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EXECUTIVE SUMMARY 

Introduction: The Equivital EQ02+ LifeMonitor is a field-expedient body sensor system 
used for monitoring vital signs such as heart rate in warfighters, athletes, and manual 
laborers. However, the EQ02+ has only been validated for light-to-moderate and 
steady-state activities.  

Purpose: We evaluated the efficacy of the EQ02+ for measuring HR in military 
personnel during intermittent tests of physiological limits. 

Methods: Twenty-seven US Army personnel (2 women, 25 men; age, 24 ± 6 years; 
height, 174 ± 7 cm; body mass, 77 ± 14 kg) were continuously monitored during two 
laboratory visits that included five activities: supine rest, incremental walk, incremental 
run, verification run, and load carriage. Heart rates recorded by the EQ02+ were 
compared against measurements from the chest-strap Polar H10 heart rate sensor. We 
examined the agreement between systems in the capability to measure continuous 
minute-by-minute, resting, and maximal heart rates. 

Results: Heart rates continuously monitored by the EQ02+ and H10 systems over the 
laboratory visits were in close agreement (Bias ± SD, -0.3 ± 3.7 bpm; 95% LoA, [-7.5, 
7.0 bpm]; R2, 0.991). The EQ02+ and H10 systems provided similar measurements of 
resting heart rate (Bias ± SD; -0.5 ± 1.6 bpm; 95% LoA, [-2.7, 3.7 bpm]; R2, 0.954) and 
maximal heart rate (Bias ± SD; -1.3 ± 3.4 bpm; 95% LoA, [-7.9, 5.3 bpm]; R2, 0.901). 

Conclusion: The EQ02+ is an accurate body sensor for continuous HR monitoring of 
work/rest cycles across the physiological limits of cardiovascular function. 
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INTRODUCTION 
 
Continuous monitoring of cardiorespiratory responses is critical for numerous 

military, ergonomic, occupational, research, and athletic applications [1]. Clinicians 
monitor heart rate (HR) responses to physical activity to ensure patients remain safely 
below pre-defined intensity limits [2]. Exercise physiologists commonly use HR as a 
criterion for verifying maximal effort during peak aerobic fitness testing [3]. In addition, 
HR is an essential input for real-time thermoregulatory models that estimate core body 
temperature during rest and strenuous physical activity for safety purposes [4, 5]. 

 
Laboratory tests of physiological limits are useful for designing and interpreting 

future training or field activities [6, 7]. For example, sport coaches can prescribe a 
common, individualized exercise intensity across a team of athletes by scaling HR 
training zones to the maximal heart rate (MHR) recorded during preliminary testing [6, 
8]. Physical workloads may be further individualized by accounting for differences in 
resting heart rate (RHR): a useful indicator of cardiorespiratory fitness as well as 
autonomic stress level [9]. Longitudinal tracking of RHR is a prospective approach for 
identifying potentially severe performance decrements before they occur. Impairments 
in physical conditioning are often preceded persistent elevations in above baseline RHR 
or a reduced capacity to recover following acute stressors [10]. Key cardiorespiratory 
outcomes from laboratory exercise testing provide benchmarks for characterizing 
physiological demands of less structured activities such as casualty evacuation [11] and 
military load carriage over complex terrain [7]. Thus, identifying an ambulatory monitor 
that accurately measures both upper and lower cardiorespiratory limits is of great 
importance for many real-time and planning purposes. 

 
The Equivital EQ02+ LifeMonitor (EQ02+; Equivital; Cambridge, UK) is a field-

expedient body sensor [12, 13] that measures cardiorespiratory parameters such as 
HR. The EQ02+ has been shown to be a valid and reliable ambulatory monitor of vital 
signs during light-to-moderate laboratory exercise [14] and free living [15]. Researchers 
have utilized the EQ02+ for ambulatory monitoring of Warfighters [7], athletes [16], 
laborers [17], and other populations [18] that engage in exhausting physical work. 
However, the efficacy of the EQ02+ for monitoring HR during intermittent tests reaching 
physiological limits has yet to be determined. 

 
The purpose of this study was to evaluate the viability of the EQ02+ for 

continuous HR monitoring in military personnel during intermittent tests of physiological 
limits. In addition, we sought to compare measurements of upper and lower 
cardiovascular limits from the EQ02+ against a standard laboratory alternative. Proving 
the capabilities of the EQ02+ in these circumstances is an essential step towards 
identifying physiological body sensors with universal HR monitoring applications. 
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METHODS 
 

Design 
 
We compared HR measurements from the EQ02+ against concurrent 

measurements from the Polar H10 (H10; Polar Electro; Lake Success, NY); an 
established criterion HR monitor [19]. Heart rates were continuously monitored over five 
activity periods that collectively tested the systems from the lowest to highest 
physiological extremes with varying workrate increases and recovery dynamics (Figure 
1). Participants were asked to perform each of the activities on two separate laboratory 
visits with the exception of the load carriage test (first visit only). 
 
 
Figure 1. Testing sequence. 

 

*, Visit 1 only; Blue fill, treadmill incline setting; Solid red line, treadmill speed setting. 
 
 
Participants 

 
Twenty-seven US Army soldiers and civilians (2 women, 25 men; age, 24 ± 6 

years; height, 174 ± 7 cm; body mass, 77 ± 14 kg) volunteered for this study. 
Participants were briefed on the purpose of the study and potential risks before 
voluntarily giving their informed written consent. This study was approved by the 
Institutional Review Board (IRB) at the US Army Medical Research and Development 
Command (MRDC; Fort Detrick, MA). Investigators adhered to Department of Defense 
Instruction 3216.02 and 32 CFR 219 on the use of volunteers in research. 
 
Procedures 

 
On each of the two laboratory visits, participants arrived at a morning start time 

(0600-0900), wearing standard physical training attire (shorts, t-shirt, socks, and running 
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shoes). Precautions for testing included avoiding alcohol (> 24 h), vigorous exercise (> 
48 h), high-intensity exercise (> 48 h), as well as caffeine, nicotine, and food intake (> 
10 h). To avoid potentially deleterious effects of dehydration, bottled water (500 ml) was 
provided the night before and the morning of each visit and urine specific gravity was 
checked to be ≤ 1.030. Participants were queried upon arrival that they had adhered to 
study precautions. 

 
After anthropometric measurements, participants were measured for lower chest 

circumference at the xiphisternum along the bottom of the pectoral muscles to choose a 
corresponding sensor belt size. The sensor belt clasp was positioned at the center of 
the chest below the pectorals, and fastened to one of three settings (tight, middle, 
loose); a correctly fitted belt was determined by placing two fingers between the belt 
and skin and finding a tight but comfortable fit. A Polar H10 HR monitor belt was also 
fitted for each participant, with the H10 system positioned directly below the EQ02+ 
sensor belt. Both belts were moistened with water on all electrodes to ensure a strong 
signal, and the EQ02+ sensor belt’s serial number, size, and clasp settings were noted 
for use through all participant visits before refitting both systems. 

 
An EQ02+ Sensor Electronic Module (SEM) was removed from the charging 

dock, activated, and placed in the SEM housing of the sensor belt underneath the left 
armpit; time of activation was also recorded. All SEMs were configured in ambulatory 
mode at a 15 sec reporting rate to optimize for highly vigorous activity, and 
measurements such as HR and ECG waveform were monitored for real-time accuracy 
via Bluetooth signal with the EqView Mobile Android Application live view. The EQ02+ 
ECG waveform signal and noise were also tested for robustness by asking participants 
to generate volatile upper body movement while observing waveform shape for 
excessive noise. Participants were then either deemed properly fitted, or had minor 
adjustments made to sensor belt positions before rechecking HR and ECG waveform 
validity. 

 
Once properly fitted, participants completed the supine rest period by laying face-

up on a cot for 30 min in a quiet, dimly lit room. Participants were instructed to remain 
as still as possible while remaining awake for the duration of the period. The minimum 
HR measured during each supine rest period was considered to be the individuals’ 
RHR. 

 
The incremental walk began with a 3 min stage at 1.16 m·s-1 on a level incline. 

The treadmill speed was increased by 0.09 m·s-1 increments each 2 min stage 
thereafter until the highest speed (1.97 m·s-1) was completed, or the participant was 
unable to continue without jogging, hopping, or running. Upon completion, the 
participant stood on the treadmill for a 6 min recovery period without supporting 
themselves on the handrails. 

 
The incremental run involved participants running a modified Astrand incremental 

running test [20]. Each participant began by running for 3 min on a 0% incline at a 
speed based on their self-reported two-mile run pace. The treadmill incline was 
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increased by 2.5% for each 2 min stage thereafter until volitional exhaustion was 
reached. Following a 12 min rest interval, participants completed a verification run to 
exhaustion with the treadmill set to the average incline over the final 2 min of the 
incremental run with the speed increased by 10%. After volitional exhaustion was 
reached, the participant stood for another 6 min recovery period. Maximal heart rate 
was considered to be the highest HR measured during each run. 

 
The load carriage test required participants to carry three rucksack loads (22, 44, 

and 66% of body mass) at three walking speeds (0.45, 0.89, and 1.34 m·s-1) on a 0% 
incline for 2 min each. Loads were carried in the Modular Lightweight Load-Carrying 
Equipment (MOLLE) 4000: the US Army’s most recently developed military rucksack 
[21]. The MOLLE 4000 was loaded so that the heaviest mass was closest to the body. 
Rest periods of approximately 3 min were allotted between loads to unload, repack, and 
refit the MOLLE 4000. 
 
Statistical Analyses 

 
Data were analyzed using R (Version 3.3.1; R Foundation for Statistical 

Computing; Vienna, Austria) [22] and are reported as mean ± standard deviation (SD) 
unless stated otherwise. Heart rates from both systems were averaged per minute. We 
employed a linear mixed effects modeling approach in order to quantify the agreement 
between HR monitoring systems while accounting for repeated measures. Random 
effects of activity within participants on intercepts were included for continuous 
monitoring comparisons while random effects of participants on intercepts were 
included for activity-specific, RHR, and MHR comparisons. Bland-Altman plots of 
agreement were generated for visual depiction of the agreement between the EQ02+ 
and H10 systems along with 95% limits of agreement (95% LoA) [23]. To limit 
overplotting effects, markers in the Bland-Altman plot for continuous monitoring were 
color-coded by two-dimensional binned kernel density estimation. Color-coding markers 
using two-dimensional kernel density estimation enables better visualization of the 
structure and density of the dataset [24]. Higher density regions are colored in 
progressively warmer colors from the least dense (light blue) to most dense (red). 
Disagreements between methods were also characterized by the bias and SD of paired 
differences, marginal coefficient of determination (R2) [25], and concordance correlation 
coefficient (CCC) [26]. 
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RESULTS 
 
The full range of HR measurements across all participants was similar between 

the EQ02+ (43 to 205 bpm) and H10 (41 to 207 bpm). Figure 2 shows the agreement 
between measurements from the EQ02+ and H10 monitoring systems from the 
complete dataset. Heart rates continuously monitored over the laboratory visits by the 
EQ02+ and H10 were in close agreement (Bias ± SD, -0.3 ± 3.7 bpm; 95% LoA, [-7.5, 
7.0 bpm]; R2, 0.991; CCC, 0.996). 
 
 
Figure 2. Bland-Altman plot of agreement between heart rate (HR) measured by the 
Equivital EQ02+ and Polar H10 monitoring systems. 

 
Markers are color-coded by two-dimensional kernel density estimation to distinguish the 
lowest (light blue) to highest (red) density regions of the overall dataset. Dashed line, 
bias; dotted lines, 95% limits of agreement. 

 
 
When examining individual activities, the EQ02+ demonstrated similar accuracy 

and precision for the supine rest (Bias ± SD, -0.3 ± 3.4 bpm; 95% LoA, [-6.6, 5.5 bpm]; 
R2, 0.775; CCC, 0.878) as during the incremental walk (Bias ± SD, -0.4 ± 2.8 bpm; 95% 
LoA, [-5.8, 5.0 bpm]; R2, 0.977; CCC, 0.988). The EQ02+ and H10 systems had slightly 
lower precision but higher correlations during the incremental run (Bias ± SD, -1.1 ± 4.0 



 

7 
 

bpm; 95% LoA, [-8.9, 6.8 bpm]; R2, 0.982; CCC, 0.990) and verification run (Bias ± SD, 
-0.3 ± 3.8 bpm; 95% LoA, [-7.6, 7.1 bpm]; R2, 0.981; CCC, 0.990). Out of the five 
activities, the limits of agreement were widest during the load carriage test (Bias ± SD, 
1.1 ± 5.4 bpm; 95% LoA, [-9.5, 11.6 bpm]; R2, 0.875; CCC, 0.932). 

 
Figure 3 displays the agreement between systems when measuring RHR and 

MHR. The EQ02+ and H10 systems recorded similar measurements of RHR (Bias ± 
SD; -0.5 ± 1.6 bpm; 95% LoA, [-2.7, 3.7 bpm]; R2, 0.954; CCC, 0.973). Relative to RHR 
values, MHR measurements were slightly less consistent between the EQ02+ and H10 
systems (Bias ± SD; -1.3 ± 3.4 bpm; 95% LoA, [-7.9, 5.3 bpm]; R2, 0.901; CCC, 0.940). 

 
 

Figure 3. Bland-Altman plot of agreement between the Equivital EQ02+ and Polar H10 
systems for resting heart rate (left panel) and maximal heart rate (right panel). 

 
Dashed line, bias; dotted lines, 95% limits of agreement. 

 
 

DISCUSSION 
 
Our study demonstrates that the Equivital EQ02+ LifeMonitor is accurate for 

ambulatory HR monitoring in several previously untested conditions. Most notably, we 
found that minute-by-minute measurements from the EQ02+ were in close agreement 
with recordings from a standard research HR monitor over a series of variable intensity 
exercises and intermittent rest periods. The EQ02+ provided similar measurements of 
RHR and MHR compared to this standard during common laboratory assessments. 
These findings emphasize the utility of the EQ02+ and encourage future evaluation of 
the system in other austere conditions endured by Warfighters, firefighters, and manual 
laborers. 

 
The accuracy of the EQ02+ demonstrated in the current study is similar to that 

shown by earlier validation research involving less strenuous exercise. Liu et al. [14] 
found similar agreement (Bias, 1.2 bpm; 95% LoA, ± 6.6 bpm) comparing the EQ02+ 
against another Polar sensor (S810i HR Monitor, Polar Electro Oy, Kempele, Finland) in 
six male participants at rest and during low-to-moderate intensity laboratory exercise. 
Akintola et al. [15] compared raw ECG data from the EQ02+ against the gold standard 



 

8 
 

Holter monitoring system (SEER MC Holter monitor; GE Healthcare, USA) in eighteen 
adults over a 24 h data collection period. Predictably, the bias (-0.8 bpm) and Pearson 
correlation coefficient (0.997) were highest in the analyzed datasets with the lowest 
ECG artifact content. 

 
Other HR monitoring systems have demonstrated comparable or lesser 

functionality for monitoring high-intensity exercise. Flanagan et al. [27] reported a R2 of 
0.99 and 95% LoA [-2.84, 2.42 bpm] comparing the Armour39 monitoring system 
(Under Armour; Baltimore, MD, USA) versus a laboratory ECG (IXBIO4; iWorx 
Systems, Inc, Dover, NH, USA) in seventy-five men during graded cycle ergometer 
exercise. Kim et al. [1] compared HR measured by the Zephyr BioHarness™ against a 
12-lead ECG (Vmax Spectra System, VIASYS, Yorba Linda, CA) during a graded 
exercise test in thermal-neutral conditions as well as a sustained exercise in a hot 
environment (30 °C, 50% relative humidity). They also found low bias but with less 
precision for both the graded exercise test (Bias, 0.5 bpm; 95% LoA, [-15.3, 16.3 bpm]) 
and exercise in the heat (Bias, 0.5 bpm; 95% LoA, [-17.2, 17.8 bpm]). 

 
Although our current study demonstrates the accuracy of the EQ02+ for 

continuous HR monitoring at physiological extremes, there are many conditions that 
haven’t been examined to universally validate the system across the spectrum of 
military tasks. Extreme environmental conditions, such as heat [28], cold [29], or water 
immersion [30] present challenges to both the human and monitoring device. The US 
Army also has a wide diversity of body sizes and shapes that require proper equipment 
fitting for accurate HR measurements [31, 32]. Additionally, Warfighters often conduct 
dynamic and complex activities while wearing cumbersome protective clothing [33-38], 
which may complicate proper physiological monitoring. However, this study shows that 
the EQ02+ is accurate over a large range of HR including the on-set of the rest-to-work 
transition and during recovery following hard physical work. 
 

CONCLUSION 
 
The Equivital EQ02+ LifeMonitor is an acceptable body sensor for continuous 

heart rate monitoring of work/rest cycles across the physiological limits of 
cardiovascular function. Users can be confident in the accuracy of resting and maximal 
heart rates measured by the EQ02+ during standardized laboratory testing. These 
advantages combined provide military users with enhanced programming and 
evaluation of relative physical workloads in individual Warfighters. 
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