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PROJECT SUMMARY 
 

The project efforts incorporated efforts from (list co-workers) to explore the underlying physics behind a 

material’s refractive index under optical frequencies. The multipronged approach searched for fundamental 

limits of arbitrary materials to determine the upper bounds of refractive indices based on their materials 

properties to aid in future materials design. Literature data was compiled from different materials classes 

to develop trends that relate a material’s high refractive index to its structure, composition, etc. From these 

trends, Ab-initio simulations of previously unexplored materials were undertaken to uncover possible high 

refractive indices for optical frequencies. Synthesis methods for high refractive index materials were 

studied to probe large scale synthesis routes for future optical components.  
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1. IDENTIFYING THE PURPOSE OF THE WORK 
DARPA DSO initiatives EXTREME and NLM are seeking new classes of optical materials and 

architectures which can set the stage for radically new capabilities in communications, computation, and 

imaging. New or enhanced nonlinear optical effects, leveraged or amplified by phase-change materials 

(PCMs), may enable entirely new realms of performance. Although NLO is not a new subject, the ultimate 

bounds on speed and magnitude of responses are not well understood. Recent discoveries in the science of 

natural materials, advances in synthetic and metamaterials, and better theoretical and computational tools 

for light-matter interactions, will all contribute to the next stage of NLO. DARPA seeks orders of magnitude 

enhancements, not incremental improvements. 

 

The current effort centers around identifying maximal possible refractive index at optical 

frequencies as well as synthesis methods for fabricating such materials. To date, people use a unit-cell-

based approach to design for large effective index, and there had been no known materials with minimal 

absorption and refractive index n greater than 3 at optical frequencies until a report last year of n > 26. We 

have developed an ab initio theory to understand fundamental limits to refractive index, based on causality-

induced sum rules as well as probing the effects of band-structure engineering. In other words, our primary 

intent was to map out a computational framework and apply it to the estimate refractive indices of complex 

classes of bulk materials.  This in turn, will help understand the underlying physics of the high refractive 

indices in complex materials. It will also provide an important component to design and engineer other high 

RI materials, in addition to the examples chosen in this one-year study. The identification of mechanisms 

for achieving high index, and candidate materials to achieve it, can have transformative impact across the 

field of applied optics for lenses and related devices. 

This work is mapping out a computation-based framework for design of materials to estimate 

refractive indices of complex classes of materials.  Our intent in one year is to demonstrate feasibility of a 

systematic framework for correlating structural components that enable bulk materials with high refractive 

indices. These would be key components to designing materials with high refractive indices.  Given the 

complexity of the specific property related to refractive index (atom-light interactions) and effect of 

structures on these properties, the multi-step methodology. The top-level goal for the experiments was to 

demonstrate the feasibility of creating large-area metasurfaces with a ultra-high refractive index. Our 

objective is to “reverse-engineer” the features of a bulk crystalline, giant-refraction material (KTN:Li)  lies 

at the boundary between materials science and optical physics 

 

Currently, electronic dielectric constants for bulk materials are simulated using ab initio methods.  

For ionic parts, electron-phonon interactions are computed using perturbation methods.  These are limited 

both because of the applicability to all the material classes and the time-intensive nature of the 

computations. As reported in Nature Photonics 12, 734-738, the recent demonstration of giant refractive 

index material (KTN:Li) is in the form of a bulk crystal of millimeter dimensions, operated at a temperature 

near the boundary between the paraelectric and ferromagnetic phases.  The limitations of this demonstration 

are that it requires a special crystal-growth technique based on a complex oxide material, and does not 

translate readily to implementation in the form of a large-area, thin optical component such as a lens. 
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2. BRIEF DESCRIPTION OF THE EFFORT ACCOMPLISHED 
In this work, we derive fundamental limits to the refractive index of any material, given only the underlying 

electron density and either the maximum allowable dispersion or the minimum bandwidth of interest. The 

Kramers-Kronig relations provide a representation for any passive (and thereby causal) material, and a well-

known sum rule constrains the possible distribution of oscillator strengths. In the realm of small to modest 

dispersion, our bounds are closely approached and not surpassed by a wide range of natural materials, 

showing that nature has already nearly reached a Pareto frontier for refractive index and dispersion. 

Surprisingly, our bound shows a cube-root dependence on electron density, meaning that a refractive index 

of 26 over all visible frequencies is likely impossible. Conversely, for narrow-bandwidth applications, 

nature does not provide the highly dispersive, high-index materials that our bounds suggest should be 

possible. We use the theory of composites to identify metal-based metamaterials that can exhibit small 

losses and 2X increases in refractive index over the current best materials. Moreover, if the elusive lossless 

metal" can be synthesized, we show that it would enable arbitrarily high refractive index, nearly achieving 

our bounds even at refractive indices of 100 and beyond at optical frequencies.  

Materials trends for materials with high refractive indices were tabulated and analyzed. These 

trends in materials properties laid a computation groundwork for the application of ab-initio computations 

to predict the refractive index of complex materials such as perovskites or tertiary materials. We have the 

used a systematic computational approach to understand the basis of high dielectric constants to design 

materials atom by atom. 

Thin films of high refractive index KTN and KTN:Li on centimeter scale substrates through sputtering 

methods for potential of scaling the materials production.  
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3. POTENTIAL APPLICATIONS OF THE RESULTS 
We systematically mapped out a general theory of maximum refractive index at optical frequencies, via 

geometrical patterning of an effective response from known materials or atomistic engineering towards a 

bulk response of novel materials.  Our work identified the frontier of what was possible, balancing 

considerations of larger index with possible constraints on loss and bandwidth.  We delivered models at 

two scales – one bulk materials, engineering at the scale of the wavelength, and a second assuming ab-initio 

material synthesis, allowing electronic band-structure engineering – that provide guidance as to how to 

synthesize high-index materials and maximum possible refractive indices.   

Utilizing the models and design rules discovered in this project, advances in optical and nanophotonic 

systems open new vistas for design: for applications ranging from broadband meta-lenses to ultrathin 

photovoltaics to high quality- factor resonators, higher index directly leads to better devices with greater 

functionality. 
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4. PROJECT OBJECTIVES MET 
The project objectives met were to: 

 Determine the upper bounds for refractive indices based on fundamental limits to understand how 

giant refractive indices can possibly be achieved through engineering the physical properties of a 

material. 

 Determine broadband limits for high index effective responses 

 Categorized vast classes of materials to tabulate their composition, structure, electronic, and optical 

properties 

 Utilizing the categorized materials, an analysis was undertaken to determine trends in material 

properties and their relation to a high refractive index.  

 Promising candidates and materials classes were studies through Density Functional Theory 

simulations to uncover new materials with potentially high refractive index materials 

 Synthesis pathways were studied to fabricate materials with maximal refractive indices. 

 Evaluations of fabrication methods to make large area materials with reasonable super-crystal 

quality.  
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5. WORK COMPLETED 

5.1 LIMITATIONS OPTICAL FOCUSING AND DETERMINING BROAD BAND LIMITS 

Increasing the refractive index of optical materials would unlock new levels of functionality in fields 

ranging from metasurface optics [1–7] to high-quality-factor resonators [8–14]. In this Article, we develop 

a framework for identifying fundamental limits to the maximum possible refractive index in any material 

or metamaterial, dependent only on the achievable electron density, the frequency range of interest, and 

possibly a maximum allowable dispersion. We show that the Kramer’s– Kronig relations for optical 

susceptibilities, in conjunction with a well-known sum rule, impose surprisingly strong constraints on 

refractive-index line shapes, imposing strict limitations to refractive index at high frequency, with only 

weak (cube-root) increases possible through electron-density enhancements or large allowable dispersion. 

We show that a large range of questions around maximum index, including bandwidth-averaged objectives 

with constraints on dispersion and/or loss, over the entire range of causality-allowed refractive indices, can 

be formulated as linear programs amenable to computational global bounds, and that many questions of 

interest have global bounds with optima that are single Drude– Lorentz oscillators, leading to simple 

analytical bounds. For the central question of maximum index at any given frequency, we show that many 

natural materials already closely approach the Pareto frontier of tradeoffs with density, dispersion, and 

frequency, with little room (ranging from 1.1–1.5 times) for significant improvement. We apply our 

framework to high-index optical glasses (characterized by their Abbe number) and bandwidth-based 

bounds. For anisotropic refractive indices, or materials with magnetic in addition to electric response, we 

use a nonlocal-medium-based transformation to prove that any positive- or negative-semidefinite material 

properties cannot surpass these bounds, although there is an intriguing loophole for hyperbolic 

metamaterials. There are no natural materials in the regime of high index and high dispersion, but we show 

that composite metamaterials can be designed to have refractive indices approaching our bounds along this 

curve. With conventional metals such as gold and aluminum, we show that low-loss refractive indices of 5 

in the visible, 18 in the near-infrared (3 µm wavelength), and 40 in the mid-infrared (10 µm wavelength) 

are achievable. If a near-zero-loss metal can be discovered or synthesized [15, 16], high-dispersion 

refractive indices above 100 would be possible at any optical frequency. 

A large material refractive index n offers significant benefits for nanophotonic devices. First, the reduced 

internal wavelength enables rapid phase oscillations, which enable wavefront reshaping over short distances 

and is the critical requirement of high-efficiency meta-lenses and metasurfaces [1–7]. Second, it 

dramatically increases the internal photon density of states, which scales as n3 in a bulk material [17] and 

offers the possibility for greater tunability and functionality. The enhanced density of states is responsible 

for the ray-optical 4n2 “Yablonovitch limit” to all-angle solar absorption [18] and the random surface 

textures employed in commercial photovoltaics. Third, high optical index unlocks the capability for near 

degenerate electric and magnetic resonances within nano resonators. Tandem electric and magnetic 

response is critical for highly directional control of waves; whereas a single electric dipole radiates 

efficiently in two equal and opposite directions, a tandem electric and magnetic dipole can radiate efficiently 

into a single, controllable direction, then forming the building blocks of complex, tailored scattering profiles 

[19–26]. Fourth, a large phase index can lead to a large group index, which underpins the entire field of 

slow light [27], for applications from delay lines to compressing optical signals. Finally, high refractive 

index enables significant reductions of the smallest possible mode volume in a dielectric resonator. Recent 

theoretical and experimental demonstrations show the possibility for highly subwavelength mode volumes 

in lossless dielectric materials [28–32]. In this case, a high refractive index increases the discontinuities in 

the electric and displacement fields across small-feature boundaries, enabling significant enhancements of 

the local field intensity that are useful for applications from single molecule imaging [33–36] to high-

efficiency nonlinear frequency conversion [37–40]. 

The very highest refractive indices of transparent natural materials are 4 to 4.2 at near-infrared frequencies 

[41], and 2.85 at visible frequencies [42]. Metamaterials, comprising multiple materials combined in 

random or designed patterns, have been designed with refractive indices up to 5 at visible frequencies [43], 
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albeit with significant material losses. As the frequency is reduced, the refractive index can be significantly 

increased, a feature predicted by our bounds and borne out by the literature. Low-loss metamaterials have 

been designed to achieve refractive indices near 7 at infrared frequencies (3–6 µm) wavelengths [44], above 

38 at terahertz frequencies [45], and above 1200 at microwave frequencies. Near the phase transition of 

ferroelectric materials, it is known (Chap. 16 of Ref. [46]) that in principle the refractive index is unlimited. 

Yet the caveat is that the frequency at which this occurs must go to zero. Experimental and theoretical 

studies have identified multiple materials with “colossal” static dielectric constants [47], even surpassing 

values of 10,000 [48]. All of these results are consistent with and predicted by the bounds that we derive. 

Recently, scattering experiments on KTN:Li near its phase transition led to the claim of a refractive index 

of at least 26 across the entire visible region [49]. As we discuss further below, such a refractive index 

appears to be theoretically impossible: it would require an electron density and/or dispersion almost three 

orders of magnitude larger than those of known materials, an unprecedented anomaly. Thus, our work 

suggests that the experimental measurements may arise from linear-diffraction or even nonlinear optical 

effects, and do not represent a true phase-delay refractive index. 

Theoretical inquiries into possible refractive indices have revolved around models that relate refractive 

index to other material properties, and particularly that of the energy gap in a semiconducting or insulating 

material. The well-known Moss Relation [50, 51] is a heuristic model that suggests that refractive index 

falls off as the fourth root of the energy gap of the material. This model can be effectively describe some 

materials over a limited energy range, but is not a rigorous relation and cannot be used for definite bounds. 

Another approach, related to ours, is to use the Kramer’s–Kronig relation for refractive index to suggest 

that refractive index should scale with the square root of refractive index [52, 53]. But this approach has 

not been used for definite bounds, nor is the scaling relation correct: as we show, an alternative 

susceptibility-based sum rules shows that the refractive index should scale as the cube-root of electron 

density (for a fixed dispersion value, without which any value can in principle be arbitrarily high). A recent 

result utilizes renormalization-group theory to suggest that the refractive index of an ensemble of atoms 

must saturate around 1.7 (Ref. [53]). There have also been bounds on nonlinear susceptibilities using 

quantum-mechanical sum rules [54, 55], but, as far as we know, there have not been bounds for arbitrary 

materials on linear refractive index, which is the key controlling property for optics and nanophotonic 

applications. 

Separately, bounds have been developed for other material properties, such as the minimum dispersion of 

a negative-permittivity or negative-index material [56, 57]. Such bounds utilize causality properties, similar 

to our work, to optimize over all possible susceptibility functions. There have also been claims of bounds 

on the minimum losses of a negative-refraction material [58], though recent work [59] has identified errors 

in that reasoning and shown that lossless negative-refraction materials are possible, in principle. If the 

approaches of these papers were directly applied to refractive index, they would yield trivially infinite 

bounds, as they do not use of electron density sum rule of Eq. (2) below. Interestingly, if one were to apply 

this electron-density sum rule to the problems of negative permittivity and negative index, it may tighten 

the bounds of Refs. [56–58], especially at high frequencies. We discuss this possibility further in the 

Conclusion, Sec. 8. VII. 

In this paper, we establish the maximal attainable refractive index for arbitrary passive, linear, isotropic 

media, applicable to naturally occurring materials as well as artificial metamaterials. We first derive a 

general representation of optical susceptibility starting from Kramer’s–Kronig relations (Sec. 8. I), enabling 

us to describe any material by a sum of Drude–Lorentz oscillators with infinitesimal loss rates (Sec. 8. I). 

By considering a design space of an arbitrarily large number of oscillators, the susceptibility is a linear 

function of the degrees of freedom, which are the oscillator strengths. 

Many constraints (dispersion, bandwidth, loss rate, etc.) are also linear functions of the oscillator strengths, 

which themselves are constrained by the electron density via a well-known sum rule. Thus a large set of 

questions around maximum refractive index are linear programs, whose global optima can be computed 

quickly and efficiently [60]. The canonical question is: what is the largest possible refractive index at any 
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frequency ω, such that the material dispersion is bounded? In Sec. 8. II we show that this linear program 

has an analytical bound, which is a single, lossless Drude–Lorentz oscillator that corresponds to sharp two-

level transitions. These bounds describe universal tradeoffs between refractive index, dispersion, and 

frequency, and we show that many natural materials and metamaterials closely approach the bounds. We 

then devote a separate section (Sec. 8. III) to optical glasses, which are highly studied and critical for high-

quality optical components. We show that our bounds closely describe the behavior of such glasses, and 

that there may be opportunities for improvement at low Abbe numbers (high dispersion values). An 

alternative characterization for refractive index may not be a specific dispersion value, and instead a desired 

bandwidth of operation, and in Sec. 8. IV we derive bounds on refractive index as a function of allowable 

bandwidth. Across all of our bounds we find that there may be small improvements possible relative to 

current materials (1.1–1.5×). Finally, we consider the possibilities of anisotropy and/or magnetic response 

(Sec. 8. V). We show that a large swath of such effects cannot lead to higher refractive indices, and are 

subject to the same isotropic-index bounds derived earlier in the paper. We also find intriguing loopholes 

including gyrotropic plasmonic media (which have a modified Kramer’s–Kronig relation) and hyperbolic 

metamaterials, although the former may be particularly hard to achieve at optical frequencies while the 

latter may be difficult to achieve with low losses. We identify exactly the material properties that enable 

such loopholes. Furthermore, we use the theory of composites to design highly dispersive, high-index metal-

based metamaterials with low losses not realized in nature (Sec. 8. VI). In the Conclusion, Sec. 8. VII, we 

discuss possible extensions of our framework to incorporate alternative metrics, gain media, anomalous 

dispersion, and nonlinear response. 

5.1.1 MAXIMUM REFRACTIVE INDEX AS A LINEAR PROGRAM 

To identify the maximal refractive index, one first needs a representation of all physically allowable optical 

material properties. We consider here a transparent, isotropic, nonmagnetic material, which can be 

described by its refractive index n, relative permittivity ε = n2, or its susceptibility χ = ε − 1. (We discuss 

extensions to anisotropic and/or magnetic materials in Sec. 8. V and we discuss the possible inclusion of 

loss below.) Instead of assuming a particular form for the susceptibilities (like a small number of Drude–

Lorentz oscillators), we assume only passivity: that the polarization currents in the material do no net work. 

Any passive material must be causal [61]; causality, alongside technical conditions on the appropriate 

behavior at infinitely large frequencies in the complex plane, implies that each of the material parameters 

must satisfy the Kramer’s–Kronig (KK) relations. One version of the KK relation for the material 

susceptibility relates its real part at one frequency to a principal-value integral of its imaginary part over all 

frequencies: 

(1) 

With the exception of gyrotropic plasmonic response [62], whose presence is negligible at optical 

frequencies, any material’s susceptibility must satisfy Eq. (1). This restriction already imposes bounds on 

regions of negative dispersion [56–58], but it does not by itself impose any bound on how large the real part 

of the susceptibility (and correspondingly the refractive index) can be. The key constraint is the “f-sum 

rule:” a certain integral of the imaginary part of the susceptibility must equal a particular constant multiplied 

by the electron density Ne of the medium. Typically, electron density is folded into a frequency ωp, which 

for metals is the plasma frequency but for any material describes the high-frequency asymptotic response 

of the material. The f-sum rule for the susceptibility is [63–65] 

(2) 
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where e is the charge of an electron, ε0 the free-space permittivity, and me the electron rest mass. This sum 

rule arises as an application of the KK relation of Eq. (1): at high enough frequencies ω, the material must 

be nearly transparent, with only a perturbative term that arises from the individual electrons without any 

multiple scattering effects. The sum rule of Eq. (2) is the critical constraint on refractive index: intuitively, 

it places a limit on the distribution of oscillators in any material; mathematically, it limits the distribution 

of the measure ω’Imχ(ω’)dω’ that appears in Eq. (1). 

To simulate any possible material, we must discretize Eqs. (1,2) in a finite-dimensional basis. If we use a 

finite number N of localized basis functions (e.g. a collocation scheme [66] of delta functions), 

straightforward insertion of the basis functions into Eq. (2), in tandem with the constraint of Eq. (1), leads 

to a simple representation of the susceptibility: 

 , (3) 

(4) 

Equation (3) distills the Kramer’s–Kronig relation to a set of lossless Drude–Lorentz oscillators with 

transition frequencies ωi and relative weights, or oscillator strengths, ci. Equation (4) is a renormalized 

version of the f-sum rule of Eq. (2), thanks to the inclusion of ωp
2 in the numerator of Eq. (4). There is one 

more important restriction on the ci values: they must all be positive, since ω0 Imχ(ω0) must be positive for 

a passive material. Given Eqs. (3,4), it now becomes plausible that there is a bound on refractive index: the 

oscillators of Eq. (3) represent all possible line shapes, and the sum rule of Eq. (4) restrict the oscillator 

strengths, and effective plasma frequencies, of the constituent oscillators. 

It is important to emphasize that the constants in the sum rule of Eq. (2) are indeed constants; in particular, 

that the mass me is the free-electron mass and not an effective mass of an electron quasiparticle. In interband 

models [67, 68], the linear susceptibility can be written as a sum of Drude–Lorentz oscillators similar to 

Eq. (3) and containing the effective masses of the relevant bands. But for those models, the sum over all 

bands leads to the free-electron mass in the final sum rule [68]. Alternatively, one can use the fact that 

electrons can be considered as free, non-interacting particles in the high frequency limit [69]. Thus the only 

variable in the sum rule is the electron density, which itself does not vary all that much over all relevant 

materials at standard temperatures and pressures. It is equally important to emphasize that the representation 

of Eq. (3) does not rely on any of the standard assumptions of interband models (no many-body effects, 

periodic lattice, etc.), and is valid for any linear (isotropic) susceptibility, assuming only passivity. Equation 

(3) is not a Drude–Lorentz approximation or model; instead, it is a first-principles representation of the 

Kramer’s–Kronig relations. 

To determine the maximum possible refractive index, one could maximize Eq. (3) over all possible sets of 

parameter values for the oscillator strengths and transition frequencies, ci and ωi, respectively. However, a 

global optimization over the Drude–Lorentz form that is nonlinear in the ωi will be practically infeasible 

for a large set of transition frequencies. Instead, we a priori fix a very large number of possible oscillator 

transition frequencies ωi, and then treat only the corresponding oscillator strengths ci as the independent 

degrees of freedom. This “lifting” transforms a moderately large nonlinear problem to a very large linear 

one, and there are well developed tools for rapidly solving for the global optima of linear problems [60, 70]. 

Crucially, not only is the susceptibility linear in the oscillator-strength degrees of freedom ci, but so are 

many possible quantities of interest for constraints: first-, second-, and any-order frequency derivatives of 

the susceptibility, loss rates (the imaginary part of the susceptibility), etc. Thus maximizing refractive index 

over any bandwidth, or collection of frequency points, subject to any constraints over bandwidth or 

dispersion, naturally leads to generic linear programs of the form: 
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(5) 

where c without a subscript denotes the length-N vector comprising the oscillator strengths, j indexes any 

number of possible constraints, the constraint 1Tc = 1 corresponds to the sum rule P
i ci = 1, and z, Ai, and bi 

are the appropriate vectors and matrices that are determined by the specific objectives, constraints, and 

frequencies of interest. There are well-developed tools for rapidly solving for the global optima of linear 

problems such as Eq. (5), and in the following sections we detail relevant questions that share this form. 

Equation (5) represents the culmination of our transformation of generic refractive-index-maximization 

problems to linear programs. A natural question might be why we use the Kramer’s–Kronig relation, Eq. 

(1), and sum rule, Eq. (2), for material susceptibility χ instead of refractive index n directly? In fact, one 

could replace all of the preceding equations with their analogous refractive-index counterparts, and arrive 

at an analogous linear-program formulation for refractive index. But the bounds would be significantly 

looser, the physical origins for which we explain in Sec. 8. IIC. Instead, it turns out that the susceptibility-

based formulation presented above leads to bounds that are rather tight. 

5.1.2 SINGLE-FREQUENCY BOUND 

5.1.2.1 FUNDAMENTAL LIMIT 

A canonical version of the refractive-index question is: what is the largest possible refractive index of a 

transparent (lossless) medium, at frequency ω, subject to some maximum allowable dispersion? The 

dispersion constraint is important for many applications, from metalenses to photovoltaics, where one may 

want to operate over a reasonable bandwidth or minimize the phase and/or group-velocity variability that 

can be difficult to overcome purely by design [71, 72]. Given the susceptibility representation of Eqs. (3,4) 

in Sec. 8. I, we can formulate the maximum-refractive-index question in terms of the susceptibility, and 

then transform the optimal solution to a bound on refractive index. We assume here a nonmagnetic medium, 

in which case we can connect electric susceptibility to refractive index; in Sec. 8. V we show that the same 

bounds apply even in the presence of magnetic response. 

The formulation of this canonical single-frequency refractive-index-maximization question as a linear 

program is straightforward. The Kramer’s–Kronig representation of Eq. (3) can be written as χ(ω) = Σi 

cifi(ω), 
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Figure 1.  Schematic representation of a single Drude–Lorentz oscillator, depicting the tradeoff 

between refractive index and dispersion. Decreasing the resonance frequency ω0 increases the ratio 
𝝎𝒑

𝟐

𝝎𝒐
𝟐  and hence the maximum refractive index nmax at ω, but at the cost of higher dispersion 

𝒅𝒏

𝒅𝝎
 (and 

vice versa for increasing ω0). 𝝎𝒑 = √
𝑵𝒆𝒆𝟐

∈𝟎𝒎𝒆
 The plasma frequency is determined by the material’s 

electron density. 

 

where fi  at frequency ω is given by fi(ω) = ωp
2/(ωi

2 −ω2) and χ(ω) is linear in the ci values. The dispersion, 

as measured by the frequency derivative of the real part of the susceptibility, has the same representation 

but with fi(ω) replaced by its derivative fi
0(ω) = 2ωωp

2/(ωi
2−ω2)2. Then, the largest possible susceptibility 

at frequency ω, with dispersion constrained to be smaller than an application-specific constant χ0, is the 

solution of the optimization problem: 

(6) 

Equation (6) is of the general linear-program form in Eq. (5). Comparing the two expressions, the vector z 

has fi(ω) as its elements. There is only a single index j, with matrix A1 given by a single column with values 

gi(ω) and vector b1 with value of −χ0 multiplied by a vector of 1’s. To computationally optimize the 

maximum-index problem of Eq. (6), one must simply represent a sufficiently large space of possible 

oscillator frequencies ωi. Since we are interested in transparent (lossless) media, there should not be any 

oscillator at the frequency of interest ω (otherwise there will be significant absorption). Nor should there 

be any frequencies ωi < ω, which can only reduce the susceptibility at ω. Thus, one only needs to consider 

oscillator strengths ωi greater than ω. 

  
  

  
 

 ω 
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Strikingly, for any frequency ω, electron density Ne (or plasma frequency ωp), and allowable dispersion 

χ0, the optimal solution to Eq. (6) is always represented by a single nonzero oscillator, with strength c0 = 1 

and frequency 

𝜔0  =  𝜔√1 + √2𝜔𝑝2/(𝜔3𝜒0). We prove in the SM that the single-oscillator solution is globally 

optimal. The intuition behind the optimality of a single oscillator can be understood from Fig. 1. The 

susceptibility of a single oscillator is governed by three frequencies: the frequency of interest, ω, the 

oscillator frequency, ω0, and the electron-density-based plasma frequency, ωp. The static susceptibility of 

such an oscillator at zero frequency is given by χ = ωp
2/ω2. This sets a starting point for the susceptibility 

that ideally should be as large as possible. The plasma frequency is fixed for a given electron density, and 

thus the only way to increase the static susceptibility is to reduce the oscillator frequency ω0 (as indicated 

by the black left arrow). Yet this comes with a tradeoff: as ω0 decreases, the oscillator nears the frequency 

of interest, and the dispersion naturally increases. Hence for minimal dispersion one would want as large 

of an oscillator frequency as possible. A constraint on allowable dispersion thus imposes a bound on how 

small of an oscillator frequency one can have, and the maximum refractive index is achieved by 

concentrating all of the available oscillator strength at that frequency. 

The single-oscillator optimality of the solution to Eq. (6) leads to an analytical bound on the maximum 

achievable refractive index. Denoting a maximal refractive-index dispersion n′ = χ ′/2n (from χ = n2 −1), 

straightforward algebra (cf. SM) leads to a general bound on achievable refractive index: 

(7) 

Equation (7) is a key result of our paper, delineating the largest achievable refractive index at any frequency 

for any causal, linear, isotropic material. Equation (7) highlights the three key determinants of maximum 

refractive index: electron density, allowable dispersion, and frequency of interest. We will discuss each of 

these three dependencies in depth. First, though, there is a notable simplification of the refractive index 

bound, Eq. (7), when the refractive index is moderately large. In that case, the left-hand side of Eq. (7) is 

simply the cube of n; taking the cube root, we have the high index (n2 >>1) bound: 

(8) 

The cube-root dependence of the high-index bound, Eq. (8) is a strong constraint: it says that increasing 

electron density or allowable density by even a factor of 2 will only result in a √2
3   ≈ 1.26X enhancement. 

Similarly, even an order-of-magnitude, 10X increase in either variable can only enhance refractive index 

by a little more than 2X. Thus the opportunity for significant increases in refractive index are highly limited. 

The cube root dependence that is responsible for this constraint is new and surprising: conventional 

arguments suggest that refractive index should scale with the square root of electron density [69]. Moreover, 

applying our analysis to the Kramer’s–Kronig representation of refractive index also leads to square-root 

scaling. It is the fact that the susceptibilities of nonmagnetic materials, in addition to their refractive indices, 

must satisfy Kramer’s–Kronig relations that ultimately leads to the tighter cube-root dependence. 

To investigate the validity of our bounds of Eqs. (7,8), we compare them to the actual refractive indices of 

a wide range of real materials. To compare the bound to a real material at varying frequencies, we must 

account for the different electron densities, dispersion values, and frequencies of interest for those materials. 

To unify the comparisons, we use the bound of Eq. (7) to define a material-dependent refractive-index 

“figure of merit,” 
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.(9) 

which is approximately the refractive index rescaled by powers of the plasma frequency and allowable 

dispersion. On the right-hand side of Eq. (9) is the factor 1/ω1/3, which is the upper bound to the material 

figure of merit for any material. 

Figure 2 compares the material-figure-of-merit bound (solid black line) to the actual material figure of merit 

for a wide range of materials (colored lines and markers) [42, 74–96]. We use the experimentally determined 

refractive indices and dispersion values for each material. Parts (a) and (b) of the figure are identical except 

for the values of the electron density: in part (b), we use the total electron density of each material, while in 

part (a) we use only the valence electron density. The valence electron-density bound is not a rigorous 

bound, but in practice it is only the valence electrons that contribute to the refractive index at optical 

frequencies, and one can see that the bound in (a) is tighter than that of (b) due to the use of the valence 

densities, while not being surpassed by any real materials. Within the materials considered, we use the line 

and marker colors to distinguish materials that are transparent at infrared (IR), visible, and ultraviolet (UV) 

frequencies, respectively. The higher the frequency of interest, the lower the material FOM bound is (and 

the lower the refractive-index bound is), because at higher frequencies the oscillator frequency must 

increase to prevent the dispersion value from surpassing its limit, and a higher oscillator frequency reduces 

the electrostatic index that sets a baseline for its ultimate value (as can be seen in Fig. 1). 

Three metamaterials structures [43, 44, 73] are included in Fig. 2. These metamaterials are patterned to 

exhibit anomalously large effective indices (ranging from 5 to 10). Ultimately, these metamaterials are 

configurations of electrons that effectively respond as a homogeneous medium with some refractive index, 

and thus they too are subject to the bounds of Eqs. (7,8). Indeed, as shown in Fig. 2, two of the metamaterials 

approach the valence-electron bound line, but do not surpass it. Their high refractive indices are 

accompanied by dramatically increased chromatic dispersion. 

Many materials can approach the bound over a small window of frequencies where their dispersion is 

minimal relative to their refractive index. Two outliers are silicon and germanium, which approach the 

bound across almost all frequencies at which they are transparent. Silicon, for example, has a refractive 

index (n = 3.4) that is within 16% of its valence-density-based limit. The key factor underlying their 

standout performance is a subtle one: the absence of optically active phonon modes. It turns out that optical 

phonons primarily increase the dispersion of a material’s refractive index without increasing its magnitude. 

From a bound perspective, this can be understood from the sum rule of Eq. (2). In that sum rule, the total 

oscillator strength is connected to the electron density of a material, divided by the free-electron mass. 

Technically, there are additionally terms in the sum rule for the protons and neutrons [97]. However, their 

respective masses are so much larger than those of electrons that their relative contributions to the sum rule 

is insignificant. Similarly, because phonons are excitations of the lattice, their contribution to refractive 

index comes from the proton and neutron sum-rule contributions, and are necessarily insignificant in 

magnitude at optical frequencies. They can, however, substantially alter the dispersion of the material, and 

indeed that is quite apparent in the refractive indices of many of the other materials (e.g. GaAs, InP, etc.), 

which thus tend to fall short of the bounds at many frequencies. This result also suggests that ideal high-

index materials should not host active optical phonons, which increase dispersion without increasing 

refractive index. 
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Table I presents numerical values of valence electron densities, dispersion values, refractive indices, and 

their bounds for representative materials averaged over the visible spectrum (see SM for more details on 

bounds for nonzero bandwidth). One can see that for a wide variety of materials [42, 74–82, 85] and 

dispersion values, there is a close correspondence between the actual refractive index and the bound, for 

both natural materials and artificial metamaterials. Taken together, Fig. 2 and Table I show that many 

materials can closely approach their respective bounds, showing little room for improvement at the 

dispersion values naturally available. These results also cast doubt about the result of Ref. [49]: a refractive 

index of 26 at optical frequencies is an order of magnitude larger than any of the natural materials in Table 

I. Because of the cube-root scaling of the bound of Eqs. (7,8), a 10X increase in refractive index requires a 

1000-fold increase in electron density or dispersion. Large dispersion would inhibit the possibility for the 

broadband nature of the result in Ref. [49], hence the only remaining possibility is a ≈ 1000X increase in 

electron density. Yet this would be orders of magnitude larger than the largest known electron densities 

[46]. Hence, our results strongly suggest that the light-bending phenomena of Ref. [49] are due to diffractive 

or nonlinear effects, instead of a linear refractive index. 

 

Figure 2.  Comparison of representative high-index materials, as well as three metamaterial designs 

(visible metasurface [43], 3D metamaterial [44], meso-crystal [73]) from the literature, as measured 

by the FOM = [
(𝒏𝟐−𝟏)

𝟐

𝒏𝝎𝒑
𝟐𝒏` ]

𝟏
𝟑⁄

≈  
𝒏

𝑵𝒆𝒏`   for n >> 1 (Nen’ normalized to that of valence SiO2 at 400 nm), 

plotted against the material-independent bound in Eq. (9). Shown above are two figures, based on (a) 

total and (b) valence electron density, which only shifts the FOM for each material without distorting 

qualitative features. The materials can be broadly classified into three categories depending on the 

spectrum at which they are transparent—UV (LiF [74], MgF2 [74], CaF2 [74], SiO2 [75, 76], Al2O3 [75, 

77], Si3N4 [78], diamond [79]), visible (HfO2 [80], ZrO2 [81], LiNbO3 [82], ZnS [83, 84], GaN [85], 

ZnSe [86], TiO2 [42]), and IR (ZnTe [87], InP [88], GaAs [89], Si [90], InAs [91], Ge [92], PbS [93], 

PbSe [93], Te [94, 95], PbTe [96]). Most materials approach the bound quite closely at different 

frequencies, with silicon at IR outperformed only by a factor of 1.16 relative to the bound. The 

parabolic shape bending downwards at IR frequencies can be attributed to phonon dispersion, 

notable exceptions being silicon and germanium, which are IR-inactive and hence highly transparent 

even in mid-IR (i.e. very non-dispersive). The quality factor for the perovskite sample produced in 

[1] is off of the current scale for the both graphics. 
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5.1.2.2 MAXIMUM INDEX VERSUS CHROMATIC DISPERSION 

To visualize the tradeoff between maximal refractive index and dispersion, Fig. 3 depicts the refractive-

index bound of Eq. (7) as a function of chromatic dispersion, for materials transparent at three different 

wavelengths: infrared (λ = 5um), visible (λ = 700nm), and ultraviolet (λ = 320nm). We use dispersion with 

respect to wavelength, i.e. dn/dλ, instead of frequency, as the wavelength derivative is commonly used in 

optics [98]. Without careful attention to the wavelength of interest, it would appear that refractive index 

tends to decrease as dispersion increases: silicon, for example, has both a higher refractive index and smaller 

dispersion than titanium dioxide, at their respective transparency wavelengths. Yet our bound of Eq. (7) 

highlights the key role that wavelength is playing in this comparison: the bound shows that maximum index 

must decrease with increased dispersion but increase at longer wavelengths. Within each color family in 

Fig. 3, wavelength is held constant, and then it is readily apparent that maximum index increases as a 

function of chromatic dispersion. One can see that in each wavelength range, many materials are able to 

approach our bounds across a wide range of dispersion levels. The largest gaps between actual index and 

that of the bound occur for infrared III-V and II-VI materials, due to the presence of active optical phonons, 

as discussed above. 

Table 1.  High-index materials transparent over the visible spectrum, showing the (valence) 

electron density Ne, dispersion 
𝒅𝒏

𝒅𝝎
 refractive index n, and upper bound on n for each material. The 

table shows that refractive index, as well as its bound, increases with dispersion, and that they 

closely approach the bound. Except for the metamaterial, all the quantities listed above are 

averaged over 400–700 nm. a refers to the metamaterial in Ref. [43], here evaluated at ≈ 710 nm. 

Material Electron density 

Ne (1023 cm−3) 

Dispersion 

 

Refractive 

index n 

Bound on 

n 

(averaged over 400–700 nm) 

MgF2 4.85 0.0059 1.38 1.58 

CaF2 3.92 0.0076 1.43 1.60 

SiO2 4.25 0.0112 1.46 1.73 

Al2O3 5.67 0.0176 1.77 2.04 

Si3N4 4.39 0.0514 2.06 2.48 

HfO2 4.65 0.0482 2.13 2.49 

ZrO2 4.75 0.0597 2.18 2.63 

LiNbO3 4.52 0.1266 2.34 3.12 

C (diamond) 7.04 0.0436 2.43 2.74 

GaN 3.03 0.1448 2.45 2.97 

TiO2 5.11 0.3342 2.72 4.17 

Metamaterial a 0.59 ≈ 4.1 ≈ 5.1 ≈ 5.7 

 

At visible and UV frequencies, where phonon contributions are negligible, the deviation of refractive 

indices from their respective bounds can be attributed to the distributions of oscillator strengths, manifest 

in the frequency dependence of Imχ(ω). The larger the frequency spread (variance) of Imχ relative to its 

average frequency, the more a material’s refractive index falls short of the bound (cf. SM). Note that for a 

fixed frequency of interest, the average frequency of the optimal oscillator depends directly on the 

maximum allowable 
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Figure 3.  Refractive indices of various materials evaluated at three different wavelengths (320 nm, 

500 nm, 5 µm) based on the spectrum at which they are transparent (UV, visible, and IR 

respectively), compared to their respective bounds. For each wavelength, the average electron 

density of all materials belonging to that wavelength was used to compute the bound. The bounds 

show refractive index increasing with dispersion, as measured by (the magnitude of) chromatic 

dispersion 
𝒅𝒏

𝒅𝝎
, as also demonstrated by materials closely aapproaching the bounds. 

dispersion: larger dispersion implies smaller oscillator frequency, and vice versa. Hence, higher-dispersion 

materials have smaller average oscillator frequencies, which reduces the total variance allowed before 

significant reductions relative to the bounds arise. Diamond would appear to be an exception, but that is 

only because its valence electron density is much larger than average; its gap to its respective bound is as 

expected. To summarize: highly dispersive materials are more sensitive to deviations of Imχ(ω) from the 

ideal delta function than are small-dispersion materials. A direct comparison can be done for TiO2 and HfO2, 

which have similar oscillator spreads but a smaller center frequency for TiO2. This explains why TiO2 is 

farther from its bound than is HfO2, and explains the general trend of increasing gaps with increasing 

dispersion. 

5.1.2.3 BOUNDS FROM REFRACTIVE-INDEX KK RELATIONS 

In Sec. 8. I, we noted the importance of using Kramer’s– Kronig relations for the susceptibility instead of 

KK relations for refractive index. Here, we briefly show the bound that can be derived via refractive-index 

KK relations, and explain why the two bounds are quite different. Analogous to the sum rule of Eq. (2), 

there is a sum rule on the distribution of the imaginary part of refractive index that also scales with the 

electron density: 

4 (Ref. [65]). Similarly, there is a KK relation for refractive index that exactly 

mimics Eq. (1). Together, following the same mathematical formulation as in Sec. 8. I, one can derive a 

corresponding bound on refractive index given by (cf. SM):   

 

. (10) 
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To distinguish the two bounds from each other, we will denote this bound, Eq. (10), as the n-KK bound, and 

the susceptibility-based bound, Eq. (7), as the χ-KK bound. Equation (10) shows that the n-KK bound has a 

square root dependence on the parameter , in contrast to the cube-root dependence for the χ-KK bound 

(explicitly shown in Eq. (8) for high-index materials). The nKK bound is always smaller than the χ-KK 

bound (cf. SM, TODO), and the square-root versus cube-root dependencies implies that the gap increases 

with dispersion or electron density. Figure 4(a) shows the difference between the two bounds, and the 

increasing gap between them at large plasma frequencies 

 

 

Figure 4.  (a) Comparison of bounds based on Kramer’s–Kronig relations on susceptibility, Eq. (7), 

and refractive index, Eq. (10), denoted as n-KK and χ-KK bound respectively. Natural materials are 

categorized in terms of the frequencies at which they obtain the highest refractive index (visible, 

near-IR, and mid-IR, marked as blue, green, and red respectively). All the materials lie below the χ-

KK bound. (b) Optimal Imχ profiles attaining the n-KK and χ-KK bound. Around the resonance 

frequency ω0, Imχ for the former goes negative, which is not allowed by passivity. (c) Optimal Imn 

profiles attaining the n-KK and χ-KK bound. In contrast to an infinitely sharp resonance for the 

former, the latter is characterized by a broadened line shape to the right of ω0. For (b) and (c), the 

loss rate was taken to be small but nonzero (γ = 0.01ωp) for purposes of illustration. 

 

or allowable dispersion. Figure 4(b,c) shows the physical origins of the discrepancy between the two 

approaches. The optimal n-KK solution has a delta-function imaginary part of its refractive index, as in Fig. 

4(c), concentrating all of the imaginary part in a single refractive-index oscillator. Yet for a delta function 

in Imn, the imaginary part of the electric susceptibility must go negative in a nonmagnetic material, as in 

Fig. 4(b), which is unphysical and violates passivity. By contrast, the optimal solution in the χ-KK bound 

is a delta function in susceptibility, as in Fig. 4(b), which yields a smoother distribution of Imn(ω), as seen 

in Fig. 4(c). Hence another way of understanding the surprising cube-root dependency of our bound is that 

it arises as a unique consequence of the fact that both refractive index n and its square, n2 = χ + 1, obey 

Kramer’s–Kronig relations [61]. 

5.1.3 BOUND ON OPTICAL GLASSES 

The optical glass industry has put significant effort into designing high-index, low-dispersion optical 

glasses. Thus, transparent optical glasses provide a natural opportunity to test our bounds. It is common 

practice to categorize refractive indices at specific, standardized wavelengths. The refractive index nd refers 

to refractive index at the Fraunhofer d spectral line [100], for wavelength λ = 587.6nm, in the middle of the 

visible spectrum. Dispersion is measured by the Abbe number Vd [101, 102]: 
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(11) 

where nF and nCare evaluated at 486.1nm and 656.3nm, the Fraunhofer F and C spectral lines, respectively 

(the Abbe number can be defined differently based on other spectral lines, but the above convention is 

commonly used to compare optical glasses [103]). 

 

Figure 5.  (a) Abbe diagram showing the glasses categorized depending on their refractive indices (at 

587.6 nm) nd and Abbe number Vd, compared to the bounds for electron density Ne = 2 × 1023 cm−3 

(black line) and Ne = 3 × 1023 cm−3 (gray line). (b) Same plot but shown in logarithmic scale with larger 

range of values to fully illustrate the bounds. The data for different glass categories was obtained from 

Ref. [99]. 

The quantity in Eq. (11) cannot be directly constrained in our bound framework, as it is nonlinear in the 

susceptibility, but optical glasses of interest have sufficiently weak dispersion that their refractive indices 

can be approximated as linear across the visible spectrum. Then, we can relate the Abbe number directly 

to the dispersion of the material at nd, dn/dω, and to the frequency bandwidth between the F and C 

spectral lines, ∆ωFC: 

(12) 

which is valid for the wide range of glasses depicted in Fig. 5 with up to only 5% error. Inserting Eq. (12) 

into the refractive-index bound of Eq. (7), we can write abound on refractive index in terms of Abbe 

number Vd: 

(13) 



  

18 
DISTRIBUTION STATEMENT A.  DISTRIBUTION STATEMENT A.  Approved for public release;  

Distribution is unlimited. 

Figure 5 plots the Abbe diagram [103] of many optical glasses along with our bounds for two representative 

electron densities, the valence electron density of silicon (2 × 1023 cm−3) and the mean valence electron 

density of high-index materials shown in Fig. 2 (3×1023 cm−3). From Fig. 5(a), there is a striking similarity 

of the shape of the upper bound and the trendlines for real optical glasses. Moreover, depending on the 

relevant electron density, the bounds may be quantitatively tight for the best optical glasses. Figure 5(b) 

zooms out and highlights the high-dispersion (large-Abbe-number) portion of the curve. The trend is very 

similar to that seen in Fig. 2 earlier: as dispersion increases, the gap between the bound and the refractive 

index of a real material increases, as the magnitude of the refractive index becomes more sensitive to 

nonzero spreads of the electron oscillator frequencies. 

5.1.4 BANDWIDTH-BASED BOUND 

Instead of constraining the dispersion of a material refractive index, one might similarly require the 

refractive index to be high over some bandwidth of interest. A first formulation might be to maximize the 

average refractive index over some bandwidth, but this is ill-posed: an oscillator arbitrarily close to the 

frequency band of interest can drive the refractive index at the edge of the band arbitrarily high, and the 

average itself can also diverge. In any case, in a band of potentially large dispersion, the minimum refractive 

index over the band is the more meaningful metric, as that will be the limiting factor in the desired optical 

response. Hence, maximizing the minimum refractive index over a bandwidth, i.e., solving a minimax 

problem, is the well-posed and physically relevant approach. We can pose the corresponding optimization 

problem for some bandwidth ∆ω around a center frequency ω as:  

 

(14) 

where , and again we are considering only a transparency window in which 

the material is lossless. (As we show in the SM, none of our bounds change substantially if small but nonzero 

losses are considered.) The solution to Eq. (14) is a single oscillator, analogous to the solution of Eq. (7). 

In this case, the optimality conditions imply a single oscillator at the frequency ω + ∆ω/2, i.e., exactly at 

the high-frequency edge of the band of interest. This optimal oscillator then implies a fundamental upper 

limit on the minimum refractive index over bandwidth ∆ω around frequency ω to be (SM): 

. (15) 

Equation (15) fundamentally constrains how large the minimal refractive index can be over any desired 

bandwidth. The only extra parameter is the material electron density, as encoded in ωp. The bound increases 

linearly as the square root of bandwidth ∆ω decreases, which can be understood intuitively from the optimal 

refractive index profile: decreasing the bandwidth ∆ω effectively moves the infinitely sharp resonance 

(characterized by a delta-function Imχ) closer to the frequency of interest, thereby shifting the entire 

refractive-index spectrum upwards and resulting in higher nmin. 

Figure 6 shows the refractive index, normalized by plasma frequency, for representative high-index 

materials in the visible and UV spectrum (over each of their transparency windows), compared to the 

bounds for three different bandwidths. Some materials like ZnTe and GaN more closely approach the 

bounds than others like TiO2 and HfO2, which can be traced back to their absorption loss (Imχ) spectrum. 
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Ideally, the absorption is a delta function situated infinitesimally to the right of the transparency windows 

for each material, leading to a diverging refractive index at the edge of the transparency window (i.e. the 

dots for each curve). However, real materials are characterized by broad, smeared-out Imχ and thus deviate 

from the ideal, single Drude–Lorentz response with infinitesimal loss rate. How much each material falls 

short of the bound signifies to what extent their Imχ spectrum is, on average, concentrated away from the 

frequency of interest. One can deduce from Fig. 6 that, for example, ZnTe is characterized by Imχ spectrum 

focused more towards higher wavelengths relative to TiO2. The bound of Eq. (15) is more closely 

approachable for materials with a sharp absorption peak situated as close as to the frequency of interest as 

possible. 

5.1.5 BIANISOTROPIC MEDIA 

To this point, we have considered only the possible refractive indices of isotropic, nonmagnetic media. 

Although intrinsic magnetism is small at optical frequencies, the possibility for patterned metamaterials to 

exhibit significant effective permeabilities demonstrates the possibility for magnetic response to alter the 

effective refractive index. More generally, natural and especially artificial materials can demonstrate 

extreme anisotropy in their response. In this section we consider the most general class of bi-anisotropic 

materials, and we outline 

 

Figure 6.  Refractive index normalized by plasma frequency over the UV and visible spectrum, 

compared to the bounds for three different bandwidths. The dots for each material correspond to 

the edge of the transparency window, i.e. the frequency beyond which Imχ becomes non-negligible. 

The plasma frequency for each material is normalized to that of SiO2. 

a broad set of conditions under which the refractive index bounds are identical to those of Eqs. (7,8) 

discussed above. 

One possibility is to simply use the refractive-index Kramer’s–Kronig relation and sum rule, as described 

in Sec. 8. IIC. The refractive index itself allows for magnetism and anisotropy, and thus certainly the bound 

of Eq. (10) would be valid. Yet it turns out to again be too loose, as we will discuss below. Another 

possibility would be to consider a magnetic-susceptibility Kramers-Kronig relation and sum rule, in analogy 

to the electric-susceptibility versions of Eq. (1) and Eq. (2). However, there is no known sum rule on the 

imaginary part of the magnetic susceptibility. This relates to a deep and fundamental asymmetry between 



  

20 
DISTRIBUTION STATEMENT A.  DISTRIBUTION STATEMENT A.  Approved for public release;  

Distribution is unlimited. 

magnetic and electric properties of materials, and to the fact that permeability itself is not a well-defined 

quantity at very high frequencies [69]. 

Instead, we exploit an alternative theoretical formulation of bianisotropy developed in Ref. [104]. We 

consider an arbitrary linear, local, bianisotropic medium, with constitutive relation 

(16) 

where 𝜀 ̿is permittivity, µ̿ is permeability, 𝜉̿ and 𝜁 ̿are magneto-electric coupling tensors, and c is the speed 

of light. Through the transformation properties of Maxwell’s equations (TODO: be more explicit), one can 

show that a local, bianisotropic medium is equivalent to a nonlocal, anisotropic, nonmagnetic medium. The 

nonlocality manifests through a spatially dispersive permittivity that is a function of wavevector k, with the 

nonlocal effective permittivity given by 

(17) 

where k0 = ω/c is the wavenumber in the host medium (taken to be vacuum). In general, Eq. (17) is 

anisotropic even for isotropic permittivity and/or permeability, due to the wavevector dependence. In this 

case, we can utilize the fact that Kramer’s–Kronig relations and the f-sum rule are valid for each diagonal 

component and each individual wavevector of a spatially dispersive, anisotropic medium [105, 106] (cf. 

SM). We can then represent the nonlocal susceptibility, χnl(ω,k) ≡ 𝜀𝑛𝑙̿̿ ̿̿  (ω,k)−I, where I is the identity tensor, 

as a sum of lossless Drude–Lorentz oscillators, exactly analogous to Eq. (4). This is because we can always 

choose a polarization basis for which χnl(ω,k) is diagonal, since it is Hermitian in the absence of dissipation. 

(Note that χnl(ω,k) need not be diagonal for all frequencies ω and/or wavevectors k under the same basis. 

However, we only require that χnl(ω,k) is diagonalizable at a given frequency and wavevector.) 

The refractive index of an anisotropic medium is itself anisotropic and depends also on the polarization of 

the electromagnetic field. Consider a propagating plane wave with wavevector k ˆs. The square of the 

bianisotropic refractive index, nbianiso, experienced by that plane wave is one of two non-trivial solutions of 

the eigenproblem,  

(18) 

where B = I − ˆsˆsT and e0 is the corresponding eigenvector that physically represents an eigen-polarization. 

For any material described by a positive- or negative semidefinite 𝜀𝑛𝑙̿̿ ̿̿  (ω,k), the (square of) refractive index 

in Eq. (18) is bounded by the largest eigenvalue of 𝜀𝑛𝑙̿̿ ̿̿ (ω,k) (we defer the discussion of indefinite 𝜀𝑛𝑙̿̿ ̿̿  (ω,k) 

to the end of this section). Choosing a polarization basis for which 𝜀𝑛𝑙̿̿ ̿̿  (ω,k) is diagonal, the latter 

corresponds to the largest diagonal component of 𝜀𝑛𝑙̿̿ ̿̿  (ω,k). The largest eigenvalue of 𝜀𝑛𝑙̿̿ ̿̿  (ω,k) is then 

equivalent to the square of refractive index with isotropic permittivity given by the largest eigenvalue of 

𝜀𝑛𝑙̿̿ ̿̿  (ω,k), which we denote by nmax,iso. Thus, we can bound the refractive index for bianisotropic media by 

that of isotropic media with largest eigenvalue of 𝜀𝑛𝑙̿̿ ̿̿  (ω,k) (more details in SM): 

(19) 
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Equation (19) says that, no matter how one designs bianisotropic media, its maximum attainable refractive 

index can never surpass that of isotropic, electric media as long as 𝜀𝑛𝑙̿̿ ̿̿  (ω,k) is positive- or negative-

semidefinite. We can intuitively explain why magnetism, gyrotropy, and other bianistropic response cannot 

help increase the refractive index. Instead of viewing them as distinct phenomena, it is helpful to view them 

as resulting from the same underlying matter, which can be distributed in different ways to create different 

induced currents. For example, one can tailor the spatial dispersion of permittivity to obtain strong magnetic 

dipole moments, resulting in effective permeability, or alternatively, create strong gyrotropic response. 

Independent of the resulting bianisotropic response, they can all be described by the effective, nonlocal 

permittivity of Eq. (17) (with varying degrees of spatial dispersion), which is still subject to our upper 

bound. Carrying over our bound techniques employed in Sec. 8. II, the maximal refractive index for such 

𝜀𝑛𝑙̿̿ ̿̿  (ω,k) is therefore identical to Eq. (7) with dispersion corresponding to the maximum principal 

component of 𝜀𝑛𝑙̿̿ ̿̿  (ω,k). We show in the SM that most bianisotropic media are captured by positive-definite 

𝜀𝑛𝑙̿̿ ̿̿  (ω,k) and also identify particular conditions (for example, magnetic materials with permeability greater 

than unity) under which 𝜀𝑛𝑙̿̿ ̿̿  (ω,k) must be positive definite. Thus, our refractive-index bound is applicable 

to generic bianisotropic media that describe a wide range of metamaterials. This is a powerful result 

suggesting that, no matter how one designs metamaterials to include magnetic, chiral, or other bianisotropic 

response, the tradeoff between refractive index and dispersion is inevitable. 

The class of materials that have indefinite material tensors is exactly the class of hyperbolic (meta)materials 

[107, 108]. In such materials, the bound of Eq. (19) does not apply, and in fact there is no bound that can 

be derived. Physically, this makes sense: the indefinite nature of such materials leads to hyperbolic 

dispersion curves that can have arbitrarily large wavenumbers at finite frequencies, and correspondingly 

refractive indices approaching infinity at particular wavenumbers. Yet such waves are difficult to access as 

they are well outside the free-space light cone. And, crucially, they are highly lossy: no matter how small 

the loss is in the underlying material, if one tries to push the refractive index of a hyperbolic-material mode 

to infinity, the loss rate will also go to infinity, as proven in the SM. 

Another case in which our bound does not hold is for gyrotropic plasmonic materials, the simplest example 

being a magnetized Drude plasma. For such media, the Kramer’s–Kronig relations need to be modified to 

account for the contribution of the pole at zero frequency [62]. Due to this additional term, one can attain 

large values of permittivity, and hence refractive index, below the cyclotron resonance frequency with low 

loss far away from resonance. In fact, such response occurs only below the cyclotron resonance frequency, 

which is typically much smaller than optical frequencies of interest. Also, the cyclotron frequency has to 

be comparable to plasma frequency to attain large refractive indices, which can be hard to achieve. 

5.1.6 DESIGNING HIGH-INDEX COMPOSITES 

In the previous sections we showed that for low to moderate dispersion values, natural materials already 

nearly saturate the fundamental bounds to refractive index. The high-dispersion, high-index part of the 

fundamental limit curve has no comparison points, however, as there are no materials that exhibit high 

dispersion in transparency windows at optical frequencies, and hence they are prohibited from reaching the 

correspondingly high refractive-index bounds. In fact, renormalization-group principles [53] have been 

used to identify the maximum refractive index in ensembles of atoms, yielding a value 1.7 that is close to 

those of real materials. Hence, an important open question is whether it is even possible to engineer high 

dispersion, and the large index that our bounds suggest should then be possible? 

Here, we show that composite materials can indeed exhibit significantly elevated refractive indices over 

their natural-material counterparts. Key to the designs is the use of metals and negative-permittivity 

materials, whose large susceptibilities unlock large positive refractive indices when patterned correctly. We 

find that with typical metals such as silver and aluminum, it should be possible to reach refractive indices 

larger than 10, with small losses, at the telecommunications wavelength 1.55µm. The lossiness of the metals 

is the only factor preventing them from reaching even larger values; if it becomes possible to synthesize the 
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“elusive lossless metal,” with vanishingly small loss, then properly designed composites can exhibit 

refractive indices of 100 and beyond. 

The theory of composite materials and the effective material properties that they can be achieved has been 

developed over many decades [112]. Composite materials, or metamaterials, comprise multiple material 

mixed at highly subwavelength length scales that show effective properties different from those of their 

underlying constituents. They offer a promising potential route, then, to achieving higher refractive indices 

through mixing than are possible in natural materials themselves. Bounds, or fundamental limits, to the 

possible refractive index of an isotropic composite have been known since the pioneering work of Bergman 

and Milton [109, 110, 113–115] (and even earlier for lossless materials [116]), and were recently updated 

and tightened [111]. Bounds are identified as a function of the fill fraction of one of the two materials, and 

comprise two intersecting arcs in the complex permittivity plane. The analytical expressions for the bounds 

are given in Eqs. (7,79) of Ref. [111], which we do not repeat here due to their modest complexity. 

In Fig. 7, we demonstrate what is possible according to the updated Bergman–Milton bounds. At 1550nm 

wavelength, we consider two classes of composite, one comprising a higher index dielectric material, 

germanium, with a low-index material taken to be air, and the second comprising a metallic material, 

aluminum, with the same low-index partner. The Ge-based composite exhibits only small variations in its 

possible refractive index, the red line, occupying the range between 1 (air) and 4.2 (Ge). By contrast, 

composites with aluminum can exhibit far greater variability, and potentially much larger real parts of their 

refractive index. The increasingly large regions occupied by the blue arcs represent the bound regions with 

increasing fill fractions of the aluminum. Of course, one cannot simply choose the highest real refractive 

index: most of those points are accompanied by tremendously large loss as well. Part (b) of Fig. 7 zooms in 

on the lower left-hand side of the complex-n plane, where the imaginary parts are sufficiently small that the 

materials can be considered as nearly lossless. In that region, one can see that there are still sizable possible 

refractive indices. The largest loss rate can be defined as a ratio of the imaginary part of n to its real part. 

The real part determines the length over which a 2π phase accumulation can be achieved, while the 

imaginary part determines the absorption length, and the key criteria would typically be a large ratio of the 

two lengths. The black line in Fig. 7(b) maps out a loss-rate ratio of Imn/Ren = 0.05. One can see that 

refractive indices beyond 11 are achievable with an Al-based composite. 

It is important to emphasize that the refractive indices shown in Fig. 7(b) are indeed achievable. All of the 

low-loss bounds shown there, and below, arise from a circular arc that can be achieved by assemblages of 

doubly coated spheres [111]. The inset of Fig. 8(a) schematically shows such an assemblage, comprising 

densely packed doubly coated spheres that fill all space (cf. Sec. 8. (7.2) of Ref. [112]). Figure 8(a) uses 

circular markers to indicate the largest refractive indices that are possible, as a function of their dispersion 

values, for doubly-coated-sphere assemblages of aluminum and gold. Accompanying the markers are solid 

lines that indicate the electron-density based refractive-index bounds of Eq. (7). One can see that the 

composites track quite closely with the bounds. Also included are markers for some of the highest-index 

natural materials, GaN, ZnTe, and GaAs, clearly showing the dramatic extent to which metal-based 

composites can improve on their natural dielectric counterparts. The figure does not go past dispersion 

values of 8eV−1, however, as the losses of the composites grow too large in the designs for higher dispersion 

values. In Fig. 8(b), we map out the largest refractive indices as a function of wavelength that are possible 

with low-loss composites, with loss rates, as defined above, no larger than 0.05. With such composites, 

refractive indices larger than 5, 18, and 40 are possible in the visible, near-infrared, and mid-infrared 

frequency ranges, respectively. Each would represent a record high in its respective frequency range. 
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Figure 7.  The Bergman–Milton bounds [109, 110], recently strengthened [111], identify the feasible 

effective material properties of isotropic composite materials (metamaterials). (a) Feasible regions for 

composites of germanium (red) versus aluminum (blue) at 1550nm wavelength; in the latter case, each 

enclosed region represents a different fill fraction of aluminum relative to air. The large, negative 

susceptibility of aluminum enables strikingly large regions of high index, albeit also with nonzero 

losses. (b) The low-loss portion of the feasible regions. 

 

 

Figure 8.  Composites can achieve high refractive indices, at high levels of dispersion, as predicted 

by our bounds. (a) At 1550nm wavelength, typical high-index dielectrics such as GaAs and Ge have 

refractive indices approaching 4. By contrast, assemblages of doubly coated spheres (inset) of gold 

and aluminum can be designed to achieve low-loss, effective refractive indices above 8 and 

approaching 12, respectively. Moreover, these composites quite closely approach our bounds (solid 

lines), suggesting that they are tight or nearly so. (b) Maximum low-loss refractive index of gold 

and aluminum composites as a function of wavelength. Much higher refractive indices are possible 

at longer wavelengths, as predicted by our bounds. 

 

The large indices of the Al- and Au-based composites can be increased even further with lower-loss 

materials. To test the limits of what is possible, in Fig. 9 we consider a composite with a lossless Drude 

metal with plasma frequency of 10eV (corresponding to an electron density of 0.7×1023 cm−3). The updated 
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BM bound, achieved by the doubly-coated-sphere assemblages, can now exhibit phenomenally large 

refractive indices, even surpassing longer wavelengths, as predicted by our bounds. 

100 in the infrared. As required by our bounds, such refractive indices are accompanied by large dispersion 

values, and the inset shows the slow cube-root increase of refractive index with dispersion for these 

composites. Our bound of Eq. (7), applied to the Drude material, now lies along the curve for the 

composites, showing that the composites can saturate our bounds (and, consequently, that our bounds are 

tight and cannot be further improved.) There is significant interest in engineering lossless metals [15, 16]; 

if it can be done, we have shown that refractive indices above 100 would be achievable at visible 

frequencies. 

 

Figure 9.  Lower-loss metals would enable even more dramatic enhancements of refractive index. 

Composites with a nearly lossless metal can be designed to achieve refractive indices larger than 

100 at 1550nm wavelength. These composites (circle markers) exactly achieve our bounds (solid 

line), and require enormous dispersion values to do so, thanks to the cube-root scaling indicated in 

the inset. 

5.2 COMPUTATIONAL FRAMEWORK FOR DESIGN OF MATERIALS 

5.2.1 SUMMARY 

The intent of the project is to use key principles of Materials Design that we have pioneered in the 

electronics industry.  We had developed several accelerated methods for combining first-principle based 

ab-initio methods and machine learning or artificial intelligence methods in conjunction with experimental 

data to design materials. Given the complexity and tight timelines, for this project, Material Alchemy 

collaborated with a national laboratory and a university. Although we have developed and applied the 

Material Design framework in industry successfully, this project had aggressive timelines and targets and 

hence there is likelihood that we will not meet all the proposed items.  This was compounded by the Covid19 

pandemic which closed down the national laboratories for most of 2020 and constrained access to the 

universities.    Our project summary is given below. 

We have specifically demonstrated that chalcogenides and perovskites as bulk materials that can exhibit 

higher refractive indices (> RI = 10) with appropriate engineering of several aspects of the materials. Our 

hope is that the principles as an outcome of the product will help further progress on down selecting and 

designing material classes for the specific high RI on bulk materials. 
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The research that has exhibited as giant Refractive Index (RI) by Di Mei et al in 2018 has the chemical 

structure of    K 0.997 Ta 0.64 Nb 0.36 :Li 0.003 (KTN:Li) perovskite.  With this as background our intent was to 

use existing literature data and a variety of modeling and computational methods to further the 

understanding of how RI can be modulated by chemical and material knobs in bulk materials.  The rest of 

the report is divided into the following sections and is based on the following methodology:  1). Detailed 

literature review to identify correlations between chemical elements, material chemistry (organic or 

inorganic), and wavelength dependence; 2). Based on the analysis, identify specific classes of materials for 

detailed quantum simulation analysis; 3) Use quantum and molecular methods to understand the effect of 

knobs on RI of specific bulk materials; 4) Combine the different methods to identify design knobs for 

engineering high RI materials. 

In Section 8.2.2, we will expound our analysis of existing experimental data on refractive indices.  The data 

analysis will start from elemental properties of 120 elements of the periodic table.  Building upon this, we 

will analyze functional groups for organic and inorganic materials.  In addition, we analyzed thousands of 

inorganic materials to select classes of simulations for our ab initio simulations. Based on our exhaustive 

literature search, we have identified specific classes of materials (Chalcogenides and Perovskites), for 

which we will extend ab intio quantum modeling to understand sensitivity of the materials.  Further analysis 

included wave length dependence on refractive indices of the above classes of materials including real and 

imaginary components of refractive indices of materials.  Based on the detailed analysis in the above 

section, we identified two classes of materials for further analysis.   

In Section 8.2.3, we will expound the ab initio quantum simulation analysis to predict the dielectric constant 

(directly related to the refractive index).  The large-scale simulations were done in Oak Ridge and in Caltech 

using two different methods:  Density Functional Theory and Molecular Methods.  The simulations were 

used to study the downs-selected classes of materials based on our Section 2 analysis discussed.  The DFT 

analysis revealed that cations and structure modulate the RI of materials.  The molecular analysis was being 

set up to simulate larger materials with heterogenous interfaces for follow-up project, if funded.  This 

analysis demonstrated the proof of concept and was compared with the detailed ab initio analysis.  

 In the second part of Section 8.2.3, we discuss the semi-empirical method formalism based on force 

fields, that was demonstrated for perovskite materials.  Initial results seem promising, but further analysis 

is targeted for future work. 

 In the last part of Section 8.2.3, we integrate the results from experimental data analysis, quantum 

simulations and machine learning (ML) to extract correlations for estimating refractive indices.  This 

analysis demonstrated the premise of how ML-based Artificial Methods could be used selectively to help 

identify further materials with higher dielectric constant. 

 In Section 5, we conclude the project over this year and summarize the results with specific future 

directions.  These directions include using the method illustrated above to analyze frequency dependence 

of specific classes of materials, assessing phase equilibria of the materials, and assessing chemical 

synthesizability of specific classes based on ML/AI formalism. 

5.2.2 EXPERIMENTAL DATA ANALYSIS 

This section is divided into five subsections.  In Section 8.2.2.1, we will discuss our analysis of existing 

experimental data for atomic properties that correlate with higher dielectric constants.   Based on the 

Lorentz-Lorenz equation that connects the macroscopic RI value of a bulk material to the electronic 

polarizability and number density N of its molecular constituents. Although the ionic and atomic 

components contribute to the RI and dielectric constants, the static polarizability calculations can be viewed 

as a lower bound for the frequency-dependent values in the visible range. 
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 In Section 8.2.2.2, we study organic molecules and the primary functional groups and their 

correlation with the Refractive Indices.  The different chemical fingerprints that contribute to higher RI in 

organic compounds including polymers helped in understanding chemical and structural characteristics that 

contribute to the RI.    Polymer−inorganic hybrid materials were our focus because of two specific reasons: 

1) they have combinations of mechanical, thermal, magnetic, optical, electronic, and optoelectronic 

properties when compared to the corresponding individual polymer or inorganic component; 2) Perovskite 

classes of materials are among the higher RI materials are used in other applications (photovoltaics) are 

bonded with organic molecules.  For this analysis, we used existing RI data for 127 organic compounds and 

110 polymers. 

 In Section 8.2.2.3, we analyzed RI of bulk inorganic materials.  We evaluated existing RI data for 

a wide variety of inorganic materials:  1) Binary Compounds. RIs of elements, such binary compounds as 

halides, oxides, chalcogenides and pnictides hydroxides, cyanide salts of metals; 2) Ternary or Complex 

Halides and Oxides; 3) Silicates and Germanates; 4)  Oxygen-Containing Salts; 5) Coordination 

Compounds. of Group 11–14 Metals; 6) Coordination Compounds. of d- and f-Metals.     

 In Section 8.2.2.4, we identify wave length dependence of the materials.  Since practical importance 

to the materials. As the refractive index is determined by the interaction of the material with the electric 

field of an electromagnetic wave that propagates through the material, studying the imaginary part is 

critical, since it describes the decay of the incident electric field’s amplitude inside the materials  

5.2.2.1 CHEMICAL ELEMENTS 

The research that has exhibited as giant RI by Di Mei et al in 2018 has the chemical structure of    K 0.997 

Ta 0.64 Nb 0.36 :Li 0.003 (KTN:Li) perovskite.  To identify the fundamental material characteristics that 

contribute to the Refractive Index, we have been reviewing the literature. As mentioned previously, 

Lorentz-Lorenz equation connects the macroscopic RI value of a bulk material to the electronic 

polarizability and number density N of its molecular constituents. This in turn, depends on the accessible 

excited states for the electrons and the asymptotic value of RI closer to the static polarizability.  Generally, 

the RI variation is relatively small in the visible range. Although the ionic and atomic components 

contribute to the RI and dielectric constants, the static polarizability calculations can be viewed as a lower 

bound for the frequency-dependent values in the visible range.  There is another critical reason for 

examining the effect of components.   

We have collected empirical and theoretical data for the static polarizabilities of 120 elements of the 

periodic table.  Polarizabilities have units of volume, and the proportionality between atomic polarizability 

and volume is reasonably understood in terms of nuclear charge. The data comes from a combination of 

experimental results and theoretical calculations from literature.  Many of the theoretical calculations 

especially for the f-orbital elements were based on Dirac equation-based theory for relativistic corrections. 

The intent of this analysis is many-fold: 

1. This helps compare the static polarizability with the perovskite compound used to demonstrate 

giant refractive index in 2018; 

2. It will identify potential elements that can provide higher RI; 

3. Provide the basis for the electronic structure analysis based on higher polarizability elements; 

4. it was expected to help understand the correlations between bulk material properties and 

elemental properties. 

We have plotted the static polarizabilities of the whole periodic table of elements going from highest to 

lowest static polarizabilities in the figure below.  Several interesting characteristics can be observed for 
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Figure 10, where the elements are given in the Y-axis and the polarizabilities are in the X-axis.  In Figure 

11, we plot the static polarizabilities as functions of the atomic numbers, along the periodic table.  From 

Figures 10 and 11 the following specific observations can be made.  Many of the elements with higher 

atomic numbers (> 92) are based on theoretical estimates and have been provided for the sake of 

completeness.  As can be seen, these observations indicate a potential design space for elements to make 

up the materials with higher RIs. 
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Figure 10.  Static polarizabilities of the elements in the entire period table.  In order to understand 

the Giant RI of material K 0.997 Ta 0.64 Nb 0.36 :Li 0.003 (KTN:Li) perovskite, we have marked each of 

the elements in the figure. Red for K, White for Li, Green for Nb; Blue for Ta. 
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Figure 11.  Static polarizabilities of the elements plotted as function of the atomic number. 
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Specific observations are highlighted below: 

1. Of all the elements in K 0.997 Ta 0.64 Nb 0.36 :Li 0.003 (KTN:Li), Potassium has the highest 

polarizability, followed by Lithium, then Niobium, and Tantalum; 

2. There are many elements including from Rare Earths and other groups which have higher 

polarizabilities than that of the material selected in 2018 paper; 

3. Alkaline, alkaline earths, and rare earths all have higher polarizabilities indicating that higher 

electropositivity (or lower electronegativity) correlates with higher static polarizabilities; 

4. Non-metallic elements exhibit lower polarizabilities as given by the elements at the bottom of the 

plot; 

5. For the heavier elements, it appears that large relativistic effects are responsible for their departure 

from the more systematic behavior exhibited by the lighter elements; 

6. The values decrease as we move from Group 1 to Group 8.  The highest values are typically 

associated with alkaline metals.  This is illustrated in white arrows as the values go down from 

Group 1.  We can observe an increase in polarizability with increasing period number for the lighter 

elements in conjunction with a reversal in behavior as the polarizabilities decrease for the heavier 

elements in these groups. 

7. Typically, the values increase down a Group, although this trend changes depending on the 

electronic configurations as we will see in the next section. This reflects the well-known decrease 

in size with increasing atomic number for elements in a given row of the periodic table, an effect 

generally attributed to increasing effective nuclear charge; 

8. We have highlighted several groups of elements in circles on the left side of the plot.  In addition 

to alkaline and alkaline earth metallic elements, rare earths, and Group IV (B)-Titanium family of 

elements.  Group 5 (B) Vanadium family of elements have relatively lower variations; 

In order to understand the possible cause of these polarizabilities, we examined the electronic configuration 

of the atomic elements with the higher refractive indices, in Figure 12.  Using the polarizabilities of the 

elements Potassium and Tantalum as bounding values, we have listed the electronic configuration of the 

highest value polarizabilities.  

 

 

 



  

31 
DISTRIBUTION STATEMENT A.  DISTRIBUTION STATEMENT A.  Approved for public release;  

Distribution is unlimited. 

 

Figure 12.  Electronic Configurations of higher polarizability elements. Potassium, Titanium, and 

Tantalum are highlighted for comparisons. 
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There are several key observations that based on electronic configurations that further reinforces the above 

key points:  Criticality of alkaline, alkaline earth, rare earth, and Group 4-B (Titanium-family).  The s, d, 

and f orbitals seemed to contribute to the higher values of polarizabilities.  This could be the associated 

higher electronic densities.  However, this also indicates that electronic correlation could play a bigger role 

in the optical properties, especially in f-orbital electronic elements.  It is also important to emphasize that 

there may be multiple factors contributing to the high polarizability including specific quantum many-body 

correlations.   

 

5.2.2.2 ORGANIC MATERIALS 

In this section, we analyze organic and polymeric materials for various reasons. Polymer−inorganic hybrid 

materials have become the focus of many research breakthroughs because they have combinations of 

mechanical, thermal, magnetic, optical, electronic, and optoelectronic properties when compared to the 

corresponding individual polymer or inorganic component. Perovskites (the class of material studied in 

2018 paper) are one such class of materials which are among the higher RI materials are used in other 

applications (photovoltaics) are bonded with organic molecules. In turn, this will be helpful when we 

recommend specific material classes for high RI at the conclusion of this project.  In addition, this analysis 

has specific attributes:  

1. It should help compare the different chemical fingerprints that contribute to higher RI in organic 

compounds including polymers. 

2. When we go further into inorganic material studies, it will help understand chemical and structural 

characteristics that contribute to the RI.  As chemical bonds can modulate optical properties of 

organic materials and since organic materials are key part of many integrated material systems, 

these should provide critical insights. 

3. We had examined static polarizabilites of all chemical elements during the fourth month above.  By 

studying specific compounds, we hope to identify the sensitivity of the macroscopic properties to 

atomic element characteristics. 

RI values of polymers typically range from 1.3 to 1.5 in contrast with inorganic materials, although as we 

will see below, there are new developments in polymers with higher values as we will illustrate below. 

Methods to increase this include methods to incorporate highly polarizable groups such as incorporation of 

aromatic molecules, heteroatoms, or organometallics into polymers. In addition, incorporation of metal 

alkoxides (e.g., TiO2, Fe3O4) or other high-RI molecules (e.g., sulfides) also could lead to higher RIs. 

Our analysis of organic materials and polymers has two parts: 1) Analysis of organic compounds to identify 

key groups that contribute to high RI; 2) Analysis of polymers to identify bonds and chemical structures 

that contribute to high RI.   

5.2.2.3  ORGANIC COMPOUNDS: 

The data are from Handbook of Chemistry and Physics and work of Katritzky (1998). We have analyzed 

data of 127 organic compounds, based on experimental data.  The RI of the materials are plotted from the 

high to low values are plotted below (Figure 13).  The higher RI and lower RI materials are given in Tables 

2 and 3 below: 
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Figure 13.  Refractive Indices of 127 organic compounds. 
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The condensed aromatic groups tend to increase the RI.  This can be seen both at the large RI end of the 

spectrum and the low end of the spectrum.  The aliphatic compounds especially halides and alcohols have 

lower RI compared to condensed aromatic ring compounds like naphthalene. We would like to highlight 

key aspects of high RI organic compounds: 

1. The range of values are essentially between 1.32 and 1.64, limited compared to polymers (as 

illustrated in the next section); 

2. Higher RI structures are essentially aromatic.  The highest RI compound is 9-ethylcarbazole as 

shown in the following structure (Figure 14): 

 

Figure 14.  High RI Organic Compound, 9-ethylcarbazole, Two-dimensional molecular diagram. 
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Table 2.  High RI Organic Compounds. 

 

 

Table 3.  Low RI Organic Compounds. 

 

 



  

36 
DISTRIBUTION STATEMENT A.  DISTRIBUTION STATEMENT A.  Approved for public release;  

Distribution is unlimited. 

They are likely to have N-bonding linked to aromatic rings (e.g. aniline, carbazole).  Halides with aromatic 

rings also seem to indicate higher RI in compounds.  It appears that heteroaromatic rings containing 

−C=N−C− bonds will enhance RI values. 

5.2.2.4 POLYMERIC MATERIALS: 

Polymers consist of a number of repeating units of building units of monomers.  The molecular weight of 

a polymer molecule is the product of the degree of polymerization and the molecular weight of the repeating 

unit. The polymer molecules are not identical but are a mixture of many species with different degrees of 

polymerization, with different molecular weights. We analyzed 113 polymers as shown in the following 

figures (Figure 15; Tables 4 and 5 indicating high RI and low RI polymers respectively). 
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Figure 15.  Refractive Indices of 113 polymers (RI same scale as that of organic compounds). 



  

38 
DISTRIBUTION STATEMENT A.  DISTRIBUTION STATEMENT A.  Approved for public release;  

Distribution is unlimited. 

Table 4.  High RI polymers. 
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Table 5.  Low RI polymers. 

 

The bonds of the twenty highest RI polymers are given below in Table 6 below. Note that halogen atoms, 

especially with aromatic rings, followed by O and S are present in high RI polymers. 

Table 6.  Bonds in the top twenty high RI polymers. 

 

In polymers halogens, oxygen, and sulfurs tend to increase the RI.  Consistent with the observations of 

organic compounds, aromatic groups play a significant role.  This can be seen in the lower RI polymers 

where olefins have lower RIs. We would like to highlight a few key aspects of high RI organic compounds: 

1. The range of values are essentially between 1.35 and 1.72, larger compared to organic molecules 

(as illustrated in the previous section); 
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2. Higher RI structures are essentially aromatic.  The highest RI compounds are 

poly(pentabromophenyl methacrylate) (RI = 1.7) and poly(N-vinylcarbazole) (RI = 1.68) as shown 

in the following structures (Figures 16 (a) and 16 (b)). Note that both of them have aromatic rings 

and also include Br, O, or N. 

 

A)                B)  

Figure 16.  2D Molecule diagram of poly(pentabromophenyl methacrylate (b):   2D Molecule 

diagram of poly(N-vinylcarbazole). 

In order to understand the bonding effects, chemical bond contributions to the overall RI, are estimated.  

Comparisons of the additive RI with experimental values are useful to designing materials as we will 

summarize in the conclusions.  We indicate the bond molar fractions from literature in Table 7 below. [118-

120] 
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Table 7.  Refractive bond refractions in units of cm3/mole. 

 

 

The higher values correspond to triple carbon bonds, aromatic bonds, carbon-bromine, and carbo-sulfur 

bonds. If we examine Table 6 above, we can see the same trends are observed in the following polymers: 

poly pentabromophenyl methacrylate), poly N-vinylcarbazole, poly-vinylnaphthalene, polyp-xylylene), and 

poly styrene sulfide.  Thus, in polymers and organic molecules, the bond contributions are more correlated 

with RI than atomic polarizabilities.   

 

5.2.2.5 Bulk Inorganic Materials 

 

Refractive Index data for a wide variety of inorganic materials are analyzed in this section.  They consist 

of:  1) Binary Compounds. RIs of elements, such binary compounds as halides, oxides, chalcogenides and 

pnictides hydroxides, cyanide salts of metals; 2) Ternary or Complex Halides and Oxides; 3) Silicates and 

Germanates; 4)  Oxygen-Containing Salts; 5) Coordination Compounds. of Group 11–14 Metals; 6) 

Coordination Compounds. of d- and f-Metals.     
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The first group of compounds that we analyze are 111 binary compounds.  The plots are given with the RI 

at a specific wavelength of 589.3 nm.  The scales are the same for helping with the comparisons.  The first 

analysis will be on halides, followed by chalcogenides, and pnictides. 

 

5.2.2.5.1 BINARY METALLIC HALIDES:  

We have plotted the RI of a few metallic halides in Figure 17.  The colors denote blue for F, 

turquoise for Cl, green for Br, and yellow for I. The data indicates that bromides and iodides tend 

to have higher RI as can be expected from atomic polarizabilities.  Most of these compounds are 

ionic in nature. Another thing to note is that the atomic polarizabilities of alkali metals increased 

as we go down a group, but in compound form, the trend is not strictly followed.  This is due to a 

variety of factors including that as lattice constant increases, the dielectric constant is expected to 

decrease. 

 

Figure 17.  Refractive indices of metallic Halides (F, Cl, Br, I). 

 

5.2.2.5.2 BINARY METALLIC CHALCOGENIDES: 

The next set of materials analyzed are on chalcogenides.  Here we have plotted the RI of a few 

metallic chalcogenides in Figure 18.  The colors denote blue for O, green for S, red for Se, and dark 

blue for Te.  The RI of MX increases as we go from O to Te. For the metallic cations, it appears 

that Ge and Sn are indicating higher RI. 
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Figure 18.  Refractive indices of metallic Chalcogenides (F, Cl, Br, I). 

5.2.2.5.3 BINARY METALLIC PNICTIDES:    

We have plotted the RI of a few metallic pncitides in Figure 19.  The colors denote turquoise for 

N, yellow for P, pink for As, and green for Sb.  The RI of MX increases as we go from N to Sb. 

For the metallic cations, it appears that Al, Ge and In are indicating higher RI. 

 

Figure 19.  Refractive indices of metallic Pnictides (N, P, As, Sb). 

 

5.2.2.5.4 BINARY METALLIC COMPOUNDS MX2:    

The first group of compounds that were analyzed focused on MX2 binary compounds.   These span 

all ranges of structures including glass, type of quartz, tetragonal phase, orthorhombic phase, 

structure of CaF2, structure of PbCl2, etc.   The RIs are plotted in Figure 20. [121-127]    
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Figure 20.  Refractive indices of metallic binary compounds of the type MX2. 

Of the 168 materials analyzed, the higher RI material list is given below in Table 8.  The specific materials 

with RI range from 5.92 for TiSe2 to 3.7 for TiS2.  Clearly group IV B elements with chalcogenide family 

are indicating higher RI is reasonably consistent with the analysis of static polarizabilities of elements.  

Although the highest RI is still below 10, it is important to note that Ti and Group VI element compounds 

lead to high values of refractive indices.   
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Table 8.  Highest Refractive Index materials from MX2 classes. 

 

5.2.2.5.5 BINARY METALLIC COMPOUNDS MX3: 

In this we study MX3 binary compounds and the results are plotted in Figure 21. The halides and 

oxides tend to indicate higher RI materials, but the values tend to be lower than the previous types 

of materials. 
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Figure 21.  Refractive indices of metallic binary compounds of the type MX3. 
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5.2.2.5.6 BINARY METALLIC COMPOUNDS MNX3:   

This class of materials are of the form MnX3 type.  The results are plotted in Figure 22. Here the 

optical properties seem to provide an indication of a higher RI for materials indicating a higher RIs 

than the previous two classes.  

 

 

Figure 22.  Refractive indices of metallic binary compounds of the type MnX3. 
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We have also identified a higher RI material in Sb2Te3.   This is chalcogenide type material but with 

antimony.  Antimony telluride (Sb2Te3) has a rhombohedral crystal structure (shown below in Figure 23) 

and behaves as a semimetal.  It is also finding application as a topological insulator and photodetector.  

Other materials having higher RI continue to be oxides and group 6 elements indicating potential knobs for 

higher RI. 

 

 

Figure 23.  Sb2Te3 crystal structure. 

 

5.2.2.5.7  TERNARY AND QUATERNARY METALLIC OXIDES:   

The first group of compounds that are analyzed are on refractive indices of about 90 materials which consist 

of complex oxides of Group 13 metals compounded with other metals including rare earths as binary or 

ternary metallic oxides.   The refractive indices are given in Figure 24.  In the analysis, although we did not 

find high refractive index materials, the key trend is the need for rare earth elements (Tb, La, Y etc..) and 

alkaline earth elements (e.g. Sr) in these materials.  

 

We plot RIs for other complex oxides, we have analyzed 51 materials Ti, V, Nb and Ta at 671 nm in Figure 

25.  The higher RI is more associated with Pb and Ti.  In addition, several interesting results can be observed 

in these materials, as we elaborate below. 

 

Finally, refractive indices of the 46 complex oxides of Cr, Mo, W, Mn, Fe are examined at 671 nm.  The 

RIs are plotted in Figure 26. Ni and Fe-based oxides lead to materials with higher RIs.  Unlike perovskites 

above, the critical role of transition metals is more evident. We will select the material with the highest RI 

to indicate the complex band theory. For NiFe2O4 material, a theoretical band gap of 0.98 eV was 

determined. The valence band is predominantly formed by O 2p states, while the conduction band minimum 

of the majority (minority) states is formed by the unoccupied 3d levels of Fe cations on tetrahedral 

(octahedral) lattice sites.[127] This illustrates the importance of cations (ferrous atoms in this case) in 

setting the band gap. 
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Figure 24.  Refractive Indices of Ternary and Quaternary Metallic Oxides (Group 13). 
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Figure 25.  Refractive Indices of Ternary and Quaternary Metallic Oxides (Ti, V, Nb, Ta). 
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Figure 26.  Refractive Indices of Ternary and Quaternary Metallic Oxides (Ferrous Materials). 
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5.2.2.6 WAVE LENGTH DEPENDENCE 

The wavelength dependent complex refractive index can be expressed as, RI = n-i k, where n is the real 

part that corresponds to the velocity, k is the imaginary part, known as the extinction coefficient.   In the 

following sections, the real (n) and imaginary (k) components are analyzed to develop specific material 

characteristics that can be optimized across the visible spectrum.  As the literature for wavelength 

dependence is not comprehensive, we have used existing data to identify correlations between the different 

attributes. 

 

5.2.2.6.1 REAL REFRACTIVE INDICES:  

The variation of RI with the wavelengths was also analyzed. The wavelength dependent complex 

refractive index can be expressed as N=n-ik, where n is the real part that corresponds to the velocity, 

k is the imaginary part, known as the extinction coefficient. As the refractive index is determined 

by the interaction of the material with the electric field of an electromagnetic wave that propagates 

through the material, studying the imaginary part is critical, since it describes the decay of the 

incident electric field’s amplitude. In other words, a large extinction co-efficient indicates the 

incident light is absorbed, changing the overall refractive index.  The results are analyzed in Figure 

27 and Table 9. We calculated the maximum refractive index and the corresponding material and 

crystal structures for over twenty materials.   The highest refractive index is close to the middle of 

the visible spectrum at 589 nm, with relatively a long tail for infrared end of the spectrum and into 

the THZ range.   

 

 

 

Figure 27.  Highest Refractive Indices at different wavelengths. 

Two crystal systems of ortho rhombic and tetragonal seem to indicate high RI in the materials that we have 

examined.  The materials (HgS, CsI) are represented in the top with higher RI between 589 and 750 nm.  

Specifically, the ionic nature of the crystals illustrates one of the specific attributes contributing the optical 

property.  This specific structure-property relationship is an important aspect of the RI of materials. 
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Table 10.  Highest Refractive Index for different wavelengths and the corresponding material and 

crystal structure. 

 

Here we continue our literature analysis of RI as a function of radiation wave length, specifically with focus 

on K, Ta, Nb, and Li.  We have analyzed the elements, highlighting two sets of materials (chalcogenides 

and perovskites).  The elemental RIs are also plotted below (both the real and imaginary components). The 

red color is the real value of RI and blue is the imaginary or the extinction coefficient.  The visible spectrum 

is delineated by the dotted vertical lines (340-780 nm). The results, shown in Figure 28 and Figure 29, are 

summarized below. 

 

Figure 28.  Change in Li, K, Ta, Nb refractive index (log) with respect to wavelength (log). 
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Figure 29.  Change in PbTe, KTaO3, LiNbO3, KNbO3 refractive index (log) with respect to 

wavelength (log). 

1. The K atom, which has large polarization also appears to have the largest variation as a function of 

wavelength, especially in the visible spectrum region 

2. These metallic elements have a higher extinction coefficient (imaginary refractive index) compared 

to the real refractive index at all wavelengths.  This in itself indicates the limitations of materials 

which are more metallic, since a significant part of the measured light will be attenuated or 

absorbed. 

3. Niobium and Tantalum a higher RI compared to other metals over the range of the wave length. 

 

In Figure 28 and Figure 29, the refractive index variation for both chalcogenides and perovskite-type 

materials are illustrated. The x-axis is given as log (wave length) and the y-axis is the log (n).  The visible 

spectrum is again given as dotted vertical lines. 

1. The perovskite materials are relatively flat as functions of wave lengths.  The differences between 

metallic constituents are not significant over the whole range of wave lengths, but do have local 

variations. 

2. The chalcogenide materials have larger variations with RI increasing for smaller wave lengths.  The 

higher RIs are consistent with one of the higher RI materials that we reported earlier in our 

exhaustive literature search. 

3. It is likely that semi metals may also have higher extinction coefficients which are dependent on 

the band structures.  More analysis will be presented in the next update. 
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Our findings for Li, K, Ta, and Nb indicate that the refractive index is imaginary (absorbed) in the visible 

spectrum, with the imaginary part increasing for larger wavelengths. As our analysis finds that the refractive 

index real and imaginary variation changes at low wavelength regimes (e.g. Nb in Figure 28). 

5.2.2.6.2 DISTRIBUTION OF REAL (N) AND IMAGINARY (K) REFRACTIVE INDICES AS 

FUNCTIONS OF WAVELENGTH:   

The summary of the experimental data of 440 materials for which we analyzed both the variability and the 

maximum refractive index of the materials are plotted in Figure 30.  

 

 

Figure 30.  Variation and maximum value of refractive indices of 440 materials. 

 A few specific observations can be made based on this analysis: 

1. The refractive indices at the smaller wave lengths (towards UV range of the spectrum) have lower 

maximum values  

2. The highest refractive indices are observed at longer wavelengths (towards the IR range of the 

spectrum) 

3. The variations in the data (both due to the range of the values and also due to measurement variations) 

are higher for smaller wave lengths and are conversely lower for the longer wave lengths. 

4. The RI values drop below 589 nanometers indicating both the paucity of experimental data and also 

the region in which the absorption increases as seen in Figure 30. 

 

We further analyze four representative materials for which experimental data are available on real and 

imaginary components (Reference list attached at the end of the report). We studied the distribution of 

refractive index components as a function of wavelength. Figure 31 shows this distribution for 3 
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chalcogenides (MoS2, MoSe2, WS2) and 1 perovskite (CH3NH3PbI3). Since our previous analysis has 

predicted that chalcogenides and perovskites are associated with higher refractive indices, we analyzed the 

imaginary component to estimate how it would affect the high refractive index.  While there are some local 

differences in how the real refractive index changes across wavelengths (e.g., MoS2 n fluctuates between 

500 and 750 nm while MoSe2 locally fluctuates between 800 to 900 nm), an overall trend emerges. As 

Figure 31 shows, the imaginary refractive index is largest at lower wavelengths below ~400 nm, before it 

declines rapidly at higher wavelengths. This result agrees with the expression for the absorption coefficient, 

where k is the extinction coefficient and 𝜆 is the wavelength.  

 

𝛼 =  
4𝜋𝑘

𝜆
 

  (20) 

Since the absorption coefficient determines how far into a material can light penetrate before absorption, 

the expression above tells us that the absorption coefficient decreases at higher wavelengths, which is 

consistent with the data shown in Figure 31 and 32.  Building upon our previous update, our analysis which 

predicted high refractive index n at 590-630 nm cannot be solely accounted for by the imaginary component 

of the refractive index, since this component overall decreases in the 590-630 nm wavelength regime. In 

fact, as shown in Figure 31, at even higher wavelengths >630 nm, the imaginary component tends towards 

zero, while the real refractive index remains stable. Overall, this suggests that in chalcogenides and 

perovskites at higher wavelengths (>600 nm), the overall refractive index is primarily comprised of the real 

component. [128-130] 

 

Figure 31.  Distribution of real (blue) and imaginary (red) refractive indices as a function of 

wavelength for 3 chalcogenides (MoS2, MoSe2, WS2) and 1 organic perovskite (CH3NH3PbI3). 
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In Table 10, we list the maximum refractive index and the band gap of these four materials.  The highest 

refractive index corresponds to the chalcogenide (MoS2) and the lowest RI corresponds to perovskite 

(CH3NH3PbI3).  The correlation with the band gap is relatively modest.   It is clear that the chemical nature 

and the structural details still contribute to modulating the RI as our ab initio calculations demonstrated. 

 

Table 9.  Tabulation of the maximum refractive index (RI) vs. band gap. 

 

 

In Figure 32, we are plotting the cosine or the fraction of the real component.  If the cosine component is 

1, the refractive index is mostly the real component and conversely, if the cosine component is zero, the 

radiation is completely absorbed.  In Figure 32.a, we plot the cosine component for the four materials and 

in Figure 32.b, we zoom into the behavior of the cosine component in the visible spectrum.   

 

 

Figure 32.  (a) The cosine component or the ratio of real to total refractive index; Figure (b) is 

magnification of the component for the visible spectrum. 

For a practical material design for the refractive index, the material needs to satisfy the following three 

criteria:  

1) high value of RI for the most of the range of the visible spectrum;  

2) high value of the cosine component;  

3) relatively flat cosine component.    
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In addition, the real component of RI needs to be high in the same range. Of these four materials, the 

perovskite (CH3NH3PbI3) satisfies the first two criteria.  However, its maximum RI is 3.13 and hence lower 

than the other materials.  The other material that satisfies all the three criteria is WS2.  It is clear from Table 

10 above and the analysis that a finite band gap is needed in reality for the material to exhibit a higher 

cosine component and a higher RI. It also appears that these two classes of materials have design parameters 

that could be used to tune the structure composition space to optimize the required refractive index response 

for high RI materials. 

Based on our detailed literature analysis and the original material K 0.997 Ta 0.64 Nb 0.36 :Li 0.003 (KTN:Li), 

detailed quantum and molecular modeling was focused on Chalcogenides and Perovskites in the following 

section.  In addition, our Machine Learning (ML) analysis was more expansive as the intent was to get 

precise and accurate correlations. 

 

5.2.3 QUANTUM AND MOLECULAR METHODS-BASED ANALYSIS 

 

There are generally, several methods for using model-based or computational methods to predict optical 

properties.  They are: 

1. ab-initio quantum-based models, which combine the authors combine density functional theory, 

first-principles molecular dynamics and many-body perturbation approaches; 

2. Quantitative structural relationships, or semi-empirical methods, which the group contributions 

method represented by functional forms that relate structural attributes to the materials with the 

calculated or measured properties.  These could include theory-based heuristics, which connects 

the macroscopic RI value of a bulk material to the electronic polarizability a and number density N 

of its molecular constituents; 

3. Hybrid formalisms which used Machine Learning and combines with data, theoretical-based 

formalisms, to relate optical properties with structures and chemical composition.   

 

We used two specific quantum-based methods and hybrid technique based on machine Learning for our 

simulation-based analysis: 1). The first one is based on Density Functional Theory (DFT) simulations in 

collaboration with Oak Ridge National Laboratory (B. Sumpter), which have been used to simulate single 

crystals of specific classes of materials; 2). The second one is based on a new force field developed by our 

collaborator in Caltech (W. Goddard) using general rules for estimating force field parameters based on 

simple relations; 3). Use of a hybrid method which is based on existing data and a combination of methods 

(heuristics, machine learning, and semi-empirical methods). 

5.2.3.1 DENSITY FUNCTIONAL THEORY 

  The accuracy of these methods and computational efficiency are limited by the approximation to 

its exchange-correlation energy. Currently, the local density approximation (LDA) and generalized gradient 

approximations (GGAs) are used widely mainly due to their efficiency. We have used the recently 

developed non-empirical strongly constrained and appropriately normed (SCAN) meta-GGA for our 

analysis that improves significantly over LDA and the standard Perdew-Burke-Ernzerhof GGA for 

geometries and energies of diversely-bonded materials (including covalent, metallic, ionic, hydrogen, and 
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van der Waals bonds) at comparable efficiency. The accuracy of these methods and computational 

efficiency are limited by the approximation to its exchange-correlation energy.  

Interactions between ionic species are primarily electrostatic in origin, but can also have a significant 

component of vdW interactions among highly-polarizable negative ions, for example, making the 

description of such systems challenging. These situations often arise in ferroelectric materials especially 

the perovskites, like the prototypical BaTiO3 and PbTiO3, which exhibit spontaneous electric polarization 

due to structural instabilities at low temperature, and BiFeO3, a multiferroic material with ferroelectric and 

antiferromagnetic properties. The prediction of structural instabilities from first-principles calculations is 

extremely sensitive to volume changes, and even small errors of 1-2% in lattice constants obtained from 

LDA and PBE yield unsatisfactory predictions for ferroelectric materials.  PBE, for example, is particularly 

poor in its description of these materials, as it predicts spurious supertetragonality (too large c/a) in BaTiO3 

and PbTiO3.   

To address these limitations, we have used the SCAN functions, where the energy differences between the 

cubic and tetragonal phases are much closer to the B1WC values than either LDA, PBE, or even HSE (Sun 

et al., 2015).[131]    SCAN also gives more realistic band gaps for these compounds than LDA and PBE, 

consistent with our findings in Si and other semiconductors. This is possible because the SCAN meta-GGA, 

like the hybrid functionals, is implemented in a generalized Kohn-Sham scheme in which the exchange-

correlation potential is not a multiplicative operator. Hybrid gaps are however more realistic than SCAN 

gaps. In studies of multiferroics, where late 3d transition metals are usually present to provide the 

ferromagnetic properties, the Hubbard U is introduced for LDA and PBE to account for the on-site Coulomb 

interaction, and thus to open the band gap. Table 12 shows that the SCAN band gap is comparable to that 

of PBE+U with U=2 eV for the Fe atoms. Both SCAN and PBE+U give similar magnetic moments for Fe 

and comparable polarizations. However, SCAN is much better for the volume. Without being fitted to any 

bonded system, SCAN have been found to describe multiple kinds of bonding. 

 

The frequency dependence of the dielectric was computed with the independent particle approximation 

(IPA).  This approach tries to get a global description for all times and fields, but it does so in for a static 

distribution.  This is the simplest treatment of the optical response of a crystal, at the level of a full band-

structure calculation.  Although it is now generally accepted that an accurate quantitative description 

requires a treatment beyond the independent particle picture, a qualitative agreement between theory and 

experiment can often be achieved on the level of density functional theory DFT with SCAN.  The dielectric 

constant is related to the refractive index as n2 - k2, where is the dielectric constant, n and k are 

real and imaginary components of refractive index.   

The dielectric constants are listed in Table 11.  Single crystal simulations were done using VASP with 

advanced functionals.  
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Table 10.  Quantum-based Simulation of Dielectric Constants of single crystal materials using DFT. 

 

Although these simulations still have limitations based on the current approximations, the trends provide 

fundamental understanding of the different material characteristics below: 

1. Phase/Crystal structures modulate the properties.  The crystal structure and morphological phase 

of the material is a modulator of the dielectric constant (and hence RI).  Note the dielectric constant 

difference between the cubic and tetragonal phases; 

2. Moving from Nb to Ta in KTaNbO3 reduces the static dielectric constant, but not large variations.   

3. There appears to be an inverse dependence between the bandgap and dielectric constant; 

We also show the density of states of a pure crystalline KTaNbO3 material in Figure 33. The key 

observations are: 

4. The large density of states in the valance and conduction band indicates the possibilities of multiple 

intraband transitions  

5. The band gap is marked in the figure indicates the dielectric nature of the material 

6. The band diagram could be affected by defects as expected in these classes of materials (e.g. O 

vacancy) 
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Figure 33.  Density of states of a pure crystalline KTaNbO3 material. 

5.2.3.1.1 CHALCOGENIDE MATERIALS:   

Chalcogenides are covalently bonded materials and, although they may be amorphous or 

crystalline, they can range from semimetals to semiconductors with band gaps up to several 

eVs, depending on composition and structure.  Bulk chalcogenides are particularly noted for 

their functionality, with strong, varied responses to optical, electrical and thermal stimuli.  

chalcogenides exhibit strong and nonlinear properties, and are photosensitive.  The lead 

chalcogenides, PbS, PbSe, and PbTe, crystallize in the rocksalt structure, while in tin telluride 

(SnTe) a ferroelectric phase transition from a rocksalt structure (13-SnTe) to a rhombohedral 

structure really occurs.  As we go along the following elements, S, Se, and Te shows that 

bonding changes from molecular, covalent, to metallic. Among these three elements, only Se 

forms amorphous films and glassy ingots at room temperature. 

 

  Of these, we are reporting simulations for SnTe2 and PbTe2 as these classes of materials have been 

found from our detailed literature research to be capable of high dielectric constant (correlating with high 

RI). Summary of the results for PbTe2 is given below.  The atomic structure used for the orthorhombic 

simulations is given in Table 12. The relative size similarity between Pb (180-200 pm) and Te (140-202 

pm) can be observed. The following are the key conclusions from these analyses:    

1) PbTe2 indeed seems to indicate high dielectric constant;  

2) Structure seem to be a key modulator for the optical response.   

Specifically, the tetragonal structure, with higher density exhibits higher dielectric constant. Although the 

analysis itself is based on single crystalline materials, the strong modulation of structure will be also evident 

in the perovskite analysis. 
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Table 11.  Dielectric Constant of two phases of PbTe2. 

 

The simulation analysis of SnTe2 in Figure 34.  SnTe2 is a semimetal and indicates a higher dielectric 

constant from the simulations. Specific observations include: 

 1) the high dielectric constant for the hexagonally packed structure, with a small bandgap;  

2) The density of states (DOS) The observation of the metallic nature is demonstrated. The fermi energy is 

6.4 eV. 

 

Figure 34.  Quantum Simulations of SnTe2 Hexagonal Pure Crystal. 

5.2.3.1.2 PEROVSKITE MATERIALS-DETAILED ANALYSIS FOR KXTAYNBZO3:  

We had observed in the previous reports that the O-Ta and O-Nb interactions are critical to the 

electronic and optical properties.  Given the large possibilities for of the KTaNbO3, we have done a 

systematic analysis of 4 variables: structures, two cations, and anion/defects.   The x, y, and z denote 
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the composition of the respective elements.  The results are combined in the figure below.  The 

summary of this analysis is as follows: 

1. For structures, we simulated the same material KNbO3 and LiNbO3 in two different phases 

2. For cations, simulations were done for two cases 

a. Cation 1 substitution:  Compare LiTaO3 with KTaO3 

b. Cation 2 substitution:  Compare KTaO3 with KNbO3; LiTaO3 with LiNbO3 

3. For anion, as O is the only element, simulations were done removing O from KNbO3.  A few things 

need to highlighted for this analysis: 

a. When O is removed from the structure, such as KNbO3, the number of dangling bonds 

increase and the structure may not be thermodynamically stable. The simulations indicate 

this in a phase change as indicated in the figure below.  It started with the same cell as 

KNbO3 but the relaxed the cell became triclinic. 

b.  In order to study the extreme effect, the simulations resulted in 8 O atom vacancies.   For 

the structure simulated the density of states for the KNbO3 system that has 1/3 oxygen 

vacancies are also attached below.  Although this system has a magnetic moment (~5) and 

may not be thermodynamically stable, our intent was to find out large modulators. 
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Table 12.  Systematic Computational Analysis of Perovskite with different cations, anions, and 

structures. 

 

Several key conclusions can be obtained from this analysis (the color of the table in the above figure is also 

given below): 

1. Structure: (red colored table). This parameter appears to be a strong modulator as seen LiNbO3 

(cubic with tetragonal).    

2. Cation 1: Li with K (blue colored table).  This parameter appears to be a weak modulator.  

Although the polarizability of K is higher than Li.  This specific observation indicates that the 

optical property is less modulated by the alkaline cation compared to the structure. 

3. Cation 2:  Nb with Ta (orange colored table). The second cation is a stronger modulator as seen 

by the dielectric constant changing KNbO3 (5.3) when compared to KTaO3 (4.38) and LiNbO3 

(5.2) when compared to LiTaO3 (4.3). 

4. Anion/Structure:  O defects (green colored table). The simulation analysis indicated this to be the 

largest modulator.  One cautionary note in this regard. Since the number of O vacancies were high, 

and since the simulations relaxed to an alternate structure, the conclusions need to be understood 

in this context. The structure and the density of states are also given in Figure 35. 
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Figure 35.  Structure and Density of States of KNbO2 with O defects. 

The structure indicates the newly relaxed atomic configuration with O defects.  The density of states shows 

the fundamental change in the electronic and optical properties.  The fermi energy for the KNbO2 is 3.16 

eV. The interesting observation that the material has become a semimetal indicating the potential for a 

larger dielectric constant (44.2 based on the simulations).  As mentioned above, the O vacancy 

concentration has been changed significantly, but essentially shows what could be the strongest modulator 

for dielectric constant (and hence the RI). In addition, the density of states indicate that the electronic and 

optical properties may be closer to chalcogenides if the O vacancies increase significantly.  We intend to 

complete the analysis of the simulations in the next report. 

 

5.2.3.2 SEMI-EMPIRICAL MOLECULAR METHODS 

 

Although we simulated different materials derived from KTN perovskite to understand structure, two kinds 

of cations, and anionic defects, we wanted to be able to study both surface structures and also optical 

response as a function of radiation frequency.   In order to address these two items, a new hybrid force 

functional-based formalism, Polarizable Charge Equilibration Model, was developed by our Caltech 

collaborator (W. A. Goddard) and compared with more rigorous quantum simulations (but limited in size 

of systems).  This set of fundamental parameters is based only on the element, its hybridization, and 

connectivity.  This new force field is what is being referred here as a Universal force field (UFF). Since the 

perovskites are strongly polarizable, the interatomic model needed to comprehend the physics and the 

chemistry of bonding. This is currently done with what is called the Universal Force Field (UFF) which 

leads to fairly accurate predations of structure for the entire periodic table (up to Lr, Z=103, Z is the atomic 

number) although it only has 6 parameters per atom. We will briefly discuss the UFF model below. 
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In order to facilitate studies of a variety of atomic associations, the Caltech team had developed a new force 

field using general rules for estimating force field parameters based on simple relations. This set of 

fundamental parameters is based only on the element, its hybridization, and connectivity.  The angular 

distortion functional forms in UFF are chosen to be physically reasonable for large amplitude 

displacements.  The parameters used to generate the Universal force field include a set of hybridization 

dependent atomic bond radii, a set of hybridization angles, van der Waals parameters, torsional and 

inversion barriers, and a set of effective nuclear charges. 

 

For the ability to compute dielectric constant of perovskite-type material, the Caltech team replaced the 

charge equilibration method for predicting charges in the original UFF with a new method (PQEq) [132] 

that leads to polarization response in excellent agreement with QM, even though PQEq is also very simple 

with just 4 parameters per atom. The original UFF was for non-reactive systems, using a new way to 

predicting bond distances and force constants. As such it did not include electrostatic interaction between 

bonded atoms. For applications to dielectrics, the formalism needed to include all electrostatics including 

bonded atoms, which required reformulating the bond distance force constant relationships.   The PQEq 

parameters were validated and optimized based on accurate QM polarization energies for many elements 

of the periodic table including transition metals, main group, and p-block elements.[133-135] The PQEq 

predictions of interaction energies are observed to be in excellent agreement with QM, much better than 

other common charge models such as obtained from many of the currently-used interatomic potential 

methods. 

Since our goal was to specifically study complex materials such as KNbO3, KTaO3, KTa(1−x)NbxO3 etc, 

a hybrid method was developed and tested.  PQEq was combined with UFF for calculation of dielectric 

constant properties of complex materials as follows: UFF was used to describe the covalent bonds and 

angles and van der Waals (vdW) interactions, while PQEq was used to describe the polarization and 

electrostatic interactions.  In this report, we focus on KNbO3 and KTaO3 systems to validate the accuracy 

of the hybrid force field in computing electronic properties for such complex systems. The crystal structure 

of KNbO3 and KTaO3 are shown in Figure 36.   The crystal structures were minized using quantum 

mechanics with A) KNbO3 with Pm3m space group and a=4.057 Å and B) KNbO3 with Pm3m space group 

and a=4.031 Å. The unit cell of each crystal includes 4 atoms. 

 

 

Figure 36.  The crystal structure of KNbO3 and KTaO3. 
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5.2.3.2.1 DIELECTRIC CONSTANT COMPUTATIONS:   

The dielectric constant (ε) calculation was added to the PQEq formalism in presence of an external field as 

shown below.. PQEq parameters used optimized parameters from QM dipole scans for transition metal 

oxides. [136]   The polarization density (P) is aligned with and proportional to the electric field (Ef) 

 
𝑷 = 𝜀0𝜒𝑬𝒇 

                          (21) 

 

 

The dielectric constant can be obtained as a function of P and Ef given by  

𝜀 = 1.0 + 𝑐
𝑷

𝑬𝒇
 

                                 (22) 

Where c is unit conversion factor.  The dielectric property estimates found using PQEq-UFF, were validated 

with quantum mechanics simulations. Upon minimization at 0K, both structures shrunk by only 3%, 

indicating good agreement between the experimental and theoretical lattice parameters. Following 

minimization, density functional perturbation theory (DFPT) to calculate the static dielectric properties of 

these structures. For KNbO3 the isotropic dielectric tensor the static dielectric constant was estimated to be 

6.33. For KTaO3 the static dielectric constant was estimated to be 5.35 (both of these calculations include 

local field effects at the RPA and DFT levels).  These results are given in Table 14. 

 

 

Table 13.  Comparison of dielectric constant values computed by PQEq-UFF with Quantum 

Simulations. 

System ε (PQEq-UFF) ε (QM) 

KNbO3 7.51 6.33 

KTaO3 8.22 5.35 

 

Although these results are encouraging, it is clear that more analysis is needed before applying these newly 

developed methods to estimate dielectric constant of complex materials including frequency dependence. 

For the next steps (if the project continues beyond the current phase), the newly developed PQEq-UFF 

needs to be compared with DFT calculations and with experiments for these materials.  As part of our future 

work, this formalism will be used to compute various properties such as polarization, ferroelectricity, and 

electric field frequency response for select crystal systems (determined by our detailed literature analysis).  

5.2.3.3 HYBRID FORMALISM BASED ON MACHINE LEARNING, SIMULATIONS, AND 

EXPERIMENTAL DATA 

As indicated before, our previous analysis looked at materials properties for 1056 inorganic compounds 

screened using Density Functional Perturbation Theory, we evaluated the consistency of this approach with 

other methods of predicting refractive index n and corresponding experimental data.[137] Figure 11 shows 
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the comparison of the perturbation theory approach from with Wemple and DiDomenico’s approach for 

nine perovskite materials, including KNbO3, BaTiO3, SrTiO3, RbMnF3, CsPbF3, CsCaF3, RbCdF3. 

[138,139] Based on a single-oscillator model, the semi-empirical Wemple and DiDomenico approach can 

be expressed for oxide and halide perovskites as follows, where Eg is the lowest direct band gap: 

 

Oxide Perovskites 

𝑛 =  √1 +
16.64𝑒𝑉

𝐸𝑔
 

                                                   (23) 

Halide Perovskites 

 

𝑛 =  √1 +
8.32𝑒𝑉

𝐸𝑔
 

                                                   (24) 

While there are other models for estimating refractive index including the Moss relation based on Bohr’s 

hydrogen model, these often do not accurately capture the energy levels in solids, which is shaped by the 

specific electronic structure and the structural morphology. Through its semi-empirical approach, the 

Wemple and DiDomenico approach provides a basic approximation that better accounts for the structural 

restrictions on energy levels. As shown in Fig. 1, the values between perturbation theory and this semi-

empirical model correlate reasonably well (r = 0.97), suggesting consistency between the different 

approaches.  

To further characterize how various material properties, relate to refractive indices, we conducted a data-

driven analysis.  There were two reasons on us choosing specific data: 1) We wanted to ensure that the data 

were consistent as the variabilities in data from different sources were not well-characterized and 

statistically indeterminate; 2) The principal variables that modulated the RI had to be material-dependent 

(e.g. molar entropy) and not just based on atomic properties (e.g. polarizability), as we have observed that 

molecular composition alone is not sufficient to explain the optical response.   However, the limitation of 

this analysis is two-fold: 1) Since the imaginary component of RI is not part of the data, the dissipation 

component of the RI is need to understand the absorption and transmission components; 2) The material 

stability, time-dependent response, and the non-linear optical properties are not accounted for in this 

analysis. 

  With this as the basis, our analysis studied materials properties for 1056 inorganic compounds 

screened using Density Functional Perturbation Theory. [140] This method, benchmarked to be more 

accurate compared to GGA/LDA methods in predicting refractive index from electronic structure 

calculations, has a 5.7% mean deviation from experiments predicting n. Even more, the method is known 

to accurately rank (ρ = 0.92) the refractive index of materials when compared to the ranking of the 

experimentally measured refractive indices. With this as the requirement, we evaluated the relation between 

RI (denoted by n) and each material’s band gap and polycrystalline estimate of the dielectric constant. For 
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each material, we also calculated the molecular weight and the entropy by summing the standard molar 

entropies of the constituent elements.  

To determine if the combination of these features had any relation to the refractive index, we applied 

principal components analysis. Figure 37 shows the map of the first two principal components and helps 

interpret the embeddings with respect to the available features. At first glance, the first and second principal 

component capture 21.6% and 16.21% of the variance in the data. As these components combined capture 

over 37% of the variance in the data, it highlights that the calculated embeddings can be effectively used to 

study a significant proportion of the variance in refractive index and its relation with these other material 

properties. 

 

 

Figure 37.  Principal components analysis is used to reduce the dimensionality of 1056 inorganic 

compounds and study the relation of components to refractive index (left) and material type (right). 

High RI (n) materials, shown in orange, are labeled if its refractive index is larger than 2.19 or the 

median n in this dataset. [139-183] 

Figure 37 (left) shows that the combination of these calculated properties (e.g., band gap, dielectric 

constant, molecular weight, entropy) can separate high n materials from low n materials. A material was 

determined to be high n, if its refractive index was larger than the median n (2.19) in the dataset.   Comparing 

the right and left plots shows that the red points (chalcogenides) largely overlap with the region of materials 

that are high n, which highlights that chalcogenides tend to have higher refractive indices, consistent with 

the separate ab initio analysis done earlier and the other literature data.  As our previous analysis suggests 

that metal oxides, chalcogenides (including non-oxides), and perovskites have higher refractive index, 

Figure 37 (right) looks at the calculated principal components based on material type. Only 14.3% of the 

materials in the database are chalcogenides (red). Nonetheless, comparing Figure 37 left and right, we can 

note that the high n materials overlap with the chalcogenides, cross-validating our finding from previous 

updates.  

Figure 38 shows a statistical effect plot that visualizes which features have the largest effect or comprise 

each of the top two principal components. The high refractive index materials are colored in red and lower 

ones are shown in blue. The loadings plot shows that the first principal component, where materials on the 
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right have high RI, is explained by the variance in standard molar entropy, whether the material is a 

chalcogenide, band gap, polycrystalline dielectric constant. In this analysis, if the material is a chalcogenide, 

it is notable that this feature contributes significantly to the first principal component and is correlated with 

high refractive index status. Our plot also shows the standard molar entropy inversely correlates with the 

high refractive index. Other variables such as whether the material is an oxide, perovskite, or ferroelectric 

contribute less significantly to account for the variance in refractive index status. 

 

 

Figure 38.  The loadings plot shows the modulation of different variables to the RI. 

Figure 39 shows the relation of refractive index with molecular weight (g/mol), band gap (eV), and standard 

molar entropy (cal K^-1 mol^-1). In this figure, oxides are shown in red, chalcogenides in blue, and others 

in black. 
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Figure 39.  The refractive index is plotted with respect to molecular weight (g/mol), band gap (eV), 

standard molar entropy (cal K^-1 mol^-1). Our plots show that lower standard molar entropy, 

lower band gap correlate with higher refractive index. 

There are many insights to learn from Figure 39 and here we highlight some of the key ones. First, we note 

that the high refractive index materials appear to be distributed across various molecular weights.   

1. From the plot, we infer that there is no obvious relationship between molecular weight and 

refractive index.  

2. Second, looking at the distribution of band gap to refractive index, a strong inverse relationship 

emerges. This is a well-known correlation between the dielectric constant and band gaps. All 

materials with highest refractive index appear to have the lowest band gap, where the first quartile 

ranges from 0.11 to 0.89.  The band gap for the materials with the top 10 refractive indices is shown 

in Table 15. 

3. Three, in studying the distribution of the total standard molar entropy for each material, we find 

substances with the highest refractive index tend to have lower molar entropies. As various crystal 

packings likely alter the entropy of each material, as we had reported in our previous analysis, the 

refractive index can vary according to the crystal structure.  
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Table 14.  Top 10 materials based on highest refractive index. The chalcogenides are shown in blue 

and oxides in red. These calculations were completed at the optical long wavelength limit (~590 

nm). 

 

Finally, Figure 39 illustrates two plots.  Fig 39 (a) is based on the above analysis based on experimental 

data/simulation analysis, and Fig 39 (b) are using the analysis to extrapolate to possible materials that could 

have higher RIs.    Our machine learning analysis seem to indicate specific materials that have potentially 

high refractive index n. This is also given in Table 14.  As mentioned before, the RI does not include the 

imaginary components, as these datasets did not have both the components.   

 

Figure 40 (a) Distribution of Refractive Index v. Band Gap for Materials with experimental 

validation (left) and (b) predicted high n without experimental validation (right). 

5.3 SYNTHESIS PATHWAYS OF THE PREDICTED MATERIALS WITH MAXIMAL 
REFRACTIVE INDEX 

The key questions that were addressed were (1) What are the key optical properties of the GR phase 

in the KTN:Li perovskite crystals?  (2) How are these properties related to the structure of the GR super-

crystals?[1]  (3) Can the essential optical properties be replicated in a metasurface design, using KTN:Li, 

some other crystalline material possessing similar long-range correlations, or in a metamaterial basis some 

other combination of dipole radiators and phase-changing elements.   
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The crystal-growth technique that creates the supercrystal structure responsible for giant refraction 

(GR) in Li:KTN (KLTN) was reviewed with the aim of understanding how an analogous metamaterial 

structure could be designed and synthesized. 

We studied the specific organization of the KLTN to elucidate the way in which the periodic modulation 

of the supercrystal composition leads to the formation of a macroscopic coherent optical state exhibiting 

giant refraction.  The supercrystals have the same sub-nanometer unit cells as the perovskite KTN, but are 

organized into supercells with alternating regions of high and low niobium density (arising from the off-

center crystal-growth process[2] employed), having a superlattice constant of 5.5 µm.  The underlying 

geometry of the supercrystal is illustrated in the Figure 41 taken from one of the key papers from this 

group.[3] 

 

Figure 41.  Polar domains in the x-y plane of the supercrystal structure are shown. [184]  (a)  
Adjacent domains in ordinary polar perovskites are rotated either 90˚ or 180˚. (b) In the 

supercrystal with its built-in ordering in niobium density along the x direction, it is the 90˚ 
structure that is observed.  The supercrystal unit cell is outlined in green in this schematic; the 

black lines highlight the planes that govern the observed optical refraction, with periods shown in 
white lines.  Light blue arrows mark what are essentially paraelectric domains in the crystal.  The 
period L of the superlattice growth along the x direction is shown in the lower right.  (c) Here the 

projection of the unit cell into three dimensions is seen in exploded view. 

 

A critical point seems to be that in the supercrystal, neighboring supercells – within which the individual 

dipoles are locally ordered –  are also antiferroelectrically ordered as one crosses domain walls in both 90˚ 

and 180˚ rotation planes.  That structure apparently is frozen in just below the critical temperature boundary 

(the Curie temperature Tc) between the paraelectric and ferroelectric phases of the KLTN and arises after 

dipolar relaxation in the ferroelectric phase at Tc-2K.  Moreover, the observed diffraction anisotropy feature 

arises because there are no grating planes in the y-z face of the crystal. 

Thus, the para- to ferroelectric phase transition is an essential feature of the short- and long-range ordering 

scheme that leads to the GR effect.  Since it appears that the critical features of the supercrystal have 

dimensions ranging from sub-micron to few-micron dimensions, it would seem that fabrication of an 

appropriate meso- to microscale metamaterial should not be an issue – if the appropriate analogs for the 
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domains can be translated into the appropriate meta-atoms.  The design strategy that leads to a viable 

metalens thus requires a similar combination of local and global ordering in the context of a phase transition. 

We considered the thermodynamics of the KLTN to understand how the transition from the disordered 

paraelectric phase of the supercrystal to the ordered ferroelectric phase leads to the jet-like propagation of 

an optical signal normal to the KLTN supercrystal surface in the giant refraction (GR) phenomenon.  The 

key underlying point is that this is a second-order phase transition and thus has generic characteristics that 

are well understood, although application to this specific case will have unique features. 

 

Figure 41.  This reproduces Fig. 1 from Ref. 184.  The key points are in panels e and g, where the 

GR beam propagates normal to the crystal face, and for incident white light (g) shows evidence 

of chromatic aberration on a mm scale.  In panels f, on the other hand, the GR beam grows in 

alongside the normal diffracted beam only gradually with time as the crystal equilibrates at Tc, 

on a scale of seconds. 

The supercrystals have the same sub-nanometer unit cells as the perovskite KTN:Li, but are organized into 

supercells with alternating regions of high and low niobium. Neighboring supercells – within which the 

individual dipoles are locally ordered –  are also antiferroelectrically ordered as one crosses domain walls 

in both 90˚ and 180˚ rotation planes.  That structure appears to freeze in over a period of seconds just below 

the Curie temperature Tc after dipolar relaxation to the ferroelectric phase at Tc-2K.  The observed 

diffraction anisotropy – the forward jet – forms because there are no grating planes in the y-z crystal face 

to diffract the incident phase front. 

As the authors of Ref. [184] observe, only the components of the light impinging on regions of the 

supercrystal with the correct anisotropy undergo GR; the other components experience normal Snell’s law 

refraction.  The GR beam is shown in Figure 42, Ref. [184], to undergo filamentation on a scale of µm, 

compatible with the size of the supercrystal domains.  But this observation does not appear to be compatible 

with the idea of a giant refractive index that preserves memory of the phase front of an incident optical 

beam – and therefore also raises serious doubts as to the proffered explanation of the phenomenon.   
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Figure 43.  Schematic material structures of a two-phase system for a second-order phase transition 

at various temperatures, where T
c
 designates the critical temperature. Ref. [185]. 

 

Figure 44.  X-ray scattering from argon near the critical liquid-vapor phase transition temperature.  
Ref. [186] 

 

So, if GR is not an appropriate way to describe what is observed in KLTN, is there a better way to 

understand what is happening?  Given the prominent place occupied by critical temperature in the GR 

phenomenology, it is sensible to ask what can be learned by thinking about the second-order phase 

transition.  As shown schematically in Figure 43, at Tc, the fractional difference between the number density 

of the two phases Δ = nPE-nFE/ntotal is precisely zero, and the specific way in which the two phases order 

themselves will probably determine the way the KLTN composite responds to light scattering.   

In KLTN, we will have equal concentrations of electric dipoles in the disordered paraelectric phase and the 

ordered ferroelectric phase at Tc; in the super-crystal, that may very well lead to preferential or coherent 

scattering of visible light from the ordered phase, given its µm-scale dimensions.  But this phenomenon has 

long been known in the scattering of electromagnetic radiation from two-phase mixtures undergoing 
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second-order phase transitions:  It is called critical opalescence.  An example of small-angle X-ray 

scattering at the phase boundary between gas-phase and liquid-phase argon is shown in Figure 44, in which 

the inverse scattering amplitude is plotted as a function of the square of the scattering angle.  As the critical 

temperature is approached from above, the scattering amplitude rises rapidly, with more and more scattering 

amplitude confined to small forward angles.   

This appears to be very similar to the strong forward “jetting” that is observed in Figure 42 e-g – suggesting 

that what is being observed is not refraction, but rather coherent forward scattering caused by the ordered 

dipoles in the ferroelectric phase of the KLTN. 

This leads to new questions to be investigated (1)   Can coherent light scattering of the GR type produce 

metalens functionality?  That would require some way to reconstruct phase fronts using a metasurface layer, 

and it is not clear that the answer can ever be affirmative.  (2)  Is there a role for critical phenomena like 

those observed in KLTN in the design and optical functionality of a metalens?   When Prof. Richard 

Haglung visited Prof. Owen Miller at Yale on February 18th, he raised this question with Prof. Charles Ahn 

and Prof. Frederick Walker in Prof. Owen’s department, both with deep experience with the electronic 

properties of ferroelectrics, and they referred him to a recent paper on BaTiO3, another ferroelectric with a 

perovskite structure like KLTN.  This paper seems to advance a generic perspective on using correlated 

electron phenomena to achieve optical functionality. 

5.3.1 SELF-ACTION AS A POSSIBLE MECHANISM FOR GIANT REFRACTION 

A key claim about the GR phenomenon is that should be observable in a strongly correlated material in 

which “susceptibility is dominated by local fields, [so that] n can be anomalously enhanced through self-

action.”[184,185]  Self action, by definition, assumes that when the incident electric field induces a change 

in polarizability, this in turn interacts with and modifies the incident field – an effect that is well known in 

nonlinear optical phenomena, such as multi-photon absorption or nonlinear refraction.  However, nonlinear 

optical effects have small cross sections, typically decreasing from linear processes by 10-12 per order of 

the nonlinearity.  Thus, the cross section for nonlinear refraction n2I, a third-order nonlinear process, is a 

small fraction of the linear index of refraction even at high optical intensity – which was certainly not the 

case for the Di Mei experiment with its low-power white-light source.   

Of more significance is the fact that the sign of the nonlinear index n2 can be either positive (self-focusing) 

or negative (self-defocusing); only the former is conceivably interesting for imaging.  So, for example, the 

newly discovered two-dimensional (2D) halide perovskites have recently been shown to have very large 

nonlinearities, but it turns out that the large n2 values are negative.[186-190]  Moreover, an extensive 

survey[191] of the nonlinear properties of semiconductors and insulators – including the ferroelectric 

LiNbO3 – shows that nonlinear contributions to the refractive index are additive and of order less than 1.  

That is, nonlinear refractive effects are not multiplicative, and require light intensities greater than 

100 MW/cm2 to be significant. 

From general principles, the refractive index in an isotropic medium satisfies the Lorentz-Lorenz relation 

n2={1+(8/3)πNa)/[1-(4/3)πNa]}, where N is the number density of atomic dipoles and a is the 

polarizability.[192]  DiMei et al. then argue that in the vicinity of a phase transition, it is possible that 

(4/3)πNa~1, leading to a large (linear) index of refraction, and cites as evidence a paper describing quantum 

enhancement of the refractive index near the phase transition in a Bose-Einstein condensate (BEC).[193]  

But in that report, the quantum enhancement is only a few  per cent, the number density is of 1014 cm-3; in 

discussing the mechanism, the authors explicitly note that the Lorentz-Lorenz correction is negligible as 

seems reasonable given that the density of the BEC is so low. It appears, then, that this line of argument 

leads to a dead end.  Whether a solid-solid phase transition can in fact yield such a condition remains an 

open question. 
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5.3.2 PROGRESS TOWARD EXPERIMENTAL TESTING OF ENHANCED REFRACTION 

As noted in the February report, the Di Mei KLTN supercrystals have the sub-nanometer unit cells like the 

perovskite KTN, but are organized into supercells with alternating regions of high and low niobium density 

(arising from the off-center Czochralski crystal-growth process[185] employed), with a superlattice 

constant of 5.5 µm.[186] Neighboring supercells – within which the individual dipoles are locally ordered 

–  are antiferroelectrically ordered as one crosses domain walls in both 90˚ and 180˚ rotation planes.  That 

structure appears to freeze in just below the Curie temperature Tc ; the observed diffraction anisotropy – the 

forward jet – forms because there are no grating planes in the y-z crystal face to diffract the incident phase 

front. 

When I visited Owen Miller on February 18th, I discussed these questions with Charles Ahn and Frederick 

Walker, both with deep experience with electronic properties of ferroelectrics, and they referred me to a 

recent paper on BaTiO3, another ferroelectric with a perovskite structure similar to that of KLTN.[194]  

This paper advances a generic perspective on using correlated electron phenomena to achieve optical 

functionality near a phase transition, suggesting that if there are GR-like effects in KLTN, there might be 

hints in other ferroelectrics near their phase transition.   

With William Martinez (Vanderbilt Institute for Nanoscale Science and Engineering - VINSE), we have 

begun discussions on how to fabricate thick (2-3 µm) films of KLTN and other doped and undoped 

ferroelectrics to search for unusual optical nonlinearities, and to investigate the effects of lithium doping.  

VINSE facilities include both CVD (chemical vapor deposition) and sputtering tools capable of growing 

thick films either in layer-by-layer fashion or a continuous deposition cycle.  The techniques for growing 

oxide-ferroelectric films are exceedingly well developed, given their long commercial history.[195-197] 

Once the current coronavirus pause ends and VINSE facilities become available, we will then begin 

depositions of KTN,  BaTiO3 and LiNbO3 to establish deposition protocols.  We can then explore the 

nonlinear properties of phase-changing metasurfaces made up of small (~5 µm lateral dimensions) 

supercells of the ferroelectrics created in various array geometries, using standard oxide-etch protocols. 

5.3.3 SYNTHESIZING THE GR MATERIALS 

We have been able to locate a supplier of sputtering targets who can make both KTN and the lithium-doped 

KTN, and have therefore added KTLN as a fourth model material to the list in the last report, to be 

synthesized in a metasurface geometry,  as summarized in the Table 15.  The Curie temperature is the 

temperature below which ferroelectric local order is possible. 

 

Table 15.  List of model materials. 

Material Structure Local order Curie temperature 

KTN (KTN) Perovskite Ferroelectric 20˚C 

KTLN Perovskite Ferroelectric 20˚C 

BaTiO3 Perovskite Ferroelectric 120˚C 

SmNiO3 Perovskite Antiferromagnetic 400˚C 

We are growing thick (3-5 µm) films of KTaxNb1-xO3, KTaxLidNb1-xO3, BaTiO3 and SmNiO3 by rf 

magnetron sputtering[196] using a continuous deposition cycle.  Techniques for growing correlated-oxide 

films, including ferroelectrics have a long commercial history, so that there are standard “recipes” available 

in the literature.  VINSE also the facilities needed for microstructuring surfaces at the desired scale, 

including a laser writer, a photolithography tool, and wet- and plasma-etch capabilities.  
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We will begin materials synthesis and optical experiments on KTaxNb1-xO3 (KTN) and KTaxLidNb1-xO3 

(KTLN) as the highest priority,  because KLTN is identical to the Di Mei crystals, while KTN is also 

undergoes a paraelectric to ferroelectric transition, but does not have the small lithium dopant that DiMei 

et al. argue is responsible for the unique properties of their material.  We expect that this direct comparison 

will answer questions about the effect of local disorder in the KLTN material vis á vis KTN, the role of the 

phase transition, and effects of local order (ferroelectric vs anti-ferromagnetic).  Depending on the outcome 

of the optical experiments, we will then decide whether to proceed with Metasurfaces of the model materials 

will be designed with the aid of the Lumerical® software, consisting of small (~5 µm lateral dimensions) 

supercells in various array geometries, using photolithography and standard oxide-etch protocols.  

Crystallinity, structure, and stoichiometry will be assessed using tools also available in the VINSE facilities.  

5.3.3.1 OPTICAL EXPERIMENTS 

The nonlinear optical properties of phase-changing metasurfaces will be investigated in the Haglund optics 

laboratories, are now returning to normal levels of research activity.  In addition to standard linear refraction 

and angle-dependent diffraction measurements that we have set up during the past month, we can also make 

sensitive measurements of second[17] and third-order[18] nonlinear optical properties of correlated 

materials.  The experimental layout for the nonlinear optical experiments, and the data acquired in a recent 

measurement on another nonlinear heterostructure, are shown in the Figure 45 and 46.  The second- and 

third-harmonic peaks arise from the second- and third-order susceptibilities, while the broadband 

multiphoton photoluminescence (MPPL) arises from incoherent electronic excitation.  

 

Figure 45.  Experimental schematic for measuring the nonlinear susceptibilities of nanostructured 
samples. 

 

 

Figure 46.  Monochromator scan of an experimental semiconductor-metal nanostructured bilayer. 
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5.3.3.2 COMPUTER SIMULATIONS BASED ON OPTICAL CONSTANTS 

Given the optical constants of a thin film, it is possible to simulate the response to a specified optical input 

using finite-difference, time-domain calculations.  We have implemented a Lumerical® simulation for 

arrays of nano- and microstructured arrays, and the test case using zinc oxide has been vetted.  We have 

collected the existing data on optical constants for KTN in the literature and will also measure the optical 

constants of our films as-grown using variable-temperature spectroscopic ellipsometry to verify the 

literature values. Metasurfaces of the model materials will be designed with the aid of the Lumerical® 

software, consisting of small (~5 µm lateral dimensions) supercells in various array geometries, using 

photolithography and standard oxide-etch protocols.  Crystallinity, structure and stoichiometry of thin films 

and the metasurface structures will be assessed using tools also available in the VINSE facilities.  

5.3.4 DEPOSITIONS OF KTN AND KTLN FILMS THROUGH SPUTTERING. 

We have deposited and characterized a matched set of KTN and KTLN films at thicknesses up to 100 nm, 

on silicon and (100) single-crystal substrates of magnesium oxide, using the sputtering parameters in the 

table below [184].   Both targets “strike” to ignite the sputtering plasma at 40 ccm argon flow, 30 mTorr 

chamber pressure and 30 W power, well within the limits of our sputtering tool.  The quoted deposition rate 

is nm/minute. 

Table 16.  sputtering parameters for KTN and KTN:Li films. 

 

5.3.4.1 CHARACTERIZATION OF SPUTTERED FILMS 

The films were grown on 1 cm2 coupons for variable-temperature spectroscopic ellipsometry and optical 

spectroscopy measurements.  Ellipsometry results in the table acquired at 60˚ and 70˚ input angle agree 

with published results for the paraelectric phase of KTN. 

  

Table 17.  Refractive indices obtained through ellipsometry of KNT and KTNLi deposited on Si 

and MgO substrates 

 

The surface quality of the films was characterized using atomic-force microscopy; in each of the 

micrographs, the sampling is done over a 1 µm x 1 µm area.  The arithmetic mean deviation Ra, and mean-

square variance Rq and the maximum height difference are all measured in nm; not surprisingly, the KLTN 

sample is marginally rougher than the KTN.   The micrographs themselves suggest that all of the films have 

similar morphological characteristics, with tightly packed grains. 
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Table 18 Surface roughness metrics obtained from AFM on KTN and KTNLi films depoisted on Si 

and MgO. 

 

A)  B)  

KTN on silicon KTN on MgO(100) 

C)  D)  

KTN:Li on silicon KTN:Li on MgO(100) 

Figure 42 AFM micrographs for  KTN deposited on A) Silicon and B) MgO substrates as well as 

KTN:Li on C) silicon and D) MgO. 

We characterized a matched set of KTN and KTLN films at thicknesses up to 100 nm, on silicon and (100) 

single-crystal substrates of magnesium oxide.  The films were grown on 1 cm2 coupons for variable-
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temperature spectroscopic ellipsometry and optical spectroscopy measurements.  As noted in the February 

report, ellipsometry results agreed with published results for paraelectric KTN. [13]. As is typical for oxide 

films, we annealed the as-deposited films at 800˚C in a mild oxygen environment for approximately one 

hour to reach the desired KTN stoichiometry. 

 

  

Figure 43 Transmission and reflection for for KTN and KTN:Li films. 

As noted in the January 15 2021 report and shown in the figure above, the transmission of KTN and KTNL 

films on MgO showed no significant differences except below 350 nm, and thus no significant difference 

in the visible wavelength region where giant refraction (GR) was reported by di Mei et al.[184]  Raman 

microscopy and X-ray diffraction studies – which should be sensitive to the nanostructural, domain-level 

alterations in local crystalline structure hypothesized in the GR report – also showed no difference between 

the KTN and KTLN films, even though the KLTN films are identical in composition to the Di Mei crystals.  

Structural studies of the pre-annealed KTN and KTLN films by X-ray diffraction (XRD) on both the MgO 

and silicon substrates (below) showed little evidence of the KTN/KTLN films, possibly because the film 

was too thin.  In particular, there were no significant Ta or Nb peaks that we would have expected to see in 

the 2 scans between 35˚ and 55˚.   It is possible that grazing incidence XRD, available in our instrument 

with minor adjustments, would show those peaks more clearly; however, the pressure of time and other 

user commitments precluded that.  
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Figure 44 XRD spectra of KTN on Si and MgO substrates before heat treatment. 

In contrast to these discouraging results, a comparison of XRD data on the pre-annealed vs post-annealed 

films on silicon show obvious differences (see below), suggesting that annealing yielded the expected 

improvement in crystallinity, as evidenced by the appearance of stronger peaks in the expected angular 

range and a decrease in some of the Si signals. 

 

Figure 45 XRD spectra of KTN on Si and MgO substrates after heat treatment. 

Raman microscopy of KTN show differences between spectra below and above the phase-transition 

temperature (298 K = 25˚C).  The strong central peak is known to be from the silicon substrate; however, 

the broad feature around 950 cm-1 appears to include features from both the substrate and the film.  Raman 

spectra of the bare Si substrate show that this feature has no dependence on temperature as expected, while 

the samples with KTN do show a variation in this peak above and below the critical temperature.  

Nevertheless, resolution is poor and further studies will be needed to correlate spectral features with the 

microstructural difference between KTN and KTLN mooted in [184]. 
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Figure 46 Raman spectroscopy of  KTN above and below the ferroelectric transition temperature 

for KTN with and post deposition annealing. 
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6. RESULTS OBTAINED 

6.1 LIMITATIONS OPTICAL FOCUSING AND DETERMINING BROAD BAND LIMITS 

We have established the maximal refractive index valid for arbitrary passive, linear media, given constraints 

on dispersion or bandwidth. Starting from Kramer’s–Kronig relations and the f-sum rule that all causal 

media have to obey, we have obtained a general representation of susceptibility. We have employed linear-

programming techniques to demonstrate that the optimal solution is a single Drude–Lorentz oscillator with 

infinitesimal loss rate, which gave simple, analytic bounds on refractive index. Based on a similar approach, 

we have obtained bounds on high-index optical glasses and refractive index averaged over arbitrary 

bandwidth.  

 

Figure 47 Lower-loss metals would enable even more dramatic enhancements of refractive index. 

Composites with a nearly lossless metal can be designed to achieve refractive indices larger than 

100 at 1550nm wavelength. These composites (circle markers) exactly achieve our bounds (solid 

line), and require enormous dispersion values to do so, thanks to the cube-root scaling indicated in 

the inset. 

We have also generalized our bounds to any bianisotropic media described by a positive- or negative-

semidefinite effective permittivity 𝜀𝑛𝑙̿̿ ̿̿ (ω,k), rendering our bounds more general than initially expected (i.e., 

the maximal refractive indices obtained in Sec. 8. II and Sec. 8. IV also describe materials incorporating 

magnetic, gyrotropic, and other bianisotropic response). We have also designed low-loss metal-based 

composites with refractive indices exceeding those of best performing natural materials by a factor of two 

or more. The approach developed herein can be extended to address a variety of related questions. For 

example, one can allow for gain media, which can still be described by a sum of Drude–Lorentz oscillators 

with infinitesimal loss rates (see Eq. (4)). However, the oscillator strengths in this scenario need not be 

positive, leading to different optimal linear-programming solutions depending on the exact objective and 

constraints. Besides, while we have considered transparent optical materials in this paper, the bounds 

established here can be used to compare state-of-the-art dielectrics at microwave and other frequencies of 

interest. One may also be interested in metrics other than refractive index. A key metric in the context of 

waveguides and optical fibers is group velocity dispersion [184], which can be seamlessly incorporated into 

our framework. 

Another metric closely related to refractive index is the group index, which measures the reduction in group 

velocity of electromagnetic waves in a medium. However, unlike refractive index, the group index can 

reach values up to 60 even in the near-IR, and much higher elsewhere [185]. This is because group index 

ng, by definition, increases with dispersion: 
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(20) 

Since the first term in Eq. (20) is just the refractive index, which is often of the order of unity, the second 

term, scaling with dispersion, is usually the dominant term for very large values of group index. That being 

said, we show in the SM that bounds on group index averaged over arbitrary nonzero bandwidth can be 

obtained based on our refractive-index bound. 

One can also explore negative (anomalous) dispersion, which typically occurs around resonances where 

losses become comparable to refractive index. While our current susceptibility representation is not suited 

to allow for arbitrarily large losses at the frequency of interest (where we maximize refractive index), one 

might construct other representations that can describe arbitrary line shapes with anomalous dispersion. We 

have used Kramer’s–Kronig relations to bound refractive index in this paper, but various other integral 

relations could be useful starting points to branch out to a wide range of problems that are not necessarily 

linear. The linear programming techniques employed here does not rely on the linearity of the physical 

quantity of interest and is applicable to nonlinear susceptibility and various other complex, nonlinear 

phenomena. 

Another avenue that can potentially prove fruitful is to better understand the key characteristics of materials 

that determine refractive index. While the maximum allowable dispersion sets a limit on refractive index, 

are there more fundamental, physical quantities at play behind the scenes? In the SM, we identify a 

characteristic trait of high-index materials: a combination of low molar mass and high electronegativity, to 

achieve large valence electron densities. Going further, it might prove fruitful to combine the insights and 

directions laid out here with band-structure analysis (through ab-initio methods for example), to extract 

physical properties conducive to high-index materials. 

6.2 COMPUTATIONAL FRAMEWORK FOR DESIGN OF MATERIALS 

Our intent in one year was to demonstrate feasibility of a systematic framework for key components to 

designing materials with high refractive indices.  The bigger focus of the project is to understand the 

fundamental physics that drives the high refractive index in materials.  Based on the refractive index, 

materials can be divided into bulk materials and micro-structured materials.   As mentioned in the proposal, 

we are planning to map out a computational framework for design of materials to estimate refractive indices 

of complex classes of materials.  For understanding the relationship of material structures and chemical 

nature to refractive indices, we need to analyze both the bulk materials and microstructure-dominated 

materials. As a result, we need to understand what limits the refractive index of materials from fundamental 

physics and chemistry.  This will be helpful to understanding the second class of materials under which 

meta-materials result.   

The research that has exhibited as giant RI by Di Mei et al in 2018 has the chemical structure of  K 0.997 

Ta 0.64 Nb 0.36 :Li 0.003 (KTN:Li) perovskite.  With this as background our intent was to use existing 

literature data and a variety of modeling and computational methods to further the understanding of how 

RI can be modulated by chemical and material knobs in bulk materials.  In order to systematically address 

this problem in one year, we used a systematic 4-step methodology which used existing data to narrow the 

large-scale simulation analysis:  1). Detailed literature review to identify correlations between chemical 

elements, material chemistry (organic or inorganic), and wavelength dependence; 2). Based on the analysis, 

identify specific classes of materials for detailed quantum simulation analysis; 3) Use quantum and 

molecular methods to understand the effect of knobs on RI of specific bulk materials; 4) Combine the 

different methods to identify design knobs for engineering high RI materials. 
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Based on literature data of over 1000 materials, and very diversified data, we identified two classes of bulk 

inorganic materials that can potentially exhibit high dielectric constant and potentially high refractive index 

as well.  They are Chalcogenides and Perovskite materials. The next step of our methodology consisted of 

simulating specific materials from each of the classes and try to compare them with existing data.  

Subsequently, we did in silico-based analysis of several material structures, composition, and chemical 

defects to understand the effects on the dielectric constants.  Our analysis indicated that Structure, Cation 

2 (Nb or Ta), and oxygen defects are all strong modulator.  One of the interesting conclusions is that O 

defects and crystal structures together can increase the dielectric constant (and hence the refractive index). 

Based on our analysis of the wavelength dependence, optimal material for the refractive index needs to 

satisfy the following three criteria:  

1) high value of RI for most of the range of the visible spectrum.  

2) high value of the cosine component.  

3) relatively flat cosine component.    

In addition, the real component of RI needs to be high in the same range. Our analysis indicated that the 

perovskite (CH3NH3PbI3) satisfies the first two criteria.  However, its maximum RI is 3.13 and hence lower 

than the other materials.  The other material that satisfies all the three criteria is WS2.  It is also clear from 

our analysis that a finite band gap is needed in reality for the material to exhibit a higher cosine component 

and a higher real component of RI, with a smaller imaginary component.  Based on our quantum-based 

analysis, it also appears that these two classes of materials have design parameters that could be used to 

tune the structure composition space to optimize the required refractive index response for high RI 

materials. 

6.2.1.1 FUTURE WORK 

Based on the detailed literature analysis and ab initio simulations, we have identified that both perovskite 

and chalcogenide materials are capable of exhibiting strong optical property modulation. The analysis 

illustrated strong potential modulation of the optical property (electronic dielectric constant), due to 

structure, cations, and anionic vacancies.  We think that these two materials may be exhibiting potential 

non-linear optical responses.  This can also be seen in electronic density of states where perovskite materials 

are changing qualitative behavior with sufficiently high O-defects.  Given these exciting observations, we 

would like to complete three aspects of the analysis as extension of this ongoing 1-year project. These 

would consist of the following three activities: 

1. Simulate using potential-based formalism for structural and time dependent dielectric response  

2. Compute phase stability of select KTN materials and defects 

3. Synthesizability of recommended materials using Artificial Intelligence-based framework that we 

are developing for organic chemical synthesis.  (This project will be a potential collaboration V. 

Wheeler, with Naval Research Laboratory on Atomic Layer Deposition). 

Potential-based quantum Analysis for estimating dielectric constant as functions of time and 

structures: For materials problems we need to deal with systems from 10-15 nm (200,000 atoms) to 100 

nm (billion atoms) not possible with density functional theory (DFT). The Caltech team has developed 

systematic approaches to scale atomistic methods to such sizes while retaining the accuracy of DFT. For 

some applications such as chemical vapor deposition (CVD) growth of materials using potential methods 

such as ReaxFF and the new generation RexPoN that describes chemical reactions accurately (but at some 

penalty in computational cost).  For applications involving predictions of dielectric response this method 
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will extend these potential formalisms to optimally bridge with rigorous quantum formalism.  The intent is 

to obtain very accurate estimates of how polarization responds to strain (and vice versa) and then the time 

dependence for this response.  To validate the dielectric properties found using PQEq-UFF, it will be 

compared with DFT methods in quantum mechanics.  After that, the team will use these force field-based 

formalisms to compute various properties such as polarization, ferroelectricity, and electric field response 

for other crystal systems. We should emphasize that such characterizations are not possible with any other 

potential-based formalisms including charge-based models since PQEq is the only charge model that 

considers explicit QM-based Gaussian electrons with and without masses that can dynamically respond to 

the electric field. This part of the project will address the following aspects: 

1. Static dielectric constants: 

a. Estimate of dielectric constant as KTaO3 is changed to KTaNbO3.  We would study 

specific substitutions of interest 

b. Difference between KTaO3 vs. KNbO3 vs LiNbO3 in terms of response and tying to 

different structural properties 

c. Effects of the presence of O defects 

d. Similar studies for typical chalcogenide material like SrVO3 

2. On frequency dependence: 

a. At THz or higher and will attempt visible spectrum to study potential non-linear effects. 

We are planning to work with Haglund on the experimental analysis to test a few of the phase, structure, 

compositional studies. Although the initial results using these methods (given below) are encouraging, we 

would like to ensure that the method needs more development before being applied to our system of interest.   

Compute phase stability of select KTN materials and defects: The complex nature of these materials 

makes it imperative that thermodynamic stability of materials need to be understood.  This is done using 

computing Gibbs energy for complex elemental composition.   The methods employed in computational 

thermodynamics can be classified into the following methods: first-principles or ab initio methods, 

atomistic calculations, and calculations using semi-empirical approaches. While the first two approaches 

operate on the atomistic level and primarily treat single phases and pure crystals, semi-empirical approaches 

deal easily with the properties of the multiphase macroscopic body. Semi-empirical approaches are also 

computationally significantly attractive and amenable to linking with machine learning. Each of these 

methods needs experimental data for validating the results from the calculations and some also need data 

to develop the functions that are being used in the calculations. Using the CALPHAD-based formalism, we 

estimate Gibbs free-energy semi-empirically. This work will estimate thermodynamic phase envelope of 

perovskite family of materials.  This is critical to determining which phases of which materials are stable 

for synthesis in the laboratory. 

Synthesizability of recommended materials using Artificial Intelligence-based framework: We are in 

the process of developing an Artificial Intelligence-based formalism for complex organic chemical 

synthesis.    While understanding the chemical reactions that drive biological systems and synthetic 

processes is critical for enabling new insights and applications, the fundamental computational methods 

used to study chemical reactions have been limited in multiple aspects. To accurately model a system of 

chemical reactions requires grappling with the complexity of scaling molecular chemical behavior to real 

systems, where the atomic and electronic movements in reactions are only in local equilibrium. Our 

methodology addresses the above limitations of current chemical reaction modeling methods that serially 
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compute chemical and biological reaction systems, which are predominantly parallel in nature.   We address 

this by developing a novel underlying architecture that is specific and optimal for complex chemical 

systems.  

6.3 SYNTHESIS PATHWAYS OF THE PREDICTED MATERIALS WITH MAXIMAL 
REFRACTIVE INDEX 

Studies of KTN and KTLN thin films deposited through sputtering methods during the course of this project 

do not show any anomalous behavior consistent with the hypothesis of giant refraction (GR) in the visible 

spectrum.  Ellipsometry of the films are consistent with a visible refractive index n = 1.95. Particularly in 

light of Owen Miller’s computational results, what we are observing appear to suggest that the observation 

of giant refraction could be due to the unique fabrication method employed by De Mei which produced 

highly crystalline samples. More effort in tuning thin film deposition techniques should be undertaken to 

reproduce these results to obtain thin films with a giant refractive index.  

The program has laid foundational work on which we plan to continue materials experiments (such as the 

effects of variations in annealing protocols) and linear and nonlinear optical experiments [205-207] that 

complement the work we are doing in other phase-transition materials with unusual intensity-dependent 

nonlinear optical properties.[208] 
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7. ESTIMATES OF TECHNICAL FEASIBILITY 
We have established the maximal refractive index valid for arbitrary passive, linear media, given constraints 

on dispersion or bandwidth. Starting from Kramer’s–Kronig relations and the f-sum rule that all causal 

media have to obey, we have obtained a general representation of susceptibility. We have employed linear-

programming techniques to demonstrate that the optimal solution is a single Drude–Lorentz oscillator with 

infinitesimal loss rate, which gave simple, analytic bounds on refractive index. Based on a similar approach, 

we have obtained bounds on high-index optical glasses and refractive index averaged over arbitrary 

bandwidth. We have also generalized our bounds to any bianisotropic media described by a positive- or 

negative-semidefinite effective permittivity 𝜀𝑛𝑙̿̿ ̿̿ (ω,k), rendering our bounds more general than initially 

expected. We have also designed low-loss metal-based composites with refractive indices exceeding those 

of best performing natural materials by a factor of two or more. 

We used a systematic 4-step methodology which used existing data to narrow the large-scale simulation 

analysis:  1). Detailed literature review to identify correlations between chemical elements, material 

chemistry (organic or inorganic), and wavelength dependence; 2). Based on the analysis, identify specific 

classes of materials for detailed quantum simulation analysis; 3) Use quantum and molecular methods to 

understand the effect of knobs on RI of specific bulk materials; 4) Combine the different methods to identify 

design knobs for engineering high RI materials. 

We identified two classes of bulk inorganic materials that can potentially exhibit high dielectric constant 

and potentially high refractive index as well.  They are Chalcogenides and Perovskite materials. The next 

step of our methodology consisted of simulating specific materials from each of the classes and try to 

compare them with existing data.  Subsequently, we did in silico-based analysis of several material 

structures, composition, and chemical defects to understand the effects on the dielectric constants.  Our 

analysis indicated that Structure, Cation 2 (Nb or Ta), and oxygen defects are all strong modulators.  One 

of the interesting conclusions is that O defects and crystal structures together can increase the dielectric 

constant (and hence the refractive index). 

The program has laid foundational work on which we plan to continue materials experiments (such as the 

effects of variations in annealing protocols) and linear and nonlinear optical experiments that complement 

the work we are doing in other phase-transition materials with unusual intensity-dependent nonlinear optical 

properties. 

Finally, in our white paper, we proposed new ideas to pursue based on the outcome of this study as a 

next step for this program.   
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

 
AFM – Atomic Force Microscope 

AFRL – Air Force Research Lab 

BEC -- Bose-Einstein condensate 

CVD -chemical vapor deposition 

DARPA -- Defense Advanced Research Projects Agency 

DFT -- density functional theory 

DPFT -- density functional perturbation theory 

DSO -- Defense Sciences Office 

DTIC -- Defense Technical Information Center 

EXTREME -- DARPA DSO Program name 

GGA -- generalized gradient approximation 

GR -- giant refraction 

III-V -- compounds of group III and V elements 

II-VI -- compounds of group II and VI elements 

IPA -- independent particle approximation 

IR – Infrared 

KK – Kramers-Kronig 

LDA -- Local Density Approximation 

NLM -- DARPA DSO Program Name  

NLO -- Nonlinear Optics 

PBE -- Perdew-Burke-Ernzerhof 

RI – Refractive Index 

RXAN – Nanoelectronic Materials Branch 

SAF – Secretary of Air Force 

SCAN -- strongly constrained and appropriately normed 

SM -- supplementary material 

UFF -- universal force field 

UV – Ultraviolet 

VASP -- a simulation program 

XRD – X-ray Diffraction 
 


