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SPARSE APERTURE MULTISTATIC RADAR IMAGING TECHNIQUES:  
FINAL REPORT 

1. INTRODUCTION

Radiofrequency (RF) imaging is a powerful modality for interrogating the structure of unknown targets 
due to its all-weather operation as well as its ability to penetrate nonmetallic media. Applications include 
target identification and recognition (e.g., [1-6]), subsurface detection of mines or other targets (e.g., [7-
11]), nondestructive evaluation (e.g., [12,13]), food and grain contamination monitoring (e.g., [14-16]), 
industrial fluid flow monitoring (e.g., [17-18]), and medical diagnosis or treatment monitoring (e.g.,[19-
25]).  

Numerous algorithms for forming images from scattered RF fields have been formulated and studied. 
Most systems in practical use, such as synthetic aperture radar (SAR) systems, use algorithms that assume 
simplified linear scattering models. The target is assumed to comprise a constellation of discrete point-like 
scattering centers. The radar wavefront is assumed to propagate directly from the transmitter to each point 
scatterer and then to reflect and propagate directly back to the receiver with no multiple scattering 
interactions within the constellation. The received data are focused by backprojecting the received signal 
to the pixels in the imaging scene by taking into account the direct-path time of flight between each pixel 
location and each sensor location, or equivalently by leveraging the signal phase modulation that results 
from the change in target range with sensor motion [26]. 

This scattering model imperfectly captures the electromagnetic behavior of complex targets. The point 
scatterer model that best represents the target is generally dependent upon the angle at which the target is 
viewed, and thus the target appearance in the image may differ drastically across various rotations. 
Relatedly, the electromagnetic behavior of targets is often better described by scattering surfaces or volumes 
as opposed to discrete point scatterers when viewed across a sufficiently wide span of angles. In addition, 
multiple scattering interactions between target features are common, resulting in focused scattering centers 
in the RF image that are displaced from any particular feature or that lie entirely off the target body. These 
model imperfections can result in inconsistent fidelity between the focused image and the true target 
structure, which can present significant challenges for visual interpretation of the image as well as for 
identification or evaluation of the imaged target.  

These challenges motivate the development of imaging techniques that use a more complete 
electromagnetic model. This document reports the results of a three-year project towards the development 
of new imaging techniques that overcome the limits of simplified linear scattering assumptions. The project 
was funded by the Office of Naval Research via the Naval Research Laboratory 6.1 Base Program under 
the title “Sparse Aperture Multistatic Radar Imaging Techniques.” 1 

The algorithmic framework for the project is the linear sampling method (LSM) [27]. The LSM is a 
so-called qualitative inverse scattering technique that generates an image of the target support by 
performing a transmit-focusing operation that bypasses the nonlinear nature of the problem without 
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introducing linear scattering assumptions. In this way, the LSM is generally less computationally expensive 
and more robust to noise and imperfect propagation assumptions compared to techniques that attempt to 
solve the nonlinear problem directly via nonlinear optimization (many of these techniques, like the Born 
iterative method [28], the distorted Born iterative method [29], and contrast source inversion [30], are often 
referred to as quantitative inverse scattering methods, as they involve finding a quantitative estimate of the 
spatial distribution of electrical properties of the target in order to fully account for the nonlinearity of the 
problem).  

 
The primary challenge for imaging with the LSM is its need for wide-angle, densely sampled, 

multistatic transmit and receive apertures (i.e., arrays or synthetic apertures). In many practical imaging 
scenarios, it may not be possible to achieve the desired sensor spatial and angular diversity for effective 
LSM imaging due to limitations in resources or data acquisition time. In some cases, there may only be a 
handful of mobile or stationary sensor platforms available, and thus the desired variety of combinations of 
transmit and receive locations surrounding the target may not be achievable, resulting in significant artifacts 
in the LSM imagery. In other cases, there may be constraints on where sensors may be placed. For instance, 
it may only be possible to illuminate or observe one side of the target. LSM struggles to localize the target 
and faithfully reconstruct its shape in such limited-aspect scenarios.  

 
In this project, we developed and evaluated new formulations of the LSM for effective imaging in 

sparse and limited-aspect sensor scenarios. Our overarching strategy was to mitigate the lack of spatial data 
channels with information gleaned from other domains. We used our knowledge of propagation and 
electromagnetics to constrain and stabilize the solution of the LSM optimization. We derived the constraints 
by considering the effects of the LSM solution on the electric fields in the imaging domain using the 
perspective of the LSM as a focusing problem and the LSM solution as a set of complex weights applied 
to the transmitters. Interestingly, this required us to consider the behavior of both the magnitude and phase 
of the LSM solution, whereas most previous work has focused mainly on only the solution magnitude, most 
likely due to the critical role of the solution magnitude in forming the final LSM image. The fundamentals 
of the LSM and how they relate to this focusing perspective are briefly discussed in Section 2.  

 
This document is a comprehensive compilation of the work performed across the project. Research 

output has previously been documented in a series of peer-reviewed journal articles [31, 32], conference 
proceedings [33-37], and interim reports [38, 39]. These papers and reports are adapted and reported in the 
remaining sections as follows: Section 3 reports a formulation of the LSM that constrains the phase of the 
solution to account for the phase delay resulting from propagation of the incident field. Section 4 reports a 
formulation that constrains the LSM solution to fulfill electric field boundary conditions on the surface of 
a conducting target. Section 5 reports a formulation for imaging from limited-aspect apertures that combines 
the phase delay constraint from Section 3 with a receive-beamforming enhancement. Section 6 reports a 
new machine learning strategy for classifying targets according to their electrical properties using the phase 
of the LSM solution. Section 7 reports a formulation for a monostatic LSM, wherein the transmitter and 
receiver are co-located. Finally, concluding statements and suggestions for future work are given in Section 
8.  
 
2. LSM BACKGROUND 

 
In this section, we briefly review the fundamentals of the LSM. More detailed explanations of 

implementation of both the conventional LSM as well as our new formulations are given in the following 
sections. 

 
The imaging scenario is illustrated in Fig. 1, in which an array of transmitters launches an incident 

electric field at an unknown target, which then reradiates a scattered electric field 𝐄ୱthat is observed and  
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Fig. 1—The imaging scenario, where 𝐄୧୬ୡ is the incident electric field launched by the transmitters, 𝐄ୱ is the scattered electric 
field recorded by the receivers, and r is the location of a pixel in the imaging domain 

 
 

recorded by an array of receivers. Crucially, data is recorded for each individual transmit-receive antenna 
pair. In radar parlance, the data acquisition is thus multistatic, in that data are collected at multiple receivers 
for a given transmitter, as well as multiview, in that data are collected across multiple transmitters. In our 
convention, for a single-frequency data acquisition, 𝐄ୱ is a matrix wherein the ijth element is the scattered 
electric field phasor resulting from transmitting with the jth transmitter and receiving with the ith receiver.  

 
The LSM imaging procedure for a pixel location r in the imaging domain is to solve for a set of 

complex weights 𝐠ሺ𝐫ሻ on the transmit antennas that transform 𝐄ୱ into the pattern observed at the receivers 
from an elementary current source placed at r, denoted 𝚽ሺ𝐫ሻ. The weights can be found by solving the 
system of linear equations 

 
𝐄ୱ𝐠ሺ𝐫ሻ ൌ 𝚽ሺ𝐫ሻ. (1) 

 
The rationale for performing this operation is that the norm of 𝐠ሺ𝐫ሻ will be low if r is inside the target and 
it will be high if r is outside the target [27]. Thus, an image of the target can be formed by solving for 𝐠ሺ𝐫ሻ 
for each r in the imaging domain and plotting an indicator function of the solution norm. Indicator functions 
are commonly of a form similar to  
 

𝐼ሺ𝐫ሻ ൌ ‖𝐠ሺ𝐫ሻ‖ିଵ (2) 
 
such that high indicator function values are attained inside the target support and low values are attained 
outside the target support. 

 
 
Physical arguments that explain the solution norm behavior have been made in previous work. In [40], 

the LSM theoretical underpinnings for dielectric targets were analyzed by leveraging the concept of 
volumetric equivalent currents [41]. In this perspective, the incident field weighted by 𝐠ሺ𝐫ሻ generates a 
scattered field pattern 𝐄ୱ𝐠ሺ𝐫ሻ that is identical to the field that would be generated if the target were replaced 
by a distribution of equivalent currents within the target support. Assuming r is within the target and Eq. 
(1) is solved successfully, the field is also identical to the field radiated by an elementary current source at 
r, i.e., 𝚽ሺ𝐫ሻ. The analysis in [40] demonstrated that the low-energy solution to Eq. (1) results in an 
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equivalent current distribution that clusters around r. The LSM procedure could thus be said to be focusing 
the current distribution to approximate the elementary source that generates 𝚽ሺ𝐫ሻ. A notional illustration 
of this behavior is given in Fig. 2.  

 

 

 
 

(a) 

 
(b) 

Fig. 2—Notional illustrations demonstrating the principle of LSM as a focusing operation. (a) An elementary current source 
placed at pixel location r that radiates the distribution 𝚽ሺ𝐫ሻ to the receivers. The LSM goal is to choose 𝐠ሺ𝐫ሻ such that the 
target re-radiates the same field. (b) Successfully solving (1) results in a 𝐠ሺ𝐫ሻ-weighted incident field that produces an 
equivalent current distribution clustering around r. The focused equivalent current distribution radiates the weighted field 
𝐄ୱ𝐠ሺ𝐫ሻ which matches the elementary field pattern 𝚽ሺ𝐫ሻ.  

 

 

Conversely, if r is outside the target support, there is no target material surrounding r with which to 
form equivalent currents, and thus the low-energy solution is not available. The difference in energy in the 
solution for r inside and outside the target thus explains the corresponding behavior of the norm of 𝐠ሺ𝐫ሻ. 
Corresponding physical arguments for conducting targets could be made by considering equivalent surface 
currents on the target boundary via Huygens’s principle, as in [42]. In summary, and loosely speaking, the 
target can only be induced to efficiently re-radiate an elementary pattern centered on r if there is target 
material surrounding r with which to form the required volume or surface current distribution.  

 

The above description briefly highlights the perspective of the LSM as a transmit focusing problem. 
In the following sections, we leverage intuition based on this perspective to generate new formulations of 
the LSM for challenging sparse-aperture and limited-aspect sensing scenarios. 

 

 

3. PHASE-DELAY FREQUENCY VARIATION LSM WITH A MULTIPOLE 
ENHANCEMENT 

 

This section is adapted from a journal article published in IEEE Transactions on Antennas and 
Propagation [31]. It builds upon preliminary work published in conference proceedings [33] and 
subsequently captured in an interim report for the project [38]. 
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3.1 Background 
 

In LSM imaging, a lack of transmitters or receivers may, in principle, be mitigated to some extent 
using synthetic aperture data collection approaches. For instance, a data collection with sparsity in receive 
directions and density in transmit directions could be achieved using a handful of stationary receivers and 
a single mobile transmit platform that translates around the imaging region and radiates a pulse at each 
desired transmit location. However, achieving sufficient multistatic density (i.e., collecting data for all 
desired transmit-receive location pairs) using synthetic aperture approaches for both transmit and receive 
apertures may be too time-consuming or too challenging to coordinate between multiple moving platforms. 

 
LSM imaging performance in some cases may be improved through the use of multifrequency data. 

Multifrequency LSM is typically implemented by computing the solution at each individual frequency and 
then summing the resulting solution norms. If the solution norms for target pixels are more consistent across 
frequency than the solution norms for artifact pixels, then the sum across frequency results in a larger image 
contrast between target and non-target space, resulting in a more faithful representation of target support. 
However, in sparse aperture scenarios, imaging artifacts for different frequencies will often appear at 
similar image locations, thereby limiting the improvement from multifrequency operation. Alternate 
formulations for multifrequency LSM are thus desired for sparse aperture imaging. 

 
In this section, we present a formulation of the multifrequency LSM for improving imaging 

performance in scenarios where either the transmit or receive apertures are sparse by placing a constraint 
on the phase of the LSM across frequencies according to a priori propagation assumptions. The phase 
constraint links the solutions at each frequency according to the electrical path length traversed by the 
incident wave as it travels from the transmitters to the pixel of interest. The constraint is implemented as a 
penalty on variations from the desired phase behavior across frequency. The rationale for relying on the 
phase of the incident wave lies in the perspective of the LSM as a problem of focusing the target equivalent 
currents at the pixel of interest [40]. Image artifacts that do not evince the correct position- and frequency-
dependent phase behavior are suppressed, leading to higher-fidelity image results. 

 
There has been little interest paid to date to the phase behavior of the LSM across frequency, perhaps 

because the final LSM image typically is formed by displaying only the norm of the solution for each pixel. 
We hypothesize that the phase of the LSM solution also contains valuable information about the imaging 
scene scattering environment that can help mitigate a lack of spatial information from sparse data 
collections. 

 
Previous work has shown that LSM imaging performance can be improved for sparse-aperture data by 

making use of an iterative 𝐿ଵ minimization on overall changes in the LSM solution with frequency [43]. 
The rationale for this work is that changes in the amplitude of the solution across frequency are expected 
to be small outside the vicinity of a sparse set of target-dependent resonant frequencies. The work we 
present here is distinct in that we use a frequency variation formulation not primarily to penalize changes 
in the solution across frequency, but instead to leverage previously unused propagation-based information 
embedded in the phase of the LSM solution. This approach has the additional benefit in that it lends itself 
to a noniterative L2 minimization scheme, as the phase changes across frequency are not expected to be 
sparse. 

 
We have previously reported preliminary imaging results for the proposed phase-delay frequency 

variation (PDFV) formulation of the LSM in conference proceedings [33]. In this report, we present a more 
comprehensive investigation, including an enhancement of the technique making use of multipole electric 
fields that improves performance for non-convex and high-contrast targets, an investigation into the proper 
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choice of regularization parameters, imaging results from a wider variety of scenarios, including high-
contrast targets, and an experimental imaging example. 
 
3.2 Imaging Formulation 
 
3.2.1 Standard LSM Formulation 
 

Let V denote the support of a target to be interrogated. Surrounding V are a total of 𝑁୲୶ transmitters 
and 𝑁୰ୣୡ receivers. Each transmitter sequentially transmits an incident field and the resulting scattered field 
phasors observed at the receivers at wavenumber k are collected in an 𝑁୰ୣୡ ൈ 𝑁୲୶ matrix 𝐄ୱሺ𝑘ሻ. We assume 
a two-dimensional transverse magnetic scenario, and thus the elements of 𝐄ୱሺ𝑘ሻ are assumed to be complex 
scalars. Extension of the technique to multiple polarizations is straightforward, but we neglect this 
perspective for ease of explication. 

 
For a pixel location r in the imaging scene, let 𝚽ሺ𝑘, 𝐫ሻ be an 𝑁୰ୣୡ ൈ 1 vector of the Green’s functions 

between each receiver location and r. The LSM solution at r and k is found by solving the following system 
of equations for the unknown 𝑁୲୶ ൈ 1 vector 𝐠ሺ𝑘, 𝐫ሻ: 

 
𝐄ୱሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ ൌ 𝚽ሺ𝑘, 𝐫ሻ, (3) 

 
A scheme such as Tikhonov regularization is typically used to find a stable solution to Eq. (3). The problem 
Eq. (3) can be seen as finding beamforming weight vector 𝐠ሺ𝑘, 𝐫ሻ acting on the transmitters in order to 
achieve field distribution 𝚽ሺ𝑘, 𝐫ሻ at the receivers, given knowledge of the measured transfer responses 
between transmitters and receiver given by 𝐄ୱሺ𝑘ሻ. In this study, we use the two-dimensional free-space 
Green’s function 𝚽ሺ𝑘, 𝐫ሻ ൌ 𝐻 

ଶ൫𝑘𝐝୰ୣୡሺ𝐫ሻ൯, where drec(r) is the 𝑁୰ୣୡ ൈ 1 vector of distances from r to each 
receiver and 𝐻

ଶ denotes the zeroth-order Hankel function of the second kind. 
 
The multifrequency indicator function 𝐼ሺ𝐫ሻ is then typically calculated as 
 

𝐼ሺ𝐫ሻ ൌ‖𝐠ሺ𝑘, 𝐫ሻ‖ିଵ



, (4) 

 
where the summation is over all observed k, and the norm is L2. In a dense-aperture data collection scenario, 
the norms in Eq. (4) will be bounded for r inside V and unbounded for r outside V [27], and thus an image 
of the target support can be created by displaying 𝐼ሺ𝐫ሻ for all r in the scene to be imaged. 
 
3.2.2 PDFV-LSM Rationale 
 

Our strategy for enhancing the LSM for sparse aperture imaging is to use a priori assumptions on the 
phase of 𝐠ሺ𝑘, 𝐫ሻ to improve imaging performance. Specifically, we constrain the change in phase of 𝐠ሺ𝑘, 𝐫ሻ 
across frequency according to the frequency-dependent change in electrical path length.  

 
In the following description, we assume a dense-transmitter, sparse-receiver data set. However, the 

proposed technique may also be applied to sparse-transmitter, dense-receiver datasets using the principle 
of reciprocity. 

 
Our rationale for our proposed approach is based on the perspective of the LSM as a focusing problem. 

In [40], Catapano et al showed that the low-energy solution to Eq. (3) leads to a clustering or focusing 
around r of the equivalent currents induced in the target by the incident field. We therefore assume in our 
formulation that a faithful reconstruction of target support via Eq. (3) requires a focused equivalent current 
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at r, and that this is analogous to achieving a focused incident field at r. The latter assumption is reasonable 
for small contrasts between the target and the background medium under the Born approximation 

 
Let the Born-approximated equivalent current induced at location r’ by the LSM weight vector 

designed for focus location r be given by 𝐽 ୯ሺ𝑘, 𝐫′ሻ ∝ 𝜒𝐄ሺ𝑘, 𝐫ᇱሻ𝐠ሺ𝑘, 𝐫ሻ, where 𝜒 is the contrast and 
𝐄ሺ𝑘, 𝐫′ሻ is the 𝑁୲୶ ൈ 1 vector of the unweighted incident fields from each transmitter. If Eq. (3) is satisfied, 
then 𝐽 ୯ሺ𝑘, 𝐫′ሻ is focused at r, according to the above discussion.  

 
Let Δ𝑘 be a small step in wavenumber. Under far-field and homogeneous background conditions, we 

can write 𝐄ሺ𝑘  Δ𝑘, 𝐫ሻ ൎ 𝐄ሺ𝑘, 𝐫ሻ ⊙ expሺെ𝑗Δ𝑘𝐝୲୶ሺ𝐫ሻሻ, where ‘⊙’ refers to elementwise multiplication 
and dtx is the 𝑁୲୶ ൈ 1 vector of distances between each transmitter and r. To maintain the focus of the 
incident field at the incremented frequency, we assume the LSM weight vector must be modulated to 
coherently compensate for the phase change. Accordingly, we write our desired phase relationship for the 
LSM weight vector at adjacent frequency samples as 

 
𝐠ሺ𝑘  Δ𝑘, 𝐫ሻ ൎ 𝐠ሺ𝑘, 𝐫ሻ ⊙ expሺ𝑗Δ𝑘𝐝୲୶ሺ𝐫ሻሻ. (5) 

 
In the following subsection, we describe how we implement this constraint into the LSM. 
 
3.2.3 PDFV-LSM Implementation 
 

The proposed PDFV formulation of the LSM is defined by the following minimization problem at 
every r in the scene to be imaged: 

 

min
𝐠ሺ,𝐫ሻ

∑ ቛ𝐄ሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ െ
𝚽ሺ,𝐫ሻ

‖𝚽ሺ,𝐫ሻ‖
ቛ
ଶ

  𝛼‖𝐠ሺ𝑘, 𝐫ሻ‖ଶ  𝛽‖𝐷ሺ𝑘, 𝐫ሻ‖ଶ, 
(6) 

 
where 
 

𝐷ሺ𝑘, 𝐫ሻ ൌ 𝐠ሺ𝑘, 𝐫ሻ െ 𝐠ሺ𝑘  Δ𝑘, 𝐫ሻ ⊙ exp൫𝑗Δ𝑘𝐝୲୶ሺ𝐫ሻ൯. (7) 

 
The first two normed expressions in Eq. (6) constitute a version of the standard Tikhonov-regularized 

LSM, while the third term constitutes the PDFV penalty that enforces the desired phase relationship in Eq. 
(5). The parameters 𝛼 and 𝛽 are used to regularize the solution to the ill-posed problem, the former of which 
scales the penalty for large-norm solutions and the latter of which scales the penalty for deviations from the 
desired propagation-based solution phase. A strategy for choosing 𝛼 and 𝛽 effectively is explored later in 
this section. 

 
The standard LSM makes no linearizing assumptions in its formulation. Including the PDFV penalty 

term in Eq. (6) could therefore be seen as a compromise to make up for the lack of spatial data in a sparse-
aperture scenario, as the rationale for the PDFV-LSM makes use of the Born approximation. We explore 
the performance of the PDFV-LSM for high-contrast targets, for which the Born approximation does not 
apply, later in this section. 

 
In Eq. (6), the vector 𝚽ሺ𝑘, 𝐫ሻis scaled by its norm. Scaling the right-hand side of the LSM equation is 

an approach that has been used in previous work in order to improve imaging performance in limited-aspect 
scenarios, such as in ground-penetrating radar applications [7]. We have found that using this strategy in 
sparse-aperture scenarios is likewise beneficial to image quality, and thus employ it for the examples in this 
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study. Calculation of Eq. (6) may be performed using a block-matrix implementation similar to the one 
used in [43], in the following form, 

 
min
𝐱ሺ𝐫ሻ

‖𝐀ሺ𝐫ሻ𝐱ሺ𝐫ሻ െ 𝐛ሺ𝐫ሻ‖ଶ, (8) 

 
where  
 

𝐀ሺ𝐫ሻ ൌ ൦
𝐄ധ௦
√𝛼𝐈

ඥ𝛽𝐃ሺ𝐫ሻ

൪    𝐱ሺ𝐫ሻ ൌ 
𝐠ሺ𝑘ଵ, 𝐫ሻ

⋮
𝐠ሺ𝑘ி , 𝐫ሻ

൩ 

𝐛ሺ𝐫ሻ ൌ ൦

𝚽ሺ𝑘ଵ, 𝐫ሻ/‖𝚽ሺ𝑘ଵ, 𝐫ሻ‖
⋮

𝚽ሺ𝑘ி , 𝐫ሻ/‖𝚽ሺ𝑘ி , 𝐫ሻ‖
𝟎

൪ 

(9) 

 
In Eq. (9), 𝑘ଵ … 𝑘ி refers to the first through the Fth sampled frequencies, I is the 𝑁୲୶𝐹 ൈ 𝑁୲୶𝐹 identity 
matrix, and 0 is a vector of zeros of size 𝑁୲୶ሺ2𝐹 െ 1ሻ ൈ 1. The matrix D(r) is of size 𝑁୲୶ሺ𝐹 െ 1ሻ ൈ 𝑁୲୶𝐹 
and incorporates the penalty term Eq. (7) into the optimization. The main diagonal of D(r) is filled with 
ones, and the 𝑁୲୶-diagonal is defined by the concatenation of 𝐹 െ 1 copies of the vector െ expሺ𝑗Δ𝑘𝐝୲୶ሺ𝐫ሻሻ. 
All other elements of D(r) are zero. 

 
Lastly, the block-diagonal matrix 𝐄ധୱ is of size 𝑁୰ୣୡ𝐹 ൈ 𝑁୲୶𝐹 and is given by 
 

𝐄ധୱ ൌ

⎣
⎢
⎢
⎢
⎡
𝐄ୱሺ𝑘ଵሻ 0 …

0 ⋱ …

⋮ … 𝐄௦ሺ𝑘ிሻ⎦
⎥
⎥
⎥
⎤

 . 

(10) 

 
 
3.2.4 Multipole Enhancement to the PDFV-LSM 
 

A well-known property of the single-frequency LSM is its tendency to struggle to reconstruct the 
support of non-convex targets [44, 45]. Voids or cavities in such targets are often indistinguishable from 
the target support in the LSM imagery. The use of multiple frequencies can mitigate this weakness, leading 
to more faithful image results.  

 
However, sparse-aperture LSM will often struggle to reconstruct non-convex or resonant targets even 

if multiple frequencies are used. As will be seen, the PDFV-LSM will also sometimes fail to reconstruct 
such features, even if it significantly improves overall imaging performance compared to the standard LSM. 
The imperfection of the PDFV-LSM in these instances could be caused by the general weakness of various 
LSM approaches for non-convex features. 

 
We make use of a multipole enhancement to the LSM to overcome challenging target imaging 

scenarios. Multipole formulations of the LSM have been investigated previously for enhancing non-convex 
features in LSM imagery [45, 46]. Here, we adapt the formulation of Crocco et al [45]. In this formulation, 
an LSM solution to Eq. (3) is found for multiple right-hand sides denoted 𝚽

௫ሺ𝑘, 𝐫ሻ and 𝚽
௬ሺ𝑘, 𝐫ሻ for 𝑝 ൌ

1, … ,𝑃, where 
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𝚽
௫ሺ𝑘, 𝐫ሻ ൌ 𝐻ଶሺ𝑘𝐝୰ୣୡሺ𝐫ሻሻ cos൫𝑝𝛉ሺ𝐫ሻ൯ 

𝚽
௬ሺ𝑘, 𝐫ሻ ൌ 𝐻ଶሺ𝑘𝐝୰ୣୡሺ𝐫ሻሻ sinሺ𝑝𝛉ሺ𝐫ሻሻ . 

(11) 

 
In Eq. (11), 𝛉ሺ𝐫ሻ is a vector of azimuthal angles between r and each receiver location. Each term in 

Eq. (11) corresponds to a term in the multipole decomposition of the scattered field. 
 
Crocco et al showed that for p > 0, the equivalent current distribution is roughly annular in shape, with 

larger p corresponding to larger inner radii for the annulus. If r is at the location of a void in the target, the 
lowest-energy solution to Eq. (3) will correspond to the order p that produces the annular current that is 
closest to the dimension of the void. A combined indicator function can therefore be defined to take 
advantage of this behavior to enhance the appearance of voids in the target image.  

 
We define our combined indicator function as a modification of the indicator from [45], given by 
 

𝐼ሺ𝐫ሻ ൌ 𝑎𝐼ሺ𝐫ሻ 𝑎𝐼ሺ𝐫ሻ



ୀଵ

 , 
(12) 

 
where 𝐼ሺ𝐫ሻ is defined as in Eq. (4), 𝑎, … ,𝑎 are constants that normalize each term according to its 
maximum value across all r in the imaging scene, and 
 

𝐼ሺ𝐫ሻ ൌ
൫∑ ‖𝐠ሺ,𝐫ሻ‖షభೖ ൯

మ

ቀ∑ ฮ𝐠
ೣሺ,𝐫ሻฮ

షభ
ೖ ቁ൬∑ ቛ𝐠

ሺ,𝐫ሻቛ
షభ

ೖ ൰
 . 

(13) 

 
In Eq. (13), 𝐠௫ሺ𝑘, 𝐫ሻ and 𝐠

௬ሺ𝑘, 𝐫ሻ refer to the solutions to Eq. (6) wherein 𝚽ሺ𝑘, 𝐫ሻ has been replaced with 
the corresponding multipole term from Eq. (11).  

 
The indicator function used here is similar to the one defined in [45], but differs in the use of the 

normalization constants and the use of a sum instead of a product in Eq. (12). We make these changes to 
prevent sparse-aperture-caused artifacts in any single multipole term from dominating the contributions to 
the indicator function from the rest of the multipole terms.  

 
In the remainder of this section, we will explore the effectiveness of the PDFV-LSM by applying it to 

simulated and experimental data. We will first describe the data acquisitions in the following subsection. 
 

3.3 Data Acquisitions 
 

3.3.1 Simulated Data 
 
We acquire simulated data using the finite-difference time-domain (FDTD) method for two-

dimensional scattering scenes. The scattered field data are recorded in the time domain for each transmitter-
receiver pair and then transformed to frequency-domain phasors using discrete Fourier transforms. The data 
are collected across 51 uniformly spaced frequencies between 100 and 500 MHz. In the remainder of this 
paper, we will refer to the wavelength at the center of the frequency band as 𝜆. The background material 
for the simulations is free space.  

 
We place transmit and receive locations on a ring of radius 6𝜆. We use a total of 𝑁୲୶ ൌ 45 uniformly 

spaced transmit locations, at which we launch incident electric fields using elementary current sources. This 
choice of transmitter density satisfies the spatial Nyquist criterion 𝑁୲୶  2𝑘୫ୟ୶𝑎 as described in [44] for 
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the maximum wavenumber in the recorded bandwidth and a modestly overestimated maximum target extent 
from scene center of 𝑎 ൌ 2𝜆. We collect scattered fields at 360 uniformly spaced receive locations. We 
then generate numerous sparse-receiver datasets by selecting subsets of the receive data for 𝑁୰ୣୡ ranging 
from 2 to 6. Prior to imaging each sparse-aperture subset, we add Gaussian white noise to the data such that 
the total signal-to-noise ratio (SNR) across all 𝑁୰ୣୡ ൈ 𝑁୲୶ ൈ 𝐹 phasor samples is 40 dB. 

 
We generate dense-transmitter, sparse-receiver data in this manner using three example target supports 

placed at the center of the ring of transmit and receive locations, illustrated in Fig. 3. The first target is in 
the form of an L, the second is in the form of a U, and the third is a version of the well-known Austria 
profile. We generate data for two target materials. The first target material is lossless and has a dielectric 
constant of 2. The second is perfect electric conductor (PEC). 

 
 

  

 
Fig. 3—The supports for the targets used for simulated data 

acquisitions in this section 
 

 
 

3.3.2 Experimental Data 
 
We also make use of an experimental dataset provided by the University of Wisconsin Computational 

Electromagnetics Laboratory that was generated using the layout given in the diagram in Fig. 4. Eight 3.5-
cm-long monopole wire antennas were mounted on a brass ground plane around a ring of radius 10 cm. A 
paraffin wax cylinder of diameter 6.5 cm and height 8.5 cm was placed in the interior of the antenna ring 
offset from center by 4 cm. An Agilent E8364 vector network analyzer (VNA) was used to collect frequency 
domain data for all 64 transmit-receive antenna pairs. For every measurement, the VNA’s two ports were 
connected to the feeds of the active antenna pair, which were located underneath the brass plate, and every 
other antenna feed was terminated with a 50 Ω load. Data were collected in 5 MHz increments starting at 
500 MHz. We selected data up to 2000 MHz, resulting in 301 total frequencies, in order to again satisfy the 
spatial Nyquist criterion on transmit, 𝑁୲୶  2𝑘୫ୟ୶𝑎, for a modestly overestimated target extent from scene 
center 𝑎 ൌ 9.5 cm. As with the simulated data described in the previous subsection, we generate various 
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sparse-receiver examples from this data by selecting subsets of the 8 ൈ 8 collected signal phasors at each 
frequency. 

 
 

 
Fig. 4—A diagram of the experimental data acquisition 

 
 

3.4 Results and Discussion 
 

3.4.1 Regularization Parameter Selection 
 
Finding a solution to Eq. (6) that results in a faithful reconstruction of the target shape requires 

appropriate choice of regularization parameters 𝛼 and 𝛽. We choose these parameters using a heuristic 
strategy inspired by the well-known L-curve concept [47]. 

 
As will be seen, a poorly regularized PDFV-LSM solution for sparse-aperture data acquisitions will 

often result in large values for the LSM indicator function throughout the image. This phenomenon can be 
captured quantitatively by measuring the norm of the LSM image across a selection of pixels. Conversely, 
a regularization choice that results in a small image norm will typically result in a large residual norm, 

expressed as ට∑ ฮ𝐄ୱሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ െ 𝚽ሺ𝑘, 𝐫ሻ/‖𝚽ሺ𝑘, 𝐫ሻ‖ฮ
ଶ

 , which indicates that the solution is a poor fit for 

the data.  
 
Our strategy is to use the L-curve concept to find a compromise between these two effects. Our 

approach differs somewhat from the conventional L-curve strategy for ill-posed problems, in which a 
compromise is found between the residual norm and the norm of the solution to the ill-posed problem, in 
this case g(k,r), which has a reciprocal relationship with the image norm for the LSM by Eq. (4). However, 
as will be seen, focusing on the image norm instead captures the regularized behavior of the sparse-aperture 
PDFV-LSM well across pixels in the image. 

 
We demonstrate our regularization strategy using scattered field data from the dielectric L shape from 

Fig. 3. We select an example sparse receiver subset with 𝑁୰ୣୡ ൌ 4 using receiver azimuth locations 
ሾ0°, 85°, 95°, 180°ሿ, measured counterclockwise from the +x-axis.  

 
We then define a coarsely sampled set of imaging scene pixels, in this case a 5 ൈ 5 grid of pixels in 

the domain 𝑥,𝑦 ∈ 𝜆ሾെ2,2ሿ. We then compute the PDFV-LSM solution for each pixel across a two-
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dimensional parameter sweep in 𝛼 and 𝛽. In this example, we do not employ the multipole enhancement 
for simplicity. We compute solutions for four candidate 𝛼 values running from 10-7 to 10-4 on a logarithmic 
scale, and eight 𝛽 values running from 10ଵ𝛼 to 10଼𝛼 for each 𝛼, also on a logarithmic scale. 

 
We then plot the resulting image norms against the residual norms, as given in Fig. 5(a). As can be 

seen, distinct L-curves can be formed by connecting the points corresponding to each candidate 𝛼. The 
knees of the curves, representing the best tradeoff between image and residual norms, occurs for parameter 
ratios 𝛽/𝛼 between approximately 103 and 105. 

 
We then plot a second curve in Fig. 5(b) that relates 𝛽 to the image norm while keeping the parameter 

ratio constant at a ratio in the vicinity of the identified L-curve knee, in this case 105. As shown in Fig. 5(b), 
this results in a curve with an inflection point in the vicinity of log𝛽 ൌ െ1 between large- and small-norm 
images.  

 
 

 

 
Fig. 5—(a) L-curves for choosing the ratio 𝛽/𝛼 for a imaging the dielectric L-shaped target with 𝑁୰ୣୡ ൌ 4. (b) A curve for 

choosing 𝛽 based on the behavior of the image norm while keeping the ratio 𝛽/𝛼 constant. 

 
 
We propose the following heuristic for choosing the PDFV-LSM regularization from these two curves: 

First, the ratio 𝛽/𝛼 should be chosen in the vicinity of the knee of the L-curve to balance the residual norm 
and image norms. Second, keeping this ratio constant, 𝛽 should be chosen as large as possible in order to 
emphasize the desired propagation-based phase behavior via the PDFV constraint in Eq. (6) while not 
passing into a regime of large image norms, which signify poor solutions. 
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We now evaluate the effectiveness of this heuristic empirically by considering reconstructed image 
quality as a function of regularization parameter choice. We form PDFV-LSM images for the same 𝑁୰ୣୡ ൌ
4 case on a finer 35 ൈ 35 grid of pixels using a variety of choices for 𝛼 and 𝛽. We assess the quality of 
each image by finding the pixels that obey the following threshold, defined as in [46]: 

 

log 𝐼ሺ𝐫ሻ  min log 𝐼ሺ𝐫ሻ  𝛾ሺmax log 𝐼ሺ𝐫ሻ െ min log 𝐼ሺ𝐫ሻሻ. (14) 

 

 

We set the threshold parameter to 𝛾 ൌ 0.5. We then report the following error metric: 

 

Error ൌ
Number of misclassified pixels

Total number of pixels in image
. 

(15) 

 

In Eq. (15), a misclassified pixel is either a pixel that exceeds the threshold in Eq. (14) despite being outside 
the target support, or a pixel that is below the threshold while being inside the target support. 

 

The error metric is plotted against the regularization parameters in Fig. 6. Each data point represents 
the mean error across five trials with different random noise instances. The error for the standard LSM 
images (i.e., 𝛽 ൌ 0) is shown in Fig. 6(a) across a wide range of 𝛼. The error is consistently high across all 
choices of 𝛼, with the exception at log𝛼 ൌ 0, where it dips to a somewhat lower value. 

 

In Fig. 6(b), the error metric is plotted against various 𝛽 while keeping constant log𝛼 ൌ െ6. Results 
are shown for both the PDFV and a frequency variation (FV) implementation. The FV implementation is 
similar to the PDFV implementation, with the exception that the 𝑁୲୶-diagonal of D from Eq. (9) is set to -
1 instead of the phase-delay-based complex exponential. Evaluating the FV results against the PDFV results 
allows us to determine the degree to which imaging improvement achieved by the PDFV is due to penalties 
on deviation from the desired solution phase relationship, as opposed to penalties on overall changes in 
𝐠ሺ𝑘, 𝐫ሻ across frequency.  

 

The results in Fig. 6(b) show that the PDFV error decreases as 𝛽 becomes larger than 𝛼. The error 
reaches its lowest value of below 0.10 at log𝛽 ൌ െ1, and then begins to increase for larger 𝛽. This behavior 
is consistent with the proposed L-curve-based heuristic, as the best reconstruction occurs for 𝛽/𝛼 near the 
knee of the L-curve in Fig. 5(a), and performance degrades as 𝛽 is increased past the inflection point shown 
in Fig. 5(b). The results in Fig. 6(b) also show that the FV error is consistently worse than the PDFV error 
and is above 0.25 for all choices of 𝛽, signifying that enforcing the proposed phase relationship across 
frequency leads to imaging improvements. 
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Fig. 6—Reconstruction error metrics of Eq. (15) as a function of regularization parameters.  
(a) Standard LSM image error vs 𝛼. (b) FV and PDFV images error vs 𝛽 for constant 𝛼. 

 

 

Next, we present example image results for the standard, FV, and PDFV techniques. We display 
20 log 𝐼ሺ𝐫ሻ scaled such that 0 dB is set to the pixel of highest value in each image. In each case, and for all 
following images in this paper, the dynamic range of the color bar is determined by the maximum and 
minimum values of the indicator function. 

 

Fig. 7(a) shows image results for the standard LSM using the 𝛼 corresponding to the lowest measured 
error in Fig. 6(a), i.e., log𝛼 ൌ 0. The standard LSM completely fails to reconstruct the target support in the 
sparse-aperture scenario, as expected. Likewise, Fig. 7b shows an FV-LSM image using regularization 
parameters of lowest error as given by Fig. 6(b), i.e., log𝛼 ൌ െ6 , log𝛽 ൌ െ2. There is some resemblance 
to the target shape in the reconstructed region in the center of the image. However, there are also large 
artifacts in the surrounding regions that obscure the true shape of the target.  
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Fig. 7—(a) Standard LSM reconstruction with log𝛼 ൌ 0, (b) FV-LSM reconstruction with log𝛼 ൌ െ6, log𝛽 ൌ െ2.  
The receiver angular positions are given by ሾ0°, 85°, 95°, 180°ሿ. 

 
 
Fig. 8 shows PDFV-LSM image results for constant log𝛼 ൌ െ6 and various 𝛽. Using log𝛽 ൌ െ1, as 

suggested by the previously described analysis, results in a very high-fidelity image, in that the target shape 
is well represented by the LSM imagery near the center of the scene and artifacts are minimal. Conversely, 
using a 𝛽 that does not correspond to an L-curve knee from Fig. 5(a) results in degraded imagery. Choosing 
𝛽 too low, i.e., 𝛽 ൌ 0 (which is equivalent to the standard LSM) or log𝛽 ൌ െ4, results in imagery with 
nearly no fidelity to the true target support, and choosing 𝛽 too high, i.e., log𝛽 ൌ 2, results in numerous 
image artifacts.  

 
 

  

  
Fig. 8—PDFV-LSM image results with log𝛼 ൌ െ6 and (a) 𝛽 ൌ 0, which is equivalent to the standard LSM, 

 (b) log𝛽 ൌ െ4, (c) log𝛽 ൌ െ1, (d) log𝛽 ൌ 2. The receiver angular positions are given by ሾ0°, 85°, 95°, 180°ሿ. 

 
 
The results in this subsection suggest that incorporating a priori propagation information into the LSM 

reconstruction via the PDFV constraint mitigates the lack of spatial data in a sparse-aperture data collection 
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if the regularization parameters are chosen properly. We explore PDFV-LSM performance across a larger 
variety of scenarios in the remainder of this section. 

 

3.4.2 Effects of Multipole Enhancement 

 

In this subsection, we apply the multipole-enhanced version of the PDFV-LSM to the simulated data 
and evaluate imaging performance. We choose imaging scenarios that are expected to challenge the PDFV-
LSM, due to either high-contrast electrical properties (in which the Born approximation inherent in the 
focusing rationale for the PDFV does not apply), a strongly non-convex target shape in the form of the U-
shaped target, or a target shape with other nonlinear scattering interactions in the form of the “Austria” 
profile. 

 

In the following examples, we again use log𝛼 ൌ െ6, log𝛽 ൌ െ1. We use P = 2 multipole terms. We 
have found that using more than 2 multipole terms for the targets in this example makes very little change 
in the resulting imagery. 

 

We first consider the PEC L-shaped target. Fig. 9 shows imaging results for the standard, multipole 
standard, PDFV, and multipole PDFV version of the LSM for a receiver set defined by angles 
ሾ0°, 15°, 180°, 345°ሿ. Both the standard and multipole standard imaging results bear little resemblance to 
the true target profile. The PDFV image shows some improvement in that the region of high I(r) somewhat 
corresponds to the location and shape of the target. However, there is a lack of target detail, and the non-
convex nature of the target is not apparent. The multipole LSM image, in comparison, displays much better 
fidelity to the true target shape.  

 

 

  

  
Fig. 9—Imaging results for the various LSM formulations for the PEC L-shaped target  

using receiver angles ሾ0°, 15°, 180°, 345°ሿ 
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Notably, the addition of the multipole enhancement appears to not only help recover the non-convex 
nature of the target, but also to improve recovery of the convex portions of the target shape. This can be 
seen on the leftmost target boundary, where the transition from high to low indicator function values is 
much closer to the true target boundary in the multipole PDFV results as compared to the PDFV results 
without the multipole enhancement. The PDFV-LSM may struggle to recover the true target dimension in 
this example due to the high-contrast nature of the target, which violates the Born approximation that is 
used in the rationale of the PDFV as described in Section 3.2.2. The multipole enhancement to the PDFV 
may help to mitigate this challenge by providing additional diversity in scattering information. 

 

Next, we consider imagery for the dielectric and PEC U-shaped targets in Fig. 10 and Fig. 11, 
respectively, using receiver angles ሾ0°, 255°, 270°, 285°ሿ. The results display behavior similar to Fig. 9. 
The standard and multipole results fail to represent the true shape of the target, while the PDFV results fail 
to include the target cavity. The multipole PDFV results are the best in both cases, with the cavity in the 
target clearly visible. Similarly to Fig. 9, the multipole enhancement for the PEC target in Fig. 11 improves 
reconstruction of the overall target dimensions as well as its shape.  

 

 

  

  

Fig. 10—Imaging results for the various LSM formulations for the dielectric U-shaped target  
using receiver angles ሾ0°, 255°, 270°, 285°ሿ 
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Fig. 11—Imaging results for the various LSM formulations for the PEC U-shaped target  

using receiver angles ሾ0°, 255°, 270°, 285°ሿ 
 

 
We close this subsection by considering results for the “Austria” profile, which is expected to the most 

difficult target to image due to the high degree of nonlinear scattering interactions between its various 
features. Fig. 12 shows results for a dielectric version of the target using the same receiver set used for Fig. 
9. As in Fig. 9, the standard and standard multipole results are very poor. The PDFV results are improved 
in that the areas of high indicator function are localized around the target support, but there is significant 
missing detail. The multipole PDFV results are of the best quality, in that the ring-shaped nature 
 

 

  

  
Fig. 12—Imaging results for the various LSM formulations for the dielectric “Austria” target  

using receiver angles ሾ0°, 15°, 180°, 345°ሿ   
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of the target is apparent and the overall dimension of the target is a reasonable match to truth. There is some 
aberrance in the multipole PDFV image, as the target void is not centered. Higher indicator function values 
are concentrated in the vicinity of the two smaller discs, but the two discs are not individually resolved. 
Still, the multipole PDFV results are clearly superior to the standard LSM imagery. The results across all 
three targets in this subsection suggest that the PDFV constraint, when combined with the multipole LSM 
formulation, leads to significant imaging improvement in sparse-aperture cases, even for challenging (i.e., 
non-convex or high-contrast) targets. 

 
3.4.3 Results Across a Variety of Receiver Sets 

 
In this subsection, we evaluate imaging performance across a wide variety of receiver choices to give 

a comparison between standard and PDFV-LSM imaging across a more comprehensive randomized variety 
of receiver sets. For 𝑁୰ୣୡ ൌ 2 െ 6, we choose 10 random sets of receive locations from a uniform 
distribution across the aperture, and for each set, we compute the standard LSM, standard multipole LSM, 
PDFV-LSM, and multipole PDFV-LSM solutions for the dielectric L target. Each image trial uses 
regularization parameters log𝛼 ൌ െ6, log𝛽 ൌ െ1. We then calculate the error metric Eq. (15) and average 
over the 10 random sets. The results are plotted in Fig. 13. 
 

 

 
 

Fig. 13—The error metric for the PDFV and standard LSM formulations as a function of 𝑁୰ୣୡ for the dielectric L-shaped target. 
Each data point represents the average over 10 randomly chosen sets of receiver positions. 

 

 
The results demonstrate a clear and significant improvement in imaging performance between the 

PDFV and standard LSM cases. The addition of the multipole enhancement leads to additional imaging 
improvements such that the multipole PDFV-LSM gives the best imaging results across all scenarios. For 
𝑁୰ୣୡ  4, the multipole PDFV-LSM achieves an error rate of less than 0.10, indicating on average a very 
faithful reconstruction of similar quality to Fig. 8(c). In contrast, the multipole standard LSM results have 
average errors ranging from 0.25-0.35 over these choices of receivers, which is comparable or worse than 
the error for the significantly aberrant Fig. 7(b). The error metric worsens significantly for 𝑁୰ୣୡ ൌ 2 and 3 
for the PDFV results while still outperforming the standard results. The error difference between the PDFV 
and standard reconstructions narrows as 𝑁୰ୣୡ decreases. 

 
Using the PDFV formulation also leads to less variability in performance between receiver sets. For 

𝑁୰ୣୡ ൌ 4,5, or 6, the standard deviation in the fidelity metric is between 0.02 and 0.04 for the multipole 
PDFV-LSM and between 0.10 and 0.17 for the standard LSM. The standard deviation for the multipole 
PDFV worsens to between 0.08 and 0.11 for 𝑁୰ୣୡ ൌ 2 and 3 (versus 0.13 and 0.14 for the standard LSM), 
which is consistent with the overall degradation of PDFV performance for these receiver numbers. The 
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variability of the metric about the mean is neglected from Fig. 13 for ease of visualization of the overall 
trends. 

 

Images from this dataset are shown in Fig. 14 for 𝑁୰ୣୡ ൌ 2, 3, 5, and 6. For each choice of 𝑁୰ୣୡ, we 
choose a representative image example from the set of 10 random receiver placements. The receiver angles 
for each example are listed in Table 1. The standard LSM reconstructions give very poor results for all  
 

 

 

 

 

 
Fig. 14—Representative image results for the dielectric L-shaped target  

for (a) 𝑁୰ୣୡ ൌ 2, (b) 𝑁୰ୣୡ ൌ 3, (c) 𝑁୰ୣୡ ൌ 5,(d) 𝑁୰ୣୡ ൌ 6 
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receiver choices. The PDFV reconstruction for 𝑁୰ୣୡ ൌ 2 is also of low quality. The PDFV reconstruction 
for 𝑁୰ୣୡ ൌ 3 is a significant improvement over the standard case, but also suffers from several artifacts and 
a distortion in the reconstructed target shape. The PDFV 𝑁୰ୣୡ ൌ 5 and 6 reconstructions are of high quality 
and are comparable to the four-receiver reconstruction in Fig. 8(c). These image results are consistent with 
the average results plotted in Fig. 13. These results, along with the results from previous subsections, 
suggest that high-quality target reconstructions can be achieved for the frequency range and target 
dimensions chosen for the simulated datasets using 𝑁୰ୣୡ  4. 

 
 

3.4.4 Experimental results 
 
Lastly, we report the results of processing the experimental data. We generate sparse-receive datasets 

by selecting subsets from the collected data wherein all eight antennas are used to transmit and only three 
are used to receive. We form standard, standard multipole, PDFV-, and multipole PDFV-LSM images for 

all possible combinations of three receivers, resulting in ቀ8
3
ቁ ൌ 56 sets of images. We form each image on 

a 9.5 ൈ 9.5 cm, 35 ൈ 35 cell grid. We use the L-curve procedure and once again select regularization 
parameters log𝛼 ൌ െ6, log𝛽 ൌ െ1. As in previous subsections, we quantify the fidelity of each image 
using the quantitative error metric Eq. (15), the threshold Eq. (14), and the known target location and radius.  

 
We plot histograms of the resulting error metric distribution across all 56 receiver sets in Fig. 15. The 

histograms show that the standard LSM results have the worst distribution of error, with a large 
 

 

  

  
 

Fig. 15—Histograms of the error metric Eq. (15) for experimental imagery across  
all 56 possible choices of eight transmitters and three receivers 

Table 1—Receiver Angles 
 

𝑁୰ୣୡ Receiver angles 

2 33°, 265° 
3 114°, 214°, 261° 
5 12°, 113°, 249°, 296°, 339° 
6 11°, 32°, 49°, 136°, 162°, 269° 
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percentage of the receiver combinations resulting in high error. The multipole enhancement improves the 
error distributions for both the standard and PDFV cases. Likewise, the PDFV formulation outperforms the 
standard formulation with and without the multipole enhancement.  

 

The multipole PDFV results are clearly of the highest fidelity, as the error distribution is concentrated 
at low error values. Only 5% of receiver sets result in errors greater than 0.15 for the multipole PDFV case, 
compared to 36% for the standard multipole and 61% for the standard cases.  

 

The significant improvement provided by the multipole PDFV also can be observed by considering 
the error results on a receiver-set-by-receiver-set basis. The multipole PDFV-LSM outperforms the standard 
LSM and the standard multipole LSM for 91% and 85% of receiver sets, respectively. 

 

We plot representative image examples from this data set in Fig. 16. Multipole PDFV results are shown 
in the left column and standard multipole results are shown in the right column. In Fig. 16(a), the receiver 
angles are 90o, 180o, and 270o. The standard multipole results include two long, aberrant tails that extend 
from the center of the imaging region to the top-left and bottom-left corners. The multipole PDFV results 
eliminate these aberrant tails and concentrate areas of high indicator function near the true target location, 
but somewhat off-center. In Fig. 16(b), the receiver angles are 0o, 225o, and 270o. The multipole PDFV 
results are a more faithful match to the true target shape and location compared to the standard multipole 
results, and the artifact near the bottom of the image is mitigated. In Fig. 16(c) the receiver angles are 45o, 
270o, and 315o. The multipole PDFV image is a very good match to the true target shape and location, and 
the artifact running from the target to the bottom of the standard multipole image is eliminated. In all three 
of these examples, the fidelity of the multipole PDFV imagery is significantly improved compared to the 
standard multipole imagery, as predicted by the error histograms of Fig. 15.  
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Fig. 16—Experimental imaging results for multipole PDFV and standard multipole formulations using receiver sets (a) [90o, 
180o, 270o], (b) [0o, 225o, 270o], (c) [45o, 270o, 315o], and (d) [45o,180o, 315o]. In each image, the dashed lines denote the true 
boundary of the cylindrical target. 

 

 

For completeness, we also include an imagery example for one of the few (i.e., 5%) cases in which the 
standard multipole outperforms the PDFV multipole according to the fidelity metric Eq. (15). This image, 
corresponding to receiver angles 45o, 180o, and 315o, is given in Fig. 16(d). The target shape and location 
are reconstructed reasonably well for both formulations, and the multipole PDFV formulation eliminates 
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artifacts along the top and bottom image edges. However, the artifacts observed on an arc in the left half of 
the image are enhanced for the multipole PDFV formulation. 

 
Overall, the experimental results shown in Fig. 15 and Fig. 16 demonstrate consistent and significant 

imaging improvement using the PDFV-LSM, especially with the multipole enhancement. These 
experimental results and the numerical results presented in the previous subsections together demonstrate 
the robustness of the PDFV-LSM concept across a wide range of sparse-aperture imaging scenarios. 

 
3.5 Conclusion 

 
We investigated a formulation of the linear sampling method for qualitative inverse scattering in data 
collection scenarios in which either the transmit or receive aperture is sparsely sampled in space. The 
proposed technique mitigates the lack of spatial data by incorporating a priori propagation information into 
the LSM inversion based on the expected phase delay from the transmitters to each pixel of interest. We 
evaluated the performance of the proposed technique by applying it to simulated and experimental data 
from various sparse-aperture imaging scenarios. We demonstrated improved imaging performance across 
a wide variety of sensor placements for both simulated and experimental scenarios. The proposed technique 
consistently achieves higher imaging fidelity compared to the standard Tikhonov-regularized LSM. We 
also showed that including a multipole enhancement to the formulation leads to further imaging 
improvements for targets that are non-convex or high-contrast as well as for experimental cases. 
 
 
4. BOUNDARY-CONDITION-ENHANCED LINEAR SAMPLING METHOD IMAGING OF 

CONDUCTING TARGETS FROM SPARSE RECEIVERS 
 

This section is adapted from a paper that has been accepted for publication in IEEE Transactions on 
Antennas and Propagation [32]. It builds upon work that was previously published in conference 
proceedings [35] and subsequently captured in an interim report for this project [39]. 
 
4.1 Background 
 

Electromagnetic imaging of conducting targets is of interest for various applications such as 
nondestructive evaluation and target recognition. The imaging problem is generally nonlinear in the 
unknown contrast and ill-posed. Imaging strategies that rely on linear scattering assumptions such as the 
matched filter, therefore, often produce aberrant or ambiguous imagery. Conversely, quantitative inverse 
scattering techniques that seek to solve the nonlinear problem of reconstructing the dielectric profile of the 
target, such as the Born iterative method or the distorted Born iterative method [28, 29], often struggle to 
reconstruct high-contrast targets. These challenges motivate the development of qualitative inverse 
scattering techniques that reconstruct only the support of the conducting target. 

 
A number of techniques for qualitative inverse scattering imaging of conducting targets have been 

reported in the past. Local shape function techniques (e.g., [48-50]) discretize the imaging domain into 
small conducting elements and then apply optimization to solve for scattering coefficients for each element. 
Subspace optimization methods discretize the scene into current lines and then optimize for a binary 
masking of the current lines that represent the target [51-54]. Several techniques solve for the contrast 
sources e.g., equivalent currents on the target surfaces, under the assumption that their locations are spatially 
sparse [55-60] (which is distinct from the problem posed by sparse receivers). Physical-optics-based 
approaches simplify the problem at high frequencies via linearization assumptions (at the obvious expense 
of introducing potential multiple-bounce artifacts) [61-63]. Recent inverse-problems-based approaches to 
radar imaging apply regularization to the conventional focusing problem to extract richer target information 
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[64-66]. Variations of the well-known MUSIC [67, 68] and the level-set techniques [69-72] also have been 
applied to the conducting target imaging problem. 

 
In this section, we again focus on the linear sampling method (LSM) (e.g., [7, 27, 31, 33, 35, 40, 46, 

73-76]). As previously stated, a significant challenge in imaging with the LSM is its need for dense 
multistatic-multiview data. In many practical imaging scenarios, constraints on hardware resources or data 
acquisition time may preclude achieving sufficient channel density in both the transmit and receive 
apertures simultaneously.  

 
Richness in scattered-field data may in principle be achieved with a limited number of transmitters 

and receivers using synthetic aperture approaches. In this section, we concentrate on sparse-receive, dense-
transmit datasets, which can be collected using a few stationary receivers and a single mobile transmitter. 
Such an approach is advantageous relative to alternative strategies for limiting hardware resources or data 
acquisition time. For instance, achieving dense multistatic-multiview sampling on both transmit and receive 
using synthetic aperture approaches could still require either a significant number of physical sensors or a 
prohibitive data acquisition time due to the need for multiple passes by the sensors. Alternatively, a low-
to-moderate number of stationary sensors could be used on both transmit and receive, but this approach 
could potentially result in a larger number of overall physical sensors compared to the dense-transmit, 
sparse-receive configuration of interest. 

 
However, application of standard LSM processing to sparse-receive datasets will often result in a large 

number of artifacts in the image or a complete loss of fidelity, even if the transmit aperture is densely 
sampled. Data richness may be enhanced through the use of multifrequency data, but straightforward 
application of additional frequencies to standard LSM processing may lead to limited improvement or even 
image degradation if the receive aperture is sparse. These challenges motivate the development of alternate 
LSM imaging formulations to take advantage of the information in the scattered field for effective sparse-
receiver imaging. 

 
Previous dense-transmit, sparse-receive LSM work has approached this problem by placing constraints 

on the frequency behavior of the LSM solution. In [75] and [43], a frequency variation (FV) formulation 
penalized overall changes in the LSM solution across frequency under the rationale that these changes are 
expected to be small in magnitude outside the vicinity of a sparse set of resonances. In [31], a phase-delay 
frequency variation (PDFV) formulation penalized solutions that deviated from a phase-relationship across 
adjacent frequencies that was related to the propagation distance between the transmitters and each pixel in 
the imaging domain. This latter approach relies on the perspective of the LSM as a transmit beamforming 
problem for focusing equivalent currents in the target volume [44]. It also relies on the Born approximation 
for derivation of the desired phase-delay behavior. 

 
In this section, we develop and investigate a new formulation of the LSM for sparse-receiver imaging 

of conducting targets. The proposed approach is to discipline the LSM solution such that electric field 
boundary conditions for a perfect electric conductor are satisfied at an estimate of the target boundary. This 
is equivalent to choosing the LSM transmit beamformer weighting such that the resulting incident field on 
an estimate of the target boundary matches the scattered field, which results in the desired boundary 
condition of a total electric field of zero. Constraining the LSM solution via the boundary conditions 
effectively introduces useful a priori information into the LSM optimization, which compensates for the 
lack of spatial channels. 

 
As the true target boundary is unknown, we propose an iterative procedure to jointly estimate the target 

boundary and the LSM solution by minimizing both the conventional LSM beamforming residual as well 
as the deviation from the desired boundary conditions. We show that the proposed boundary-condition-
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enhanced LSM (BC-LSM) results in significant improvements in imaging fidelity for sparse-receive, dense-
transmit (or equivalently by reciprocity, dense-receive sparse-transmit) scenarios.  

 
The BC-LSM is distinct from previous approaches to conducting target imaging. It does not discretize 

the target into a set of smaller canonical scatterers, as in [48-54]. It does not rely on contrast source sparsity 
to overcome the challenge of ill-posedness, as in [55-60]. It instead relies on a separate physical mechanism: 
the fundamental ability of the LSM to generate reweighted incident and scattered fields in the imaging 
domain, which it leverages by constraining for a near-zero field distribution on the target boundary.  

 
The BC-LSM is also distinct from the PDFV-LSM and the radar-type imaging approaches in that it 

makes no use of the Born approximation. Lastly, unlike both the PDFV- and FV-LSM, the BC-LSM does 
not depend on small steps in frequency, and therefore may be used with widely spaced discrete-frequency 
data. 
 
4.2 Imaging Formulation 
 
4.2.1 LSM Fundamentals 

 
For ease of explication, we assume two-dimensional transverse magnetic (TM) propagation. A 

perfectly electrically conducting (PEC) target of unknown support V and unknown boundary 𝜕𝑉 is situated 
in the imaging domain. It is surrounded by an array of 𝑁୲୶ transmitters and 𝑁୰ୣୡ receivers. The scattered 
field phasors at wavenumber k for every transmit-receive sensor pair are collected in the multistatic 
scattered field matrix 𝐄ୱሺ𝑘ሻ. The LSM operates by finding a regularized solution to the system of linear 
equations:  

 
𝐄ୱሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ ൌ 𝚽ሺ𝑘, 𝐫ሻ, (16) 

 
where r is a pixel location in the imaging domain, 𝚽ሺ𝑘, 𝐫ሻ is the 𝑁୰ୣୡ ൈ 1 vector of Green’s functions 
between each receiver and r, and 𝐠ሺ𝑘, 𝐫ሻ is the 𝑁୲୶ ൈ 1 LSM solution vector for r. In free space, the 
conventional Green’s function for two-dimensional TM propagation is given by 𝚽ሺ𝑘, 𝐫ሻ ൌ
𝑘ଶሺ4𝜔𝜀ሻିଵ𝐻

ଶሺ𝑘𝐝୰ୣୡሻ, where 𝜔 is the radial frequency, 𝜀 is the permittivity of the background medium, 
𝐻
ଶ is the zeroth-order Hankel function of the second kind, and 𝐝୰ୣୡ is the vector of distances between r 

and the receive locations. 
 
It can be shown that the norm of the LSM solution depends on whether r is inside or outside the target 

support. Solutions for interior pixels will have low norms, while pixels outside the target will have high 
norms [28]. Thus, an image of the target support can be formed by solving Eq. (3) for all r in the imaging 
domain and plotting an indicator function of the solution norm over r. A typical indicator function for a 
multifrequency solution is given by 

 

𝐼ሺ𝐫ሻ ൌ න‖𝐠ሺ𝑘, 𝐫ሻ‖ିଵ𝑑𝑘, (17) 

 
where the summation is over all collected frequencies. 

 
As will be seen, solving Eq. (16) using a sparse set of transmitters or receivers will result in an 𝐼ሺ𝐫ሻ 

that is of low fidelity to the true target geometry. Our proposed approach to improving imaging performance 
is to incorporate electric field boundary conditions into the LSM regularization and then to jointly optimize 
the boundary-condition-regularized LSM residual and the estimated target boundary. The following two 
subsections cover the boundary condition regularization and the boundary estimation, respectively. 
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4.2.2 BC-LSM Regularization 

 

Let 𝜕𝑈 be an estimate of the true target boundary 𝜕𝑉. We wish for the incident and scattered fields on 
𝜕𝑈 resulting from weighting the transmitted signals by 𝐠ሺ𝑘, 𝐫ሻ to sum to zero, thereby fulfilling the 
boundary conditions for a PEC target. Simultaneously, we also wish for 𝐠ሺ𝑘, 𝐫ሻ to satisfy Eq. (16) in order 
to achieve the LSM solution vector that allows for creation of the target image via Eq. (17). 

 

Let 𝜕𝑈 be discretized into 𝑁 boundary points whose locations in the imaging domain are given by 
𝐫ୠ
 , 𝑖 ൌ 1, … ,𝑁. We collect the incident fields at each boundary point arising from radiation from each 

transmitter into the 𝑁 ൈ 𝑁୲୶ matrix 𝐄୧
డሺ𝑘ሻ. Since the incident field is by definition the field from the 

transmitters when no target is present, it may be computed with knowledge of the transmitter locations and 
𝐫ୠ
 . The incident fields resulting from applying the LSM weights are thus given by the product 
𝐄୧
డሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ. 

 

Likewise, we define the 𝑁 ൈ 𝑁୲୶ matrix 𝐄ୱడሺ𝑘ሻ to be the collection of scattered fields on 𝜕𝑈 resulting 
from radiation from each transmitter. If we assume that Eq. (16) has been solved faithfully, then by 
definition, applying the LSM weights to this scattered field matrix results in 𝐄ୱడሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ ൌ 𝚽பሺ𝑘, 𝐫ሻ, 
where 𝚽பሺ𝑘, 𝐫ሻ is the 𝑁 ൈ 1 vector of Green’s functions between the boundary points and r. Performing 
this transformation is useful because 𝐄ୱడሺ𝑘ሻ is dependent on the target, whereas 𝚽பሺ𝑘, 𝐫ሻ can be 
computed directly using only knowledge of r and 𝐫ୠ

 . 

 

Thus, constraining the LSM solution by the boundary conditions requires the minimization of the 
weighted total field quantity given by 𝐄୧

డሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ  𝚽பሺ𝑘, 𝐫ሻ. We incorporate this constraint into the 
LSM solution via the following optimization: 

 

min

‖𝐄ୱሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ െ 𝚽ሺ𝑘, 𝐫ሻ‖ଶ  𝛼‖𝐠ሺ𝑘, 𝐫ሻ‖ଶ   𝛽ฮ𝐄୧

డሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ  𝚽பሺ𝑘, 𝐫ሻฮ
ଶ

. (18) 

 

The first normed term in Eq. (18), which we refer to as the residual, measures the closeness of the 
LSM solution to the desired relation in Eq. (16). The second normed term penalizes large-norm solutions. 
The third normed term penalizes deviations from the proposed boundary condition constraint. The scalars 
𝛼 and 𝛽 are regularization parameters that control the degree of penalty applied by each constraint. Setting 
𝛽 ൌ 0 results in standard Tikhonov-regularized LSM. 

 

4.2.3 Boundary Optimization 

 

In order for the boundary condition constraint in Eq. (18) to enhance imaging performance, the 
boundary estimate 𝜕𝑈 should be a good match to the true boundary 𝜕𝑉. Otherwise, the boundary constraints 
will impose erroneous conditions on the LSM solution, potentially leading to low-fidelity imagery. Our 
approach is to jointly optimize the boundary and the BC-LSM solution. As will be seen, this optimization 
can be expected to be generally non-convex in the boundary, and thus challenging. We address this 
challenge via a procedure which involves iteratively perturbing the estimated boundary in order to lower 
the BC-LSM residual. The procedure is summarized via the flowchart in Fig. 17 and is explained in more 
detail below. 
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Fig. 17—A flowchart describing the procedure for estimating the 
target boundary via joint optimization with the BC-LSM solution  

 
 
We begin by initializing 𝜕𝑈 on a closed contour in the imaging region and distributing boundary points 

along it with uniform spacing. We form the BC-LSM solution via Eq. (18) and record the following function 
of the residual: 

 

𝑒 ൌ
1
𝐴
න ൬න‖𝐄ୱሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ െ 𝚽ሺ𝑘, 𝐫ሻ‖ଶ d𝑘൰

ଵ/ଶ

d𝐫


. 
(19) 

 
In Eq. (19), the spatial integration is over all points in 𝑈, i.e., the open set bounded by 𝜕𝑈, the frequency 
summation is once again over all collected k, and the normalization factor A is the area of U.  
 

We then update 𝜕𝑈, perturbing the boundary points in the following manner. We first initialize a 
variable representing the number of boundary point perturbations to 𝑁 ൌ 0. We cycle through each 

individual boundary point in sequence. For the ith boundary point, we perturb 𝐫
  first by vector 𝚫𝐫

  and 
then by െ𝚫𝐫

 , where 𝚫𝐫
  points towards the center of the imaging scene. For each of the two 

perturbations, we compute Eqs. (18) and (19). The boundary point is then updated to the location 𝐫
 , 𝐫

 
𝚫𝐫

 , or 𝐫
 െ 𝚫𝐫

  that generates the lowest e. If the lowest e is achieved by either 𝐫
  𝚫𝐫

 , or 𝐫
 െ 𝚫𝐫

 , 
i.e., if perturbing the boundary point decreased the residual, then we increase 𝑁 by one. After cycling 
through all 𝑁 boundary points, we evaluate whether 𝑁  0. If it is, then we reset the variable 𝑁 ൌ 0 and 
repeat the perturbation process over all boundary point again. We repeat the above process until no further 
perturbations lower the residual, i.e., until a loop over all boundary points ends with 𝑁 ൌ 0. 
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The rationale for this iterative procedure is based on the assumption that perturbing a section of 𝜕𝑈 
closer to the true 𝜕𝑉 provides higher-fidelity a priori information to the LSM optimization via the boundary 
condition constraint in Eq. (18). Higher-fidelity constraints then result in a more faithful solution to Eq. 
(16) and thus a lower residual calculation in Eq. (19). We empirically investigate the assumptions 
underlying this heuristic by analyzing the effect of boundary changes on the residual in the following 
subsection. As will be seen, achieving a well-behaved boundary optimization depends on proper choice of 
regularization parameter as well as boundary initialization. 
 
4.3 Results and Discussion 

 
4.3.1 Simulated Data 

 
We generate simulated data for this study using the finite-difference time-domain (FDTD) method. 

The FDTD simulations assume two-dimensional TM propagation. An illustration of the simulation setup is 
given in Fig. 18. 

 
 

 
 
Fig. 18—A diagram of the simulation setup with the kite target 
 

 
For each dataset, we place a target in the simulation domain and assign it a conductivity of 5.7 ൈ 10 

S/m, which is similar to copper. The rest of the domain is assigned free-space dielectric properties. 
 
We uniformly and densely distribute transmit locations around the target on a circle of radius 6 m. 

Unless otherwise specified, we use 45 transmit locations. We then sequentially source each transmit 
location with an elementary current source. The resulting scattered fields are recorded at a sparse set of 
receive locations also uniformly distributed on a circle of radius 6 m. Unless otherwise specified, we use 
four receive locations. If we define the two-dimensional simulation domains with Cartesian xy-coordinates, 
then the four receivers are each placed along one of the cardinal axes. The recorded scattered fields are 
transformed to frequency-domain phasors using the discrete Fourier transform. We populate the 𝐄ୱሺ𝑘ሻ 
matrices with the resulting phasors. The result is a sparse-receive, dense-transmit scattered field dataset. 
Following data acquisition, we add Gaussian white noise to the data. Unless otherwise stated, we choose 
the noise level such that the total signal-to-noise ratio (SNR) across all transmit-receive pairs is 40 dB. 
 
4.3.2 Simulated Target Imaging Results: Fundamentals 
 

We begin imaging demonstrations using simulated data for the well-known kite target scaled to 
maximum dimension of around 2 m. The kite target support is visualized along with the data acquisition 
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setup in Fig. 18. We perform multifrequency LSM and BC-LSM reconstructions using frequencies 100, 
125, and 150 MHz. 

 
For BC-LSM reconstructions, we place 𝑁 ൌ 50 boundary points in the imaging scene. As the 

transmitters in the simulated dataset are elementary current sources, we calculate 𝐄୧
డሺ𝑘ሻ for use in Eq. 

(18) in a straightforward manner by computing the Green’s functions between each transmit location and 
𝐫
 . 

 
In previous sparse-aperture LSM work using two regularization terms [31], we have found that the 

effect of the regularization parameters on imaging performance is mostly a function of the ratio between 
the two parameters. We have found this to be true for the BC-LSM, as well. For brevity, we therefore set a 
constant log𝛼 ൌ െ5 and vary only 𝛽 in order to investigate the effects of stronger or weaker boundary 
condition penalties on imaging performance. 

 
We first evaluate the characteristics of the residual in order to determine whether the optimization 

strategy can be expected to converge to the true target boundary. In Fig. 19, we plot e for boundaries in the 
form of circles centered in the imaging domain. It is not practical to evaluate the residual function for every 
perturbation of each individual boundary point, and thus we instead evaluate the behavior of the residual 
by varying only the radii of circles. The set of 𝐫

  are distributed uniformly across each circular boundary. 
For each data point in Fig. 19, we first compute the BC-LSM solution via Eq. (18) for an imaging domain 
of dimension 3 ൈ 3 m on a 50 ൈ 50 cell grid and then compute and plot e via Eq. (19). We consider the 
behavior for choices of log𝛽 ranging from –9 to 0.  

 
 

 
Fig. 19—The residual function e from Eq. (19) for the kite target 
using circles of varying radius as the estimated boundary. For 
each choice of 𝛽, the e curve is normalized to its value at 1.75 m. 

 
 
Each residual function curve in Fig. 19 has a local minimum in the vicinity of a boundary radius of 

around 1 m, which is comparable to the average radius of the kite target. For log𝛽 ൌ െ9, and log𝛽 ൌ െ6, 
the residual functions appear to be locally convex for a relatively broad range of radii in the vicinity of this 
local minimum. For log𝛽 ൌ െ9, there are no other local minima on the investigated range of radii. 
However, the residual curve for this 𝛽 varies slowly in the vicinity of the minimum, which suggests that 
boundary perturbations result in small changes to the residual function. Increasing log𝛽 to െ6 results in a 
deeper local minimum near a radius of 1 m, as well as an additional local minimum near 2.5 m. Increasing 
log𝛽 to െ3 and 0 results in residual functions that are locally convex over a smaller range of radii in the 
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vicinity of 1 m. It also results in significantly more numerous local minima. The residual curve for log𝛽 ൌ 0 
is particularly chaotic.  

 

These results suggest that for an appropriate choice of regularization parameter and an initial boundary 
that is not too far from the true boundary, the residual function may be made approximately locally convex, 
and thus perturbing the estimated boundary towards the true boundary lowers the residual function in Eq. 
(19). In principle, this enables the boundary optimization procedure from Section 4.2.3 to generate a 
boundary estimate that is of similar dimension as the true boundary. 

 

Next, we investigate empirically whether the full boundary-point-by-boundary-point optimization 
procedure described in Section 4.2.3allows for estimating the target boundary shape as well as its size. We 
initialize 𝜕𝑈 to be a circle of radius 1.3 m, which is about halfway between the local minimum 
corresponding to the true target dimension and the adjacent local maximum for the log𝛽 ൌ െ6 curve. In 
principle, we could instead choose to initialize the boundary radius directly at the radius of the residual 
function minimum. We instead choose an initial radius offset from the minimum, but within the convex 
region near the minimum, to provide a more interesting demonstration of the robustness of the optimization 
method in converging to the true boundary. We set the boundary point perturbation step size to be 0.1 m. 
We generate the images on a domain of dimension 2 ൈ 2 m on a 35 ൈ 35 cell grid. 

 

Image results are shown in Fig. 20. In these images and all subsequent images in this paper, we plot 
20 log 𝐼ሺ𝐫ሻ as defined in (17). Each image is scaled so that 0 dB is defined by the most intense pixel and 
the lowest value in the color bar is given by the least intense pixel. 

 

Fig. 20(a) shows the image obtained via standard Tikhonov-regularized LSM. As expected, due to the 
sparsity of the receive aperture, the image is a poor match to the true target geometry, with many artifacts 
distributed throughout the imaging domain. Fig. 20(b) shows a BC-LSM reconstruction with log𝛽 ൌ െ3 
for the initial placement of the boundary points. The boundary point locations are marked in the image with 
blue circles. This image is also very aberrant, as the initialized boundary is a poor match to the true target 
boundary. 

 

The remaining subfigures in Fig. 20 show BC-LSM images obtained after convergence of the 
boundary estimates following the procedure outlined in Section 4.2.3. The results for Fig. 20(c-f) were 
obtained using log𝛽 ൌ െ9,െ6,െ3, and 0, respectively. It is clear from the results that the image quality 
as well as the boundary estimate fidelity are both a strong function of 𝛽. Choosing log𝛽 ൌ െ9 results in a 
poor boundary estimate and a poor image. The boundary estimate is most likely of poor quality due to the 
weak dependence of e on boundary point location for this choice of 𝛽, as seen in Fig. 19. The weak 
dependence may signify a higher probability that perturbations in the wrong direction may lower the 
residual for some individual boundary points due, for instance, to noise or other imperfections. Choosing 
log𝛽 ൌ െ6 results in a high-fidelity boundary estimate due to the favorable behavior of e for this choice 
of 𝛽, i.e., a significantly decreasing, approximately convex residual in the vicinity of the true target 
boundary. However, the BC-LSM image is of low quality in this instance. This is most likely because the 
value chosen for 𝛽 scales the boundary condition penalty term too low relative to e to effectively constrain 
the behavior of the norm of 𝐠ሺ𝑘, 𝐫ሻ, even though the penalty injects enough scattering information to allow 
for a well-behaved residual in the vicinity of the true boundary. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 (e) 

 
(f) 

Fig. 20—LSM and BC-LSM imagery for a kite target and a sparse set 
of four receivers. (a) Standard Tikhonov-regularized LSM. (b) BC-
LSM for the initial placement of boundary points. (c–f) BC-LSM after 
convergence of the estimated boundaries for various choices for 𝛽. 
Blue circles represent boundary point locations. Color bars are on a 
logarithmic scale, with 0 dB referenced to the most intense pixel. 

 
 
Choosing log𝛽 ൌ െ3 results in a reasonable boundary estimate that does not fully capture the non-

convex portion of the kite. The corresponding BC-LSM imagery is of much improved quality, with 
diminished artifacts outside the true target support, due to the higher value of 𝛽 and thus the increased 
influence of the boundary condition penalty on the reconstructions. Lastly, choosing log𝛽 ൌ 0 results in a 
poor boundary estimate and poor image quality. The greater error in boundary estimate can be explained 
by the higher prevalence of local minima for higher 𝛽 values, as seen in Fig. 19. 

 
Fig. 19 and Fig. 20 demonstrate that the BC-LSM optimization strategy results in accurate target 

boundary estimation and improved imaging performance if regularization parameters are chosen correctly. 
Furthermore, the results suggest a tradeoff in choice of 𝛽. Choosing 𝛽 high enough to inject sufficient 
boundary condition a priori information to achieve a significantly decreasing residual function in the 
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vicinity of the true boundary, but low enough to avoid a significant number of other local minima, allows 
the optimization to converge to a faithful estimate of the target boundary. However, a 𝛽 that is low enough 
to avoid unwanted local minima may be too low to effectively constrain the behavior of the LSM solution 
norm. Conversely, a 𝛽 that is high enough to influence the solution norm may lead to a poorly or sub-
optimally converged boundary estimate, which may then degrade the final image quality. 

 

The benefits of both high and low 𝛽 may be achieved by using different 𝛽 for boundary optimization 
and the final image formation. The choices for 𝛽 may be selected via the following heuristic-based process, 
which we refer to as a multiple-𝛽 reconstruction.  

 

First, e as a function of boundary radius and 𝛽 is plotted in the fashion of Fig. 19. The best 𝛽 for 
boundary optimization is chosen by selecting the most favorable residual function. We define the most 
favorable residual function to have qualities most similar to the log𝛽 ൌ െ6 curve in Fig. 19, i.e., 1) it 
appears locally convex across a broad range of radii around the local minimum of interest, thereby allowing 
for the avoidance of false solutions, and 2) it is not shallow or nearly flat in the vicinity of the minimum, 
which helps to avoid perturbations of boundary points in the wrong direction due to noise or other 
imperfections. The local minimum of interest, which corresponds approximately to the overall dimension 
of the target, may be identified by generating an estimate of the target size from the scattered field data by, 
for instance, conventional backprojection processing.  

 

We initialize the boundary as a circle with a radius within the convex region of the local minimum of 
interest, i.e., 1.3 m for the kite as in the previous examples. We then perform the iterative boundary 
optimization procedure with the selected 𝛽 to achieve a high-fidelity boundary estimate. 

 

Second, the converged boundary is kept constant and a new series of BC-LSM images is created via 
Eq. (18) with a variety of 𝛽. The final BC-LSM image is chosen to be the one that results in the largest 
fraction of the image norm inside the converged boundary. That is, the image is chosen that corresponds to 
𝛽 that satisfies the following maximization 

 

𝑒max
ఉ

ቆන 𝐼ଶሺ𝐫ሻ𝑑𝐫


ቇ
ଵ/ଶ

൭න 𝐼ଶሺ𝐫ሻ𝑑𝐫
୬୲୧୰ୣ 
ୢ୭୫ୟ୧୬

൱

ିଵ/ଶ

. 
(20) 

 

We demonstrate a multiple-𝛽 reconstruction of this type using the kite data. We select log𝛽 ൌ െ6 for 
the boundary optimization step. We then compute the ratio in Eq. (20) using the converged boundary and 
log𝛽 ranging from –9 to 3. The resulting image norm ratios are plotted in Fig. 21(a). Lastly, we display the 
final BC-LSM image for the choice of log𝛽 ൌ െ2, which maximizes Eq. (20). This result is shown in Fig. 
21(b). As can be seen, the multiple-𝛽 reconstruction results in high fidelity for both the LSM image as well 
as the estimated target boundary. 
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(a) 

 

 
 (b) 

 
Fig. 21—Results of a multiple-𝛽 reconstruction. (a) The ratio of image norm inside the converged estimated 
target boundary to the image norm throughout the image. (b) The BC-LSM reconstruction for the 𝛽 that 
maximizes this ratio. The color bar and blue circles have the same meaning as in Fig. 20. 

 
 
 
We close this subsection with a note on computational expense. Using the multiple-𝛽 reconstruction 

behavior, Eq. (18) must be solved many times between the initial parameter selection step, the optimization 
of the boundary, and the final parameter selection and image formation step. However, the computational 
expense is not prohibitive, as the LSM is a relatively low complexity inverse scattering technique that only 
requires finding solutions to systems of linear equations.  

 
As an illustrative example, we report the total computation time needed to generate the image in Fig. 

21(b) using the multiple-𝛽 reconstruction procedure on a laptop running MATLAB with a 4-core 3.1 GHz 
processor and 32 GBs of RAM. The computation time was approximately 45 seconds to compute the results 
in Fig. 19 for selection of the initial 𝛽 and approximately 1 minute to perform the boundary optimization 
and computation of the final image via the image norm ratio. Computation time may be minimized by only 
calculating Eqs. (18) and (19) for points interior to the current boundary during the boundary optimization 
step. In general, the computational expense for other imaging cases can be expected to scale with the 
number of receivers, transmitters, frequency samples, pixel density, and number of boundary points. 

 
4.3.3 Effects of Noise Level 

 
Next, we consider the effects of varying levels of noise on the BC-LSM reconstruction. Using the same 

kite target and data acquisition setup, we scale the noise such that the resulting SNRs are 30, 20, 10, and 0 
dB. We generate BC-LSM images using the same imaging setup and multiple-𝛽 reconstruction approach. 
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The results are shown in Fig. 22. The 30 and 20 dB SNR boundary estimates and reconstructions are 

very similar to the results shown in Fig. 21 and are both of high fidelity. The 10 dB SNR example also 
evinces a high-fidelity boundary estimation and a reasonably high-fidelity reconstruction. Lastly, the 0 dB 
SNR example has a modestly degraded boundary estimation and a very poor BC-LSM reconstruction. 
Overall, the results suggest that the BC-LSM is reasonably robust to noise. 

 
 

  

 
 

 

Fig. 22—BC-LSM reconstructions for varying noise levels. The color 
bar and blue circles have the same meaning as in Fig. 20. 

 

 
4.3.4 Effects of Lower Conductivity 

 
In this subsection, we consider the performance of the BC-LSM when the target conductivity is lower 

and thus the total field at the target boundary may diverge from the PEC boundary condition assumed in 
Eq. (18). While the primary purpose of the BC-LSM is for imaging highly conducting targets, observing 
the behavior of the technique in lower-conductivity cases provides additional context on the robustness of 
the technique to the optimization assumptions. It also provides a demonstration of the effects of erroneous 
boundary estimates and boundary conditions on the BC-LSM reconstruction. 

 
We generate simulated data for the kite target using conductivities of 64, 16, 4, and 0 mS/m and 

dielectric constants of 2 and 6. We perform a multiple-𝛽 reconstruction for each choice of dielectric 
properties. We use the same choices of transmitter/receiver numbers and frequencies as in the previous 
examples and set the initial boundary radius to 1 m.  

 
We plot the converged BC-LSM imagery in Fig. 23 for each choice of dielectric properties. For a 

conductivity of 64 mS/m, the reconstructions are of high fidelity and very similar to the reconstruction from 
the original higher-conductivity examples. The boundary estimates also closely adhere to the true target 
boundary. This result demonstrates that near-perfect conduction is not required for the boundary condition 
constraint in Eq. (18) to enable high-fidelity imaging from sparse receivers. If a near-zero LSM-weighted 
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(a) 

 
(b) 

  
(c) 

 
(d) 

Fig. 23—BC-LSM reconstructions for lower conductivity. The 
target dielectric constants are (left) 2 and (right) 6. The 
conductivities are (a) 64, (b) 16, (c) 4, and (d) 0 mS/m. The color 
bar and blue circles have the same meaning as in Fig. 20. 
 
 

field distribution can be achieved along the target boundary, as suggested by the boundary estimates in Fig. 
23(a), then a priori information from the boundary condition constraint will still mitigate the lack of spatial 
channels. 



 
Sparse Aperture Multistatic Radar Imaging Techniques: Final Report 37 
 

 

As conductivity decreases, the boundary estimates progressively degrade and the BC-LSM 
reconstructions degrade accordingly. The nature of the boundary estimate degradation is different for the 
two choices of dielectric constant. For a dielectric constant of 2, the boundary is stretched towards the four 
corners of the image as the conductivity decreases. For a dielectric constant of 6, the boundary becomes 
progressively elliptical and shifted to the right. The characteristics of the degradation in each case are most 
likely the result of the joint boundary-LSM optimization converging to a local minimum. The differences 
in erroneous boundary are most likely due to differences in the scattered field, the LSM-weighted incident 
fields, and the resulting total fields caused by the differing target properties, which, in turn, determine the 
optimization local minima. 

 
The nature of the BC-LSM reconstruction degradation also differs between the two choices of 

dielectric constant. When the dielectric constant is 2 and the conductivity approaches zero, the resulting 
BC-LSM reconstruction no longer has a high indicator function throughout the target support, but is instead 
mostly concentrated at the target center. When the dielectric constant is 6 and the conductivity approaches 
zero, the BC-LSM reconstruction’s region of high indicator function is mostly outside of the true target 
support. 

 
The differing degrees of reconstruction degradation between the two choices of dielectric constant in 

the lossless case are most likely due to the differences in the shapes of the estimated boundaries. For a 
dielectric constant of 2, the estimated boundary mostly envelopes pixels that are interior to the target and 
for which a low-norm solution to Eq. (16) therefore theoretically exists. Thus, the results in Fig. 23(d) 
suggest that for a collection of pixels in the interior of the target and the erroneous boundary, there exists 
an approximate solution to Eq. (16) that results in near-zero total fields on the optimized boundary. 
Conversely, the estimated boundary for a dielectric constant of 6 envelops a large proportion of non-target 
space for which Eq. (16) cannot be satisfied according to the fundamentals of LSM regardless of the 
boundary conditions, resulting in worse artifacts. 

 
4.3.5 Behavior at Target Resonances 
 

It is well known that the full-aperture LSM solution norm grows very large for a discrete set of target-
dependent resonant frequencies (i.e., Dirichlet or transmission eigenvalues). Single-frequency LSM images 
formed at a resonance are often of reduced fidelity, as the indicator function may be comparable for pixels 
inside and outside the target support. More positively, the resonances identified via measurement of the 
LSM frequency response may be leveraged for characterizing target properties (e.g., [12, 77-79]) or for 
target recognition (which has previously been investigated specifically for conducting targets [80]), as the 
set of resonant frequencies is dependent upon the target constitution and geometry. An investigation of such 
an application of the BC-LSM is outside the scope of this study. However, these positive and negative 
aspects of the LSM frequency response motivate an investigation into whether the BC-LSM responds 
similarly to resonances. In this subsection, we demonstrate the BC-LSM resonant response and compare it 
to the standard LSM response for sparse-receive scenarios. 

 
We first investigate whether the norm of the solution to Eq. (18) evinces the expected resonant 

behavior and whether this behavior occurs at the expected frequencies. We again form multiple-𝛽 BC-LSM 
solutions of the conducting kite target. We set the SNR to 30 dB. For the boundary estimation step, we 
again use frequencies 100, 125, and 150 MHz. We then calculate the final 𝛽 via Eq. (20) and calculate the 
solution to Eq. (18) with the optimized boundary using a denser set of 121 frequencies from 100 to 300 
MHz in order to capture the resonant behavior. 

 
We then identify pixels that satisfy the threshold 
 

log 𝐼ሺ𝐫ሻ  min log 𝐼ሺ𝐫ሻ  𝜈ሺmax log 𝐼ሺ𝐫ሻ െ min log 𝐼ሺ𝐫ሻሻ. (21) 
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This threshold has been used in previous work [31, 46] to identify pixels belonging to the target support. 
We set the threshold parameter 𝜈 to 0.5. At each individual frequency, we then calculate the maximum 
norm of 𝐠ሺ𝐫, 𝑘ሻ across all identified pixels. 

 

The results are plotted in Fig. 24 for two different sparse-receiver scenarios. In Fig. 24(a), we use the 
same distribution of four receive locations and 45 transmit locations as we used in previous subsections. In 
Fig. 24(b), we increase the number of receive locations to 5 and the number of transmit locations to 180. In 
each case, we plot BC-LSM and standard Tikhonov-regularized LSM results for four different target 
rotation angles. The range of target rotations in each scenario is chosen to achieve the widest possible 
angular variety after taking into account rotational symmetry from the point of view of the receivers. In 
each plot, we denote the expected resonant frequencies of the target with vertical dashed lines. We calculate 
the expected resonant frequencies by scaling the first five resonances of the kite target as computed in [81] 
by 133% to account for the difference in the size of the target used here. The resulting expected resonances 
are at 138.5, 201.6, 221.2, 269.4, and 273.7 MHz. 

 

 

 
 

 

 
 

 
(a) (b) 

 
Fig. 24—BC-LSM and standard LSM solution norms as a function of frequency for the kite target using 
(a) four receive locations and 45 transmit locations, and (b) five receive locations and 180 transmit 
locations. The legend refers to target rotations. Values are normalized to the maximum value across all 
curves in each plot. Vertical lines correspond to the theoretical resonant frequencies for the PEC kite 
target. 

 
 

The BC-LSM solutions evince identifiable peaks in the close vicinity of the lowest three expected 
resonant frequencies for most target rotations. Peaks are also identifiable in the vicinity of the higher two 
resonances, but they are less precise in their clustering. The larger variation in the shift of the peaks for 
these two resonances may be due to their very close spacing or to the greater challenge of capturing higher 
spatial frequencies with the sparse receiver set. All observed peaks are sharper and more consistent for the 
BC-LSM solutions in Fig. 24(b), most likely due to the larger number of sensor locations. 
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In contrast, the standard LSM solutions in both Fig. 24(a) and Fig. 24(b) capture the resonances of the 
target less faithfully. The peaks in the curves are broader and less consistently centered on the expected 
resonances. In particular, the standard LSM curves in both scenarios do not individually resolve the second 
and third resonances, whereas the BC-LSM curves in in Fig. 24(b) have distinct local maxima at these 
resonances in three out of four of the target rotations. These results demonstrate that the BC-LSM better 
conserves the expected resonant frequency response in sparse-receiver scenarios as compared to standard 
Tikhonov-regularized LSM. 

 
The above confirmation of the locations of the resonances under the BC-LSM framework allows us to 

next investigate the effects of operating the full BC-LSM directly at a resonance. For the scenario with five 
receivers and 180 transmitters, we first form a BC-LSM single-frequency, multiple-𝛽 reconstruction at the 
lowest target resonance of 138.5 MHz. The results are shown in Fig. 25(a). Both the boundary estimate and 
the reconstruction are of poor fidelity. We then shift the reconstruction frequency by -15 and +15 MHz and 
plot the results in Fig. 25(b) and Fig. 25(c), respectively. These results demonstrate that shifting the 
reconstruction frequency away from the resonance improves the boundary estimation and reconstruction. 
Lastly, we perform a reconstruction using five frequencies distributed between 100 and 138.5 MHz, i.e., 
we perform the BC-LSM reconstruction with one resonant frequency and four non-resonant frequencies, 
which also results in an improved boundary estimation and reconstruction compared to Fig. 25(a). These 
results demonstrate that the BC-LSM can suffer from artifacts in single-frequency mode in the vicinity of 
a resonance, but, like standard Tikhonov LSM, these effects can be mitigated through multiple-frequency 
operation using the so-called “parallel” indicator function given in Eq. (17) [74]. 

 
 

 
(a) 

 
(b) 

 

 
 (c) 

 
(d) 

 
Fig. 25—BC-LSM images showing the effect of resonances on the 
reconstruction. (a)-(c): Single-frequency images at 138.5 MHz, (the 
lowest kite resonance), 123.5 MHz, and 153.5 MHz, respectively. (d): 
A reconstruction with five frequencies uniformly distributed from 100 
to 138.5 MHz, inclusive of the target resonance at 138.5 MHz. 
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4.3.6 Additional Results From Simulated Targets 

 

In this subsection, we explore the robustness of the proposed BC-LSM image formation strategy across 
a wider variety of simulated complex targets. We once again set the number of receivers to four. We 
increase the number of frequency samples to 21 uniformly distributed between 100 and 300 MHz and 
decrease the perturbation step size to 0.05 m in order to reconstruct targets of higher geometric complexity.  

 

Standard and BC-LSM image results for three example target scenes are given in Fig. 26. The first 
example, shown in Fig. 26(a), uses a conducting version of the Austria target that has been used in previous 
studies (e.g,[31,46]). The second, shown in Fig. 26(b), uses a cross target. The last, shown in Fig. 26(c), 
uses two disconnected targets in the form of an L-shaped scatterer and a disc. 

 

The standard LSM reconstruction of each scene is of poor quality due to the sparse set of receivers. In 
each case, numerous high-level artifacts are distributed throughout the image. The reconstructed target 
shapes are also either distorted or incomplete, especially for the cases of the Austria and L-and-disc scenes. 

 

We generate the BC-LSM images in Fig. 26 using the multiple-𝛽 reconstruction strategy. For each 
target, we perform a residual function analysis of the same form as shown in Fig. 19. The residual function 
curves are similar to the curves in Fig. 19, and are thus neglected here for brevity. The result of the curve 
analysis is that the optimum regularization parameter choice for boundary optimization is once again 
log𝛽 ൌ െ6 for each scene. 

 

The converged boundaries are a good match to the target geometries for each scene. For the Austria 
and cross targets, the estimated boundaries closely approximate the convex hulls of the true target 
boundaries. Similarly, the estimated boundary for the most challenging L-and-disc scene is a good match 
to the outer-facing boundaries of both constituent scatterers. Based on these results as well as the results in 
Fig. 21, it appears that the BC-LSM boundary estimation procedure may capture non-convexities for some 
targets, but may capture non-convexities imperfectly in general. 
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(a) 

 
(b) 

 
(c) 

Fig. 26—Image results for three complex targets from synthetic data. 
For each case, the left image is the result from standard LSM and the 
right image is the final result after applying the multiple-𝛽 procedure 
for the BC-LSM. (a) The Austria-type target. (b) The cross target. (c) 
The L and disc disconnected targets. The color bars and blue circles 
have the same meaning as in Fig. 20. 
  

 
After obtaining the converged boundaries, we select the final 𝛽 for image formation using the image 

norm ratio step via Eq. (20). The resulting final log𝛽 for BC-LSM image formation with the converged 
boundary is െ2,െ3, and െ3 for the Austria, cross, and L-and-disc scenes, respectively. 

 
The resulting BC-LSM images are clearly of improved quality compared to the standard LSM images. 

In each case, the artifacts distributed throughout the standard imagery have been greatly reduced. The 
regions of high indicator are concentrated within the true target boundaries and closely approximate the 
true target shapes. This is true even though the boundary estimates imperfectly capture the non-convexities 
in the targets. This is especially true for the L-and-disc scene, in which each individual scatterer is faithfully 
reconstructed while the space between the scatterers is assigned a lower indicator value. These results 
demonstrate that the BC-LSM penalty provides a useful constraint to the LSM solution even when only the 
outermost target boundaries are well-estimated. 
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4.3.7 Experimental Results: Manitoba Data Set 
 
Next, we consider the performance of the BC-LSM technique using experimental data. First, we use 

the publicly available experimental dataset from the University of Manitoba [82]. The Manitoba dataset 
was generated using a two-dimensional array of 24 Vivaldi antennas uniformly distributed on a circle of 
approximate radius 22.4 cm. Two conducting targets are available in the form of conducting pipes of 
diameters 2 and 3.5 inches. In this paper, we image the 2-inch pipe data. 

 
To image the conducting pipe data via BC-LSM, we must calculate the incident fields on the estimated 

target boundary. However, the incident fields in the imaging region arising from the Vivaldi antennas are 
unknown a priori. We overcome this challenge using a simple calibration procedure described below. 

 
We first simulate a data collection with a calibration target using FDTD as described previously. As 

the 2-inch pipe is the imaging target, we choose the 3.5-inch pipe to be the calibration target. We do not 
model the Vivaldi antennas, but instead replace them with elementary current sources. We collect the 
multistatic electric field phasors for all transmit-receive pairs. For each pair, we compute the calibration 
factor 𝛾 ൌ 𝑆୫ୣୟୱ,ୡୟ୪/𝐸ୱ୧୫, where 𝑆୫ୣୟୱ,ୡୟ୪ is the scattered signal measurement for the calibration target and 
𝐸ୱ୧୫ is the corresponding simulated scattered field phasor. 

 
We then calculate the average 𝛾 across all multistatic pairs. We discard all but four of the receive 

channels while keeping all transmit channels, resulting in sparse-receive dense-transmit data of size 4 ൈ
24. We then apply the calibration procedure and apply the multiple-𝛽 reconstruction strategy to the 
calibrated data. We reconstruct the target on a domain of size 0.1 ൈ 0.1 m with a grid of dimension 50 ൈ
50 cells. We use frequencies 3.0, 3.5, 4.0, 4.5, and 5.0 GHz. We once again use 50 boundary points and 
distribute their initial locations on circular boundaries. We set the boundary perturbation step size to 0.5 
cm. 

 
Lastly, we apply the calibration factor to the measured imaging target data such that 𝐸ୡ୭୰୰ୣୡ୲ୣୢ ൌ

𝑆୫ୣୟୱ,୲ୣୱ୲/𝛾୫ୣୟ୬, where 𝑆୫ୣୟୱ,୲ୣୱ୲ is the measured signal for the target to be imaged and 𝐸ୡ୭୰୰ୣୡ୲ୣୢ is the 
electric field phasor resulting from applying the calibration. This calibration procedure is similar to the one 
described in [82], with the exception that we apply the same mean calibration factor to all channels, whereas 
in [82] it is suggested to apply calibration factors on a channel-by-channel basis. 

 
We then apply the BC-LSM algorithm using the 𝐸ୡ୭୰୰ୣୡ୲ୣୢ phasors as the measured scattered field 

data at the antennas. We once again use the Green’s function between each transmit location and boundary 
point to form 𝐄୧

డሺ𝑘ሻ in Eq. (18). Applying the mean calibration factor to all measured channels ensures 
that the scattered field data and the boundary incident field data are on equivalent scales.  

 
The residual function curves are shown in Fig. 27(a). The set of curves is similar to Fig. 19 in that 

log𝛽 ൌ െ6 is associated with the most favorable residual functions with well-separated and deep local 
minima. Once again, lower 𝛽 leads to slowly decreasing residual functions and higher 𝛽 leads to unsmooth 
functions with many closely spaced local minima. We therefore select log𝛽 ൌ െ6 for the boundary 
optimization. We initialize the optimization using a circular boundary of radius 4 cm, which is at the edge 
of the convex region surrounding the lowest local minimum. We initialize the boundary at the edge of the 
convex region in order to provide a more challenging demonstration for this geometrically less complex 
target. 

 
The standard LSM reconstruction is shown in Fig. 27(b). The standard reconstructions is of poor 

quality, with many artifacts distributed throughout the image.  
 



 
Sparse Aperture Multistatic Radar Imaging Techniques: Final Report 43 
 

 

 
(a) 

 (b) 
 

(c) 
Fig. 27—Experimental results for the 2.0-inch conducting pipe from 
the Manitoba data set. (a) The residual function curve. The curves are 
normalized to their values at a radius of 4.5 cm. (b) The standard LSM 
image. (c) The converged BC-LSM image created with the multiple-
𝛽 reconstruction strategy. The color bars and blue circles have the 
same meaning as in Fig. 20. 
 

 
The converged BC-LSM reconstruction is shown in Fig. 27(c). The converged estimated boundary is 

a good match to the true target shape and size, with a handful of outlier boundary points. The image norm 
ratio procedure produces an optimum final log𝛽 ൌ െ5. The resulting BC-LSM imagery is of much 
improved quality compared to the standard LSM imagery. The vast majority of the artifacts outside the 
target boundary have been mitigated, and the interior of the target reconstruction is more consistently filled 
in. 

 
4.3.8 Experimental Results: Fresnel Data Set 

 
Next, we perform BC-LSM imaging using the publicly available dataset from the Fresnel Institute 

[83]. The Fresnel data is a two-dimensional dataset with 36 transmit locations and 72 receive locations. We 
choose to image the conducting U-shaped target. We calibrate the data in the same manner as in the previous 
subsection. We choose the non-centered conducting rectangle as the calibration target. 

 
We again downsample the receive aperture to achieve a sparse-receive dataset. We keep five receive 

locations. Since the Fresnel data does not include receive data for 60o arcs around the monostatic direction, 
this results in four receive channels for each transmitter. We again reconstruct the target on a 0.1 ൈ 0.1 m, 
50 ൈ 50 cell grid. We use frequencies 2, 4, 6, 8, and 10 GHz. We use 50 boundary points and set the 
perturbation distance to 0.5 cm. 

 
The residual function plot is shown in Fig. 28(a). In this case, only the log𝛽 ൌ െ9 curve is free of  
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(a) 

 (b) 
 

(c) 
 

Fig. 28—Experimental results for the U-shaped target from the 
Fresnel dataset. (a) The residual function curve. The curves are 
normalized to their values at a radius of 10 cm. (b) The standard LSM 
image. (c) The converged BC-LSM image created with the multiple-
𝛽 reconstruction strategy. The color bars and blue circles have the 
same meaning as in Fig. 20. 
 

 
 

closely spaced local minima, and thus we choose this value of boundary optimization, despite the fact that 
the corresponding minimum is not particularly deep as desired. We initialize the estimated boundary radius 
to 6.0 cm and perform a multiple-𝛽 reconstruction. The image norm ratio procedure in this cases produces 
an optimum final regularization value of log𝛽 ൌ െ4. 

 
The standard and BC-LSM image results are shown in Fig. 28(b) and (c), respectively. The standard 

LSM image is a poor reconstruction with many artifacts. The converged BC-LSM estimated boundary is a 
reasonable estimate to the true target shape. The converged BC-LSM image is of superior quality to the 
standard reconstruction, as the artifacts have been mitigated and the overall size and shape of the region of 
high image value is a good match to the target. The non-convexity is partially apparent in the estimated 
boundary and more apparent in the image. This is notable, as the non-convexity is typically the most 
challenging feature to reconstruct for this target.  

 
4.3.9 Limited-Aspect Examples 

 
We now consider sparse-receiver scenarios where both the transmit and receive apertures are limited 

in aspect. We first consider a simulated-data example using the kite target. We distribute 11 transmit 
locations and three receive locations across a 150o arc centered on the +y-axis, as illustrated in Fig. 29(a). 
We then perform a multiple-𝛽 reconstruction at 100, 125, and 150 MHz. We initially distribute 25 boundary 
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(a) 

 
 (b) 

 
(c) 

 
Fig. 29—A limited-aspect, sparse-receive example from simulated 
data. (a) The imaging scenario. (b) The standard Tikhonov-regularized 
LSM reconstruction. (c) The BC-LSM reconstruction. 
 
 

points on a 180o arc of radius 1.3 m centered on the +y-axis. Our rationale for this choice of initial boundary 
is that the received data will mostly contain information from the portion of the target illuminated by the 
sensors, and thus having boundary points along the non-illuminated portions of the target would be 
unhelpful. We slightly modify the LSM equation to be solved to 𝐄௦ሺ𝑘ሻ𝐠ሺ𝑘, 𝐫ሻ ൌ 𝚽ሺ𝑘, 𝐫ሻ/‖𝚽ሺ𝑘, 𝐫ሻ‖. 
Normalizing the right-hand side of the equation in this way has been shown to improve limited-aspect LSM 
performance in previous work [7]. 

 

The resulting standard and BC-LSM reconstructions are shown in Fig. 29(b) and (c), respectively. The 
standard LSM results are of low fidelity. The BC-LSM boundary estimation accurately captures the target 
surface facing the sensors. The resulting BC-LSM reconstruction also faithfully captures the geometry of 
the target surface facing the sensors. 

 

Next, we perform a limited-aspect reconstruction from experimental data using the Manitoba 2-inch 
pipe target. Similarly to the limited-aspect kite example, we discard all channels except for those 
corresponding to 10 transmit locations and three receive locations uniformly distributed along a 150o arc. 
We initially distribute the boundary points along a 4-cm arc, but limit the arc to 25 boundary points across 
a 180o span. The results are shown in Fig. 30. The standard LSM image in Fig. 30(a) is of very low fidelity. 
The BC-LSM estimated boundary and reconstruction in Fig. 30(b) are of high fidelity to the target surface 
facing the sensors. 
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 (a) 

 
(b) 

 
Fig. 30—A limited-aspect, sparse-receive experimental example from 
the Manitoba data set. (a) The standard Tikhonov-regularized LSM 
reconstruction. (b) The BC-LSM reconstruction. 
 

 

4.3.10 Quantification of Reconstruction Accuracy 

 

Lastly, we provide quantitative metrics of reconstruction accuracy for a subset of the results in previous 
sections. While the BC-LSM results reported in this study evince clear visual improvement relative to the 
standard Tikhonov-regularized results, we can achieve additional confidence in our subjective judgements 
of image quality by using a quantitative measure of fidelity. 

 

We choose to quantify image fidelity using the Jaccard index, which has been used in previous 
qualitative inverse scattering studies (e.g., [84,85]). We threshold each image and compute the ratio 

 

𝐽 ൌ
Thresolded image ⋂  True target footprint
Thresholded image ⋃True target footprint

 . 
(22) 

 

Using this index, a perfect reconstruction results in 𝐽 ൌ 1. 

 

We plot the results for several examples from this study in Fig. 31, including the simulated kite 
example, the three complex target simulated examples, the experimental example from the Manitoba 
dataset, and the experimental example from the Fresnel data set. In each case, we plot 𝐽 for both the BC-
LSM and the standard Tikhonov-regularized LSM as a function of the threshold parameter 𝜈 from Eq. (21). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 (e) 

 
(f) 

 
Fig. 31—The Jaccard index versus the threshold parameter for various 
BC-LSM and standard LSM reconstructions. (a) The simulated kite. (b-
d) The simulated complex targets. (e) The experimental Manitoba 
example. (f) The experimental Fresnel example. 
 

 
In six out of the seven examples, the BC-LSM clearly outperforms the standard LSM according to the 

quantitative metric. The metric for the example in Fig. 31(f), the Fresnel experimental example, is more 
ambiguous. The standard LSM reconstruction outperforms the BC-LSM reconstruction for this example 
only for very high values of 𝜈 which mask out the wide distribution of artifacts in the standard LSM image. 
Both the BC-LSM and standard LSM results have a relatively low peak 𝐽. This is because the walls of the 
U-shaped target from the Fresnel dataset are thin compared to the apparent resolution of the imaging 
techniques, and thus there are many thresholded pixels outside the true target footprint even when artifacts 
have been minimized, as in the BC-LSM reconstruction from Fig. 28(c). Overall, the Jaccard index results 
are consistent with our visual judgements that the BC-LSM technique results in significantly improved 
image fidelity. 

 
4.3.11 Discussion 

 
The results in this study demonstrate that the proposed BC-LSM method generates high-fidelity 

imaging results across a wide variety of sparse-receiver imaging scenarios. The BC-LSM’s improvement 
in these scenarios compared to the standard Tikhonov-regularized LSM is clear and consistent. 

 



 
48 Matthew J. Burfeindt and Hatim F. Alqadah 
 

 

The results also demonstrate properties of the BC-LSM that could make it potentially advantageous 
compared to non-LSM-based conducting-target imaging techniques in some scenarios. Unlike techniques 
that output only the target image, the BC-LSM also outputs additional target information that can aid in 
image interpretation, namely the estimated boundary as well as the solution’s target-dependent resonant 
frequency information. Generating the target image via a qualitative inverse scattering approach is an ill-
posed process, and thus it is reasonable to expect that even high-fidelity reconstructions will be imperfect 
and present some degree of visual ambiguity. Thus, these auxiliary sources of target information are of 
interest. 

 
Several examples from this study demonstrate how the estimated boundary could serve as an additional 

visual cue for image interpretation. Regions of high indicator value that appear exterior to the estimated 
boundary, as in Fig. 27(c), may in some cases be provisionally discounted as artifacts. Consistency between 
the BC-LSM image and the boundary estimate may provide additional confidence that the appearance of a 
hard-to-resolve feature in the reconstruction, such as the cavity in Fig. 28(c), represents a true feature and 
not an artifact. Target structure information observable from the boundary estimate may also be especially 
valuable in cases where image quality is limited by noise, as in the 0 dB SNR example from Fig. 22. 

 
The results of this study also suggest a path of future research into leveraging the BC-LSM resonant 

frequency response for aid in image interpretation or target recognition. Fig. 24 demonstrates the close 
match between the observed and expected target-dependent resonant frequencies for the lowest three 
resonances (especially for the scenario in Fig. 24(b) with more sensors). Thus, improved confidence in 
target identification could potentially be achieved if a good match is found between not only the 
reconstruction and the expected target footprint, but also simultaneously the observed and expected 
spectrum of resonances. More advanced schemes could potentially be formulated that use the observed 
resonances, the estimated boundary, and geometrical information from the imagery as features for 
automatic target recognition. 

 
4.4 Conclusion 

 
In this section, we formulated and investigated a boundary-condition-enhanced linear sampling 

method (BC-LSM) formulation for imaging conducting targets from sparse receive data. Based on the 
perspective of the LSM as a transmit beamforming operation, the technique places constraints on the LSM 
solution in order to enforce electric field boundary conditions on an estimate of the target boundary. The 
boundary condition constraints discipline the LSM solution in order to mitigate the lack of channels in the 
receive aperture. Using simulated datasets, we demonstrated efficacy of the BC-LSM method and 
formulated strategies for choosing optimization parameters to achieve consistent results. We demonstrated 
the effects of noise, conductivity, and target resonances. We further validated performance by applying the 
BC-LSM to experimental data from publicly available datasets. The results from both simulated and 
experimental data show that the proposed technique significantly improves imaging performance over 
standard LSM imaging when the receive aperture is sparse 

 
 

5. RECEIVE-BEAMFORMING-ENHANCED LINEAR SAMPLING METHOD IMAGING 
 
This section is adapted in part from a paper previously published in conference proceedings [36]. 
 

5.1 Background 
 
In this section, we study the effects of performing a receive beamforming operation on the scattered 

field prior to solving the LSM system of equations. We hypothesize that the decrease of dimensionality of 
the LSM system resulting from beamforming may benefit imaging performance from a sparse or limited-
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aspect set of sensors. Beamforming enhancements to quantitative inverse scattering techniques (which, 
unlike qualitative techniques such as the LSM, reconstruct target material parameters as well as shape) have 
previously been introduced for the purpose of improving noise performance or lowering computational 
complexity [86, 87]. 

 
In the following subsections, we first present the mathematical formulation of the beamforming-

enhanced LSM under two different regularization frameworks — namely, conventional Tikhonov 
regularization and a phase-delay frequency variation (PDFV) regularization we have previously introduced 
for sparse-aperture imaging [31]. We then provide an imaging demonstration of data from a simulation of 
a challenging limited-aperture, sparse-receiver scenario. 

 
5.2 Imaging Formulation and Analysis 

 
We assume two-dimensional transverse magnetic propagation. A collection of 𝑁୲୶ transmitters and 

𝑁୰ୣୡ receivers are placed around an unknown target. The scattered electric field phasors for every transmit-
receive pair are collected in the 𝑁୰ୣୡ ൈ 𝑁୲୶ matrix 𝐄௦. For a pixel location r, conventional LSM imaging is 
performed by finding the solution 𝐠 to the system of equations 

 
𝐄ୱ𝐠ሺ𝐫ሻ ൌ 𝚽ሺ𝐫ሻ , (23) 

 
where 𝚽ሺ𝐫ሻ is the 𝑁୰ୣୡ ൈ 1 vectors of Green’s functions relating 𝐫 to each receive location. 

 
We modify the formulation in Eq. (23) by multiplying each side by 𝚽ୌሺ𝐫ሻ, resulting in 
 

𝐞ୌ𝐠ሺ𝐫ሻ ൌ ‖𝚽ሺ𝐫ሻ‖ଶ, (24) 
 
where 𝐞ୌ ൌ 𝚽ୌ𝐄ୱ. Clearly, 𝐞ୌ can be seen as the 1 ൈ 𝑁୲୶vector resulting from applying receive 
beamforming weights 𝚽ሺ𝐫ሻ to the multistatic data matrix. 

 
Regularization is typically used to overcome challenges related to the ill-posed nature of the LSM 

imaging problem. We first consider the effects of commonly used Tikhonov regularization. The Tikhonov 
regularized solution to Eq. (24) may be written as 

 

𝐠ሺ𝐫ሻ ൌ ൫𝐞𝐞ୌ  𝛼𝐈൯
ିଵ
𝐞‖𝚽ሺ𝐫ሻ‖ଶ, (25) 

 
where 𝐈 is the identity matrix and 𝛼 is a regularization parameter. Using the Sherman-Morrison formula for 
a matrix inverse, it can be shown that Eq. (25) reduces to 
 

𝐠ሺ𝐫ሻ ൌ ൬
𝐞

𝛼  ‖𝐞‖ଶ
൰ ‖𝚽ሺ𝐫ሻ‖ଶ. (26) 

 
If we assume that 𝛼 is chosen to be small relative to ‖𝐞‖, then we can approximate the indicator function 
as  
 

𝐼ሺ𝐫ሻ ൎ
‖𝐞‖

‖𝚽ሺ𝐫ሻ‖ଶ
. 

(27) 

 
Thus, under a Tikhonov-regularized framework, the indicator function is dominated by the correlation 
between the signal and the Green’s function. This correlation function may not fully leverage the available 
target scattering information in some cases. 
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Next, we consider an alternative regularization technique with the goal of extracting richer target 
information. We implement into the beamforming-enhanced LSM the phase-delay frequency variation 
(PDFV) constraint we have previously introduced to improve sparse-aperture LSM imaging [31]. The 
PDFV regularization stabilizes the LSM solution by enforcing a constraint on the change of the phase of 
the solution according to the assumed electrical path length of the incident wave. The PDFV-regularized 
problem statement for the beamforming-enhanced LSM is written: 

 

min
𝐠ሺ,𝐫ሻ

∑ ห𝐞ୌ𝐠ሺ𝑘, 𝐫ሻ െ ‖𝚽ሺ𝐫ሻ‖ଶห
ଶ
 𝛼‖𝐠ሺ𝑘, 𝐫ሻ‖ଶ

                                              𝛽𝐷ଶሺ𝑘, 𝐫ሻ
 , 

(28) 

 

where k is the wavenumber, the sum is over all collected wavenumbers, 𝛽 is a regularization parameter, 
and 

 

𝐷ሺ𝑘, 𝐫ሻ ൌ ‖𝐠ሺ𝑘, 𝐫ሻ െ 𝐠ሺ𝑘  Δ𝑘, 𝐫ሻ ⊙ expሺ𝑗Δ𝑘𝐝ሻ‖. (29) 

 

In Eq. (29), Δ𝑘 is a small wavenumber step between adjacent frequencies and 𝐝 is the 𝑁୲୶ ൈ 1 vector of 
distances between r and each transmitter. 

 

5.3 Imaging Results: Limited Aspect, Sparse-Receive Scenario 

 

We generate scattered field data using the two-dimensional finite-difference time-domain (FDTD) 
method. A layout of the simulation domain is given in Fig. 32(a). We place three discs in a triangular 
formation in the domain and assign them an electrical conductivity similar to copper ሺ5.7 ൈ 10 S/mሻ. We 
distribute 31 transmit locations and five receive locations on a 90o arc of radius 6 m, thereby creating a 
challenging limited-aspect, sparse receiver geometry. 

 

We obtain electric field phasors for every transmit-receive location pair for 21 frequencies between 
100 and 300 MHz. We add Gaussian white noise to the data such that the total signal-to-noise (SNR) ratio 
is 20 dB. We apply the standard LSM and the beamforming-enhanced LSM with both Tikhonov and PDFV 
regularization to the data. We generate multi-frequency indicator functions in each case by computing Eq. 
(4). 

 

The imaging results are shown in Fig. 32(b)-(d). The standard LSM and Tikhonov-regularized 
beamforming-enhanced LSM fail to faithfully reconstruct the targets. In contrast, PDFV-regularized 
beamforming-enhanced LSM accurately reconstructs the surfaces of the targets facing the sensors. 

 

Interestingly, the system dimensionality reduction from beamforming (when combined with PDFV 
regularization) may have stabilized the reconstruction by encouraging a reduction of geometric complexity 
of the image from cross-sections to partial surfaces. Reconstructing only surfaces in this case is reasonable 
given the limited target illumination in the limited-aspect geometry. 
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(a) 

 
(b) 

 
 (c) 

 
(d) 

 
Fig. 32—(a) The layout of the simulated data acquisition. 
Transmit locations are denoted with circles and receive locations 
are denoted with cross-hairs. (b) Standard LSM imaging results. 
(c) Beamforming-enhanced LSM results using Tikhonov 
regularization. (d) Beamforming-enhanced LSM results using 
PDFV regularization. In (b)-(d), the color bars denote 
𝟐𝟎 𝐥𝐨𝐠 𝑰ሺ𝐫ሻ, with 0 dB referenced to the most intense pixel and 
the lower limit determined by the dynamic range of the image. 

 

 

5.4 Imaging Results: Limited Aspect, Synthetic Aperture Scenarios 

 

Next, we generate data and imagery for scenarios that assume only a single transmitter and 5 receivers, 
as illustrated in Fig. 33a. The sensors are placed in formation with 2-degree spacing. The transmitter is 
centered in the formation. We assume the formation moves across a 10-m radius, 90o synthetic aperture 
while taking multistatic data at 1o increments. The scenario is of interest because it would allow for imaging 
with only five physical sensors while collected many samples in the synthetic aperture, thus creating a data 
set of significant information diversity with limited resources. We again simulate the scenarios via FDTD. 
We record the multistatic electric field phasors at 6 frequencies between 1.5 and 1.6 GHz. We again add 
noise such that the SNR is 20 dB. 

 

To image the data, we structure the data matrix in multidiagonal form as described in [88]. We then 
apply both the standard LSM and the PDFV-regularized beamforming-enhanced LSM. Imaging results are 
shown in Fig. 33(b)-(d) for a conducting cross target, a conducting disc target, and the conducting three-
disc target formation. The standard LSM fails to faithfully reconstruct the target geometry for both the cross 
target and the three-disc formation. For the single-disc target, the target response in the standard LSM image 
is somewhat accurately localized, but the reconstructed target region is inaccurate in shape and size. 
Conversely, the beamforming-enhanced LSM with PDFV regularization accurately reconstructs the 
surfaces of the targets facing the synthetic aperture in all cases. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Fig. 33—(a) The layout of the sensing geometry for a synthetic-aperture-radar-style scenario. The transmitter is denoted with 
the circle and the receivers are denoted with cross-hairs. The sensor spacing is exaggerated for the purposes of visualization. 
The sensor formation moves across the synthetic aperture while taking data. (b) Imaging results for a conducting cross target. 
(c) Imaging results for a conducting disc target. (d) Imaging results for a three-disc target. In (b)-(d), the color bars denote 
20 log 𝐼ሺrሻ, with 0 dB referenced to the most intense pixel and the lower limit set to -25 dB. 
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5.5 Conclusion 
 
We presented a study of the effects of a beamforming-enhanced linear sampling method for imaging 

from sparse or limited-aspect sensor distributions. We presented the formulation of the beamforming 
enhancement under two regularization frameworks. We then demonstrated imaging performance using 
limited-aspect datasets. The results demonstrated successful reconstruction of the target surfaces facing the 
sensors when the technique is regularized with a phase delay constraint. The promising results motivate 
further study. 

 
 

6. MACHINE LEARNING FOR EXTRACTING TARGET ELECTRICAL PARAMETERS 
FROM QUALITATIVE INVERSE SCATTERING IMAGERY 

 

This section is adapted from a paper published in conference proceedings [34]. 

 

6.1 Background 
 
An emerging area of investigation is to use the behavior of the LSM solution vector to extract not only 

target shape, but also other target characteristics. Various studies have explored the frequency behavior of 
the norm of the LSM solution in order to use the target resonance spectrum (i.e., transmission eigenvalues) 
for, e.g., target type classification, target void detection, and target dielectric properties characterization[78-
80]. The phase of the solution has received much less attention, even though the phase of the transmit 
beamforming weight is clearly a function of the target scattering characteristics and may therefore have 
exploitable information embedded within it. 

 
In this section, we introduce and evaluate a machine-learning-based strategy to exploit the phase of 

the LSM solution to classify targets according to their constituent dielectric properties. We generate 
simulated scattered field data for a variety of target shapes and sizes. We image the data using the LSM and 
then use the phase of the resulting solutions to build training vectors for a support vector machine (SVM). 
We then apply the SVM to separately generated testing data to classify targets as being composed of either 
low dielectric or highly conducting materials. In this way, we use qualitative inverse scattering imagery to 
extract quantitative target information. 

 
Previous studies have explored alternate strategies for using machine learning to extract dielectric 

properties information from scattered fields. In some [89, 90], the machine learning algorithm is applied 
directly to the scattered field data. However, this strategy would fail if there are multiple scatterers in the 
scene with large differences in dielectric properties, assuming that the training data is generated only for 
single scatterers. Our proposed approach is advantageous in that the SVM can be applied only to image 
pixels that compose the identified target of interest. We will show that this strategy allows us to isolate the 
scattering contributions from interference from other scatterers in the scene. Applying the machine learning 
strategy to imagery as opposed to raw data is therefore a critical step, as in many practical target imaging 
scenarios we should expect unwanted scatterers to be in the vicinity of the target. 

 
Previous studies have also explored using machine learning to enhance the imaging capabilities of 

quantitative inverse scattering techniques [91-94] Our work here is distinct in that it makes use of the 
advantages of qualitative over quantitative inverse scattering approaches, namely the ease of algorithmic 
implementation, and the lower computational expense. 
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6.2 Method 

 

We once again assume an LSM imaging problem in the form of Eq. (3). For consistency with the 
published conference paper, we use 𝜔 to denote frequency in this section, whereas in previous sections, we 
used k. 

 

We assume a matrix of training data 𝐀 ൌ ൣ𝐚ଵ,𝐚ଶ, … , 𝐚ே౬൧, where 𝐚 is the ith training vector and 𝑁୴ is 
the number of training vectors. Each vector corresponds to a training data acquisition where a single target 
is placed in the imaging domain. The vector of training labels is denoted 𝐛. Its ith entry is +1 for a dielectric 
target and –1 for a conducting target. 

 

The ith training vector is defined as 

 

𝐚 ൌ ቂ∠𝐠ሺ𝐫ଵ,𝜔ଵሻ, …∠𝐠 ቀ𝐫ே౦ ,𝜔ଵቁ ,∠𝐠ሺ𝐫ଵ,𝜔ଶሻ, … ,∠𝐠 ቀ𝐫ே ,𝜔ேቁ ,𝐝ሺ𝐫ଵሻ, …𝐝 ቀ𝐫ே౦ቁቃ


, 
(30) 

 

where 𝐫 is the jth LSM image pixel selected for the ith training sample, 𝑁୮ is the number of image pixels 

to train with, 𝜔 is the kth data acquisition frequency, ∠𝐠൫𝐫 ,𝜔൯ is the 𝑁୲୶ ൈ 1 vector of phases of the 
LSM solution for pixel 𝐫 and frequency 𝜔, and 𝐝ሺ𝐫ሻ is the 𝑁୲୶ ൈ 1 vector of distances between each 
transmit location and 𝐫. We include 𝐝ሺ𝐫ሻ in the training vector on the expectation that the phase of the 
LSM solution will be related to the electric length, and therefore propagation distance, traversed by the 
incident wave to the pixel of interest. We denote the length of each training vector as 

 

𝐿 ൌ 𝑁୲୶𝑁୮ሺ𝑁  1ሻ. (31) 

 

We use a linear SVM training algorithm with 𝐀 to generate classifier weights 𝐰 and 𝑤, where 𝐰 is 
of size 𝐿 ൈ 1 and 𝑤 is a scalar. We choose the method of sequential minimal optimization [95] for this 
purpose. Given a test vector 𝐚୲ୣୱ୲ generated in the same form as given in Eq. (30) for a target of unknown 
electrical properties, we then compute the quantity 𝑏୲ୣୱ୲ ൌ 𝐰𝐚୲ୣୱ୲  𝑤. If 𝑏୲ୣୱ୲  0, the unknown target 
is classified as a dielectric, and if 𝑏୲ୣୱ୲  0, the target is classified as conducting. 

 

6.3 Procedure for Technique Evaluation 

 

6.3.1 Data Generation, LSM Imaging, and Classification Procedure 

 

The imaging setup is illustrated in Fig. 34. Twenty transmit/receive locations are uniformly distributed 
along a circular arc of radius 8 m. Within the transmit/receive circle interior is an imaging domain, i.e., the 
two-dimensional domain over which LSM images are created, of lateral dimension 10.8 m and vertical 
dimension 4.8 m. Within the imaging domain are two target domains denoted Ωଵ and Ωଶ, which are offset 
from the imaging domain center to the left and right, respectively, by 3 m. Both Ωଵ and Ωଶ are square in 
shape with side lengths of 4 m. 
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Fig. 34—The imaging setup for generating training and testing data 

 
 
We generate sets of training vectors in the following manner. For each desired training vector, we 

place a single target in Ωଵ. We then generate scattered field data using two-dimensional transverse magnetic 
finite-difference time-domain (FDTD) simulations. We place a current source at each transmit location in 
sequence, feed the current source with a transmit signal in the form of a Gaussian pulse, and record the 
resulting scattered electric field at each receive location. We then transform the time-domain scattered field 
data to complex phasor form at 21 frequencies ranging from 50 to 100 MHz using the discrete Fourier 
transform and populate 𝐄𝐬ሺ𝜔ሻ. 

 
We repeat this process to generate 400 training vectors for Ωଵ. The target spatial placement in Ωଵ 

varies randomly between vectors. Depending on the target type under investigation, the target shape or size 
may also vary randomly, as described in the following subsection. Half of the samples use a lossless target 
with dielectric constant 2, i.e., a dielectric target, and the other half use a target with electric conductivity 
of 5.7 ൈ 10 S/m, i..e, a conducting target. For each training vector, we add Gaussian white noise such that 
the signal to noise ratio (SNR) is 50 dB and solve for 𝐠ሺ𝐫,𝜔ሻ using 𝛼 ൌ 10ିହ on a Cartesian grid in the 
imaging domain with a discretization of 8.1 cm. We then select 𝐠ሺ𝐫 ,𝜔ሻ for an 11 ൈ 11 grid of pixels 𝐫 
with one-pixel spacing centered on the target location and populate the vector 𝐚 as in Eq. (30). With 𝑁୲୶ ൌ
20, 𝑁୮ ൌ 121, and 𝑁 ൌ 21, the length of 𝐚 is thus 𝐿 ൌ 53,240 by Eq. (31). 

 
We repeat the procedure in the preceding two paragraphs to create 400 training vectors for Ωଶ. We 

then create classifier weights 𝐰ଵ, 𝑤ଵ for Ωଵ and 𝐰ଶ, 𝑤ଶ for Ωଶ. 
 
We then generate a series of test data samples on the same domain. For each test data sample, we 

randomly place one dielectric target in Ωଵ and one conducting target in Ωଶ. Thus, unlike in the training 
data, each testing data sample includes two targets of disparate dielectric properties. Using this testing data 
will evaluate the effectiveness of using LSM imaging prior to application of the SVM in order to isolate 
signal contributions from multiple targets that interfere with one another in the formation of 𝐄𝐬ሺ𝜔ሻ. 

 
We acquire 𝐄𝐬ሺ𝜔ሻ for the test data sample, add noise to achieve a 30 dB SNR, and form separate 

𝐠ሺ𝐫 ,𝜔ሻ and 𝐚୲ୣୱ୲ vectors for both targets in the same manner as is described above for the training data. 
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We choose a lower SNR than we used for the training data under the assumption that training data may be 
controlled better than test data acquired in a practical imaging scenario in the field. We apply 𝐰ଵ, 𝑤ଵ to 
the test vector for the target in Ωଵ and 𝐰ଶ, 𝑤ଶ to the test vector for the target in Ωଶ and record whether the 
SVM accurately classified each target. The process is repeated until 50 tests have been performed. 

 

We apply this procedure across multiple training and testing datasets to evaluate the effectiveness of 
the SVM-based strategy for classification of target electric parameters. The following section describes the 
simulated data sets we use for this purpose. 

 

6.3.2 Target Scenarios 

 

We evaluate the effectiveness of the proposed SVM-based classification method across four different 
target scenarios. The scenarios are listed and described in Table 2. Scenarios A and B use discs as the 
imaging targets. For Scenario A, the discs are of radius 0.5 m for all samples, while for Scenario B, the 
radii of the discs vary randomly from sample to sample with a uniform distribution ranging from 0.25 to 
0.5 m. 

 

 

Table 2—Descriptions of Target Scenarios Used to Generate Test Data 

 

Target Scenario Description 
Scenario A  Discs of radius 0.5 m 
Scenario B Discs with radii ranging from  

0.25 to 0.5 m 
Scenario C Train: complex targets 1-6 

Test: complex targets 1-6 
Scenario D Train: complex targets 1-3 

Test: complex targets 4-6 

 

 

Scenarios C and D use the set of six complex target shapes pictured in Fig. 35. In both cases, the target 
used for testing and training vector is selected randomly from this set. For Scenario C, both the training and 
testing data sets use all six targets, while in Scenario D, the training data sets use only targets 1 through 3 
and the testing data sets use only targets 4 through 6. 
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Fig. 35—Complex targets used for Scenarios C and D 

 

 

6.4 Results and Discussion 

 

6.4.1 LSM Imagery 

 

We first report representative LSM image results for several test cases. Fig. 36(a) shows 20 log 𝐼ሺ𝐫ሻ 
for example test data from Scenario B where the dielectric disc on the left side of the image is of radius 44 
cm and the conducting disc on the right side of the image is of radius 27 cm. Fig. 36(c) shows a detail view 
of the conducting target response with 𝐫ଵ, … , 𝐫ே overlaid. Fig. 36(b) shows 20 log 𝐼ሺ𝐫ሻ for example test 

data from Scenario C where the dielectric target is complex target 3 and the conducting target is complex 
target 5 

 

In both example images, the target response of the left side of the imaging domain is isolated from the 
target response on the right side of the imaging domain. This demonstrates that the LSM imaging technique 
can be used to distinguish pixels belonging to individual targets in the scene for the purpose of building the 
feature vector 𝐚୲ୣୱ୲.  
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(a) 

 
(c) 

 
 (b) 

 

Fig. 36—LSM magnitude images 20 log 𝐼ሺ𝐫ሻ for (a) Scenario B and (b) Scenario C test examples. In both cases, the target 
boundaries are denoted with the dashed lines. (c) Detail view of the right (conducting) circular target image, with crosshairs 
signifying the locations 𝐫ଵ, … , 𝐫ே౦ . 

 

 

 

Fig. 37 shows LSM solution phase distributions for example test data from Scenario A. In each case, 
the phase associated with the transmitter at coordinates (x,y) = (8,0) m at 50 MHz is plotted. There is no 
clear visually apparent pattern in the phase distributions distinguishing the responses from the dielectric 
targets on the left side of the domain from the conducting targets on the right side of the domain. In the next 
subsection, we apply the proposed machine learning technique to determine whether the SVM can discern 
phase patterns across the data vectors that may not be visually apparent but can nevertheless be used to 
classify the targets according to their electric parameters. 
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Fig. 37—Four example phase distributions of the LSM solution from the Scenario A test set. The displayed phase is for the 
transmitter at coordinates (8,0) m and frequency 50 MHz. The dashed lines signify the boundary of the targets. 

 

6.4.2 Classification Accuracy 

 

Fig. 38 displays classification error results for each of the four target scenarios described in Table 2. 
The classifications errors are plotted against the number of training vectors used to generate 𝐰ଵ,𝑤ଵ and 
𝐰ଶ,𝑤ଶ, ranging from 40 to 400 in steps of 40 vectors. The data points represent means over 10 
independently generated noise instances, while the error bars display the maximum and minimum errors 
over the noise instances. Each plot gives both the classification error recorded after applying the SVM 
weight vectors to the training data as well as the testing data. 

 

As expected, the classification error is significantly lower when the SVM weights are applied to the 
training data than when they are applied to the testing data. The training error decreases significantly as the 
number of training vectors increases from 40. After using around 160 training vectors, the classification 
error is at or near zero. 

 

The testing classification error also decreases significantly as the number of training vectors increases 
from 40. The error approaches a minimum around after using 160 or 200 training vectors. The error behaves 
inconsistently if more than 200 training vectors are added, with significant increases in error and large 
variances across noise instances occurring in some cases. This inconsistent behavior, along with the 
observation that the error for the training set converges to near zero for similar numbers of training vectors, 
suggest that the SVM technique is overfitting for more than 160 to 200 training samples. The results suggest 
a straightforward heuristic of choosing the appropriate number of training vectors according to convergence 
of the training classification error. 
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Fig. 38—Classification error vs the number of training vectors used to calculate the SVM for each target scenario. Error results are 
plotted for application of the SVM to both the training data sets and the testing data sets. Plotted points signify the mean error 
across 10 noise instances and error bars signify the maximum and minimum errors. 

 
 
We report the mean testing error rates when using 160 training vectors for each scenario in Table 3. 
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Table 3—Testing Error Rates for 160 Training Vectors Averaged Across 10 Noise Instances 
 

Target 
Scenario 

Dielectric Target Conducting Target 

d(r) included in A d(r) excluded in A d(r) included in A d(r) excluded in A 

Scenario A  1.0% 1.6% 0.8% 1.4% 

Scenario B 5.6% 7.0% 2.2% 3.2% 

Scenario C 6.4% 4.4% 3.0% 3.8% 

Scenario D 8.0% 7.0% 7.2% 11.6% 

 
 

We observe the lowest overall testing error for the Target Scenario A data, in which both the target shape 
and size are constant for all samples. The lowest mean error for this scenario is around 1% for both the 
dielectric and conducting targets. Testing error rates are higher for the other three scenarios due to the larger 
degree of target variability the SVM must accommodate. We observe modest error increases for Target 
Scenarios B and C, where the target size and shape vary between samples, respectively. The mean error for 
these two cases ranges between approximately 2% and 6%. The worst error is observed for Target Scenario 
D. This is expected due to the mismatch in target shape between the training and testing data. The mean 
error for this case is around 8% for the dielectric targets and around 7% for the conducting targets 

 
Thus, the average classification error across all data sets in this study is less than 10%, assuming the 

number of training vectors used for SVM weight generation is not large enough to lead to overfitting. These 
results suggest that the phase patterns in the LSM solution vector contain information relevant to the target 
material properties and that this information can be exploited via a machine learning approach. 
Furthermore, it suggests that the LSM technique effectively isolates the signal contributions from each 
target in the scene by localizing its phase response to pixels in the vicinity of the target support. 

 
We also report in Table 3 the mean testing error rates observed when the transmitter-to-pixel ranges 

𝐝ሺ𝐫ሻ are excluded from the training vectors. The results show that excluding the ranges increases the error 
rate in six of eight cases. The average error rate increase is about 1 percentage point across the eight cases, 
and the worst error rate increase is 4.4 percentage points. These results suggest that including 𝐝ሺ𝐫ሻ in the 
training vectors is typically helpful. Further investigation is required to select the best features with which 
to augment the training matrix. 

 
 

6.4.3 Future Work 
 
The favorable results reported in the previous subsection motivate continued study of machine learning 

approaches to extracting target information from the LSM solution vector. Future work will involve 
investigating machine-learning approaches for classification based on a wider variety of dielectric 
materials. This may include investigating and compensating for the effects of dielectric uncertainty or 
heterogeneity. A wider study of data collection parameters is also warranted. In particular, performance 
may be improved via alternate choices of frequencies. The frequencies in this study were chosen such that 
the targets are electrically small. Choosing higher frequencies, such that the targets span several 
wavelengths, may enable more complex LSM phase patterns in the target interiors, which may aid in 
material classification. Incorporating additional image features, such as the LSM pixel magnitude, may also 
improve performance. Lastly, enhancements may be available through the use of more complex machine 
learning approaches such as multilayer perceptrons or deep neural networks. 
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6.5 Conclusion 
 
We investigated a machine-learning approach to classifying targets in qualitative inverse scattering 

imagery according to their electrical properties. We hypothesized that the phase associated with the LSM 
solution for target pixels contains exploitable target-material-dependent information. We evaluated this 
hypothesis by generating simulated scattered field training data for both dielectric and conducting targets, 
imaging the data using the LSM, constructing a support vector machine classifier using the phase of the 
LSM imagery, and applying the resulting classifier to simulated testing data. The proposed technique 
distinguished between dielectric and conducting targets in the testing set with error rates of less than 10% 
across all data sets, assuming the number of training vectors was chosen to avoid overfitting via a 
straightforward heuristic. The results support the validity of the proposed machine learning strategy. 
Additional performance enhancements may be achieved in future work by incorporating alternate frequency 
bands and LSM magnitude data into the support vector machine or by investigating strategies based on 
deep learning or neural networks. 

 
 

7. A FAR-FIELD TRANSFORMATION PROCEDURE FOR MONOSTATIC LINEAR 
SAMPLING METHOD IMAGING 

 
This section is adapted from a paper previously published in conference proceedings [37].  

 
7.1 Background 

 
Of the works that have addressed the problem of sparse aperture quantitative inverse scattering, there 

have been approaches that rely on incorporating multifrequency information either in the native frequency 
domain [77] or from a time-domain perspective [96]. Others such as [75] introduced more sophisticated 
regularization schemes that attempted to leverage additional priors from multispectral data. However, all 
of these approaches also would fail when both the transmit and receive apertures are sparse. What has been 
lacking in the literature are studies in which the LSM can exploit the highly redundant nature of multistatic 
data prior to inversion. Some examples of multistatic enrichment procedures have been presented in 
previous works such as in [97], where a pseudo total-variation scheme was considered; however, we argue 
the use of schemes such as total variation or Tikhonov for enrichment are local techniques that do not 
specifically leverage the fact that dense multistatic data is somehow low-dimensional. 

 
In this section, we take a different approach toward an enrichment algorithm for qualitative inverse 

scattering with the specific case of imaging from monostatic geometries. Our approach is a two-step 
procedure that is based on exploiting multistatic redundancy from a K-space perspective. In the first step, 
we find regions where the support of monostatic and bistatic geometries intersect in K-space, which are 
then used to fill in the missing data points. The second step aims to complete the remainder of the bistatic 
apertures for which there is no intersection with monostatic support using a matrix completion procedure 
[98]. 
 
7.2 Preliminaries 
 

For the sake of simplicity, we restrict ourselves to ℝଶ in this work. Assume a homogeneous 
background medium embedding extended targets with reflectivity ρ(x) and whose support Σ ⊂ ℝଶ is 
compact with connected boundary Γ. Let S denote the unit circle and let 𝑢൫𝒙;𝒅൯ represent an interrogating 
monochromatic planewave traveling in a direction 𝒅 ⊂ 𝑆 with wavenumber k > 0. The incident field 
induces a scattered field 𝑢௦ሺ𝒙ሻ for which the total field satisfies 
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∇ଶ𝑢ሺ𝒙ሻ  𝑘ଶ𝑛ሺ𝒙ሻ ൌ 0, for 𝑥 ∈ ℝଶ\Γ (32) 
 

𝑢ሺ𝒙ሻ ൌ 𝑢൫𝒙;𝒅൯  𝑢௦ሺ𝒙ሻ (33) 

 

lim
→ஶ

√𝑟 ቀ
డ௨ೞ

డ
െ 𝑖𝑘𝑢௦ቁ ൌ 0, 𝑟 ൌ |𝒙|. (34) 

 
Here, n(x) is the index of refraction, which assumes the form n(x) = 1 − ρ(x). The total field u(x) (in most 
reasonable cases) can be represented in the form of a Lippmann-Schwinger integral, 
 

min
𝐱ሺ𝐫ሻ

‖𝐀ሺ𝐫ሻ𝐱ሺ𝐫ሻ െ 𝐛ሺ𝐫ሻ‖ଶ, (35) 

 
where we have the homogeneous Green’s function defined as 
 

𝐺ሺ𝒙,𝒚ሻ ൌ
𝑖
4
𝐻
ଵሺ𝑘|𝒙 െ 𝒚|ሻ. 

(36) 

 
Writing Eq. (35) in operator form, we can compactly write the forward problem as 
 

൫𝐼  𝑘ଶ𝐴ఘ൯
ିଵ
𝑢ሺ𝒙ሻ ൌ 𝑢൫𝒙;𝒅൯, (37) 

 
where we have defined 
 

𝐴ఘ𝑓ሺ𝒙ሻ ≔  න 𝐺ሺ𝒙,𝒚ሻ𝜌ሺ𝒚ሻ𝑓ሺ𝒚ሻ𝑑ଶ𝑦
ℝమ

. (38) 

 
The forward problem being well-posed [99] allows us to write 
 

𝑢ሺ𝒙ሻ ൌ ൫𝐼  𝑘ଶ𝐴ఘ൯
ିଵ
𝑢൫𝒙;𝒅൯. (39) 

 
The inverse scattering problem is to recover ρ(x) from knowledge of the scattered field us(x). Under the 
condition that ฮ𝐴ఘฮ ൏ 1, we can expand the inversion operator in Eq. (39) into a Neumann series [100]: 
 

𝑢ሺ𝒙ሻ ൌ ൫𝐼 െ 𝑘ଶ𝐴ఘ  𝑘ସ𝐴ఘଶ െ 𝑘𝐴ఘଷ  ⋯൯𝑢൫𝒙;𝒅൯. min
𝐱ሺ𝐫ሻ

‖𝐀ሺ𝐫ሻ𝐱ሺ𝐫ሻ െ 𝐛ሺ𝐫ሻ‖ଶ. (40) 

 
From Eq. (40), we can see that although the mapping between u and ui is linear, it is nonlinear between u, 
(and equivalently us) and ρ. The Born approximation, being a so-called weak scattering relaxation, dictates 
that only the first two terms in the expansion Eq. (40) is relevant, which effectively linearizes the inverse 
problem. Thus, retaining only the first two terms in Eq. (40) and then subtracting out the incident field from 
the equation, we obtain a linear relationship between ρ and us, 
 

𝑢௦ሺ𝒙ሻ ൌ െ𝑘ଶ  𝐺ሺ𝒙,𝒚ሻ𝜌ሺ𝒚ሻ𝑢ሺ𝒚ሻ𝑑ଶ𝑦 ℝమ , (41) 

 
in the far-field where, as r → ∞, we have that 𝑢௦൫𝒙,𝒅൯ asymptotically approaches its corresponding far-
field pattern 𝑢ஶ௦ ሺ𝒙ෝ,𝒚ෝሻ and  
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𝐺ሺ𝒙,𝒚ሻ ⟶ 𝐺ஶሺ𝒙ෝ,𝒚ሻ ൌ
𝑒
గ
ସ

√8𝜋𝑘
𝑒ି𝒙ෝ.𝒚. 

(42) 

 
Therefore, in the far-field, we have 
 

𝑢ஶ௦ ሺ𝒙ෝ,𝒚ෝሻ ൌ െ𝛾න 𝑒ି൫𝒙ෝି𝒅൯.𝒚𝜌ሺ𝒚ሻ𝑑ଶ𝒚,
ℝమ

 
(43) 

 
with 
 

𝛾 ൌ
𝑘ଶ𝑒

గ
ସ

√8𝜋𝑘
, 

(44) 

 
the spatial frequencies (knots) as 𝒌 ൌ 𝑘൫𝒙ෝ െ 𝒅൯, we obtain a Fourier relationship between the image and 
the Born-approximated scattered field, 
 

𝑢ஶ ൌ െ𝛾න 𝑒ି𝒌.𝒚𝜌ሺ𝒚ሻ𝑑ଶ𝒚
ℝమ

. (45) 

 
 
Conventional back-projection imaging is based on applying an inverse Fourier transform onto the scatter 
data to retrieve 𝜌ሺ⋅ሻ. 
 
7.2.1 Review of the LSM  
 

Qualitative imaging methods, like the LSM, take a different point of view of the inverse problem, 
where we aim to reconstruct the support Σ rather than ρ(ꞏ) itself from the scattered data. A brief description 
of the LSM begins with defining the far-field operator 𝐹: 𝐿ଶሺ𝑆ሻ → 𝑆, 

 

𝐹𝑔ሺ𝒙ෝሻ ≔  න𝑢ஶ௦ ൫𝒙ෝ,𝒅൯
ௌ

𝑔൫𝒅൯𝑑𝑠൫𝒅൯. (46) 

 
Our aim is to find a weight function 𝑔൫𝒅, 𝒛൯ ∈ 𝐿ଶሺ𝑆ሻ so that the field resulting from application of Eq. (46) 
coincides with the far-field of a radiating point source located at 𝒛 ∈ Σ. In other words we aim to find a 
solution to the far-field equation 
 

𝐹𝑔ሺ𝒙ෝ, 𝒛ොሻ ൌ 𝐺ஶሺ𝒙ෝ, 𝒛ොሻ. (47) 
 
It can be shown [101] that for any ϵ > 0, there always exists a density within ϵ distance of the point source 
that remains bounded whenever 𝒛 ∈ Σ. As 𝒛 → Γ, any such approximating solution has the asymptotic 
behavior ‖𝑔‖మሺௌሻ → ∞ and remains unbounded for all 𝒛 ∈ Σା. In this sense, ‖𝑔ሺ∙, 𝒛ሻ‖మሺௌሻ forms the basis 
of an indicator function for the set Σ. Practical application of the technique however relies on a 
regularization solution to Eq. (17). The conventional approach is through Tikhonov regularization, 
 

min
‖ሺ∙,𝒛,ሻ∈మሺௌሻ‖

‖𝐹𝑔 െ 𝐺ஶ‖మሺௌሻ
ଶ  𝛼‖𝑔‖మሺௌሻ

ଶ , (48) 

 



 
Sparse Aperture Multistatic Radar Imaging Techniques: Final Report 65 
 

 

which is strictly convex for any α > 0. There are a number of advantages for employing the Tikhonov 
approach: First, we can explicitly prove that this particular regularization scheme admits solutions that 
adhere to the properties we outlined above [102], and second, the solution can be computed in a rather 
efficient manner. We refer readers to section 3.1 of [75] for a discussion of an efficient numerical block-
wise approach for Tikhonov-based LSM. 
 
7.3 Monostatic to Multistatic Transformation 
 

From Eq. (37), we can see that a major drawback to the LSM is the need to know 𝑢ஶ௦ ሺ∙,∙ሻ for all 
൫𝒙ෝ,𝒅൯ ∈ 𝑆 ൈ 𝑆, which is a considerable amount of spatial data. It is well known that when the data consists 
of only a few bistatic pairs, the LSM fails [103], and cannot even be applied with monostatic data in its 
native form. However, it is also well known that complete multistatic knowledge is overly redundant when 
frequency diversity is available, which is usually much easier to achieve in most applications. 

 
Furthermore dense monostatic data over a band B = [kmin, kmax] should contain enough information to 

image a scene in stable fashion, although again, it is not clear how techniques like LSM can leverage it. 
The spatial frequency representation of the data gives us perspective on how monostatic and multistatic 
geometries are related in terms of information overlap. In the monostatic case, the knots reduce to 𝒌 ൌ 2𝑘𝒌, 
which means that the region of support is contained in an annular region R centered at the origin as shown 
in Fig. 39. Now consider a single bistatic configuration with a fixed direction of incidence 𝒅 and fixed 
wavenumber kp ∈ (kmin, kmax]. We see from Fig. 39 that the aperture traces out a circle Cp (also known as an 
Ewald sphere [100]) centered at 𝑘𝒅 with radius kp. We can also observe that there is a segment of Cp 
contained in R while the remainder of bistatic aperture is outside the monostatic region of support. In fact, 
this holds for all 𝒅 ∈ 𝑆 and for any kp ∈ (kmin, kmax). The strategy is then clear: Given monostatic data on a 
band B, we aim to construct a virtual multistatic data set by filling in values on regions where the two 
coincide. As we can see in Fig. 39, this will yield data on a continuous portion of the aperture, while the 
remainder still remains unknown. However, under mild assumptions on Σ, the far-field data 𝑢ஶ௦  is analytic 
[104], thus for any 𝒅 and kp, we can uniquely extend this function onto the entire aperture as justified by 
the principle of analytic continuation. 
 
 

 
 
Fig. 39—An example of a full aperture monostatic region R for kmin = 2 and kmax = 10, which is shaded in light blue. The dashed 
lines correspond to bistatic regions Cp for kp = 8, and 3 different incident angles. The white region contains spatial frequencies 
not captured by the monostatic geometry. 
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7.3.1 Far-Field Aperture Completion 
 

The problem of extending 𝑢ஶ൫𝒙ෝ,𝒅൯ for fixed 𝒅 and k > 0 onto the entire aperture S given knowledge 
of 𝑢ஶ on a continuous subset of S is known to be ill-posed. Previous works such as [105] use techniques 
such as Tikhonov or TV to regularize the inverse problem. However, we argue that these techniques have 
only a local point of view of the data and do not exploit multistatic redundancy as a prior. Instead, we look 
at the problem from the discrete perspective of matrix completion. In matrix completion [98], one seeks to 
predict/recover missing values of a matrix given the values of a small subset of known entries. The problem 
of course is highly ill-posed, however; it has been shown that if the underlying matrix is sufficiently low-
rank, it can be recovered surprisingly accurately using a rather small number of known entries [98]. 
Furthermore, recovery of the matrix can be accomplished in polynomial time using convex optimization. 
To be more specific, let 𝑿 ∈ ℂൈ be a matrix and 𝑃:ℂൈ → ℂൈଵ be the linear map that extracts the 
known m entries of X. We then seek to find a solution 

 
min

𝑿∈ℂൈ
ሼrankሺ𝑿ሻ ∶  ‖𝑃ሺ𝑿ሻ െ 𝑏‖ଶ ൏ 𝜖ሽ. (49) 

 
While solving Eq. (49) is known to be NP-hard, a convex relaxation via the nuclear norm can be solved in 
polynomial time and under mild conditions can achieve an equivalent solution to Eq. (49). Therefore, we 
seek instead to solve 
 

min
𝑿∈ℂൈ

൛‖𝑿‖ଵ,∗:𝑃ሺ𝑿ሻ ൌ 𝑏ൟ (50) 

 
with the nuclear norm defined as 
 

𝜎ሺ𝑿ሻ,



ୀଵ

 
(51) 

 
and the 𝜎ሺ𝑿ሻ’s are the singular values of X. 
 
7.3.2 Discretized Numerical Approach 

 
We now describe our numerical approach in more concrete terms. Given monostatic data at the spatial 

frequencies ki, which we assume are sampled sufficiently for the underlying scene, we interpolate the 
sampled data to obtain a model of 𝑢ஶሺ𝒌ሻ for all 𝒌 ∈ 𝑅. Next, we construct a 𝑛 ൈ 𝑛 multistatic grid ൫𝒙ෝ ,𝒅൯, 
where 𝒙ଙෝ  and 𝒅 are the ith bistatic observation direction due to a planewave from the jth direction, for a 
chosen wavenumber kp ∈ (kmin, kmax). These grid points will then correspond to a n × n multistatic response 
matrix F whose entries ideally would be given as 

 
𝐹 ൌ 𝑢ஶ௦ ൫𝒙ෝ ,𝒅൯. (52) 

 
Let 𝔗 denote the index set ሼ1,2, … ,𝑛ሽ and define the set of spatial frequencies 
 

𝒮 ൌ ൛𝒌ᇱ,ᇱ ∈ 𝑅:𝒌ᇲ,ᇲ ൌ 𝑘൫𝒙ෝᇲ െ 𝒅ᇲ൯, ሺ𝑖ᇱ, 𝑗ᇱሻ ∈ 𝔗 ൈ 𝔗ൟ. (53) 
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Now let the index set 𝒥 ൌ 1, … ,𝑚 ൌ |𝒮| enumerate the set 𝒮, for which we can define the mapping 𝑃 ∶
𝑭 ⟼ 𝒃, where 𝒃 ∈ ℂ is defined component-wise as 

 

𝑏 ൌ 𝑢ஶ൫𝒌൯, for 𝑗 ∈ 𝒥. (54) 

 

Then, for a defined tolerance ϵ > 0, we complete the matrix F for the remainder of the entries via solving 
Eq. (50). In this work, we employ an accelerated proximal gradient (APG) approach similar in nature to the 
method employed in [106], the details of which we leave for a future paper. 

 

7.4 Simulation Results 

 

We present some imaging results to evaluate efficacy for the described monostatic LSM approach. For 
the first experiment, we consider a simple, perfectly conducting, kite-shaped target. For this scene, we 
simulated far-field scatter data corresponding to a low-frequency monostatic collection using a method of 
moments (MoM) code. The monostatic geometry was obtained at 1-degree increments for a band of 
frequencies corresponding to wavenumbers kmin = 2 and kmax = 10. For the virtual multistatic response data, 
we chose a grid of incident and observation directions both sampled in 1-degree increments, and set the 
desired wavenumber as kp = 6. Fig. 40 shows the simulated monostatic response, the virtual multistatic 
response corresponding to kp = 6 as obtained by our transformation procedure, and the associated LSM 
reconstruction obtained via Tikhonov regularization. 
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Fig. 40—Results for a simple example of imaging a kite PEC scatterer, a) simulated monostatic data of the kite across angle and 
frequency. b) Virtual multistatic data corresponding to a single wavenumber kp = 6 using 1-degree sampling in both observation 
and incidence. c) The resulting LSM reconstruction. 

 

 

For the second experiment, we consider 2D monostatic scatter data taken from a detailed simulation 
[107] of the DJI Phantom II quadcopter target. The scatter data was obtained by FDTD code developed at 
ARL, where the monostatic response was measured again at every 1 degree over a 1-10 GHz range, which 
corresponded to approximately to kmin = 21 and kmax = 209. Looking at the HH monostatic response of the 
quadcopter target in Fig. 41, we note that the data does not exhibit as much symmetry as the kite’s 
monostatic response. For our LSM reconstruction, we chose kp = 170 and, as before, sampled both incidence 
and observation apertures using 1-degree increments. The resulting reconstruction of the quadcopter is also 
shown in Fig. 41. 
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Fig. 41—Reconstruction of the DJI Phantom quadcopter target a) A 3D model of the quadcopter oriented in the same direction as 
was used in the 2D FDTD simulation. b) The monostatic response in terms of wavenumber and angle. c) LSM reconstruction 
using the virtual multistatic data at virtual wavenumber kp = 170 and 1-degree sampling in both observation and incidence. 

 
 
7.5 Summary and Future Work 
 

To summarize, in this paper, we presented an enrichment procedure that mapped dense monostatic 
data into a virtual multistatic data for the purpose of applying LSM-based imaging when only monostatic 
data is available. As discussed, the procedure was based on finding spatial frequency regions of common 
support which was then followed by a matrix completion algorithm to extend the predicted data onto the 
entire multistatic apertures. There are several clear paths of future extensions of this work. First, all 
frequencies should be incorporated simultaneously instead of pursuing enrichment on a single-frequency 
basis. Second, extension of the approach to the full 3D and polarimetric LSM framework remains to be 
investigated. More fundamentally, however, while the simulations given here do indicate initial efficacy of 
the approach, several questions still remain, as we note that the argument behind the presented procedure 
is only valid under the Born approximation, which goes against one of the main arguments for using the 
LSM in the first place. Therefore, as future work, it would be interesting to compare the LSM 
reconstructions using the procedure using data for which the Born approximation is satisfied as well as 
images obtained using conventional backprojection. More importantly, the work here lays the foundation 
for an enrichment procedure for when some bistatic data is known and needs to be extended to denser 
multistatic grids. In this case, we anticipate the procedure would be very similar to what we described here, 
and that reliance on the Born approximation should be less of an issue. 
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8. CONCLUSION 

 
In this document, we reported the results of an NRL 6.1 Base Program project towards the development 

of RF imaging techniques that overcome the limitations of simplified linear scattering models used by most 
radar algorithms. The development goal was to achieve imagery of high fidelity to the true target geometry 
by leveraging a more complete electromagnetic model. The algorithm framework was the linear sampling 
method (LSM), an imaging technique that avoids simplified scattering models but is challenging to 
implement in practical scenarios due to its need for spatially dense, wide-angle, multistatic sensor arrays.  

 
To overcome this challenge, we created new LSM-based imaging algorithms that mitigated the lack 

of spatial channels by incorporating information from other domains. We used the perspective of the LSM 
as a transmit-focusing problem and our knowledge of propagation and electromagnetics to constrain and 
stabilize the LSM solution. We sought to leverage both the magnitude and phase of the LSM solution, in 
contrast to much prior LSM work that focused only on the magnitude. We also developed new methods to 
leverage the information content inherent in multifrequency data.  

 
These development strategies resulted in several effective, new imaging techniques. The phase-delay 

frequency variation (PDFV) LSM achieved fidelity by constraining the phase of the LSM solution to 
maintain an incident field focus in the imaging domain. The boundary-condition-enhanced LSM improved 
imaging performance against conducting targets by constraining the solution in order to satisfy electric field 
boundary conditions on the target surface. The beamforming-enhanced LSM allowed for imaging in 
limited-aspect scenarios, which are particularly challenging for conventional LSM, by incorporating a 
receive-beamforming enhancement into the PDFV-LSM. A new machine learning strategy used the LSM 
phase to classify the electrical properties of targets. Lastly, a frequency-domain interpolation method 
allowed for monostatic LSM imaging by leveraging data redundancy across frequency. 

 
The imaging results from these techniques demonstrated significantly improved fidelity compared to 

conventional LSM processing across a variety of imaging geometries, including dense-transmit, sparse 
receive scenarios; limited-aspect scenarios; and monostatic scenarios. The robustness of the techniques was 
demonstrated by generating results using a variety of datasets, including finite-difference time-domain 
simulation as well as laboratory-collected experimental datasets from multiple publicly available external 
sources.  

 
There are a number of interesting research avenues remaining for future work. The new techniques 

should be adapted and evaluated for three-dimensional apertures and three-dimensional targets. Imaging 
effectiveness should be investigated using a greater variety of experimental datasets and complex 
experimental targets. The challenging sparse-transmit, sparse-receive scenario should be addressed. 
Techniques should be developed for extracting features from the LSM imagery for automatic target 
recognition or classification. In particular, the use of target internal resonances, which are described in 
Section 4 and are somewhat unique to LSM, should be explored for this purpose. Lastly, challenges for 
LSM imaging in the field, such as generating appropriate Green’s functions for the right-hand side of the 
LSM equation in Eq. (1), should be addressed.  
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