provides a sample of the toolsets and datasets that might be con-
sidered for our AS framework; a more complete table is provided in appendix 
E. We have done our best to note the diversity in the applications but only 
consider primary and secondary applications based on our judgment of tool-
set/dataset relevance; it does not mean that the toolset or dataset does not 
apply to other functions. Furthermore, for some functional areas, such as the 
Learning and Adaptation layer, there are several available toolsets and datas-
ets; yet in others, such as Planning and Replanning, there are very limited re-
sources available.

5.4 Functions not Represented in the Example Framework

We close this section on the example AS framework with a brief enumeration 
of some of the functions that are not explicitly represented and that may be 
rich areas for further research.

5.4.1 Goal Generation and Prioritization

Critical to an AS’s autonomous behavior is the generation, prioritization, 
and maintenance of multiple goals needed for mission success.

AS we discussed earlier in section 3.1, the generation of goals in the AI 
community is typically dealt with via the generation of subgoals or tasks to be 
achieved, as in a multistage planning problem (Russell and Norvig 2010). This 
is fine for implementing a “divide and conquer” approach to problem solving 
but fails to address the innovation of a truly autonomous agent that comes 
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with a grasp of the “big picture” and the given goal(s) in that context and how 
the goal space might be reconfigured to achieve better/faster/cheaper solu-
tions to a different goal than that originally specified. Reasoning by analogy 
(Salmon 2013), which humans are particularly good at, may be one approach 
to the problem, but it is clear, based on the limitations of CBR (Kolodner 
1993), that the AI community has a long way to go in this area.

The prioritization of multiple goals in the face of changing situations (cur-
rent and future) is another area that needs attention, since it is rare that any 
one goal will maintain top priority of an AS operating in a “real world” situa-
tion over long periods of time (unlike academic problem sets). Prioritization 
is compounded by the fact that goal values or utilities need to be “normal-
ized” in some (not necessarily one-dimensional) space for an AS to make 
comparisons and assign priorities. Again, humans seem to deal well with 
noncommensurate goal metrics/utilities and can handle trade-offs in priori-
ties over time; progress clearly needs to be made in this area in the AI com-
munity if we are to achieve the desired task flexibility we outlined earlier.

Finally, the maintenance of multiple goals—more correctly, the engage-
ment of behaviors to achieve those goals—requires an executive controller 
that enables multitasking, in which the goal to be currently attended to is 
brought to the forefront and the set of behaviors needed to achieve that goal 
are retrieved (“goal shifting and “rule activation,” respectively; Rubenstein et 
al. 2001), something also not explicitly represented in the example frame-
work. This representation of an “executive controller” does not appear to be 
insurmountable, given the theory developed in the cognitive psychology 
community (Miyake and Shah 1999; Miyake et al. 2000) and instantiations 
developed in the agent research community, such as the EPIC model (Meyer 
and Kieras 1997), or Soar (Laird 2012).

5.4.2 High-level Meaning Making

Critical to survival in the real world is meaning making (also called sense 
making). Many studies have shown that human cognition strives to make 
meaning of objects, events, and situations in the world (Klein 1998). For the 
human, meaning making is an endogenous, mental event. 

As discussed earlier in section 2.4, meaning making can be conceptualized 
as sign interpretation or semiotics (Hoopes 1991; Peirce 1960). The meaning 
of an object, event, or situation is its interpretation by an individual as a sign 
denoting some other (determining) object, event, or situation. For example, 
the meaning of a traffic jam during a morning commute would be its interpre-
tation as a sign denoting that the person will be late for work. Meaning making 
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can also be conceptualized as frames (Minsky 1975), which are remembered 
data structures representing stereotypical situations adapted to a given in-
stance of reality. Higher levels of a frame can represent context, while lower 
levels correspond to specific elements or data, and the relation between the 
two may provide a way of representing meaning. During meaning making, 
frames may help define relevant data, while data may drive changes to exist-
ing frames (Klein et al. 2006).

Sign interpretation, at which humans are very adept (Patterson and Egg-
leston 2017), and frames represent complementary approaches to meaning 
making. Assigning meaning to an object, event, or situation by an individual 
in terms of a sign denoting some outcome would depend on context or frame. 
Alternatively, the context or frame helps determine which objects, events, or 
situations are interpreted as signs and what those signs denote.

For the AS to work effectively and autonomously with the human, the ac-
tions of the AS and human would need to reflect a common frame (i.e., rec-
ognize the same context) to interpret the same objects, events, or situations as 
the same signs. In other words, the AS and human would need to make the 
same meaning of the same objects, events, or situations; to do so, the actions 
of the AS and human would need to occur within the same frame or context. 
The challenge here is to define at the appropriate level of abstraction and with 
the appropriate elements exactly what frame or context is, how it could be 
common to both AS and human, and how it would affect meaning making. 

In section 5.3.6 earlier, we noted the importance of having natural lan-
guage interaction via an NLP capability on the part of the AS. This would not 
only provide for more natural and efficient interactions but also could sup-
port deeper understanding of the AS goals, the task constraints, the subsys-
tem status, etc., all of which contribute to better and more effective achieve-
ment of AS goals. But a deeper NLP capability—for example, via argumentation 
theory (Toulmin 1959)—would provide opportunities for mutual human/AS 
formulation of primary mission goals, reprioritization, mutual problem solv-
ing, human/AS negotiation, and the like, all of which would contribute to 
more foundational teammate interactions and trust. Again, this capability for 
high-quality natural communications (beyond surface-level phrase parsing) 
is not explicitly represented in the example framework, and it is clearly highly 
dependent on the existence of common frames of reference and commonly 
understood signs, for human and AS alike.
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5.4.3 Dual-channel Cognitive Processing

There is much research indicating that human decision making is governed 
by two systems or sets of cognitive processes, as we noted in section 2.2 earlier. 
As Evans and Stanovich (2013) point out, the Type 1 process, one that is intuitive/
unconscious, involves unconscious situational pattern recognition uncon-
strained by working memory limitations and is independent of conscious 
“executive” control, large in capacity, and fast. This type of cognition likely 
involves implicit learning, procedural memory, and knowledge, which cannot 
be consciously recollected. When intuitive cognition renders an unconscious 
decision, it posts the result to consciousness as a feeling or an “aha” experience. 
The Type 2 process, one that is analytical-reflective/conscious, entails con-
scious deliberation that draws on limited working memory resources and can 
be effortful, rule-based, symbolic, limited in capacity, and slow. This type of 
cognition involves declarative memory and explicit knowledge (i.e., knowledge 
that can be consciously recollected). These two systems for human decision 
making can be dissociated experimentally and neurologically (Patterson 2017). 

Intuitive cognition presents challenges for the concept of situation awareness—
the perception, comprehension, and future projection of elements in the en-
vironment (Endsley 1995a, 1995b), described at length in section 5.3.4. SA 
has been traditionally defined as involving conscious awareness (Endsley 
1995a), and its measurement frequently relies on individuals’ working memory 
and verbalization (e.g., Durso et al. 2007; Endsley 1995b). Accordingly, in 
many cases, conceptualizations and measurements of SA may not reflect in-
tuitive cognition. SA appears to be representing only a portion (analytical 
component) of the cognitive processing humans use to interact with the 
world. New objective behavioral techniques need to be developed for defining 
and assessing human SA when intuitive cognition is active, so that when humans 
and ASs are teamed together they can maintain a common situation under-
standing and decision-making framework.

In addition, for an AS to work effectively and autonomously with a human, 
we need to understand how the human relies on one cognitive process or 
another (analytical or intuitive), given a specific task or work environment. It 
may be that the task environment can be structured to elicit primarily ana-
lytical or intuitive cognition (Hammond et al. 1987). The relative weight given 
to processing in one or the other system may depend on task factors such as 
the number of cues (intuitive: many; analytical: few) and the type of cues (in-
tuitive: perceptual; analytical: symbolic, rule-based). Intuitive cognition 
seems to dominate responding in humans and likely is the default system 
whenever analytical cognition cannot solve the task (Patterson and Eggleston 
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2017). Thus, for an AS-human intuitive-cognition team, the task or work environ-
ment may involve speeded judgments about perceptual material with multiple 
cues and no symbolic calculation. For an AS-human analytical-cognition team, 
the task or work environment may entail deliberative judgments involving 
symbols and rules. The challenge here is to determine exactly how certain 
task or work environments drive analytical or intuitive processing and how 
that knowledge plays into the design of AS-human teaming.

As we noted earlier, it is also important for the human-AS team to develop 
and maintain a common frame (i.e., recognize the same context) to interpret 
the same objects, events, or situations with the same meaning. One method 
for developing this common context or frame is joint human-AS training for 
joint expertise development under simulated operational conditions, as we 
noted in section 3.4. However, in humans, the development of expertise in-
volves a shift in cognitive processing from an initial emphasis on analytical 
processing towards one that emphasizes intuitive processing as expertise is 
gained (Reyna and Lloyd 2006; Reyna et al. 2014); human cognitive processing 
becomes more unconscious as the human becomes more skilled in the task.

The challenge here is to determine how the AS and human will communicate 
and develop teaming if the human’s knowledge of his or her own cognitive 
processing grows largely unconscious with skill acquisition. Although there 
are techniques (verbal report) designed to investigate the cognitive nature of 
work (Hoffman and Militello 2009), there is much evidence suggesting that 
verbal reports can be reactive and invalid (Johansson et al. 2005; Nisbett and 
Wilson 1977; Russo et al. 1989; Schooler et al. 1993). Accordingly, new objective 
behavioral techniques will need to be developed for exploring the intuitive 
cognition nature of work so that a common context or frame can be developed 
with the AS, as training drives the human’s reliance on intuitive cognition.

5.4.4 Affective Representation

Finally, the model framework does not explicitly provide for an affective 
computing capability (Picard 1997, 2003; Hudlicka 2003)—that is, the ability 
to recognize and adapt to emotions in humans or to instantiate emotions 
within the AS itself. The former capability requires sensors and perception 
units focused on emotional signals generated by humans (e.g., facial expres-
sions, voice intonations, verbal content, etc.), elements that could be accom-
modated within the current framework but not called out in the current ex-
position. The latter capability requires a separate computational model of 
emotion—a current area of active research—and a means of expressing it to 
other agent teammates, human or machine, via simulated facial or verbal sig-
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nals. Significant research is ongoing at several university-affiliated research 
labs, notably the Affective Computing Research Group at MIT’s Media Lab 
(http://affect.media.mit.edu/); the Emotions and Cognition Lab at USC 
(http://emotions.ict.usc.edu/); and the Emotion, Cognition, and Social Re-
search Lab at Jacobs University (http://akappas.user.jacobs-university.de/), 
to name a few.



Chapter 6

Recommendations

The previous chapters have addressed general principles, sample frameworks, 
and promising technologies for the development of ASs. In this chapter, we 
provide specific recommendations that can facilitate this development and 
provide guidance for a long-term research and development plan for successful 
prototyping of and experimentation with these novel systems.

Our general approach to developing these recommendations does not follow 
the conventional process of: (a) making observations on the current situation; 
(b) generating findings based on those observations; and (c) making recom-
mendations to deal with the findings. Instead, we have focused on the basic 
properties needed to ensure proficiency of these systems (in chapter 2), the 
tenets of trust needed to ensure human-system compatibility in high-risk 
situations (in chapter 3), and how they combine to give us the principles of 
behavioral flexibility that truly define autonomous behavior (as introduced in 
chapter 1). In addition, we have provided background on several different 
communities working different aspects of the problem (in chapter 4) that 
could serve as the foundations of one or more unifying frameworks for AS 
development. We presented one example (of potentially several) to guide the 
engineering development of ASs, along with promising technology that can 
address particular functional needs (in chapter 5). This path has led us to a set 
of recommendations that not only focus on AS behavioral objectives (including 
proficiency, trustworthiness, and flexibility) and the architectural/technical 
issues underlying all three but also on the nontechnical issues of the process of 
development and the structure of the organization needed to support technical 
successes in this domain.

We present here six categories of recommendations in the remainder of 
this chapter, five of them in line with the structuring we have done with our 
review of past studies presented in appendix A and one serving as an integra-
tion platform:

•  Behavioral Objectives: These are basically generalized design require-
ments specifying how we want an AS to behave, in terms of proficiency, 
trustworthiness, and flexibility.

•  Architectures and Technologies: This covers unifying frameworks and 
architectures that will support cross-disciplinary research and development, 
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along with the technology investments needed to support desired func-
tionalities within an architecture.

•  Challenge Problems: Addressed here are both domain-independent (or 
functional) problems, like dynamic replanning, and domain-dependent 
(or mission-oriented) problems, like multidomain fusion.

•  Development Processes: This includes processes—in contrast to our tradi-
tional waterfall process of requirements specification, milestone satisfaction, 
and end-state test and evaluation (T&E)—that support innovation, rapid 
prototyping, and iterative requirements development to support rapid 
AS development and fielding.

•  Organizational Structures: This includes organizing around a project (or out-
come) focus, rather than, say, along traditional technical specialty domains.

•  Knowledge Platform: This provides us with a holistic means of integrating 
across AS behavioral principles, architectures/technologies, challenge 
problems, developmental processes, and organizational structures.

To provide some context, it is appropriate to summarize the findings of previous 
autonomy studies outlined in Appendix A, organized in these same five categories.

Past recommendations in the category of behavioral objectives can be broken 
down into two subcategories. The first is fairly general and deals with the per-
formance of the AS itself, such as ensuring that behaviors are directable and 
predictable and that the AS can accomplish tasks with adequate flexibility and 
adaptivity. We would claim that all of these requirements are well covered by 
our flexibility principles described earlier and our performance properties 
described in chapter 2. The second focuses on human-system teaming, in-
cluding the desirability of being able to set mutual goals, to maintain adequate 
mutual shared awareness of the team and the adversary, and to communicate 
and coordinate effectively. Again, these general attributes have been well de-
scribed in our trust tenets put forth in chapter 3.

Past recommendations in the category of architectures and technologies 
were put forth in only one of the studies we reviewed (Potember 2017), and 
they support and complement our discussion of frameworks and enabling 
technologies of chapter 4. Several hybrid architectures were discussed—that 
is, those that combine neural networks with more traditional approaches like 
game theory—with a recommendation to consider biomimetic cognitive systems 
development as well. Specific technologies are broken into “classical” algorithmic 
approaches and the more contemporary DL network approaches enabled by 
access to “big data,” much like our earlier discussion in chapter 4.
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Past recommendations in the category of challenge problems influenced 
our distinction between domain-independent (or functional) problems, like 
dynamic replanning, and domain-dependent (or mission-oriented) problems, 
like multidomain fusion across air, space, and cyber. The domain-independent 
problems cover a range of general functional areas: collection/sensing/fusion 
of information, generic decision-aiding (with a human) and decision-making 
(autonomous) subsystems, fractionated autonomous platforms, and opera-
tion in adversarial environments that demand improvisation. The domain-
dependent problems range from generic concepts (autonomous swarms) to 
specific operations in air (including ISR, air operations planning, electronic 
warfare, and logistics), space (including fractionated platforms and embedded 
health diagnostics), and cyber (defensive operations, offensive operations, 
and network resiliency).

Past recommendations in the category of development processes cover six 
major areas:

•  The need to actively track adversarial capabilities and usage of ASs

•  The importance of human capital management, including the attraction 
and retention of experts in AI and software engineering, the introduction 
of AS capabilities into professional military education (PME) and 
wargaming, and the development of centralized AI/AS resources for the 
DOD’s research community

•  Continued support of basic and applied research in a broad area of underly-
ing technologies (not just DL), coordinated across research communities 
and informed by operational experience and evolving mission requirements

•  Support of advanced systems development, which separates the development 
of platforms from the autonomy software that governs them, augmented 
by the development of a discipline of AI engineering to accelerate progress

•  Establishing processes for upgrading legacy systems with new AS capabilities

•  Recognizing the difficulty of conducting T&E of these systems and es-
tablishing a research program for dealing with nontransparent, nondeter-
ministic, and time-varying (learning) systems1

1. At the outset of this study, we realized the difficulty of dealing with this aspect of AS de-
velopment, especially given that these systems are “moving targets” in terms of their expected 
operating environments, their overt behavioral characteristics, and their internalized software 
and hardware constructs. We have therefore chosen not to make recommendations at this early 
stage—except to advocate research and technology development aimed at advancing the state 
of the art of T&E for these systems—and instead have simply identified, in appendix I, some 
aspects of the problem we face and potential directions for the future.
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In our survey of past studies summarized in appendix A, we found no recom-
mendations dealing with the introduction of new organizational structures for 
AS R&D, nor for the concept of a unifying Knowledge Platform.

The remainder of this chapter presents our recommendations organized by 
the five categories just summarized (sections 6.1 through 6.5). We then discuss 
how we can address these individual recommendations in a holistic fashion, via 
the introduction of a Knowledge Platform (section 6.6), summarize our recom-
mendations (section 6.7), and conclude with brief closing comments.

6.1 Behavioral Objectives

In our earlier discussions we have not attempted to explicitly define what 
autonomy is or what an AS does but rather have focused on the behavioral 
characteristics of an AS; in other words, the general behavioral characteristics 
of a to-be-designed/-developed AS. We proposed in chapter 1 that the key 
characteristic was flexibility, in terms of dealing with tasks, peers, and cogni-
tive approaches. In chapters 2 and 3, we augmented these characteristics with 
expectations in terms of performance and trust and showed how they com-
bine to give us the principles of behavioral flexibility that truly define autono-
mous behavior. In this section, we restate these desired attributes in terms of 
system design goals, to guide future AS design efforts.

Recommendation 1a: ASs should be designed to ensure proficiency in the 
given environment, tasks, and teammates envisioned during operations. 
Desired properties for proficiency include: 

•  Situated Agency. Provide for situated agency within the environment, 
which includes component abilities to sense or measure the environ-
ment, assess the situation, reason about it, make decisions to reach a 
goal, and then act on the environment, to form a closed loop of “seeing/
thinking/doing,” iteratively and interactively.

•  Adaptive Cognition. Provide for a capability to use several different 
modes of “thinking” about the problem (i.e., assessing, reasoning, and 
decision making), from low-level rules to high-level reasoning and plan-
ning, depending on the difficulty of the problem, and the need for flexi-
bility in dealing with unexpected situations.

•  Multiagent Emergence. Enable an ability to interact with other ASs via 
communications and distributed function allocations (e.g., sensing, as-
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sessing, decision making, etc.), either directly or through a C2 network, 
in a manner that can give rise to emergent behavior of the group, in a 
fashion not necessarily contemplated in the original AS agent design.

•  Experiential Learning. Provide for a capability to “learn” new behaviors 
over time and experience, by modifying internal structures of the AS or 
parameters within those structures, based on an ability to self-assess per-
formance via one or more performance metrics (e.g., task optimality, 
error robustness, etc.) and an ability to optimize that performance via 
appropriate structural/parametric adjustments over time.

We also highlighted the importance of trust in an AS, even if it is deemed 
proficient, particularly when teamed with one or more human teammates. In 
addition to the conventional contributors to mistrust, there are particular 
challenges when dealing with ASs, including: 

•  Lack of analogical “thinking” by the AS. When the AS approaches and/or 
solves a problem in a fashion that is not at all like a human would attack 
the problem, trust can become an issue because of human concern that 
the approach may be faulty or unvalidated.

•  Low transparency and traceability in the AS solution. Lacking an ability to 
“explain” itself, in terms of assumptions held, data under consideration, 
reasoning methods used, and so forth, the AS finds it difficult to justify 
its solution set and thus engender human trust.

•  Lack of self-awareness or environmental awareness by the system. In the 
former, this might include AS health and component failure modes, 
while in the latter, this might include environmental stressors or adver-
sary attacks. Either may unknowingly affect performance and profi-
ciency and overstate the confidence in an AS-based solution made out-
side of its nominal “operating envelope.”

•  Low mutual understanding of common goals. When a human and AS are 
working together on a common task, a lack of understanding of the 
common goals, task constraints, roles, and more can lead to a lack of 
trust on the part of the human in terms of the system’s anticipated profi-
ciency over the course of task execution.

•  Non-natural communications interfaces. The lack of conventional bidi-
rectional, multichannel communications between human and system 
(e.g., verbal/semantic, verbal/tonal, facial expressions, body language) 
not only reduces communications data rates but also reduces the oppor-
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tunity to convey nuances associated with operations by well-practiced 
and trusting human-only teams.

•  Lack of applicable training and exercises. Lack of common training and 
practice together reduce the opportunities for the human to better under-
stand the system’s capabilities and limitations, as well as how it goes 
about “problem solving,” and thus opportunities for understanding a 
system’s “trust envelope”—that is, where it can be trusted and where it 
cannot.

To overcome these sources of distrust, we proposed several design recom-
mendations.

Recommendation 1b: ASs should be designed to ensure trust when operated 
by or teamed with their human counterparts. Desired tenets of trust include:

•  Cognitive congruence and transparency. If possible, build the system at 
the high level to be congruent with the way humans parse the problem, 
so that the system approaches and resolves a problem in a manner analogous 
to the way a proficient human does. Whether or not this is accomplished, 
provide some means for transparency or traceability in the system’s solu-
tion, so that the human can understand the rationale for a given system 
decision or action.

•  Situation awareness. Provide sensory and reasoning mechanisms sup-
porting SA of both the system’s internal health and component status 
and of the system’s external environment, including the ambient situation, 
friendly teammates, adversarial actors, and so on. Provide a means for 
using this awareness for anticipating proficiency increments/decrements 
within a nominal system’s “operating envelope” to support confidence 
estimates of future decisions and actions.

•  Human-systems integration. Follow guidelines of good human-systems 
interaction design to provide natural (to the human) interfaces that 
support high bandwidth communications if needed, subtleties in quali-
fications of those communications, and ranges of queries/interactions to 
support not just tactical task performance but more operational issues 
dealing with goal management and role allocation (in teams).

•  Human-system teaming and training. Before human-system teams are 
brought into operations, adapt or morph training programs and curri-
cula to account for the special capabilities (and associated limitations) of 
humans teaming with ASs. Conduct extensive training so that the team 
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members can develop mutual mental models of each other, for nominal 
and compromised behavior, across a range of missions, threats, environ-
ments, and users.

We also described the importance of achieving overall AS behavioral flexibility 
under different tasking, peer arrangements, and problem-solving approaches, 
summarized in terms of the following three principles of flexibility:

•  Task Flexibility. An AS should be able to change its task or goal depend-
ing on the requirements of the overall mission and the situation it faces. 
Humans are not optimizers designed for only accomplishing one task, 
even if they are experts in one (e.g., Olympic athletes or world-class 
chess players); rather, they are sufficers in many tasks, flexibly changing 
from one to another as the need arises. Humans can accomplish multiple 
tasks, serially and in parallel, dynamically changing priorities over time, 
shedding tasks and taking on new ones, depending on the situation and 
motivation (rewards). We believe the same task flexibility needs to be 
embodied in ASs and that this capability is enabled by situated agency: 
sensing the environment, assessing the situation, deciding on a course of 
action to accomplish its tasking, and acting on that course of action, all 
the while closing the loop by monitoring the outcome and communicat-
ing with the other agents in its team.

•  Peer Flexibility. An AS should be able to take on a subordinate, peer, or 
supervisory role, depending on the situation and the other agents, human 
or machine, populating the environment. Humans accomplish this type 
of relational flexibility as they move through different roles throughout 
the day, dynamically changing their relationships depending on the 
situation and the peers they are interacting with. We believe the same 
peer flexibility needs to be embodied in an AS, changing its relationship 
role with humans or other ASs within the organization, as the task or 
environment demands. An AS should participate in the negotiation that 
results in the accepted peer relation change, requiring the autonomous 
system to “understand” the meaning of the new peer relationship to re-
spond acceptably. This capability is enabled by situated agency providing 
environmental and task awareness, an understanding of its peer pop-
ulation (humans and machines), and learning over time to develop 
proficiency.

•  Cognitive Flexibility. An AS should be able to change how it carries out a 
task, both in the short term in response to a changing situation and over 
the long term with experience and learning. Humans accomplish tasks 
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in multiple different ways, using visualization, verbalization, rote mem-
ory, solutions from first principles, and so on. They also change their 
approaches as they become more expert in tasks, with learning and skill 
acquisition over time. Finally, they may employ parallel approaches to 
problem solutions, and they may also act consciously or unconsciously. 
We believe that an AS should embrace this type of cognitive flexibility in 
addressing a problem by bringing to bear a variety of techniques to as-
sess and then decide, selecting those techniques based on the current 
situation, past experience with given methods, the need to trade opti-
mality vs timeliness, and so on. In the long term, the AS can also learn 
new “solution methods” over time, assessing and readjusting a tech-
nique’s contribution to task performance for a given situation and mis-
sion tasking.

We then described how the proficiency properties and trust tenets could 
work in tandem to drive these flexibility principles, expressed as the following 
recommendation set.

Recommendation 1c: ASs should be designed to achieve proficiency and 
trust in a fashion that drives behavioral flexibility. This is illustrated in figure 6.1 
and summarized as follows:

•  Task Flexibility. An AS should be able to change its task or goal depend-
ing on the requirements of the overall mission and the situation it faces. 
This is enabled by situated agency: sensing the environment, assessing 
the situation, deciding on a course of action to accomplish its tasking, 
and acting on that course of action, all the while closing the loop by 
monitoring the outcome and communicating with the other agents in its 
team. This is also supported by providing for a capability for experiential 
learning to improve task proficiency and flexibility over time.

•  Peer Flexibility. An AS should be able to take on a subordinate, peer, or 
supervisory role and change that role with humans or other ASs within 
the organization, as the task or environment demands. This capability is 
enabled by situated agency providing task/peer/environmental aware-
ness, an understanding of the multiagent emergent behaviors of its peer 
population (humans and machines), and experiential learning to de-
velop role-switching proficiency.

•  Cognitive Flexibility. An AS should be able to change how it carries out a 
task, both in the short term in response to a changing situation and over 
the long term with experience and learning. In the short term, adaptive 



RECOMMENDATIONS │ 203

cognition can bring to bear a variety of techniques to assess and then 
decide, selecting those techniques based on the current situation, past 
experience with given methods, the need to trade optimality versus 
timeliness, and so forth. In the long term, experiential learning can im-
prove proficiency and enable the acquisition of new behaviors over time, 
assessing and readjusting a technique’s contribution to task performance 
for a given situation and mission tasking.

These principles of flexibility ensure that we focus on the development of 
systems that provide the USAF its newest asymmetric advantage, that of im-
proving every decision. ASs that exhibit these principles will result in solutions 
that are interoperable, composable, and adaptable, allowing them to create and 
impose complexity through numbers, heterogeneity, spatial reach, speed, and 
deception—for example, the ability of flexible ASs to combine into an 
adaptive kill web composed of legacy/new, manned/unmanned, disaggre-
gated, and distributed systems. These flexibilities will enable the development 
of systems than can self-organize into a system of systems (SoS) to work 
together (interoperability through peer flexibility), to solve problems that 
were not envisioned when the systems were created (composable systems 
achieved through task flexibility) and that will be adaptable to changes in the 
environment, tasking, and the adversary (because of their cognitive flexibility). 
This results in a USAF more able to overwhelm adversaries with complexity 
and speed, by creating simultaneous dilemmas across all domains.

Properties for
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Tenets of Trust
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Figure 6.1. Relationship between autonomous system proficiency, trust, and 
flexibility
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6.2 Architectures and Technologies

We have noted earlier that the time is right to begin to develop a common 
framework for describing, developing, and assessing ASs, based on our re-
view of the research activities of a number of seemingly disparate communi-
ties, including:

•  The robotics and cybernetics communities

•  The cognitive psychology and neurosciences communities

•  The “hard” AI and “soft” AI communities

In our view, these communities appear to be converging toward very 
broad common frameworks that describe the problem of agency and auton-
omous behavior from radically different viewpoints that, in their own way, 
may have significant contributions to make to the development of proficient 
and trustworthy ASs, in the sense that we have discussed those terms earlier 
in chapters 2 and 3. Bringing them together will necessitate common frame-
works to bridge the gap across communities, to support the development of 
a common language to describe similar and related concepts in the different 
fields, and to provide the foundation for more rapid and efficient develop-
ment (via cross-appropriation of validated concepts and modules) of con-
ceptually well-founded future autonomous systems.

Recommendation 2a: Develop one or more common AS architectures that 
can subsume multiple frameworks currently used across disparate commu-
nities. Architectures should, at a minimum, provide for “end-to-end” fun-
ctionality, in terms of providing the AS with a sensory ability to pick up key 
aspects of its environment; a cognitive ability to make assessments, plans, 
and decisions to achieve desired goals; and a motor ability to act on its envi-
ronment if called upon. The architecture should be functionally structured 
to enable extensibility and reuse, make no commitment on symbolic vs sub-
symbolic processing for component functions,2 incorporate memory and 
learning, and support human-teammate interaction as needed. An archi-
tecture can be deliberately engineering-focused (as presented earlier); or it 
could take a looser, nonfunctional approach provided by, say, (symbolic) 
rulebased systems3 or (nonsymbolic) ANN structures;4 or it could take a 

2. And may include both, in a “hybrid” architecture; see, for example, Russell (2015), Davis 
and Marcus (2015), Booch (2016).

3. For example, where declarative knowledge is not even partitioned from procedural knowledge.
4. For example, where a layer’s “function” in a multilayered network is not even defined 

until after learning stops.
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strong biomimetic approach, assuming the underlying science is adequate to 
support engineering development. Whatever the form, an architecture 
should be extensible to tasks assigned, peer relationships engaged in, and 
cognitive approaches used. A key metric of an architecture’s utility will be its 
capability of bridging the conceptual and functional gaps across disparate 
communities working autonomy issues.

If we are successful, the development of one or more common AS archi-
tectures could help us accomplish the following:

•  Identifying the fundamental structure common to most or all ASs, in 
terms of the internal component functions, their relationship to each 
other and the environment, the principles governing their design, and 
overall control-flow and data-flow

•  Finding a place in the autonomy “universe” for those working subsets of 
the general problem (e.g., data fusion, image classification, path plan-
ning, motor control, etc.) and providing connectivity to others working 
complementary subsets of the problem

•  Helping develop a unifying “science of autonomy” underpinning the 
thousands of “one-offs” we now have in the engineering community

•  Separating functionality from enabling technologies so architecture de-
sign can go on in parallel with technology development

•  Pointing to where the S&T community needs to invest to develop “miss-
ing” functionalities and/or improve technology capabilities

•  Dealing with the issue of meaning making and the need for a common 
frame or context

•  And, in the longer term,

0  Serving as the foundation of a common Open Systems Architecture 
(OSA) to encourage reuse of developed software modules across ap-
plications and domains

0  Supporting interoperability across DOD (e.g., USAF ISR UAVs co-
operatively teaming with Navy attack unmanned undersea vehicles)

In our discussion of a sample AS architecture in chapter 4, we identified a 
number of component functions and described for each a broad variety of 
technologies that could be used to implement those functions. It is not our 
objective here to single out one or another technology to pursue; that is the 
responsibility of the research and development community. Instead, we wish 
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to encourage the parallel development of multiple technologies that might 
be used to implement a given function needed by an AS to achieve profi-
ciency and trustworthiness in a broad range of operational environments.

Recommendation 2b: In parallel with the development of one or more 
AS architectures and the definition of component functions underlying 
those architectures, pursue the development of enabling technologies that pro-
vide the needed functionality at the component level. This includes tech-
nologies that support not only the basic “see/think/do” functions but also 
those that enable effective HCIs, learning/adaptation, and knowledge-base 
management, both of a general purpose and of domain-specific nature. The 
nature of technology development should range from basic research to ex-
ploratory development to early prototyping, depending on the maturity of 
the specific technology and its envisioned application.

Parallel development of technologies in this fashion can provide us with 
the following benefits:

•  Faster and more efficient development of needed functionalities de-
manded by one or more AS architectures. Technology developers can 
focus on a narrower set of AS behaviors and rely on others to provide 
more general AS solutions via a common architecture and functional 
components developed elsewhere.

•  A “best of breed” evolution of components and architectures over time, 
serving the entire community through common usage of proficient and 
validated components

•  A natural approach to developing a capability for adaptive cognition 
and multiple approaches to dealing with different situations and prob-
lem sets, thereby supporting greater cognitive flexibility in AS behavior 
and resilience in the face of unanticipated conditions.

•  An opportunity to focus on narrow but conceptually deep problems 
that are still on the leading edge of AI and AS development, such as 
explainable AI, context-adapting AI, and automated training of AI sys-
tems

•  An opportunity to address similarly conceptually deep issues that drive 
cognitive science, including fast/slow thinking mechanisms, affective 
representations and behavior moderators, goal formation, free will, and 
consciousness.

Most of our discussion has focused on the architectural, functional, and 
algorithmic aspects of ASs, but effective and efficient development, valida-



RECOMMENDATIONS │ 207

tion, and modification will call upon additional engineering-focused consid-
erations, notably “architectural patterns” afforded by multitier hardware and 
multilayer software architectures.5 An example of such a pattern is illustrated 
in figure 6.2, composed of four hardware/software tiers/layers:

•  Human Machine Interface. As described in sections 3.3 and 3.4, a well-
designed HMI can afford effective human-systems integration and close 
human-AS teaming (or, equivalently, HCI), in a manner that engenders 
communications, task sharing, and trust. The HMI can be thought of 
both as a physical tier in that it may be implemented on a separate com-
puter with hardware providing dedicated displays and controls across 
multiple sensory/motor modalities and as a logical layer, commonly re-
ferred to by the software community as a presentation layer or user in-
terface.

•  Autonomous System Architecture. This is primarily a software layer de-
signed to provide the modularity and functionality of a selected AS ar-
chitecture, such as that described in section 4.2 earlier. Ideally, it is a 
reusable domain-independent (or domain-insensitive) plug-and-play 
architecture that can be used across different domains with expandable/
contractable functionality. The software community typically refers to 
this as an application service or business logic layer. In terms of a hard-
ware tier, this service would likely be hosted on one or more embedded 
computers associated with a host platform, for example.

•  Computational Methods/Algorithms. This is primarily a software layer—
although special-purpose processors could be put to use here as addi-
tional hardware tiers—providing multiple common computational ap-
proaches to implementing a given function in the AS architecture (in 
the fashion described in section 4.2 earlier), for several functions. The 
software community typically refers to this as a business services layer, 
or low-level business layer, supporting one or more higher level func-
tions.

•  Hardware/Software Platforms. At the bottom of the figure we show 
hardware/software tiers and layers providing any needed software ser-
vices (e.g., operating systems), computational power, and memory to 
instantiate the overall AS architecture, its layers and services, as well as 
sensors and effectors needed to support situated agency (as described in 
section 2.1), and networking protocols and communication channels to 

5. We use the term tier to refer to physical hardware segmentation of some of the AS func-
tions and layer to refer to the logical software segmentation of AS functions (Fowler 2002).
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support multi-AS and/or human-AS communications. It is anticipated 
that this tier/layer will evolve rapidly with explosive growth in cloud 
computing and data storage, improvements in communications band-
width, the push toward fog computing for special-purpose applications, 
and the inevitable rise in commercial Internet of Things applications. In 
addition to these technical enablers, operational verification and valida-
tion (V&V) and cybersecurity will have a strong influence on how these 
“platforms” evolve as well.

Several benefits accrue with the definition of a well-designed architectural 
pattern for AS development. As a result, we encourage an effort devoted to 
thoughtful hardware and software engineering design.

Recommendation 2c: Develop and promulgate a multitiered hardware 
and multilayered software architecture to support AS development, valida-
tion, operation, and modification, where each tier provides for physical 
structuring across distinct hardware implementations/hosts for given high- 
and low-level functions and each layer provides distinct software implemen-
tations of similar functions. Figure 6.2 provides a simple example of tiers/
layers, but more complex architectural patterns may be needed to take full 
advantage of emerging technology trends, particularly in the commercial 
sector.

Human Machine Interface

Autonomous System Architecture

Computa�onal 
Methods/Algorithms

Hardware/So�ware Pla�orms effectorssensors

OUTSIDE WORLD

Figure 6.2. Example architectural pattern for AS development
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A well-designed tiered/layered architecture can afford us the following 
benefits:

•  By decoupling (or loosely coupling) different functions into different 
tiers/layers, the scope of development and testing for any one layer is less 
than for the full application, simplifying design and testing.

•  Decoupling also allows for parallel development by separate teams, 
speeding up overall system development; in many situations, the devel-
opment team can take advantage of already developed code, inside and 
outside of DOD.

•  Multiple tiers/layers also support rapid modification of the application 
for new uses/domains, because changes can often be localized to a single 
layer without reworking the entire application.

•  Different components of the application can be independently deployed, 
maintained, and updated, on different time schedules.

•  Multiple applications can reuse the components.

•  Tiers/layers make it possible to configure different levels of security for 
different components deployed on different hosts.

We conclude this section by noting that these three sets of recommenda-
tions will not be achievable without the context set by general and specific 
behavioral AS objectives, as expressed in “challenge problems.” We address 
this in the next section.

6.3 Challenge Problems

Development of architectures and technologies for autonomous systems 
will not happen in a vacuum. What is needed is an active pursuit of specific 
challenge problems that drive different aspects of AS development, ranging 
from basic and exploratory S&T that focuses on architectures and functions 
(domain-independent) to more operationally focused system development 
applications to solve “real-world” operational problems (domain-dependent). 
We discuss this at greater length here.

6.3.1 General Considerations

Before discussing specific problem sets, we wish to emphasize three points. 
First, both domain-independent and domain-dependent problem sets should 
be guided by, and stay consistent with, the AS architectures and functional-
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ities chosen to frame the R&D in this area (as we have emphasized in the 
previous two chapters). This provides a basis for a common reference within 
the community, a means for communicating “bottom up” and “top down,” 
and possible concept/code reuse and offers a potential bulwark against the 
development of “one offs” that contribute little or nothing beyond improving 
the expertise of the teams that developed them. Second, we should be think-
ing in terms of challenge problems that truly push the bounds of the basic 
science and the engineering technologies; these are supposed to be challenges, 
after all. As noted by the Office of Net Assessment (ONA) in a recent study:

A great deal of current DOD thinking focuses on AI applications in terms of extending 
our current activities and capabilities. The “Loyal Wingman” concept is a good example: 
using AI applications to do better and more of a thing we already do, in this case, flying 
F-16s. We could distinguish this line of thinking from creating different, previously-
impossible concepts of operations—using technologies to do things that weren’t possible 
before these technologies were used. [We] might focus more thinking on the latter category. 
(DOD ONA 2016)

Third, we wish to make clear that these challenge problems should not be 
fixed in stone and should be dynamically updated over time, when they are 
found to be, for example, ill-stated, “solved” by other technology advances 
(inside or outside the AF), or irrelevant because of adversary advances or 
countermeasures. These challenge problems need to be continually updated, 
based on our failures, successes, and changes in both the technology base and 
the operational world. 

6.3.2 Domain-Independent or Functionally Oriented Challenge 
Problems

Much of the discussion of chapters 2, 3, and 4 has focused on the basic 
behaviors, architectures, functions, and technologies needed to support au-
tonomous system operations.6 Driving the development of these foundational 
AS structures and attributes—in a fashion that is domain- and mission-
independent—calls for an appropriately scoped, scaled, and abstracted set of 
challenge problems that will allow the S&T community to focus down on 
different functions that subserve autonomous system behavior, as well as the 
technologies needed to create these functionalities. As we note in appendix A 
(and earlier), these functional areas include collection/sensing/fusion of in-
formation; generic decision-aiding (with a human) and autonomous decision-
making (without a human); planning, replanning, and scheduling; operation 

6. As well as concepts, theories, and algorithms, and the underlying “platforms” afforded 
by software, hardware, datasets, and communications channels. 
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in adversarial environments that demand improvisation; teaming with humans 

and other agents; and learning over time and experience. Table A.4 of appen-
dix A provides greater detail on several domain-independent challenge prob-
lems nominated by earlier studies; figure 6.3 below provides a comparable set 
defined by DOD’s Autonomy COI, several of which have already been discussed 
here in earlier chapters.

On reviewing these and other recommendations for domain-independent 
functional challenge problems, it quickly becomes evident that these lists: 
(1) do not provide the basic rationale for selection and prioritization of one 
challenge problem over the other; and (2) do not provide any indication that 
they are an appropriate “spanning set” of the functional space of AS behaviors, 
since no indication is given that they are (even approximately) exhaustive and 
exclusive. As a result, we are left with a number of proposed challenge prob-
lems, with no guidance as to how to select, prioritize, or integrate into any 
kind of holistic R&D roadmap.

Human/Autonomous System Interaction and Collaboration (HASIC):

Scalable Teaming of Autonomous Systems (STAS):

Machine Perception, Reasoning and Intelligence (MPRI):
• Common Representations and Architectures
• Leaming and Reasoning
• Understanding the Situatlon/Environment
• Robust Capabilities

• Decentralized mission-level task allocation/assignment
• Robust self-organization adaptation, and collaboration
• Space management operations
• Sensing/synthetic perception

Test, Evaluation, Validation, and Veri�cation (TEW):
• Methods & Tools Assisting in Requirements Development and Analysis
• Evidence based Design and Implementation
• Cumulative Evidence through Research, Development, Test, & Evaluation
 (RDT&E), Developmental Testing (OT), and Operational Testing (OT)
• Run time behavior prediction and recovery
• Assurance Arguments for Autonomous Systems

• Calibrated Trust
• Common Understanding of Shared Perceptions
• Human-Agent Interaction

Figure 6.3. DOD Autonomy Community of Interest: challenge areas (Bornstein 
2015)

Recommendation 3a: Drive basic behavior, architecture, and function de-
velopment of ASs with an appropriately scoped, scaled, and abstracted set of 
functionally oriented challenge problems that allow different members of the 
S&T community to focus down on different contributors to AS behavior. Se-
lect the set of challenge problems based on an initially nominated architecture 
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and function set, in a fashion that spans the full set of functionalities repre-
sented in the architecture (exhaustiveness) and that minimizes the overlap in 
functionalities needed to address any two challenge problems (exclusivity). 
Iterate on the architecture and function set as results from addressing the 
challenge problems become available and, likewise, iterate on the challenge 
problem design based on the updated architecture/functions, following a 
model-based experimentation protocol (Mislevy et al. 2017). Finally, any 
challenge problem portfolio should be done with an awareness of what the 
rest of the R&D community is engaging in: a lead/leverage/watch strategy is 
clearly called for here.

Clearly, this will require the initial selection of one or more architectures 
and function sets to kick off the nomination of an initial set of domain-
independent or functional challenge problems, and it will also require con-
siderable collaboration and communication across the S&T community to 
address these problems in a coordinated and efficient manner. It will also re-
quire periodic updating of the selected architectures/functions, a reassess-
ment of the adequacy of the challenge problem set, and updating this problem 
set as needed. This approach of model-driven inquiry will come at a signifi-
cant cost of coordination across the community but should support:

•  Evolution of one or more architectures to better enable and represent the 
desired set of AS proficiencies, trust relations, and flexibilities

•  Better coverage of the full scope of AS functions, with less duplication of 
effort across the S&T community

•  Faster development because of distributed tasking across the S&T com-
munity and the potential for sharing between labs architectures, functions, 
algorithms, and empirically derived datasets

•  Enhanced V&V opportunities because of the co-evolution of architectures/
functions with challenge problems

The key takeaway here is the dynamic iterative nature of the AS architec-
ture, function set, technology enablers, and the challenge problems them-
selves, driven by the interaction of the architecture/function developers and 
the challenge problem empiricists.7

As these challenge problems become “solved” at the 6.2 and 6.3 level and 
the associated capabilities are transitioned to more operationally relevant de-

7. In a fashion analogous to that which occurs in the physics community: theoreticians, with 
their models, drive the experimentalists in their searches for, say, new particles, and experimen-
talists, with their new discoveries, drive theoreticians in finding new models to explain the data.
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velopment efforts (see next section), the challenge problem portfolio will 
need to be updated to take on increasingly difficult behavioral, architectural, 
and functional challenges. Most of these have been commented on earlier, 
and we have indicated where; in addition, for three of the problems, we have 
pointers to sections in appendix F, where we provide additional details. We 
recommend taking on the domain-independent challenge problems given in 
table 6.1, presented as an unprioritized but functionally organized list; the 
research community clearly needs to address prioritization.

Table 6.1. Domain-independent challenge problems for autonomous systems 
development (with pointers to relevant sections)

Function Domain-independent challenge problem Section

Perception and 
awareness

Attention management and “active sensing” 5.3.2

Nonlinear dynamic state estimation and event 
detection from heterogeneous sensors and 
databases

5.3.3, 5.3.4.1

High-level meaning making and situational 
awareness

3.1, 3.2, 
5.3.4.2,  5.4.2

Cognition and 
decision-making

Goal formation and prioritization 2.2, 5.3.4.3, 
5.4.1

Dual-channel “fast/slow” cognition to support 
adaptive cognition, human-system integration, 
and effective human-AS teaming

2.2, 3.3, 3.4, 
5.3.4.3, 5.4.3

Reasoning by analogy and cases 5.4.1

Flexible planning/replanning in a dynamic 
uncertain environment

5.3.4.4

Context adapting ASs to support task and 
cognitive flexibility

1.3, 2.2, 
5.3.4.4

Execution 
management

Generic effector management to transform 
high-level plans to actions

5.3.4.5

Plan execution monitoring methods and 
algorithms

5.3.4.5

Internal  
representation

Representation of AS world models to make 
them consistent, stable, and useful to a 
broader set of problems

5.3.8, 
App F.1.1

Transparent and ready access to enabling 
toolsets/technologies

5.3.9
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Function Domain-independent challenge problem Section

Learning/ Adapting Supervised/unsupervised learning paradigms 
needing minimal datasets

2.4, 4.3, 5.3.7

Cultural or “fleet learning” across a heteroge-
neous agent populatior

2.4

Generic cross-paradigm learning methods* 5.3.7

HCI Explainable AI to support AS transparency and 
operator trust

3.1

HSI taxonomies/protocols to support human-
AS teaming

3.3, 3.4.1

Multimodal communications for mixed-initiative 
teaming

3.4.1

Theory and protocols for human-AS team training 3.4.2

Other Dynamic agent communications, enabling 
agents to learn a communications protocol in 
a decentralized way

5.3.2, 5.3.5, 
App F.1.2

Multiagent systems design methods for 
specifying and developing desired emergent 
behavior in multi-AS systems

2.3

Affective computing by ASs, for better human-
system teaming and to support dual-channel 
cognition

3.4, 5.4.3

Consciousness and “free will”; ability to trade 
off directability/predictability vs autonomy/
independence

2.2, 2.3, App 
F.1.3

Other functionally oriented and mission-independent challenge problems 
will naturally arise over time, either from the “bottom up” as we learn more 
from the basic sciences of, say, human cognition, or from the “top down” as 
we reach to apply AS technology to increasingly difficult operational prob-
lems. The S&T community will need to stay aware of these opportunities and 
be ready to change its basic and applied S&T problem portfolio appropriately.

6.3.3 Domain-Dependent or Mission-Oriented Challenge Problems

To complement the domain-independent challenge problems, we see a need 
for a set of domain-specific or mission-oriented challenge problems that focus on 
current and future operations where autonomous systems could contribute to 

Table 6.1. Domain-independent challenge problems for autonomous systems 
development (with pointers to relevant sections) (continued)

* In the spirit of The Master Algorithm (Domingos 2015).
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close a “gap” or enable new capabilities. As we note in appendix A, problems range 
from generic concepts (for example, autonomous swarms), to specific operations 
in air (including ISR, air operations planning, electronic warfare, and logistics), 
space (including fractionated platforms and embedded health diagnostics), and 
cyber (defensive operations, offensive operations, and network resiliency). Such 
challenge problems would have two major purposes. First, they would serve to 
drive exploratory development and prototyping of relatively mature operational 
and technical concepts (e.g., a “Pilot’s Associate” that could provide simple decision-
aiding and subsystem management for a pilot during high workload situations8) 
for risk reduction in downstream acquisition decisions. Second, they would serve 
as “stretch” goals to drive longer term development of less mature systems that 
are both operationally relevant with a high payoff for success and that chal-
lenge the S&T community to make significant advances in the science and 
engineering of AS functionality (e.g., a Pilot’s Associate that acted like a true 
human member of a two-person crew, in a manner that was proficient, trust-
worthy, and flexible). Table A.5 of appendix A provides greater detail on sev-
eral challenge problems nominated by earlier studies. There are clearly others 
that could be candidates as well.

As with the domain-independent challenge problems, selection and pri-
oritization are an issue. Even if we chose to be entirely “operationally gap 
driven,” it is unclear how we would prioritize the set of challenge problems 
that address those gaps. More critically, by constraining ourselves to fill cur-
rent and envisioned gaps, we may be bypassing important and emergent AS 
capabilities that could fundamentally change, for the better, the nature of our 
current strategy, operations, and concepts of operations.

Recommendation 3b: Select mission-oriented challenge problems with the 
two objectives of: (1) addressing current or future operational gaps that may be 
well-suited for AS application; and (2) challenging the S&T community to make 
significant advances in the science and engineering of AS functionality. Ensure 
that the challenge problems can be addressed within the context set by the ar-
chitectures and functions selected earlier, to ensure consistent efforts between 
the domain-independent and domain-dependent efforts,9 and to avoid “one 
off” application efforts that end up having little to contribute to other mission-
oriented problem sets, in the way of concepts, algorithms, or reusable software 
modules. Consider both “partial” mission-focused challenge problems (e.g., 
real-time pop-up threat detection/identification) as well as “end-to-end” chal-

8. A knowledge-based system sponsored by DARPA dating back to the 1990s designed to 
support the pilot in the management of onboard aircraft subsystems (Banks and Lizza 1991).

9. If consistency cannot be achieved with one or more important operationally relevant 
challenge problems, then reconsideration of the architecture and or functionalities is called for.
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lenge problems (e.g., multi-INT ISR [MI-ISR] that drives multidomain C2 
[MDC2]). Finally, do not allocate S&T resources to solving operational prob-
lems that have close analogs in other sectors, unless the USAF–specific attri-
butes make the problem so unique that it can’t be solved in an analogous fash-
ion with simple modifications.10 As with the domain-independent challenge 
problems, a lead/leverage/watch strategy is called for in shaping the operational 
challenge problem portfolio.

When we recommend choosing challenge problems that are well-suited to 
AS application, we mean that problem sets should be fundamentally focused 
on the pickup of information, its processing, and its dissemination; problem 
sets should not be focused on sensing and locomotion because even though 
AS behaviors may depend on these capabilities, that is not where their contri-
butions lie. Their contributions lie in adding intelligence to the information 
processing and adding value via their proficient, trustworthy, and flexible 
behaviors in an operational environment. As a consequence, we would rec-
ommend, in the short term, minimizing any in motion investments in the 
development of autonomous platforms and focus on at rest investments that 
not only leverage the rapid advances currently being made in all aspects of 
information systems and AI but also avoid the high costs associated with assur-
ing platform flightworthiness. This recommended de-emphasis on in motion 
investment is also consistent with our recommendation to leverage develop-
ments that may exist outside the Air Force: for example, it is quite likely that the 
technology being developed for autonomous commercial transports11 may be 
directly applicable to Air Force transport and tanker operations as well as the 
next generation of UAVs, a family of platforms that are currently very far 
from being considered autonomous systems.

In recommending both “partial” and “end-to-end” challenge problems, we 
see a need for balancing digestible problems (that can be addressed by a small, 
close-knit team in a reasonable time horizon) with “stretch goal” problems 
(that not only drive the S&T community but also, if successfully solved, can 
add significant capability to the Air Force). In addition, an end-to-end challenge 
can provide a stress test for one or more of the selected AS architectures, iden-

10. For example, an intelligent human resources decision aiding system aimed at matching 
personnel with job openings might be readily brought over from the commercial sector and 
modified to support Air Force personnel career management and assignments, whereas a com-
mercial airlines operations center autonomous planner/scheduler might not, because of the 
greater complexity/constraints of Air Force operations. The former is an acquisition commu-
nity responsibility, the latter an S&T community responsibility.

11. See, for example, CNN Business, http://money.cnn.com/2017/10/05/news/companies/
boeing-acquires-aurora-autonomous-797-air-taxi/index.html.
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tifying shortcomings in the architecture not apparent before the end-to-end 
problem was fully analyzed. Both types of challenge problems are called for 
and should be related to one another, since partial solutions may be aggre-
gated at some point to provide end-to-end solutions. As noted earlier in this 
chapter, other studies have put forth both classes of operational challenge 
problems, and we have summarized them in table A.5 of appendix A.12 We 
have also folded into the set presented here problems of both classes described 
in appendix F. Table 6.2a presents a set of partial challenge problems along 
with an associated “stretch challenge” end-to-end problem. Table 6.2b (next 
page) presents a larger set of end-to-end challenge problems, based on our 
considerations during the course of this study and on those presented by sev-
eral other studies and summarized in appendix A.

Table 6.2a. Domain-dependent partial and stretch challenge problems

Partial challenge Stretch challenge
Workflow improvement allocator/
scheduler decision aids

Autonomous workflow managers for 
allocation and scheduling

Single-intelligence fusion processors 
and event detectors

Multi-intelligence fusion processors and 
event detectors (see table 6.2b)

Planning and scheduling assistants Planners and schedulers for Battle Man-
agement and Command and Control (see 
table 6.2b)

Realistic red entity emulators for 
constructive simulations

Constructive multiagent engagement 
simulations

Naturally, the eventual selection of an appropriate set of operational chal-
lenge problems, from these lists or others, will depend on other factors be-
yond the S&T challenges they afford or even the operational gaps they fulfill; 
they must, at the least, be selected in the context of the larger USAF vision, 
mission, and strategy, simply because autonomous systems have a tremen-
dous opportunity to transform not only our systems but also the fashion in 
which they are used. As a result, simultaneously working the larger Air Force 
strategy is strongly recommended.

12. It is worth noting that the great majority of domain-specific challenge problems identi-
fied by the previous studies are platform focused, in air, space, or cyberspace; our goal here was 
to balance these with problems that are more platform agnostic and more closely associated 
with cross-domain ISR and C2 issues.



218 │ AUTONOMOUS HORIZONS

Table 6.2b. Domain-dependent end-to-end challenge problems

Challenge category Domain-dependent 
challenge problem

Section

Multi-INT cross-domain 
data fusion*

Real-time pop-up threat 
detection/identification

App A.2.3

Multidomain situation 
awareness (MDSA)

App F.2.1

MDSA operational framework App F.2.2

ISR and PED for narrative 
generation

App F.2.3

Multidomain situated con-
sciousness (MDSC)

App F.2.4

Multidomain BMC2 Data-to-decisions (D2D) air-to-
air (A2A) mission effect chain 
(MEC)

App F.2.5

 Targeting, resource allocation, 
planning, and scheduling, for 
cross-domain operations

Execution management, 
replanning, and BDA for cross-
domain operations

Logistics Predictive logistics and 
adaptive planning

App A.2.3

Adaptive logistics for rapid 
deployment

App A.2.3

Air platforms/on-board Sensor fusion aids, decision 
aids (“Pilot’s Associate”)

Embedded platform health 
diagnostics

App A.2.3

Air platforms/off-board Autonomous flight formation 
member (“Loyal Wingman”)

Functionally fractionated 
platforms

App A.2.3

Low-cost, autonomous flight 
systems for hyperprecision 
aerial delivery in difficult envi-
ronments

App A.2.3

* Note that this subsumes the call for single-domain solutions proposed as challenge prob-
lems in appendix A.
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Air platforms/off-board 
(continued)

Autonomous swarms that 
exploit large quantities of low-
cost assets

App A.2.3

Agile attritable UAVs capable 
of complex decision making

App A.2.3

Air platforms/on-board 
weapons/EW

High-precision low collateral 
damage munitions

App A.2.3

Dynamic spectrum manage-
ment for electronic attack/EW

App A.2.3

Space platforms On-board satellite autonomy 
for defensive and offensive 
counterspace, incorporating 
sensors, event detection, SA, 
DM, resource allocation, ex-
ecution management, and BDA

Embedded platform health 
diagnostics

App A.2.3

Functionally fractionated 
platforms

App A.2.3

Cyber platforms/defensive Agents to improve cyberat-
tack indications and warnings 
(I&W)

App A.2.3

Cyber platforms/defensive 
(continued)

Active defensive cyber agents 
for intrusion-resilient cyber net-
works that achieve continued 
mission effectiveness under 
large-scale, diverse network 
attacks

App A.2.3

Embedded system resilience: 
autonomous cyber resilience 
for platforms 

App A.2.3

Cyber platforms/offensive Active offensive cyber agents 
incorporating sensors, event 
detection, SA, decision-
making, resource allocation, 
execution management, and 
BDA

Table 6.2b. Domain-dependent end-to-end challenge problems (continued)

Challenge category Domain-dependent 
challenge problem

Section
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6.4 Development Processes
This section makes several recommendations focusing on the processes 

needed to develop innovative autonomous systems, delivering them in a timely 
and responsive manner. These recommendations are based on our own knowl-
edge of Air Force processes inside and outside of AFRL, processes used in other 
R&D communities, and process recommendations made by others, notably 
those summarized in appendix A. Our recommendations cover four areas: de-
veloping the people with the needed skillsets (section 6.4.1); developing the 
architecture(s) and applications for the kinds of challenge problems just de-
scribed (6.4.2); developing, curating, and distributing the data that is critical to 
the development of this class of systems (6.4.3); and developing the computa-
tional infrastructure that will enable the operation of the envisioned systems 
and the maintenance of their associated datasets and knowledge bases (6.4.4).

6.4.1 Workforce Development
Chapter 4 discussed six distinct communities we believe to be converging 

onto a common understanding of human behavior and autonomous system 
behavior, via the development of common computational models of cognition. 
To recap, these are: the robotics and cybernetics communities, which have dri-
ven a better understanding of machine-based autonomy; the cognitive psycho-
logy and neurosciences communities, which bring us closer to understanding 
human cognition; and the AI communities, both “hard” and “soft,” which con-
tinue to provide us with nontraditional computational approaches to difficult 
perceptual/cognitive problems. We believe that the skillsets in all these commu-
nities are important to developing autonomous systems, but if we were to prio-
ritize them for Air Force applications, it would probably be in an order reverse 
to which we have just (re)introduced them. Specifically, we believe that AI 
should be the primary domain and skillset the Air Force needs to emphasize in 
its workforce, since this will serve as the means for design and implementation 
of these systems, and that the cognitive sciences and the neurosciences should 
be a secondary domain of emphasis, since these will serve as a guide to under-
standing the behavior and processes of an already existent system, the human. 
Because we have deemphasized “in motion” applications challenge problems in 
the previous section, we would consider robotics (and its cousin, cybernetics) a 
tertiary skillset emphasis area. Finally, we have emphasized the need for human 
factors engineering and human-systems integration throughout the design and 
development process, and this still holds in the workforce development needs.13

13. Although AFRL has strong credentials in this area, the broader Air Force Materiel 
Command (AFMC) community is clearly lacking.
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Unfortunately, AFRL does not have a strong AI contingent in the work-
force: in a total workforce of approximately 5,000, we estimate those familiar 
with the technology to number in the low hundreds, and of those, perhaps 
fewer than 10 might be considered AI practitioners in the league of university 
researchers or commercial developers currently driving the field. We there-
fore propose a multipronged workforce development process to grow Air 
Force people in this critical area.

First, concentrate on employee education and application of that education 
to the types of challenge problems discussed in the last section, and do so in a 
deliberate and planned way. We propose that organizations such as AFRL send 
a group of researcher engineers to the Air Force Institute of Technology 
(AFIT), the USAF’s graduate school, to attend its “Introduction to Autonomy” 
survey course to get a broad perspective of modern approaches to AI and au-
tonomy. Following the survey course, this group would be embedded in an 
AI-focused special operations activity: an autonomy capabilities team (ACT)14 

to continue their education (in the same vein as an internship) while applying 
what they learn to solve one or more relevant AI-related AS problem. 

Second, members of the ACT can be embedded at nongovernment organi-
zations dealing with common sets of technical objectives. This approach has 
two distinct benefits: (1) it exposes those selected USAF individuals to the 
problems of scale and agility typically facing commercial efforts (and often 
academic efforts as well) and not usually encountered in government labora-
tories; this has been done successfully in a limited fashion with Google, IBM, 
Facebook, and a few academic institutions schools; and (2) it creates new col-
laborations with industry and academic partners that may not have existed in 
the past, which supports the kind of architecture and application develop-
ment described in the next section.

Third, the ACT could support summer interns from universities as a way 
to expose them to a wide range of our challenges and support the recruiting 
of potential future employees. The AFRL directorates at both Wright-Patter-
son AFB and Rome, New York, have had great success with this process and 
have attracted premier talent in AI-related fields of study.

If an ACT is commissioned as part of our organizational recommendations 
in section 6.5, the first year should see an increase of about 20 staff and serve 
to initiate an on-ramp for an additional 20 through the AFIT Autonomy 
course later in the year. During the second year, a new set of 40 residents 
could participate with the AI special operations unit, and 40 more staff could 
on-ramp into the AFIT Autonomy course. The overall goal would be to grow 

14. See additional description in section 6.5.
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AFRL’s organic capability in AI by an order of magnitude in four years, from 
approximately 20 in 2018 to 200 by 2022.

This educational and experiential effort needs to be supplemented with a 
strong retention program, since competition for these skillsets is fierce, especially 
in the commercial sector..15 This group should be closely monitored regarding 
compensation, advancement, and quality of research/acquisition postings and 
afforded the same considerations we currently afford our pilot specialties.

Finally, we should “track (via a knowledgeable cadre) and invest in (via a 6.1 
research portfolio) the most dynamic and rapidly advancing areas of AI” (Po-
tember 2017), as well as provide long-term support of the extramural leaders 
in the area.

Recommendation 4a: Create an educational and intern-like personnel 
pipeline to send selected staff to AFIT for an introductory autonomy short 
course, focusing on AI enablers. Individual members would then be embed-
ded into an AI-focused special operations activity: an ACT to learn how to 
apply the skillsets they acquired in addressing USAF autonomy needs. Support 
this effort over the course of four years to grow AI manpower by an order of 
magnitude over today’s level. Assure retention via several special incentive 
programs. Supplement this cadre with appropriate and long-term support of 
key extramural researchers.

6.4.2 Architecture and Application Development

In discussing appropriate challenge problems in the previous section, we 
alluded to processes for generating candidate challenge problems, down-
selecting, and prioritizing how they are to be addressed via autonomous sys-
tems development. In this section, we discuss this process in more detail.

Figure 6.4 illustrates a three-phase framework for iterative selection of 
challenge problems, for modeling the impact of potential solutions, and for 
solution development, prototyping, and assessment.

The first phase is composed of wargaming and is illustrated in figure 6.5a. It is 
conceptual in nature, looking at future threats and capabilities, with the goal of 
developing conceptual autonomous systems to address those threats or take ad-
vantage of potential opportunities. The sophistication of the wargaming can 
range from tabletop exercise with BOGSAT16 assessments of capabilities and 

15. The fact that business schools (such as Harvard Business School, Stanford’s Graduate 
School of Business, and MIT’s Sloan School of Management) have initiated courses on how to 
manage AI algorithms and applications for more informed business decisions indicates that 
the demand will only grow for AI practitioners across the commercial ecosystem and not just 
in the high-technology sector (Simons 2016).

16. Bunch of Guys/Gals Sitting Around the Table.
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“moves” to more sophisticated simulation-generated outcomes and metric-based 
assessments. The major activity is exploratory, aimed at exploring the full span of 
options, to avoid fixating on too narrow a solution that misses a game-changing 
opportunity. The major product of this phase is the identification of challenge 
problems that drive AS-based conceptual solutions that have a high potential for 
dramatically affecting future operational outcomes. This has been accomplished 
in a limited number of recent wargames (for example, the Air Force strategic 
wargames of 2013 and 2015 [USAF 2013, 2016]), but more such exercises need to 
be conducted to fully explore the potential of deployed autonomous systems. 

 Three phase framework
• Wargaming (Conceptual)
• Modeling & Simulation
• Prototyping & Experimentation

 Net result is informed evidence-based 
decisions to select challenge problems, 
model the impact of potential solutions, 
and refine those solutions via 
prototyping and experimentation

Explore   Discover   Innovate

Figure 6.4. Framework for AS development process

 Assemble multi-disciplinary team
• Intel analysts, warfighters, 

technologists,… 
• And…Gedankenexperimenters

 Identify current capability gaps via 
wargaming

 Generate new capabilities to close 
those gaps
• New systems
• Old systems: enhance or terminate 

 Wargame those capabilities to 
assess effectiveness

 Continue until gaps “closed” Capabilities concepts for M&S eval

threat
assessment

current
capabilities

threat
assessment

wargame capabilities
against the threat

create new or
enhance old
capabilities

new
capabilities

terminated
capabilities

capability
gaps

Figure 6.5a. Wargaming of concepts17

17. A “Gedankenexperiment,” a term invented by Einstein, is a thought experiment, using 
a conceptual approach that relies on thinking through an idea rather than doing an actual ex-
periment. See more at https://www.britannica.com/science/Gedankenexperiment.
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The second phase is composed of modeling and simulation and is illus-
trated in figure 6.5b. The goal here is to provide a deeper assessment of 
promising candidates identified in the first phase, via formalization of those 
concepts with quantitative models, simulations, and parameters of perfor-
mance. Again, the level of sophistication of the models and the breadth and 
depth of the simulations can run the gamut from purely constructive to vir-
tual or some combination of the two. The major activity is discovery of the 
advantages and disadvantages of a particular proposed AS solution and its 
potential impact on overall wargame outcomes, at a “higher” level of fidelity 
than that done in the first phase. The major product of this phase is the iden-
tification of promising capabilities that need to be looked at more closely via 
prototyping and experimentation.

 Augment team with MS&A 
specialists

 Develop models of new capabilities 
identified by wargaming phase

 Simulate scenario outcomes at 
multiple levels: engagement, 
mission, theatre

 Analyze trends and engagement 
“gaps” over multiple Monte Carlo 
simulations

 Introduce improvements to close 
gaps

 Continue until gaps sufficiently 
“closed”  Capabilities for prototyping and experimentation

design engagement/
mission/campaign

scenario
environment

models
scenario threat

modelssimulate
engagement/

mission/campaign outcomesmodels

develop models of
new capabilities

capabilities

introduce new
capabilities to
reduce gaps

wargaming
capabilities

engagement
gaps

assess multi-
simulation trends

trends

analyze simulation
outcomes

Figure 6.5b. Modeling, Simulation, and Analysis18

The third phase focuses on the design, prototyping, and experimental as-
sessment of one or more (primarily software) engineering prototypes of 
promising AS capabilities/functions identified in the previous phase; it is il-
lustrated in figure 6.5c. Desired maturity would be at a proof-of-concept 
level or breadboard level (a Technology Readiness Level or TRL of 3 or 4 
[NASA 2012]), and structured experiments—beyond simple demos—would 

18. A Monte Carlo simulation is one in which a model is “run” multiple times with param-
eters or inputs varied randomly (hence the name “Monte Carlo”) so that trends in outputs can 
be analyzed statistically over a range of conditions of interest. See “Monte Carlo Method” entry 
in Wikipedia, accessed 12 February 2019, https://en.wikipedia.org/wiki/Monte_Carlo_
method.
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be carried out to assess performance and potential operational impact. The 
major activities include AS innovation, with rapid prototyping, structured 
experimentation, data-driven assessment, and design iteration.19 The major 
product of this phase is a prototype AS that can effectively address the key 
challenge problem(s) identified in the earlier phases and that can serve as: 
(1) a design prototype for acquisition; and (2) a design driver for additional 
needed S&T. 

 

 Augment team with prototype 
developers and experimentalists

 Design/develop initial prototype 
based on earlier M&S phase

 Conduct simulation-based 
experiments to exercise prototype 
(not just demo)

 Analyze trends and assess 
prototype performance

 Introduce prototype improvements 
to close performance gaps

 Continue until potential 
performance and risk can be 
assessed with confidence S&T strategy and acquisition plan

design simulation-
based experience

environment
models

expmt design threat
models

conduct simulation-
based experiment

outcomeprototype

develop
prototype

prototype
design

design prototype
for improved
performance

M&S-based
capabilities

prototype
performance

assess trends across
experimental

controls

trends

analyze experiment
outcomes

Figure 6.5c. Prototyping and experimentation

Recommendation 4b: Use a three-phase framework for iterative selection 
of challenge problems, for modeling the impact of potential solutions, and for 
solution development, prototyping, and assessment. Conduct an initial phase 
of wargaming-based assessment, looking at future threats and capabilities, 
with the goal of identifying key challenge problems and AS-based solutions 
that can address those threats or take advantage of potential opportunities. 
Provide a deeper assessment of promising AS candidates, via formalization of 
those concepts with quantitative models and simulations (M&S) and param-
eters of performance. Finally, focus on the design of one or more (primarily 
software) engineering prototypes of promising AS candidates identified in the 
M&S studies. Develop and experimentally evaluate a prototype AS that can 
serve as: (1) a design prototype for acquisition; and (2) a design driver for ad-
ditional needed S&T.

19. These are the kinds of activities currently undertaken by the Strategic Development 
Prototyping and Experimentation (SDPE) Office under AFMC. We are proposing a similar 
effort, focused purely on autonomous systems development.
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As part of this prototyping and experimentation process, we envision 
conducting a number of technical integration experiments (TIE), illustrated 
schematically in figure 6.6. The diagram shows that there is a minimal 
amount of development prior to a demonstrable product, as indicated by 
the blue dashed circle and the blue triangle after TIE3. Each TIE thereafter 
may or may not include a demonstration, depending on the goals. The key 
issue then is to define the TIEs in a meaningful way so as to deliver opera-
tionally useful capabilities as different challenge problems are addressed 
while extending the underlying knowledge base and functionality of the au-
tonomous system framework. Appendix G presents a specific example of a 
TIE approach for the spiral development of a variety of AS applications that 
iteratively build on one another.

Figure 6.6. A series of technical integration experiments with demonstration 
events (blue triangles) for developing a variety of AS applications

6.4.3 Data Development

Data development, storage, and use have tended to be aligned with the 
particular functionals and major commands in the Air Force that depend on 
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that data, leading to stovepiping and lack of interoperability—and even lack 
of awareness of existence. A broader view at the enterprise level needs to be 
taken, recognizing that data can be a valued asset beyond the original “owners” 
of the data, especially if stovepipes can be broken down and disparate datasets 
can be combined in new ways to generate new insights. Corporately, the 
USAF should seek to formalize the process to gathering, curating, and indexing 
the data with a central or distributed repository with appropriate data de-
scriptions/labels and make it available to the global Air Force community 
(both intramural and extramural) working on data-intensive processes and 
processing. Wherever possible, operational data should be saved for future 
research use in support of AI for DOD-unique missions (Potember 2017). 
Fortunately, the Air Force is now starting down this path with the recent cre-
ation of a chief data officer position, serving at USAF Headquarters, to ensure 
interoperability of data and applications as well as effective access to non-
USAF data sources. 

The Defense Information Systems Agency owns the Defense Enterprise 
Computing Centers (DECC). Establishing a data warehouse for USAF data in 
a DISA DECC could be the first step in collecting and managing data across 
the Air Force enterprise. Establishing directives and a process by which data-
producing organizations upload their data to a DISA DECC is warranted. 
Such data-producing organizations should have a data curator to manage the 
data from acquisition to maintenance. Links to common open source datasets 
should also be included.20 An efficient process to control access to data should 
also be pursued, to improve upon the current process of using the DD2875 
form, which was designed for system authorization access, when there is a 
need to have access to a DOD computer system. For example, role-based and 
clearance-based access using the common access card would reduce the re-
quirement for DD2875 forms, thus reducing the management complexity as-
sociated with granting access to data and total turnaround time to get access 
to the data.

Recommendation 4c: Through the USAF Chief Data Office (CDO), acquire 
space to store Air Force air, space, and cyber data so that AI professionals can 
use it to create autonomy solutions to challenge problems. Establish data curator 
roles in relevant organizations to manage the data and to create streamlined 
access and retrieval approaches for data producers and consumers.

20. See appendix E for a list of open source datasets, along with relevant toolsets.
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6.4.4 Computational Platform Development

Building an autonomous system requires a significant amount of process-
ing capability, whether we are considering embedded processing for un-
manned systems or large high-performance computing (HPC) centers for 
ISR tasks. In some cases, the processing requirements during the early stages 
of prototyping are unknown, and often, an evaluation of alternative computa-
tional approaches is needed. Processes to gain access to USAF HPC are well 
established. But more research is needed for leveraging quantum computing 
in a general computing paradigm, since it has the potential to drastically alter 
existing processes.

Recommendation 4d: Support the movement to cloud-based computing 
while also leveraging quantum computing as a general computational para-
digm that can be exploited to meet embedded and HPC processing demands.

6.5 Organizational Structures

Developing and deploying autonomous systems is a daunting challenge, as 
we have described earlier. But it is not just a technical challenge—it is also an 
organizational challenge, one requiring the contributions of many different 
disciplines acting together in a project-focused manner. This section focuses 
on the organizational structures needed to address the challenge problems 
proposed in section 6.3 while implementing the development processes just 
described in section 6.4. We first describe the Air Force organizational frame-
work we propose for autonomous system R&D (6.5.1), outline an approach to 
technology employment (6.5.2), and close with a summary recommendation 
for an USAF organizational structure focused on autonomous system R&D 
(6.5.3).

6.5.1 Air Force Organizational Structure

In chapter 5 we presented a possible generic architecture for the develop-
ment of a broad variety of mission-specific ASs. Realizing this architecture 
requires a diverse set of skills. Currently, much of this expertise exists in various 
AFRL Technology Directorates (TD). Bringing this capability together into a 
project- or program-focused team calls for a cross-directorate exercise. But 
experience shows that cross-directorate initiatives or programs see only a 
small portion of their realizable potential, because there is no clear line of 
authority to execute. Anecdotally, much of the success of successful cross-
directorate efforts can be attributed to a “cooperation of the willing” and in-
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dividual leadership, an approach that is not sustainable. But such a challenge 
is not unique to AFRL. Johnson formed Lockheed Martin’s Skunk Works dur-
ing World War II to deliver the Air Force’s first jet fighter,21 which was devel-
oped by a highly skilled, highly motivated, cross-functional team. Furthermore, 
the perception exists that the AFRL TDs can be focused on process versus 
product, and this needs to change if the Lab is to deliver autonomous capa-
bilities to the warfighter. How do we get there? 

6.5.1.1 Organizational Model within AFRL. A new organizational model is 
a way to start the transformation from process to product. A nice summary 
of five common organizational models is provided in Morgan (2014, 2015):

•  Traditional hierarchical (e.g., the DOD)

•  Flatter organizations with limited hierarchy where communications 
lines are open; many commercial sector companies use this model

•  Flat organizations with no hierarchy, and everyone works as a peer (e.g., 
Valve [2012])

•  Flatarchy, a more traditional hierarchy with small flat organizational spi-
noffs via internal incubator/innovation offices; for example: IBM’s 
Emerging Business Opportunities incubator and DuPont’s Market In-
novation program (Wunker 2012)

•  Holocratic (e.g., Zappos [Pontecraft 2015])

The autonomous systems R&D effort will need to be product focused, with 
all R&D geared toward building the product. This will require the integration 
of 6.1–6.4 experts under one roof. To accomplish this and allow the proposed 
ACT to be successful, we recommend a flatarchy (Morgan 2015b): an organi-
zation formed within the existing hierarchy of the Lab but with a clear line of 
authority, with internal AFRL talent matrixed in from the TDs and answering 
to the team lead. Augmenting this core team, and where technical gaps exist, 
the ACT will be supplemented by contractor and academic partners, forming 
an augmentation team.

We recommend striving for a 90 percent production ratio, that is, having 
90 percent of the personnel costs being product-focused and 10 percent al-
located to management and administrative overhead. We recognize that this 
is not achievable in the traditional hierarchical organizational structure and 

21. See “Missions Impossible: The Skunk Works Story,” Lockheed Martin, accessed 21 Feb-
ruary 2019, https://www.lockheedmartin.com/us/100years/stories/skunk-works.html.



230 │ AUTONOMOUS HORIZONS

have thus recommended a flatarchy for the ACT, an organizational structure 
that has the potential to achieve a 90 percent production ratio. 

Figure 6.7 shows an organization that sits outside of the TDs, operating as 
a peer of the TDs. It has a small cadre with a single management authority, a 
Chief (say at a COL/O6 level) that reports directly to the AFRL commander. 
It has a single technical authority, an Autonomy ST that maintains consis-
tency in technical direction by establishing a vision, has hire and fire author-
ity for all technical contributors, and ultimately determines any organiza-
tional changes to meet the technical mission. The Autonomy ST has a small 
technical staff that helps establish capability delivery methods, establishes a 
customer base for capability off-ramps, directs the construction of the tech-
nology solution, establishes a technical road map along with a strategy-to-
task layout as appropriate, and establishes the daily battle rhythm. The Chief 
Scientist establishes the strategic and tactical science vision and direction on 
frameworks and technologies. The Chief Technology Officer establishes the 
strategic and tactical direction on tools, software, facilities, and computa-
tional environments to enable implementation of the framework and devel-
opment of specified applications. The Lead Integrator is responsible for over-
seeing all development activities, to include managing development and 
delivery schedules and providing direction on product deployment.

A larger core technology team focuses on science and engineering. The 
core team consists of major theoretical and applied engineering disciplines—
discussed at length in chapters 4 and 5—that should cover most of the tech-
nology needs for an AS development effort: experts in synthetic agency to 
create the sensory, cognitive, and effector capabilities needed for agent-based 
interaction with the real world; experts in AI to support knowledge acquisi-
tion and learning within and across autonomous systems; cognitive scien-
tists to support the development/use of cognitive architectures that support 
human-system teaming and trust; mathematicians/statisticians to concen-
trate on the theoretical and applied work supporting autonomy, including 
validation and verification; human factors engineers for development of ef-
fective human-computer interfaces; and software architects and developers 
to ensure a supportable and deployable systems are produced.

ACT is intended to support both long-term AS foundational needs (e.g., 
AS frameworks and domain-independent capabilities) as well as short-term 
AS application needs (e.g., domain- and mission-dependent problem sets), 
spiraling capabilities on in the fashion described earlier in section 6.4 under 
the TIES discussion. For the short-term efforts, ACT will be flexible, and the 
team composition will be dynamically shaped to be responsive to customer 
needs and product delivery times. Customer representatives will act as cus-
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tomer advocates during production development, and problem domain ex-
perts will provide insights into customer needs workflows. The support team 
will include a program manager to manage budget and contract needs; de-
velopers to support production and basic and applied exploration; a data 
curator  to manage all aspects of the data; and a hardware and information 
technology support person to keep the infrastructure up and running. 

Although figure 6.7 identifies the number of functions desired, the goal is 
to have people that are “pi-shaped.” That is, they have expertise in more than 
one area while having a broad perspective and set of experiences.

Populating the ACT in an organization like AFRL is effectively accom-
plished by the matrix approach. The matrix model is effective when there is 
a focused effort, like AS development, but the human capital needed to ad-
dress the corporate need is fragmented in different sub-organizations (like 
AFRL and its TDs) (Stuckenbruck 1979). Given the approach AFRL uses for 
evaluating employee contributions to the sub-organization, the matrixed or-
ganization results in two chains of command, one for the ACT and one for 
the TDs. Care must be taken to ensure that employees’ supervisory chain 
within the TD is aware of their contributions to the ACT’s mission, so that 
their performance evaluations reflect their contributions accordingly. While 
assigned to the ACT, members should not be accessible to their home TDs 
unless arrangements are made with the ACT leadership ahead of time.

Synthe�c Agency Experts
Ar�ficial Intelligence Experts
Cogni�ve Scien�sts
Mathema�cians/Sta�s�cians
Human Factors Engineers
So�ware Architects/Developers

Chief (O6)
Autonomy ST
Chief Scien�st
Chief Technology Officer
Lead Integrator

Customer Representa�ves
Program Manager
Data Curator
Hardware and Info Tech Expert

Core Technology Support

Cadre

Figure 6.7. Autonomy Capabilities Team with a flatarchy organizational structure
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6.5.1.2 Organizational Support outside of AFRL. The DOD has an au-
tonomy community of interest that has as members the services and com-
bat support agencies, providing an opportunity for the services and agen-
cies to share information on their ongoing autonomy efforts. The USAF 
needs to stay engaged with this COI and contribute thought leadership to 
integrated challenge problems, relevant core AI technologies, and opportu-
nities for cost savings through joint and complementary R&D. From the 
S&T perspective, this is a role that AFRL is best equipped to manage, and 
it can serve as an intermediary between the ACT and the broader DOD 
community.

AFWERX is a catalyst for agile Air Force engagement across industry, aca-
demia, and nontraditional contributors to create transformative opportunities 
and foster an Air Force culture of innovation.22 If an organization has a capa-
bility or potential capability that is of interest to the Air Force, AFWERX 
will help make connections between the organization and the USAF cus-
tomer base. This is very much an adoption of the platform business model, 
where AFWERX focuses on matching vendors with consumers.23 However, 
there is also a need to ensure that the technology supporting the AFWERX-
identified capability is managed in a supportable way. A logical scenario is 
to embed organizations of interest within the ACT organizational structure 
on a contractual basis. From an acquisitions perspective, the USAF should 
no longer buy an end-to-end AI-based system. They should buy “plug-ins” 
that fit one or more autonomous systems architectures, such as the one de-
scribed earlier in chapter 5, that can be specialized for particular domains 
or mission sets. ACT could therefore provide AFWERX guidance on tech-
nology needs, while AFWERX could serve as a discriminating broker for 
innovations appearing in the commercial sector.

AFRL has a basic research office, the USAF Office of Scientific Research 
(AFOSR) funding domestic and international basic research (6.1 funded), 
across academia, industry, and within the other AFRL TDs as well. A path-
finder to grow people, exchange science and engineering ideas, and fill crit-
ical gaps in technology areas of interest to the USAF is illustrated in figure 
6.8. Such a model enables significant intellectual transfer between the ACT, 
the AFRL TDs, and AFOSR (and their academic and industry partners) and 
would support the dynamic staffing needs of the ACT as different autono-
mous system development efforts come and go. This model also provides 
consistency across the USAF S&T community in terms of AS behavioral 

22. More can be found at afwerxdc.org.
23. We discuss this platform business model at greater length in the next section.
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requirements, architectural frameworks, component functionality and en-
abling technologies, and lessons learned as well as “best process” for devel-
opment. Finally, this model supports exposure and growth of personnel in 
the TDs and AFOSR in the technology of autonomous systems, in both 
theory and application areas, as well as end-user USAF mission-focused 
needs.

  
 
Figure 6.8. Pathfinder between ACT, AFRL TDs, and AFOSR

6.5.1.3 Business Processes: The ACT. We have already described, in the 
previous section, a set of recommended autonomous systems development 
processes. Here, we wish to focus on “cultural” processes to be followed by 
those staffing the ACT. A natural model is Johnson’s Skunk Works model,24 
with 14 guiding rules or principles applying to management, team, or 
product categories. We present those rules in table 6.3 (next page), suitably 
modified to accommodate the ACT organization operating within the 
AFRL organizational umbrella.

24. “Skunk Works,” Lockheed Martin.com, n.d., https://www.lockheedmartin.com/en-us/
who-we-are/business-areas/aeronautics/skunkworks.html.
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Table 6.3. Skunk Works 14 rules adapted to ACT and AFRL
Rule Category Description

#1 Team The ACT Autonomy ST must be delegated practi-
cally complete control of his/her program in all as-
pects, to include the hiring and firing of personnel, 
establishment of the science, and the particulars of 
the experiments. He/she should work with a high 
performing Division Chief (O6) that reports directly 
to the AFRL/CC or his/her designated representative.

#2 Management Strong but small project offices must be provided 
both by the government and industry. The project 
offices need to be light, yet well equipped to handle 
the dynamic needs of the initiative. This also in-
cludes reach back into the AFRL TDs to gain access 
to specialized equipment or spaces.

#3 Team The number of people having any connection with 
the project must be restricted in an almost vicious 
manner. A small number of high caliber people (ap-
proximately 30, say) with the right expertise should 
participate. The number will fluctuate based on 
project needs.

#4 Team A very simple documentation and documentation 
release system with great flexibility for making 
changes must be provided.

#5 Management There must be a minimum number of reports 
required, but important work must be recorded 
thoroughly. A quarterly reporting requirement is 
reasonable.

#6 Management There must be a quarterly cost review covering not 
only what has been spent and committed but also 
projected costs to the conclusion of the program. 
This should be kept at a minimum and handled by a 
Program Manager.

#7 Management The team must be delegated and must assume more 
than normal responsibility to get good vendor bids 
for any contract work needed on the project. The 
Program Manager must have flexible funding op-
tions to fully support the ACT.

#8 Management The inspection system currently employed by AFRL 
is adequate, although reducing the overhead as-
sociated with inspection should occur. Do not add 
inspection requirements unless there is a concern 
(see Rule #12).

#9 Product The team must be delegated the authority to test the 
final product in some form of operational test and 
evaluation.
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Table 6.3. Skunk Works 14 rules adapted to ACT and AFRL (continued)

Rule Category Description

#10 Product The specifications applying to the hardware and 
software must be specified by and agreed to by the 
ACT.

#11 Funding Program funding must be dedicated, timely, and not 
subject to budget drills; otherwise, progress will be 
limited and delayed, and that will put the initiative 
at risk.

#12 Management There must be mutual trust between the team and 
the delegated office to which the team reports. This 
cuts down misunderstanding and correspondence 
to an absolute minimum.

#13 Management Access by outsiders to the project and its personnel 
must be strictly controlled by appropriate security 
measures and at the discretion of the Autonomy ST.

#14 Management Because only a few people will be used in en-
gineering and most other areas, ways must be 
provided to reward good performance and not be 
left to the internal directorate appraisal process. Any 
ilitary involved should abide by their respective Of-
ficer or Enlisted Performance Appraisal Systems.

6.5.2 Organizational Model for Technology Employment

Having a team in place to create the technology is of great value. However, 
if the USAF is to employ ASs within the operational community, a different 
integration model needs to be considered. The approach to doing integration 
in the air domain is based on the connection of sensor assets to shooter assets 
via command and control assets, while receiving assistance via support assets 
(recall the platform-centric view of today’s Air Force shown in fig. 1.9). Con-
nections are hardwired that have limited flexibility, and that often leave out 
other assets that may need connectivity;25 if a new configuration is needed, it 
requires a new set of connections (and likely interfaces, etc.). The current way 
of conducting intelligence and operations is built around this physical plat-
form model.

We need a new way to employ technology and have it integrate with exist-
ing business practices (i.e., operations). The platform business model is such 
an approach. To retouch on our vision for the future described in section 1.5, 
information-intensive industries can most benefit from the platform revolu-

25. The nonconnectivity between the F-22 and F-35 is a canonical example (Everstine 2018).



236 │ AUTONOMOUS HORIZONS

tion (Sarkar 2016).26 And we are an information-intensive organization, given 
our activities in collecting and processing ISR data, identifying threats and 
opportunities for strikes, conducting resource allocation and planning activi-
ties, making operational and tactical decisions, executing and monitoring of 
our actions, and conducting battle damage assessment for the next activities 
in the cycle across multiple domains of air, space, and cyber. The platform ap-
proach is used to solve these types of large-scale information intensive prob-
lems by connecting vendors and consumers, and, in our case, information 
vendors with information consumers. The integration is not about data or 
technology; it is about making connections across the network of these ven-
dors and consumers. The role the USAF leadership plays then is to facilitate a 
move to this business model—concentrating on building the network and 
enforcing a common language across network nodes—and the role the S&T 
community plays is to provide the technology to make the exchange more 
useful. This is a transformation in the way we think but one that can be ben-
eficial. We discuss it at greater length in the next section.

6.5.3 Organizational Structure Recommendation

Recommendation 5: Establish the ACT within AFRL, incorporating a 
flatarchy business model to bring 6.1–6.4 experts into a single product-fo-
cused organization to develop the science of autonomous systems while deliv-
ering capabilities to the warfighter. Collaborate with AFOSR and other key 
AFRL TDs and coordinate with USAF organizations outside AFRL, including 
the DOD ACOI, AFWERX, and other offices that can facilitate technology 
transition to the warfighter. Within the ACT, incorporate product-focused 
business processes based on a Skunk Works–like set of “guiding rules” and 
facilitate the move toward an information-centric business platform model 
for the future Air Force.

6.6 Knowledge Platform

Combining the IT platform approach with a platform business model is an 
industry best practice used in Silicon Valley and in some combat support agen-
cies. It has revolutionized the connection of consumers to vendors. For exam-
ple, Uber connects people needing transport services to people capable of pro-
viding transport services in the needed timeframe. Amazon originally 
connected people to books but had the IT platform well established, making 

26. And can be most vulnerable from competition if they do not make the move to benefit 
from such advances.
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the connection of people to any number of products a seamless process. Ama-
zon web services connect organizations to big data solutions (tool develop-
ment) through their scalable, reliable, big-data platform. The National Security 
Agency (NSA) and DISA similarly have a Big Data Platform that enables effi-
cient tool development for cyber operations, which has been made available to 
the entire DOD. Facebook has revolutionized connecting people-to-people 
through ts social media platform. TaskRabbit connects homeowners to safe and 
reliable services for residences. Google has taken the platform idea into the AI 
arena, providing a platform to make machine learning easier for a range of 
users.27 These are all modern platform business models that are enabled by IT.

Knowledge is what an autonomous system uses to create the meaning from 
its observations. An AS is a system that creates the knowledge necessary to 
remain flexible in the tasks it undertakes, its relationships with humans and 
machines, and its ability to entertain multiple cognitive approaches to prob-
lem solving. This concept of knowledge creation is echoed in Domingos’s 
book The Master Algorithm (Domingos 2015) and provides foundational un-
derstanding of knowledge in support Air Force situation assessment and de-
cision-making activities. Tool-based solutions have provided much value 
over the years, but the solutions only work for a limited set of problems, under 
certain circumstances, and, typically, only for a single domain. In short, they 
do not scale. However, a knowledge focus toward problem solving provides us 
with a means of breaking these constraints, transitioning us from the tradi-
tional tools-based approach that solve a small number of problems to a 
knowledge platform approach applicable to a far greater set of problems. 

A KP designed for the multidomain-operating Air Force should monopo-
lize the connection of observation agents with knowledge creation agents and 
warfighting effects agents, any and all of which can be either human or ma-
chine-based agents (AS), based in air, space, or cyber. Collaborative ASs 
would be able to dynamically and opportunistically team and separate as nec-
essary and as dictated by the unfolding battlespace events. Each AS would 
need to be able to communicate with ASs to achieve some particular desired 
multidomain effect through a dynamic and variable vocabulary. This move 
from a specialized representation of knowledge to a more flexible creation, 
representation, and consumption of knowledge is cited as what facilitated 
animal species in nature expanding their purview (Newell 1990). ASs need to 
be focused on creating knowledge and appropriately applying that knowledge 
to maximize their contributions to a range of missions.

27. Google Cloud presents an array of services and products; see more at https://cloud 
.google.com/products/machine-learning.
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A KP overcomes the limitation of current AI machine-learning solutions 
where knowledge is tied in a linear manner, from the observables to the cre-
ation of acceptable meaning for those observables, by that AI agent, and for a 
small number of specialized consumers of that meaning (e.g., a cyber access 
protection agent “consuming” the product of a face recognition agent). In 
contrast, a KP takes in a range of observables (many of which cannot be pre-
defined) and creates a variety of acceptable meanings for a broad population 
of agents (humans and ASs), to enable a range of effects. The span of knowl-
edge necessary for enabling this scalable KP can be partially programmed, 
but the majority will be learned both through experiential learning and “cul-
tural” learning (from other ASs), as discussed earlier in section 2.4, as well as 
through “cognition” or some facsimile of it, by generating its own experiences 
using its ability to simulate interactions with the world.

The KP provides the ecosystem necessary to create capabilities, and those 
capabilities are used to create combat effects. This ecosystem will come to 
fruition by exploiting the three behavioral principles of autonomy (section 
6.1), the architectures and technologies that enable those behaviors (6.2), the 
domain-independent and domain-dependent challenge problems (6.3), the 
developmental processes across people, architectures/applications, data, and 
computational infrastructures (6.4), and, finally, the organizational structures 
that need to be in place to advance the technology, exploit it, and deliver 
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capability (6.5). This is conceptualized in figure 6.9 where the AS architec-
tures and technologies are represented by the blue sphere (section 6.2); the 
resultant behaviors represented as white text in the blue sphere, illustrating 
task, peer, and cognitive flexibility (6.1); the spin-offs are technology ad-
vancements (associated with the domain-independent challenge problems 
of 6.3) and capabilities (associated with the domain-dependent challenge 
problems of 6.3); the foundational components and processes represented 
as axes in the diagram covering people, architectures/technologies, data, 
and computational infrastructures (6.4); and the ACT (6.5) and the plat-
form business model (6.6) represented by the outer box, which jointly serve 
to create and employ the KP.

This chapter provided recommendations related to each of the elements of 
the above figure. They assimilate into a KP core, which is a technology solu-
tion illustrated in figure 6.10. The KP (shown in the purple-blue box) is the 
assimilation of operationally relevant data (blue arrow), architectures and 
technologies (red box), computational infrastructures (green outline), 
domain-independent technologies (orange boxes), providing domain-dependent 
applications (purple ovals) with the needed flexibilities (maroon boxes) to 
support the warfighter (brown outline).

A key to developing a KP is to understand the left and right limits of each 
of the three flexibilities. The property for the left limit is a single hard-coded 

Figure 6.10. Knowledge Platform core
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view of the world; no flexibility. In this left limit, systems have a single task 
(e.g., vacuuming the floor), a single relationship (e.g., always a subordinated 
peer), and have a single way to solve that task (e.g., a sensor-driven rule-based 
system). The right limit is a conscious simulation over the AS’s total knowledge 
base to determine which subtasks need to be accomplished to complete its 
main task or which tasks need to be accomplished to meet the mission intent; 
determine the peer relationships to accomplish that task and have multiple 
cognitive approaches to solving tasks and making decisions on peer relation-
ships. There needs to be a well-defined path that demonstrates increasing lev-
els of task, peer, and cognitive flexibility from the left limit to the right limit; a 
description of its knowledge complexity; the source of knowledge that is repre-
sented to capture the complexity of the solution space; concrete examples of 
systems that may or may not exist; and description of their internal representation. 
The intent is not to be prescriptive, but for clarity an example is provided in ap-
pendix G where we describe a series of TIEs that could be taken to build a 
knowledge platform.

A path on how to get to the envisioned KP is to leverage the current archi-
tecture and technologies we have available and have reviewed in chapter 5 and 
tackle the proposed domain-independent and domain-dependent challenge 
problems outlined in section 6.3, in a way that focuses development of plat-
form components that demonstrate the desired behaviors outlined in chapters 
2 and 3. This sort of development will require novel processes, as outlined in 
section 6.4, and a deviation from the current organizational structure to create 
the platform and use it for operations, as discussed in section 6.5.

Recommendation 6: Develop a Knowledge Platform (KP) centered on 
combining an IT platform approach, with a platform business model. A KP 
designed for the multidomain operating Air Force should monopolize the 
connection of observation agents, with knowledge creation agents and with 
warfighting effects agents, which can be either human or machine-based 
agents (ASs). The KP provides the ecosystem necessary to create capabilities, 
and those capabilities are used to create combat effects. This ecosystem will 
come to fruition by exploiting the three behavioral principles of autonomy 
(section 6.1), the architectures and technologies that enable those behaviors 
(6.2), the driving challenge problems (6.3), the developmental processes 
across people, architectures/applications, data, and computational infra-
structures (6.4), and, finally, the organizational structures that need to be in 
place to advance the technology, exploit it, and deliver capability (6.5). This 
approach will provide us with the means of transitioning the USAF from the 
traditional tools-based approach that solves a small number of problems to a 
knowledge platform approach applicable to a far greater set of problems.
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6.7 Summary of Recommendations

We now summarize our recommendations made earlier, grouped by 
category.

6.7.1 Behavioral Objectives

These are basically generalized design requirements specifying how we 
want an AS to behave, in terms of proficiency, trustworthiness, and flexibility.

•  Recommendation 1a: ASs should be designed to ensure proficiency in the 
given environment, tasks, and teammates envisioned during operations. 
Desired properties of proficiency include situated agency, a capacity for 
adaptive cognition, an allowance for multiagent emergence, and an abil-
ity to learn from experience.

•  Recommendation 1b: ASs should be designed to ensure trust when oper-
ated by or teamed with their human counterparts. Desired tenets of trust 
include cognitive congruence and/or transparency of decision-making, 
situation awareness, design that enables natural human-system interac-
tion, and a capability for effective human system teaming and training.

•  Recommendation 1c: ASs should be designed to achieve proficiency and 
trust in a fashion that drives behavioral flexibility, across tasks, peers, 
and cognitive approaches. Desired principles of flexibility for an AS in-
clude an ability to change its task or goal depending on the requirements 
of the overall mission and the situation it faces. It should be able to take 
on a subordinate, peer, or supervisory role and change that role with hu-
mans or other autonomous systems within the organization. And it 
should be able to change how it carries out a task, both in the short term 
in response to a changing situation and over the long term with experi-
ence and learning.

6.7.2 Architectures and Technologies

This covers unifying frameworks and architectures that will support cross-
disciplinary research and development, along with the technology investments 
needed to support desired functionalities within an architecture.

•  Recommendation 2a: Develop one or more common AS architectures that 
can subsume multiple frameworks currently used across disparate com-
munities. Architectures should, at a minimum, provide for “end-to-end” 
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functionality, in terms of providing the AS with a sensory ability to pick 
up key aspects of its environment, a cognitive ability to make assess-
ments, plans, and decisions to achieve desired goals, and a motor ability 
to act on its environment, if called upon. The architecture should be 
functionally structured to enable extensibility and reuse, make no com-
mitment on symbolic vs subsymbolic processing for component func-
tions, incorporate memory and learning, and support human-teammate 
interaction as needed. Whatever the form, an architecture should be ex-
tensible to tasks assigned, peer relationships engaged in, and cognitive 
approaches used. A key metric of an architecture’s utility will be its capa-
bility of bridging the conceptual and functional gaps across disparate 
communities working autonomy issues.

•  Recommendation 2b: Pursue the development of enabling technologies 
that provide the needed functionality at the component level. This in-
cludes technologies that support not only the basic “see/think/do” func-
tions but also those that enable effective HCIs, learning/adaptation, and 
knowledge-base management, both of a general purpose and of domain-
specific nature. The nature of technology development should range 
from basic research to exploratory development to early prototyping, 
depending on the maturity of the specific technology and its envisioned 
application.

•  Recommendation 2c: Develop and promulgate a multitiered hardware 
and multilayered software architecture to support AS development, vali-
dation, operation, and modification, where each tier provides for physical 
structuring across distinct hardware implementations/hosts for given 
high- and low-level functions and each layer provides distinct software 
implementations of similar functions. A variety of complex architectural 
patterns may be needed to take full advantage of emerging technology 
trends, particularly in the commercial sector.

6.7.3 Challenge Problems

Addressed here are both domain-independent (or functional) problems, 
like dynamic replanning, and domain-dependent (or mission-oriented) prob-
lems, like multidomain fusion.

•  Recommendation 3a: Drive basic behavior, architecture, and function 
development of ASs with an appropriately scoped, scaled, and abstracted 
set of functionally oriented challenge problems that allow different 
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members of the S&T community to focus down on different contribu-
tors to AS behavior. Select the set of challenge problems based on an 
initially nominated architecture and function set, in a fashion that spans 
the full set of functionalities represented in the architecture (exhaustiveness) 
and that minimizes the overlap in functionalities needed to address any 
two challenge problems (exclusivity). A broad range of domain-independent 
challenge problems is presented in table 6.1 and appendix F.

•  Recommendation 3b: Select mission-oriented challenge problems with 
the two objectives of: (1) addressing current or future operational gaps 
that may be well suited for AS application; and (2) challenging the S&T 
community to make significant advances in the science and engineering 
of AS functionality. Ensure that the challenge problems can be addressed 
within the context set by the architectures and functions selected earlier, 
to ensure consistent efforts between the domain-independent and domain-
dependent efforts and to avoid “one off ” application efforts that end up 
having little to contribute to other mission-oriented problem sets. 
Consider both “partial” mission-focused challenge problems as well as 
“end-to-end” challenge problems. Finally, do not allocate S&T resources 
to solving operational problems that have close analogs in other sectors, 
unless the AF-specific attributes make the problem so unique that it can’t 
be solved in an analogous fashion. A broad range of domain-dependent 
challenge problems is presented in table 6.2 and appendix F.

6.7.4 Development Processes

This includes processes—in contrast to our traditional waterfall process of 
requirements specification, milestone satisfaction, and end-state T&E—that 
support innovation, rapid prototyping, and iterative requirements develop-
ment to support rapid AS development and fielding.

•  Recommendation 4a: Create an educational and intern-like personnel 
pipeline to send selected staff to AFIT for an introductory autonomy 
short course, focusing on AI enablers. Individual members would then 
be embedded into an AI-focused special operations activity: an ACT to 
learn how to apply the skillsets they acquired in addressing USAF au-
tonomy needs. Support this effort over the course of four years to grow 
AI manpower by an order of magnitude over today’s level. Assure reten-
tion via a number of special incentive programs. Supplement this cadre 
with appropriate and long-term support of key extramural researchers.
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•  Recommendation 4b: Use a three-phase framework for iterative selec-
tion of challenge problems, for modeling the impact of potential solu-
tions, and for solution development, prototyping, and assessment. Con-
duct an initial phase of wargaming-based assessment, with the goal of 
identifying key challenge problems and AS-based solutions that can 
address those threats or take advantage of potential opportunities. Pro-
vide a deeper assessment of promising AS candidates, via formalization 
of those concepts with quantitative M&S and parameters of perfor-
mance. Finally, focus on the design of one or more engineering proto-
types of promising AS candidates identified in the M&S studies. De-
velop and experimentally evaluate a prototype AS that can serve as: (1) 
a design prototype for acquisition; and (2) a design driver for additional 
needed S&T.

•  Recommendation 4c: Through the USAF CDO, acquire space to store 
USAF air, space, and cyber data so that AI professionals can use it to 
create autonomy solutions to challenge problems. Establish data curator 
roles in relevant organizations to manage the data and to create stream-
lined access and retrieval approaches for data producers and consum-
ers.

•  Recommendation 4d: Support the movement to cloud-based computing 
while also leveraging quantum computing as a general computational 
paradigm that can be exploited to meet embedded and HPC processing 
demands.

6.7.5 Organizational Structures

This includes organizing around a project (or outcome) focus, rather than 
along traditional technical specialty domains.

•  Recommendation 5: Establish the ACT within AFRL, incorporating a 
flatarchy business model to bring 6.1–6.4 experts into a single product-
focused organization to develop the science of autonomous systems 
while delivering capabilities to the warfighter. Collaborate with AFOSR 
and other key AFRL technical directorates and coordinate with USAF 
organizations outside AFRL, including the DOD COI, AFWERX, and 
other offices that can facilitate technology transition to the warfighter. 
Within the ACT, incorporate product-focused business processes based 
on a Skunk Works–like set of “guiding rules” and facilitate the move 
toward an information-centric business platform model for the future 
Air Force.
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6.7.6 Knowledge Platform

This provides us with a holistic means of integrating across AS behavioral 
principles, architectures/technologies, challenge problems, developmental 
processes, and organizational structures.

Recommendation 6: Develop a KP centered on combining an IT platform 
approach with a platform business model. A KP designed for the multido-
main operating Air Force should monopolize the connection of observation 
agents with knowledge creation agents and with warfighting effects agents, 
which can be either human or machine-based agents (ASs). The KP provides 
the ecosystem necessary to create capabilities, and those capabilities are used 
to create combat effects. This ecosystem will come to fruition by exploiting 
the three behavioral principles of autonomy (section 6.1); the architectures 
and technologies that enable those behaviors (6.2); the driving challenge 
problems (6.3); the developmental processes across people, architectures/ap-
plications, data, and computational infrastructures (6.4); and, finally, the or-
ganizational structures that need to be in place to advance the technology, 
exploit it, and deliver capability (6.5). This approach will provide us with the 
means of transitioning the USAF from the traditional tools-based approach 
that solves a small number of problems to a knowledge platform approach 
applicable to a far greater set of problems.

6.8 Closing Comments

Our goal with this document has been twofold: to provide a vision for USAF 
senior leaders of the potential of autonomous systems and how they can be 
transformative to warfighting at all levels and to provide for the science and 
technology community a general framework and roadmap for advancing the 
state of the art while supporting its transition to existing and to-be-acquired 
systems. We believe that we need to be more aggressive in maturing this tech-
nology and have therefore broadened our set of recommendation beyond the 
usual technological ones to include such issues as processes and organizations. 
Specifically, we have made recommendations in the areas of:

•  The behaviors these systems must have if they are to be proficient at what 
they do, trusted by their human counterparts, and flexible in dealing 
with the unexpected

•  The unifying frameworks, architectures, and technologies we need to 
bridge across not only insular S&T communities, but also operational 
stovepipes and domains
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•  The focused challenge problems, both foundational and operational, 
needed to challenge the S&T community while providing operational 
advantages that go far beyond our traditional platform-centric approach 
to modernization

•  New processes for dealing with people, systems, data, and computational 
infrastructures that will accelerate innovation, rapid prototyping, exper-
imentation, and fielding

•  A new organizational structure, the autonomy capabilities team ACT, 
that brings together technical specialties into a single organization focused 
on innovative product development, with outreach to other organiza-
tions and communities as needed

•  A Knowledge Platform for holistically integrating across AS behavioral 
principles, architectures/ technologies, challenge problems, develop-
mental processes, and organizational structures

The AFRL, and specifically the ACT, cannot simply limit its attention to the 
research space of autonomous systems. Nor can it simply perpetuate the model 
of applying modern AI and AS technology to provide incremental mission 
capability improvement in one-off demonstrations. Challenge problems, like 
those described earlier in this chapter, must be chosen to advance the Knowl-
edge Platform’s ability to provide, in an agile fashion, ASs that exhibit profi-
cient, trustworthy, and flexible behaviors, in transformational applications. In 
addition to project-focused efforts, the ACT can serve to prioritize and coordi-
nate AFRL’s entire autonomy S&T portfolio—synchronizing efforts to maxi-
mize investment impact—bringing autonomous systems capabilities to mission 
challenges at scale, and in a timely fashion, all while “sharing the wealth” of 
new architectures, technologies, and processes across the S&T directorates. 
Finally, when successful, the ACT can serve as an “existence proof ” of how 
the Lab can transform itself from its legacy of a discipline-focused organiza-
tion to one that is more cross-disciplinary and project-oriented, solving 
transformative USAF enterprise-wide problems.

We have a unique opportunity to transform the USAF away from an air 
platform–centric service, where space and cyber often take a back seat, to a 
truly multidomain and knowledge-centric organization. The USAF needs to 
invest in the platform business model as the way to generate combat effects. 
By tightly coupling the platform business model with the autonomous systems 
that can be delivered to the warfighter by way of the Knowledge Platform, 
every mission in air, space, and cyber will be improved—and not just in-
crementally, but multiplicatively. We will become an enterprise that is 
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service-oriented, ubiquitously networked, and information-intensive. 
Our vision is to become:

An agile, information-centric enterprise making timely decisions executed 
via friction-free access to exquisitely effective peripherals.





Appendix A

Review of Past Studies

In this appendix, we review seven past studies of autonomous systems for 
military applications and summarize and categorize their major findings and 
recommendations. In section A.1, we provide individual summaries of each 
study and list the major issues and recommendations identified by the study. 
In section A.2, we combine the across-study issues identified and recommen-
dations made into three major categories:

•  Areas of functionality needed in autonomous systems and areas for future 
science and technology (S&T) investment

•  Potential mission-relevant “challenge problems” to drive autonomous 
systems development

•  Processes and organizational structures for developing the functionality 
and addressing the challenge problems

This then serves as background to motivate, in chapter 1, our identification 
of three broad considerations for successful autonomous system development 
and deployment: principles of autonomous behavior, properties for profi-
ciency, and tenets for trust. This also serves to inform the resulting recommen-
dations in chapter 6, covering recommendations for S&T investments and 
challenge problems to be addressed, development processes to accelerate that 
development, and organizational structures to ensure a continued focus in this 
emerging area.

A.1 Summaries of Individual Studies

In this section, we summarize—on an individual study basis—the major 
findings and recommendations of seven prior studies dealing with autono-
mous systems, six of which focus on specific DOD applications. Findings and 
recommendations have sometimes been grouped into more general catego-
ries to avoid a “laundry list” presentation style and to support more general 
across-study groupings later on. The studies are as follows:

•  G. Klein, D. Woods, J. Bradshaw, R. Hoffmann, and P. Feltovich, “Ten 
Challenges for Making Automation a ‘Team Player’ in Joint Human-Agent 
Activity,” IEEE Journals & Magazine 19, no. 6 (2004): 91–95
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•  W. Dahm, Technology Horizons: A Vision for Air Force Science and Tech-
nology 2010-2030 (Maxwell AFB, AL: Air University Press, 2011)

•  Defense Science Board (DSB), “DSB Autonomy Study: The Role of Au-
tonomy in DoD Systems” (Washington, DC: Office of the Under Secre-
tary of Defense for Acquisition, Technology, and Logistics, 2012)

•  DSB, “Report of the Defense Science Board Summer Study on Auton-
omy” (Washington, DC: Office of the Under Secretary of Defense for 
Acquisition, Technology, and Logistics, 2016)

•  R. Potember. “Perspectives on Research in Artificial Intelligence and 
Artificial General Intelligence Relevant to DOD” (JSR-16-Task-003) 
(McLean, VA: The MITRE Corp., 2017)

•  A. Hill and G. Thompson, “Five Giant Leaps for Robotkind: Expand-
ing the Possible in Autonomous Weapons,” War on the Rocks, De-
cember 28, 2016, https://warontherocks.com/2016/12/five-giant-leaps-
for-robotkind-expanding-the-possible-in-autonomous-weapons/

•  M. L. Hinman, “Some Computational Approaches for Situation Assessment 
and Impact Assessment,” Proceedings of the Fifth International Conference on 
Information Fusion 2002, Vol. 1, 687–93

(A) G. Klein, D. Woods, J. Bradshaw, R. Hoffmann, and P. Feltovich, “Ten 
Challenges for Making Automation a ‘Team Player’ in Joint Human-Agent 
Activity,” IEEE Journals & Magazine 19, no. 6 (2004): 91–95

Recommendations are in the category of basic research and primarily fo-
cus on human-system teaming with automation but clearly hold for dealing 
with autonomous systems (AS) as well. One extremely important contribu-
tion of the work is the “Basic Compact” idea: when humans team with au-
tonomous agents or autonomous agents team with each other, the agent team 
members must enter into a compact expressing their intent to work coopera-
tively. They must work to maintain a common situation awareness and to stay 
mutually predictable and directable. All of the study’s conclusions are directly 
applicable to achieving “peer flexibility” as we define it in the main body of 
this report. Recommendations cover the following general categories of be-
havioral expectations: 

•  Teaming & coordination

○ Setting mutual goals
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■  Engaging in goal negotiation

■  Forming and maintaining the basic contract

○ Communicating and coordinating

■  Observing and interpreting signals of status and intentions

■  Forming and maintaining adequate models of others’ intentions 
and actions

■  Effective signaling of pertinent aspects of [self] status and inten-
tions

■  Controlling the costs of coordinated activity

•  Expectation management

○ Maintaining adequate directability

○ Maintaining predictability without hobbling adaptivity

•  Attention management

•  Incorporate [new] technologies that are incremental and collaborative

(B) W. Dahm, Technology Horizons: A Vision for Air Force Science and 
Technology 2010–2030 (Maxwell AFB, AL: Air University Press, 2011)

Several general issues are raised that can be interpreted in terms of perfor-
mance needs or requirements to be met for successful autonomous system 
operation, including, as noted in Autonomous Horizons volume I, the need for 
flexible and resilient autonomy (Endsley 2015c). Also pointed out is the need 
for effective verification and validation (V&V). But few direct recommenda-
tions are made in terms of underlying functions, behaviors, or technology en-
ablers. Generic system/mission application areas are identified for the use of 
ASs, and mission-oriented “grand challenge” problems are also identified. 
Recommendations fall into the following three categories:

•  General issues and needs

○  Need for “flexible autonomy” at different levels

○ Need for “resilient autonomy”

○ Need for trust in autonomy

○ Recognize and address difficulty of doing V&V
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○ Adversarial use of autonomous systems
•  System/mission application areas

○ Platforms

■  Agile attributable unmanned aerial vehicles (UAV) capable of com-
plex decision making

■  JPADS: Joint Precision Air Drop System

■  Embedded platform health diagnostics

■  Long-Range Strike/Bomber (LRSB)

■  (Functionally) fractionated platforms

○ Weapons

■  High-precision, low collateral damage munitions

○ Cyber

■  Cyber defenses 

○  Intelligence, surveillance, and reconnaissance (ISR) and command 
and control (C2)

■  Cross-domain ISR

■  Cross-domain C2
•  Mission-oriented “grand challenges”

○ Inherently intrusion-resilient cyber networks

■  Explore, develop, and demonstrate autonomous and scalable tech-
nologies that enable large, non-secure networks to be made inherently 
and substantially more resilient to attacks entering through net-
work or application layers and to attacks that pass through these 
layers.

■  Emphasis is on advancing technologies that enable network-intrusion 
tolerance rather than traditional network defense, with the goal to 
achieve continued mission effectiveness under large-scale, diverse 
network attacks.

○ Trusted, highly autonomous decision-making systems

■  Explore, develop, and demonstrate technologies that enable current 
human-intensive functions to be replaced, in whole or in part, by 
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more highly autonomous decision-making systems and technolo-
gies that permit reliable V&V to establish the needed trust in them.

■  Emphasis is on decision-making systems requiring limited or no 
human intervention for current applications, where substantial re-
ductions in specialized manpower may be possible and for future 
applications involving inherent decision time scales far exceeding 
human capacity.

○  Fractionated, composable, survivable, autonomous systems 

■  Explore, develop, and demonstrate technologies that can enable future 
autonomous aircraft or spacecraft systems achieving greater multi-
role capability across a broader range of missions at moderate cost, 
including increased survivability in contested environments.

■  Emphasis is on composability via system architectures based on 
fractionation and redundancy. This involves advancing methods for 
collaborative control and adaptive autonomous mission planning, 
as well as V&V of highly adaptable, autonomous control systems.

○  Hyperprecision aerial delivery in difficult environments

■  Explore, develop, and demonstrate technologies that enable single-
pass, extremely precise, autonomously guided aerial delivery of 
equipment and supplies under Global Positioning System (GPS)-
denied conditions from altitudes representative of operations in 
mountainous and contested environments and winds representative 
of steep, mountainous terrain.

■  Emphasis is on low-cost, autonomous flight systems with control 
authority capable of reaching target point within specified impact 
limits under effects of large stochastic disturbances.

(C) Defense Science Board (DSB), “DSB Autonomy Study: The Role of 
Autonomy in DoD Systems” (Washington, DC: Office of the Under Secre-
tary of Defense for Acquisition, Technology, and Logistics, 2012)

Recommendations fall into two broad categories: desired functionality and 
development process recommendations. The study also provides strong sup-
port for the use of “challenge problems” to drive autonomous system develop-
ment. Recommendations below have been paraphrased and categorized for 
clarity and brevity:

•  Desired AS functionality/performance attributes
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○  Natural user interfaces (UI) and trusted human-system collaboration

■  Predictable and understandable behaviors [by the AS]

■  Effective human-system dialog

○  Perception and situation awareness to operate in a complex battle 
space

■  Airspace deconfliction for manned/unmanned system ops

■  Real-time pop-up threat detection/identification

■  High-speed obstacle detection in complex terrain 

■  Multisensor integration

○  Large-scale manned/unmanned teaming

■  Collaborative, mixed-initiative dynamic planning and task execution

■  Shared synchronized common operating picture

■  Anticipation of future teammate response

○  Test and evaluation 

■  Dealing with complex, nontransparent software-intensive systems

■  Dealing with nondeterministic systems

■  Challenges of simulating a complex mission space
•  Process-oriented recommendations

○  Research

■  Abandon the debate over definitions of levels of autonomy and em-
brace a three-facet (cognitive echelon, mission timelines, human-
machine system trade spaces) autonomous systems framework

■  Attract and retain artificial intelligence (AI) and software engineer-
ing experts

■  Stimulate the DOD’s S&T program with realistic “challenge problems”

■  Establish a coordinated S&T program guided by feedback from op-
erational experience and evolving mission requirements

○  Acquisition and testing and evaluation (T&E)

■  Structure autonomous systems acquisition programs to separate 
the autonomy software from the vehicle platform
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■  Establish a research program to create the technologies needed for 
developmental and operational T&E that address the unique chal-
lenges of autonomy

○  Training

■  Include the lessons learned from using autonomous systems in the 
recent conflicts into professional military education, war games, 
exercises, and operational training

○  Intel

■  Track adversarial capabilities with autonomous systems

(D) DSB, “Report of the Defense Science Board Summer Study on Au-
tonomy” (Washington, DC: Office of the Under Secretary of Defense for 
Acquisition, Technology, and Logistics, 2016)

Recommendations fall into two broad categories: operations oriented and 
development-process oriented. In the operations-oriented recommendations, 
there are interesting ideas in autonomous sensing/swarms, cyberspace indi-
cations and warnings (I&W), autonomous logistics, and dynamic spectrum 
management. Process-oriented recommendations include challenges in miti-
gating increasing cyber vulnerabilities by adopting autonomous systems and 
countering adversary use of autonomy. Recommendations given below have 
been grouped into common categories for greater clarity; note that some are 
not USAF relevant:

•  Operations-oriented recommendations (current and future)

○  Platforms

■  Onboard autonomy for sensing

■  Unmanned undersea/underwater vehicle (UUV) for mine counter-
measures (defensive)

■  UUVs for maritime mining (offensive)

■  Organic UAVs for ground forces

■  Autonomous swarms that exploit large quantities of low-cost assets

○  Cyberspace

■  Agents to improve cyberattack I&W

■  Automated cyber response to attacks
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■  Intrusion detection on the Internet of Things

■  Autonomous cyber resilience for military vehicle systems

○  Logistics

■  Predictive logistics and adaptive planning

■  Adaptive logistics for rapid deployment

■  Autonomous air operations planning

○  Miscellaneous

■  Time-critical intelligence from seized media

■  Dynamic spectrum management

■  Early warning system for understanding global social movements 
•  Process-oriented recommendations

○  Tackling the engineering, design, and acquisition challenges

○  Mitigating cyber issues introduced by increasingly autonomous and 
networked systems

○  Creating new test and evaluation and modeling and simulation paradigms

○  Integrating technology insertion, doctrine, and concepts of operations

○  Developing an autonomy-literate workforce

○  Improving technology discovery

○  Improving DOD governance for autonomous systems

○  Countering adversary use of autonomy

(E) R. Potember. “Perspectives on Research in Artificial Intelligence 
and Artificial General Intelligence Relevant to DOD” (JSR-16-Task-003) 
(McLean, VA: The MITRE Corp., 2017)

This study, more than the others, focuses on underlying S&T enablers for 
autonomous system development. It contrasts “traditional” AI that can ac-
complish specific narrow tasks with artificial general intelligence (AGI) that 
“can successfully perform any task that a human might do” and have “general 
cognitive capabilities.” Much of the focus is on enabling technologies, specifi-
cally artificial neural networks (ANN) and especially on the “deep learning 
revolution” starting around 2010 with deep learning (DL) networks and big 
data (BD), and the possible shortcomings that can be encountered. Recom-
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mendations cover potential S&T investment areas and high-level process-
oriented recommendations:

•  Potential S&T investment areas

○  Technologies

■  Classical algorithmic approaches
•  Capturing expert judgment (other than for labeling BD sets)
•  Physical and deterministic modeling 
•   Direct computation on complex symbolic data representations
•  Purpose-designed and rule-based systems designed for error-

free response

■  Learning networks
•  Combined DL ANNs and BD
•  Graphical stochastic models, such as Bayesian networks
•  Probabilistic Programming Languages
•  Hardware and algorithms for implementing deep neural net-

works (DNN)

○  Hybrid architectures

■  AlphaGo’s use of a DNN for rapid evaluation of a given game state 
or configuration, combined with “clever” pruning of a game tree to 
explore potential evolution of the game states

■  Generative Adversarial Networks (GANs), which plays off one 
DNN against the other, executed in the framework of a min-max 
two-player game

■  Autoencoders using back to back DNNs in an encoder-decoder 
configuration

■  Wide but shallow Boolean logic search trees combined with narrow 
but deep DNNs

○  Biomimetic cognitive systems
•  Process-oriented recommendations

○  Track (via a knowledgeable cadre) and invest in (via a 6.1 research 
portfolio) the most dynamic and rapidly advancing areas of AI, in-
cluding but by no means limited to DL.
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○  Support the development of a discipline of AI engineering, accelerat-
ing the progress of the field through Shaw’s “craft” and (empirical) 
“commercial” stages. A particular focus should be advancing the “ili-
ties” in support of DOD missions.

○  DOD’s portfolio in AGI should be modest and recognize that it is not cur-
rently a rapidly advancing area of AI. The field of human augmentation 
via AI is much more promising and deserves significant DOD support.

○  Support the curation and labeling, for research, of DOD’s unique mission-
related large data sets. Wherever possible, operational data should be 
saved for future research use in support of AI for DOD-unique missions.

○  Create and provide centralized resources for DOD’s intramural and 
extramural researchers, like the Marine Operating and Support Infor-
mation System, including labeled data sets and access to large-scale 
GPU training platforms.

○  Survey the mission space of embedded devices for potential break-
through applications of AI, and consider investing in special-purpose 
accelerators to support AI inference in embedded devices for DOD 
missions, if such applications are identified.

(F) A. Hill and G. Thompson, “Five Giant Leaps for Robotkind: Ex-
panding the Possible in Autonomous Weapons,” War on the Rocks, De-
cember 28, 2016, https://warontherocks.com/2016/12/five-giant-leaps-
for-robotkind-expanding-the-possible-in-autonomous-weapons/

This study focuses on five operationally oriented challenge problems:

•  Hostage rescue using discriminating lethality
•  Deployment under disrupted/degraded comms
•  On the spot improvisation of materiel solutions
•  Adaptation for discovery of new tactics, techiniques, and procedures (TTP)
•  Evoking “disciplined initiative” when original plan is failing/illegal/immoral

(G) M. L. Hinman, “Some Computational Approaches for Situation As-
sessment and Impact Assessment,” Proceedings of the Fifth International Con-
ference on Information Fusion 2002, Vol. 1, 687–93

These recommendations focus on AS mission-oriented applications:
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•  Adversary inferencing

○  Predicting enemy goals 

○  Predicting enemy courses of action (COA) and associated probabilities

○  Identifying appropriate indicators (and associated metrics) that the 
enemy is pursuing a specific COA

•  ISR tasking

○  Determining specific additional information requirements (to enable 
the above tasks) for input to the ISR tasking system

•  Conveying recommendations and insights to appropriate decision mak-
ers in an effective manner

•  Battle damage assessment (BDA)

○  Assessing whether desired effects have been achieved

A.2 Categorized Cross-Study Recommendations

This section brings together all of the above findings and recommenda-
tions and aggregates them into five common categories: behavioral objectives, 
technologies and architectures, mission-oriented “challenge problems,” 
development processes, and organizational structures. The same nomenclature 
is used as in the previous section (with some editing for brevity), with trace-
back to the source study, making the particular recommendation indicated by 
the letter (A through G) associated with the specific study above. 

A.2.1 Behavioral Objectives

Under behavioral objectives, we have identified two main categories of rec-
ommendations. The first is fairly general and deals with behavioral objectives 
that are desired in ASs (shown in table A.1), such as ensuring that behaviors 
are directable and predictable, and that the AS can accomplish tasks with ad-
equate flexibility and adaptivity. The second focuses on human-system teaming, 
and specific behaviors desired when those ASs are interacting with humans1 

(shown in table A.2), including the desirability of being able to set mutual 
goals, to maintain adequate mutual shared awareness of the team and the 
adversary, and to communicate and coordinate effectively. 

1. Including humans that are both friendlies and adversaries.
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Table A.1. General behavioral objectives
General behavior objectives Specific behavior objectives Ref

Limiting scope/range of behaviors Maintaining adequate directability A

Predictable and understandable behaviors C

Maintaining predictability without hobbling 
adaptivity

A

Flexibility under different situa-
tions

Need for “flexible autonomy” at different 
levels

B

Need for “resilient autonomy” B

Table A.2. Human-system teaming needs
General teaming needs Specific teaming needs Ref

Setting mutual goals Engaging in goal negotiation A

Forming and maintaining the basic contract A

Maintaining shared situation 
awareness (SA) of environment, 
intent, and teammate actions

Attention management A

Shared synchronized common operating 
picture

C

Forming and maintaining adequate models 
of others’ intentions and action

A

Effective signaling of pertinent aspects of 
[self] status and intentions

A

Collaborative, mixed-initiative dynamic 
planning and task execution

C

Anticipation of teammate’s future re-
sponse

C

Conveying recommendations and insights 
[for an AS-based decision aid] to ap-
propriate decision-makers in an effective 
manner

G

Maintaining SA and intent infer-
encing of adversary

Predicting enemy goals G

Predicting enemy COA and associated 
probabilities

G

Identifying appropriate indicators (and 
associated metrics) that the enemy is 
pursuing a specific COA

G

Communicating and coordinating Observing and interpreting signals of 
status and intentions

A
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Table A.2. Human-system teaming needs (continued)
General teaming needs Specific teaming needs Ref

Communicating and coordinating 
(continued)

Controlling the costs of coordinated activity A

Assuring effective human-system dialog C

Need for trust in autonomy B

A.2.2 Architectures and Technologies

Only one study (Potember 2017) made recommendations in the area of 
architectures and technologies (see table A.3) that could enable the develop-
ment of ASs, but we have included them here to support and complement our 
discussion of enabling technologies and frameworks in chapter 4. It also pro-
vides an indication of how many of the studies focus on desired AS function-
ality or development processes rather than the actual enablers that might be 
used to bring forth that functionality. A number of hybrid architectures are 
discussed, with a recommendation to consider biomimetic cognitive systems 
development as well. Specific technologies are broken into “classical” algo-
rithmic approaches, and the more contemporary deep learning network 
approaches enabled by access to big data.

Table A.3. Architectures and technologies
Architecture/ 

technology families
Architecture/technology specifics Ref

Hybrid Architectures Use of a DNN for rapid game state evaluation, 
combined with “clever” pruning of game tree to 
explore potential evolution of the game states 
(used in AlphaGo)

E

Generative Adversarial Networks (GAN) playing 
one DNN against the other, executed in the 
framework of a min-max two-player game

E

Autoencoders using back-to-back DNNs in an 
encoder-decoder configuration

E

Wide but shallow Boolean logic search trees 
combined with narrow but deep DNNs

E

Classical algorithmic ap-
proaches

Capturing expert judgment (other than for label-
ing big data sets)

E

Physical and deterministic modeling (for example, 
physics-based computer vision)

E
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Table A.3. Architectures and technologies (continued)
Direct computation on complex symbolic data 
representations

E

Classical algorithmic ap-
proaches (continued)

Purpose-designed and rule-based systems de-
signed for error-free response (for example, the 
“classical” side of control theory)

E

Learning networks Combined DL ANNs and BD E

Graphical stochastic models, such as Bayesian 
networks

E

Probabilistic Programming Languages E

Hardware and algorithms for implementing 
DNNs

E

Biomimetic cognitive 
systems

E

A.2.3 “Challenge Problems”

Most of the study recommendations focused in this area of challenge problems. 
We have separated them into two main categories—one being domain-
independent (or functional), as shown in table A.4, and the other being domain-
dependent or mission-focused (air, space, cyberspace), as shown in all three 
versions of table A.5. The domain-independent problems cover a range of 
general functional areas, such as collection/sensing/fusion of information, 
generic decision-aiding (with a human) and decision-making (autonomous) 
subsystems, fractionated autonomous platforms, and operation in adversarial 
environments that demand improvisation. The domain-dependent problems 
range from generic concepts like autonomous swarms, to specific operations 
in air (including ISR, air operations planning, electronic warfare, and logistics), 
space (including fractionated platforms and embedded health diagnostics), 
and cyber (defensive operations, offensive operations, and network resiliency).

Table A.4. Domain-independent or functional challenge problems
Function Domain-independent challenge 

problem
Ref

Collection, sensing, fusion, 
and BDA

Early warning system for understanding 
global social movements

D

Determining specific additional informa-
tion requirements for input to the ISR 
tasking system

G
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Table A.4. Domain-independent or functional challenge problems 
(continued)

Function Domain-independent challenge 
problem

Ref

Collection, sensing, fusion, 
and BDA (continued)

Extracting time-critical intelligence from 
seized media

D

Onboard autonomy for sensing D
Multi-sensor integration C
Cross-domain ISR B
Autonomous BDA for effects assessment G

Trusted, highly autonomous 
decision-aiding/-making 
systems

Technologies that can enable replace-
ment of human-intensive functions by 
more highly autonomous and trustworthy 
decision-making systems

B

Decision-making systems requiring lim-
ited or no human intervention for current/
future applications, to support reductions 
in manpower and decision times 

B

Fractionated, composable, sur-
vivable, autonomous systems 
[platforms]

Technologies to enable future autono-
mous aircraft or spacecraft [or cybercraft] 
achieve greater multi-role capability 
across a broader range of missions at 
moderate cost, including increased sur-
vivability in contested environments.

B

Composability via system architectures 
based on fractionation and redundancy 

B

Methods for collaborative control and 
adaptive autonomous mission planning, 
as well as V&V of highly adaptable, 
autonomous control systems

B

Cross-domain C2 B

Operations in denied or 
degraded environments

AS Deployment under disrupted/degraded 
communications

F

Evoking “disciplined initiative” when the 
original plan is failing/illegal/immoral

F

On the spot improvisation of materiel 
solutions

F

Adaptation for discovery of 
new tactics/TTPs

F
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Table A.5a. Domain-dependent or mission-focused challenge problems: 
Air

Function Domain-dependent challenge problem Ref
Concepts Large autonomous swarms of low-cost 

assets
D

[Functionally] fractionated platforms B

Agile attritable UAVs capable of complex 
decision making

B

LRSB B

Operations Autonomous air operations planning D

Airspace deconfliction for manned/un-
manned system ops

C

Hostage rescue using discriminating 
lethality

F

ISR Real-time pop-up threat detection/identi-
fication

C

Weapons and subsystems High-precision low collateral damage 
munitions

B

Dynamic spectrum management for elec-
tronic warfare (EW)

D

Embedded platform health diagnostics B

Logistics JPADS: Joint Precision Air Drop System B

Single-pass, precise, autonomously guided 
aerial delivery of equipment and supplies 
in mountainous terrain under GPS-denied 
and contested environments

B

Low-cost, autonomous platforms with 
control authority capable of reaching 
target point within specified impact limits 
under effects of large stochastic disturbances

B

Predictive logistics and adaptive planning D

Adaptive logistics for rapid deployment D

Table A.5b. Domain-dependent or mission-focused challenge prob-
lems: Space

Function Domain-dependent challenge problem Ref
Concepts [Functionally] fractionated platforms B

Weapons and subsystems Embedded platform health diagnostics B
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Table A.5c. Domain-dependent or mission-focused challenge prob-
lems: Cyberspace

Function Domain-dependent challenge problem Ref
Defensive Agents to improve cyberattack I&W D

Intrusion detection on the Internet of things D

Offensive Automated cyber response to attacks D

Network resilience Inherently intrusion-resilient cyber net-
works

B

Autonomous and scalable technologies that 
make non-secure networks inherently resil-
ient to attacks entering through network or 
application layers, and to attacks that pass 
through these layers

B

Autonomous technologies that enable con-
tinued mission effectiveness under large-
scale, diverse network attacks.

B

Embedded systems Autonomous cyber resilience for military 
vehicle systems

D

A.2.4 Development Processes

Many study recommendations focused on AS development processes, as 
shown in table A.6, covering six major areas: (1) the need to actively track 
adversarial capabilities and usage of autonomous systems; (2) the impor-
tance of human capital management, including the attraction and retention 
of experts in AI and software engineering, the introduction of AS capabili-
ties into professional military education (PME) and wargaming, and the 
development of centralized AI/AS resources for DOD’s research commu-
nity; (3) continued support of basic and applied research in a broad area of 
underlying technologies (not just deep learning), coordinated across re-
search communities and informed by operational experience and evolving 
mission requirements; (4) support of advanced systems development, which 
separates the development of platforms from the autonomy software that 
governs them, augmented by the development of a discipline of AI engi-
neering to accelerate progress; (5) establishing processes for upgrading leg-
acy systems with new autonomous system capabilities; and (6) recognizing 
the difficulty of conducting T&E of these systems, and establishing a re-
search program for dealing with nontransparent, nondeterministic, and 
time-varying (learning) systems.
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Table A.6. Development processes
Category Process Ref

Intelligence Track adversarial capabilities/usage of autonomous 
systems

B, C

Human capital 
management

Attract and retain AI and software engineering experts C

Include lessons learned from using autonomous sys-
tems in recent conflicts, into professional military edu-
cation, wargames, exercises, and operational training

C

Create and provide centralized resources for DOD’s 
intramural and extramural researchers, including la-
beled data sets and access to large-scale GPU training 
platforms

E

Basic and applied 
research

Establish a coordinated S&T program guided by 
feedback from operational experience and evolving 
mission requirements

C

Track (via a knowledgeable cadre) and invest in (via a 
6.1 research portfolio) the most dynamic and rapidly 
advancing areas of AI, including, but not limited to, 
deep learning

E

Emphasize research into AI-enabled human augmen-
tation over AGI, recognizing former is more promising 
and latter is not currently a rapidly advancing area of 
AI

E

Stimulate the DOD’s S&T program with realistic 
“challenge problems”

C

Support the curation and labeling, for research, of 
DOD’s unique mission-related large data sets. Wher-
ever possible, operational data should be saved for 
future research use in support of AI for DOD-unique 
missions.

E

Systems  
development

Abandon debate over definitions of levels of auton-
omy; embrace a three-facet AS framework: cognitive 
echelon, mission timelines, human-machine system 
trade spaces 

C

Support the development of a discipline of AI engi-
neering, accelerating the progress of the field through 
Shaw’s “craft” and (empirical) “commercial” stages. 
Focus should be on advancing the “ilities” in support 
of DOD missions.

E

Structure autonomous systems acquisition programs 
to separate the autonomy software from the vehicle 
platform

C
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Table A.6. Development processes (continued)
Category Process Ref

Upgrading systems 
using AI

Incorporate [new] technologies that are incremental 
and collaborative

A

Survey the mission space of embedded devices for 
potential breakthrough applications of AI. Consider 
investing in special-purpose accelerators to support AI 
inference in those devices/missions. 

E

Test and evaluation Recognize and address difficulty of doing both devel-
opmental and operational V&V

B

Address complex, nontransparent software-intensive 
systems

C

Address issues of nondeterministic systems C

Address challenges of simulating a complex mission 
space

C

A.2.5 Organizational Structures

No specific recommendations regarding new or modified organizational 
structures were identified in any of the studies.





Appendix B

Frequently Asked Questions

This appendix, developed by the Air Force Research Laboratory (AFRL), 
presents a number of frequently asked questions (FAQ) concerning autono-
mous systems. The goal is to provide a self-consistent position on the subject 
that can be used to facilitate discussions on some of the underlying concepts, 
the science and technology challenges, and the potential benefits for addressing 
capability gaps. It attempts to build upon the main body of work presented 
here but is not intended to exclude alternative definitions. Where there may 
be a conflict between what is presented in the main body of this report and 
what is presented in this appendix, the main body should take precedence.

B.1 What Is an Autonomous System (AS)?

We have defined an autonomous system in terms of its attributes across 
three dimensions—namely, proficiency, trustworthiness, and flexibility:

•  An AS should be designed to ensure proficiency in the given environment, 
tasks, and teammates envisioned during operations. Desired properties 
for proficiency include situated agency, adaptive cognition, multiagent 
emergence, and experiential learning.

•  An AS should be designed to ensure trust when operated by or teamed 
with its human counterparts. Desired tenets of trust include cognitive 
congruence and transparency, situation awareness, effective human-systems 
integration, and human-systems teaming/training.

•  An AS should exhibit flexibility in its behavior, teaming, and decision-
making. Desired principles of flexibility include flexibility in terms of be-
ing able to conduct different tasks, work under different peer-to-peer 
relationships, and take different cognitive approaches to problem-solving.

We have defined these characteristics in greater depth in chapters 2, 3, and 6. 
We believe that all of these dimensions need to be satisfied to some degree if 
we are to effectively field and use ASs in the Air Force. Stated another way, a 
failure to satisfy the design space across all three dimensions will lead to a 
failure of a fielded AS: low proficiency will lead to the use of other systems, 
low trust will lead to disuse, and low flexibility will lead to an AS that fails to 
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exhibit true autonomy under changing circumstances that may not have been 
envisioned during the design phase.

A natural question is whether or not these dimensions have any meaning 
toward how much (or what level of) autonomy the system has. The answer is 
no. Purposefully, there is no intent to use the three dimensions to define or 
guide some notion of levels of autonomy. This is simply because it is not clear 
this is a useful construct, as has been discussed here and in earlier studies 
cited here.

We now address some autonomous system FAQs.

B.1 General Concepts

What is intelligence? What is artificial intelligence?

Intelligence is the ability to gather observations, create knowledge, and ap-
propriately apply that knowledge to accomplish tasks. Artificial intelligence 
(AI) is a machine that possesses intelligence.

What is an AS’s internal representation?

Current ASs are programmed to complete tasks using different procedures. 
The AS’s internal representation is how the agent structures what it knows 
about the world, its knowledge (what the AS uses to take observations and 
generate meaning), how the agent structures its meaning and its under-
standing, for example, the programmed model used inside of the AS for its 
knowledge base. The knowledge base can change as the AS acquires more 
knowledge or as the AS further manipulates existing knowledge to create 
new knowledge.

What is meaning? Do machines generate meaning?

Meaning is what changes in a human’s or AS’s internal representation as a 
result of some stimuli. It is the meaning of the stimuli to that human or system. 
When you, a human, look at an American flag, the sequence of thoughts and 
emotions that it evokes in you is the meaning of that experience to you at that 
moment. When the image is shown to an AS, and if the pixel intensities 
evoked some programmed changes in that AS’s software, then that is the 
meaning of that flag to that AS. Here we see that the AS generates meaning in 
a manner that is completely different than from how a human does it. The 
change in the AS’s internal representation, as a result of how it is programmed, 
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is the meaning to the AS. The meaning of a stimulus is the agent-specific rep-
resentational changes evoked by that stimulus in that agent (human or AS). 
The update to the representation, evoked by the data, is the meaning of the 
stimulus to the agent. Meaning is not just the posting into the representation 
of the data; it is all the resulting changes to the representation. For example, 
the evoking of tacit knowledge, or a modification of the ongoing simulation 
(consciousness; see below), or even the updating of the agent’s knowledge 
resulting from the stimuli, is included in the meaning of a stimulus to an 
agent. Meaning is not static and changes over time. The meaning of a stimulus 
is different for a given agent depending on when it is presented to the agent. 

What is understanding? Do machines understand?

Understanding is an estimation of whether an AS’s meaning will result in it 
acceptably accomplishing a task. Understanding occurs if it increases the be-
lief of an evaluating human (or evaluating AS) that the performing AS will 
respond acceptably. Meaning is the change in an AS’s internal representation 
resulting from a query (presentation of a stimulus). Understanding is the im-
pact of the meaning resulting in the expectation of successful accomplish-
ment of a particular task. 

What is knowledge?

Knowledge is what is used to generate the meaning of stimuli for a given 
agent. Historically, knowledge comes from the species capturing and encod-
ing via evolution in genetics, experience by an individual animal, or animals 
communicating knowledge (via culture) to other members of the same spe-
cies. With advances in machine learning, it is a reasonable argument that 
most of the knowledge that will be generated in the world in the future will be 
done by machines.

What is thinking? Do machines think?

Thinking is the process used to manipulate an AS’s internal representation; 
a generation of meaning, where meaning is the change in the internal repre-
sentation resulting from stimuli. If an AS can change or manipulate its inter-
nal representation, then it can think.
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What is reasoning? Do machines reason?

Reasoning is thinking in the context of a task. Reasoning is the ability to 
think about what is perceived and the actions to take to complete a task. If the 
system updates its internal representation, it generates meaning and is doing 
reasoning when that thinking is associated with accomplishing a task. If the 
system’s approach is not generating the required “meaning” to acceptably ac-
complish the task, it is not reasoning appropriately.

What is cognition? What makes a system cognitive?

Cognition is the process of creating knowledge and understanding through 
thought, experience, and the senses. A system that can create knowledge and 
understanding through thinking and experience and sensing is cognitive. As 
an example, a Cognitive Electronic Warfare (CEW) system gathers data from 
its senses and creates knowledge. It uses relevant knowledge to accomplish its 
EW mission, which demonstrates a level of understanding the system has 
with respect to its task.

What is a situation?

A situation is the linkage of individual knowledge entries in the AS’s inter-
nal representation that can be combined to make a new single-knowledge 
entry. This new single-knowledge entry becomes a situation due to its linkage 
to the individual entries it is composed of. Situations are the fundamental unit 
of cognition. Situations are defined by their relationship to, and how they can 
interact with, other situations. Situations are comprehended as a whole.

What is situated cognition?

Situated cognition is a theory that posits that knowing is inseparable from 
doing by arguing that all knowledge is situated in activity bound to social, 
cultural, and physical contexts. This is the so-called see/think/do paradigm.

What is learning? What is deep learning?

Learning is the cognitive process used to adapt knowledge, understanding, 
and skills, through experience, sensing, and thinking, to be able to adapt to 
changes. Depending upon the approach to cognition the agent is using (its 
choice of a representation, for example, symbolic, connectionist, etc.), learn-
ing is the ability of the agent to encode a model using that representation (the 
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rules in a symbolic agent or the way artificial neurons are connected and their 
weights adjusted, for a connectionist approach). Once the model has been 
encoded, it can be used for inference. Deep learning is a subset of the con-
nectionist approach incorporating many neuronal processing layers, with a 
learning paradigm that has overcome past limitations associated with the 
multilayer “credit assignment” problem (i.e., which weight should be adjusted 
to improve performance), has made use of big data and multiple instantia-
tions for training, and has made advances in computational infrastructures. 
Deep learning has received much attention in recent years due to its ability to 
process image and speech data; it is largely made possible by the processing 
capabilities of current computers, the dramatic increase in available data, and 
modest modifications in learning approaches. Deep learning is basically a 
very successful big data analysis approach.

B.2 Examples

Is a garage door opener automated or automatic?

A garage door opener opens the door when it is signaled to do so and stops 
based on some preset condition (number of turns the motor makes, or by a 
switch). When it is closed, it opens when it is signaled to do so and stops 
based on the same sort of preset condition. A garage door opener is an auto-
matic system since it performs a simple task based on some trigger mechanism 
and stops at the completion of its task, also based on some trigger mechanism.

Is an automatic target recognition system automated or automatic?

Current methods used for target recognition work under a set of assumed 
operating conditions, against known targets, and can reject target-like objects 
resulting in some level of robustness. As such, they are automated solutions.

Is a Ground-Collision Avoidance System (GCAS) autonomous?

A GCAS takes control of an aircraft if there is concern that the pilot will 
cause the aircraft to collide with the ground. Here, the system takes command 
and control (C2) away from the pilot to keep the aircraft from colliding with 
the ground, then the pilot can regain C2 (either explicitly relinquished control 
or the pilot takes it back). The GCAS demonstrates peer flexibility and is 
therefore addressing a key challenge for an AS noted earlier. Notice that in 
this description the system does not, however, exhibit task or cognitive flexi-
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bility. Some argue that GCAS is merely an automated system, due to its lack 
of cognitive flexibility.

Is an autopilot system autonomous?

An autopilot system has the task of flying a particular trajectory, at a par-
ticular speed, and at a particular altitude (or altitude profile) set by the pilot. 
The autopilot does not change its task or its peer relationship with the pilot, 
nor does it change how it controls the aircraft. It therefore does not satisfy any 
of the three flexibility principles of autonomy. It does, however, reflexively 
adapt to changing conditions that impact its heading, speed, and altitude to 
maintain the parameters provided to it. It is therefore an automated system.

Is an adaptive cruise control system autonomous?

A cruise control system exists to maintain a constant speed. An adaptive 
cruise control system also maintains its speed but adapts to sensed changes in 
front of it by changing its speed, without permission from the driver, to main-
tain a safe distance behind the car in front of it. It may also brake in case the 
need arises. An adaptive cruise control is automated since it never changes its 
peer relationship, never changes its task (only the way it is accomplishing its 
task in a preprogrammed manner), and does so with no cognitive flexibility.

Is an air-to-air missile autonomous?

An air-to-air missile, or even a cruise missile, has a fixed peer relationship 
with the human that launched it. The missile is doing a predefined task and 
doing it in a preprogrammed way. None of the three principles of flexibility 
are demonstrated—and it is therefore not autonomous. The system is remark-
able and able to complete a very complex task, but it is merely automated.

Are the Google Car and Tesla-with-autopilot autonomous?

The Google Car drives to a location as directed, but it can change its task 
from driving to making an emergency stop to avoid running into a pedes-
trian, for example. When the Tesla autopilot locks the driver out and won’t 
allow engagement because the driver is taking his/her hands off the wheel, or 
when the VW autonomous car takes control and brakes to prevent a head-on  
collision, we are seeing instances of peer flexibility, as in GCAS described 
earlier. But it is not autonomous.
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Is the Roomba autonomous?

The Roomba is a popular home commodity that serves as the homeowner’s 
proxy to vacuum the carpet. It is quite capable, and new versions incorporate 
modern robotics, to include the ability to determine its current location while 
mapping out its environment. The Roomba has a sole task—to vacuum. It 
does not have an ability to change its peer relationship, and it does not change 
its model for completing its task. As such, the Roomba is not autonomous, but 
it is a very capable and useful automated system.

Is IBM’s Watson intelligent? Is Watson an AI?

Watson has knowledge that is gathered and/or generated by a combination 
of human programming and the application of those programs to large stores 
of data. It is capable of efficiently storing and retrieving potentially relevant 
knowledge so that it may respond to queries. One could argue that when 
Watson is allowed to use its programming to search and appropriately index 
large repositories of data, it is gathering information that it later applies ap-
propriately. In doing its search, it uses an ensemble learning approach, which 
means it changes its model so it can provide better results, an aspect of cogni-
tive flexibility. As such, Watson is therefore addressing a key challenge for an 
AS, but we would not consider it autonomous. However, Watson is a combina-
tion of hardware and software that exhibits intelligence. As defined previously, 
it is therefore an AI.

Is Siri intelligent? Is Siri an AI?

The information gathered by Siri to respond to queries is done via its pro-
gramming. It does gather data in response to a query and often appropriately 
uses that knowledge to provide value to answering it and is a good automa-
tion. Since Siri is a combination of hardware and software and exhibits intel-
ligence as defined previously, we would label Siri an AI.

Does Siri understand what I’m asking?

One can say that Siri understood when we have a reasonable expectation 
that it will give an answer that can be used and say it did not understand when 
we have a reasonable expectation that the answer will not be acceptable. But 
with all AI systems, the user must realize the meaning generated by the sys-
tem is not “human meaning” and thus must be used judiciously. As an ex-
ample, an AI can call a school bus an ostrich with high confidence, yet any 
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human looking at the image will not be able to understand how the AI could 
possibly make that error. The reason is that, to the AI, the meaning is a loca-
tion in a vector space reached by processing pixel intensities and colors and 
an ostrich is an object category that does not possess the rich meaning hu-
mans associate/generate in our meaning.

Does AlphaGo understand the game of Go?

AlphaGo’s understanding of the game Go can only be assessed from the 
perspective of another agent. As a non-Go player, one might be willing to say 
AlphaGo understands the game because, from a naïve perspective, it responds 
acceptably to the task of playing the game. Here, AlphaGo has generated 
“meaning” of any board states that facilitate an expected acceptable response. 
From the perspective of one who wants to define “understanding the game” as 
“the AS has generated internal to itself the meaning of what a game is,” then 
one might conclude AlphaGo does not understand the game of Go. AlphaGo 
is an automated system, and because it uses knowledge to generate its meaning 
of those board states that facilitate its response, it is an AI. Table B.1 attempts 
to summarize some of the categorizations we have made above.

Table B.1. Mapping of several systems to the principles of flexibility, 
artificial intelligence, automated systems, and automatic systems
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B.3 Practical Limitations of AI

Where do current AI systems fail?

Current approaches to AI rely on knowing all that is needed to know about 
the environment and programming in acceptable responses for all possibilities. 
These approaches are unable to respond correctly when they are unable to get 
all of the data they expect or if they encounter a stimulus they do not have a 
programmed response for. The problem is compounded when both condi-
tions occur.

How can we be sure an AI will do what we want it to do versus something 
we absolutely do NOT want it to do?

A significant challenge faced when using AI to perform tasks is the 
problem of validation and verification of that AI’s performance. Any AI is 
programmed to generate an internal representation (its meaning), and that 
representation has to capture all aspects of what delineates acceptable and 
unacceptable behavior to be confident it will only do what it is supposed to 
do. It is impossible to test an AI under all possible operating conditions; it 
will not be known when it will fail or perform unacceptably. The same issues 
are faced with human agents. The Air Force goes to great lengths to train 
its Airmen to do tasks and cannot possibly test them on all the operating 
conditions they will face. Training is continually refined based on feedback 
on performances of those Airmen doing their jobs. The same will have to 
be done with AIs. There is the additional challenge/advantage in that the 
meaning of a given stimulus can be programmed into the AI and therefore 
tested against.





Appendix C

Sensor Processing and Fusion

C.1 Stimuli and Sensing

This appendix expands on section 5.3.3.1, providing a more formal mathe-
matical description of sensor processing and fusion. The discussion on fusion 
that follows is based on the premise of the following diagram:

E D D F Xs raw f p x

where E is the environment that contains the stimuli and s is the senor that 
senses that stimuli to create the raw data Draw. In the diagram, f, p, and x are 
a series of processes on the intermediate results Draw, D, and F respectively 
that ultimately produce a set X. Set X could be detected as changes between 
two different images as described in section 5.3.3.1 in the change detection 
scenario. Set X could also be a classification of all of the objects in the envi-
ronment collected by the sensor. The details of the processes and intermedi-
ary sets are covered in more detail in subsequent sections. It is first important 
to understand how to get from stimuli in the environment to raw data as col-
lected by a sensor that can be used for the fusion task.

The basis for various stimuli that can be transformed by sensors into sig-
nals, images, text, and so on can be physical (imaging sensors), electronic 
(signal sensors such as electronic intelligence sensors), or psychological 
(Twitter, email). Both imaging and signal sensors use wave propagation to 
remotely capture the energy reflected or emitted in the form of electromag-
netic energy. Stimuli sensed by imaging sensors are governed by physical laws 
such as Maxwell’s equations to determine wave reflection and propagation, 
Newton’s laws that govern the dynamics of the world, and geometrical laws 
that govern shape and the relationships between objects. Different imaging 
wavelengths are sensitive to different phenomena. For example, infrared 
wavelengths are sensitive to differences in temperature both reflected and 
emitted. Hyperspectral stimuli are sensitive to material properties. Polariza-
tion stimuli provide orientation information or surface properties. Hence, 
imaging sensors sense the stimuli of the physical world. On the other hand, 
signal sensors capture signal modulations that are generated by electronic cir-
cuits and software-programmable waveform devices. These adversary signal 
generators may include radars, communication, navigation, or even jammers. 
The signal sensors can be used to perform a function or can be used to disrupt 
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Air Force mission objectives. These signal stimuli are not governed by physi-
cal laws, as with the stimuli sensed by imaging sensors, but rather are con-
strained by the adversary engineers’ and scientists’ skill and imagination cou-
pled with the physical constraints of size, weight, and power provided by the 
emitting platform. An exploding source of stimuli being collected is based on 
cyber technology or open-source methods that continually mine the internet. 
Given that the source of these stimuli is the human mind, the scope of possi-
ble contributions to a fusion inference is enormous.

Each type of stimuli conveys different types of information, which is po-
tentially very powerful, as the fusion of different and independent sources can 
provide high-confidence estimates and decisions. But the different types of 
information also introduce some technical challenges. These technical chal-
lenges include space/time alignment and an evidence combination of dispa-
rate stimuli (images, signals, text). The challenge is not only based on the 
difference in stimuli (1-D signals verses 2-D images) but also, predominantly, 
on the difference in the meaning of the different stimuli (e.g., images convey-
ing shape and text conveying sentiment).

These challenges occur within a class of stimuli such as images and also 
between stimuli such as images and text. Within a class of stimuli, the chal-
lenges are significant, but common representations are more straightforward. 
For example, one could use a 3D world representation to combine various 
stimuli from imaging sensors. However, it is much more difficult to conceive 
of common representations to fuse psychological state of mind with a signal 
waveform.

Before the stimuli can be analyzed and fused, they must first be sensed. The 
sensing of the stimuli is a significant challenge. Images and signals have their 
own sensing considerations such as line of sight, sensitivity, and resolution, 
which restricts the range that the stimuli can be sensed and discriminated. 
Environmental conditions such as atmosphere or obscuration also affect the 
sensing range. Finally, the stimulus itself can also limit the sensor’s effective-
ness by its appearance variability (pose, configuration) or its signal variability 
(waveform agility, spoofing). Clearly, it is vitally important to understand the 
performance of the various sensors under the myriad of conditions that they 
must operate. This performance understanding is necessarily encoded in a 
performance model to facilitate the fusion and employment of the various 
sensors.

Cyber or open source, on the other hand, has the degrees of freedom of 
language to encode the thoughts and intents of humans. The challenge here is 
not with the sensing—since the information is already encoded in text or 
language—but is instead in the sifting and interpretation of the text or lan-
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guage. In addition, there are certainly cyber-sensing challenges, which may 
force one to focus on the content of the cyber and open source data rather 
than the sensing.

C.2 Defining Fusion

A general, yet simple, definition of fusion is: “Combining things (or ob-
jects) for better results.” This definition often raises several questions.

First, what are the objects that are to be combined? The word “object” is 
used to denote a generic entity. For example, objects can be the raw sensor 
data, filters, exploiters, features, entire sensor-exploitation systems, or even 
situations.

Second, what does “combining” mean? Combining is the combining of ob-
jects using some “rule” that outputs an object from the category of objects of 
interest (DTIC 2005). The word “rule” is used generically to convey the func-
tion property (i.e., given an input for which the rule is defined, there exists a 
unique output). If the objects are specified, then the name used for the rule 
can be specific. For example, if the data from two different sensors are nu-
merical time-varying data, for example from signals intelligence (SIGINT) 
collections, then a transformation (the rule) acting on the two SIGINT signals 
could output a new signal or some meaningful numerical data. Features from 
two different feature sets can be associated to produce a new single-feature 
set. A simple association is to form ordered pairs of features, thus concatenat-
ing the two feature sets in a special way. But to discover commonality in the 
two feature sets would prove fruitful.

Third, what does “better” mean? The designer has to choose a performance 
criterion—specifically, a real-valued function p is used to quantify the criteria 
of interest. Assume larger values mean better performance and that there are 
two SIGINT systems under consideration, A and B. If p(A) > p(B), then system 
A is better than B with respect to the performance function p.

Fourth, what does “results” mean? Suppose system C uses a rule r that is 
designed to combine the two systems, C = r(A,B). If p(C) > max{p(A), p(B)}, 
then combining A and B with ruler r has yielded a new system with better 
results. If p(C) = p(A) or p(C) = p(B), then combining A with B using rule r 
has not produced better results.

Simply stated, the goal of sensor fusion is to combine sensor-exploitation 
systems for improved performance.
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C.3 Various Forms of Fusion

Fusion occurs at different locations within the processing chain. It can be 
accomplished at the sensor data level (e.g., signal or image), at the feature 
level (e.g., physical dimension of an object), or at the decision level (e.g., radar 
says “tank” with 90 percent confidence and EO says “T72” with 95 percent 
confidence). Each approach has its advantages and challenges, and these are 
discussed in the following sections.

C.3.1 Sensor Data Level Fusion

Although fusion at the sensor data level can provide remarkable perfor-
mance improvements, fusion at the signal/pixel level also puts the most strin-
gent demands on spatial registration and timing. For example, multiple plat-
forms that have phase coherence can perform exquisite geolocation of 
emitters. Imaging sensors that are fused at the pixel level can reason about 
parts at a very detailed level. For example, fused EO and IR imaging systems 
allow the higher resolution EO system to be enhanced by thermal informa-
tion that could reveal the state of the target (e.g. engine hot, wheels hot—in-
dicating recent movement). Fused low-frequency radar with 3D laser radar 
could penetrate camouflage and provide shape information not visible to EO 
systems. Fusion at the signal level is also motivated by the signal processing 
inequality, which states that any intermediate decision in a processing chain 
will lose information unless a very special, rare circumstance is met called the 
“sufficient statistic.” Thus, combining information at the data level, while hard 
due to the above considerations, is the most powerful form of fusion between 
two sensors.

C.3.2 Feature Level Fusion

Fusion can also occur at the feature level. The simplest feature combination 
rule is to concatenate features from the multiple sources, but sometimes this 
leads to a reduction in performance (Mura et al. 2011). This reduction in per-
formance can be due to: a) redundant information; b) lack of a clear represen-
tation or measurement of the common environment; or c) the lack of enough 
labelled data to accommodate the increase in dimensionality induced by the 
concatenation, and thus over-fitting. A particularly promising approach to 
fusion is using graph-based feature fusion (Liao et al. 2015), which includes 
the data mining necessary for appropriate processing of the streaming sensor 
data. The graph-based approach to feature level fusion introduces structure 
into the representation and, moreover, can represent the conditional depen-
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dencies vital to the proper combination of information to make accurate deci-
sions. The concatenation of features puts the entire burden on the classifier 
and the data to discover structure and dependencies in the data. The graphi-
cal model can represent the conditional probabilities among sensors, and it 
can also encode the nuisance parameters or operating conditions that affect 
performance.

C.3.3 Decision Level Fusion

The most prevalent form of fusion is decision (also called label) level fu-
sion. This form of fusion has the most flexibility as it puts lower communica-
tion and knowledge constraints on the sensors and platforms; however, it is 
also the form of fusion that has the lowest performance—again, due to the 
signal processing inequality. To get the most out of decision level fusion, sev-
eral challenges, many of which are shared with feature level fusion, must be 
addressed. A key challenge is to understand and include the dependencies 
among the various deciders in the fusion calculation. Today’s decision level 
fusion approaches, in general, make a conditional independence assumption 
called the naïve Bayes approach. This assumption is rarely true and will give 
optimistic results that, in turn, create decision errors and nonrobust perfor-
mance. To overcome these errors, the joint statistics and dependencies must 
be modeled, which is extremely difficult. In addition, these joint dependen-
cies are, in turn, a function of operating conditions causing the size of the 
hypothesis space to be extremely large and difficult to model. Now, model-
based approaches attempt to model these statistical dependencies explicitly 
with the aforementioned graph-based approaches being a significant direc-
tion. Learning-based approaches learn these dependencies implicitly via 
training data. This approach is tractable if the sensors are tightly coupled—
like our touch, sight, sound, and smell sensors or like the video-text example 
given earlier in this section. More loosely coupled, distributed sensor fusion 
approaches may be problematic for pure learning-based approaches due to 
the difficulty in providing training data of all the possible situations in which 
they could interact. For these distributed type of fusion challenges, hybrid-
model and learning-based approaches should be considered to leverage their 
respective advantages.

C.4 Mathematical Formulation of Fusion

The goal of this section is to present a mathematical formalism for fusion. 
A parallel modeling approach to sensor-data fusion, feature-level fusion, and 
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decision level fusion are presented. Finally, a sequential fusion model is briefly 
described.

C.4.1 Fusion Foundations

Let E be a population set of stimuli from the same environment. Let s be a 
sensor that produces datum as its output, i.e.,  , where Draw is the 
raw sensor data set. Assume that the sensor has the “function” property, that 
is, given an input stimulus (in its domain of definition), there exists a unique 
output datum in Draw. Typically, there is “noise” in this raw datum due to the 
randomness of the stimuli in the environment and/or the sensor itself. As 
such, the noise parameter can be modeled as a random variable (also called a 
random mapping or random transformation in higher dimensional output). 
If the raw sensor datum needs to be preprocessed (e.g., filtered, standardized, 
or refined, as is described in section 5.3.3.1), then there needs to be a pro-
cessor f:Draw→D. The output in this data set D may be too difficult to quantify, 
so another processor, p, defined on D will extract an object called a feature F 
(F is a data set). Typically, a feature is a vector F⊆RN for some positive integer 
N. Thus, the phrase “feature vector” is often used. However, a feature could be 
some other object such as a string of symbols, text, or a graph. 

From F, one may wish to make a decision concerning a feature or a subset 
of features or exploit this refined data set further. Let x denote an “exploiter” 
mapping a feature from F to an element in X, the exploited data set. Thus, an 
exploiter is a special processor. If x is a classifier, then X might be a label set 
corresponding to the “names” or the labels assigned to objects in the classes, 
e.g., X={tank, truck, jeep} or X={(tank, truck, jeep), (truck, tank, jeep), (jeep, 
truck, tank),...} (notice the “labels” are ordered to denote an order of choice). 
If each of these processors (functions) are designed such that they can be 
composed

sfpx ° ° °

where ο denotes the composition symbol, then a graphical representation of 
these processors is given in the following diagram:

E D D F Xs raw f p x

where an arrow denotes that a processor originates at the input set and points 
to the output set. 

Define A=xοpοfοs to be the exploitation system, so for a stimulus e∈E 
then A(�) is an element defined in X. Objects can be sensor-exploitation 
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systems, say, A=xaοpaοfaοsa and B=xbοpbοfbοsb both sensing from the same 
stimuli environment set E. Consider the two sensor-exploitation systems, A 
and B, diagrammed below.

E

s

Draw f F Xp xa

b

sa

a a
a aa Da

Draw f F Xp xb b b
b bb Db

The sensors sα and sb might be sensing a target of interest, yet have different 
modality. For example, sα might be an electro-optical (EO) sensor and sb an 
infrared (IR) sensor. Suppose there is a “rule” r for combining the exploitation 
data sets Xα and Xb together such that r:Xα×Xb→Xc into an exploitation set Xc. 
This yields the diagram

E

s

Draw f F Xp xa

b

sa

a a
a a

X a

a Da

Draw f

r

F Xp xb b b
b b

X b X c

b Db

×

 

The rule r makes a new system C defined by the compositions

a a a a b b b br x xp pf fs ,
,

s( )
).

° ° ° ° ° ° °C =
r A B(°=

The rule for combining the exploited data is a special processor.

To check the performance of the new system, it is necessary to see if p(C) 
= p(rο(A,B)) > max{p(A), p(B)}. If it is, then r is a fusion rule with respect to 
the performance function p, or simply, r is a fusor. It is possible that p(A) = 
p(B), so one system is not better than the other. But combining might yield a 
new, better system with respect to the performance function p. If there are 
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several rules of interest, say the set R, then the fusion designer would search 
through this collection of rules to find the best fusor r* from among all fusors. 
That is,

p pr r( p(( ( ., ))A B ( { }, ,)) )A A p( )BB° °* = max max>
rЄR

This means that “sensor processing and performance criteria” will make up 
sensor fusion.

There may be several performance criteria a fusion designer seeks to 
satisfy. These criteria might compete with (or contradict) each other. As such, 
multi-objective performance fusion techniques are a class of fusers that need 
to be considered. If q is another performance function (assume larger is better), 
then does

   p(rο(A,B)) > max{p(A),p(B)}
   q(rο(A,B)) > max{q(A),σ(B)}

hold true? Or does
   p(rο(A,B)) > max{p(A),p(B)}
   q(rο(A,B)) < max{q(A),q(B)}

hold true? Suppose there is another rule t such that
   p(tο(A,B)) > max{p(A),p(B)}
   q(tο(A,B)) > max{q(A),q(B)}

and
   p(tο(A,B))  >  p(rο(A,B))

then rule t is the fusor with respect to the multi-objective performance func-
tions p and q.

C.4.2 Diagraming Fusion Systems

Fusion systems can be diagramed to aid in understanding the processes 
and input/output relationships associated with those process. Specifically, in 
this section, diagrams for sensor-data fusion, feature-level fusion, decision 
level fusion, and a hybrid of feature- and decision level fusion are presented. 
In the diagrams, processes are denoted as: s is a sensor; f, p, and u are processors; 
r is a rule; and x is an exploiter. Sets are denoted as: E is the environment and 
serves as the starting point; D are data; F are features; X are exploitation sets; 
and L are label sets.
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Sensor-data fusion (on the filtered data) is diagrammed as 

E

s

Draw fa

xc

b

sa

a Da

Fc LcDa Db

Draw f

u

b
b Db

×

and a similar diagram exists for sensor data fusion on the raw sensed data 
(not shown here). Sensor data fusion can occur with a single sensor, dia-
gramed as

E s

pa

xc

xaF L

L L L

L

a

D Draw f rxpb bFb
3

In the case where two sensor-exploitation systems are sensing two distinct 
environments (Ea and Eb at different locations and/or different stimuli) and 
there is a need to process the combined stimuli to discover a relationship 
between them, then combining the stimuli sets via concatenation yields

E E

f pasa a Fa Xxa
a

X bDraw
b

Draw
a Da

a

E a

E b

b

f pbsb
πb

πa

b xbFbDb

×
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where πa and πb are projectors onto the respective environment / stimulus 
sets, Ea and Eb, that is, πa:Ea×Eb→Ea and πb:Ea×Eb→Eb are “identity” functions 
in the sense that πa(e,eˈ)=e and πb(e,eˈ)=eˈ for any stimulus pair (e,eˈ)∈ Ea×Eb. 
It is tempting to call this “event” fusion or “stimulus” fusion, but it requires a 
sensor data rule, feature rule, decision rule, or any mixture to produce an ex-
ploited datum as its final output in order to discover any relationship be-
tween the stimuli in these two distinct environments.

Feature level fusion is diagrammed as

E

s

Draw f Fpa

b

sa

a
a

Fa

a Da

Draw f Fpb

t

b
b

Fb Fc
xc Lc

b Db

×

The following diagram shows decision (label) fusion, where La and Lb are 
label sets, and xa and xb are classifiers.

E

s

Draw f F Lp xa

b

sa

a a
a a

La

a Da

Draw f

r

F Lp xb b b
b b

L b Lc

b Db

×

 

where label set Lc could equal La, Lb , La ×Lb, La
◡Lb, the union of both label set, 

or something completely different.
A mixture of fusion approaches can also be of use. As an example, feature-

level fusion and decision level fusion can be combined to produce a fused 
result and is diagrammed as
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E

s
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b
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a xa
aa Da

Draw f Fpb b xb

xt rc

b

L

L

Lb Db

× L L3FbFa Fc

C.4.3 Series Fusion Architecture

So far, the fusion discussion has centered on parallel architectures. An-
other fusion architecture allows for “series” architectures call sequential fu-
sion. This is related to “sequential analysis” as described in statistics. The 
medical community regularly performs “tests” sequentially to determine the 
correct diagnosis. Similarly, air warfighters will operate sequentially, espe-
cially if there the exploited data is not sufficient to determine between a 
“friend or foe” (the labels). More data might be needed to help determine the 
“unknown” label to “friend or foe.” Or maybe the original sensor data needs 
to be processed in another way that would be faster than having to physically 
take “another look.” Typically, many of these “processors” have parameters 
that can vary during real-time operations. For example, if exploiters (e.g., 
classifiers) depend on a (vector) parameter θ∈Θ⊂RM, say xa

(θ) and xb
(), for 

(vector) parameter ∈Ф⊂RN, then the performance of the following diagram 
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Draw f F Lp xa

b

sa

a a
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F Lp xb b b
b b
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×

not only depends on the choice of rule r but also on the choice of the parameter 
pair (θ,). Hence, we should optimize over all parameters in Θ×Φ. Define 

a a a b b b baxx xp pf fs ,

,

s( )
).

r ° ° ° ° ° ° °C =
r A B(°=

(θ,ϕ) (θ)

(θ)

(ϕ)

(ϕ)
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then the goal is to find the best (θ*,*)∈Θx Ф and r* ∈R such that

, ,, { }r r° ° B B(θ) (θ)(θ*) (ϕ*) (ϕ)(ϕ)p p pp( ( ( ((( .A A AB )) ))* )) = max max>max
rЄR
θЄѲ

θЄѲ

ϕЄФ

ϕЄФ
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Human-Systems Integration Project Example

The Air Force Research Laboratory has engaged in a program focused on 
human–autonomous system (AS) teaming in the command and control (C2) 
of multiple heterogeneous unmanned vehicles (UXV)1 in a base defense mis-
sion. The system has been designed to implement a “playbook” delegation-
type architecture (Parasuraman et al. 2005; Miller and Parasuraman 2007) 
extended to enable more seamless transition between control levels (from 
manual to fully autonomous). At one extreme, the human can manually con-
trol a specific UXV. At another level, the operator makes numerous inputs to 
specify all the details of a “play” that defines the tasking that one or more 
UXVs autonomously perform once the play is initiated. At the other extreme, 
the human can quickly task UXVs by specifying only two essential details 
(play type and location), and then a “C2” AS determines all the other tasking 
details. For example, if the human operator calls a play to achieve air surveil-
lance on a building, the C2 AS recommends which UXV to use (based on 
sensor payload, estimated time en route, fuel use, environmental conditions, etc.), 
a cooperative control algorithm—another limited-capability AS—provides the 
shortest route to get to the building (taking into account no-fly zones, etc.), 
and the C2 AS monitors the play’s ongoing status (e.g., alerting if the vehicle 
will not arrive at the building on time) (Draper 2017). The human-machine 
interfaces (HMI) also support the human communicating any other play de-
tail, and this additional information informs the AS on how to optimize the 
recommended plan for the play. For example, the human may have informa-
tion that the AS does not like the target size and current visibility. With these 
HMIs, the human operator can, at any time, tailor the role of the AS depend-
ing on the task, vehicle, mission event, or the human’s trust in the AS (or a 
unique combination of these dimensions).

Detailed descriptions of the HMIs and the rationale for their design are 
available elsewhere (Calhoun et al. 2017a; Calhoun et al. 2018). Here, only 
brief introductions are provided on HMIs for several steps of employing a 
play-based human-AS teaming approach. Note that the displays and controls 
all feature video gaming–type icons that represent unmanned vehicle type, 
play type, and/or a play detail specific to a base defense scenario. This ap-
proach presents information in a concise, integrated manner and also helps

1. X is used to denote Air, Ground, or Sea vehicle (A, G, S).
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maintain the human’s visual momentum (Woods 1984) as information is re-
trieved from the various HMIs. The icons also support the human’s direct 
perception and manipulation, with the human able to act directly with the 
icon (Shneiderman 1992).

To call a play to define the actions of one or more unmanned vehicles, the hu-
man operator needs to specify at least two details to the AS: 

1.  Play location, via a speech command or by manually selecting a map 
location or one of many predefined locations on a pull-down menu.

2.  Play type, with speech command or selecting corresponding icon on a 
play-calling HMI, as shown in figure D.1.

Figure D.1. Three HMIs to specify play and unmanned vehicle type with mouse 
or touch. Left: All base defense plays, including surveillance of a location, road, 
or area and others involving friendly or unfriendly entities (e.g., overwatch, 
escort, shadow, and cordon). Center: Radial menu pop-up includes only the 
play options relevant to the map location selected (i.e., no sea vehicle for land 
location). Right: Radial menu pop-up includes only the play options relevant to 
the vehicle selected on the map.

Once the human operator communicates desired play type and location, 
the AS reasons on available assets and other relevant details to come up with 
one or more recommended plans for the play. Figure D.2 illustrates two HMIs 
that provide the human operator with feedback on its processing and the 
rationale for its recommendation. In the polar coordinate plot on the left, 
several of the AS-identified feasible plans are summarized (Hansen 2016). 
The HMI to the right shows more details on the AS’s rationale for the pro-
posed play plan.



APPENDIX D │ 293

Figure D.2. AS-generated plans. Left: Plan Comparison HMI shows trade-off of 
several candidate AS-generated plans for a play. Right: AS’s additional rationale 
for its recommended play plan.

As shown in figure D.3, the AS’s recommended plan is also presented on a 
map with dashed symbology, as well as in a Play Workbook that provides 
details of the play, including the assumptions and constraints the plan is based 
on. For example, the Workbook’s shaded icons (sun, clock, and “HI” circled 
icons on the Workbook’s right page) indicate that the play plan assumes there 
is good visibility and that the play is high priority and is optimized to get an 
asset to the location as soon as possible.

Figure D.3. Map showing Play Workbook and proposed vehicle and route on the 
map (AS is proposing to add an air vehicle to perform a sector search at Point Romeo, 
as indicated by the dashed magenta symbology.).
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By issuing speech commands or changing selections on the Play Work-
book, the human operator can prompt the AS to come up with new plans re-
flecting the revised details. For instance, if the operator designated the size of 
the target on the first Workbook page row or changed the environmental icon 
to one indicating cloudy (second row), the AS will consider vehicle assets 
with a more appropriate sensor payload and change the proposed plan for the 
play. By interacting with the Play Workbook (or issuing speech commands), 
the operator can quickly specify/revise as many play details as desired, both 
when calling a play and after the play is under way (the latter likely in re-
sponse to a change in mission requirements). Additionally, the HMIs serve as 
the basis for the human posing “what-if ” queries to the AS. Changes in Work-
book selections result in new AS-generated play plan(s). Another query 
method is for the human operator to verbalize a question (e.g., “When can a 
lethal weapon arrive at Gate Delta?”), with the answer presented aurally re-
flecting the AS’s deliberations. If the operator replies “Show me,” the corre-
sponding information (e.g., play plan) is shown on the map and in a Play 
Workbook.

Once the human operator consents to a particular play plan, the AS handles 
play execution by controlling UXV movements such that they complete the 
tasks specified for the play. The human operator can track the progress of the 
AS-supported play in several ways: watching the movement of UXV symbology 
on the map, retrieving information on a row dedicated to each play in a table 
(fig. D.4), and viewing a Play Quality Matrix display (fig. D.5).2

2. Note: the symbology associated with each ongoing play has a unique color that is em-
ployed both on the map and in the Active Play Table. Besides aiding visual momentum, use of 
color coding by play helps the human operator maintain a global perspective in terms of which 
vehicles are coordinating on the same play.
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Figure D.4. Active Play Table HMI. Each row provides additional information 
on plays under way as well as the ongoing patrol. For each play, the row shows 
(from left to right) the type of play, play location, assigned vehicles, functional-
ity to cancel or pause the play, and a color indicator of the progress of the play. 
Selection of the row calls up the corresponding Workbook (e.g., to modify the 
play), including the Play Quality Matrix of figure D.5.
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Figure D.5. Play Quality Matrix. The color coding (green, yellow, or red) and 
deviation of each bar from the center of the matrix indicate whether the corre-
sponding base defense mission parameter is within, above, or below its expected 
operating range. The parameters depicted in this illustration are: expected time 
en route, probability of detection, fuel state, how long vehicle(s) can dwell on 
a site to be surveilled, and impact (degree to which play impacts overall mis-
sion success).
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The prototype HMIs briefly described above enable a human operator to 
call plays and for the operator and the AS to work together to specify other 
play details. HMIs by which the AS communicates its reasoning for play plans 
and the progress of plays are also illustrated. Other HMIs have been imple-
mented that provide mechanisms by which the human-AS team can track 
plays that are not active (e.g., waiting for a necessary resource to become 
available), chain plays together (e.g., a play begins automatically when an-
other play ends), and establish conditions that a play will begin without op-
erator consent (Calhoun et al. 2017b). Improvements have also been initiated 
to provide a Task Manager HMI that facilitates human-AS coordination and 
shared awareness.



Appendix E

Toolsets and Datasets

Section 5.3 provided a snippet of available toolsets and datasets that could 
be used in the implementation of the sample framework presented in section 
5.2. In this appendix, we provide a more comprehensive table of potentially 
useful toolsets and datasets. As stated in section 5.3, the list of toolsets and 
datasets is not meant to be comprehensive but rather to provide a starting 
point for future efforts.

Table E.1. List of toolsets and datasets for component functions presented 
in section 5.3
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5.3.1
Data-
bases   MongoDB Tool

No SQL 
Database

Windows/
Linux/
Unix

Open 
Source

https://www.
mongodb.com/

5.3.1
Data-
bases   PostgreSQL Tool

SQL Da-
tabase

Windows/
Linux/
Unix

Open 
Source

https://www.
postgresql.org/

5.3.1
Data-
bases  

CUBRID 
Manager Tool

Database 
Admin  

Open 
Source

http://www.
cubrid.org/

5.3.1
Data-
bases   Firebird Tool

SQL Da-
tabase

Windows/
Linux/
Unix

Open 
Source

http://www.
firebirdsql.org/
en/start/

5.3.1
Data-
bases   Redis Tool

No SQL 
Data-
base /  
In-Mem-
ory Data 
Structure 
Store

Linux, 
BSD, 
OS X, 
Win-64 BSD https://redis.io/

5.3.1
Data-
bases   MariaDB Tool

SQL Da-
tabase  

Open 
Source

https://mariadb.
org/

5.3.1
Data-
bases  

MySQL 
(Com-
munity 
Edition) Tool

SQL Da-
tabase

Linux, 
Windows, 
MacOSX, 
Free BSD

GNU 
General 
Public 
License

https://mysql.
com

5.3.1
Data-
bases   SQLite Tool

SQL Da-
tabase

Linux, 
Windows, 
MacOSX, 
Android,  
Windows 
Phone

Public 
Domain

https://www.
sqlite.org/
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5.3.1
Data-
bases   SciDB Tool

High-
dimen-
sional 
data

Windows, 
Linux

Public 
Domain

http://www.para-
digm4.com

5.3.1
Data-
bases  

McObject 
 eX-
tremeDB Tool

In-
memory, 
embed-
ded DB 
- SQL + 
NoSQL 
architec-
ture

Windows, 
Linux, 
Clusters, 
iOS

License 
costs

http://www.
mcobject.com/

5.3.1
Data-
bases   Hadoop Tool

Parallel 
database 
process-
ing

Windows, 
Linux

Open 
Source

http://hadoop.
apache.com

5.3.1
Data-
bases   PERS Tool

In-
memory, 
embed-
ded DB 
- SQL + 
NoSQL 
architec-
ture

Java, C#, 
Android 
OS, 
Windows 
Phone 7, 
Silverlight

Dual 
License 
(Open 
Source, 
Propri-
etary)

http://www.
mcobject.com/
perst

5.3.2 Sensors  
SUPPRES-
SOR Tool

Elec-
tronic 
Warfare 
Mission 
Model-
ing Ubuntu GOTS  

5.3.2 Sensors   OPNET Tool

Network 
Model-
ing

Ubuntu, 
Windows

Com-
mercial www.opnet.com

5.3.2 Sensors   ESAMS Tool

Radio Fre-
quency 
Model-
ing Ubuntu GOTS  

5.3.2 Sensors   DIADS Tool

Sensor 
Model-
ing Ubuntu GOTS  

5.3.2 Sensors  
Vigilant 
Hammer Data

Elec-
tronic 
Warfare 
Data   GOTS  

5.3.2 Sensors  

Northern 
Edge (re-
stricted) Data

Elec-
tronic 
Warfare 
Data   GOTS  

5.3.2 Sensors   Xpatch Tool

Sensor 
Model-
ing      
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5.3.2 Sensors  
Raider 
Tracer Tool

RF Mod-
eling      

5.3.2 Sensors  
Laider 
Tracer Tool

Optical 
Model-
ing      

5.3.2 Sensors  
MZA 
Toolbox Tool

Optical 
Model-
ing      

5.3.2 Sensors   ScaleME Tool

Electro-
dynamic/
acoustic 
simula-
tor      

5.3.2 Sensors   Mental Ray Tool

Optical 
Model-
ing      

5.3.3.1

Sensor 
Process-
ing & 
Fusion   NXP Tool

Sensor 
Fusion 
package 
using 
MEMS 
and 
magnetic 
sensors, 
ARM™ 
Cortex 
M0+, M4 
and M4F 
portfolio 
develop-
ment 
boards 
and 
Native 
Android 
Sensors

Windows, 
Android 
OS

Com-
mercial

http://www.nxp.
com/products/
scensors/nxp-
sensor-fusion.
XTRSICSNSTL-
BOX

5.3.3.1

Sensor 
Process-
ing & 
Fusion   Sunhillo Tool

Multi-
Sensor 
Track 
Fusion 
Plugin

Sunhillo 
SGP 
Product

Com-
mercial 
(Propri-
etary)

http://www.
sunhillo.com/
multi-sensor-
track-fuser.html

5.3.3.1

Sensor 
Process-
ing & 
Fusion  

Vector 
Informatik: 
Advanced 
Driver 
Assistance 
Systems 
(ADAS) 
develop-
ment Tool

vADAS 
Devel-
oper – 
Multi-
Sensor 
Fusion 
Develop-
ment 
Environ-
ment

Windows 
(Dev in 
Visual 
Studio)

Com-
mercial

https://vector.
com/vi_vadasde-
veloper_en.html
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5.3.3.1

Sensor 
Process-
ing & 
Fusion  

OPPOR-
TUNITY 
Activity 
Recogni-
tion Data 
Set Data

Multi-
sensor 
data for 
human 
activity 
recogni-
tion Universal

Open 
Source

https://archive.
ics.uci.edu/ml/
datasets/opportu
nity+activity+rec
ognition

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

Interna-
tional 
Business 
Machine 
SPSS 
(CRISP-
DM) Tool

Data 
Mining 
Process   COTS

http://www.ibm.
com/analytics/
us/en/technol-
ogy/spss/

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

Advanced-
Miner Tool        

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

CMRS Data 
Miner Tool        

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing RapidMiner Tool        

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

Data Miner 
Software 
Kit Tool        

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

DBMiner 
2.0 Tool        

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

Delta 
Miner Tool        

5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

Exeura 
Rialto Tool        
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5.3.3.2

Data 
Mining 
& Fusion

Sensor 
Mgmt. 
& Data 
Min-
ing

Knowl-
edgeMiner 
64 Tool        

5.3.4.1

Percep-
tion & 
Event 
Detec-
tion

Learn-
ing & 
Adap-
tion OpenCV Tool

Com-
puter 
Vision   BSD

http://opencv.
org/

5.3.4.2

Situation 
Assess-
ment   NetSA Tool

Network 
Situ-
ational 
Aware-
ness

Linux, 
Solaris, 
Open-
BSD, 
Mac OS 
X, and 
Cygwin GOTS

http://www.cert.
org/netsa/

5.3.4.2

Situation 
Assess-
ment  

Situational 
Awareness 
Systems Tool

Incident 
manage-
ment, 
com-
mand & 
control, 
BIO-sur-
veillance

Windows 
2003 
Server

Com-
mercial

http://www.fd-
software.com/

5.3.4.2

Situation 
Assess-
ment  

SITAWARE 
C4I Suite Tool

C2 and 
Battle 
Manage-
ment  

Com-
mercial

https://www.
systematicinc.
com

5.3.4.2

Situation 
Assess-
ment  

Safe 
Situational 
Aware-
ness for 
Everyone Tool

Operat-
ing Room 
Situ-
ational 
Aware-
ness  

Com-
mercial

https://www.
steris.com/
healthcare/

5.3.4.2

Situation 
Assess-
ment  

Electricity 
Infra-
structure 
Operations 
Center 
(EIOC) Tool

Electrical 
Power 
Grid 
Situ-
ational 
Aware-
ness   GOTS

http://eioc.pnnl.
gov/research/si-
tawareness.stm

5.3.4.2

Situation 
Assess-
ment  

Public 
Health and 
Medical 
Emergency 
Tools Tool

GIS, 
Social 
Medial, 
and 
Resource 
Collec-
tions, 
and 
Threat-
Specific 
Response 
Tools Various  

https://www.
phe.gov/
Preparedness/
news/events/
NPM2015/Pages/
situational-
awareness.aspx
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5.3.4.2

Situation 
Assess-
ment  

California 
Situational 
Aware-
ness and 
Collabora-
tion Tool 
(SCOUT) Tool

Incident 
Com-
mand 
System

Web-
based  

http://www.
caloes.ca.gov/
cal-oes-divi-
sions/regional-
operations/
situation-aware-
ness-and-collab-
oration-tool

5.3.4.3

Reason-
ing and 
Deci-
sion-
Making   1000Minds Tool

PAPRIKA 
method

Online 
Web Ap-
plication COTS

https://
www.1000minds 
.com/

5.3.4.3

Reason-
ing and 
Deci-
sion-
Making   D-Sight Tool

PRO-
METHEE, 
UTILITY

Online 
Web Ap-
plication, 
Mobile COTS

http://www.d-
sight.com/

5.3.4.3

Reason-
ing and 
Deci-
sion-
Making  

Decision 
Lens Tool

AHP, 
ANP

Online 
Web Ap-
plication COTS

http://decision-
lens.com/

5.3.4.3

Reason-
ing and 
Deci-
sion-
Making   PyKE Tool

Inference 
Engine Python

Open 
Source

http://pyke.
sourceforge.
net/using_pyke/
index.html

5.3.4.4

Planning 
& Re-
planning  

ICAPS 
Competi-
tions

Tool 
Data

Plan-
ning and 
Schedul-
ing N/A

Open 
Source

http://www.
icaps-confer-
ence.org/index.
php/Main/Com-
petitions

5.3.4.5
Execution 
Mgmt.  

DAM(Dece 
ntralized 
Asset Man-
ager) Tool     COTS  

5.3.4.5
Execution 
Mgmt.  

M2CS(Multi 
-vehicle 
Mission 
Control 
System) Tool     COTS  

5.3.6

Human 
Com-
puter 
Interface 
& Col-
labora-
tion 
Environ-
ments   OpenVibe Tool

Brain-
Com-
puter 
Interface Windows

GNU 
Affero 
General 
Purpose 
License

http://openvibe.
inria.fr/
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5.3.6

Human 
Com-
puter 
Interface 
& Col-
labora-
tion 
Environ-
ments

Data-
bases

Defense 
Information 
Systems 
Agency 
Big Data 
Platform Tool

Cloud In-
frastruc-
ture w/
toolsets

Redhat 
Linux GOTS

http://disa.mil/
NewsandE-
vents/2016/Big-
Data-Platform

5.3.7

Learning 
& Adap-
tion   H2O Tool General

Java, R, 
Scala, 
Python

Open 
Source

http://www.h2o.
ai/#

5.3.7

Learning 
& Adap-
tion   Caffe Tool

Deep 
Learning   BSD-2

http://caffe.
berkeleyvision.
org/

5.3.7

Learning 
& Adap-
tion  

Azure ML 
Studio Tool General    

https://studio.
azureml.net/

5.3.7

Learning 
& Adap-
tion  

Apache 
Singa Tool

Deep 
Learning

Apache 
Spark

Apache 
License 
Ver-
sion 2

https://singa.in-
cubator.apache.
org/en/index.
html

5.3.7

Learning 
& Adap-
tion  

Amazon 
Machine 
Learning Tool General

Amazon 
Web 
Services  

https://aws.
amazon.com/
machine-learn-
ing/

5.3.7

Learning 
& Adap-
tion  

Apache 
MLlib Tool General

Apache 
Spark

Apache 
License 
Ver-
sion 2

http://spark.
apache.org/
mllib/

5.3.7

Learning 
& Adap-
tion   mlpack Tool General C++ BSD

http://mlpack.
org/

5.3.7

Learning 
& Adap-
tion   Pattern Tool General      

5.3.7

Learning 
& Adap-
tion   Scikit-Learn Tool General Python BSD

http://scikit-
learn.org/stable/

5.3.7

Learning 
& Adap-
tion   Shogun Tool General C++ GNU

http://shogun-
toolbox.org/

5.3.7

Learning 
& Adap-
tion   TensorFlow Tool

Data 
flow 
graphs Python

Open 
Source

https://www.
tensorflow.org/

5.3.7

Learning 
& Adap-
tion   Veles Tool

Deep 
Learning

Python, 
CUDA, 
and 
OpenCL

Open 
Source

https://velesnet.
ml/
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5.3.7

Learning 
& Adap-
tion   Torch Tool General

GPU-
CUDA BSD http://torch.ch/

5.3.7

Learning 
& Adap-
tion   Theano Tool General Python BSD

http://deeplearn-
ing.net/software/
theano/index.
html

5.3.7

Learning 
& Adap-
tion

Human 
Com-
puter 
Inter-
face

Stanford 
University 
Natural 
Language 
Processing Tool

Natural 
Language 
Process-
ing  

Open 
Source  

5.3.7

Learning 
& Adap-
tion  

University 
of Waikato 
Project 
(WEKA) Tool General Java

Open 
Source

http://www.
cs.waikato.
ac.nz/ml/weka/

5.3.7

Learning 
& Adap-
tation   BURLAP Tool

Rein-
forcement 
Learning Java

Open 
Source

http://burlap.
cs.brown.edu/

5.3.7

Learning 
& Adap-
tation   RL-GLUE Tool

Rein-
forcement 
Learning N/A

Open 
Source

http://glue.rl-
community.org/
wiki/Main_Page

5.3.7

Learning 
& Adap-
tion

Data 
Mining 
& Fu-
sion

University 
of Califor-
nia, Irvine, 
Machine 
Learning 
Repository Data ML data Universal

Open 
Source

https://archive.
ics.uci.edu/ml/
datasets.html

5.3.7

Learning 
& Adap-
tion  

United 
Stated 
Geologi-
cal Survey 
Spectral 
Library Data

Hyper-
spectral 
signa-
tures Universal

Open 
Source

https://speclab.
cr.usgs.gov/
spectral-lib.html

5.3.7

Learning 
& Adap-
tion  

NASA Jet 
Propulsion 
Laboratory 
- Airborne 
Visible/
Infra-red 
Imaging 
Spec-
trometer 
(AVIRIS) Data

Hyper-
spectral 
Imagery Universal

Open 
Source

https://aviris.jpl.
nasa.gov/

5.3.7

Learning 
& Adap-
tion   ImageNet Data

Various 
images Universal

Open 
Source

www.image-net.
org
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5.3.8

Domain-
Specific 
Knowl-
edge 
Base

Learn-
ing & 
Adap-
tion

The 
Graphical 
Models 
Toolkit 
(GMTk) Tool

Dynamic 
Graphi-
cal Mod-
els & 
Dynamic 
Bayesian 
Networks

Home-
brew, 
Mack-
Ports, 
Linux 
Remote 
Package 
Manager, 
Source 
Code

Open 
Source

http://melodi.
ee.washington.
edu/gmtk/

5.3.8

Domain-
Specific 
Knowl-
edge 
Base

Learn-
ing & 
Adap-
tion

Open 
Markov Tool

Directed/
Undirected 
Graphs Java

Open 
Source

http://www.
openmarkov.org/

5.3.8

Domain-
Specific 
Knowl-
edge 
Base

Learn-
ing & 
Adap-
tion UnBBayes Tool

Bayesian 
Net-
works, 
Influence 
Diagrams Java

Open 
Source

http://unbbayes.
sourceforge.net/

5.3.8

Domain-
Specific 
Knowl-
edge 
Base

Learn-
ing & 
Adap-
tion WinMine Tool

Bayesian 
Net-
works, 
Depen-
dency 
Network 
Structure Windows

Open 
Source 
(non-
commer-
cial)

https://www.
microsoft.com/
en-us/research/
project/winmine-
toolkit/





Appendix F

Example Challenge Problems

This appendix provides more details on the domain-independent and do-
main-dependent challenge problems highlighted in section 6.3.

F.1 Domain-Independent Challenge Problems

Three specific domain-independent challenge problems are described. 
They include internal representation (how the autonomous system [AS] rep-
resents its world model), dynamic agent-to-agent communications, and a 
theory of consciousness with an accompanying computational framework. 
They capture three topics relevant to problems that need to be addressed in 
ASs, but are also relevant for non-AS-based solutions.

F.1.1 Internal Representation

Internal representation, discussed earlier in sections 2.2 and 3.1, concerns 
how the autonomous system structures what it knows and what it can use to 
generate meaning about the battlespace. It includes the data structures and 
algorithms used for learning and for system execution. For example, an arti-
ficial neural network (ANN) has nodes that are connected with weights, as 
well as algorithms for updating the weights and algorithms for predicting an 
output (e.g., category) based on some observable. Although the application of 
ANNs and their deep network counterparts can provide significant improve-
ments to machine-based classification of objects and events captured in full 
motion video, they may not suffice for other classes of problems such as plan-
ning and re-planning based on dynamically-changing mission priorities and 
resources. There is an inherent tension between the internal representation, 
the stimuli that can be appropriately responded to, and the selection and tim-
ing of actions in the response. Accordingly, we believe that internal represen-
tation is a fertile area for basic research, applicable across a wide variety of 
domains and missions.

F.1.2 Dynamic Agent Communications

A central theme in this document is agency of autonomous systems: how 
they are situated in the world (section 2.1), how bringing multiple ASs to-
gether can create emergent behaviors (section 2.3), and how they can learn 
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with the experience of the individual and the group (section 2.4). Communi-
cation is key in all these activities. Dynamic agent communications mean that 
the AS will learn how to communicate its meaning with other ASs using a 
dynamic, not static or predefined, symbol set. This is necessary in an environ-
ment in which agents come and go based on changing tasks being worked on, 
peer relationships, or cognitive approaches used, so that a fixed set of com-
munications symbols will not suffice.

Historically, a significant amount of effort is spent defining communica-
tions protocols and messaging for multiagent systems; this can inadvertently 
limit the impact the AS has delivering combat effects. Assael suggests that such 
learned communications protocols can be of the following four forms (2016):

•  Centralized learning/centralized execution

•  Centralized learning/decentralized execution

•  Decentralized learning/centralized execution

•  Decentralized learning/decentralized execution

Centralized learning with centralized execution is of little interest for ASs 
since it can be accomplished by design or through relational learning ap-
proaches. Centralized learning with decentralized execution as accomplished 
in Assael (2016) could be useful in those cases where we know the partici-
pants and they remain fixed. Decentralized learning with centralized execu-
tion is useful for dynamically learning a protocol, but AS use in operational 
scenarios is too limited if centralized execution is required. The approach to 
learned protocols for ASs needs to follow the decentralized learning/decen-
tralized execution paradigm, because not all agent participants will be avail-
able at the onset of learning and centralized execution involves too much 
overhead and inefficiency. As a result, the type of dynamic agent communica-
tions we envision for ASs follows the decentralized learning and execution 
paradigm. There is a need for research on this topic to advance the state of the 
art with a particular concentration on heterogeneous agents and scalability. 
There is also a significant need for developing an open and scalable agent 
communications framework that supports, at least, decentralized learning 
and execution, although a framework that covers the other communications 
paradigms could be of significant value to the broader community.

F.1.3 Theory of Consciousness and a Conscious Computing Framework

In section 2.2, we described human and machine consciousness and em-
phasized that some aspect of the representation of an AS must provide meaning 
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for observations that have never been experienced before. To do this requires a 
representation that is stable, consistent, useful, and structurally coherent (Lynott 
and Connell 2010; Yeh and Barsalou 2006; Cardell-Oliver and Liu 2010; 
Shanahan 1996; Newell 1990; Barsalou 2013). It is a confabulated, yet cohe-
sive, narrative that compliments an experientially learned component (as we 
described in section 2.4) or subconsciously held component (Vaughan et al. 
2014; Lakoff and Narayanan 2010; Rogers 2018). Qualia (plural) are the 
vocabulary of consciousness (Cowell 2001; Chalmers et al. 1992; Chopra and 
Kafatos 2014; Hubbard 1996; Rogers 2018) and are the units of conscious 
cognition. A quale (singular) is the “what” that is evoked in working memory 
and that is being attended to by the agent as part of its conscious deliberation. 
A quale could be experienced as a whole when attended to in working memory 
and is experienced based on how it relates to, and can interact with, other 
qualia. When the source of the stimulus being attended to is the agent itself, 
the quale of “self ” is evoked to provide self-awareness. An agent that can gen-
erate the quale of self can act as an evaluating agent to itself or as a performing 
agent with respect to some task based on some observable. An agent that can 
generate the quale of self can determine when it should continue functioning; 
give itself its own proxy, versus stopping the response and seeking assistance. 
Ramachandran suggested the existence of three qualia laws: qualia are irrevo-
cable, qualia are flexible with respect to the output, and qualia are buffering 
(Ramachandran and Hirstein 1997). Since the generation of qualia is used as 
the defining characteristic of consciousness, it is possible to use the work of 
Ramachandran as a vector in devising a theory of consciousness. Such a theory 
could also have a set of tenets to define the engineering characteristics for an 
artificial conscious representation for an AS. An important aspect for a theory 
of consciousness is the construct of Edelman’s imagined1 present, imagined 
past, and imagined future (1989). That is to say, much of what the agent knows 
is simulated, seeded by experiences. Qualia represents one approach to devel-
oping a theory of consciousness, but others exist and should be explored.

We propose that the science and technology (S&T) community flesh out a 
theory of consciousness that can be used to support the development of artifi-
cial consciousness for an “aware” AS, and equally important, an associated 
conscious computing framework.2 The ultimate goal of this theory would be a 

1. In more engineering-focused parlance, simulated.
2. We do not suggest that it is possible at this time to create an artificial general intelligence 

(Office of Net Assessment 2016). But we do believe that we will achieve a behavioral and com-
putational advantage by pursing a theory of consciousness and an associated computational 
framework.
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simple and elegant set of fundamental laws, analogous to the fundamental 
laws of physics, something akin to: 

•  Providing structural coherence of an AS’s internal representation, en-
suring that an AS’s interaction with the world is stable, consistent, and 
useful.

•  Providing for situation-based processing through the unit of conscious 
cognition, such as Qualia Theory of Relativity, narratives, and so forth.

•  Providing for conscious representation of situations via simulation, in 
which these cognitively decoupled processes can deliberate over an 
imagined past, imagined present, and imagined future, in the form of a 
cohesive narrative.

It is anticipated that such a focus would yield a behavioral, and possibly a 
computational, advantage in AS development, and provide a mechanism to 
address the unexpected query or event in a fashion that supports true AS flex-
ibility across tasks taken on, peer relationships engaged in, and cognitive ap-
proaches used. We believe strongly that this is foundational to achieve the 
needed AS flexibilities we have discussed earlier.

F.2 Domain-Dependent Challenge Problems

Five specific, domain-dependent challenge problems are described. They 
include multidomain situational awareness (MDSA); an MDSA operational 
framework; intelligence, surveillance, and reconnaissance (ISR) processing, 
exploitation, and dissemination (PED) for narrative generation; multidomain 
situated consciousness (MDSC); and data-to-decisions air-to-air mission ef-
fect chain (MEC).

F.2.1 Multidomain Situational Awareness

The Air Force Chief of Staff recently stated the importance of MDSA 
and the need for improving current and future Air Force decision-making 
at the tactical, operational, and strategic levels (Goldfein 2017). SA was 
covered extensively in section 3.2 and included a common single agent 
and team SA models based on the perception of the elements in one’s en-
vironment, comprehending their meaning, and projecting their status 
into the future (Endsley 1995b). Current SA approaches are linear: data 
capture, data analysis, knowledge product generation, knowledge product 
dissemination, followed by decision-making, if called for to affect the en-
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vironment. Unfortunately, this linear relationship between capture to 
analysis to decision-making for effects does not scale (Rogers et. al 2014) 
and is not dynamic enough in battlespaces where the adversary is agile. 
This approach has too much time lag and is often incapable of supporting 
timely decision-quality knowledge creation. Current efforts are also stove-
piped across domains: they independently handle their domains, fusing 
across domains after the fact (see earlier discussion in section 5.3.3). The 
nature of unfolding real-world events across multiple domains (e.g., si-
multaneous missile and cyberattacks), with an agile and capable adver-
sary, will not be adequately addressed by our linear stovepiped architec-
tures. The key to MDSA is timely decision-quality knowledge. Autonomous 
systems, working in parallel, across domains, and in a non-linear fashion 
when called for, can provide the flexible and responsive knowledge man-
agement needed by today’s decision-making warfighter.

The MDSA problem itself is monolithic and has numerous challenges to 
overcome. Some of those challenges include understanding the complexities 
of current operations, changing how we think about SA (that is, moving away 
from linear-staged processing and domain stovepiping), the span of AS tech-
nologies that can be brought to bear on the MDSA problem, and the informa-
tion technology infrastructure to support the flexible employment of ASs. A 
key to achieving MDSA will be organizational as well, unifying the relevant 
functions (e.g., A1, A2, A3, A4, A5/8, A9, A10) in an information-centric 
environment.

F.2.2 MDSA Operational Framework

Understanding MDSA from one or more relevant operational perspectives 
would be of great value to operators and to the S&T communities. One per-
spective could be from the Joint Forces Air Component Commander (JFACC) 
and his or her staff in an Air Operations Center (AOC). How does the JFACC 
think about how air, space, and cyber help him/her fight the war? How do the 
Cyber Operations Centers tightly couple with the J2 to ensure all operational 
circuits are up and running that support current operations and near-term 
future operations?

Such a framework should consider MDSA at the strategic, operational, and 
tactical levels of war and consider an approach that uses experts in both opera-
tions (user) and technology (producer) to define that framework (so-called 
user-producer innovation). This is not a foreign proposition for the 
operational/technology community; the Defense Information Systems 
Agency (DISA) has accomplished similar, yet significantly less complex, 
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frameworks for limited cyber SA functions. We believe that the formulation 
of an MDSA-operational framework would not only be a worthy challenge 
problem for the S&T community but, if successful, would also serve to deliver 
additional lethality to the joint fight.

F.2.3 ISR PED for Narrative Generation

A core mission of HAF/A2 is the ISR PED problem. The USAF Distributed 
Common Ground System (DCGS) is a key component supporting that mis-
sion. Much of the processing in ISR PED is manual, and although efforts to 
bring in automation are currently underway and of great value (e.g., the Air 
Force Research Lab/RHXB Human Detection & Characterization toolsets), 
they only begin to scratch the surface when they provide object detection and 
object characterization. 

How ISR PED products should be produced and delivered is different de-
pending on the consumer of those products. For example, a special operator 
(at the tactical level) on the ground cares about possible immediate threats. A 
cyber operator (at the operational level) might care about possible threats to 
his/her infrastructure supporting current operations. A Coalition Forces 
Commander (at the strategic level) might be concerned about the readiness 
condition of their air, space, and cyber assets in a particular theater. Thus, ISR 
PED product resolution, over time and space, will depend on the ultimate 
consumer of the product.

More concretely, this challenge problem is interested in entity identifica-
tion (as an example, dogs, cats, horses), a characterization of those entities 
(German Shepherd, calico, mustang), and their interactions (the animals are 
playing in the field) that manifest into a comprehensive narrative intended for 
human-level understanding. Coupled with the context of the mission or task, 
other objects, their characterizations, and their interactions would be dynam-
ically specified, based on that context. Such an approach would enable one to 
define and describe events and provide mechanisms to do non-causal event 
detection where evidence might occur out of order, might be retracted, and 
might occur over long periods of time. Delivering the resultant narrative to 
the product consumer at the right level of resolution will be a key challenge.

An event is an important concept; it is any situation that requires attention, 
and the detection of said events is the focus of this challenge problem. When 
entity interactions can be understood as a whole, they are situations. When 
the situation is of interest and requires attention, it is an event. With such a 
capability, the system could provide an analyst an idea of what to look for next 
when watching a potential event unfold. A challenge problem of this sort 
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could consider any number of scenarios. A few include: car following and 
determining who interacts with the car of interest, counting the number of 
men, women, and children (slant count), characterizing their interactions 
and possible roles to determine possible impacts of ongoing operations, etc. 
Many of these will be useful in exploring and defining the general ISR PED 
problem.

F.2.4 Multidomain Situated Consciousness

We can extend our earlier discussion of artificial consciousness in section 
F.1.3 from a domain-independent challenge problem to a domain-dependent 
one by focusing on a new way of thinking about MDSA. Awareness is a mea-
sure of the mutual information between reality and the internal representa-
tion of some performing agent (human or AS) as deemed by some other 
evaluating agent. Consciousness is the content of working memory that is 
being attended to. To illustrate the difference, consider a patient with blind 
sight, who has lost the visual cortex in both hemispheres of the brain and so 
has no conscious visual representation (Celesia 2010). These patients, when 
asked what they see, say they see nothing and that the world is black. How-
ever, when they are asked to walk where objects have been placed in their 
path, they often successfully dodge those objects. What is happening here is 
that the verbal questioning is calling on the patient to use information that is 
consciously available to the patients, and there is none because of the lack of 
visual cortex. In contrast, successfully navigating through objects placed their 
path is calling on the patient to use visual awareness of obstacles, something 
that can be maintained unconsciously. Similarly, body identity integrity dis-
order and alien hand syndrome (AHS; Blom 2012) are examples of issues that 
illustrate low awareness while the patient is conscious of the appendages 
(Sarva 2014). Paraphrasing Albert Einstein, “imagination is more important 
than knowledge,” we claim that consciousness may often more important 
than awareness. There will always be limitations to how much of reality can be 
captured in the internal representation of the agent, but there are no limits to 
imagination.

MDSA focuses on the perception of multidomain elements in the multi-
domain environment within a volume of time and space, the comprehension 
of their meaning, and the projection of their status in the near future (modi-
fied from Endsley [1995b]). The concept of SA is intimately tied to the mutual 
information between the internal representation, reality, and awareness. In 
contrast, MDSC is a stable, consistent, and useful all-source situated simula-
tion that is structurally coherent. This last constraint of being structurally co-
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herent requires the MDSC representation only achieve enough mutual infor-
mation with reality to maintain stability, consistency, and usefulness. The 
challenge here is first to establish approaches to SC and then consider the 
difference in utility to the user compared to a more traditional SA-focused 
approach.

F.2.5 Data-to-Decisions Air-to-Air Mission Effect Chain

A MEC is defined as: Predict, Prescribe, Find, Fix, Track, Target, Engage, 
and Assess Anything, Anytime, Anywhere in Any Domain (P2F2T2EA4) 
(Rogers 2008). An air-to-air MEC executes P2F2T2EA4 in an air-centric mis-
sion to enable joint force air superiority in the highly contested environment 
(USAF ECCT 2016).

Counterair operations are designed to gain control of the air and wrest 
such control away from an adversary. Air superiority is a condition on the 
spectrum of air control, which ranges from adversary air supremacy, to air 
parity, to friendly air supremacy. The air superiority condition is achieved 
when friendly operations can proceed without prohibitive interference from 
opposing forces. In modern military operations, achieving this level of con-
trol of the air is a critical precondition for success. Air superiority provides 
freedom from attack, freedom to attack, freedom of action, freedom of access, 
and freedom of awareness. Importantly, it also precludes adversaries from ex-
ploiting similar advantages. As such, air superiority underwrites the full spec-
trum of joint military operations and provides an asymmetric advantage to 
friendly forces. A lack of air superiority significantly increases the risk of joint 
force mission failure as well as the cost to achieve victory both in terms of 
resources and loss of life. In common discourse, air superiority is often envi-
sioned as a theater-wide condition. In highly contested environments, such a 
conception may be unrealistic and unnecessary. Air superiority is only needed 
for the time and over the geographic area required to enable joint operations. 
The specific amount of time and space required varies significantly across 
scenarios, mission objectives, and phases of conflict. Accordingly, capability 
development for air superiority must provide options for commanders to ar-
ray their forces across a range of durations and geographies.

This challenge problem seeks to employ ASs to gather data from all sources 
in all domains, rapidly analyzing the data to extract operationally important 
information and reliably distributing information on the timeline needed to 
enable critical decisions to create an asymmetric advantage. Here, the goal is 
to bring to bear all the previously mentioned assets to address any portion of 
the MEC in support of the counterair mission to the pilot in the cockpit. 
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Standoff ranges imposed by area denial capabilities degrade the effectiveness 
of long-range sensors in the highly contested environment, making the coun-
ter air mission more volatile. This highlights the importance of all-source in-
telligence and an ability to bring it to bear inside of the cockpit.





Appendix G

Example Technical Integration Experiments

As part of the prototyping and experimentation process described in sec-
tion 6.4, we envision conducting a number of technical integration experi-
ments (TIE), illustrated schematically in figure G.1. The goal is to iteratively 
address one or more of the challenge problems identified in section 6.3 by 
pushing the boundaries of the creation and representation of the knowledge 
necessary for autonomous system (AS) flexibility across task, peer, and cogni-
tive dimensions. The diagram shows that there is a minimal amount of devel-
opment prior to a demonstrable product, as indicated by the blue dashed 
circle and the blue triangle after TIE3. Each TIE thereafter may or may not 
include a demonstration, depending on the goals. The key issue then is to 
define the TIEs in a meaningful way to deliver operationally useful capabilities 
as different challenge problems are addressed, while extending the underlying 
knowledge base and functionality of the AS framework.

Figure G.1. A series of technical integration experiments with demonstration 
events (blue triangles) for developing a variety of AS applications



318 │ AUTONOMOUS HORIZONS

A potential TIE approach for the spiral development of a variety of AS 
applications—applications that iteratively build on one another—could follow 
the following development path:

TIE1—Fixed Assembly: Create a set of agents needed to, for example, ad-
dress the intelligence, surveillance, and reconnaissance (ISR) processing, ex-
ploitation, and dissemination (PED) event detection problem (appendix F.2.3) 
for full-motion video (FMV), and then wire them together in a predefined way. 
This will necessitate the creation of an initial ontology that can guide future 
development efforts.

TIE2—Cognitive Flexibility: Establish the basics for cognitive flexibility 
by enabling some limited flexible assembly of agents for the same video cap-
tioning problem. Here, each agent defines its inputs and outputs, which is still 
an ontology, but they dynamically build their connectivity. The structure 
could be learned using, for example, relational learning.

TIE3—Peer Flexibility: Add limited peer flexibility by relieving the ontology 
need by learning communications protocols through centralized learning 
methods (appendix F.1.2) such as that in Assael (2016). In a fashion similar to 
that used in TIE2, the structure could be learned using relational learning.

TIE4—Limited Technology Demonstration: TIE3 would demonstrate the 
baseline AS architecture applied to the ISR PED event detection problem (ap-
pendix F.2.3) for FMV. It would demonstrate the compartmentalization of 
different deep-learning networks, add an image-converting agent, and pro-
vide alternative network models with different video to text agents used for 
event detection.

TIE5—Task Flexibility: Begin to explore task flexibility by allowing agents 
to self-assemble to accomplish a single task.

TIE6—Limited Technology Demonstration: Demonstrate the ability of 
agent self-assembly by applying it to the ISR PED event detection problem 
(appendix F.2.3) for FMV where agents assemble to convert different data 
into a usable form to do the event detection task.

TIE7—Data to Decisions, Air-to-Air Mission Effect Chain: Extract critical 
processing chains associated with the Air Force Research Lab Sensors Directorate 
Multi-Source Analytic Development and Evaluation (MAD-E) software (used 
to reason over multiple data sources to create operationally relevant enemy 
courses of action [COA]) and the Defense Advanced Research Projects Agency 
Deep Exploration and Filtering of Text components to agents. This will pro-
vide a mechanism to bring all source intelligence based on relevant mission 
parameters, create enemy and friendly force COAs, and present it to the deci-
sion maker for the air-to-air mission-effect chain problem (appendix F.2.5). 
This TIE requires the addition of a human interface to inject mission intent to 
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serve as a guide for agents to self-assemble for task completion and use multiple 
cognitive approaches.

TIE8—Limited Technology Demonstration: Process video and textual 
data, integrate team intent, and, based upon that team intent, demonstrate the 
ability to provide COAs based on all source intelligence and current mission 
data.

TIE9—Artificial Consciousness: Add a series of processes that enables the 
system to simulate over the possible past, possible present, and possible fu-
ture, so it can evaluate the meaning of stimuli the system has never experi-
enced, where experience comes from the system interacting with the battle 
space (appendix F.1.3).

TIE10—Limited Technology Demonstration: Demonstrate an ability to 
improve peer, task, and cognitive flexibility for the ISR PED event detection 
problem (appendix F.2.3) for FMV and the air-to-air mission effect chain 
problem (appendix F.2.5).

TIE11—Autonomous Agent: Demonstrate advances in an ASs internal 
representation (appendix F.1.1) and artificial consciousness (appendix F.1.3).

TIE12—Limited Technology Demonstration: Apply autonomous agents 
to multidomain situated consciousness (appendix F.2.4).





Appendix H

Autonomous System Vignette 

We present here a brief vignette that includes both “at rest” and “in motion” 
autonomous system (AS) assets and that progresses from an intelligence, sur-
veillance, and reconnaissance (ISR) mission, to an area defense mission, and, 
finally, to a humanitarian recovery mission. The vignette displays key AS task, 
peer, and cognitive flexibilities introduced in chapter 1.

Due to political tensions, the UN has established a no-fly zone along the 
Russian border with the independent country of Crimea. The United States 
has provided a team of “in motion” autonomous unmanned air vehicles1 
(AUAV) to patrol the border and provide persistent intelligence gathering. 
The AUAVs can conduct 24-hour surveillance and provide instantaneous re-
ports on border activities, to include troop activities (threat identification and 
build-up), village/civilian patterns-of-life, and any irregular movement of 
goods and supplies up to and over the border. The data gathered from these 
ISR activities feeds into the Global Integrated ISR (GIISR) database envi-
sioned in the Air Force Future Operating Concept (AFFOC; USAF AFFOC 
2016), completing the picture of the Russian social, economic, and military 
status. The border activities in this small contested area, combined with the 
ISR data repository from many other autonomous AUAV teams along and 
within the borders, combined with cyber and space monitoring, creates a 
complete picture that is synthesized and exploited at the Multi-Domain Op-
erations Center (MDOC). A variety of collected data (full-motion video 
[FMV], Signals Intelligence [SIGINT], etc.) is streamed to the MDOC, where 
the signals are processed and analyzed for indicators of possible/probable 
future violations by Russia, calling on a capability for model-based intent in-
ferencing by another AS, this one operating “at rest” at the MDOC. The ISR 
overwatch is planned and synchronized by the autonomous AUAVs, coordi-
nating overlapping intelligence gathering with each other and other manned 
assets in the area. The teams of AUAVs can take direction from the MDOC 
and also query the other AUAVs/manned aircraft in peer-to-peer relation-
ships to verify detected activities and/or contribute sensor information to in-
stances of anomaly detections.

Where a likely but unproved transgression is imminent, another “at rest” 
AS will notify the MDOC of the probable event and provide several COAs 
with probability of success (and losses), given the available multidomain ca-

1. Unlike today’s heavily manned UAVs.
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pabilities for human action. On the outset of an unpreventable attack, a part 
of the AUAV overwatch team would switch from an ISR mission to a defen-
sive posture while other sections of the team would continue to gather, ana-
lyze, and stream ISR data, in a fashion that exhibits the kind of AS task flexi-
bility discussed earlier. The AUAV team lead would instantly notify the 
MDOC and take countermeasures using the right mix of available assets from 
interconnected domains, calling on the kind of adaptive domain control 
(ADC) envisioned in the AFFOC. For example, the autonomous AUAV team 
may call for a cyberattack to disable a nearby radar station, employ electronic 
warfare countermeasures, and call for an offshore naval missile barrage to 
counter the incoming transgression. When one countermeasure is defeated 
or fails, then the AS team can dynamically employ a new mix of tactics across 
several domains to achieve the desired kinetic results and stop the incursion, 
exhibiting a form of operationally focused cognitive flexibility in problem-
solving. All COAs involving joint assets—and/or the deployment of munitions—
would likely require human approval from the MDOC, to keep the human 
“on-the loop” and duly informed. 

In this vignette, the attack includes surface-to-surface missiles, causing a 
great deal of damage to a nearby city with large civilian casualties. As the 
attack is being repelled, parts of the AUAV team will conduct a damage as-
sessment, looking for survivors, categorizing triage status, and assessing the 
environment. As civilian survivor needs are being estimated, the AUAV 
sensors are also assessing the air quality (detecting airborne contaminants); 
conducting a chemical, biological, radiological, and nuclear sweep; and 
testing the water purity. As this information is gathered, the autonomous 
AUAV team takes inventory of what materials are in the area, which items can 
be sourced nearby (allied cities, offshore Navy, etc.), and which will need to be 
brought from the United States. The materials that need to come from the 
stateside warehouses (tents, medical supplies, water, cots, food, etc.) will be 
automatically retrieved and gathered from the closest air base (i.e., Dover 
AFB) using robotic movers, providing the AFFOC’s vision of rapid global 
mobility. As the materials are gathered (think Amazon warehouse) and pal-
letized on the flight line, the next available aircrew is being notified and 
briefed on the mission (if an aircrew is even required!). The needed materials 
and support personnel/equipment are sourced from nearby and distant 
United States installations and those of allied countries, all while keeping the 
MDOC rapidly informed of the plans and outcomes. As the materials arrive 
at the recovery scene, teams of AUAVs will continue defensive measure as 
other teams of AUAVs and autonomous unmanned ground vehicles organize 
and deliver materials to the areas of need.



Appendix I

Test and Evaluation of Autonomous Systems

The primary objective of test and evaluation (T&E) is to ensure sufficient 
system safety and performance. Toward this end, the high-level goals of T&E 
are to capture system safety and performance requirements in the context of 
relevant operational environments, to use these requirements to guide system 
development, and to provide compelling evidence that the final system imple-
mentation meets these requirements. T&E activities in support of these goals 
should be performed throughout the entire system lifecycle, starting from the 
very beginning.

Conceptually, there is no reason these types of T&E activities cannot be 
performed for autonomous systems (AS), but in practice, ASs have unique 
features that make these activities challenging. To illustrate this point, consider 
standard processes for assuring system safety (SAE 1996). These processes in-
volve identifying hazards that could occur in operational environments, identi-
fying combinations of system faults that could lead to them, and designing 
the system to bring the risk of hazards to within an acceptable probability 
bound. For physical components, the primary source of evidence that this has 
been achieved is test. However, test alone would be intractable for very tight 
probability bounds, and so it is often supplemented by arguments based on 
design choices. A common example is redundancy; assuming copies of a 
component fail independently and only one is needed for correct system op-
eration, the probability bound for each individual copy is loosened. Note this 
argument implicitly relies on first principles of physics, for example a damaging 
input received by one component has no effect on redundant copies. A major 
challenge for ASs stems from software, which does not follow the same first 
principles. In fact, redundant software copies will fail simultaneously under 
the same conditions, since the fault is due to a logic error rather than a physi-
cal failure. Without analogous first principles for software and more generally 
for ASs, the burden of evidence shifts back to test, which is intractable (Kalra 
and Paddock 2016). The problem is exacerbated by the complexity of opera-
tional environments in which ASs are anticipated to operate and the levels of 
flexibility they are expected to incorporate.

T&E of autonomous systems will therefore require significant advances in 
several areas (DOD R&E 2015). Toward first principles for ASs, more expressive 
mathematical frameworks are needed to formally capture richer requirements 
and model more diverse system behaviors. To address increased system 
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complexity, these frameworks must enable rapid, transparent, and automated 
or semi-automated analysis or even design synthesis to ensure system behaviors 
satisfy requirements and that requirements are complete and consistent, e.g. 
as in formal methods approaches in computer science. To support system flex-
ibility and enable analysis of complex systems-of-systems, methods to de-
compose systems and compositionally reason about high-level behaviors 
based on component-level interactions are also needed, for example as in assume-
guarantee contracts and as supported by certain architecture description lan-
guages. For components that cannot be sufficiently verified through analysis, 
runtime assurance methods provide a possible alternative. For instance, run-
time verification approaches can be used to detect and help diagnose faults 
generated by a system during operation, and runtime enforcement approaches 
can additionally override erroneous behaviors, similar to the way in which a 
Ground Collision Avoidance System takes temporary control of an aircraft 
when a collision is imminent and returns control to the pilot when it is safe. 
In addition to these newer approaches, more traditional approaches rooted in 
modeling and simulation (M&S) and legacy T&E will continue to serve an 
invaluable role. However, richer and more flexible M&S frameworks are 
needed to address increasingly complex system behaviors and dynamic 
operational environments. Furthermore, T&E must be made more efficient 
by employing a more sequential progressive testing approach throughout the 
system lifecycle, and improved statistical engineering methods are needed to 
support developmental and operational testing of nondeterministic systems 
that operate in dynamic environments (Ahner and Parson 2016). Finally, 
since T&E of autonomous systems will require a combination of all these ap-
proaches, new methods are necessary for building and comprehending assurance 
cases that capture networks of interrelated arguments and supporting evidence.

The various facets of autonomous system flexibility, which we have dis-
cussed throughout this report, will result in additional challenges for many of 
these approaches:

•  Peer flexibility will require new forms of requirements that capture the 
high-level responsibilities of different roles in an operational environ-
ment. For formal methods and compositional reasoning approaches 
(Bolton et al. 2013; Johnson et al. 2011), it will also require new forms of 
models that capture system and human capabilities to enable identifica-
tion of the conditions under which these roles should be performed, to 
derive more specific low-level responsibilities in response to changes in 
the environment or the organization, and to verify that certain critical 
high-level responsibilities are fulfilled under all conditions. Runtime 
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assurance approaches for peer flexibility will also require human 
and AS models that can be used to determine when one is acting errone-
ously or is likely to fail and provide feedback on the failure in a timely 
manner so that the other can address the problem. M&S and T&E ap-
proaches will need to be expanded to better address interactions be-
tween ASs and humans.

•  Task flexibility will require new forms of requirements that capture high-
level mission goals and constraints. For formal methods, compositional 
reasoning, and runtime assurance approaches, it will also require models of 
sensors, system capabilities, and the predicted effects actions have in dy-
namic environments to enable verification that critical high-level re-
quirements are satisfied. These models will have to address increased 
levels of uncertainty and reactivity, so methods for formulating and ef-
ficiently analyzing models of probabilistic and reactive systems are 
needed (Kwiatkowska et al. 2002; Manna and Pnueli 1995). Models will 
also have to address heterogeneous combinations of hardware and soft-
ware, for example, as in hybrid systems and embedded systems (Alur et 
al. 1993). M&S and T&E approaches will need to be expanded to support 
these more complex models. As peer and cognitive flexibility also often 
involve addressing uncertainty, reactivity, and heterogeneity, these needs 
likely apply to those facets of autonomy as well.

•  Cognitive flexibility will require new forms of high-level mission require-
ments like those needed for task flexibility. Formal methods for cogni-
tive flexibility will additionally require models of the learning process 
and formal representations of learned knowledge, for example to verify that 
learned behaviors, decision boundaries, and rules are internally consis-
tent and will not result in the violation of critical requirements based on 
what is known about the environment. For learning and reasoning ap-
proaches that are not amenable to full analysis through formal methods 
(e.g., artificial neural networks), bounding or proving certain high-level 
properties such as the range of possible inputs and outputs, or conver-
gence of the learning algorithm, can help provide basic component-level 
guarantees or characterizations of acceptable behavior that can be used 
in compositional reasoning and runtime assurance approaches 
(Schumann et al. 2003; Russell et al. 2015).

Overall, given the complexity of relationships between components in future 
autonomy systems, assurance cases will play a key role in T&E. From past 
research on emergent systems and complexity theory, interactions between 
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two systems can result in surprise (Ronald et al. 2007). Since these surprises 
are not known a priori and may be nonreducible—that is, there may be no 
way to identify a root cause—we will need to be flexible in how we deal with 
them. Assurance cases will allow us to incrementally build arguments that an 
AS is sufficiently safe and effective as new surprises are discovered, using 
whatever approaches are most appropriate given the nature of the surprise.
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