

NEW APPROACHES FOR TEST CASE GENERATION IN
SOFTWARE TESTING

WEST VIRGINIA UNIVERSITY

DECEMBER 2021

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2021-201

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2021-201 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
WILLIAM E. MCKEEVER
Work Unit Manager

GREGORY J. HADYNSKI
Assistant Technical Advisor
Computing & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

1. REPORT DATE

DECEMBER 2021
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED

START DATE
JANUARY 2020

END DATE
MAY 2021

4. TITLE AND SUBTITLE
NEW APPROACHES FOR TEST CASE GENERATION IN SOFTWARE TESTING

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

62788F
5d. PROJECT NUMBER

NOVA
5e. TASK NUMBER

WV
5f. WORK UNIT NUMBER

UI
6. AUTHOR(S)
K. Subramani

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 West Virginia University, Advanced Engineering Research Building
 1220 Evansdale Drive
 Morgantown, WV 26506

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S
ACRONYM(S)

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RI-RS-TR-2021-201

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The contents of this report deal with automatic test case generation. An overview of the current field in automatic test case
generation is given. A tool that combines fuzz testing, a popular test generation method, and game theory is presented. A
thorough overview of combinatorial interaction testing through a structure called covering arrays is presented. Open problems
with respect to covering arrays are given, as well as the impact and advantages covering arrays have in the software testing
field.

15. SUBJECT TERMS

Automated Software Testing; fuzz testing and game theory; combinatorial interaction testing.
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER OF PAGES
a. REPORT

U
b. ABSTRACT

U
C. THIS PAGE

U
19a. NAME OF RESPONSIBLE PERSON

WILLIAM E. MCKEEVER
19b. PHONE NUMBER (Include area code)

N/A
Page 1 of 2 PREVIOUS EDITION IS OBSOLETE. STANDARD FORM 298 (REV. 5/2020)

 Prescribed by ANSI Std. Z39.18

46

RI

FA8750-20-2-1000

Contents

List of Figures ii

List of Tables ii

Preface iii

Acknowledgments iii

1 Summary 1

2 Introduction 3

3 Methods, Assumptions, and Procedures 9

4 Results and Discussions 17

5 Future Work 20

5.1 Algebraic . 21

5.2 Greedy . 22

5.2.1 OTAT Algorithms . 23

5.2.2 OPAT Approaches . 24

5.3 Meta-Heuristic . 25

5.4 Problem Definition . 29

6 Conclusions 32

Acronyms 40

Approved for Public Release; Distribution Unlimited.
i

List of Figures

3.1 Probabilistic CFG of listing 3.1 . 12

4.1 Average Testing Time to Reach a Successful Test-Case 17

4.2 Average Number of Fuzz Operations to Reach the Lowest Probability Slice 17

4.3 Number of Discovered Bugs . 18

List of Tables

2.1 Example of a zero-sum two-player simultaneous partisan game 7

2.2 A Covering Array CA(5;2,4,2) . 8

2.3 An Exhaustive Approach . 8

2.4 A Covering Array Approach . 8

3.1 Payoff table for the CFG slicing of motivating example program 13

5.1 A Covering Array CA(4;2,4,2) with (0,0) as a forbidden tuple 29

Approved for Public Release; Distribution Unlimited.
ii

Preface

The contents of this report deal with automatic test case generation. An overview of the

current field in automatic test case generation is g iven. A tool that combines fuzz testing,

a popular test generation method, and game theory is presented. A thorough overview of

combinatorial interaction testing through a structure called covering arrays is presented.

Open problems with respect to covering arrays are given, as well as the impact and advan-

tages covering arrays have in the software testing field.

Acknowledgements

This research has been wholly supported by the Air-Force Research Laboratory, Rome

through Contract FA8750-20-2-1000.

Approved for Public Release; Distribution Unlimited.
iii

1. Summary

Software is critical to everyday life, from entertainment to national security. Software is

a key element in all advanced systems and a driver of system capability, performance, se-

curity, complexity, and development risk. Therefore, it is vital that software performs as

intended and is free from faults. Software testing is an integral part of the software devel-

opment cycle. Software testing is the activity that attempts to verify that a program pro-

vides expected behaviors. In addition to the challenge due to size and complexity, software

testing is expensive and time-consuming. It is estimated that software testing consumes

30-50% of the software development life cycle [1]. However, the alternative of deploying

untested software is not a realistic approach to saving time and cost in the development

process. Techniques to automate the generation of software test cases have the potential

to increase the quality of tests while also reducing both cost and time to market. Increas-

ing the effectiveness of software testing and automating the process has been a significant

field of research for decades. Software testing is divided into different categories that focus

on addressing various stages of the development cycle. Automatic test case generation is

the process of generating input to a program to search for undesirable program behavior.

There are many different approaches to generating test cases: fuzzing techniques, genetic

algorithms, search-based, combinatorial, symbolic execution, and dynamic execution. A

test-data generator typically takes a program or a model of the program as input and gen-

erates test data.

Approved for Public Release; Distribution Unlimited.
1

Many algorithms from different fields have been applied to automatic test-case genera-

tion, such as game theory, fuzz testing, or control flow graph based methods to maximize

code coverage. We introduce a game theoretic test case generation algorithm based on

game theory that aims to maximize path coverage by rewarding generation of test cases

which cover less likely paths in the control flow graph of the program. In this algorithm,

test case generation is modeled as a simultaneous partisan game with the program Control

Flow Graph edges weighted with uniform probability. The selection of uniform probability

distribution is based on the principle of indifference. Indifference guarantees that no prior

knowledge is given regarding the paths in a random testing scheme. It is shown that the

proposed fuzzer has superior performance in generating test cases that catch bugs in com-

parison to a random test case generator as well as other competing algorithms when applied

to a dataset of programs with vulnerabilities.

We give a thorough overview of combinatorial interaction testing, which use covering

arrays to generate small test suites. Covering arrays are useful to small unit tests, or min-

imizing test suites for software testing. Combinatorial interaction testing can also be used

for hardware testing. The application of covering arrays to reduce binary test suites is well

studied, but the complexity class of generating covering arrays for parameters with more

potential values is unknown. Likewise, testing software can include conditions for test

suites, such as required tests and constraints. Combinatorial interaction testing is capable

of including these conditions, but the resulting complexity is still unknown.

Approved for Public Release; Distribution Unlimited.
2

2. Introduction

Software testing is a major activity in the software development cycle. The complexity

and the optimality of a test vary depending on the type of the test. The common goal of all

tests is to create test cases that provide evidence that the software functions correctly.

Let Q be a program that accepts a set of inputs X = 〈x1,x2, . . . ,xi〉. A simplification is to

model a program as having a mapping of a set of inputs to a set of outputs. In practice, there

may be many such sub-programs contained within a single Q. The program Q may also

be user-input driven and cyclic, but the input/output model still applies. User interaction

can be modeled as input and program response as output. Q can be modeled as a control

flow graph G.

Definition 2 .0.1. (Control F low G raph) A c ontrol fl ow graph is a di rected graph G =

(N,E,s,e) where,

1. N is the set containing all nodes in the control flow graph,

2. E = {(n,m) | n,m ∈ N} is the set of all edges that connect the nodes beginning at n

and pointing to m,

3. s is the entry node of the control flow graph, and

4. e is the exit node of the control flow graph.

Approved for Public Release; Distribution Unlimited.
3

The set of paths P = 〈n1,n2, . . . ,ni〉 on a control flow graph consists of all possible

paths through G where (nk,nk+1) ∈ E and n1 = s. A path is considered to be feasible if

there exists an input x ∈ X that traverses that path, otherwise it is infeasible.

To achieve correct functionality, two general approaches have been proposed [2]. The

first being the path-oriented approach, which identifies control flow paths through the pro-

gram and attempts to generate input test data to satisfy a certain path. The second being

the goal-oriented approach, which identifies and executes reachable statements.

Definition 2.0.2. (Path-Oriented Test Data Generation) [3] Given a program Q and an

execution path p ∈ P, the goal of the path-oriented test data generation problem is to find

an input x ∈ X of Q such that p will be traversed.

The problem of finding all infeasible paths in a program is undecidable [4]. A problem

of path-oriented test data generation is that there may be many infeasible paths that waste

testing resources. In such cases, the test case generation problem can be reformulated into

solving for a goal-oriented approach [2].

Definition 2.0.3. (Goal-Oriented Test Data Generation) [5] Given a program Q and a

point in that program a node n ∈ N for the control flow graph G, a solution to the goal-

oriented test data generation problem consists of finding an input x ∈ X of Q such that n is

executed.

Goal-oriented test data generation eliminates the need to select a path. Therefore, no

time is wasted trying to generate input for infeasible paths. However, faults can arise from

certain paths to a specific node in the control flow graph instead of the node itself. An

example would be race conditions present when a certain sequence of function calls is

made.

Another criterion for testing is called test coverage. Test coverage quantifies the amount

of the application that has been tested using some metric. Metrics include function cov-

Approved for Public Release; Distribution Unlimited.
4

erage, branch coverage, code coverage, etc. The focus of this survey is only on test data

generation to execute a specific path or statement in the system.

Fuzz testing (fuzzing), is an automatic test case generation method that involves in-

puting random test cases in an attempt to reveal faults. Fuzzing was first proposed in [6].

There are many different methods of guiding the test data that is generated by fuzzing,

such as symbolic execution, search-based techniques, machine learning, constraint solv-

ing, coverage-guided, adaptive random testing, etc. Despite the diversity and expansion of

fuzzing techniques being explored, the classic, basic method of generating random data has

been shown to still be effective in finding faults [7]. A formal definition for fuzzing is as

follows:

Definition 2.0.4. (Fuzz Testing) [8] Fuzz testing is the execution of a system using input(s)

sampled from an input space to test if the system violates a correctness policy.

The most natural way to classify different fuzzers is based on the fuzzer’s awareness

of the program structure. There are three categories: white-box, grey-box, and black-

box. A fuzzer is classified as a white-box fuzzer if it uses source-code analysis to assist in

generating test cases. A fuzzer is classified as a grey-box fuzzer if it uses instrumentation

to assist in generating test cases. A fuzzer is classified as a black-box fuzzer if it does not

use any information from the program being tested to generate test cases. Another way

of categorizing fuzzers is whether it mutates previous test cases or generates new ones.

Yet another way to categorize fuzzes is whether it is aware of the input structure of the

program. Input-aware fuzzers are aware of the input structure for which data is generated

whereas fuzzers that are not input-aware work by mutating a seed file to create inputs. A

more in-depth description of the mechanics of fuzzing can be found in [9].

Game theory has been applied to numerous topics in the field of automated testing.

Only those concerning generating test cases for goal or path oriented problems are consid-

Approved for Public Release; Distribution Unlimited.
5

ered. In [10], game theory is used to model finite state machines (FSM) as a game between

the tester and the system under test. A strategy for the tester takes the input-output history

of an FSM and determines whether a new input is selected or the test terminates. The goal

of the game is to generate inputs and transitions to reach a certain state or derive conditions

on the FSM. Similarly, in [11], the authors apply game theory to directed graphs for test

case generation. The game explores a graph of states where vertices can be deterministic

(states or nondeterministic (choice points) and edges represent transitions and have costs

and probabilities. Most recently, [12] applied game theory to software testing as a game

between the tester and the system under test. The authors use suspension automata (SA)

modeled from software specification to create a game arena used for the optimization of

test case generation. They propose a fundamental connection between specification and

game arenas, test cases and game strategies, and test case derivation and strategy synthesis.

They correlate a strategy in the game arena directly to test cases. The goal of the game is

to reach a certain state of the SA. There have been no studies on applying game theoretic

techniques directly to control flow graphs (CFGs) for test case generation.

Definition 2.0.5. (Two-player simultaneous partisan game [13]) A two-player game G

is defined by a pair of matrices where each element of the matrices corresponds to the

payoff for each player. Each row represents the pure strategy selected by player one, and

each column the pure strategy selected by player two. The goal of each player is to find

a strategy that maximizes their payoff. A game is considered zero-sum if the payoff of one

player is the opposite, or negation, of the payoff of the other player. Simultaneous games

are defined as both players selecting their strategy at the same time. A partisan game

means that each player has a different set of moves they can take that is not available to

the other player.

In table 2.1, player two picks a number between 1 and 3 while player one chooses if

Approved for Public Release; Distribution Unlimited.
6

Player 2
1 2 3

Player 1 Odd 1 −1 1
Even −1 1 −1

Table 2.1: Example of a zero-sum two-player simultaneous partisan game

the number player two picks is going to be odd or even. Both players reveal their answers

simultaneously. The table is shown from player one’s perspective, but since the game is

zero-sum, player two’s payoff is the opposite (or negation) of the payoff matrix shown.

The game is clearly partisan, as the players’ choices of moves are different. For example,

if player one chooses odd and player two selects the number 3, then player one’s payoff is

1 and player two’s payoff is −1.

Most software failures are the result of one or two parameters. A study by NIST shows

that almost all software failures are the result of no more than six parameters. Combina-

torial testing is a fast and efficient way of creating small test suites for combinations of

parameters. Combinatorial interaction testing has also been shown to have practical appli-

cations for testing artificial intelligence and machine learning. Typically, machine learning

software has a high number of input parameters and values, which makes combinatorial

testing ideal. Combinatorial interaction testing can also supplement other testing methods

by being used to measure the coverage of their generated test suites.

Much of the research in covering arrays focuses mainly on finding greedy or meta-

heuristic algorithms for constructing near-optimal covering arrays [14, 15, 16]. Greedy

algorithms sacrifice optimality for speed of construction while meta-heuristic algorithms

sacrifice speed for near-optimality. Greedy algorithms have found more use for practical

testing, whereas meta-heuristic approaches are used in research to find new theoretical

upper-bounds.

Definition 2.0.6. (Covering Array) A covering array CA(N; t,k,v) of size N, strength t,

Approved for Public Release; Distribution Unlimited.
7

degree k, and order v is an N× k array of v symbols in which every sub-array of t distinct

columns contains every t-wise tuple of v symbols in at least one row.

0 0 0 0
0 1 1 1
1 1 0 1
1 1 1 0
1 0 1 1

Table 2.2: A Covering Array CA(5;2,4,2)

Below is an example of 3 Boolean variables tested exhaustively versus the equivalent

CA(N;2,3,2):

Test b0 b1 b2
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Table 2.3: An Exhaustive Approach

Test b0 b1 b2
1 0 1 0
2 0 0 1
3 1 0 0
4 1 1 1

Table 2.4: A Covering Array Ap-
proach

The covering array above tests all possible pairwise combinations of the input parame-

ters, reducing the total inputs to half compared to the exhaustive approach.

Approved for Public Release; Distribution Unlimited.
8

3. Methods, Assumptions, and Procedures

Random test case generation does not provide any assurances in terms of the coverage of

all the paths in a program. Paths that are only executed by a small subset of the input

domain are unlikely to be covered by random test case generation. Paths that are unlikely

to be tested by randomly generated inputs could contain errors in the software. We design a

complementary algorithm that tests the paths that are unlikely to be tested via random test

case generation.

To model path probabilities in the CFG, the probability of an output i associated with

a node j is denoted as Pji. Pji is calculated based on the Principle of Indifference, which

assumes that if there are k identical outputs from a node in the CFG, each output has an

occurrence probability of 1
k [17].

CFG Slicing provides a transformation tool that allows the user to focus on smaller parts

of the program [18]. We use slicing to reduce the control flow graph to smaller subsets. We

focus on generating inputs that provide coverage for those slices. Our method, inspired by

Probabilistic Control Flow Graph Slicing (PCFG) [19], slices the CFG every time a branch

is reached with equal probability among all available paths. Our slicing algorithm generates

all unique slices of a program. The algorithm starts at a node with multiple output paths

and creates a new unique slice by selecting only one output path and removing all other

paths and nodes.

Figure 3.1 shows the CFG of Listing 3.1. The short example program is intended to

Approved for Public Release; Distribution Unlimited.
9

Result: Probabilistic Slicing of Control Flow Graph
Initialization
while CFG is reducible to unique slices do

Generate CFG slice by taking one of the output paths and removing other paths
and their dependent nodes
if Slice is non-reducible & unique then

Calculate probability of the CFG slice P by multiplying the edge
probabilities pi
Assign utility function − log2(P) to the slice
Add slice to the slice set in the order of adjacency

end
end

Algorithm 1: Probabilistic Slicing of CFG

simulate six user generated integer inputs between 1 to 10.

Listing 3.1: Motivating Example Program For Slicing

i n c l u d e <i o s t r e a m >

i n c l u d e <c s t d l i b >

i n c l u d e <c t ime>

u s i n g namespace s t d ;

i n t Ph i (i n t a , i n t b =0)

{

r e t u r n (a−b) ;

}

i n t main (i n t a rgc , c h a r ∗∗ a rgv)

{

s r a n d (t ime (NULL)) ;

i n t x [3] ;

i n t y [3] ;

Approved for Public Release; Distribution Unlimited.
10

x [0] = ra nd ()%10 + 1 ; / / x1 i n p u t

x [1] = ra nd ()%10 + 1 ; / / x2 i n p u t

x [2] = ra nd ()%10 + 1 ; / / x3 i n p u t

y [0] = ra nd ()%10 + 1 ; / / y1 i n p u t

y [1] = ra nd ()%10 + 1 ; / / y2 i n p u t

y [2] = ra nd ()%10 + 1 ; / / y3 i n p u t

w h i l e (t r u e)

{

x [1] = Phi (x [0] , x [2]) ;

y [1] = Phi (y [0] , y [2]) ;

i f (x [1] < 10)

b r e a k ;

y [2] = y [1] + x [1] ;

x [2] = x [1] + 1 ;

i f (x [2] == 0)

b r e a k ;

}

cout<<y[1]<< e n d l ;

r e t u r n 0 ;

}

We model our path-oriented approach as a strategic game where the goal of the tester is

to maximize the payoff by generating inputs to execute the least likely paths in the program.

The game is designed by adopting a payoff for the tester which is inversely proportional to

the probability of covering a path. In this case, a payoff function of− log2(Pi) is given to the

tester for testing each of the slices of the program. Pi is the probability of execution of slice

Approved for Public Release; Distribution Unlimited.
11

x1,x2,x3← rand(1,10)
y1,y2,y3← rand(1,10)

x2← φ(x1,x3)
y2← φ(y1,y3)
(x2 < 10)?

y3← y2 + x2
x3← x2 +1
(x3 = 0)?

print(y2)

P2,4 = 1/2

P1,2 = 1

P2,3 = 1/2

P3,2 = 1/2,P3,4 = 1/2

Figure 3.1: Probabilistic CFG of listing 3.1

i of the program computed as described in Algorithm 1. The payoff function ensures that

the tester is motivated to generate test cases that are more likely to traverse less probable

paths in the program.

In this context, the two-player game is defined as a finite strategy set Ai → (ai ∈ Ai),

where ai is an action in a set of actions Ai corresponding to test cases that execute slice

i of the program. The action ai is associated with the payoff function − log2(Pi) for the

tester. The game is designed as a zero-sum game where every test case generated by the

tester corresponds to a slice of the program being executed. The program is assumed to

be actively playing against the tester by assigning the negation of the payoff function to

the program. Table 3.1 shows the payoff matrix for the CFG in Figure 3.1. The tester

has three sets of strategies Ai members of which execute the corresponding slice in the

program, shown as i, with the corresponding test case as Ti. The test cases corresponding

Approved for Public Release; Distribution Unlimited.
12

to non-related slices are given 0 payoff to both the tester and the program.

Program
b c d

Tb − log2(0.25) 0 0
Tester Tc 0 − log2(0.5) 0

Td 0 0 − log2(0.25)

Table 3.1: Payoff table for the CFG slicing of motivating example program in figure 3.1

Using the best response method [20], it is evident that in Table 3.1 there are three Pure-

Strategy Nash Equilibrium (PSNE) which correspond to our desired test cases. In addition,

the lowest probability path that corresponds to the highest paying outcomes for the tester

is considered pareto-optimal. Pareto-optimality, applied to game theory, is the notion that

any other strategy would leave at least one player worse off than the current strategy.

A Mixed-Strategy Nash Equilibrium (MSNE) can also be found by balancing the utility

function for the program. A MSNE for the test cases is calculated by balancing expected

payoffs to the program after removing the weakly dominated rows as follows ∀ (i, j) ∈ S:

P(Ti)× log2(Pi) = P(Tj)× log2(Pj), (3.1)

where S is the set of all probabilistic slices in the program, P(Ti) is the probability of test

case number i, with ∑i P(Ti) = 1,0≤ P(Ti)≤ 1. Finally the expected payoff of the tester in

the game is given by E(U) =−∑k P(Tk)
2 log2(Pk).

The MSNE probability of generating a test case for a slice is higher the lower the

probability of the slice being executed. The generation strategy will effectively guarantee

that the fuzzer is more likely to attempt generating test cases for lower probability slices.

After each round of successful fuzzing, the slice corresponding to the test case that was

executed is eliminated from the game. The payoff table is updated for the remaining slices.

Inputs that execute the same slice will no longer be kept if they are generated.

Approved for Public Release; Distribution Unlimited.
13

Result: Game-theoretic Fuzzing
Initialization
while Untested slices remain do

Fuzz the random seed to generate a successful fuzz with energy proportional to
the payoff for the target slice
if Successful fuzz then

Add successful fuzz to test cases
Remove the executed slice from the slice set
Update payoff table
Pick the adjacent slices
Update the random seed with the successful fuzz

end
end

Algorithm 2: Game-theoretic Fuzzing

Note that the MSNE probability of the program and the tester are equal in the proposed

scheme. While the proposed scheme has set preferences in a PSNE, the fuzzer will always

attempt to select the least probable slice due to the pareto-optimality of the slice with the

lowest probability.

Efficiency is a major drawback with white-box fuzzers due to the symbolic or concolic

execution involved in effectively generating test cases that traverse new paths. However,

white-box fuzzers are more effective than black-box fuzzers which have no inside infor-

mation of the program [21]. To achieve a balance between the efficiency and efficacy of

the two techniques, grey-box fuzzing approaches use lightweight instrumentation of the

program. The instrumentation determines unique identifiers for paths that are exercised by

inputs and help generate new inputs based on mutating the previous successful ones.

Instead of injecting purely random inputs at the fuzz target, coverage-guided fuzzers

instrument the fuzz target to collect code coverage. The fuzzer then uses this coverage

information as feedback to mutate existing inputs into new ones. The fuzzer attempts

to maximize code coverage by referencing all successful inputs. Two popular coverage-

guided fuzzers are libFuzzer [22] and AFL [23].

Approved for Public Release; Distribution Unlimited.
14

Using the instrumentation, coverage-guided fuzzers monitor program execution and

index paths that are taken on execution of an input. Inputs with higher coverage are priori-

tized. While instrumenting every basic block ensures full visibility, it reduces the efficiency

of the fuzzer and thus the speed of testing.

We use the probabilistic slices created in Algorithm 1 as instrumentation guides for

the fuzzer. We intend to guide the coverage to the fuzzer by indexing those inputs that

execute certain slices of the program. The inputs corresponding to the successful execution

of slices are then used to generate test cases for neighboring slices. Specifically, we extend

AFL to implement the proposed algorithm by modifying its CFG-aware instrumentation

and replacing it with slice tracking. We also base our proposed algorithm on the assumption

that a fuzz that exercises a slice is more likely to generate successful fuzzes for adjacent

slices. We also give AFL an energy proportional to the reward as proposed in algorithm 2.

The initial slicing will create overhead for the fuzzer. It is shown by authors in [19] that

the algorithm for creating probabilistic slices has a complexity of O(n3) with respect to the

number of nodes n in its CFG. However, the overhead is manageable and only run once

prior to the start of the fuzzing. To further reduce the complexity of the slicing operation,

we take a similar approach to the authors in [24]. A Call Graph (CG) of the program is

generated, and the Intra-procedural Control Flow Graph (ICFG) of each block is taken as

the target program for fuzzing.

A modified approach of the Backward Slicing used in [25] is used as our implemen-

tation of the probabilistic slicing. After slicing the ICFG of each block in the program

CG, we continue by basing our fuzzer implementation on AFL [23]. AFL is one of the

most successful grey-box coverage guided fuzzers used in numerous large scale software

development [26, 27]. One of the major limitations of AFL, which has been addressed in

previous research such as [24, 27, 28], is the allocation of constant high energy. High en-

Approved for Public Release; Distribution Unlimited.
15

ergy is allocated to both high and low frequency paths in the fuzzing process, causing many

fuzzes to be wasted for more frequent paths. The proposed approach addresses this issue

by scaling the energy to the weight of the reward given to the tester for each successful test

case for a slice. The reward is taken to be inversely proportional to the probability of the

slice, and the energy applied is the power schedule function PS(i) for slice i given by:

PS(i) = α ∗2Reward(i), (3.2)

where α is the energy constant used in AFL, and the reward function is:

Reward(i) = max(2− log2(Pi),EM) (3.3)

with Pi being the probability associated with slice i as calculated in Algorithm 1 and EM

being the maximum energy available to the fuzzer for each slice as prescribed by the user.

The probabilistic slicing of the ICFGs combined with the game-theoretic rewarding in the

fuzzer effectively shapes the proposed solution as a directed fuzzer. The fuzzer directs test

cases toward lower probability slices, as the game-theoretic model gives higher rewards for

the generation of test cases for such slices.

Approved for Public Release; Distribution Unlimited.
16

4. Results and Discussions

Average Testing Time to Reach a Successful Test-Case

GameFuzz AFL AFLFast
0

20

40

60

80

100

120

140

160

T
im

e
 (

m
in

u
te

s
)

(b) Fuzzing Time

Slicing overhead time

Figure 4.1: Average Testing Time to Reach a Successful Test-Case

(c) Average Number of Fuzz Operations to Reach A Slice

GameFuzz AFL AFLFast
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

#
 o

f
O

p
e
ra

ti
o
n
s

Figure 4.2: Average Number of Fuzz Operations to Reach the Lowest Probability Slice

Approved for Public Release; Distribution Unlimited.
17

of Discovered Bugs

GameFuzz AFL AFLFast
0

20

40

60

80

100

120

140

160

180

200

#
 o

f
B

u
g
s
 D

is
c
o
v
e
re

d

Figure 4.3: Number of Discovered Bugs

We implement our proposed improvement based on AFL 2.52b and compare our im-

plementation with AFL and AFLFast [28]. Because our implementation is focused on slice

coverage as opposed to path coverage, we can only compare the performance of the AFL

and AFLFast with our implementation by comparing the number of fuzzes required to ex-

ercise paths corresponding to bugs in the slices of our approach. We utilize LAVA (Large

Scale Automated Vulnerability Addition) [29] to evaluate and compare performance based

on

1. General errors identified in the method,

2. Overall speed,

3. Fuzzing speed or the number of mutations required to generate successful fuzzes for

exercising slices.

For practical testing, we ran our experiments on a 2.60GHz Intel Core i-7-6700HQ with

four cores and Ubuntu 20.04 as the host Operating System. A maximum energy budget

time of 30 minutes was allocated to each slice in the algorithm. The number of fuzzing

operations required to generate a successful fuzz was tracked for each algorithm. We ran

Approved for Public Release; Distribution Unlimited.
18

the three fuzzers for 200 programs ranging in complexity, and the results are presented in

figures 4.1, 4.2, and 4.3.

In terms of finding general errors, all methods showed similar performance. In all

cases, the bugs were successfully found by all three algorithms. This is not surprising as

all three methods are based on AFL. However, in some cases, it was observed that AFL

ran out of time prior to fuzzing a successful test case. Running out of time is due to

the 30-minute maximum time (corresponding to the maximum fuzzing energy) was not

enough to generate a successful fuzz, as AFL gives equal energy to all paths alike. In terms

of the overall speed AFLFast performs the best, with up to 35% less time in generating

successful fuzzes that exercise the lowest probability slice compared to AFL. We did not

expect GameFuzz to excel in this category due to the overhead required in slicing. However,

when compared to the total number of mutations required to generate a successful fuzz

for the lowest probability slice, up to 20% improvement was observed with GameFuzz

compared to AFLFast.

Approved for Public Release; Distribution Unlimited.
19

5. Future Work

Combinatorial testing optimizes test case generation by considering input combinations.

The most common type of combinatorial testing is pairwise testing, which uses discrete

combinations of pairs of inputs to drastically reduce the number of test cases compared to

an exhaustive test. Reduction of test cases is achieved by requiring all combinations of the

pair of input parameters being represented at least once. Additionally, constraints can be

applied to input pairs to further reduce the input space by introducing invalid combinations.

Pairwise is not the only type of combinatorial testing, any strength t, where t ≥ 2, simply

requires all combinations of each t-wise tuple of input parameters to be represented at least

once.

Authors in [30] classify algorithms for combinatorial testing as follows:

• Algebraic: Algebraic approaches construct the array of input parameters mathemat-

ically and solve algebraically. However, there is no general solution - the general

problem of minimizing test cases that satisfies t-wise coverage is NP-complete [31].

• Greedy: Greedy approaches use a search heuristic to accumulate inputs. A greedy

approach leads to sub-optimal and non-minimal results.

• Meta-heuristic: Meta-heuristic approaches are non-traditional algorithms that con-

verge on near-optimal solutions but generally take longer to converge than greedy

Approved for Public Release; Distribution Unlimited.
20

approaches. An example of a meta-heuristic approach would be using a genetic-

algorithm.

Furthermore, in the research field there is currently a focus on constraint handling for com-

binatorial testing algorithms warranting a section of its own.

Recently, authors in [32] have conducted an empirical comparison of combinatorial

testing, random testing, and adaptive random testing. In their study, they find that combi-

natorial testing performs best overall. Adaptive random testing is comparable to combina-

torial testing is most scenarios, however it can cost up to 3.5 times more computationally

than combinatorial testing when generating highly constrained inputs. Notably, random

testing performs as effectively as combinatorial and adaptive random testing with lower

computational cost when a program is highly constrained but constraint information is un-

available.

5.1 Algebraic

Combinatorial testing utilizes covering arrays to reduce the test space of input parameters.

In a covering array, it is sufficient to represent each t-wise tuple at least once. When each

t-wise tuple is represented exactly once the object is defined to be an orthogonal array and

is the minimal covering array. Orthogonal arrays are of importance to combinatorial testing

because they represent the smallest reduced testing input space of a given set of parameters.

Construction of orthogonal arrays and covering arrays of strength three is accomplished

using a difference covering array in [33].

Formal logic can be applied to combinatorial testing to create test cases [30]. Com-

binatorial coverage is formalized by means of logical predicates and techniques used for

solving logical problems are applied to maximize combinatorial coverage.

Approved for Public Release; Distribution Unlimited.
21

Definition 5.1.1. Given m input variables, each ranging in its own finite domain, a test is

an assignment of values to each of the m variable p1 = v1, p2 = v2, ..., pm = vm,

Definition 5.1.2. A pair is formally expressed as a corresponding logical expression, a test

predicate p1 = v1∧ p2 = v2.

The formal logic approach presented is capable of expressing constraints as logical

predicates and are effectively handled by a formal logic tool used to solve for combinatorial

coverage. In addition, the formal logic approach allows for inclusion or exclusion of select

tuples for further customization of the test suite.

Combinatorial algorithms are also used in conjunction with regular expressions to gen-

erate test cases [34]. Generic test scenarios are described by means of regular expressions

and whose symbols represent system operations. Values are assigned to each system op-

eration parameter, then the regular expression is expanded to generate test cases using a

combinatorial algorithm.

5.2 Greedy

A greedy approach to combinatorial test generation typically falls into one of two strategies.

The first strategy is one-test-at-a-time (OTAT) and the second is one-parameter-at-a-time

(OPAT). OTAT strategies attempt to cover the most t-wise tuples for all parameters for each

test generated. A test case must cover at least one t-wise tuple that was previously uncov-

ered by the test suite. The first OTAT algorithm, AETG (Automatic Efficient Test Genera-

tor), was detailed in [35]. OPAT strategies start with t (the strength of testing) parameters

and create an initial covering array, another parameter is then added, more combinations

are generated, and the covering array is expanded. OPAT was initially introduced by the

algorithm IPO (In-Parameter-Order) [36] and then generalized, expanded, and popularized

Approved for Public Release; Distribution Unlimited.
22

 by the algorithm IPOG [37].

5.2.1 OTAT Algorithms

The basic AETG algorithm works as follows for mixed-level covering arrays and pairwise

testing [35]:

1. Choose a parameter f and a value v for f such that the parameter value appears in

the greatest number of uncovered pairs.

2. Let f1 = f . Then choose a random order for the remaining parameters. Then, all k

parameters are ordered f1, ..., fk.

3. Assume that values have been selected for parameters f1, ..., f j. For 1≤ i≤ j, let the

selected value for fi be called vi. Then, choose a value v j+1 for f j+1 as follows. For

each possible value v for f j, find the number of new pairs in the set of pairs f j+1 = v

and fi = vi for 1 ≤ i ≤ j. Then, let v j+1 be one of the values that appeared in the

greatest number of new pairs.

Using a random seed, a number of candidate test cases M are generated using the above

greedy algorithm and the candidate test case that covers the most new pairs is chosen. M

can be set to any number (e.g. 10, 50, 100) and the authors use 50. Increasing M past 50

does not dramatically reduce the number of test cases that need to be generated. AETG used

forbidden tuples to handle constraints. The AETG algorithm was then improved by [38]

in their algorithm mAETG. mAETG expanded AETG by using combinatorial techniques

to store t-sets as a rank which allowed the algorithm to handle arbitrary t-way coverage

and provided less ambiguity in some edge cases as well as integrating a SAT solver for

checking constraints.

Approved for Public Release; Distribution Unlimited.
23

After AETG came TCG [39], which was designed to be more flexible and integrated

into development. TCG is capable of generating inputs for mixed-level covering arrays and

pairwise interaction like AETG. Rather than choosing a random order of parameters, TCG

aligns parameters in non-increasing order of number of values. Then, similarly to AETG,

each test case is generated one element at a time, but distinctly, TCG uses a parameter-value

data pool to store pairs, tracks how many times each pair has been selected, and selects M

deterministically to be equal to the number of values of the parameter with the largest set of

values. The TCG algorithm was then improved by [38] in their algorithm mTCG. mTCG

expands TCG by handling all ties randomly and using a series of repeated runs and keeping

only the smallest covering array generated.

5.2.2 OPAT Approaches

The basic IPO algorithm works as follows for mixed-level covering array and pairwise

testing [36]:

1. Choose two parameters p1 and p2 and create a table T of of the corresponding values

v1 and v2 of p1 and p2 consisting of rows (v1,v2).

2. For each remaining parameter pi, where 3≤ i≤ n and n is the number of parameters,

perform horizontal and if necessary vertical growth.

• Horizontal growth is done by appending vi to each test (v1,v2, ...,vi−1) in T to

create

(v1,v2, ...,vi−1,vi).

• Vertical growth is done if T does not cover all pairs between pi and p1, p2, ...pi−1

by extending T , adding a new test row (v1,v2, ...,vi) for each uncovered pair to

the table.

Approved for Public Release; Distribution Unlimited.
24

IPO first constructs an initial table using two parameters, then slowly builds the table hor-

izontally one-parameter-at-a-time. Since building the table vertically means generating

more test cases, avoids vertical growth to provide a minimal covering array. In the same

paper, the authors propose two more algorithms for IPO test case generation, IPO H EC

and IPO V, that run in polynomial time and attempt to generate minimal covering arrays.

The IPO algorithm is deterministic, and thus always produces the same test set for the same

inputs.

IPOG (In-Parameter-Order-General) [37] generalized IPO to handle t-way interactions

for mixed-level covering arrays. IPOG initially builds a t-way covering array for the first t

parameters, then extends the covering array to t+1, and continues extending to the next pa-

rameter until all parameters are included in the t-way covering array. IPOG suffered from

long execution time and large space requirements. To rectify IPOG’s weaknesses, IPOG-D

[40] reduces both the space requirements and execution time by using a recursive con-

struction procedure. The cost of these reductions is generating on average 1.5 times larger

covering arrays in 1/10th of the execution time with the added restriction of parameters

requiring the same number of values, otherwise known as simply a covering array.

IPO’ [41] also expanded the IPO framework by generalizing to arbitrary t-way interac-

tions for mixed-level covering arrays. IPO’ broadens the search space of horizontal growth

to decrease the size of the generated covering arrays and decrease execution time. Where

IPO greedily selects the best value to extend one row at a time and cover the most uncov-

ered pairs as possible, IPO’ greedily searches the table and selects the best row-value pair to

cover the most uncovered t-tuples as possible. IPO’, as a consequence, has a larger search

space for the greedy choice. In order to prevent a negative performance cost, the algorithm

uses dynamic programming to store and update the coverage of each row-value pair. IPO’

is both faster and more optimal than IPOG. IPO’ was expanded as IPO” in [41] as well,

Approved for Public Release; Distribution Unlimited.
25

adding a heuristic to horizontal growth rather than computing values and greedily selecting

the best one. IPO’ and IPO” were implemented under the name IPOG-F and IPOG-F2,

respectively.

MIPOG (Modified IPOG) [42] improved on the selection criteria of IPOG for horizon-

tal growth and vertical growth as well as removed dependency issues, i.e. the possibility

of the best value for a current test changing during vertical growth. MIPOG was designed

so that it could be parallelized to multi-core processors. MC-MIPOG [42] was built from

MIPOG by the authors to utilized multiple cores. The authors show that extending MIPOG

to multiple cores provides a substantial speed up when parameters and coverage strength

increases. MC-MIPOG also has the most optimal covering arrays when compared to pre-

vious iterations of IPO algorithms. MIPOG and MC-MIPOG are capable of producing

covering arrays of strength t > 6. However, The authors do not compare generated cover-

ing array sizes between MIPOG and IPOG, and both MIPOG and MC-MIPOG run slower

than all other iterations of IPO algorithms.

IPOG-C [43] expanded IPOG to robustly handle constraints. The authors propose and

include the following optimization strategies for IPO algorithms:

• Avoid unnecessary validity checks on t-way combinations. Once constraints need to

be considered, test cases must be checked to ensure there are no forbidden tuples. An

algorithm that minimizes the number of validity checks is more optimal.

• Check relevant constraints only. Optimize the validity check by not checking irrele-

vant constraints. The less constraints in each validity check is more optimal.

• Recording the solving history. Time can be reduced by storing previous results.

IPOG-C models constraints as a Constraint Satisfaction Problem (CSP) and uses a con-

straint solver to check whether a test case satisfies the given constraints. Constraints include

Approved for Public Release; Distribution Unlimited.
26

both those specified by the user, as well as those that can be derived from the program. The

authors point out key optimizations made to the algorithm that follow the above strategies:

(1) horizontal growth will only select valid values for the parameters in the test case, so it

is redundant to check constraints of a test that has only undergone horizontal growth, thus

constraint checking is only done during vertical growth, (2) constraints can be modeled in

a constraint relation graph where constraints that have one or more common parameters are

grouped in an undirected graph and if a parameter is being checked only those constraints

in that group are used for the validity check, (3) the values of parameters with constraints

sent to the constraint solver and the return value is stored in a look up table so that a solving

call is avoided.

5.3 Meta-Heuristic

Meta-heuristic approaches apply non-traditional algorithms to converge on solutions for

combinatorial test generation. Most often, meta-heuristic techniques begin with a random

set of solutions, and the initial solutions are refined by an algorithmic process and test

cases are selected using a fitness function. Meta-heuristic approaches produce near-optimal

solutions but their limitation is often taking more time for test generation.

Particle swarm optimization (PSO) has been applied to pairwise testing in [44]. PSO

iteratively improves an initial solution by modeling the initial solution as particles moving

around a search-space for optimal positions. When a better position is found, the initial

solution is updated. In [44], two PSO based algorithms are proposed. One alogorithm uses

an OTAT-like strategy and the other uses an OPAT-like strategy. Another PSO based algo-

rithm was proposed by [45] in the form of a discrete particle swarm optimization (DPSO)

for covering array generation. DPSO adapts set-based PSO, which utilizes set and proba-

bility theories, by introducing two auxiliary strategies to enhance performance. From the

Approved for Public Release; Distribution Unlimited.
27

pairwise testing PSO algorithm came a PSO algorithm for t-wise testing. [46] propose a

particle swarm test generator (PSTG) that supports testing up to a strength of 6. The authors

further optimize and improve the PSTG in [47] and propose a variable strength particle

swarm test generator (VS-PSTG). [15] combine PSO algorithms with local search algo-

rithms to produce a discrete particle swarm simulated annealing based memetic algorithm

(D-PSMA). Constraints are handled for Particle Swarm Optimization (PSO) of combina-

trial testing by [48]. The constraints are represented as features in an input configuration

for each input parameter. A test suite is generated by using multi-objective PSO to find an

optimal solution given the constraints. It is the first use of a multi-objective meta-heuristic

search approach to constrained combinatorial testing. In addition, the algorithm is able to

be run in parallel using multi-threading.

Colony type optimization algorithms are also well studied in respect to combinatorial

test generation. The first colony type optimization applied to combinatorial test generation

was the ant colony optimization algorithm [49]. Ant colony optimization algorithms lo-

cate optimal solutions by recording the quality of solutions and attempting to locate better

solutions in each iteration. [49] build a test using an ant colony system - a variant of ant

colony optimization - and build the test suite using a OTAT strategy. As new advances in

ant colony optimization are researched, they are applied to combinatorial test generation.

[50] uses fuzzy logic techniques to make a self-adapting ant colony optimization algorithm

and apply it to combinatorial test generation. A variant of ant colony optimization is bee

colony optimization, and [51] created an artificial bee colony for variable t-way test sets

(ABCVS). Bee colony optimization produces an initial solution then generates and selects

new solutions by random selection in the neighborhood of the initial solution. A new set of

solutions are then chosen probabilistically from all solutions found.

Approved for Public Release; Distribution Unlimited.
28

5.4 Problem Definition

Definition 5.4.1. (Covering Array with Forbidden Tuples) Let CA(N; t,k,v) of size N be

a covering array of strength t, degree k, and order v that is an N× k array of v symbols

in which every sub-array of t distinct columns contains every t-wise tuple of v symbols in

at least one row. Let C be a set of forbidden tuples, certain parameter combinations that

cannot be present in the covering array. A forbidden tuple cannot be present in a row of a

covering or mixed covering array.

0 1 1 1
1 1 0 1
1 1 1 0
1 0 1 1

Table 5.1: A Covering Array CA(4;2,4,2) with (0,0) as a forbidden tuple

Definition 5.4.2. (Covering Array with Required Tuples) Let CA(N; t,k,v) of size N be a

covering array of strength t, degree k, and order v that is an N× k array of v symbols in

which every sub-array of t distinct columns contains every t-wise tuple of v symbols in at

least one row. Let R be a set of tuples which must be included in the covering array.

Not all complexities are known for determining the minimum size of covering arrays as

well as generating the minimum, or optimal, covering array. The complexity of generating

optimal CA2,2 is known to be P, but the complexity of generating optimal CA2,2 with

constraints is unknown.

The array coverage problem can be stated simply as generating minimal covering arrays

given a set of input parameters.

Approved for Public Release; Distribution Unlimited.
29

Generating Covering Arrays with Required Tuples Problem

Instance: t, k, v = ∑
k
i=1 vi and a set R of required tuples.

Question: Generate a covering array CA(N; t,k,v) with the minimum

value of N such that all t-way interactions and required tu-

ples in R are covered.

Generating Covering Arrays with Contraints Problem

Instance: t, k, v = ∑
k
i=1 vi and a set C of constraints.

Question: Generate a covering array CA(N; t,k,v) with the minimum

value of N such that each tuple is C-satisfying and all C-

satisfying t-way interactions are covered.

We plan on determining if there is an efficient algorithm that produces the optimal size

binary covering array with required and forbidden tuples. The complexity of determining

the optimal size of a CAt,v is unknown [52]. We aim to show that the problem is NP-

hard with the additional constraints that come with required and forbidden tuples. From

there, we will apply approximation techniques to determine an upper-bound on the optimal

solution.

Covering arrays are an excellent tool for testing a large number of parameters that do

not have a lot of potential values. Any software can be reduced to a number of inputs and

the number of values that input can take. Additionally, in hardware testing, many binary

input combinations need to be tested. A large number of binary parameters is a prime

application for covering array testing. Test suites generated via covering arrays are used

in execution, so there are no false positives when a bug is detected. Additionally, covering

arrays can be applied to any resource which relies on repeated use of combinations of tasks.

Approved for Public Release; Distribution Unlimited.
30

On a macro level, this means that software systems that need tested together can be tested

more efficiently.

Covering arrays can also be used to make efficient test suites of invalid combinations

of inputs. Invalid combinations should be tested to make sure there are no missed invalid

conditions or vectors for software security attacks. Covering arrays in are powerful tools

for generating unit tests for correct response to invalid input while also ensuring that the

test suites are as small as possible.

Approved for Public Release; Distribution Unlimited.
31

6. Conclusions

Game theory was leveraged to create a game-theoretic coverage-guided fuzzing approach

for generating test cases to exercise less likely paths in the Control Flow Graph (CFG) of

a program. The proposed approach is based on a probabilistic slicing of the program CFG

and creates a probability based payoff table by modeling the test-case generation as a 2-

player simultaneous game between the fuzzer and the program. A successful fuzz is taken

as the seed for fuzzing an input which exercises adjacent slices. The rewards in the payoff

table are used for power scheduling in the fuzzer. Our preliminary tests show promising

results in reducing the number of fuzzing operations for executing low probability paths

up to 20% compared to AFL. The promise of game theory as applied to software testing is

proven by successful application and improvement of AFL, a standard fuzzing tool. The

work resulted in a tool called GameFuzz that implements the above and works as a fuzzing

tool just like AFL.

Covering arrays are a fairly recent addition to the landscape of software testing. They

are best used to generate small test suites for a large number of parameters that do not have

a lot of potential values. Some theoretical results are unknown for covering arrays, which

need to be determined. After complexity results are established, approximation techniques

and kernelization can be applied to find better upper-bounds for the size of covering arrays

on any given number of input parameters. Covering arrays are great at generating a reduced

test suite for unit testing to test invalid combinations of variables.

Approved for Public Release; Distribution Unlimited.
32

Bibliography

[1] Raquel Blanco, Javier Tuya, and Belarmino Adenso-Daz. Automated test data genera-

tion using a scatter search approach. Information and Software Technology, 51(4):708

– 720, 2009.

[2] Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic test data generation

using constraint solving techniques. SIGSOFT Softw. Eng. Notes, 23(2):5362, March

1998.

[3] Bogdan Korel. Automated software test data generation. IEEE Trans. Software Eng.,

16(8):870–879, 1990.

[4] Robert Jasper, Mike Brennan, Keith Williamson, Bill Currier, and David Zimmerman.

Test data generation and feasible path analysis. In Proceedings of the 1994 ACM SIG-

SOFT International Symposium on Software Testing and Analysis, ISSTA 94, page

95107, New York, NY, USA, 1994. Association for Computing Machinery.

[5] Bogdan Korel. A dynamic approach of test data generation. In ICSM, pages 311–317.

IEEE, 1990.

[6] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability

of UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

Approved for Public Release; Distribution Unlimited.
33

[7] B. Miller, M. Zhang, and E. Heymann. The relevance of classic fuzz testing: Have

we solved this one? IEEE Transactions on Software Engineering, pages 1–1, 2020.

[8] V. J. M. Mans, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo. The

art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software

Engineering, pages 1–1, 2019.

[9] Patrice Godefroid. Fuzzing: hack, art, and science. Commun. ACM, 63(2):70–76,

2020.

[10] Mihalis Yannakakis. Testing, optimizaton, and games. In Josep Dı́az, Juhani

Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata, Languages and

Programming, pages 28–45, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[11] Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Tillmann, and Wolfgang

Grieskamp. Optimal strategies for testing nondeterministic systems. In ISSTA 2004,

volume 29 of Software Engineering Notes, pages 55–64. ACM, January 2004.

[12] Petra van den Bos and Marielle Stoelinga. Tester versus bug: A generic framework

for model-based testing via games. Electronic Proceedings in Theoretical Computer

Science, 277:118132, Sep 2018.

[13] X. Chen and X. Deng. Settling the complexity of two-player nash equilibrium. In

2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),

pages 261–272, 2006.

[14] L. Cai, Y. Zhang, and W. Ji. Variable strength combinatorial test data generation using

enhanced bird swarm algorithm. In 2018 19th IEEE/ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD), pages 391–398, 2018.

Approved for Public Release; Distribution Unlimited.
34

[15] X. Guo, X. Song, and J. Zhou. Effective discrete memetic algorithms for covering

array generation. In 2018 IEEE 42nd Annual Computer Software and Applications

Conference (COMPSAC), volume 01, pages 298–303, 2018.

[16] O. Moroz and V. Stepashko. Estimation of computational complexity of

combinatorial-genetic algorithm combi-ga. In 2019 9th International Conference on

Advanced Computer Information Technologies (ACIT), pages 257–260, 2019.

[17] Aditya Akundi, Eric Smith, and Tzu-Liang Tseng. Information entropy applied to

software based control flow graphs. International Journal of System Assurance Engi-

neering and Management, 9, 07 2018.

[18] Torben Amtoft. Slicing for modem program structures: a theory for eliminating irrel-

evant loops. Information Processing Letters, 106:45–51, 04 2008.

[19] Torben Amtoft and Anindya Banerjee. A theory of slicing for probabilistic control

flow graphs. In Bart Jacobs and Christof Löding, editors, Foundations of Software Sci-

ence and Computation Structures, pages 180–196, Berlin, Heidelberg, 2016. Springer

Berlin Heidelberg.

[20] Thomas S Ferguson. A Course in Game Theory. WSPC, USA, 2020.

[21] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu, and

Zuoning Chen. GREYONE: Data flow sensitive fuzzing. In 29th USENIX Security

Symposium (USENIX Security 20), pages 2577–2594. USENIX Association, August

2020.

[22] libfuzzer a library for coverage-guided fuzz testing. https://llvm.org/docs/

LibFuzzer.html.

[23] American fuzzy lop (afl). https://lcamtuf.coredump.cx/afl/.

Approved for Public Release; Distribution Unlimited.
35

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.coredump.cx/afl/

[24] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.

Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’17, page 23292344, New York, NY,

USA, 2017. Association for Computing Machinery.

[25] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

Driller: Augmenting fuzzing through selective symbolic execution. 2016.

[26] L. Situ, L. Wang, X. Li, L. Guan, W. Zhang, and P. Liu. Energy distribution matters

in greybox fuzzing. In 2019 IEEE/ACM 41st International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion), pages 270–271, 2019.

[27] C. Lemieux and K. Sen. Fairfuzz: A targeted mutation strategy for increasing grey-

box fuzz testing coverage. In 2018 33rd IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 475–485, 2018.

[28] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based grey-

box fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’16, page 10321043, New York,

NY, USA, 2016. Association for Computing Machinery.

[29] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,

and R. Whelan. Lava: Large-scale automated vulnerability addition. In 2016 IEEE

Symposium on Security and Privacy (SP), pages 110–121, 2016.

[30] Andrea Calvagna and Angelo Gargantini. A formal logic approach to constrained

combinatorial testing. J. Autom. Reasoning, 45:331–358, 12 2010.

Approved for Public Release; Distribution Unlimited.
36

[31] Alan W. Williams and Robert L. Probert. Formulation of the Interaction Test Cover-

age Problem as an Integer Program. In Proceedings of the 14th International Confer-

ence on Testing Communicating Systems: Applications to Internet Technologies and

Services, volume 210 of IFIP Conference Proceedings, pages 283–None. Kluwer,

2002.

[32] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman. An empirical comparison of combi-

natorial testing, random testing and adaptive random testing. IEEE Transactions on

Software Engineering, 46(3):302–320, 2020.

[33] Lijun Ji and Jianxing Yin. Constructions of new orthogonal arrays and covering arrays

of strength three. Journal of Combinatorial Theory, Series A, 117(3):236 – 247, 2010.

[34] M. P. Usaola, F. R. Romero, R. R. Aranda, and I. G. Rodrguez. Test case generation

with regular expressions and combinatorial techniques. In 2017 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

pages 189–198, 2017.

[35] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The aetg system: an

approach to testing based on combinatorial design. IEEE Transactions on Software

Engineering, 23(7):437–444, 1997.

[36] Yu Lei and K. C. Tai. In-parameter-order: a test generation strategy for pairwise test-

ing. In Proceedings Third IEEE International High-Assurance Systems Engineering

Symposium (Cat. No.98EX231), pages 254–261, 1998.

[37] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog: A general strategy for

t-way software testing. In 14th Annual IEEE International Conference and Workshops

on the Engineering of Computer-Based Systems (ECBS’07), pages 549–556, 2007.

Approved for Public Release; Distribution Unlimited.
37

[38] Myra B. Cohen. Designing Test Suites for Software Interactions Testing. PhD thesis,

University of Auckland, 2004.

[39] Yu-Wen Tung and W. S. Aldiwan. Automating test case generation for the new gen-

eration mission software system. In 2000 IEEE Aerospace Conference. Proceedings

(Cat. No.00TH8484), volume 1, pages 431–437 vol.1, 2000.

[40] Yu Lei, Raghu N. Kacker, David R. Kuhn, Vadim Okun, and James F. Lawrence.

Ipog/ipog-d: Efficient test generation for multi-way combinatorial testing. Software

Testing Verification and Reliability, 18, 2007.

[41] M. Forbes, J. Lawrence, Yu Lei, Raghu Kacker, and Richard Kuhn. Refining the in-

parameter-order strategy for construction covering arrays. Journal of Research of the

National Institute of Standards and Technology, 113(5):287–297, 2008.

[42] Mohammed I. Younis and Kamal Z. Zamli. Mc-mipog: A parallel t-way test genera-

tion strategy for multicore systems. ETRI Journal, 32(1):73–83, 2010.

[43] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and D. R. Kuhn. An efficient

algorithm for constraint handling in combinatorial test generation. In 2013 IEEE

Sixth International Conference on Software Testing, Verification and Validation, pages

242–251, 2013.

[44] X. Chen, Q. Gu, J. Qi, and D. Chen. Applying particle swarm optimization to pairwise

testing. In 2010 IEEE 34th Annual Computer Software and Applications Conference,

pages 107–116, 2010.

[45] H. Wu, C. Nie, F. Kuo, H. Leung, and C. J. Colbourn. A discrete particle swarm opti-

mization for covering array generation. IEEE Transactions on Evolutionary Compu-

tation, 19(4):575–591, 2015.

Approved for Public Release; Distribution Unlimited.
38

[46] Bestoun Ahmed and Kamal Zamli. Pstg: A t-way strategy adopting particle swarm

optimization. In Proceeding of Fourth Asia International Conference on Mathemati-

cal/Analytical Modelling and Computer Simulation, pages 1–5, 01 2010.

[47] Bestoun S. Ahmed and Kamal Z. Zamli. A variable strength interaction test suites

generation strategy using particle swarm optimization. Journal of Systems and Soft-

ware, 84(12):2171 – 2185, 2011.

[48] Bestoun S. Ahmed, Luca M. Gambardella, Wasif Afzal, and Kamal Z. Zamli. Han-

dling constraints in combinatorial interaction testing in the presence of multi objective

particle swarm and multithreading. Information and Software Technology, 86:2036,

Jun 2017.

[49] X. Chen, Q. Gu, A. Li, and D. Chen. Variable strength interaction testing with an ant

colony system approach. In 2009 16th Asia-Pacific Software Engineering Conference,

pages 160–167, 2009.

[50] Mohd Zamri Zahir Ahmad, Rozmie Razif Othman, Mohd Shaiful Aziz Rashid Ali,

and Nuraminah Ramli. A self-adapting ant colony optimization algorithm using fuzzy

logic (ACOF) for combinatorial test suite generation. IOP Conference Series: Mate-

rials Science and Engineering, 767:012017, mar 2020.

[51] Ammar K Alazzawi, Helmi Md Rais, and Shuib Basri. Abcvs: An artificial bee colony

for generating variable t-way test sets. International Journal of Advanced Computer

Science and Applications, 10(4), 2019.

[52] Ludwig Kampel and Dimitris E. Simos. A survey on the state of the art of complexity

problems for covering arrays. Theor. Comput. Sci., 800:107–124, 2019.

Approved for Public Release; Distribution Unlimited.
39

Acronyms

FSM Finite State Machine
SA Suspension Automata
CFG Control Flow Graph
NIST National Institute of Standards and Technology
CA Covering Array
PCFG Probabilistic Control Flow Graph
PSNE Pure Strategy Nash Equilibrium
MSNE Mixed-Strategy Nash Equilibrium
AFL American Fuzzy Lop
CG Call Graph
ICFG Intra-procedural Control Flow Graph
LAVA Large-Scale Automated Vulnerability Addition
NP Nondeterministic Polynomial
OTAT One-Test-At-a-Time
AETG Automatic Efficient Test Generator
IPOG In-Parameter-Order-General
OPAT One-Parameter-At-a-Time
TCG Test Case Generation
IPO In-Parameter-Order
MIPOG Modified In-Parameter-Order-General
MC-MIPOG Multicore-Modified Input Parameter Order
IPOG-C In-Parameter-Order-General - Combinatorial Testing
CSP Constraint Satisfaction Problem
PSO Particle Swarm Optimization
DPSO Discrete Particle Swarm Optimization
PSTG Particle Swarm Test Generator
VS-PSTG Variable Strength Particle Swarm Test Generator
D-PSMA Discrete Particle Swarm Simulated Annealing Based Memetic Algorithm
ABCVS Artificial Bee Colony for Variable t-way test Sets

40

Approved for Public Release; Distribution Unlimited.

	FA8750-20-2-1000_AFRLFinalReport-2 frontmatter edit
	FA8750-20-2-1000_AFRLFinalReport wo frontmatter
	FA8750-20-2-1000_AFRLFinalReport
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Summary
	Introduction
	Methods, Assumptions, and Procedures
	Results and Discussions
	Future Work
	Algebraic
	Greedy
	OTAT Algorithms
	OPAT Approaches

	Meta-Heuristic
	Problem Definition

	Conclusions

	Acronyms
	Acronyms

