Carnegie Mellon University
Software Engineering Institute

DevSecOps Platform-Independent Model:
Requirements and Capabilities

Timothy A. Chick
Brent Frye

Aaron Reffett
Natasha Shevchenko
Carol Woody

Joseph Yankel

August 2021

TECHNICAL REPORT
CMU/SEI-2021-TR-010

Program Name

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution.

http://www.sei.cmu.edu

REV-03.18.2016.0



Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other
documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom
AFB, MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-1S" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required
for any other external and/or commercial use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

DM21-0712

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Table of Contents

Abstract

1 Introduction
1.1 Whatis a DevSecOps Pipeline and How Does it Evolve?
1.2 What is the DevSecOps Platform-independent Model and Why is it Needed?
1.3 What is a Platform-independent Model?
1.4 Using the DevSecOps PIM
1.4.1 Getting Started

2 Dictionaries
2.1 DevSecOps Maturity Levels
2.2 Glossary

3 System Requirements
3.1 1 Governance
3.1.1 Gov_1 Track Changes Associated to Requirements
3.1.2 Gov_2 Track progress with Scrum/Kanban Boards
3.1.3 Gov_3 Task Creation
3.1.4 Gov_4 Metrics
3.1.5 Gov_5 Knowledge Management
3.1.6 Gov_6 System Assurance
3.1.7 Gov_7 Defect and Issue Tracking
3.1.8 Gov_8 Non-compliance Tracking
3.1.9 Gov_9 Document and Manage Identified Risks
3.2 2 Requirements
3.2.1 Req_1 Document Requirements
3.2.2 Req_2 Requirements Abstraction Layers
3.2.3 Req_3 Requirements Prioritization
3.2.4 Req_4 Requirements Validation
3.2.5 Req_5 Change Management of Requirements
3.2.6 Req_6 Requirements Authorization
3.3 3 Architecture & Design
3.3.1 Arc_1 Requirement Mapping
3.3.2 Arc_2 Implementation Mapping
3.3.3 Arc_3MBSE
3.3.4 Arc_4 Software Assurance
3.4 4 Development
3.4.1 Dev_1 Mapping to Requirements
3.4.2 Dev_2 Mapping to Architecture
3.4.3 Dev_3 Mapping to Tests
3.4.4 Dev_4 Secure Software Development
3.4.5 Dev_5 Code Reviews
3.4.6 Dev_6 Orchestration
3.4.7 Dev_7 Configuration Management
3.4.8 Dev_8 Integrated Development Environment (IDE)
3.4.9 Dev_9 Development Information Radiator
3.5 5Test
3.5.1 Tes_1 Manual Testing
3.5.2 Tes_2 Requirement Association
3.5.3 Tes_3 Automated Testing
3.5.4 Tes_4 Code Coverage
3.5.5 Tes_5 Penetration and Fuzz Testing
3.5.6 Tes_6 Testing Information Radiator
3.5.7 Tes_7 Multi-phase Testing

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

10
12
14
26

28
28
29

31
31
31
31
33
35
37
43
45
46
a7
48
48
50
51
52
53
53
54
54
55
56
58
59
59
59
60
60
62
64
65
67
68
69
69
70
71
73
74
74
75



3.6 6 Delivery

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6

Del_1 Release Management
Del_2 ITSM Service Desk

Del_3 Continuous Delivery

Del_4 Product Recovery

Del_5 System Recover

Del_6 Configuration Item Integrity

3.7 7 System Infrastructure

3.71
3.7.2
3.7.3
3.74
3.75
3.7.6
3.7.7

Appendix 92

Sys_1 System's Non-functional Requirements
Sys_2 Automated Provisioning

Sys_3 System Maintenance

Sys_4 Communication

Sys_5 Information Management

Sys_6 Infrastructure Configuration Management
Sys_7 Automated Patch Management

References/Bibliography

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

77
77
78
78
80
81
82
84
84
84
85
86
87
89
89

94



List of Figures

Figure 1: Integrated Pipeline and Infrastructure

Figure 2: DevSecOps Infinity Diagram

Figure 3: DevSecOps Capability Delivery Model

Figure 4: Reference and Solution Architecture Relationship
Figure 5: PIM and PSM Relationship to Platform Instantiations
Figure 6: DevSecOps System Requirements

Figure 7: Requirements to Maturity Levels Matrix

Figure 8: DevSecOps Capabilities

Figure 9: DevSecOps Pipeline

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

Track Changes Associated to Requirements

Track Progress with Scrum/Kanban Boards

Task Creation

Metrics

Knowledge Management

System Assurance

Defect and Issue Tracking
Non-compliance Tracking
Document and Manage Identified Risks
Document Requirements
Requirements Abstraction Layers
Requirements Prioritization
Requirements Validation

Change Management of Requirements
Requirements Authorization
Requirement Mapping
Implementation Mapping

MBSE

Software Assurance

Mapping to Requirements
Mapping to Architecture

Mapping To Tests

Secure Software Development
Code Reviews

Orchestration

Configuration Management

26
31
32
34
36
38
44
45
46
47
48
51
52
52
53
54
55
56
57
58
59
60
60
61
63
64
65
68

Figure 36: Integrated Development Environment (IDE)

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Development Information Radiator
Manual Testing

Requirement Association

Automated Testing

Code Coverage

Penetration and Fuzz Testing

Testing Information Radiator
Multi-phase Testing

Release Management

ITSM Service Desk

Continuous Delivery

Product Recovery

System Recover

Configuration Item Integrity

System's Non-functional Requirements
Automated Provisioning

System Maintenance

Communication

Information Management
Infrastructure Configuration Management
Automated Patch Management
Requirements to Requirements Relationship Matrix

Capabilities to Requirements Relationship Matrix

69
70
71
72
73
74
75
76
77
78
79
81
82
83
84
85
85
86
87
89
90
92
93



List of Tables

Table 1: DevSecOps Capability Definitions
Table 2: DevSecOps Maturity Levels

Table 3: Glossary

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

19
28
29



Abstract

Just as products evolve and adapt over time in order to continuously provide value to their users in a secure
and cost-effective way, so too must the DevSecOps pipeline. The DevSecOps pipeline evolution is
generally driven by changes to organizational business cases, stakeholder requirements, incremental
process improvements, and risk mitigations. Given the socio-technical nature of a DevSecOps pipeline, an
organization must be mindful in how it instantiates and evolves its DevSecOps pipeline in order to
improve the pipeline’s ability to effectively envelop participants, processes, and technologies in a secure
way, while minimize any negative side effects. The DevSecOps platform-independent model (PIM),
outlines the activities necessary to consciously and predictably evolve the pipeline, while providing a
formal approach and methodology to building a pipeline tailored to an organization's specific
requirements. The use of a DevSecOps platform-specific model (PSM) allows organizations to perform
trade-off analyses among alternatives prior to changing the current pipeline instantiation, thus minimizing
negative disruptions to the organization’s ability to predictably deliver and maintain its products. It allows
the organization to reason through the impact of change and to identify where the change should occur in
order to provide the most value. To support the analysis and decision-making process, measures must be
defined and corresponding data collected in order to provide insight into the decision-making challenges
associated with incorporating new capabilities and enhancements into a DevSecOps pipeline.

While organizations, projects, and teams desire to reap the flexibility and speed expected through the
implementation of DevSecOps principles, practices, and tools, missing reference material is needed to
ensure that DevSecOps is implemented in a secure, safe, and sustainable way. The DevSecOps PIM has
been created to address this need. It enables organizations, projects, teams and acquirers to

» specify the DevSecOps requirements to the lead system integrators who need to develop a platform-
specific solution that includes the designed embedded system and continuous integration/continuous
deployment (CI/CD) pipeline

» assess and analyze alternative pipeline functionality and feature changes as the embedded system
evolves

o apply DevSecOps methods to complex products that do not follow well-established software
architectural patterns used in industry

« provide a basis for threat and attack surface analysis to build a cyber assurance case in order to
demonstrate that the product and the DevSecOps pipeline are sufficiently free from vulnerabilities and
that they function only as intended

The DevSecOps PIM provides

« consistent guidance and modeling capability that ensure all proper layers and development concerns
relevant to the organization’s, project’s, and team’s needs are captured

« the basis for creating a DevSecOps PSM which can be incorporated into the product’s model-based
engineering approach as the DevSecOps model is included in the product’s model. This allows proper
modeling of DevSecOps design trades within a project’s analysis of alternatives (AoA) processes,
resulting in less costly and more secure products.

« the basis for metrics and documentation of trade-offs to be captured and analyzed through the model-
based engineering approach. The model provides dynamic matrices of if those points were addressed,
how they were addressed, and how well the corresponding (to the points) module is covered.

« the basis for performing risk modeling against decisions and DevSecOps model-based engineering to
ensure security controls and processes are properly selected and deployed

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



1 Introduction

1.1 What is a DevSecOps Pipeline and How Does it Evolve?

A DevSecOps pipeline is a means for building products that support an organization’s mission. To build a
pipeline, the details that define what the various technologies used will address must first be prepared by
developing business cases and requirements. These cases and requirements are further refined, feeding the
pipeline and establishing the development cadence, as shown in Figure 1: Integrated Pipeline and
Infrastructure.

Tools and infrastructure capabilities are then selected to allow designers, architects, developers, testers,
verifiers, users, operators, and other relevant stakeholders to work together to produce the products needed
to meet the objectives using the pipeline (as depicted in the Products box in Figure 1).

In addition, a parallel group of participants implements and supports the automation that allows product
creators to build and facilitate management oversight (as depicted in the Capability Delivery box in Figure
1).

Each of these roles requires specialized technical expertise, and each branch relies on the same tools,
repositories, and processes structured through the pipeline. The pipeline must be structured to allow each
relevant stakeholder to access what they need to perform their role, and the processes must be arranged so
that each activity flows through the pipeline and is easily handed off from one role to the next all the way
from planning to delivery [Woody 2020].

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



¢ St S )

Figure 1: Integrated Pipeline and Infrastructure

Most literature discussing DevSecOps depicts it using some variation of the infinity diagram shown in
Figure 2: DevSecOps Infinity Diagram. This is a high-level conceptual diagram since DevSecOps is a
cultural and engineering practice that breaks down barriers and opens collaboration between the
development, security, and operations organizations using automation to focus on rapid, frequent delivery
of secure infrastructure and software to production.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



DEPIOy

,(,u" [ ;«*"
Ko,

Figure 2: DevSecOps Infinity Diagram

The application and pipeline are built incrementally and are continuously updated to address changing
business requirements as well as security and technology demands. It encompasses the intake to the release
of software, and manages those flows predictably, transparently, and with minimal human
intervention/effort [U.S. General Services Administration 2021]].

DevSecOps isn’t simply a technology, a pipeline, or a system. It is an entire socio-technical environment
that encompasses the people in certain roles, the processes that they are fulfilling, and the technology used
to provide a capability that results in a relevant product or service being provided to meet a need.

Thus, an organization must be mindful of what it is building to instantiate a DevSecOps pipeline that
fulfills its particular needs. Unfortunately, there is no one-size-fits-all pipeline. Each DevSecOps pipeline
must be tailored to fulfill the needs of a particular program. In some cases, the capability delivery could be
more complicated than the products themselves.

The DevSecOps pipeline isn’t simply instantiated once and used throughout the product’s lifecycle. It is
continuously evolving, as the product evolves. The speed and rate of pipeline evolution is affected by the
processes and roles that change at a much slower pace than technology, and most organizations don’t start
by fully automating everything. Instead, the automation of processes is realized over time.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Dowstees Mirovae Pime DuwSecon Cumetaity Duery Mook

Tawm Pogect
N. rou Nuvesg Negarwsevs
Iru-m Cresa DoviecOse . | : eraien
Pattorre renpesdur Pwdern Specstc DevieeOps Prosens
Meow e
. ; o IR ,'—"——"—"»l
oo Pavarg s Bz B s
BecdniCya Bysien | . | e
| Comgutas l Drvatprses { : |
A [ e ' O
s [y B
g 5 { ¥
———e—————— s e Mabel

H

e Aoy Tod | r—v—————— ‘ [ C———tin.—
r Mot k | Opeern L
. ) | ,

Figure 3: DevSecOps Capability Delivery Model

The evolutionary aspects of the DevSecOps capability delivery pipeline are represented in Figure 3:
DevSecOps Capability Delivery Model. The DevSecOps Capability Delivery Model adds several new
activities to the traditional DevSecOps infinity diagram to represent the mindful nature of establishing and
evolving a project’s capability delivery pipeline. The diagram details an activity flow that begins with
product requirements which feed the teams’ project planning, and include the capability delivery needs of
the product. This, in turn, feeds the DevSecOps PIM, which is used to create a DevSecOps PSM. The PSM
is a representation of the current system and its planned updates, preferably maintained using a model-
based system engineering tool.

This DevSecOps model captures all socio-technical aspects of the project’s specific capability delivery
pipeline. It allows the organization to perform trade-off analyses among alternatives to ensure that the
project’s capability delivery pipeline is operating in a cost-effective and secure way, while consistently
meeting the needs of the product and all relevant stakeholders.

Based on the model, the capability delivery pipeline is configured and instantiated by the DevSecOps
Configurator. The DevSecOps Configurator is analogous to the concept of Infrastructure as Code (1aC) and
Configuration as Code (CaC). The product is developed, secured, and operationalized by using the
instantiated capability delivery pipeline.

Throughout the lifecycle of the product, data is continuously collected via sensors. This data must be
analyzed and evaluated via the Risk Analysis Model. If new risks are identified, such as security
vulnerabilities or the possibility of not meeting contractual delivery dates, then the Model Analytics
Engine is used to evaluate alternatives to the current capability delivery pipeline instantiation. Resulting
changes are made to the DevSecOps Master Model and the process repeats.

Requirements changes require risk analysis as well as an evaluation of the capability delivery which may
be impacted.

1.2 What is the DevSecOps Platform-independent Model and Why is it
Needed?

Organizations struggle in applying DevSecOps practices and principles in heavily regulated and
cybersecurity-constrained environments such as banking, healthcare, and government, because they lack a
consistent basis for managing software intensive development, cybersecurity, and operations in a high-

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



speed lifecycle. An authoritative reference is needed to enable organizations to fully design and execute an
integrated DevSecOps strategy in which all stakeholder needs are addressed. An example is engineering
security into all aspects of the DevSecOps pipeline in order to demonstrate and test the addressing of
security concerns for both the pipeline and the product. While large organizations have successfully
implemented some aspects of DevSecOps on smaller initiatives, they can struggle to implement these same
techniques on large-scale projects. Even in small, relatively successful initiatives, substantial loss of
productivity can occur when technical debt and insufficient security and operational practices are in place
due to the lack of knowledge, experience, and reference material needed to fully design and execute an
integrated DevSecOps strategy in which all stakeholder needs are addressed.

While organizations, projects, and teams desire to reap the flexibility and speed expected through the
implementation of DevSecOps principles, practices, and tools, missing reference material is needed to
ensure DevSecOps is implemented in a secure, safe, and sustainable way. The DevSecOps platform-
independent model (PIM) has been created to address this need. It enables organizations, projects, teams
and acquirers to

» specify the DevSecOps requirements to the lead system integrators tasked with developing a platform-
specific solution that includes the designed system and continuous integration/continuous deployment
(C1/CD) pipeline

« assess and analyze alternative pipeline functionality and feature changes as the system evolves

« apply DevSecOps methods to complex products that do not follow well-established software
architectural patterns used in industry

» provide a basis for threat and attack surface analysis to build a cyber assurance case in order to

demonstrate that the product and DevSecOps pipeline are sufficiently free from vulnerabilities and that
they function only as intended.

While one can search “DevSecOps” on the internet and find a lot of literature that paints a picture of what
DevSecOps could be or should be, this literature is not definitive and requires a considerable amount of
interpretation, particularly for heavily regulated and cybersecurity-constrained environments. This results
in

» DevSecOps perspectives not being fully integrated in organizational guidance and policy documents

« projects being unable to perform an analysis of alternatives (AoA) regarding the DevSecOps pipeline
tools and processes

« multiple projects using similar infrastructure and pipelines in different and incompatible ways, even
within the same organization

« suboptimal tools and security controls

The DevSecOps PIM provides

« consistent guidance and modeling capability that ensure all proper layers and development concerns
relevant to the organization’s, project’s, and team’s needs are captured

« the basis for creating a DevSecOps platform-specific model (PSM) which can be incorporated into the
product’s model-based engineering approach as the DevSecOps master model is included in the
product’s model. This allows proper modeling of DevSecOps design trades within a project’s AoA
processes, resulting in less costly and more secure products.

» the basis for metrics and documentation of trade-offs to be captured and analyzed through the model-
based engineering approach. The model provides dynamic matrices of if those points were addressed,
how they were addressed, and how well the corresponding (to the points) module is covered.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



« the basis for performing risk modeling against decisions and DevSecOps model-based engineering to
ensure security controls and processes are properly selected and deployed

Large, complex, heavily regulated, and cybersecurity-constrained projects have already embraced model-
based engineering but have not applied the same techniques to their DevSecOps CI/CD pipelines. This
limits a project’s ability to build a cyber-physical software factory that is fit for purpose. Establishing a
DevSecOps PIM enables projects to develop a robust framework for creating a customized model where
the system's architecture and the DevSecOps pipeline architecture are not in conflict and where they
address the larger attack surface of the project. This allows DevSecOps to become a part of the enterprise
architecture of the product being built, in contrast to current practices where DevSecOps is not included in
the overall product architecture and does not effectively integrate with the compliance and operational
context of the project.

1.3 What is a Platform-independent Model?

The goal of software system architecture is to align a (large) group of stakeholders in the same direction.
For less complex software systems with well-established patterns, the importance of an architecture focus
diminishes as one can simply follow the well-established patterns and associated solutions. However,
many heavily regulated and cybersecurity-constrained software systems are more complex and require
custom architectural patterns. Attention must be paid to maintaining the architecture and ensuring that the
impact of requirement/feature changes are well understood and acceptable, especially with respect to
impacts on security and operations. Otherwise, stakeholders will creatively solve their local problems that
may then violate the overall structure.

A reference architecture is an authoritative source of information about a specific subject area that guides
and constrains the instantiations of multiple architectures and solutions [U.S. Department of Defense
2018]. A reference architecture provides guidelines that ensure proper attention to, and management of, the
system architecture. For more complex systems, there will be parts of the system architecture that are well
understood and other parts that are not. This complexity can be better managed by separating the parts of
the system that are well-known from those that are largely unknown. Then, it will be easier for relevant
stakeholders to determine the right abstractions for the well-known parts that support future unknown
(albeit expected) features and do not adversely impact security and operations.

As for the unknown parts of the system architecture, they are difficult to specify and, therefore, should not
be specified. The likelihood of getting the specifications wrong is quite high. These parts should be made
clear and visible in the system architecture. The unknown parts of the architecture will continuously
(iteratively) evolve but this evolution must be carefully considered so as not to destroy or diminish the
existing well-known parts of the architecture. Over time, the abstractions for the unknown parts will
become better defined. Development, security, and operations teams and other stakeholders should be
involved in this evolution to ensure that the proper balance between features, defensibility, and stability is
maintained in a cost-effective manner.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



_Reference Architecture

Guides and constrains
the development of

Stakeholder
Requirements Architectures

Figure 4: Reference and Solution Architecture Relationship

It is not uncommon for a project or team to go directly from a reference architecture to a platform-specific
model (PSM) or even directly to a solution. A PSM is a model of a product or service being built by a
project, or team, that is linked to a specific technology, such as specific programming languages,
automated testing tools, issue tracking, etc. and how they are integrated and used together to meet a
defined need. A platform-independent model (P1M) is a general and reusable model of a solution to a
commonly occurring problem in software engineering within a given context that is independent of the
specific technological platform used to implement it. It is more detailed than a reference architecture but
stops short of specifying a specific technological implementation. The DevSecOps PIM bridges the gap
between high-level theory and current DevSecOps instantiations. It provides the basis for consistently
building and maintaining DevSecOps pipelines that are fit for purpose.

MeTancom MeTAMOORL

PIM Model s PIM Model

Map/Generate

Figure 5: PIM and PSM Relationship to Platform Instantiations

The relationship between the PIM and PSM allows stakeholders to assess functionality and feature changes
as the DevSecOps pipeline and product(s) under development evolve by providing a definitive definition
of what a DevSecOps pipeline is and how it matures over time.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



An Analogy: When cooking, there is a difference between following a simple, imprecise recipe and a
complicated, detailed recipe. When preparing a simple dish, you can afford to use an unclear recipe, as
even relatively major mistakes can be fixed and even avoided just by having some experience. But if you
are making a complicated, time-intensive dish that requires not only general experience, but expertise and
skills in very specific areas of knowledge and/or techniques (like development, security, and operations),
the recipe should be as detailed as possible, guide you in every step, and give you instruments to check
your progress and make adjustments along the way. Otherwise, even a few minor mistakes can ruin the
dish. Today, projects and teams try to follow a simple recipe when developing their DevSecOps pipelines,
which works fine for well-known patterns. However, for large, complex systems that do not conform to
known patterns, projects need a more complete detailed recipe to avoid costly mistakes and to make
informed adjustments along the way. The DevSecOps PIM is this detailed complete recipe.

1.4 Using the DevSecOps PIM

The DevSecOps pipeline isn’t simply instantiated once and used throughout the product’s lifecycle. It
continuously evolves along with the product. The speed and rate of pipeline evolution is affected by the
processes and roles that change at a much slower pace than technology, and most organizations don’t start
by fully automating everything. Instead, the automation of processes is realized over time. As a result, two
views of the DevSecOps requirements were created along with the corresponding maturity and capability
levels.

The first, and primary, perspective is a software lifecycle view of the requirements, as shown in Figure 6:
DevSecOps System Requirements. In the figure, the Governance and System Infrastructure boxes
represent the requirements focused on the enablement of the software development lifecycle, while the
other boxes represent the engineering activities performed on a product under development as it iteratively
evolves. Each requirement has a key that articulates the category and a unique number, referred to as “Id”
in modeling diagrams. The numbers break down to show encapsulation. For example: Sys_5 is the higher
requirement and Sys_5.1 and Sys_5.2 are more detailed requirements. Sys_5.1.1 is a child of Sys_5.1. Ata
minimum, all requirements have an Id, title, requirement statement (referred to as “text” in modeling
diagrams), and a stereotype. Stereotypes are used to capture the maturity level and capability attributes of
the requirements. In addition to these basic characteristics, many requirements have additional informative
information (referred to as “documentation” in the modeling diagrams). This information is provided in
order to help the model user understand the intent and expectation of the requirement.

req [Package] System Requirements [ | System Requirements ])

L.

System
Requirements

Gl

| - | - |- | - ] | - |
1 Governance 2 3 4 3 Test 6 Delivery T System
Requirements Architecture Development Infrastructure
& Design

Figure 6: DevSecOps System Requirements

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



In addition to the encapsulation, or containment relationship between the requirements captured in the
numbering system, there are trace relationships (i.e., requirement to requirement) among many
requirements. A summary of these trace relationships can be found at the end of this document in Figure
58: Requirements to Requirements Relationship Matrix. In the detailed modelling diagrams, these
relationships are shown via a dotted line with one of the following labels: “trace,” “copy,” “Depends on,”
and “deriveReqt.”

o “Trace” is the most general form of a relationship as it indicates nothing more than the existence of a
relationship between the two requirements.

e “Copy” relationships are contextual copies of two or more requirements. While the text of the
requirements is identical, the title and requirement attributes differ in order to contextually articulate
the various ways that the given requirement must be implemented to satisfy the needs of the system.

o “Depends on” is used to show the dependency between 2 requirements in which one requirement must
be satisfied in order to achieve the other requirement.

« Finally, a “deriveReqt” relationship simply provides an origin or driver relationship for a given
requirement.

The trace relationship among requirements, as shown in Figure 58: Requirements to Requirements
Relationship Matrix is not an exhaustive relationship matrix as other requirements relationships do exist.

In general, the requirements are written to capture the ideal state of DevSecOps. However, as the authors
started building the model it became clear that the ideal state of DevSecOps is too much for a person or
group to adopt all at once. In fact, most of the DevSecOps adoptions the authors have observed have been
instantiated and executed using an iterative approach that evolves into the ideal state. This insight led to
the creation of maturity levels as defined in Table 2: DevSecOps Maturity Levels, where level 1 is the least
mature and level 4 is the ideal state of DevSecOps. Each requirement has been mapped to a maturity level,
as summarized in Figure 7: Requirements to Maturity Levels Matrix. The levels are accumulative in
nature. For example, in order to address and meet the level 2 requirements, you must also address and meet
all level 1 requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Legend
A" Trace

] Maturity Level 1
t | Maturity Level 2
1 Maturity Level 3
t Maturity Level 4

71 Maturity Level: @

= [ System Requirements
= [ 1 Governance
[& Gov | Track Changes Associated to Requirements
@) [® Cov_2 Track progress with Scrum/Kanban Boards
# [ Gov_3 Task Creation
&l [8 Gov_a Metrics
[& Cov 5 Knowledge Management
%] [8] Cov 6 System Assurance
4] [¥] Gov_7 Defect and Issue Tracking
@ (3] Cov_& Non-compliance Tracking
&1 [8 Cov_9 Document and Manage Identified Risks
= [ 1 2 Requirements
%l [E Req | Document Requirements
[# Req 2 Requirements Abstraction Layers
[#] Req_3 Requirements Prioritization
[8 feq 4 Requirements Validation
[8 Req_5 Change Management of Requirements
[& feq & Requirements Authorization
[ 3 Architecture & Design
[8] Arc_1 Requirement Mapping
(& Arc_2 Implementation Mapping
2 [E] Arc_3 MBSE
[2] Arc_4 Software Assurance
£ [ 4 Development
[#] Dev_1 Mapping to Requirements
Dev_2 Mapping to Architecture
[&] Dev_3 Mapping to Tests
%1 [E] Dev 4 Secure Software Development
#) [ Dev_5 Code Reviews
(3] Dev_6 Orchestration
% [8] Dev_7 Configuration Management
Dev_4 Integrated Development Environment (IDE)
[E Dev 9 Development Information Radiator
B[S Test
%) 08 Tes_1 Manual Testing
Tes ! Requirement Assoclation
(2] Tes 3 Automated Testing
(5] Tes_4 Code Coverage
[#] Tes 5 Penetration and Fuzz Testing
[# Tes_6 Testing Information Radiator
& 8] Tes_7 Multi-phase Testing
= | 6 Delivery
[&l Del 1 Release Management
[# Del_2 ITSM Service Desk
@[3 Del_3 Continuous Delivery
[ Del_4 Product Recovery
[& Del S System Recover
[#] Dzl 6 Configuration item Integrity
= [ 7 System Infrastructure
(8] Sys_1 System's Non-functional Requirements
Sys_2 Automated Provisioning
% (& Sys_7 System Maintenance 23
& 5ys_4 Communication . 7
1) [3 Sys_5 Information Management .==
&) [# Sys_6 Infrastructure Configuration Management Ll
% [8] Sys_7 Automated Patch Management ]

i
N

VEBEREN . . BEE

N

Figure 7: Requirements to Maturity Levels Matrix

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



As a DevSecOps system matures, so will its capabilities. The second perspective that requirements are
mapped to is a capability view. All requirements are mapped to the 10 capabilities shown in Figure 8:

DevSecOps Capabilities, and grouped under a top-level capability referred to as the DevSecOps Pipeline
Capability.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Figure 8: DevSecOps Capabilities

These capabilities are groupings of requirements that, when combined, define a collective competency in
performing a set of functional activities across the product lifecycle. These capabilities are defined in Table
1: DevSecOps Capability Definitions. The capability levels represent the measure of consistency and

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



completeness, which is usually achieved through increased automation, in which functional activities are
performed. The requirements maturity level represents the minimal capability level the given requirement
is expected to meet. For example, if a given requirement is mapped to the Planning & Tracking capability
and maturity level 3, then in order to consider the requirement met, it would need to achieve the capability
expectations of Planning & Tracking level 3. The requirement’s maturity can grow as the level of
capability improves. For example, one could implement a maturity level 3 requirement at capability level

4.

Table 1: DevSecOps Capability Definitions

Name

Documentation

Configuration
Management

Configuration Management is the set of activities used to establish and maintain the integrity of the
system and product under development, and associated supporting artifacts, throughout their useful lives.
Different levels of control are appropriate for different supporting artifacts and implementation elements
and for different points in time. For some supporting artifacts and implementation elements, it may be
sufficient to maintain version control of the artifact or element that is traced to a specific instance of the
system or product under development in use at a given time, past or present, so that all information
related to a given instance, or version, of the system or product under development is known. In which
case, all other variations of the artifacts and elements can be discarded as subsequent iterations are
generated or updated. Other supporting artifacts and implementation elements may require formal
configuration in which case baselines are defined and established at predetermined points in the lifecycle.
Baselines, and subsequent changes, are formally reviewed and approved, and serve as the basis for
future efforts. The configuration management capability of a system matures as the consistency and
completeness of the integrity controls are put in place to capture all supporting artifacts and
implementation elements associated with the system and product under development while keeping pace
with the DevSecOps pipeline through automation and integration with all aspects of the lifecycle. This
includes; (1) the relationship between artifacts and elements for a given instance, or version, of the
system or product under development, (2) capturing sufficient information to identify and maintain
configuration items, even if those who created them are no longer available, (3) defining the level of
control each artifacts and elements requires based on technical and business needs, (4) systematically
controlling and monitoring changes to configuration items, and (5) enforcement and logging of all required
relevant stakeholder reviews and approvals, based on the organization, project, and team policies and
procedures.

Configuration
Management Level 1

« All supporting artifacts and implementation elements that require configuration control are identified and
documented.

« The level of configuration control for each supporting artifact and implementation element is defined.

» While the configuration management of supporting artifacts may be a fully manual process, an
automated version control system, or set of systems, must be in place to track current and historical
versions of files used to create implementation elements.

Configuration
Management Level 2

» Automated configuration management system(s) are in place for all identified supporting artifacts and
implementation elements.

» Immutable logging of all changes to configuration items and associated metadata, such as who made
the change, when the change occurred, and what was changed.

» Changes to the system and product under development is associated with an approved requirement or
change request.

« All relevant stakeholders are notified when changes to configuration items are requested.

» Some integration between the automated version control system used for file tracking and other aspects
of the DevSecOps pipeline has occurred in order to enable the automatic triggering of other activities.

» The automated version control system traces relationships between test artifacts and requirements, and
test results and associated artifacts to a specific instance of the system or product under development in
use at a given time, past or present.

Configuration
Management Level 3

» Manage and control the volatility of change. Be able to identify impacted supporting artifacts and
implementation elements a given change request will impact.

» Use automatic discovery tools to scan current instance of system and product under development, and
associated configurations, to identify mismatches between current instance and approved versions under
configuration management in order to ensure integrity of the instantiated instances. Automatically report
all mismatches to relevant stakeholders.

*» The system shall automatically maintain an audit trail of all system configuration changes to include what
was changed, who/what changed it, when the change occurred.

» System only allows authorized individuals, or entities, to make specific types of changes to the product
under development based on the individual’s role, or entity’s purpose, and where they are in the
DevSecOps pipeline.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Name

Documentation

Configuration
Management Level 4

» Automatically correct any misconfiguration of the currently instantiated system and product under
development based on approved supporting artifacts and implementation elements under configuration
control.

» The system shall monitor user activities and actively identify security-related actions and system
configuration changes that are uncharacteristic of the given user and notify relevant stakeholders of the
uncharacteristic behavior to validate the change was appropriate and to avoid insider threats.

« A fully automated change proposal process, where changes are proposed and automatically routed to
relevant stakeholders for approval and implemented by the system.

Deployment

Deployment is the set of processes related to the delivery or release of the product under development
into the environment in which users of the product interact with the product. The deployment capabilities
of the system mature with increased levels of automation, advanced rollback and release functionality,
along with disaster recovery, speed, and accuracy.

Deployment
Level 1

» The system can manually recover if a failure occurs in a deployed product, deploying the product at the
last known acceptable state.

Deployment
Level 2

* A quality criteria for the deployment of the system and product under development is defined.

While monitoring for failures can be a combination of manual and automated detection processes:

» The system can automatically recover if a failure occurs in a deployed product, deploying the product at
the last known acceptable state.

» The system can automatically recover the product to a previously working state in the event of system
failure.

» The system can track the changes between deployed products, and the personnel and reasoning
involved in the change.

Deployment
Level 3

» Both the system and product under development are fully automated in terms of orchestration and
deployment into target environments

« Various release strategies are supported to include canary, Blue-Green, multiple service, batch, rolling,
and A/B Testing.

» The product under development is deployed continuously, supported by sufficient automation in which
no human intervention is required to release the product to its users.

» The system shall automatically collect the necessary data to monitor the system and product under
development for failures and quality issues, and alert relevant stakeholders when corrective actions are
required.

« In the event that a failure or cancellation occurs during deployment of the product or system, the system
will automatically restore a the most recent working version.

» Automated updating or patching of software used by the system. Patches are rolled out automatically to
the various parts of the system.

Deployment

Level 4

» Continuous improvement of the testing procedures is performed based on the data collected from the
system and product under development tests.

* The system shall automatically identify and track when the defined quality criteria has not been met and
the automated quality controls have been bypassed. All relevant stakeholders will be automatically
notified and the non-compliance issue will be tracked to closure.

DevSecOps Pipeline

The DevSecOps pipeline is a socio-technical system composed of both software tools and processes. As
the capability matures it seamlessly integrates three traditional factions that sometimes have opposing
interests: development values features, security values defensibility, and operations values stability. A
DevSecOps pipeline emerges when continuous integration of these three factions is used to meet
organizational, project, and team objectives and commitments.

Hosting Services

Hosting services are made up of the underlying infrastructure and platforms that both the system and
product under development operate upon. This includes the various cloud providers, on premises bare-
metal and virtualization, networks, and other SaaS that is utilized along with the management,
configuration, access control, ownership, and personnel involved.

Hosting Services Level
1

» The hosting services adequately support the scalability, reliability, regulatory, and security requirements
to operate, maintain, and build an organizations product.

» The hosting services provide compatibility with the testing frameworks and tools utilized throughout
system and product development lifecycles.

Hosting Services Level
2

« Logs from hosting services are aggregated, auditable, and analyzable.

» System transaction logs are available and immutable.

» Performance metrics can be visualized, analyzed for hardware, software, database and network
components.

* Role-based access control is utilized throughout.

« All information collected uses proper techniques to maintain privacy and sensitivity concerns, and can be
properly disposed of when necessary.

« All configuration items are identified and resources are planned and executed in order to maintain

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Name

Documentation

configuration integrity of the given item.
» Disaster recovery processes are documented and supported.

Hosting Services Level
3

» The system infrastructure is provisioned using laC and is automated.

« Captured metrics can generate alerts based off of defined values.

« Ability to automatically alert and communicate metrics associated with security risks of the underlying
infrastructure to stakeholders so they can manage risk and make decisions regarding risk and impact to
software applications.

» Automatic upgrading of operating system software, and supporting services.

Hosting Services Level
4

* Qualities such as performance, capacity, security, compliance and risk tolerance are continuously being
monitored using automated tools. Results from the automated tools are automatically reported to all
relevant stakeholders to ensure the quality of the automated process and to identify and track
improvements to quality attributes.

» System configuration and performance are continuously being monitored using automated tools to
identify and report all anomalies. Results from the automated tools are automatically reported to all
relevant stakeholders so they can manage risk and make decisions.

« Infrastructure is immutable and can be automatically replaced vs update in place.

Integration

Integration is the process of merging changes from multiple developers made to a single code base.
Integration can be made manually on a periodic basis, typically by a senior or lead engineer, or it can be
made continuously by automated processes as individual changes are made to the code base. In either
case the purpose of integration is to assemble a series of changes, merge and deconflict them, build the
product and ensure that it functions as intended and that no change broke the whole product, even if
those changes worked in isolation.

Integration Level 1

» Documented, repeatable, processes exist which may be manual, automated, or some combination of the
two

» Some individual processes (e.g., merging changes) may require expert subjective judgement

» Processes may require manual intervention between phases and/or to coordinate steps between
disparate systems

» Some human-human and human-process contact occurs outside the orchestration pipeline

« Process initiation is manual and irregular

Integration Level 2

» Most individual processes are scripted and repeatable

 Expert subjectivity has been removed from all processes by adopting processes with objective criteria for
success

 An orchestrated integration pipeline exists; however, it may not be fully automated

» Some human-human and human-process contact occurs outside the orchestration pipeline

« Integration process initiation is regular whether manual or automated

Integration Level 3

« All individual processes are scripted and fully automated

» An orchestrated integration pipeline controls all processes from start to finish

« All human-process contact occurs from within the context of the orchestration pipeline (e.g., approvals
captured in ticketing system, SCM, etc. and orchestration continues)

Integration Level 4

« The entire integration pipeline is fully automated requiring no manual intervention

* The entire integration pipeline runs in near real time as changes are committed to the code base

« Alerts, notifications and results of integration are sent to relevant engineers automatically

* A successfully integrated product is ready for delivery with no additional manual processes required

Monitor & Control

Monitor and Control involves continuously monitoring activities, communicating status, and taking
corrective action in order to proactively address issues and to consistently improve performance. More
mature projects automate as much of this as possible. Appropriate visibility enables timely corrective
action to be taken when performance deviates significantly from what was expected. A deviation is
significant, if when left unresolved, it precludes the project from meeting its objectives. Items that should
be monitored include cost, schedule, effort, commitments, risks, data, stakeholder involvement, corrective
action progress as well as task & work product attributes like size, complexity, weight, form, fit or function.

Monitor & Control
Level 1

« All supporting artifacts and implementation elements that require monitoring and control are identified
and documented.

* The level of monitor and control for each supporting artifact and implementation element is defined.

* A policy and plan for planning and performing the monitor and control capability is established and
maintained.

» The work products of the monitor and control capability are placed under appropriate levels of control.

Monitor & Control
Level 2

» The people performing or supporting the monitor and control capability are trained as needed.

» Automated monitor and control system(s) are in place for all identified supporting artifacts and
implementation elements.

» Automated collection of work products, measures, and measurement results are in place.

» Automated comparison of actual measurements to expected measurements is performed and deviations

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Name

Documentation

are quantified.
» Automated alerting when significant deviations occur.

Monitor & Control
Level 3

* The relevant stakeholders of the monitor and control capability are identified, involved, and are obtaining
the information they need to make decisions.

» Automated sharing of monitor and control information to relevant stakeholders.

« Stakeholders can tailor the visualizations of the information provided to meet their needs.

Monitor & Control
Level 4

» The monitor and control capability is itself subject to monitored and controlled and corrective action is
taken when necessary.

» Automated collection of monitor control capability work products, measures, measurement results and
improvement information including records of significant deviation, criteria for significant deviation, and
corrective action results are in place.

* Root causes of defects and other problems in the monitor and control capability are identified and
corrected.

» Monitor and control capability is itself subject to continuous improvement.

Planning & Tracking

Planning and Tracking is the set of practices used to define tasks and activities, along with the resources
needed to perform them, required to achieve an objective, or commitment, and track progress, or lack
thereof, towards achieving the given objective. It provides the mechanisms required to inform relevant
stakeholders where an effort currently is within the process and whether it is on track to provide the
expected outcomes. These mechanisms allow relevant stakeholders to determine what has been
accomplished and what adjustments or corrective actions need to occur to account for impediments and
other unforeseen issues. lIdeally, impediments and issues are proactively identified and addressed.
Practices include documenting activities and breaking them down into actionable work in which resources
can be assigned, capturing dependence, forecasting, mapping work to requirements, data collection,
tracking progress to commitments and reporting status. The planning and tracking capability of a system
matures as the automation and integration of associated practices increases.

Planning & Tracking
Level 1

Manual practices, with possible use of some rudimental tools, that collect and store information used to
track and report status and outputs from planning and tracking activities.

Planning & Tracking
Level 2

« Planning and tracking tools are used to define tasks and activities, along with the resources needed to
perform them, required to achieve an objective, or commitment, and track progress, or lack thereof,
towards achieving the given objective.

« The tools provide the ability to capture and associate planning and tracking metadata, such as
estimates, assumptions, prioritization, assignment, status, commitments, assets, association to
implementation elements and supporting artifacts, and agreements. Metadata may consist of mostly
manually collected information, with minimal automation.

» Automated visualization techniques are used to organize activities, understand dependencies,
coordinate multi-team efforts, and road mapping future commitments. The automated system is used to
relevant stakeholders to share project plans and status of current activities with relevant stakeholders.

Planning & Tracking
Level 3

* The planning and tracking tools are able to coordinate multiple value streams at the organizational level.
Planning and tracking activities are integrated to include both technical and non-technical activities, such
as quality assurance, documentation, testing and configuration management. Dependencies between
technical and non-technical activities can be visualized in order to coordinate efforts and identify issues.

» Metadata is used to support estimation, projections and what-if scenarios simulations. Organizations,
projects and teams are able customized metadata, and associated use, in order to meet relevant
stakeholder needs.

*» The planning and tracking tools are integrated with other tools in order to automatically collect metadata
associated with various value stream activities. This includes defect, issues, and non-compliance efforts
as they are automatically discovered and subsequently addressed and tracked to closure and asset
management.

» Automated stakeholder notification and status reporting, and associated visualizations, are used to notify
relevant stakeholders of changes to plan or commitments, status of current activities, deviations from
defined thresholds, and asset renewals and maintenance.

Planning & Tracking
Level 4

Data is used to:

« apply statistical analytical methods to planning and tracking practices in order to improve and optimize
the team’s, project’s, and organization’s ability to meet objectives and commitments

« provide objective quantitative status to relevant stakeholders

« automatically generate tasking and execute processes based on plan.

Quality Assurance

Quality Assurance is a set of independent activities (i.e., free from technical, managerial, and financial
influences, intentional or unintentional) designed to provide confidence to relevant stakeholders that the
DevSecOps processes and tools are appropriate for and produce products and services of suitable quality
for their intended purposes. It assumes that the organization's, team's, and project's policies and
procedures have been defined based on all relevant stakeholder needs which will result in a value stream
that consistently produces products and services that meet all relevant stakeholder expectations. The

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Name Documentation

quality assurance capability of a System matures as its ability to assess adherence to, and the adequacy
of the defined policies and procedures.

Quiality Assurance « All relevant stakeholders associated with the products and services associated with the product under
Level 1 development and the system that support it have been identified.

« All relevant stakeholder expectations and regulatory requirements are documented.

« Policies and procedures are developed and documented to describe how the DevSecOps processes
and tools are required to be used in order to meet all relevant stakeholder requirements.

* Documented policies and procedures may use traditional document centered approach and
dissemination may be a manual process.

« All current policies and procedure are readily available to all personnel

Quiality Assurance » Automated tools are used to maintain configuration control of policies and procedures

Level 2 « All relevant stakeholders are automatically notified of changes to policies and procedures

« Independent resources have been identified and a plan exists to review or audit activities that have been
defined within the documented policies and procedures

» DevSecOps processes and tools are periodically audited based on the plan to identify non-compliance
with policies and procedures and inadequacies regarding the value stream’s ability to consistently
produce products and services which meet all relevant stakeholders’ expectation and regulatory
requirements. The audits may be conducted manually, use automation, or a combination pf both.

« All identified non-compliance and inadequacies are independently documented, reported to relevant
stakeholders, and tracked to closure.

Quality Assurance » DevSecOps tools are configured to automatically enforce policies and procedures as a product under
Level 3 development progresses through the system.

» Automated processes are monitored by an independent resource in order to detect and report
noncompliance issues to all relevant stakeholders

» Non-compliance and inadequacy issues identified through automated, or manual, auditing are
documented and tracked to closure using an automated issue tracking system that is consistent with the
tools used for all other planning and tracking purposes, in order to integrate all efforts that must be
planned and tracked to completion.

« All quality assurance tools, such as origin and static analysis tools, are fully integrated into the system’s
pipeline and associated policies are automatically enforced as the product under development progresses
through the system.

» The System automatically monitors and enforces compliance to defined quality criteria as defined for
both the product under development and the system regarding the implementation of enhancements and

modifications.
Quality Assurance « All automated activities are continuously being audit for non-compliance issues through the use of
Level 4 automated tools, with regards to both the System and Product under development.

* Results from the automated auditing tools are automatically reported to all relevant stakeholders to
ensure the quality of the automated auditing process, in addition to tracking non-compliance issues to
resolution.

» The system shall automatically identify and track when the defined quality criteria has not been met or
the automated quality controls have been bypassed. All relevant stakeholders will be automatically
notified and the non-compliance issue will be tracked to closure.

Software Assurance Software Assurance is the level of confidence that software functions only as intended and is free from
vulnerabilities, either intentional or unintentionally designed or inserted as part of the software, throughout
the full software lifecycle. It consists of two independent, but interrelated, assertions:

1. The software functions only as intended. It exhibits only functionality intended by its design and does
not exhibit functionality not intended.

2. The software is free from vulnerabilities, whether intentionally or unintentionally present in the software,
including software incorporated into the final system.

It is the responsibility of the DevSecOps system to ensure that software that meets the organization's
threshold for software assurance is allowed to be deployed and operated.

Software Assurance « All relevant stakeholders and expectations with regards to the products and services associated with the
Level 1 product under development and the system that support it have been identified.

» System functional and non-functional requirements are documented.

» A comprehensive software bill of materials (SBOM) is compiled detailing all components that make up
the DevSecOps system.

« All relevant system constraints and regulatory requirements are documented.

« Software assurance processes and tools are inventoried and policies and procedures written setting out
how they are to be used to meet assurance requirements.

» Documented policies and procedures may use traditional document centered approach and
dissemination may be a manual process.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Name

Documentation

Software Assurance
Level 2

« Software assurance related DevSecOps metrics are defined and collected.

« Baseline and threshold levels for software assurance are established.

» Metrics are tracked over time and made available to all stakeholders as needed.

* Results of system functional testing are collected and periodically analyzed.

» Known vulnerabilities in all components that make up the DevSecOps system are periodically collected
and analyzed.

* Processes and polices are in place to periodically compare present metrics to past and make
adjustments as necessary.

* Processes and policies are in place and reviewed periodically review reports from all software assurance
products.

* Processes and policies are in place to identify when the level of software assurance implied by captured
metrics and reports exceeds the organization's threshold and to make adjustments as necessary.

Software Assurance
Level 3

» The organization has established a comprehensive risk analysis and management program.

« Software assurance metrics, reporting, and analysis are incorporated into the risk management process.
« Results of the risk management process are incorporated into software assurance policies and
procedures.

« Software assurance metrics and thresholds are periodically updated as a result of risk management
activities.

» The organization prioritizes software assurance tasks based on the level of risk to the organization.

Software Assurance
Level 4

« All software assurance tools, or as many as are feasible, are run continuously and reports disseminated
automatically to all relevant stakeholders.

« Software that fails to meet the organization's software assurance thresholds is automatically prevented
from being delivered or deployed.

» Automated procedures are in place to remediate software assurance issues found within the operating
DevSecOps system.

Solution Development

Solutions development determines the best way of satisfying the requirements to achieve an outcome. Its
goals are to: evaluate baseline requirements and alternative solutions to achieve them; select the
optimum solution; create a specification for the solution. Each development value stream develops one or
more solutions, which are products, services, or systems delivered to the customer, whether internal or
external to the Enterprise.

Solution Development
Level 1

« All development activities and tools have been identified and documented

« Provide tools to enable users to edit, compile, and review source code

« Provide the ability for developers to trace links between requirements, architectural elements, and
implementation elements

* Provide a repository for all requirements and associated metadata

* Provide manual processes for assuring security and privacy compliance

* Processes for transitioning between development components are defined and documented

« Individual processes are scripted and repeatable

» Processes may require manual intervention between phases and/or to coordinate steps

« Process initiation may be manual or automated

Solution Development
Level 2

« Transitions between implementation elements, and supporting artifacts, are automated, possibly
manually triggered

« Identify and document secure coding practices and development coding standards

* Provide traceability of software code origins to provide a SBOM and verify use of most recent third-party
components

Solution Development
Level 3

« Transitioning between development components are fully automated, either triggered on a periodic
schedule or automatically triggered based upon completion of another component’s activity

» Support determination of requirement feasibility and validation analysis

» Support model-based software engineering in order to provide continuous, iterative, and traceable
requirements model

» Support policy as code (e.g., STIG enforcement)

Solution Development
Level 4

« Transitioning between development components is performed continuously without human intervention
« Continuously audit code commits, with alerts to relevant stakeholders

« Enable “digital twin” modeling of the production system

» Support advanced analysis to ensure compliance

Verification &
Validation

Verification and validation are the set of activities and evidence that the system or application under
development has met the requirements and criteria that is expected. It includes the general realm of
testing, verifying, and validation activities and matures as automation, feedback, and integration with other
elements increase.

Verification &
Validation Level 1

« All relevant stakeholders with regards to the products and services associated with the product under
development and the system that support it have been identified.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Name

Documentation

« All testing cases, procedures, and their artifacts are can be configured, stored, and maintained for a
given instance of a product under development.
» The system and product under development supports the necessary technologies to execute tests.

Verification &
Validation Level 2

» Automated tools are used to trace tests to requirements.

» Automated tools are used to trace tests cases and artifacts to specific versions of a product under
development.

« Automated tools are used to configure, store, and execute tests.

» Test coverage reports are generated and captured for a specific instance of the system or product under
development.

« Tests are performed across multiple phases of the software lifecycle such as development, test, and
operations providing feedback continuously.

« Security patching is automatically tested, resulting in automated report generation and delivery.

» Both functional and non-function tests are manually or automatically executed.

Verification &
Validation Level 3

« Tests are executed automatically using a continuous integration technique.

» A MBSE approach is used to plan and execute testing of the system and product under development.

» The system and product under development automatically executes quality tests that either passes or
fails the appropriate component under test based on quality metrics for any change being made.
Appropriate monitoring of the system and product under development enforces the quality metrics.

» The system provides the necessary environment to perform advanced security testing such as Fuzz, and
Penetration testing activities.

The PIM defines DevSecOps pipeline capability as a socio-technical system composed of both software
tools and processes. As the capability matures it seamlessly integrates three traditional factions that
sometimes have opposing interests: development values features, security values defensibility, and
operations values stability. A DevSecOps pipeline emerges when continuous integration of these three
factions is used to meet organizational, project, and team objectives and commitments. Figure 9:
DevSecOps Pipeline shows another view of the DevSecOps pipeline and the iterative processes and
interactions it must support. Figure 59: Capabilities to Requirements Relationship Matrix provides a
summary mapping of capabilities to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Figure 9: DevSecOps Pipeline
141 Getting Started

When using the model, it is important to start with Table 3: Glossary. The terms defined in the Glossary
have specific definitions within the context of the model that go beyond the standard English definition of
the word or phrase. Two key terms used throughout the model are “system” and “product under
development.” Once familiar with the terms in the glossary, the next step is to consider your use case for
using the model. While there are several potential uses of the model, two of the most common are: (1) the
creation of a new DevSecOps pipeline in support of a new product or in modernizing an existing product,
and (2) evaluating an existing DevSecOps pipeline for areas of improvement. In either case it is important
to first understand the vision of the product to be built and maintained as well as any regulatory or
environmental constraints that will be put on the DevSecOps pipeline instantiation, as this will drive many
of your decisions.

In use case 1, the software lifecycle view of the requirements, as shown in Figure 6: DevSecOps System
Requirements, along with the maturity ratings will probably best suit your initial needs. Start with the
maturity level 1 requirements. In general, maturity level 1 is focused on the basic engineering, security,
and operational practices needed to start producing a product, even if done with minimal automation and
integrated tooling (i.e., relying on manual processes). Level 2 is about actually being able to claim you are
doing DevSecOps, as it is when automation and integrated tools and associated processes really start to
come into play. With that said, it is important not to skip level 1 and go straight to level 2 or any higher
level. Level 1 allows you to understand what you need, and it will guide your tool selection, configuration,
automation, and integration decisions going forward. Remember, most organizations don’t start by fully
automating everything. Instead, the automation of processes is realized over time. The model’s DevSecOps
system requirements perspective organizes the requirements in a way that instinctively maps them to a

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



product lifecycle, thus forming a natural grouping of concerns based on traditional roles within an
organization and the tools used in supporting associated activities.

For use case 2, the focus is on improving an existing DevSecOps pipeline which means improving existing
capabilities and identifying missing or deficient capabilities. In this case, the DevSecOps Capabilities view
as shown in Figure 8: DevSecOps Capabilities, along with the capability levels, will probably best suit
your needs. This will allow you to look holistically at the pipeline and determine which lower-level
capabilities are lacking (i.e., which are the weakest link) and potentially holding back the higher-level
capability in terms of throughput, quality, security, and other quality attributes.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



2 Dictionaries

2.1 DevSecOps Maturity Levels

Table 2: DevSecOps Maturity Levels

Term

Documentation

Maturity Level 1

Performed Basic Practices: This represents the minimum set of engineering, security, and operational
practices that is required to begin supporting a product under development, even if only performed in an
ad-hoc manner with minimal automation, documentation, or process maturity. This level is focused on
minimal development, security and operational hygiene.

Maturity Level 2

Documented/Automated Intermediate Practices: In addition to meeting the level 1 practices. This level
represents the transition from manual ad-hoc practices to the automated and consistent execution of
defined processes. This set of practices represents the next evolution the maturity of the product under
development’s pipeline by providing the capability needed to automate the practices that are most often
executed or produce the most unpredictable results. These practices include defining process that enable
individuals to perform activities in a repeatable manner.

Maturity Level 3

Managed Pipeline Execution: In addition to meeting the level 1 and 2 practices. This level focuses on
consistently meeting the information needs of all relevant stakeholders associated with the product under
development so that they can make informed decisions as work items progress through a defined
process.

Maturity Level 4

Proactive Reviewing and Optimizing DevSecOps: In addition to meeting the level 1-3 practices. This level
is focused on reviewing the effectiveness of the system so that corrective actions are taken, when
necessary, as well as quantitively improving the system’s performance as it relates to the consistent
development and operation of the product under development.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



2.2 Glossary

Table 3: Glossary

Term

Description

Chain of Custody

Everything that happens in the system as it relates to a configuration items (ClI). A record of chain of
custody provides evidence of what is in the ClI, how it has been changed or modified, by whom, and when
in sufficient details that the CI could be recreated. The evidence is immutable and provides a sufficient
level of detall to satisfy audit and regulatory requirements.

Code Coverage

code coverage is a measure used to describe the degree to which the source code of a program is
executed when a particular test suite runs [Wikipedia 2021].

Common
Vulnerabilities and
Exposures (CVE)

Identifies, defines, and categorizes publicly disclosed cybersecurity vulnerabilities [The MITRE
Corporation 2021a].

Common Weakness
Enumeration (CWE)

Common Weakness Enumeration (CWE) is a community-developed list of software and hardware
weakness types. It serves as a common language, a measuring stick for security tools, and as a baseline
for weakness identification, mitigation, and prevention efforts [The MITRE Corporation 2021b].

Continuous Integration

Integration is the process of merging changes from multiple developers made to a single code base.
Continuous Integration is the process of merging changes from multiple developers, conducting
integration tests, staging the system for acceptance testing, and potentially staging the product for final
delivery, in an automated fashion in real or near real time as changes are made.

DevSecOps

A cultural and engineering practice that breaks down barriers and opens collaboration between
development, security, and operations organizations using automation to focus on rapid, frequent delivery
of secure infrastructure and software to production. It encompasses intake to release of software and
manages those flows predictably, transparently, and with minimal human intervention/effort [U.S. General
Services Administration 2021].

Implementation
Elements

Physical or digital components of the realized system or product under development used to achieve a
capability or set of capabilities. Elements of the implementation are distinct from supporting artifacts and
elements, such as architecture, design, test, analysis, requirements, reports, etc.

ITSM service desk

The Information Technology Service Management (ITSM) service desk is the single point of contact
between the service provider and the service consumer or user.

Kanban board

A Kanban board is used to manage work at a personal, team or organization level. They visually depict
work at various stages of a process using cards to represent work items and columns to represent each
stage of the process. Cards are moved from left to right to show progress and to help coordinate teams
performing the work. A Kanban board may be divided into horizontal "swimlanes" representing different
kinds of work or different individuals, teams or organizations performing the work [Wikipedia 2021d].

Knowledge The process of creating, sharing, using and managing the knowledge and information of an organization
Management [Girard 2015].
MBSE Model-based systems engineering (MBSE) is a formalized methodology that is used to support the

requirements, design, analysis, verification, and validation associated with the development of complex
systems [Shevchenko 2020]

Minimally Viable
Capability Release

The initial set of features suitable to be fielded to an operational environment that provides value to the
end user in a rapid time line. The minimally viable capability release (MVCR) delivers initial end user
capabilities to enhance some mission outcomes. The MVCR is analogous to a minimum marketable
product [U.S. Department of Defense 2020].

Minimum Viable
Product

An early version of the software to deliver or field basic capabilities to users to evaluate and provide
feedback on. Insights from minimum viable products (MVPs) help shape scope, requirements, and design
[U.S. Department of Defense 2020].

Monitor and Control

Monitoring and Control is the continuous monitoring of project activities and the enactment of corrective
action(s). Measures are used to determine progress by comparing current status to expected status or
behavior. When the project deviates significantly from what was expected, appropriate corrective actions
are taken. Moreover, learning and innovation occur and improvements are made from leveraging
knowledge learned from continuous feedback.

Orchestration System

A tool or collection of tools used to automatically coordinate and execute many tasks together in order to
streamline and optimize frequent, repeatable processes, with an expected level of assurance.

Organization

An administrative structure in which people collectively manage one or more projects or work groups as a
whole, share a senior manager, and operate under the same policies [Chrissis 2011]

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Term

Description

Product Under
Development

For the scope of this model, product under development is defined as the specialized product,
component, application, or bundled applications being built and/or maintained by the system in order to
meet the needs of a specific end use.

Project

For the scope of this model, project applies broadly to any managed set of interrelated activities and
resources, including people, that delivers one or more products or services to a customer or end user
[Chrissis 2011]

Quality Assurance

A strategic and systematic approach to monitoring the engineering tools, practices, and processes used to
ensure the quality of a product under development in order to assure relevant stakeholders that the
product under development will fulfill relevant stakeholders’ expectations and regulatory requirements.
Expectations are ideally explicitly stated through service level agreements, requirements, goals, etc., and
not simply implied.

Relevant Stakeholders

A Stakeholder is a group or individual that is affected by or is in some way accountable for the outcome of
an undertaking. A relevant stakeholder is a stakeholder that is identified for involvement in specific
activities and is included in a plan [Chrissis 2011]. It includes technical staff of various domains,
operational users and representatives, and business units such as legal, contracts, finance, compliance,
privacy, and security. The group or individual can be internal or external to the organization.

Requirements

1) A condition or capability needed by a stakeholder to solve a problem or achieve an objective. 2) A
condition or capability that must be met or possessed by a solution or solution component to satisfy a
contract, standard, specification or other formally imposed documents. 3) A documented representation of
a condition or capability as in (1) or (2).

Scrum Board

A Scrum board is a tool used to visually display current project work, specifically work that has been taken
into the current sprint. At a high level, it shows what has not been started, what is currently being worked
on, and what has been completed. Virtual boards use software designed to look like the physical boards,
but they are viewed and changed electronically. Virtual board layouts can be customized based on the
target audience (i.e. the people doing the work or relevant stakeholders who want to know the progress of
the effort) [Study.com 2020].

Security and Privacy
Engineering Principles

A set of principles defined in the System and Services Acquisition (SA-8) control family [Joint Task Force
Transformation Initiative Interagency Working Group 2020] that are used in the specification, design,
development, implementation, and modification of the system, product under development, and
associated sub-components.

Software Assurance

Software Assurance is the practice of ensuring that a piece of software, or complete software-centric
system, functions only as intended and is free of known vulnerabilities. It is a holistic practice that
incorporates software requirements, architecture, testing, vulnerability management, risk management
and operational policies and procedures to reduce, and ideally eliminate, risk to the organization's mission
as a result of software defects.

System

For the scope of this model, system is defined as the set of people, processes, tools and technology
working together as part of an interconnected DevSecOps network designed to collect, process, store,
evaluate, deliver, deploy, and monitor a product under development and all associated artifacts.

Team

A group of people with complementary skills and expertise who work together to accomplish specified
objectives [Chrissis 2011]

Test Artifacts

Tangible by-products that are generated automatically, manually, or a combination of both, while planning,
performing, and reporting on testing activities in order to (1) verify and validate the product under
development, (2) monitor and verify the DevSecOps process, and (3) establish transparency between
members of a project team and all relevant stakeholders. Thus, all by-products must contain accurate
information and details.

Trace

A logical link that specifies a relationship between two or more entities.

Traceability

The ability to determine a set of logical links between two or more entities across the development
lifecycle.

Value Streams

Value streams represent the series of steps that an organization uses to implement solutions that provide
a continuous flow of value to a customer [Scaled Agile, Inc. 2021].

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3 System Requirements

3.1 1 Governance
3.1.1 Gov_1 Track Changes Associated to Requirements

The system shall be able to track and associate any changes to the system or product under development to
a given requirement, either functional or non-functional, and, if applicable, change request (CR) through
the development lifecycle.

req [requirement] Track Changes Associated to Requirements [ fg Track Changes Associated to Reguirements ]J

wrequirements
wMaturity Level 2»

Track Changes Associated «Capability's (E:'I
to Requirements atraces Configuration Management
- 5 = - — — —
Id="Gov_1

Text = "The system shall be

able to track and associate

any changes to the system
| w«traces

or product under

. wdllocates wTerms
development to a given P =

requirement, either
functional or non-functional,
and, if applicable, change
request (CR) through the
development lifecycle”

Maturity Level 2

Figure 10: Track Changes Associated to Requirements
3.1.2 Gov_2 Track progress with Scrum/Kanban Boards

The system shall be able to track requirements and tasks using either a Scrum board or a Kanban board.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Figure 11: Track Progress with Scrum/Kanban Boards
Documentation:

Depending on the selected Agile Framework, the product under development will use either Scrum,
Kanban, or a combination of both for project planning and tracking purposes.

In general, the system should support the Agile/DevSecOps concept of breaking down activities and tasks
into small enough efforts to allow for fast iteration and adjustment for unforeseen events as goals and
objectives change based on knowledge gained through experience and relevant stakeholder feedback.

3.1.2.1  Gov_2.1 Provide filtered views of multiple Scrum/Kanban boards

The system shall be able to support multiple Scrum board(s) and Kanban board(s) simultaneously using
metadata filtering to provide different views of the program status.

Documentation:

Depending on the size and makeup of the software and operation engineering staff supporting the product
under development, it could have multiple teams and value streams. All teams and value streams needing
custom Scrum/Kanban boards in order to plan and track efforts at the individual, team, and organizational
levels.

3.1.2.2 Gov_2.2 Road Mapping

The system shall be able to support future and currently planned activities in order to allow teams to
visualize future work and associated projections.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Road mapping can be used to support future projections, identifying enablers and other long lead time
issues that need to be addressed in order to achieve projections, release planning, and "what-if" scenarios.

3.1.2.3  Gov_2.3 Capture Work
The system shall be able to capture and estimate work elements.
Documentation:

A dynamic plan may need to add work elements, remove work elements, reorder existing work elements,
or re-estimate existing work elements.

3.1.2.3.1 Gov_2.3.1 Remove Work

The system shall be able to remove work elements.

3.1.2.3.2 Gov_2.3.2 Add Work

The system shall be able to add and estimate new work elements.
3.1.24 Gov_2.4 Team and Organizational Dependencies

The system shall be able to associate and display dependencies between team(s) and other organization
abstractions.

Documentation:

Due to the tight integration of both practices and tools between team(s) and other organizations in
DevSecOps, this practice facilitates collaboration efforts as teams perform their work.

3.1.24.1  Gov_2.4.1 Subordinate Plans

The system shall be able to establish and maintain tasks associated with "non-coding" activities such as
quality assurance, documentation, testing, and configuration management.

3.1.24.2 Gov_2.4.2 Plan Transparency

The system shall continuously share plans with relevant stakeholders in order to enable analysis, problem
detection, and issue resolution, and to eliminate information silos.

3.13 Gov_3 Task Creation

The system shall be able to capture tasks for doing work.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



[roa Foaveveeee ok oo g 7o Crowen | |

D
adotarertiass N
DIGRnizaigns, SO, 1eoms, 8d A0VUSIN ey strcurerien
wtw ite an .

0 Lo Soram end SAfe teame work
WOy (egETeraTN| AN ndvcade
SO TakY. ¥ M 1a5hs ayssciated wid &
ey A Completed. Ihee B Maied

t
Neve I™wren! Zats needa and remare e a0ty Iz
CHSIYITE M iy esa00aisd W) Iastng and
ssaurenaals Fol sxangie sore wil mant 1 caglare

waimwtes 0 aisry ports whle st Wl want i3 Cagtae -u‘uﬁ"l”:f:‘.‘- - —iacTeptance crisra and Sefnton of Sone
AANTEINS I AN Rours. Thiy mey a0 Wt 90 capture o~ AV b et

w00 The TIAA Wl AWEGRE 13, 300 Commests | Vamk Crastion =

Anaccund wit the work, sic For raguremets e

#2An0iey OF retadats ECkide WO regIeRted T
CAPLETRGLISTERE, WhO DWNS Ihe RO aTerRL WhO
ehbialestonted the Soqurmmarl e iequrevast wal

Teaf = “The systam shak te
|zhe %) capbaw Lages bl

setatec wiiel rersee of the s2%mare Mo regarene {0Sng wer.
prve—— a8 Vsl garented »
elinturty Lavel 2a Y
| Contimces ivingration lapraces
19= "Dev 6 1" ] ‘
|Teat = “TRe system shak \
peoeide & Comms \ |
egration Capadiy et i E | wtracen .
- regurEmerts e anequIETerts
WSQrRa Wih Ma oy RT3 = ~ w _Depards o Wty Leve > | bty Level
Cosfpur3ton Masagament e L Task Metadura | Depeadency Travking
:‘“’"‘"‘:":‘:"3 e = AgeCoAr { 0= "Cov 32
‘"’;'2", N Taet « 'The spstam ana e [s795ts Mk‘.) Taxt « “The ystem shall be
‘u“ abfe 1o capture metadata R
aszociaied wih 3 gven | -
task” ! * ="
* m |
latraces
| cagreTests
| alutarty Lavei 2o
\ | Negquirement Change
| Notitcanon
i ! 4 4= Reg 11311
aregarrTets areqareomT, =
wegurteets sty Level > ALy Leve 2y ‘ ::: 0 n;’;”mmm m:'dm
diwhrty Lavel 3> Requeemans W w Task Assignment Deoeptaon, - = Chsnges maoe 10
Manrng and Tracking Plasning and Tracking e Cov 317 as n-
| Mapsing 10 Requrements (lB=Gw 3ty pARTN ALE TRQUIUTEnts 25 Mey retale
g S = 3 Tael = The 5y stom shal e 12 aasigned tacks "
ld="Req L1 Tt = “Tha by slers 20l 08 3tde 1o asc0oate 3 gven
| Text =" The sy sdem sl be abée to aasocata 232K 15 e artty
Atke 13 ssscciate _{raquiamants 1> mutpe respTTShe 01 partarmng R §
|1eGurenwels 10 Multpse ©  |layers of a progrante e taw -
(g ers of & progrants plarning and tracking N 1R CUme TG
planNg and iaoung suchee ™ N 1S Cose. (he erily Couk)
|gtructare " Y. | r be an bdhvetasl orgeseaten
B — traces | project, Sewr wic, ot m
\ dretes comEmater 3f erihes tased
N\ | 0 neads 1 plararg
e e bt trachmg wnd ovarnaght
| N\
I
ooy | e
cvmasTerts
5 "-&"L':f"'"' aVatarty Lovel 1a Degendng o0 INe 0 Tion
"""-"-._ - _ | Mapging Requiremens 1o lay et 300 Agils Mamework: 3
mlmnmn Tasas 1equIsment could 20 25E00Med
kel g =~ 11 to mutliple crpancatona
[ideReq 1127 =G AL 1Y

uckres For saampie. f uang
SAFe. an epic coud Se
FESOCHAY wih ULiph Ve
reams O & featrs coud be
RAESOOANA WIN 3 SNGK SO0PrAM
Incramant (F1), but ;e
Implomentaton of e feature
aosses between mulicle S20e
workng wihin the F1

I Teak = “Tha ayaenm shak be
[z 50 asseciate fasiks o
[rogurements. *

| Tent = "The system shal be
|abie 1o associate tases 3
reqursmests *

Figure 12: Task Creation
Documentation:

In both Scrum and SAFe, teams work stories (requirements) and individuals work tasks. If all tasks

associated with a story are completed, then the stories' acceptance criteria and definition of done should be
met.

3.1.3.1  Gov_3.1 Task Metadata
The system shall be able to capture metadata associated with a given task.
Documentation:

Organizations, projects, teams, and individuals working within the development and operational
environments have different data needs and require the ability to customize the metadata associated with
tasking and requirements. For example, some will want to capture estimates in story points while other
will want to capture estimates in ideal hours. They may also want to capture who the task was assigned to,

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




add comments associated with the work, etc. For requirements, examples of metadata include who
requested the capability/requirement, who owns the requirement, who validated/tested the requirement, if
the requirement was satisfied, what version of the software the requirement was first implemented in.

3.1.3.1.1 Gov_3.1.1 Requirements Mapping to Planning and Tracking

The system shall be able to associate requirements to multiple layers of a program’s planning and tracking
structure.

Documentation:

Depending on the abstraction layer and Agile framework, a requirement could be associated to multiple
organizational structures. For example, if using SAFe, an epic could be associated with multiple value
streams. Or a feature could be associated with a single program increment (PI), but the implementation of
the feature crosses between multiple teams working within the PI.

313111 Gov_3.1.1.1 Mapping Requirements to Tasks

The system shall be able to associate tasks to requirements.

3.1.3.1.2 Gov_3.1.2 Task Assignment

The system shall be able to associate a given task to the entity responsible for performing the task.
Documentation:

In this case, the entity could be an individual, organization, project, team, etc., or a combination of entities
based on needs for planning, tracking, and oversight.

3.1.3.2  Gov_3.2 Dependency Tracking
The system shall be able to associate and display dependency between tasks.
3.14 Gov_4 Metrics

The system shall be able to automatically collect, correlate and display metrics associated with
productivity, reliability, quality, security, and operations of both the system and the product under
development and associated technologies, approaches, and methods, and models used throughout the
product's life in order to achieve an organization's objectives and business needs.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



[ Dok v ) owsa 1 |

< werva.
R s e ozt
S o M

TR TF;
Turk » “The spsu s tw

» RTINS v
[ [P JTRERIE IRy 0O Jove—,
IR, -— sanccisiet rebes il s
Tioo = The ey k- b VTt TeA e Tl .
et rusaie brve of \ OV I TRt G T
123 -_— » i r -
T Bt 1 1 8 ‘ = T el T
ivh & whn etwrcoen . | S T e wou s rowd W
crTwaangt ten [ raoney w-::" :"
“auace P
-1 Lrcwcn L rusates achwase
Tool = “Tha Wi bt Vs tutws e
SN WECTER A (A “—'7"‘ -l Vel v
CAMEE WE I DL LR L e R
TWT MO E) AT Tt hes
ooy Lo PR reac |
e ] sty e - -
e i PR D Ve o o 30 ’
e i e — e [ o i |
T (308 wd 20082 WV He G X ‘
e b onthn e *Tart = The ipder st
ot s TR it s P 0 1) vt so)
t.:;::‘-"w onel Fengmd pesrsienion [ A Wl
- » W o 1) Wiy sgEE e puet @l vt
.'":_-’;’“"‘ = A B L ATV har Teamosrart R peesI oy
e - B1Tec0ta pe s =g |- -
PPN - e e e T
B et et = ST, ¢ > @ i {r o v
PNV e ) e e
. T | P 1 ¢
b e
e e
b 0 e e et 1
X - 0 v
- { ot v 1 Ty e
.... -
sy
. i V)
- . by Bmebbie Veree
o —— vy —— L | v rr—— \ -
N L ;‘m'*"'"“.._.' AT L e e P ar G Ar
| Beeogewet rogres - . e - it Covetuge Metrcn CrTmons DL Wy Sec vy Watins Tert « The srawr srad ou
MG ar T 1 MG sy MaGm as W Tm Ay :"""::'::‘
: { e e 1 po= it - - er—
Tioh o T dpstom s b | TS e | THLS TR e b | T« T e 10+ TR ey i e S e Wy L L
AT LT %) M PRVRTEE - AR TR e (e IWReT e Aas b BN CHNRGeA MY
TR § TeaLres P *': G LR 238 MRCCIMME rRalEng w3 Wt 200 e B Syeaere ki ]
a0 e wan0 10 anTeez e '::" > Wt b perterd e ] e wosict andw - MemUAr
s 1 e bwen s P 1300 TE Ty Ay etz S o e e e s e, QT T e s
e o erte e - oo o Pw 0N - Poriaty v A A P s oo SHecel
A gre y L L e Y e : } " S ey X -~

“ Y Twewr pre.ce ewt
............ — \ nonal — vy R A &
e 4 ey
S e banmary, wt |

S o : P
et | Ao T
e L e, Y et peed
ey Tuv e b de;
(o a2y wates
e e e e
N e L e
e e x
e —
! R b 2e
- e eening Rl
[ “ e
e Rt Ay v o
Tt ¢ “Tha srmure. snst 30 [,
capuow of Wby - MY Un ALY
- - .
s o it o s e e
. e 414 Fanh o et
[ 1 I o 2
(e, e
S sk Lvvw 4o d e s
ey et e ¥ Tout & The ayutve s e | e
Potngnt Towmgmersans U -+ st md cutrn
s T s 4 S Ssied doiy ]
M= Dw ¥ AL - B i o .
Ton = The smmen et b s Wity Lot o e Wb
PV P4 o et Anterasted Bocmame WV Y, #¥)
[y eehi priioniny "‘"'7: :’-w“‘, what o B 270 el e
s 30 2 I [T = - Towt » "o ey st 5 HEeTE I prac eaw
atatien % % Aoy e Sratmrets hes

Figure 13: Metrics

Documentation:

DevSecOps metrics should provide on-demand and transparent visibility of the system and product under
development statuses across their respective lifecycles. A good metrics program should be able to identify
and effectively remove waste from the process and prevent its recurrence. It also forms the basis of
effective risk management by helping to ensure that the organization and project is performing within
established standards, constraints, and requirements.

Automation is needed in order to avoid manual collection, aggregation, and reporting.
3.14.1 Gov_4.1 Development Progress

The system shall be able to collect and display quantitative measures that can be used to assess the status
of the software development progress and associated quality.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



For example: requirements volatility, schedule performance, defect density, changes to size estimates, etc.
3.1.4.2 Gov_4.2 Requirements Metrics

The system shall be able to provide quantitative insight into the requirements process

Documentation:

For example: Using data from tracking requirements changes, providing change activity, volatility,
implemented, trends, and so forth. Using requirements and development activity to provide requirements
status through development.

3.1.4.3 Gov_4.3 Code Coverage Metrics

The system shall be able to provide code coverage data associated with each test performed against a
specific instance or version of the system or product under development.

3.1.4.4  Gov_4.4 Continuous Data Monitoring

The system shall perform continuous data monitoring and alert relevant stakeholders when data falls
outside of set thresholds or statically established normal behaviors.

3.1.45 Gov_4.5 Security Metrics

The system shall be able to continuous measure and monitor the System's and the product under
development's security performance

3.1.4.6 Gov_4.6 Stakeholder Metrics

The system shall be able to provide relevant stakeholders with indicators and other measures needed to
make early development and real-time operational decisions as they relate to defined objectives.

Documentation:

Relevant stakeholders should be able to readily implement and define measurements to support problem
analysis, progress tracking, and process improvement as it relates to their given role and responsibilities.
For example, they should be able to determine the status of their functional or non-functional requirements
as they relate to risk.

3.15 Gov_5 Knowledge Management

The system shall provide integrated knowledge management

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Figure 14: Knowledge Management
Documentation:

The information stored in knowledge management should be visible, accessible, and shareable with all
relevant stakeholders across an organization. It should empower relevant stakeholders to effectively
collaborate in the development and sharing of knowledge in an easily consumable way so that the
knowledge can be quickly acted upon. This knowledge can be used as a basis for retrospectives and
subsequent improvement activities.

3.15.1  Gov_5.1 Planning and Tracking Documentation

The system shall be able to capture and track outputs from organizationally-defined planning and tracking
ceremonies.

Documentation:

Depending on the selected Agile framework, different ceremonies are prescribed and practiced. For
example, if using Scrum, the following ceremonies are normally practiced, each with different objectives
and outputs: release planning, sprint planning, daily scrum meeting, sprint review, and sprint retrospective.

In addition to ceremonies associated with various Agile frameworks, there are engineering ceremonies
such as peer reviews and other technical reviews that have respective objectives and outputs.

3.15.11 Gov_5.1.1 Commitments

The system shall be capable of documenting negotiated commitments between relevant stakeholders in the
project plan.

315111 Gov_5.1.1.1 External Commitments
The system shall be capable of reporting and tracking commitments made to external entities.
315112 Gov_5.1.1.2 Changes to Commitments

The system shall be capable of capturing changes to commitments and the agreement of affected
stakeholders to the modified commitment.

3.15.1.2 Gov_5.1.2 Assumptions and Estimates

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



The system shall be able to record planning assumptions and estimates.
3.15.1.3 Gov_5.1.3 Stakeholder Review

The system shall be able to share project plans and the status of current activities with all relevant
stakeholders in a transparent and continuous way.

Documentation:
This should include periodic project plan reviews with senior management.

In order to achieve fast and continuous iterations of the product under development, stakeholder reviews
must focus on dependencies, impediments, and defects as they arise.

315131 Gov_5.1.3.1 Requirements Activities

The system shall be able to provide status updates regarding activities related to managing requirements to
relevant stakeholders.

Documentation:
This should include periodic requirements management activities reviews with senior management.
3.1.51.32 Gov_5.1.3.2 Test Activities

The system shall be able to provide status updates regarding activities related to testing to relevant
stakeholders.

3.1.51.33 Gov_5.1.3.3 Quality Assurance and Monitoring Activities

The system shall be able to provide status updates regarding activities related to quality assurance and
system assurance to relevant stakeholders.

3.151.34 Gov_5.1.3.4 Configuration Management Activities
The system shall be able to provide status updates regarding activities related to configuration items.
Documentation:

This usually includes standard reports that document configuration management activities and the content
of software baselines. Activities include baseline audits of configuration items to verify that they conform
to the documentation that defines them and the tracking of change requests and problem reports for all
configuration items (i.e., changes and problems are recorded, analyzed, reviewed, approved, and tracked to
closure).

3.1.5.1.35 Gov_5.1.3.5 Agreement Level Activities
The system shall be able to provide status updates regarding service and operational level agreements.
3.1.5.1.36 Gov_5.1.3.6 Risk Activities

The system shall be able to provide status updates regarding changes to existing risks and the creation of
new risks to relevant stakeholders.

Documentation:

Ideally, risk management is a dynamic process where risk identification, analysis, treatment, and
monitoring are automated.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Where applicable, the system should be able to put quantitative thresholds in place that can automatically
trigger risk mitigation actions.

3.15.1.4 Gov_5.1.4 Change Management of Project Plan

The system shall be able to manage changes to the project plan.

Documentation:

This implies some sort of version control or the ability to undo or revert changes to the current plan.
3.1.5.2 Gov_5.2 Documented Policies and Procedures

The system shall be able to document and disseminate policies and procedures associated with various
teams and other organizational abstractions.

Documentation:

Documented policies and procedures form the basis of quality assurance activities. Without documented
policies and procedures there is no basis for audits.

3.1.5.3 Gov_5.3 Software Lifecycle
The system shall be able to document and disseminate the defined software lifecycle with defined stages.
3.1.5.4  Gov_5.4 Quality Assurance

The system shall be capable of supporting an independent assurance function to review or audit activities
and work products associated with documented policies and procedures.

Documentation:

Quality assurance ensures activities are done based on policies and procedures in accordance with a plan.
Its goal is to provide unbiased evidence that allows relevant stakeholders to make informed decisions as
artifacts or implementation elements flow through the DevSecOps pipeline. Quality assurance activities
can help identify unsatisfactory products or services early in the lifecycle, as well as critical information

gaps.

Quality assurance will need to adopt and utilize automation wherever feasible in order to keep pace with
the DevSecOps pipeline and provide timely feedback that is relevant within development and operational
lifecycles. Automated quality gates and feedback loops help identify process irregularities which can lead
to product and service defects.

3.1.5.4.1 Gov_5.4.1 Audit of Project Tracking and Oversight

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with project tracking and oversight functions.

3.1.5.4.2 Gov_5.4.2 Audit of Requirements Management

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with managing requirements.

3.1.5.4.3 Gov_5.4.3 Audit of Development

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with development.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.1.5.44  Gov_5.4.4 Audit of Testing

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with testing.

3.1.5.45 Gov_5.4.5 Audit of Software Assurance

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with assuring both the system and product under development.

3.1.5.46  Gov_5.4.6 Audit of Risk Management

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with risk management activities.

Documentation:

Quality assurance activities include (1) reviewing the implementation of mitigation strategies to associated
risks and evaluating their effectiveness, (2) validating that the automated monitoring and execution
system(s) are working and that relevant stakeholders will be notified when risk thresholds are going to be
exceeded, and (3) ensuring risks are properly being identified, analyzed, documented, communicated, and
tracked.

3.1.5.47 Gov_5.4.7 Audit of Measurement Strategy

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with the measurement strategy and associated metrics, information
management, and reporting processes.

Documentation:

Quality assurance should be reviewing the measurement strategy to ensure that the strategy aligns process
metrics and measures over functional, non-functional, and acceptance criteria as evidence of progress and
to assess the readiness of deliverables and the organization's ability to meet service and organizational
level agreements.

3.1.5.4.8 Gov_5.4.8 Audit of Operations

The system shall be capable of supporting an independent quality assurance review or audit of activities
and work products associated with the operational performance of both the system and product under
development.

Documentation:

In general, quality assurance activities in production environments should be performed non-obtrusively.
This is achieved through the collection of data regarding user feedback, product performance and
supporting infrastructure in such a way that supports continuous evaluation of the production environment
with the goal of promoting the continuous and uninterrupted operation of the system or product under
development.

3.1.5.5 Gov_5.5 Service and Operational Level Agreements

The system shall be able to capture and maintain service level agreements and operational level
agreements between acquirers and suppliers.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



An operational level agreement should exist between the system and product under development teams in
order to document roles and responsibilities between the two parties, as well as the agreed to services
needed to meet the organization's overall service level agreements with relevant stakeholders associated
with the product under development.

3.155.1 Gov_5.5.1 Maintenance Agreements

The system shall be able to capture and track the status of software and hardware licensing and
maintenance agreement information.

3.15,5.2 Gov_5.5.2 Agreement Requirements and Acceptance

The system shall be able to capture functional and non-functional requirements, and acceptance criteria of
the agreed to services.

3.1.5.6  Gov_5.6 Roles and Responsibilities

The system shall be able to capture defined roles, responsibilities, accountabilities, and authorities as they
relate to both the system and product under development lifecycles.

3.15.7 Gov_5.7 Decision Points

The system shall be able to track work items has the progress through a defined work flow and inject
decision points throughout the work flow as required by the relevant stakeholders.

3.15.7.1 Gov_5.7.1 Automated Decisions
The system shall be able to automate routine decisions based on quantitative date and defined thresholds.
Documentation:

Decision points and preferred course of actions exist throughout development and operational lifecycles. In
order to allow for a continuous flow of value through the DevSecOps pipeline, the system must enable
timely and effective decision-making through automation. This requires relevant stakeholders to pre-
authorize decisions based on well-defined thresholds. For example, code may automatically progress
through to integration testing once it passes all unit tests, or approved requirements may automatically
progress to the design phase once all tasking in a plan is completed.

Automated decisions also support risk reduction activities, by reducing the risk of manual error. It can also
be used to automatically trigger mitigation strategies when defined thresholds are met.

3.157.11 Gov_5.7.1.1 Automated Decision Monitoring

The system shall capture data associated with automated decisions made and make data readily available to
relevant stakeholders in order for relevant stakeholders to confirm correct actions are being taken as
anticipated.

3.1.5.7.2  Gov_5.7.2 Decision Point Notifications

The system shall notify relevant stakeholders when a work item is waiting for a decision to be made prior
to continuing through the defined work flow.

Documentation:

In the case automated decision making, notifications are needed when a work items does not meet the
defined criteria and requires human intervention.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.15.7.3 Gov_5.7.3 Decision Point Data

The system shall collect, store, and share data required to enable a decision to be made by relevant
stakeholders.

3.15.7.4  Gov_5.7.4 Decision Logging
The system shall record, trace, and report decisions made in real time.
Documentation:

This should include items such as when the decisions were made. Who or what made the decision? What
data was used in the decision-making process?

Logs should be protected in order to adhere to confidentiality, integrity, and availability security principles.
3.1.5.8 Gov_5.8 Measurement Strategy

The system shall be able to document and disseminate the organization, project and team measurement
strategy.

Documentation:

A measurement strategy addresses questions such as: What are the objectives? How are these objectives
broken down into goals? How will the goals will be measured? What are some of the key drivers to
achieving the goals? What are the actionable, measurable items that indicate success? What are the
questions that a given metric is trying to answer? Who is the audience for a given metrics? How is the
data collected, calculated/formulated, reported, and stored? What assumptions must be taken into
consideration when interpreting a given metric? How should a given metric be interpreted? How should a
given metric NOT be used?

3.1.6 Gov_6 System Assurance

The system shall be designed and build in compliance with security and privacy engineering principles.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Figure 15: System Assurance

3.1.6.1 Gov_6.1 System Monitoring Enforcement

The system shall be capable of enforcing security and privacy engineering principles.
3.1.6.2 Gov_6.2 System Non-compliance Detection

The system shall capable of detecting non-compliance issues related to security and privacy engineering
principles.

3.1.6.3 Gov_6.3 Infrastructure as Code

The system shall enforce the use of machine-readable definition files in managing and provisioning
computing infrastructure.

Documentation:

The system should automate server setup, program installation, and infrastructure/resource management.
This includes enforcing configuration settings as captured in the system's configuration management and
deployment tools (i.e., undoing any manual changes to the system outside of the tools).

3.1.6.4  Gov_6.4 Security Risk

The system shall be able to manage software vulnerabilities and security risks of both the system and the
product under development.

Documentation:
Managing security risks includes the ability to identify, prioritize, categorize, and mitigate risks.
3.1.6.5 Gov_6.5 System Accountability and Traceability

The system shall trace security-relevant actions and system configuration changes to the entity on whose
behalf the action was taken.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.1.6.6 Gov_6.6 Permissions Based on Roles and Responsibilities

The system shall support role-based permissions in order to control user and sub-system privileges based
on the permissions needed to accomplish only the specified task.

3.1.7 Gov_7 Defect and Issue Tracking

The system shall be able to capture identified defects or issues found through either automated or manual

testing.

req [requirement] Defect and Issue Tracking [ || Defect and lssue Tracking ]’J

«requirements
«Maturity Level 2»

Test Activities

Id="Gw_5.1.32"

Text = "The system shall be
able to provide status
updates regarding acfivities
related to testing to relevant
stakeholders.”

!
N

A Depends on
\

A
!
|

!
!
12

wrequirements
aMaturity Level Zx»
Testing Information
Radiator

Id="Tes 6"

Text ="The system shall
support the near real-time
reporting of test resulis to all
relevant stakeholders.”

L
i/
/!

Depends on /

/

arequirements
«Maturity Level 2»

Defect and lssue Tracking

Id="Gov_7"

Text = "The system shall be
able to capture identified
defects or issues found
through either automated or
manual testing.”

T F

wtraces

«Capaliitys
Planning & Tracking

C

|
|
—_—

— atraces

i

arequirgments
«Maturity Level 2»
Planning and Tracking
Defects to Closure

ld="Gov_7.1"

Text = "The system shall
integrate the planning and
tracking of defects and
issues to closure with other
planning and tracking
activities.”

Dependson_ - —

a—

arequirements
«Maturity Level 1»
Track progress with
Scrum/Kanban Boards

Id="Gov_2"
Text = "The system shall be

7 able to track requirements

and tasks using either a
Scrum board or a Kanban
board.”

Figure 16: Defect and Issue Tracking

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




3.171

The system shall integrate the planning and tracking of defects and issues to closure with other planning

and tracking activities.

3.1.8

The system shall be able to capture identified non-compliance issues found through either quality

Gov_8 Non-compliance Tracking

assurance or other automated monitoring capabilities.

Gov_7.1 Planning and Tracking Defects to Closure

req [requirement] Non-compliance Tracking [ [‘Eg Non-compliance Tracking ])

«requirements
«Maturity Level 1»

System Assurance
Id="Gov_§"
Text = "The system shall be
designed and build in
compliance with security
and privacy engineering

afraces

«trace»

«requirements

«Maturity Level 2»
Quality Assurance

ld="Gov_5.4"

associated with

Text = "The system shall be
capable of supporting an
independent assurance
function to review or audit
activities and work products

documented policies and

arequirements
«Maturity Level 3»
Quality Evaluation

«Maturity Level 2»
Non-compliance Tracking

principles.” procedures.”
£

R [

« Depends on Depends on | P
7
\ | B
N | atracex
S s
L 7~
«requirements -

7

Id="Gov_8"

Text = "The system shall be
able to capture identified
non-compliance issues
found through either quality
assurance or other
automated monitoring
capabilities.”

I

|
|
W

«requirements

«Maturity Level 2»

Planning and Tracking Non-
compliance to Closure

Id="Gov_8.1"

Text = "The system shall

Id="Tes_3.4"

Text = "The system shall
automatically ensure that
system and product under
development
enhancements and
modifications meet defined
quality criteria prior fo

|atraces
|
|
W
«requirements
«Maturity Level 2»
Software Quality Feedback

integrate the planning and
tracking of non-compliance
issues to closure with other

Id="Gov_8.2"

Text = "The system shall be
able to automatically
provide timely feedback on
quality-related issues to the
contributor that introduced

planning and tracking

the change."
activities.”

T
/
Depends on /
/
/

v
«requirements
«Maturity Level 1»
Track progress with
Scrum/Kanban Boards
Id="Gov_2"
Text = "The system shall be
able to track requirements
and tasks using either a
Scrum board or a Kanban
board.”

Figure 17: Non-compliance Tracking

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.1.8.1 Gov_8.1 Planning and Tracking Non-compliance to Closure

The system shall integrate the planning and tracking of non-compliance issues to closure with other

planning and tracking activities.
3.1.8.2 Gov_8.2 Software Quality Feedback

The system shall be able to automatically provide timely feedback on quality-related issues to the

contributor that introduced the change.
3.1.9 Gov_9 Document and Manage Identified Risks

The system shall be able to document and manage identified risks associated with cost, resources,
schedule, technical factors, and security throughout the system's and product under development's lives.

req yezmwsed] Cocament 02 Marmge Sursted Rusa | ‘ Cocumert ane laage Sertbed Raia |

CELITETe T
— - aVetsty Lavw 2s FITETET
Citiprgmiond AMubarty Lo 2o

vy A of Bk Manage et
ety Levet e [Ba e
sk Actwies 19="Gow_ 545 | Secudn Ries
vy P [Tant = “Tha sesem ihad 3¢ =G 08
Ide Cov 5138 | “Tha
Teut = "Tre sstem shafl be {Cagatie of mppoaeg Tatt o “Tho aysem shall 09
gerdart Qualy 2% 10 Tanage woftwae

AbM 10 provide dahus

| BESEANCE Mo Of aedt of VU Al 00 ety

B Vg o {tntes st win proxcts [ of tomm the sy stem ana corirerecs
10 ealENag It and N ¥ aValatly Lerei Dy
aotion of naw reks % | 235500001 Wit mek [ pracct under Leseid
(o art detcioes U T R P T | Gevslopment . Metrn
MG &
[Tad = "The system shal be atée to
Mfomaclly colect cormeale and
Dty MRETIOS A550CAtd Wit
Cepere on e | Onpedy PIOSUCtuly, reRAEly QUM decuy
03 Gperasons of both the sy stem and
e product unost dsasloptand e
30200300 10ChNTIIIS, BpEr0ICHL
™~ J M3 TWIOGY MNE MOGeE Ubed
cdocursriasom sliptaty Loow 1n P :r::rmmw:m I‘;:' icor!n
- w0 GrgEnk An's ey
i DeefcOps. wnm’rnwma Decunent asd Nenage "
00 4 SRR PIRCess 0 passs eIy | samified fats N3 UGN N
A0 ¢ reamenay arts tETDOUIEE Wah 10« 'Cov T
(P 2TPURE SRS Toet = “The yetem st 3e b
o SRR Ao §F i o e B ‘mh FoCument ans
098 &0 T 10 0o Ui [manage idersfied rnscs
wisk st ey, rae gertionas | REo0catos Wit et L
PIACRNES U FiAade r».\' LY draces [TEOBEICER 3cheddle - Saoe -';’M"'"L::.J-
|wiecactians. pag mpacty of (saa faw Teces e
el perNEach ed z “echnicat faons. ana S | ecurnity Metrice
L recunty thropghoit e ~ - - _ M=Snar
[Sy SHNTS N2 produdt waow 4, “Ta = “The ysten shal b
{Ovelapment's ves” abie %) controous messae
L 03 MONRCE 16 SratuTTa
—_—
& 33 the Broduct ndes
- T SRR R, aues i BAIDNENT S Secunty
performance
L wraces
. o ! x
- e RIS et eomets
|Cepansencian betw ver wsssers Uy Love 19 Ay Level 25
‘:.":”‘1";" Sherte "‘:"";’;’" Pravides Suks Rax Caegrastizn ans
" 0% 858 IO I 3 Pricetization Sroguirsmts
under daseuprant TTecesine v je="Cw oT — = “Venrty Lovel 3o
alarsarts rust be rackad and T T 7 [Tes! ="The sysem shak 5e = Gov 83

Autanated Deciabons
|vaknind W 16 ATy aad Wack Tast = The oystemn shall : =

v .
MAAOCARE WEE 10 Linw 2F & guwn o 5a="Gov BT
swcrter LUnaccepiaiie naks ruat te e 035 amsocated wit 3 PUDIIOR 0 SO Tuet = “Thia 3ystore shat Do
igated 398 montared VN Sappier caegonTe and griomte
¥ AS23 25 oy SOl atte % Jufomate rusce
—— y bt Onctnrnnd Zasmmd o1
SIPINAION OF Project's 1k
{ SN aret roguisien Quanitaive dxe and
Seln1ed Drenolas ©

<compbance requements

e

Tan! = “The aysiers shal De

12 Cagturo ana

TN service evel

Dependz 3o v
[N
wew—ty
wMadaty Lave 1 4
Servioe wid Ope rwsonal e Lt
Lesed Agreements ehuisty "":
Ja Cov 55

= "D & T
|Tert & “Tha Sestam shal b
00 10 supoer! the use of
COPN 00YBL O 0T

ements and )
esmveried compostyn anpy s cdy
Sy TR DAt 12 arfoecs the cegans e’

pesicy Tezarang the pse of
mAd sty schware *

Figure 18: Document and Manage Identified Risks

Documentation:

In DevSecOps, risk management should be a continual process of assessments and reassessments
compounded with the appropriate mitigations.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




Due to the continuous nature of DevSecOps and the tight coupling of relevant stakeholders, risk
identification processes must include the relationships, interactions, and impacts of risks from multiple
perspectives.

3.1.9.1 Gov_9.1 Provider Risks
The system shall be able to quantify and track the risks associated with a given supplier.
Documentation:

Dependencies between suppliers (both open source and purchased) of both the system and product under
development implementation elements must be tracked and evaluated regarding the risks associated with
the use of a given supplier. Unacceptable risks must be mitigated and monitored.

3.1.9.2 Gov_9.2 Risk Categorization and Prioritization

The system shall provide an ability to categorize and prioritize risks as they relate to the organization or
project's risk profile and regulatory compliance requirements.

3.2 2 Requirements
3.21 Reqg_1 Document Requirements

The system shall be able to capture requirements for the product under development.

Figure 19: Document Requirements

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Documentation:

This should capture both the functional and non-functional needs of the operational user of the product
under development as well as provide views of the requirements from the relevant stakeholders'
perspectives.

In addition to the users' perspectives, care should be taken to capture all relevant stakeholder perspectives,
such as the operational requirements needed in order to enable the delivery and sustainment of the product
under development in a secure way.

3.2.1.1 Req_1.1 Requirement Metadata
The system shall be able to capture metadata associated with a given requirement.
Documentation:

Organizations, projects, teams, and individuals working within the development and operational
environments have different data needs and require the ability to customize the metadata associated with
tasking and requirements. For example, some will want to capture estimates in story points while other
will want to capture estimates in ideal hours. They may also want to capture who the task was assigned to,
add comments associated with the work, etc. For requirements, some will want to capture who requested
the capability/requirement, who owns the requirement, who validated/tested that the requirement was
satisfied, what version of the software the requirement was first implemented in, etc.

3.21.1.1 Req_1.1.1 Test Association
The system shall be able to trace test artifacts to requirements.
Documentation:

Requirements validation is used to check for errors at the initial phase of development, as the error may
increase excessive rework when detected later in the development process. Requirements validation
activities usually include checks for: completeness, consistency, validity, realism, ambiguity, and
verifiability. Test case generation, prototyping, requirements reviews, automated consistency analysis, and
walk-throughs are typical requirements validation techniques.

3.2.1.1.2 Req_1.1.2 Definition of Ready

The system shall be able to provide a mechanism for allowing a requirement to be marked as ready for
prioritization and consideration in that the requirement is sufficiently detailed to be considered actionable.

Documentation:

The determination of actionable is related to the level of detail in the requirements and where it is on the
product development process. For example, if using SAFe, a requirement may be sufficiently detailed to be
allocated to a value train, but not sufficiently decomposed to be allocated to a program increment.

3.2.1.1.3 Req_1.1.3 Planning and Tracking Mapping to Requirements

The system shall be able to associate requirements to multiple layers of a program's planning and tracking
structure.

321131 Req_1.1.3.1 Mapping Tasks to Requirements

The system shall be able to associate tasks to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Documentation:

In general, all tasks should be grounded by requirements in order to understand why the task is relevant.
By associating tasks to requirements, if a requirement is changed or removed, the associated tasks can be
updated to reflect the change so that appropriate action is taken in performing the task. This reduces
rework and technical debt. Depending to the granularity of the documented tasks and requirements, many
requirements may be associated with a single task or the inverse.

3.2.1.1.32 Req_1.1.3.1.1 Requirement Change Notification

The system shall be able to notify engineers of changes made to requirements as they relate to assigned
tasks.

3.2.1.1.4 Req_1.1.4 Architecture Association
The system shall be able to trace architectural elements to requirements.
Documentation:

Any changes to requirements can lead to iterating through downstream activities within the lifecycle. A
trace enables impacted activities to be identified and worked as needed.

3.2.1.1.5 Req_1.1.5 Minimum Viable Product

The system shall be able to support the identification and tracking of requirements associate with the
minimum viable product (MVP) or minimally viable capability release (MVCR) for a given capability.

Documentation:

This implies one or more views of both the capability breakdown and the effort associated with producing
the needed capability are needed.

3.2.1.2 Req_1.2 Requirements Articulation
The system shall capture requirements in a format that is both human readable and supports automation.
Documentation:

This will require the use of formal methods to ensure well-formed requirements that can be consistently
interpreted by both humans and machines.

3.2.2 Req_2 Requirements Abstraction Layers

The system shall be able to capture different levels of requirement abstractions and associated
requirements between the abstraction layers.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Requirements Abstraction Layers [ fs) Requirements Abstraction Layers ]J

«Capabifitys @
Solution Development

|
wiraces

|
W

srequirements
eMaturity Level 1n AN

Requirements Abstraction xdocumentations
Layers Requirement decomposition and allocation
= . varies depending on what Agile
Id="Req_2 framework an organization is using. For
Text = "The system shall be | example, if using SAFe, they will need to

— = =—break requirements down from epics to

able to capture different
features to stories/enablers.

levels of requirement

abat(actions and associated This may require more than one hierarchy
requirements between the or multiple associations between
abstraction layers." requirements.

Figure 20: Requirements Abstraction Layers
Documentation:

Requirement decomposition and allocation varies depending on what Agile framework an organization is
using. For example, if using SAFe, they will need to break requirements down from epics to features to
stories/enablers.

This may require more than one hierarchy or multiple associations between requirements.
3.2.3 Req_3 Requirements Prioritization

The system shall be able to prioritize requirements and capture the rationale associated with the
prioritization process used.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requiremsnt] Requirements Prigritization [ | Requiremants Prioritization ]’J

=Capabditys @
Planning & Tracking

|utraces

i

wrequirements
sMaturity Level 1»

Requirements Prioritization

Id ="Reqg_3"

Text = "The system shall be
able to prioritize
requirements and capture
the rationale associated
with the priortiz ation
process used.”

Figure 21: Requirements Prioritization
3.24 Req_4 Requirements Validation

The system shall be able to support requirements feasibility and validation analysis, in which identified
problems and agreed on actions of detected problems are collected and tracked to completion.

req [requirement] Requirements Validation [ B5) Requirements Validation ])

«Capabilitys (c)
Solution Development
utraces sdocumentations
e Requirements validation is used to check for errors at the
- i intial phase of development, as the error may increase
r:;rteqmrel_men |”3 excessive rework when detected later in the development
- T LENE il process. Requirements validation activities usually include
Requirements Validation checks for: completeness, consistency, validity, realism,
Id="Req_4" ambiguity, and werifiability. Test case generation, prototyping,
- requirements reviews, automated consistency analysis, and
Text = "The system shall be _ — — —|walk-throughs are typical requirements validation technigues.
able to support - = = Feasibility analysis looks at the risks associated with a given
reguirements feasibility and requirement and its potential impact to the system or product
validation analysis, in which under development az a whaole.
identified problems and
agreed on actions of

detected problems are
collected and tracked to
completion.”

Figure 22: Requirements Validation
Documentation:

Requirements validation is used to check for errors at the initial phase of development, as the error may
increase excessive rework when detected later in the development process. Requirements validation
activities usually include checks for: completeness, consistency, validity, realism, ambiguity, and
verifiability. Test case generation, prototyping, requirements reviews, automated consistency analysis, and
walk-throughs are typical requirements validation techniques.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Feasibility analysis looks at the risks associated with a given requirement and its potential impact to the
system or product under development as a whole.

3.25 Reqg_5 Change Management of Requirements

The system shall be able to manage changes to the requirements.

req [requirement] Change Management of Reguirements [ B5) Change Management of Requirements ]J
xdocumentations
This implies some sort of f:rfql-'rlti;ell_-nemln3
configuration control system. Such allaturity Level J» Capabiity 3
as change logs, the ability to undo or Change Management of |- itragz»_ Cnnﬁmm;ﬁnn R ement @'
revert changes to a requirement, and Requirements ag
the ability to map a specific _ "
requirement instance to a specific - —_ = — — — 7 la= qu—S
software instance or version. Text = "The system shall be
It also implies that any changes to able to manage changes to
requirements are reviswed by the reguirements.”
relevant stakeholders for d )
concurrence to the change prior to
implementation.
«documentationa
A requirement naturally evolves from
concept to being implemented in a system or
product under development or withdrawn
arequirements and never implemented. A requirement
«Maturity Level 15 process can consist of activities such as
R . ts P _ —elicitation, analysis/refinement, validation,
«Capabifitys @ straces equirements Frocess | . — — acceptance, allocation, and implementation.
Solution Development | — — — =|ld="Reg 51" The system needs to be able to track the
Text = "The system shall be status of a given requirement.
able to track the state of 2
given reguirement.”

Figure 23: Change Management of Requirements
Documentation:

This implies some sort of configuration control system. Such as change logs, the ability to undo or revert
changes to a requirement, and the ability to map a specific requirement instance to a specific software
instance or version.

It also implies that any changes to requirements are reviewed by relevant stakeholders for concurrence to
the change prior to implementation.

3.25.1 Req_5.1 Requirements Process
The system shall be able to track the state of a given requirement.
Documentation:

A requirement naturally evolves from concept to being implemented in a system or product under
development or withdrawn and never implemented. A requirement process can consist of activities such as
elicitation, analysis/refinement, validation, acceptance, allocation, and implementation. The system needs
to be able to track the status of a given requirement.

3.2.6 Req_6 Requirements Authorization

The system shall be able to assign role-based authorization to view, modify, and/or create requirements to
individual users.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requiremsnt] Requirements Authorization [ Fs| Requirements Authorization ]/J

arequirements
aMaturity Level 1»

Requirements Authorization |xtraces =Capability's @
Id = "Req_&" Software Assurance

Text = "The system shall be
able to assign role-based
authorization to view,

modify, andlor create Eatra_ce»_ ;capabin_n @
reguirements to individual Hosting Services
users. "

Figure 24: Requirements Authorization

3.3 3 Architecture & Design
33.1 Arc_1 Requirement Mapping

The system shall be able to trace architectural elements to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requiremsnt] Requirement Mapping [ | Requiremant Mapping ]’J

wdocumentations -xreqqire ments
Any changes to the architecture can 'I”!Et””h" Level 1”_
lead to iterating through downstream Requirement Mapping
activities within the lifecycle. Id="Arc 1"
Architecture changes shoud alsobe | _ . — — — —|1@="Arc_
validated against upstream activities Text = "The system shall be
to make sure the architecture =il [ — = able to trace architectural
meets the requirements. A trace elements to requirements.”
enables impacted activities to be | 4 )
identified and worked as needed. I T
|
I ¥
II
o -xtElI:Es:- XCOPYS |
| I
«Capabiitys () [
Solution Development v

wrequirements
«Maturity Level 2»

Architecture Association

ld="Req_1.1.4"

Text = "The system shall be
able to trace architectural
elements to requirements.”

Figure 25: Requirement Mapping
Documentation:

Any changes to the architecture can lead to iterating through downstream activities within the lifecycle.
Architecture changes should also be validated against upstream activities to make sure the architecture still
meets the requirements. A trace enables impacted activities to be identified and worked as needed.

3.3.2 Arc_2 Implementation Mapping

The system shall be able to trace architectural elements to implementation elements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requiremant] Implementation Mapping[ Eg| Implementation Mapping ]J

arequirements
awMaturity Level 2x

Implementation Mapping

Id="Arc_2"

Text = "The system shall be
able to trace architectural
elements to implementation
elements.”

atraces

! | wcopys

Solution Development |
|
[

arequirements
«Maturity Lewvel 1»

Mapping to Architecture

Id="Dev_z2"

Text = "The system shall be
able to trace architectural
elements to implementation
elements.”

Figure 26: Implementation Mapping
3.33 Arc_3 MBSE

The system shall be able to support model-based systems engineering (MBSE).

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [reguirement] MBSE[ fg) MBSE ]J

AN

«wdocumentation:

At a minimum, this implies the ability to buikd and maintain
modelbased representations of the system and product
under development in an architecture tool using Systems
WModeling Language {Sy=ML) or equivalent modeling
language which should enable the effective exchange of
information between all relevant stakeholders involved in the
development process.

In a more advanced system that is embracing digital - mreqqlrementn
engineering concepts, this could include the capacity to o= _ sMaturity Level 3»
predict operational performance and quantify uncertainty in - - MBSE
models of the system or product under development in a = - -

simulated, representative environment or digital twin. Id="Arc_3

strace» | Text = "The system shall be
| able to support
| model-based systems
. engineering (MBSE)."
=Capabiitys @ G
Solution Development

_ . sdocumentation: | wraquirements
The architectural representation of the system and product under L atraces «Maturity Level 3»
development is usually represented in multiple views such as static, - — 3
dynamic, and allocation views in order to address all functional and non-
functional requirements. — — — — |ld="Arc_3.1"
Text = "The system shall be
able to model the functional
_|and non-functional
7 requirements in a

Model Requirements

- deriveReqt: - 7 v i i
arequirements B E . continuously iterative and
aMaturity Level 1» - traceable way.
Document Requirements |- —
Id="Reg_1"

Text = "The system shall be
able to capture
requirements for the product
under development.”

Figure 27: MBSE
Documentation:

At a minimum, this implies the ability to build and maintain model-based representations of the system and
product under development in an architecture tool using Systems Modeling Language (SysML) or
equivalent modeling language which should enable the effective exchange of information between all
relevant stakeholders involved in the development process.

In a more advanced system that is embracing digital engineering concepts, this could include the capacity
to predict operational performance and quantify uncertainty in models of the system or product under
development in a simulated, representative environment or digital twin.

3.3.3.1  Arc_3.1 Model Requirements

The system shall be able to model the functional and non-functional requirements in a continuously
iterative and traceable way.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



The architectural representation of the system and product under development is usually represented in
multiple views such as static, dynamic, and allocation views in order to address all functional and non-
functional requirements.

3.34 Arc_4 Software Assurance

The system shall be able to support the incorporation of security and privacy engineering principles into
the product under development's architecture and design.

req [requeenent] Sotware Adsenance | E Software Assarance | |
3 - - - ArAGTeTT,
Aatarty Leves 3y

Secarity Bk

Id="Gov_8.4

Taxt = "The sysiem snal be

abie fo manage software

vulnecatties and secunty

risks of 2oth ™e System and

11 Peoouct U

[N
cfoCa rrtatan.
Tecrrcal regurerirts arourd
CODECIRIENS reganang securty
nd prwacy ergnestng

PO Cpies $30uKT be aregirernasts ehervefiegts Oevalepmant *
characterized aa pat 20 3 sty Levsl 1
reqavemanty detntion prIcess Softwwe Assurance
in order % vastale St % r R 1
WCYBRCiare v ey - ) i3 = AT
Secains are duticent 2 meel = < Taal = “The sy stam shall De yee -
sacarty and prvacy T S e R T i3 = N
s garmar mcorgordtion of sacusty | R ]
—- |
|

|
and privacy enpmeenny
prncpies 1o the product |
endar developments | - - — 4
|
|

achbecture ans design ™

ISR STty
sVaturty Level Iy

e agur et
wMatarty Level te
Trust Bowndaries

Aty Level 3o aVanurty Level Ie

Detense-n-Deptn Cryptograpnic Design

Secwnty Feature and Attack L _
Modets

| (=AY

1= "Arc_& 4

| - o |
R ~ e bomogment |
| St |
TR . Dy R VP S - | |atymis
—— ! |
| | | |
i | ances " |
| | | |
mos | |etrace ‘el |
[ i ¢! ! k
X sreqareraris ' «TequrEreTL
[
)
)
|
|

Id="Alc & T
Ted = "Tha aystom shafl be

It = “Ase_4 2

Teet = “The aystem shah e |
atie 1o ity Dentfy and

Test = "The system shafl be
' |atfe to zupport the

abie to document how the

cument Ubces | documentation of how the product under develspment
abfie to suppart the snaysis b " "
of o product undir o o | prodect under develogment 15 ncorparatng
Qv AORIMENt 5 seTunly S A 4 1S ncorporatng isclation and oy pRographic
TR SN0 FRACK Mmodsls ~ ! eanse-n-0epin prancpNs methosologies
v ! v— e ———
|
o “aoUTenETy |
pagard “Watrty Level te |
Srodect and System — - L
Bosndares | o I
ld= At 421 f.""-“ SOOI . CCUTREN O

| weaticn g gefense-n-depts
xpeciae avoud be

I Teroed as
|regrererts 1 &
| demonsirute that
|approscties) ore sulicieet Yo
[ DOOBuCE endar develogmart

Twsrical mpuren e Wi te reeced
 0r08r 10 SOTIRATILE 3! e
FSECIN] FEMOON0 s e AP0
ard sutficient for the prodect imger
Sevespreent

Taxt = “The sy som shab be
abie to Gty wenify and
documes trust boundanes
betwoen the sy stem and the
product ender development ”

|
|
|
|
|
|
[
|
|
|
|
[
|
|
|
Text = "Tha sy stem shall be |
|
|
|
|
|
|
|
|
\
‘
|
|
‘
|
|
J

Figure 28: Software Assurance
Documentation:

Technical requirements around expectations regarding security and privacy engineering principles should
be characterized as part of the requirements definition process in order to validate that architecture and
design decisions are sufficient to meet security and privacy expectations.

3.3.4.1  Arc_4.1 Security Feature and Attack Models

The system shall be able to support the analysis of the product under development's security features and
attack models.

3.3.4.2  Arc_4.2 Trust Boundaries

The system shall be able to clearly identify and document trust boundaries.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.34.21 Arc_4.2.1 Product and System Boundaries

The system shall be able to clearly identify and document trust boundaries between the system and the
product under development.

3.3.43  Arc_4.3 Defense-in-Depth

The system shall be able to support the documentation of how the product under development is
incorporating isolation and defense-in-depth principles.

Documentation:

Isolation and defense-in-depth expectations should be characterized as technical requirements in order to
demonstrate that the selected approach(es) are sufficient for the product under development.

3.3.44  Arc_4.4 Cryptographic Design

The system shall be able to document how the product under development is incorporating cryptographic
methodologies.

Documentation:

Technical requirements will be needed in order to demonstrate that the selected methodologies are
appropriate and sufficient for the product under development.

3.4 4 Development
3.4.1 Dev_1 Mapping to Requirements

The system shall be able to trace implementation elements to requirements.

req [requirement] Mapping to Reguirements [ Fs| Mapping to Reguirements ]J

wrequirements
sMaturity Level 1»

Mapping to Requirements

Id="Dev_1" atraces =Capabiitys (E‘u
Text = "The system shall be = — —|Solution Development
able to trace
implementation elements to
requirements.”

Figure 29: Mapping to Requirements
3.4.2 Dev_2 Mapping to Architecture

The system shall be able to trace architectural elements to implementation elements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requiremsnt] Mapping to Architecture [ | Mapping to Architecture ]’J

Solution Development

=Capabifitys @

I
| straces

e

grequirements
«Maturity Level 1»

Mapping to Architecture

Id ="Dev_2"

Text = "The system shall be
able to trace architectural
elements to implementation
elements.”

wCOpys

arequirements
aMaturity Level 2»

Implementation Mapping

_'_:.

Id ="Arc_2"

Text = "The system shall be
able to trace architectural
elements to implementation
elements.”

Figure 30: Mapping to Architecture
3.4.3 Dev_3 Mapping to Tests

The system shall be able to trace implementation elements to test artifacts.

req [requirement] Mapping to Tests [ [Eg| Mapping To Tests ]'J

e ©
Verification & Validation

[
straces

s
arequirements
wMaturity Level 12

Mapping to Tests

Id ="Dev_3"

Text = "The system shall be
able to trace
implementation elements to
test artifacts”

Figure 31: Mapping To Tests

3.4.4 Dev_4 Secure Software Development

The system shall be able to support the use of secure coding practices and tooling throughout the
development lifecycle.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



R e

e |

Figure 32: Secure Software Development
3.4.4.1 Dev_4.1 Origin Analysis

The system shall be able to support the use of origin analysis, or software composition analysis, tools to
enforce the organization's policy regarding the use of third-party software.

Documentation:

Most modern software products consist of a collection of third-party software, to include open source,
which may have both know (i.e., common vulnerabilities and exposures (CVES)) and unknown
vulnerabilities. Vulnerabilities are constantly being discovered and reported against third-party and open-
source software that may have been deployed in the product under development. The system must be able
to identify known vulnerabilities in both the system and product under development so that the risk can be
mitigated.

3.44.2 Dev_4.2 Software Bill of Materials

The system shall be able to generate a software bill of materials (SBOM) for the product under
development.

Documentation:

An SBOM allows the producer to ensure all components are up to date and to respond quickly to new
vulnerabilities. It allows a user to evaluate the risks associated with the product under development
[Wikipedia 2021c].

3.4421 Dev_4.2.1 SBOM Versions

The SBOM shall include implementation elements, and associated versions shall be traceable to the
product under development when it is released.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



This supports a software bill of materials and traceability of the development components.
3.4.4.2.2 Dev_4.2.2 SBOM Configuration Settings

The SBOM shall include all implementation elements settings related to the product under development
when it is released.

3.4.4.3 Dev_4.3 Static Code Analysis

The system shall be able to support the use of static analysis tools in order to enforce the organization's
policy regarding coding standards.

Documentation:

Static code analysis tools are used to reduce the risk of software vulnerabilities caused by poor coding
practices, such as those defined as common weakness enumerations (CWES).

Static analysis examines the system without executing it and can be applied to design representations,
source code, binaries, and bytecode. Tools include attack modeling, source code analyzers, obfuscated
code detection, bytecode or binary disassembly, human review/inspection, origin analysis, digital signature
verification, configuration checking, permission manifest analysis, development/sustainment version
control, deliberate obfuscation, rebuild and compare, and formal methods.

3.4.44  Dev_4.4 Product Accountability and Traceability

The system shall trace all changes made to the product under development to the entity on whose behalf
the action was taken.

3.45 Dev_5 Code Reviews

The system shall be able to support both informal and formal code reviews.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Code Reviews [ Eg Code Reviews ]/J

wdocumentations

Code reviews have been proven effective at finding
defects in code. The methods and approaches used
to effectively review code varies throughout the
software engineering community. Some common
approaches include Fagan inspection, pair
programming, walk-throughs, or other change-based wregquirements
code review processes. «Maturity Level 1

Code Reviews

The system needs to be able to support the adopied
code review approach and provide a measurement _|1d="Dev_5"
construct for determining the effectiveness of the Text = "The system shall be
selected approach. If the selected approach is not
meeting the product under development's quality .ablem support bath 3
needs, then other techniques should be incorporated informal and fermal code ,,r“tfcei s @'
into the code review process. Data should continue reviews.” Solution Development
to be collected to quantify the impact of changes to
the code review process and continuoushy monitor t@ |

I|

|

|

the effectiveness.
atraces I

.l W Quality Assurance
arequirements
«Maturity Level 2» |

Code Monitoring
ld="Dev 51" L atraces
Text = "The system shall
automatically monitor code

submissions to identify code afraces «Capabiitys ()
that does not adhere to Software Assurance
established coding
- standards.”
straces . ©
- - N
arequirements - Depends on
aMaturity Level 2» - \
Quality Assurance 3
Id="Gov_5.4" mreqqirementn
Text = "The system shall be LETLylEEE
N Static Code Analysis
capable of supporting an
independent assurance Id= D"ev_:l.3
function to review or audit Text = "The system shall be
activities and work products able to support the use of
associated with static analysis tools in order
documented policies and to enforce the organization's
procedures.” policy regarding coding
standards.”

Figure 33: Code Reviews
Documentation:

Code reviews have been proven effective at finding defects in code. The methods and approaches used to
effectively review code varies throughout the software engineering community. Some common approaches
include Fagan inspection, pair programming, walk-throughs, or other change-based code review processes.

The system needs to be able to support the adopted code review approach and provide a measurement
construct for determining the effectiveness of the selected approach. If the selected approach is not meeting
the product under development's quality needs, then other techniques should be incorporated into the code
review process. Data should continue to be collected to quantify the impact of changes to the code review
process and continuously monitor the effectiveness.

3.45.1 Dev_5.1 Code Monitoring

The system shall automatically monitor code submissions to identify code that does not adhere to
established coding standards.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.4.6 Dev_6 Orchestration

The system shall provide orchestration capabilities to automatically coordinate and execute many tasks

["mn eamwrest Crsraen| u Cem—re—
elemaemeth
ltatsety Levei 3o
| heteane Munagement
I« “Dal_1* ‘
N Tact = “The system shad
esttue e ) SOt the Jutp=mtion of
& robases”
Crcrastration can Be asches = taek
S80S with ihe Spsien the prodat! wde: .
SAVEIPOAT OF £ COMDRANN &1D0Th 0 Dnder
19 STeAINe M DOEITE ITRGUNT repaYADIe
Crooasses Cugerate 2
k
s e eTErls !
s sklgnrty Lavel 30 ‘
Mﬁnu-”- |
=D 5 } aftpareTAr
et = Th Mty Level 3>
il SR 7
: ’ .
200N 10 SACTWICHY W2 Dev_713
LO0AMGER AN WA ey Tast = “The IDE shal be
many fasks foQutter * Thagraied win the Sutd
MAOTOION procRises
_——
arempareTurts ~
sty Level I AsTRins
Taak Matadsts wdacerwrtatars
a="Gov 3T 1 getaral % orchenteaior ahouid
Tant = “The sy stom shak e - \ | ordy votrel ::\; ‘-”:'ob
00 10 Captuee MRttt o -?.;,T.:::. B < T By $18 aafico0 spoctnd
aascciated wih 3 Qon Deoeses av P x | H sVarty Level 2 P
task.” - . - 4 Use of Verttubie Scurces
z _ lasDe Y | it [mia——as
"~ [Test = Tho systum s L S S 3 "3‘:'?:;3 :uhm Bl
SVPEILE GRS ‘ — oty 158 Yestod sources
legtation Capadely M & S Py e 1€ Rtraces fwhen orchectrating 1ases ©
Inagratns Win the 3 stents | Software Assurarce - 9
|configuration management. | T
o Jotomated lessng. and \
plareng and rackng L
cagatigiae” | |
sraces |
aregsrereris Depents v
“Matrty Lovel 3 |
Qrigen Anabysi \ wheny
- = d Dwperce on bereRiects |
e D 4T PR— )
Tast = “Thé spstem shak to M I
abie tn suppart e use of |
gD analy s, of software +
cormpostion analves ol A sreqarerwris
o ANICH I QNG T4 afequrnTents - el s
sty Level . ity Ley
PORTY CAQAITING e wse of o Fome "’; Yes Contigurason Managemest
hrs party saftware ” owgsrererts — e a="Dev r
dlatyry Leswl s Me T T n.‘l b AT——
Taxt « b
Slatic Code Anatysis axt « “Tha system shal 2o peovide ouraca

My D 4T

Taxt « “Tha system shad te
aide to support he use of
s 3707 223 tooks 0 crder
15 arfotoe the Segares o'y
POy FRQEIdng cadng
stancweas

e to capturs atomatng
testng Mifay

managemart cagadéties to
Seoily. dacument, contol
0 ertare Mo hinctong
ROd piy BZA Characiennes
1of & confguration tema

Figure 34: Orchestration

Documentation:

Orchestration can be applied to task associated with the system, the product under development or a
combination of both in order to streamline and optimize frequent, repeatable processes.

3461

Dev_6.1 Continuous Integration

The system shall provide a continuous integration capability that is integrated with the system's
configuration management, automated testing, and planning and tracking capabilities.

3.4.6.2

Dev_6.2 Use of Verifiable Sources

The system shall only use trusted sources when orchestrating tasks.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




Documentation:

In general, an orchestrator should only interact with a trusted system that enforce specified security
policies.

3.4.7 Dev_7 Configuration Management

The system shall provide configuration management capabilities to identify, document, control, and ensure
the functional and physical characteristics of all configuration items.

Figure 35: Configuration Management
Documentation:

Configuration items include source code, build artifacts, documentation, libraries, third-party software, etc.
as they relate to both the system and the product under development.

A configuration management ecosystems often includes an integrated combination of source code
management, automated build, packaging, deployment, and baseline verification tools.

3.4.7.1  Dev_7.1 Product Source Code Repository

The system shall be able to maintain configuration of all source code associated with the product under
development.

3.4.7.2  Dev_7.2 Product Artifact Repository

The system shall be able to maintain configuration of all product artifacts associated with a given instance
of the product under development.

Documentation:

Acrtifacts include requirements, designs, risks, security concerns and mitigations, interface definitions, etc.
as they relate to a given configuration item.

3.4.7.3  Dev_7.3 Product Test Repository

The system shall be able to maintain configuration of all test artifacts associated with a given instance of
the product under development.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.4.7.4  Dev_7.4 Product Software Repository

The system shall be able to maintain configuration of all implementation elements of third party or open-
source software used in a given instance of the product under development.

3.4.75 Dev_7.5 System Source Code Repository
The system shall be able to maintain configuration of all source code associated with each system instance.
3.4.7.6  Dev_7.6 System Artifact Repository

The system shall be able to maintain configuration of all product artifacts associated with a given instance
of the system.

Documentation:

Avrtifacts include requirements, designs, risks, security concerns and mitigations, interface definitions, etc.
as they relate to a given configuration item.

3.4.7.7 Dev_7.7 System Test Repository

The system shall be able to maintain configuration of all test artifacts associated with a given instance of
the system.

Documentation:

Just as the product under development evolves over time, so will the system. In both cases the evolution
must be tested to identify any defects or errors made during the evolution process and to ensure quality
attributes are present. While a separate process may be needed to maintain configuration of test artifacts
associated with some aspects of the system, in general, it is preferred to use the same configuration
management mechanisms as those used for the product under development.

3.4.7.8  Dev_7.8 System Software Repository

The system shall be able to maintain configuration of all implementation elements of third-party or open-
source software used in a given instance of the system.

3.4.7.9 Dev_7.9 Chain of Custody
The system shall maintain a chain of custody for all configuration items.
3.4.79.1 Dev_7.9.1 Immutable Version

The system shall embed immutable version identifications into all configuration items and include these in
the SBOM.

3.4.7.10 Dev_7.10 Unauthorized Changes
The system shall be able to automatically identify any unauthorized changes to a configuration item.
3.4.7.10.1 Dev_7.10.1 Unauthorized Change Alert

The system shall automatically notify relevant stakeholder of unauthorized changes to a configuration
item.

3.4.7.11 Dev_7.11 Source Code Editor

The integrated development environment (IDE) will include a source code editor.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.4.7.12 Dev_7.12 Compiler and Interpreter

The IDE will include appropriate compilers and interpreters for the required programming and scripting
languages.

3.4.7.13 Dev_7.13 Build Automation

The IDE shall be integrated with the build automation processes.

3.4.7.14 Dev_7.14 Debugger

The IDE shall include a debugger capability for the required programming languages.
3.4.7.15 Dev_7.15 Static Code Integration

The IDE shall include syntax-based static code analysis capabilities.

Documentation:

While some static code analysis requires the system or product under development to be completely
compiled prior to running the static analysis, many general and security-related coding standard violations
can be identified prior to submitting changes to the build process. By integrating as much functionality
into the IDE as possible, it will reduce the number of findings later in the development lifecycle when they
are more expensive.

3.4.7.16 Dev_7.16 Version Control
The IDE shall be integrated with the configuration management capabilities of the system.
3.4.8 Dev_8 Integrated Development Environment (IDE)

The system shall provide programmers with the comprehensive facilities needed to develop software for
both the product under development's and system's targeted environments.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Integrated Development Environment (IDE) [ [Fg| Integrated Development Environment (IDE) ])

wrequirements
«Maturity Level 1»

Integrated Development
Environment (IDE)

Id = "Dev_g"

Text = "The system shall
provide programmers with
the comprehensive facilities
needed to develop software | atraces «Capabiitys @
for both the product under Solution Development
development's and system's

targeted environments."

Figure 36: Integrated Development Environment (IDE)
3.4.9 Dev_9 Development Information Radiator

The system shall support the near real-time reporting of development status to all relevant stakeholders.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Development Information Radiator [ Bg| Development Information Radiatnr])
b‘ requirement:
«documentations ocr:atl.?rity Leveln3x.
An information r_adiatnr c_nuld take several forms, Development Information
such as an email, a posting on a message board, Radiator
a physical display in a public area, or a " "
combination of multiple approaches. Id ="Dev_8
—————— Text = "The system shall
The near reaktime development status provided _ti efraces Capatity
should be based on the information needs of the Supprtt].rtth;réear IrEaI tml_:te e — — — Monitor & Control @
relevant stakeholders and should not simply be a reporting evelopme T e,
display of information that is easity obtained but status to all relevant
that does not provide the information needed to stakeholders.”
make relevant decisions.
/ "
7 \
Depends on 4 A straces
/ Y
/ Y
L&
«requirements wrequirements
«Maturity Level 3» «Maturity Level 2»
Communication Development Progress
Id="8ys_4" ld="Gov_41"
Text ="The system shall Text = "The system shall be
support multiple forms of able to collect and display
communication in order to quantitative measures that
allow individuals to tailor the can be usedto assess the
ways in which information is status of the software
communicated to them.” development progress and
associated guality."

Figure 37: Development Information Radiator
Documentation:

An information radiator could take several forms, such as an email, a posting on a message board, a
physical display in a public area, or a combination of multiple approaches.

The near real-time development status provided should be based on the information needs of the relevant
stakeholders and should not simply be a display of information that is easily obtained but that does not
provide the information needed to make relevant decisions.

3.5 5 Test

351 Tes_1 Manual Testing

The system shall be able to capture manual testing artifacts.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Manual Testing [ | Manual Testing ])

wrequirements
«Maturity Level 1

atraces Manual Testing

- — — — — — — — — FAld="Tes_1"
Text = "The system shall be

«Capabiltys [}

|
able to capture manual BRR NI Ation Management

| testing artifacts.”

| |
EF |wtraces

| s
wrequirements wrequirements wrequirements
| «Maturity Level 1= «Maturity Lewel 1 «Maturity Level 1
| Manual Test Cases Manual Test Results Link Manual Testing to
Softw, Insta
| [1d="Tes_1.1" ld="Tes_1.2" it
Text = "The system shall be Text = "The system shall be | |1d="Tes_1.3
| |able to capture test cases.” able to capture test results.” Text = "The System shall be
| able to associate manual
| T T test resulis to a specific
l-:ctrEI:En l.xtral:e,;. instance of the system or
| roduct under development.”
o _ e EJEFE':_“%.” '
Verification & Validation

Figure 38: Manual Testing

3.51.1 Tes_1.1 Manual Test Cases

The system shall be able to capture test cases.

3.5.1.2 Tes_1.2 Manual Test Results

The system shall be able to capture test results.

3.5.1.3 Tes_1.3 Link Manual Testing to Software Instance

The System shall be able to associate manual test results to a specific instance of the system or product
under development.

3.5.2 Tes_2 Requirement Association

The system shall be able to trace test artifacts to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requiremsnt] Requirement Association [ | Requirement Association ]J

eCapabilitys ic) aCapabilitys B
Configuration Management Verification & Validation
| |
| N |
arequirements
aMaturity Level 2 l

Requirement Association I
| atraces

| Id="Tes_2" |
— FText="The systemshallbe [ — — —

able to trace test arifacts to

reguirements.”

T

| atraces

lacnp*_.fn
|

wrequirements
s Maturity Level 2»

Test Association

ld="Req 1.1.1"

Text = "The system shall be
able to trace test artifacts to
requirements.”

Figure 39: Requirement Association
3.5.3 Tes_3 Automated Testing

The system shall be able to capture automated testing artifacts.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requrement] utamated Tastng| S Autorvated Testng | |

<o ernts
“Vatarty Level Je

Cominuoes Mizgretes *_§

(= Dev 6 1

| Tt = “The 3y stem sl
|provide 3 contnuous

| plegration capabity thal is

|Integrated with the systerris |
| confipuration management, Dfpesss o

|astomased beetng. and

«fequrercests

wlhanrty Lavel 3y
Autumated Testing

pannng and racking o= Tea T
|capanmtion i S Taut = "Tha sytem shal b6
l | A T CRShE Sutomated
146N TS A
A amer ) DYl = = YIOCTITANON. -
" Eraluaion 5] vay FC0I
- Bulg Ven$oansen Teshng (M0 crow 39
| | baces |BTOARie3tng, Carfidesce lesting budd
wvaces e “ VOrACIIoT Mg and 3udd AcTeptance wwe |
| & | * W 5 B Aa0Teled oS! Mended 1 revea!
O IR weQurenents WTOJureTerts AN wrple Sylsres dee T byl probives by bukers
Natarty Lwvel 2n Mty Lavel 30 allatarty Lovwl 1o Watarty Love Do 058 200y IY) SINW NG Sysiens and periymeg
Link Awscmamed Testng o Dynamic Application Tt Tool Compatitsliny Quatty Tvaustion :m—-'mh Eugt D Tevanl ose Mg
Software s tonce ! Security Test = — | YR hhces
} —— | - 'f’ " Me"Tes 33 e "Tas 34 < A Tent carpares two cersons of x3fewre
lg="Tee 5T ="Tes 32 Teat = “The sySents [Teot = “Tha Sy steem shak SJENST 0NE A1ather where e sew BT versen
| Text = “The ayste= shall be Teat = “The system shall S Ratomated tastng capabity WADTGICAl ske that e yerved 1o & srwt et of tegavators tr the
i o associate test resusts | | abie b support the use of st e COMGHItie wih 5 #4M 3N PrOGAT UnDe i bbb e sstyue
|ane 2330008ed antfacistoa NaTC Code analy s tools Hoth the usdervning sy dem develspment - BlaGosen oeplyments 5 3 Y00 techngus
|spedfic instance of he in order to test e Systam e jechinzlige > the product echancemarts and whers aAUTIaY 802 BAENG e IO
|Syem ar procuct undsr £O00UCH UndRe Sov lopment onder deveicgmant modticatisns meel detred a%eale Ner 1o
Oevalaprmant - FGANGE TUNGHTS VUnarailey technaingy Quaity ortena prior b
Kanyoe” SRR MR Mt |
e gr—
| strace
— Vit — atraces > |
‘ ' '
1 c . b ATRCE
K @' Maurince | ( @_ Servres "\"‘l - | plmoes
/ — ) - recs,
LN FiRa
SRCHTRriTe ‘ru exarge .:::C;:;:-u m.'l'm-m for Iy Lol
Tyses of gynarsc Gade ansysi e srtchict a Linx, thes miegesteg P r—— st
PR o [sutorrsing tesng toos T cody #42007 8 Aatsrty Levei2s [ Re-vmetsce Trovitny
netwack Suitprs, et [fdsws vsrorrEnt ot b oty Assovance 10 = "Cov_E"
WiTeratEty sarey [Wrozceptade Jusr e e g teen) toe b— Tast = “Tha sy tam shall be
bog-based nreatidy [erdy deaignes o wark n Java wikd be g = "Gov_54° e & -
SCArOs, 898 Yeal apphealan |soazceomise 155 B Sroduct Uager Yot = “The sysam st be |abie 10 Capture iwntlfiec
roertaces scatrecs |Sevetpment e 8 wiriss coockisl B NON-COMEEance Issues
| 30k of sLpporting an
Bytron .'?;‘ edpsisarinds found v ough sther guswy
hncticn b review of madt asourance of cihec
act s and WOrk procus Sesormied rmorkenny
associated with | Chpabiiies
GOCUMAried POSCHS A

POCETes *

Figure 40: Automated Testing
3.5.3.1 Tes_3.1 Link Automated Testing to Software Instance

The system shall be able to associate test results and associated artifacts to a specific instance of the system

or product under development.
3.5.3.2 Tes_3.2 Dynamic Application Security Testing

The system shall be able to support the use of dynamic code analysis tools in order to test the system or
product under development against runtime vulnerability scenarios.

Documentation:

Types of dynamic code analysis include network scanners, network sniffers, network vulnerability

scanners, host-based vulnerability scanners, and host application interface scanners.
3.5.3.3 Tes_3.3 Test Tool Compatibility

The system’s automated testing capability shall be compatible with both the underlining system technology
and the product under development technology.

Documentation:

For example, if the targeted environment for the product is Linux, then integrating automated testing tools
that only support a Windows environment would be unacceptable. Just like having testing tools only

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



designed to work in Java would be unacceptable for a product under development that is written
completely in Python.

3.5.34  Tes_3.4 Quality Evaluation

The system shall automatically ensure that system and product under development enhancements and
modifications meet defined quality criteria prior to operational deployment.

Documentation:
Evaluation testing may include:

- Build Verification Testing (also known as smoke testing, confidence testing, build verification testing,
and build acceptance tests) which is an automated test intended to reveal simple failures due to build
problems by building and deploying software systems and performing a subset of tests enough to reveal
those simple failures.

- A/B Test compares two versions of software against one another where the new “B” version is served to
a small set of requestors for the purpose of selectively evaluating new software for improvements against
the “A” version.

- Blue/Green deployments is a CI/CD technique where production and staging environments alternate their
role.

3.5.4 Tes_4 Code Coverage

The system shall be able to provide code coverage data associated with each test performed against a
specific instance or version of the system or product under development.

req [requirement] Code Coverage[ |fg Code Coverage ]J

aCapabilitys (c)
Monitor & Control —

|
gtraces

i
arequirements
«Maturity Level 3»

Code Coverage

|d="Tes_4"

Text = "The system shall be
able to provide code
coverage data associated
with each test performed
against a specific instance
or version of the system or
product under development.”

Figure 41: Code Coverage

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.55 Tes_5 Penetration and Fuzz Testing

The system shall be able to provide a controlled environment in which penetration and fuzz testing can be
performed against both the system and the product under development without adversely impacting the
operational or development environments.

req [requirement] Penetration and Fuzz Testing [ |fg) Penetration and Fuzz Testing ]’J

arequirements
«Maturity Level 3»

Penetration and Fuzz

Testing
ld="Tes_5" straces «Capabilitys i ]
Text="The systemshall be = — — —|Software Assurance

able to provide a controlled
environment in which
penetration and fuzz testing
can be performed against
both the system and the atraces aCapabilitys r
product under development [~ — T “|yerification & Validation
without adversely impacting
the operational or
development environments.”

Figure 42: Penetration and Fuzz Testing
356 Tes_6 Testing Information Radiator

The system shall support the near real-time reporting of test results to all relevant stakeholders.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Testing Information Radiator [ E5| Testing Information Radiator ]J

- - —

|wtraces

srequirements
aMaturity Level 2»
Testing Information
Radiator

Dependson . — —

Id="Tes_§"

Text = "The system shall
support the near real-time
reporting of test resulis to all
relevant stakeholders.”

«Capatisitys

E
Monitor & Control

edocumentation

While automated testing results should be
reported instantly when using a fully
integrated DevSecOps environment in
order to address issues found as so00n as
possible, manual testing results could take
more time to report and address.

An information radiator could take several

approaches.

forms, such as an email, a posting on a
message board, a physical display in a
public area, or a combination of multiple

-~ atraces

arequirements
aMaturity Level 3»
Communication

Id ="Sys_4"

Text = "The system shall
support multiple forms of
communication in order to
allow individuals to tailor the
way s in which information is
communicated to them."

grequiremants
«Maturity Level 2»

Defect and Issue Tracking

Id="Gow_7"

Text = "The system shall be
able to capture identified
defects or issues found
through either automated or
manual testing.”

- «Maturity Level 2»

wrequirements

~ Development Progress

ld="Gov_4.1"

Text = "The system shall be
able to collect and display
quantitative measures that
can be used to assess the
status of the software
development progress and
associated guality.”

Figure 43: Testing Information Radiator

Documentation:

While automated testing results should be reported instantly when using a fully integrated DevSecOps
environment in order to address issues found as soon as possible, manual testing results could take more
time to report and address.

An information radiator could take several forms, such as an email, a posting on a message board, a
physical display in a public area, or a combination of multiple approaches.

3.5.7

Tes_7 Multi-phase Testing

The system shall support both manual and automated testing throughout the development, maintenance
and operational life cycles.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




req [requirement] Multi-phase Testing [ |fs| Multi-phase Testing ])

arequirements

B «Maturity Level 2»
. Multi-phase Testing
«documentation» . -
The system needs to be able to support different ld= T?S_?
types of testing, such as unit, build, integration, Text = "The system shall
performance, load, exploratory, usability, support both manual and "
regression, security, acceptance, GUI, etc. automated testing L _atraces § 'Gm i @'
throughout the various stages, or life cycles, the - th hout th Verification & Validation
system or product under development may be in |- o ommner
=0 that issues can be addressed as efidently development, maintenance
as possible and that feedback can be obtainsd and operational life cycles”

as early as possible.

The testing must also be able to support various T
testing objectives such as: detecting bugs,
demonstrating working functionality, evaluating |
user experience, ensuring compliance with
regulations, and improving operational
effectiveness and suitability.

|

aregquirements
«Maturity Level 2»

Functional and Non- lotraces

Functional Testing e - - - |
Id="Tes_7.1"
Text = "The system shall be
able to support both manual B
and automated testing of . adocumentationx
both functienal and T~ Functional testing techniques may
non-functional attributes.” ™ — |include use case testing, exploratory

Ttesting, checklist-based testing,

boundary value analysis, decigion
tables, decision coverage, pair-wise
testing, attacks, clagsification trees, etc.

Non-functional activities may include
performance, usability, security,
reliability, accessibility, availability,
maintainability, interoperability,
recoverability, and extensibility.

Figure 44: Multi-phase Testing
Documentation:

The system needs to be able to support different types of testing, such as unit, build, integration,
performance, load, exploratory, usability, regression, security, acceptance, GUI, etc. throughout the various
stages, or life cycles, the system or product under development may be in so that issues can be addressed
as efficiently as possible and that feedback can be obtained as early as possible.

The testing must also be able to support various testing objectives such as: detecting bugs, demonstrating
working functionality, evaluating user experience, ensuring compliance with regulations, and improving
operational effectiveness and suitability.

3.5.7.1  Tes_7.1 Functional and Non-Functional Testing

The system shall be able to support both manual and automated testing of both functional and non-
functional attributes.

Documentation:

Functional testing techniques may include use case testing, exploratory testing, checklist-based testing,
boundary value analysis, decision tables, decision coverage, pair-wise testing, attacks, classification trees,
etc.

Non-functional activities may include performance, usability, security, reliability, accessibility,
availability, maintainability, interoperability, recoverability, and extensibility.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.6 6 Delivery

3.6.1

Del_1 Release Management

The system shall support the automation of releases.

srequirements
«Maturity Level 3»

Release Management

req [requirement] Release Management[ By Release h'lanagernent]/J

erequirements
aMaturity Level 3

Automated Decisions

Text = "The system shall
provide orchestration
capabilities to automatically
coordinate and execute
many tasks together.”

Id ="Del_1" : ld="Gow_57.1"
Text = "The system shall L o _ _ _ mmaces ] Text = "The system shall be
‘Ea'm‘r:“t (©) «traces .| cupport the automation of able to automate routine
releases.” decisions based on
quantitative date and
! 5 “ defined thresholds.”
! Y ~
.
f A "
&
! ' - .Depends on
! A "
~
L B “
~
adocumentations y Depends on ~
Release management is the process of building, ~
testing and delivering a product as a whole or in - i
batches. This requirement is applicable to both the \ 'jr;iql._nrell_nen I»3
system and the product under development. This e urity B
requirement coukd be satisfied by the orchestration A Continuous Delivery
requirement by applying an orchestration of the \ Id ="Del 3"
release, delivery, and deployment processes. . =
¥ Py F Y Text = "The system shall
Automation of a release can include more than just \ support continuous delivery "
buiding the product. it can also include integration of
new code branches, pre-commit validation, rollback Y
of integration failures, environment provisioning, y
code deployment, canary deployment patterns, -
testing, security validation, documentation, obtaining r:rfqmreLrnentlnS
approvals, eic. «Maturity Level 3»
Orchestration
Id ="Dev_g"

Figure 45: Release Management

Documentation:

Release management is the process of building, testing and delivering a product as a whole or in batches.

This requirement is applicable to both the system and the product under development. This requirement
could be satisfied by the orchestration requirement by applying an orchestration of the release, delivery,
and deployment processes.

Automation of a release can include more than just building the product. It can also include integration of
new code branches, pre-commit validation, rollback of integration failures, environment provisioning, code
deployment, canary deployment patterns, testing, security validation, documentation, obtaining approvals,

etc.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




3.6.2 Del_2 ITSM Service Desk

The system shall provide an integrated ITSM service desk capability to manage the end-to-end delivery of
services to users.

req [requirement] M3M Service Desk[ By MSM Service Desk ]J

«wdocumentations
This requirement is applicable to both the system and
the product under development, as both have users
that will need servicing.

arequirements
aMaturity Level 3»

ITSM Service Desk
trace
sCapsbiiys  (C)| _etacer 4 wpe) o

R & Tracking Text = "The system shall
provide an integrated ITSM
service desk capability to
manage the end-to-end
delivery of services to users.”

Figure 46: ITSM Service Desk
Documentation:

This requirement is applicable to both the system and the product under development, as both have users
that will need servicing.

3.6.3 Del_3 Continuous Delivery

The system shall support continuous delivery.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [reguirement] Continugus Delivery [ Bg| Continuous Deli-.'er:,r]/J

wdocumentations

Continuous delivery is the automatic deployment of all code changes to
a testing and/or production environment after the build stage. This can
include a progression approach to delivery based on the testing
strategy being used. For example, the system could automatically
deliver a release one environment in order to run an initial set of
automated tests. If initial tests pass, then progress the release to a
different environment for additional testing. Assuming all tests pass,
the system could automatically deploy the release to production.
Assuming the system is connected to the production environment, the
system’s continuous delivery capability could be used to enable
continuous deployment. Continuous deployment is when every change
that passes all stages of development and automated testing is
releazed to the end user autornatically and with no human intervention.

N
*
N

arequirements
«Maturity Level 3»

Continuous Delivery
Id ="Del_3"
Text = "The system shall
support continuous delivery.”

arequirements
aMaturity Level 3»

Release Management

afraces

| _ _Depends on

- — — — fld="Del_1"
| Text = "The system shall
| support the automation of
| releases.”
|
|

o

aMaturity Level 3»
Delivery Failure Restoration

|
|
| arequirements
|
|

Id="Del_3.1"

Text = "The system shall be
able to automatically restore
the environment to 3
previous state when the
deployment of a new
release fails or is canceled.”

atraces

W

A s
£ A
sderiveReqts 5, wderiveReqts
! Ay
/ A

arequirements
eMaturity Level 12

Product Recovery

arequirements
aeMaturity Level 12

System Recover

failure occurs.”

Id ="Del_5" Id ="Del_4"

Text = "The system shall be Text = "The system shall be
able to automatically able to autormnatically restore
recover to a previous known a product under

stable state when a sysiem development to a previous

known stable state when a

product failure occurs.”

Figure 47: Continuous Delivery
Documentation:

Continuous delivery is the automatic deployment of all code changes to a testing and/or production
environment after the build stage. This can include a progression approach to delivery based on the testing
strategy being used. For example, the system could automatically deliver a release one environment in

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



order to run an initial set of automated tests. If initial tests pass, then progress the release to a different
environment for additional testing. Assuming all tests pass, the system could automatically deploy the
release to production. Assuming the system is connected to the production environment, the system's
continuous delivery capability could be used to enable continuous deployment. Continuous deployment is
when every change that passes all stages of development and automated testing is released to the end user
automatically and with no human intervention.

3.6.3.1  Del_3.1 Delivery Failure Restoration

The system shall be able to automatically restore the environment to a previous state when the deployment
of a new release fails or is canceled.

3.6.4 Del_4 Product Recovery

The system shall be able to automatically restore a product under development to a previous known stable
state when a product failure occurs.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Product Recovery[ Product Recovery ])

wrequirements
«Maturity Level 3»

Delivery Failure Restoration

Id="Del_3.1"

Text = "The system shall be
able to automatically restore
the environment to a
previous state when the
deployment of a new
release fails or is canceled.”

o

wderiveReqts 4
s

i
rs
<

wrequirements
«Maturity Level 1»

Product Recovery

Id ="Del_4"
Text = "The system shall be

able to automatically restore . _“3%% nmlm !
a product under
development to a previous
known stable state when a
product failure occurs.” |

~. Depends on

~ wrequirements
4 sMaturity Level 1»

Configuration Management

Id="Dev_7"

Text = "The system shall
provide configuration
management capabilities to
identify, document, control,
and ensure the functional
and physical characteristics
of all configuration tems. ©

Figure 48: Product Recovery
3.6.5 Del_5 System Recover

The system shall be able to automatically recover to a previous known stable state when a system failure
occurs.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] System Recover[ System Recover ]J

aregquirements
aMaturity Level 3»

Delivery Failure Restoration
Id ="Del_3.1"

Text = "The system shall be
able to automatically restore
the environment to a
previous state when the
deployment of a new
release fails or is canceled.”

i
|
|
|

wderiveRegts

arequirements
aMaturity Level 1»
Syste:lfﬂecover | _ strace» | i
Deployment
Id ="Del_&"
Text = "The system shall be
able to automatically wrequirements
recover to a previous known | — «Maturity Lewvel 1»
stable state when a system . EEFIEI'I-:IE on Configuration Management
failure occurs.” o — Id="Dev_7"
3 Text = "The system shall

provide configuration
management capabilities to
identify, document, control,
and ensure the functional
and physical characteristics
of all configuration tems. ”

Figure 49: System Recover
3.6.6 Del_6 Configuration Item Integrity

The system shall ensure the integrity of all configuration items in transit and identify any unauthorized
changes to a deployed configuration item.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Configuration ftem Integrity [ Canfiguration item Integrity ]J

xdocumentations
In DevSecOps, the environment in which a configuration

item iz deployed should also be a configuration item using
infrastructure as code.

[ krequirements
| a«Maturity Level 2»
Infrastructure as Code
' Id="Gov_6.3"
I . Text = "The system shall
| - wraces _ _ _ _ _ _ enforce the use of
machine-readable definition
! ' files in managing and
I | provisioning computing
| | infrastructure.”
| s
wregquirements
«Maturty Lovel 2» | _strace» i £
Configuration ltem Integrity R sison Management
|d ="Del_g"
Text = "The system shall . _ _sracer [ «Capabiitys
ensure the integrity of all Deployment
configuration items in transit
and identify any
unauthorized changestoa | _ _“73%% «Capakitys (c)
deployed configuration item.” Software Assurance
- —
N
/ AY
! 5,
atracen | \Depends an
/ AN
N
! Y
3y
i «requirements
urgquirgmgntn ((MEtLII'ﬂ')" Level 2»
«Maturity Level 2» Chain of Custody
Unauthorized Changes Id="Dev_7.9"
Id = "Dev_7.10" Text = "The system shall
Text = "The system shall be maintain a chain of cusiody
able to automatically for all configuration items."
identify any unauthorized
changes to a configuration
iterm.”

Figure 50: Configuration Item Integrity
Documentation:

In DevSecOps, the environment in which a configuration item is deployed should also be a configuration
item using infrastructure as code.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.7 7 System Infrastructure
3.7.1 Sys_1 System's Non-functional Requirements

The system's infrastructure shall be designed and implemented to meet the organizations or specific
product under development's reliability, security, dependability, scalability, and regulatory needs.

req [requirement] System’s Mon-functional Requirements [ (g System’s Non-functional Requirements ]'J

wdocumentation»

The system’s infrastructure can
be made up of cloud services,
on-premises hardware, or a
combination of both. | may also
be made of multiple networks
which may or may not be

interconnected.
T grequirements
\ «Maturity Level 2»
Immutable Logs
! ld="8Sys 51.1"
! Text = "The system
\ transaction logs should be
\ T imrmutable.”
-
i -
cltaturty Lovel «deriveReqts
System's Non-functional -
Requirements o -
Id="Sys_1" '
Text ="The system's
infrastructure shall be
designed and implemented
to meet the organizations or
specific product under atraces =Capabilitys @
development's reliability, = T T T T|Hosting Services
security, dependability,
scalability, and regulatory
needs.”

Figure 51: System's Non-functional Requirements
Documentation:

The system'’s infrastructure can be made up of cloud services, on-premises hardware, or a combination of
both. It may also be made of multiple networks which may or may not be interconnected.

3.7.2 Sys_2 Automated Provisioning

The system shall enable infrastructure provisioning through automated mechanisms with machine-readable
definition files.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Automated Provisioning [ Automated Provisioning ]J

aCapabilitys
ing Services

©

straces

o
«requirements
«Maturity Level 3»

Automated Provisioning

ld="3ys_2"

Text = "The system shall
enable infrastructure
provisioning through
automated mechanisms
with machine-readable
definition files.”

wrequirements
«Maturity Level 2»

Infrastructure as Code

wtraces

ld="Gov_§.3"

Text = "The system shall
enforce the use of
machine-readable definition
files in managing and
provisioning computing
infrastructure.”

Figure 52: Automated Provisioning

3.7.3 Sys_3 System Maintenance

The system shall be continuously monitored and enhanced based on issues regarding performance,

capacity, security, compliance, and risk tolerance.

[(veq yemawnert] Zywme Unmnrmeca [ Qg Zater Mardezanca | |

aropaeets
ANty Lewel ds

] Syatemn Marderence
e Sy T

Tacl = “Tha syste shal be

|
[ aTamani, oo Continuousy menitared and
P Teonanced tased tn 1esses
y TRQArng parformarce
| | capacty, oty
| | aaies comptiance. and riax

“tabwancs *

Cupends on

sterwefionts

VAo

i .

STRATETETL,

biatarty Level e ’

Loy Mnagermers

wid="Sys 327

wirmces | Téal = “Tha spstam sl
molde tobidies tha
L0 100 SO RgANLn, g
anatrss, and bog auMng "

ATACLEACWCE
eMadsty Leved 34

| Intraseruceure Telemetry

= Sy 3T

Taet = “Tha systen shud

contuoush colect

vty Sttty of

both the dev elspment and

LOMMION G pbtaion

|
|
|
|
|
|
|
|

| 1 -
1d= "y

e

'ﬁlqm;e Mo roring
= MYl = T sy slem snad

RME0AME, AN WY
perfumance

gareTeTh
chiatarty Lavet e
Spstem Asconmahdny and
Traceatesry
4= "Gow_8 &
Toat = “TRs oy stem ool
'lxw wecerty-reiee
= |amieos and syRam
corbgursbon changes %
1 ity an Whase tehal
I 22900 wan taosn ™

areguerects

aVadurity Level 2n
| Matiies
WG
Tax! & "The system shad be atés to
Mty coladd Coawde s Segisg
MOUNCE 25000 ed W DICAUCIV Y refandty
(AR Securly, Andd (meratian f S0th e
Sy siam and the product under devekement
SO ARACCIIM U M CINAOZMA. MRS dnd
methoss. and modelo wed feoughout e
(OSSN 10N 1o Mliwve 0
COANCLIAOM S OLISTIV RS 3nd Dusiness feods

wrace e
“rRgaTETETI «rBjareTan,
atarty Level Je ‘

3.AT E
19 = Sy _34°
hyowye, sotwyre
mostor e rem
combpyaton asd

unzer devepment
CrnArinmanis”

romaker”

abtatarty Luvel 4o
Anomaly Reparang

Tiat = “Tha sy sterm stak

p & order %
1Sy a0 Hpon any

Figure 53: System Maintenance

3.7.3.1  Sys_3.1 Infrastructure Telemetry

The system shall continuously collect infrastructure telemetry of both the development and operational

application under development environments.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




3.7.3.2 Sys_3.2 Log Management

The system shall include capabilities that include log aggregation, log analysis, and log auditing.
3.7.3.3  Sys_3.3 Performance Monitoring

The system shall monitor hardware, software, database, and network performance.
3.7.3.4  Sys_3.4 Anomaly Reporting

The system shall monitor the system configuration and performance in order to identify and report any

anomalies.
3.74 Sys_4 Communication

The system shall support multiple forms of communication in order to allow individuals to tailor the ways
in which information is communicated to them.

req [requirement] Communication [ ) Communication ]J

arequirements
aMaturity Level 3»

Communication
Id ="Sys_4"
Text = "The system shall

sdocumentations

Human factors engineering should be taken
into account when designing and

atraces =Capabiitys @
= — — —|Hosting Services

implementing the system’s communication

mechanisms. The speed, frequency, and «Capabifitys
accessibilty of data impacts how andifthe | — — — T ] support multiple forms of ke “EECE” —|Monitor & Control @
information is used in terms of communication in order to
appropriateness and timeliness as it relates Sllow individuals to tailor the
to actions and decisions. 7 i -

way s in which information is atraces Capatitys @

communicated to them." Planning & Tracking —

% T T T
|
|
|

Depends on |
| |

| Depends on

|
|
| I
wrequirements
«Maturity Level 3»
Development Information
Radiator

|
|
|
|
Depends on |
|

Depends on |

wrequirements
«Maturity Level 2»

Stakeholder Review

wrequirements
aMaturity Level 2»

Decision Point Notifications

wrequirements
a«Maturity Level 2»
Testing Information
Radiator

wrequirements
a«Maturity Level 2»

Metrics

Id="Dev_g"

Text = "The system shall
support the near real-time
reporting of development
status to all relevant
stakeholders.”

Id="Gov_4"

Text = "The system shall be
able to automatically collect,
cormrelate and display
metrics associated with
productivity, reliability,
quality, security, and
operations of both the
system and the product
under development and
associated technologies,
approaches, and methods,
and models used
throughout the product's life
in order to achieve an
organization's objectives
and business needs.”

ld="Gov_5.1.3"

Text = "The system shall be
able to share project plans
and the status of current
activities with all relevant
stakeholders in a
transparent and continuous
way."

ld="Gov_57.2"

Text = "The system shall
notify relevant stakeholders
when a work itemis waiting
for a decision to be made
prior to continuing through
the defined work flow.”

Id="Tes_§"

Text ="The system shall
support the near real-time
reporting of test results to all
relevant stakeholders.”

Figure 54: Communication

Documentation:

Human factors engineering should be taken into account when designing and implementing the system's
communication mechanisms. The speed, frequency, and accessibility of data impacts how and if the
information is used in terms of appropriateness and timeliness as it relates to actions and decisions.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




3.75 Sys_5 Information Management

The system information tools and services shall be integrated into the relevant DevSecOps pipelines within
the system and product under development lifecycles processes as needed to meet the organization's,
project's, and team'’s informational needs.

vty
Aoy ot

et mrre v e
T AT
Tawt = The e sl B T0WY o ORI 92
FESROETAE B0t HXIOCH W O 300 o Ve
A ] D D
B s e
-3 30Ees PRI

-
e regmem v ey
e L S

Figure 55: Information Management
3.75.1 Sys 5.1 System Logs

The system transaction logs shall be centrally located and stored in a format that meets the organization's,
project's, and team's information needs.

3.75.1.1 Sys_5.1.1 Immutable Logs

The system transaction logs should be immutable.

3.75.1.2 Sys 5.1.2 Log Visualization & Analysis

The system shall support the ability to visualize log data in various ways and perform log analysis.
Documentation:

This helps to find anomalous patterns.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.7.5.2  Sys_5.2 Information Storage

The system shall store information collected in such ways as to allow information producers and
consumers the ability to rapidly and consistently gather, store, transform, and retrieve the information
based on a defined retention period.

3.7.5.2.1  Sys_5.2.1 Information Security, Retention, and Disposal

The system shall secure, retain, and dispose of information being collected, stored, processed, or
transmitted based on the sensitivity and privacy concerns and the laws and regulations associated to the
given information.

3.75.2.1.1 Sys_5.2.1.1 Policy as Code
The system shall implement policy as code.
Documentation:

With policy as code, the system can incorporate software versions of policies earlier and more effectively
into lifecycles, compared to manual methods. Relevant stakeholders can apply policies more consistently
and more rapidly to any number of development flows and deployments, at different stages of DevSecOps
pipelines and in other contexts. As the numbers of applications and the policies governing them rise, policy
as code also facilitates automated testing of adherence to policies that is efficient and error free, compared
to manual testing that is rapidly overwhelmed. Through use of policy as code, relevant stakeholders can
ensure that as the application and IT activities of a given enterprise or organization increase, it can
continue to apply security, compliance, and other rules with reliability, scalability, and cost-effectiveness
[Milgram 2020].

3.7521.2 Sys_5.2.1.2 Vulnerability Management

The system shall support Security Content Automation Protocol (SCAP) [Wikipedia 2021b] and container
configuration policies. These policies can be defined as needed.

Documentation:

Provides automated policy enforcement.

3.7.5.2.2 Sys_5.2.2 Need to Know

The system shall control access to information based on an individual's or application's needs.
3.7.5.2.3  Sys_5.2.3 Information Security Risks

Security risks of the underlying infrastructure shall be measured and quantified, so that the total risks and
impacts to software applications are understood.

3.7.5.2.4  Sys_5.2.4 Disaster Recovery
A disaster recovery plan shall be documented to provide mitigations in the event of a disaster.
Documentation:

At a minimum, the plan must include (a) a list and description of possible disasters (b) an inventory of
assets and services, (b) the location of data, (c) a data backup approach, (d) an identification of the disaster
recovery team.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



3.7.6 Sys_6 Infrastructure Configuration Management

An infrastructure configuration plan shall be developed that accounts for all infrastructure configuration
items.

req [reguirement] Infrastructure Configuration Management[ |fg| Infrastructure Configuration Management ]'J

wrequirements
«Maturity Level 2»

Infrastructure
Configuration Management
Id="Sys 6"

_tracgr  _|Text="An infrastructure
configuration plan shall be
l developed that accounts for

| all infrastructure atraces «Gapabilitys (’“
— | cJ
sCapatiitys () configuration items.” a = =
Hosting Services | — — | — Configuration Management
T | o |
|
| | |
«traces
| h T | traces
| I I |
W I | I
wrequirements | I yr

aMaturity Level 2x srequirements
| straces "
Asset Inventory gl— - - - = - = -~ «Maturity Level 3»
Id="Sys_6.1" | Infragtructure as Code

Text = "An inventory of all |atraces Configuration
system infrastructure assets | | |d="8ys_6.2"

associated within the — — — — — — — — — Text="The systemshall
system shall be maintained.” maintain infrastructure as
code using a configuration
management application.”

Figure 56: Infrastructure Configuration Management

3.76.1 Sys_6.1 Asset Inventory

An inventory of all system infrastructure assets associated within the system shall be maintained.
3.7.6.2  Sys_6.2 Infrastructure as Code Configuration

The system shall maintain infrastructure as code using a configuration management application.
3.7.7 Sys_7 Automated Patch Management

The system shall enable a process by which the operating system software and supporting services are
upgraded automatically.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



req [requirement] Automated Patch Management[ [f5) Automated Patch Management ]J

arequirements
aMaturity Level 3»

Automated Patch
Management
Id="8ys_7"
Text = "The system shall
enable a process by which

atraces

Id="8ys 7.1"

Text = "The system shall
automatically test new
patches on applications
which run on it, informing
appropriate parties if

decision points are reached.”

T

|atraces

sGapabiitys @
Verification & Validation

Id="8ys 7.2"

Text = "The system shall
execute configuration
scripts that provision the
infrastructure, security
policy, environment, and the
application system
components.”

|
|
|
|
|
|
the operating system «Capabiitys (¢ |
eCapablitys  (C)| _ _ atraces ) software and supporting Deployment |
Hosting Services | services are upgraded
automatically.” |
| | |
| | |
lutracen l l
| A |
| | |
| I |
v | v wiraces
arequirements | arequirementy arequirements
- “""it“;“; '—:“hef” ; - — — 3 aMaturity Level 3s aMaturity Level 4»
utomated Fatch Testing atraces Configuration Scripts Immutable Infrastructure

— — 3
atraces

Id="8ys 7.3"

Teut = "The system shall
deploy an immutable
infrastructure.”

wlraces
| |
«Capabditys CE‘
Software Assurance

edocumentation:

Containers are an example of an immutable
infrastructure.

The concept of immutable infrastructures is an M
strategy in which deployed components are replaced in
their entirety, rather than being updated in place.
Deploying an immutable infrastructure requires
standardization and emulation of comman infrastructure
components to achieve consistent and predictable
resufts.

Figure 57: Automated Patch Management

3.7.7.1

Sys_7.1 Automated Patch Testing

The system shall automatically test new patches on applications which run on it, informing appropriate
parties if decision points are reached.

3.7.7.2

Sys_7.2 Configuration Scripts

The system shall execute configuration scripts that provision the infrastructure, security policy,
environment, and the application system components.

3.7.7.3

Sys_7.3 Immutable Infrastructure

The system shall deploy an immutable infrastructure.

Documentation:

Containers are an example of an immutable infrastructure.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



The concept of immutable infrastructures is an IT strategy in which deployed components are replaced in
their entirety, rather than being updated in place. Deploying an immutable infrastructure requires
standardization and emulation of common infrastructure components to achieve consistent and predictable
results.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Appendix

Requirements To Requirements Relationships Matrix

IR ot Track Ounges Adsood)
T e 0 Tonch geogiess with 5
o B Goe_t Tash Creaton
o [ Coe v Merics
WO Coe T Knowhed ge Mo
LK Coe 1 Sy Aswararce

(& Des ) Napaing s Teats
& [ Dov ¢ Sacure Satware O
& [8 Dos 7 Code Rewemn

WIE e Ml ety
LR oo ] Moquermest Assocul)
W I Ten ) Aumeraten) Tesieg

& LK T 7 Was-phate Tewng
£ L & Debwery

[ Del 3 TSV Service Desk
& [ DeL 1 Canseccun Daivery

I 7o & Tosting whwnanse 2add

%
!

ol
08 o ) Track Chwe [T

% 0ul 1 Relwase Varugerers [

|
$—fomt—ap—t b
i

I IO IO I I I |
Sadetiet 4o
: O o [ I I |
Y TR IO TR IO O I

Figure 58: Requirements to Requirements Relationship Matrix

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



Capabilities To Requirements Relationships Matrix

i

]
i
i
i

(L) Satmars Aswararce Lewel 1
(1) Sotare Aueararce el 4

Wi emhreet Level §
L Sevwton Denckoprnent Level 2

]
| Svwsan Dwselopreet Lol 4

(Vv & Vabd o Level 2 |
[ Vertheuson & Yabdoson iewly

Figure 59: Capabilities to Requirements Relationship Matrix

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

93




References/Bibliography

URLs are valid as of the publication date of this document.

[Chrissis 2011]
Chrissis, Mary Beth; Konrad, Mike; & Sandy Shrum. CMMI for Development: Guidance for
Process Integration and Product Improvement - Third Edition. Pearson Education, Inc. 2011.

[U.S. General Services Administration 2021]

U.S. General Services Administration. DevSecOps Guide: Standard DevSecOps Platform
Framework. U.S. General Services Administration Website. May 17, 2021 [accessed].
https://tech.gsa.gov/guides/dev_sec_ops_guide.

[U.S. Department of Defense 2020]
Department of Defense. DoD Instruction 5000.87, Operation of the Software Acquisition
Pathway. October 2, 2020.

[Wikipedia 2021a]
Wikipedia. Code coverage. Wikipedia Website. February, 1 2021 [accessed].
https://en.wikipedia.org/wiki/Code_coverage.

[The MITRE Corporation 2021a]
The MITRE Corporation. CVE. CVE Website. July 13, 2021 [accessed]. https://cve.mitre.org

[The MITRE Corporation 2021b]
The MITRE Corporation. CWE — Common Weakness Enumeration. CWE Website. July 13, 2021
[accessed]. https://cwe.mitre.org

[IEEE 2021]

IEEE. IEEE Standard for DevOps: Building Reliable and Secure Systems Including Application
Build, Package, and Deployment. IEEE Std 2675-2021. Software & Systems Engineering
Standards Committee of the IEEE Computer Society, IEEE SA Standards Board, Approved 9
February 2021.

[Girard 2015]

Girard, John P. & Girard, JoAnn L. (2015). Defining knowledge management: Toward an applied
compendium. Online Journal of Applied Knowledge Management. Volume 3. Issue 1. 2015. Page
14,

[Milgram 2020]

Milgram, Jason. Policy as Code: how we got there and why you benefit. LinkedIn. Published
October 8, 2020. https://www.linkedin.com/pulse/policy-code-how-we-got-why-you-benefit-
jason-milgram

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



[Study.com 2020]
Study.com. Scrum Board: Definition & Examples. Study.com Website. January 5, 2020
[accessed]. https://study.com/academy/lesson/scrum-board-definition-examples.html.

[Wikipedia 2021b]
Wikipedia. Security Content Automation Protocol. Wikipedia Website. May 17, 2021 [accessed].
https://en.wikipedia.org/wiki/Security_Content_Automation_Protocol.

[Wikipedia 2021c]
Wikipedia. Software Bill of Materials. Wikipedia Website. February 1, 2021 [accessed].
https://en.wikipedia.org/wiki/Software_bill_of_materials.

[U.S. Army 2021d]
Wikipedia. Kanban board. Wikipedia Website. February 1, 2021 [accessed].
https://en.wikipedia.org/wiki/Kanban_board.

[Shevchenko 2020]

Shevchenko, Nataliya. An Introduction to Model-Based Systems Engineering (MBSE) [blog
post]. SEI Blog. January 5, 2020 [accessed]. https://insights.sei.cmu.edu/sei_blog/2020/12/an-
introduction-to-model-based-systems-engineering-mbse.html.

[Scaled Agile, Inc. 2021]
Scaled Agile, Inc. Value Steams. Scaled Agile Framework (SAFe). April, 27 2021 [accessed].
https://www.scaledagileframework.com/value-streams/.

[Joint Task Force Transformation Initiative Interagency Working Group 2020]
Joint Task Force Transformation Initiative Interagency Working Group. Security and Privacy
Controls for Information Systems and Organizations. NIST Special Publication. (SP) 800-53,
Revision. 5. https://doi.org/10.6028/NIST.SP.800-53r5

[Woody 2020]

Woody, Carol; Chick, Timothy; Reffett, Aaron; Pavetti, Scott; Laughlin, Richard; Frye, Brent; &
Bandor, Michael. 2020. DevSecOps Pipeline for Complex Software-Intensive Systems: Addressing
Cybersecurity Challenges. The Journal on Systemics, Cybernetics and Informatics: JSCI, Volume
18. Number 5. 2020. Pages 31-36. ISSN: 1690-4.

[U.S. Department of Defense 2018]

U.S. Department of Defense. DoD Reference Architecture Description,
https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref _Archi_Description_Final_v1 18Junl
0.pdf .

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.



REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY
(Leave Blank)

2. REPORT DATE
August 2021

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

DevSecOps Platform-Independent Model: Requirements and Capabilities

5. FUNDING NUMBERS
FA8702-15-D-0002

6. AUTHOR(S)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. P

ERFORMING ORGANIZATION

REPORT NUMBER
CMU/SEI-2021-TR-010

Unclassified/Unlimited, DTIC, NTIS

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
SEI Administrative Agent AGENCY REPORT NUMBER
AFLCMC/AZS nfa
5 Eglin Street
Hanscom AFB, MA 01731-2100

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 128 DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

14. SUBJECT TERMS

9

15. NUMBER OF PAGES

8

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

uL

NSN 7540-01-280-5500

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

96

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.




