

REV-03.18.2016.0

DevSecOps Platform-Independent Model:

Requirements and Capabilities

Timothy A. Chick

Brent Frye

Aaron Reffett

Natasha Shevchenko

Carol Woody
Joseph Yankel

August 2021

TECHNICAL REPORT

CMU/SEI-2021-TR-010

Program Name

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution.

http://www.sei.cmu.edu

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not

be construed as an official Government position, policy, or decision, unless designated by other

documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,

or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom

AFB, MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited

distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely

distributed in written or electronic form without requesting formal permission. Permission is required

for any other external and/or commercial use. Requests for permission should be directed to the

Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie

Mellon University.

DM21-0712

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table of Contents

Abstract 6

1 Introduction 7
1.1 What is a DevSecOps Pipeline and How Does it Evolve? 7
1.2 What is the DevSecOps Platform-independent Model and Why is it Needed? 10
1.3 What is a Platform-independent Model? 12
1.4 Using the DevSecOps PIM 14

1.4.1 Getting Started 26

2 Dictionaries 28
2.1 DevSecOps Maturity Levels 28
2.2 Glossary 29

3 System Requirements 31
3.1 1 Governance 31

3.1.1 Gov_1 Track Changes Associated to Requirements 31
3.1.2 Gov_2 Track progress with Scrum/Kanban Boards 31
3.1.3 Gov_3 Task Creation 33
3.1.4 Gov_4 Metrics 35
3.1.5 Gov_5 Knowledge Management 37
3.1.6 Gov_6 System Assurance 43
3.1.7 Gov_7 Defect and Issue Tracking 45
3.1.8 Gov_8 Non-compliance Tracking 46
3.1.9 Gov_9 Document and Manage Identified Risks 47

3.2 2 Requirements 48
3.2.1 Req_1 Document Requirements 48
3.2.2 Req_2 Requirements Abstraction Layers 50
3.2.3 Req_3 Requirements Prioritization 51
3.2.4 Req_4 Requirements Validation 52
3.2.5 Req_5 Change Management of Requirements 53
3.2.6 Req_6 Requirements Authorization 53

3.3 3 Architecture & Design 54
3.3.1 Arc_1 Requirement Mapping 54
3.3.2 Arc_2 Implementation Mapping 55
3.3.3 Arc_3 MBSE 56
3.3.4 Arc_4 Software Assurance 58

3.4 4 Development 59
3.4.1 Dev_1 Mapping to Requirements 59
3.4.2 Dev_2 Mapping to Architecture 59
3.4.3 Dev_3 Mapping to Tests 60
3.4.4 Dev_4 Secure Software Development 60
3.4.5 Dev_5 Code Reviews 62
3.4.6 Dev_6 Orchestration 64
3.4.7 Dev_7 Configuration Management 65
3.4.8 Dev_8 Integrated Development Environment (IDE) 67
3.4.9 Dev_9 Development Information Radiator 68

3.5 5 Test 69
3.5.1 Tes_1 Manual Testing 69
3.5.2 Tes_2 Requirement Association 70
3.5.3 Tes_3 Automated Testing 71
3.5.4 Tes_4 Code Coverage 73
3.5.5 Tes_5 Penetration and Fuzz Testing 74
3.5.6 Tes_6 Testing Information Radiator 74
3.5.7 Tes_7 Multi-phase Testing 75

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.6 6 Delivery 77
3.6.1 Del_1 Release Management 77
3.6.2 Del_2 ITSM Service Desk 78
3.6.3 Del_3 Continuous Delivery 78
3.6.4 Del_4 Product Recovery 80
3.6.5 Del_5 System Recover 81
3.6.6 Del_6 Configuration Item Integrity 82

3.7 7 System Infrastructure 84
3.7.1 Sys_1 System's Non-functional Requirements 84
3.7.2 Sys_2 Automated Provisioning 84
3.7.3 Sys_3 System Maintenance 85
3.7.4 Sys_4 Communication 86
3.7.5 Sys_5 Information Management 87
3.7.6 Sys_6 Infrastructure Configuration Management 89
3.7.7 Sys_7 Automated Patch Management 89

Appendix 92

References/Bibliography 94

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Figures

Figure 1: Integrated Pipeline and Infrastructure 8

Figure 2: DevSecOps Infinity Diagram 9

Figure 3: DevSecOps Capability Delivery Model 10

Figure 4: Reference and Solution Architecture Relationship 13

Figure 5: PIM and PSM Relationship to Platform Instantiations 13

Figure 6: DevSecOps System Requirements 14

Figure 7: Requirements to Maturity Levels Matrix 16

Figure 8: DevSecOps Capabilities 18

Figure 9: DevSecOps Pipeline 26

Figure 10: Track Changes Associated to Requirements 31

Figure 11: Track Progress with Scrum/Kanban Boards 32

Figure 12: Task Creation 34

Figure 13: Metrics 36

Figure 14: Knowledge Management 38

Figure 15: System Assurance 44

Figure 16: Defect and Issue Tracking 45

Figure 17: Non-compliance Tracking 46

Figure 18: Document and Manage Identified Risks 47

Figure 19: Document Requirements 48

Figure 20: Requirements Abstraction Layers 51

Figure 21: Requirements Prioritization 52

Figure 22: Requirements Validation 52

Figure 23: Change Management of Requirements 53

Figure 24: Requirements Authorization 54

Figure 25: Requirement Mapping 55

Figure 26: Implementation Mapping 56

Figure 27: MBSE 57

Figure 28: Software Assurance 58

Figure 29: Mapping to Requirements 59

Figure 30: Mapping to Architecture 60

Figure 31: Mapping To Tests 60

Figure 32: Secure Software Development 61

Figure 33: Code Reviews 63

Figure 34: Orchestration 64

Figure 35: Configuration Management 65

Figure 36: Integrated Development Environment (IDE) 68

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 37: Development Information Radiator 69

Figure 38: Manual Testing 70

Figure 39: Requirement Association 71

Figure 40: Automated Testing 72

Figure 41: Code Coverage 73

Figure 42: Penetration and Fuzz Testing 74

Figure 43: Testing Information Radiator 75

Figure 44: Multi-phase Testing 76

Figure 45: Release Management 77

Figure 46: ITSM Service Desk 78

Figure 47: Continuous Delivery 79

Figure 48: Product Recovery 81

Figure 49: System Recover 82

Figure 50: Configuration Item Integrity 83

Figure 51: System's Non-functional Requirements 84

Figure 52: Automated Provisioning 85

Figure 53: System Maintenance 85

Figure 54: Communication 86

Figure 55: Information Management 87

Figure 56: Infrastructure Configuration Management 89

Figure 57: Automated Patch Management 90

Figure 58: Requirements to Requirements Relationship Matrix 92

Figure 59: Capabilities to Requirements Relationship Matrix 93

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Tables

Table 1: DevSecOps Capability Definitions 19

Table 2: DevSecOps Maturity Levels 28

Table 3: Glossary 29

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Abstract

Just as products evolve and adapt over time in order to continuously provide value to their users in a secure

and cost-effective way, so too must the DevSecOps pipeline. The DevSecOps pipeline evolution is

generally driven by changes to organizational business cases, stakeholder requirements, incremental

process improvements, and risk mitigations. Given the socio-technical nature of a DevSecOps pipeline, an

organization must be mindful in how it instantiates and evolves its DevSecOps pipeline in order to

improve the pipeline’s ability to effectively envelop participants, processes, and technologies in a secure

way, while minimize any negative side effects. The DevSecOps platform-independent model (PIM),

outlines the activities necessary to consciously and predictably evolve the pipeline, while providing a

formal approach and methodology to building a pipeline tailored to an organization's specific

requirements. The use of a DevSecOps platform-specific model (PSM) allows organizations to perform

trade-off analyses among alternatives prior to changing the current pipeline instantiation, thus minimizing

negative disruptions to the organization’s ability to predictably deliver and maintain its products. It allows

the organization to reason through the impact of change and to identify where the change should occur in

order to provide the most value. To support the analysis and decision-making process, measures must be

defined and corresponding data collected in order to provide insight into the decision-making challenges

associated with incorporating new capabilities and enhancements into a DevSecOps pipeline.

While organizations, projects, and teams desire to reap the flexibility and speed expected through the

implementation of DevSecOps principles, practices, and tools, missing reference material is needed to

ensure that DevSecOps is implemented in a secure, safe, and sustainable way. The DevSecOps PIM has

been created to address this need. It enables organizations, projects, teams and acquirers to

• specify the DevSecOps requirements to the lead system integrators who need to develop a platform-

specific solution that includes the designed embedded system and continuous integration/continuous

deployment (CI/CD) pipeline

• assess and analyze alternative pipeline functionality and feature changes as the embedded system

evolves

• apply DevSecOps methods to complex products that do not follow well-established software

architectural patterns used in industry

• provide a basis for threat and attack surface analysis to build a cyber assurance case in order to

demonstrate that the product and the DevSecOps pipeline are sufficiently free from vulnerabilities and

that they function only as intended

The DevSecOps PIM provides

• consistent guidance and modeling capability that ensure all proper layers and development concerns

relevant to the organization’s, project’s, and team’s needs are captured

• the basis for creating a DevSecOps PSM which can be incorporated into the product’s model-based

engineering approach as the DevSecOps model is included in the product’s model. This allows proper

modeling of DevSecOps design trades within a project’s analysis of alternatives (AoA) processes,

resulting in less costly and more secure products.

• the basis for metrics and documentation of trade-offs to be captured and analyzed through the model-

based engineering approach. The model provides dynamic matrices of if those points were addressed,

how they were addressed, and how well the corresponding (to the points) module is covered.

• the basis for performing risk modeling against decisions and DevSecOps model-based engineering to

ensure security controls and processes are properly selected and deployed

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1 Introduction

1.1 What is a DevSecOps Pipeline and How Does it Evolve?

A DevSecOps pipeline is a means for building products that support an organization’s mission. To build a

pipeline, the details that define what the various technologies used will address must first be prepared by

developing business cases and requirements. These cases and requirements are further refined, feeding the

pipeline and establishing the development cadence, as shown in Figure 1: Integrated Pipeline and

Infrastructure.

Tools and infrastructure capabilities are then selected to allow designers, architects, developers, testers,

verifiers, users, operators, and other relevant stakeholders to work together to produce the products needed

to meet the objectives using the pipeline (as depicted in the Products box in Figure 1).

In addition, a parallel group of participants implements and supports the automation that allows product

creators to build and facilitate management oversight (as depicted in the Capability Delivery box in Figure

1).

Each of these roles requires specialized technical expertise, and each branch relies on the same tools,

repositories, and processes structured through the pipeline. The pipeline must be structured to allow each

relevant stakeholder to access what they need to perform their role, and the processes must be arranged so

that each activity flows through the pipeline and is easily handed off from one role to the next all the way

from planning to delivery [Woody 2020].

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 1: Integrated Pipeline and Infrastructure

Most literature discussing DevSecOps depicts it using some variation of the infinity diagram shown in

Figure 2: DevSecOps Infinity Diagram. This is a high-level conceptual diagram since DevSecOps is a

cultural and engineering practice that breaks down barriers and opens collaboration between the

development, security, and operations organizations using automation to focus on rapid, frequent delivery

of secure infrastructure and software to production.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 2: DevSecOps Infinity Diagram

The application and pipeline are built incrementally and are continuously updated to address changing

business requirements as well as security and technology demands. It encompasses the intake to the release

of software, and manages those flows predictably, transparently, and with minimal human

intervention/effort [U.S. General Services Administration 2021]].

DevSecOps isn’t simply a technology, a pipeline, or a system. It is an entire socio-technical environment

that encompasses the people in certain roles, the processes that they are fulfilling, and the technology used

to provide a capability that results in a relevant product or service being provided to meet a need.

Thus, an organization must be mindful of what it is building to instantiate a DevSecOps pipeline that

fulfills its particular needs. Unfortunately, there is no one-size-fits-all pipeline. Each DevSecOps pipeline

must be tailored to fulfill the needs of a particular program. In some cases, the capability delivery could be

more complicated than the products themselves.

The DevSecOps pipeline isn’t simply instantiated once and used throughout the product’s lifecycle. It is

continuously evolving, as the product evolves. The speed and rate of pipeline evolution is affected by the

processes and roles that change at a much slower pace than technology, and most organizations don’t start

by fully automating everything. Instead, the automation of processes is realized over time.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 3: DevSecOps Capability Delivery Model

The evolutionary aspects of the DevSecOps capability delivery pipeline are represented in Figure 3:

DevSecOps Capability Delivery Model. The DevSecOps Capability Delivery Model adds several new

activities to the traditional DevSecOps infinity diagram to represent the mindful nature of establishing and

evolving a project’s capability delivery pipeline. The diagram details an activity flow that begins with

product requirements which feed the teams’ project planning, and include the capability delivery needs of

the product. This, in turn, feeds the DevSecOps PIM, which is used to create a DevSecOps PSM. The PSM

is a representation of the current system and its planned updates, preferably maintained using a model-

based system engineering tool.

This DevSecOps model captures all socio-technical aspects of the project’s specific capability delivery

pipeline. It allows the organization to perform trade-off analyses among alternatives to ensure that the

project’s capability delivery pipeline is operating in a cost-effective and secure way, while consistently

meeting the needs of the product and all relevant stakeholders.

Based on the model, the capability delivery pipeline is configured and instantiated by the DevSecOps

Configurator. The DevSecOps Configurator is analogous to the concept of Infrastructure as Code (IaC) and

Configuration as Code (CaC). The product is developed, secured, and operationalized by using the

instantiated capability delivery pipeline.

Throughout the lifecycle of the product, data is continuously collected via sensors. This data must be

analyzed and evaluated via the Risk Analysis Model. If new risks are identified, such as security

vulnerabilities or the possibility of not meeting contractual delivery dates, then the Model Analytics

Engine is used to evaluate alternatives to the current capability delivery pipeline instantiation. Resulting

changes are made to the DevSecOps Master Model and the process repeats.

Requirements changes require risk analysis as well as an evaluation of the capability delivery which may

be impacted.

1.2 What is the DevSecOps Platform-independent Model and Why is it
Needed?

Organizations struggle in applying DevSecOps practices and principles in heavily regulated and

cybersecurity-constrained environments such as banking, healthcare, and government, because they lack a

consistent basis for managing software intensive development, cybersecurity, and operations in a high-

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

speed lifecycle. An authoritative reference is needed to enable organizations to fully design and execute an

integrated DevSecOps strategy in which all stakeholder needs are addressed. An example is engineering

security into all aspects of the DevSecOps pipeline in order to demonstrate and test the addressing of

security concerns for both the pipeline and the product. While large organizations have successfully

implemented some aspects of DevSecOps on smaller initiatives, they can struggle to implement these same

techniques on large-scale projects. Even in small, relatively successful initiatives, substantial loss of

productivity can occur when technical debt and insufficient security and operational practices are in place

due to the lack of knowledge, experience, and reference material needed to fully design and execute an

integrated DevSecOps strategy in which all stakeholder needs are addressed.

While organizations, projects, and teams desire to reap the flexibility and speed expected through the

implementation of DevSecOps principles, practices, and tools, missing reference material is needed to

ensure DevSecOps is implemented in a secure, safe, and sustainable way. The DevSecOps platform-

independent model (PIM) has been created to address this need. It enables organizations, projects, teams

and acquirers to

• specify the DevSecOps requirements to the lead system integrators tasked with developing a platform-

specific solution that includes the designed system and continuous integration/continuous deployment

(CI/CD) pipeline

• assess and analyze alternative pipeline functionality and feature changes as the system evolves

• apply DevSecOps methods to complex products that do not follow well-established software

architectural patterns used in industry

• provide a basis for threat and attack surface analysis to build a cyber assurance case in order to

demonstrate that the product and DevSecOps pipeline are sufficiently free from vulnerabilities and that

they function only as intended.

While one can search “DevSecOps” on the internet and find a lot of literature that paints a picture of what

DevSecOps could be or should be, this literature is not definitive and requires a considerable amount of

interpretation, particularly for heavily regulated and cybersecurity-constrained environments. This results

in

• DevSecOps perspectives not being fully integrated in organizational guidance and policy documents

• projects being unable to perform an analysis of alternatives (AoA) regarding the DevSecOps pipeline

tools and processes

• multiple projects using similar infrastructure and pipelines in different and incompatible ways, even

within the same organization

• suboptimal tools and security controls

The DevSecOps PIM provides

• consistent guidance and modeling capability that ensure all proper layers and development concerns

relevant to the organization’s, project’s, and team’s needs are captured

• the basis for creating a DevSecOps platform-specific model (PSM) which can be incorporated into the

product’s model-based engineering approach as the DevSecOps master model is included in the

product’s model. This allows proper modeling of DevSecOps design trades within a project’s AoA

processes, resulting in less costly and more secure products.

• the basis for metrics and documentation of trade-offs to be captured and analyzed through the model-

based engineering approach. The model provides dynamic matrices of if those points were addressed,

how they were addressed, and how well the corresponding (to the points) module is covered.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

• the basis for performing risk modeling against decisions and DevSecOps model-based engineering to

ensure security controls and processes are properly selected and deployed

Large, complex, heavily regulated, and cybersecurity-constrained projects have already embraced model-

based engineering but have not applied the same techniques to their DevSecOps CI/CD pipelines. This

limits a project’s ability to build a cyber-physical software factory that is fit for purpose. Establishing a

DevSecOps PIM enables projects to develop a robust framework for creating a customized model where

the system's architecture and the DevSecOps pipeline architecture are not in conflict and where they

address the larger attack surface of the project. This allows DevSecOps to become a part of the enterprise

architecture of the product being built, in contrast to current practices where DevSecOps is not included in

the overall product architecture and does not effectively integrate with the compliance and operational

context of the project.

1.3 What is a Platform-independent Model?

The goal of software system architecture is to align a (large) group of stakeholders in the same direction.

For less complex software systems with well-established patterns, the importance of an architecture focus

diminishes as one can simply follow the well-established patterns and associated solutions. However,

many heavily regulated and cybersecurity-constrained software systems are more complex and require

custom architectural patterns. Attention must be paid to maintaining the architecture and ensuring that the

impact of requirement/feature changes are well understood and acceptable, especially with respect to

impacts on security and operations. Otherwise, stakeholders will creatively solve their local problems that

may then violate the overall structure.

A reference architecture is an authoritative source of information about a specific subject area that guides

and constrains the instantiations of multiple architectures and solutions [U.S. Department of Defense

2018]. A reference architecture provides guidelines that ensure proper attention to, and management of, the

system architecture. For more complex systems, there will be parts of the system architecture that are well

understood and other parts that are not. This complexity can be better managed by separating the parts of

the system that are well-known from those that are largely unknown. Then, it will be easier for relevant

stakeholders to determine the right abstractions for the well-known parts that support future unknown

(albeit expected) features and do not adversely impact security and operations.

As for the unknown parts of the system architecture, they are difficult to specify and, therefore, should not

be specified. The likelihood of getting the specifications wrong is quite high. These parts should be made

clear and visible in the system architecture. The unknown parts of the architecture will continuously

(iteratively) evolve but this evolution must be carefully considered so as not to destroy or diminish the

existing well-known parts of the architecture. Over time, the abstractions for the unknown parts will

become better defined. Development, security, and operations teams and other stakeholders should be

involved in this evolution to ensure that the proper balance between features, defensibility, and stability is

maintained in a cost-effective manner.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 4: Reference and Solution Architecture Relationship

It is not uncommon for a project or team to go directly from a reference architecture to a platform-specific

model (PSM) or even directly to a solution. A PSM is a model of a product or service being built by a

project, or team, that is linked to a specific technology, such as specific programming languages,

automated testing tools, issue tracking, etc. and how they are integrated and used together to meet a

defined need. A platform-independent model (PIM) is a general and reusable model of a solution to a

commonly occurring problem in software engineering within a given context that is independent of the

specific technological platform used to implement it. It is more detailed than a reference architecture but

stops short of specifying a specific technological implementation. The DevSecOps PIM bridges the gap

between high-level theory and current DevSecOps instantiations. It provides the basis for consistently

building and maintaining DevSecOps pipelines that are fit for purpose.

Figure 5: PIM and PSM Relationship to Platform Instantiations

The relationship between the PIM and PSM allows stakeholders to assess functionality and feature changes

as the DevSecOps pipeline and product(s) under development evolve by providing a definitive definition

of what a DevSecOps pipeline is and how it matures over time.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

An Analogy: When cooking, there is a difference between following a simple, imprecise recipe and a

complicated, detailed recipe. When preparing a simple dish, you can afford to use an unclear recipe, as

even relatively major mistakes can be fixed and even avoided just by having some experience. But if you

are making a complicated, time-intensive dish that requires not only general experience, but expertise and

skills in very specific areas of knowledge and/or techniques (like development, security, and operations),

the recipe should be as detailed as possible, guide you in every step, and give you instruments to check

your progress and make adjustments along the way. Otherwise, even a few minor mistakes can ruin the

dish. Today, projects and teams try to follow a simple recipe when developing their DevSecOps pipelines,

which works fine for well-known patterns. However, for large, complex systems that do not conform to

known patterns, projects need a more complete detailed recipe to avoid costly mistakes and to make

informed adjustments along the way. The DevSecOps PIM is this detailed complete recipe.

1.4 Using the DevSecOps PIM

The DevSecOps pipeline isn’t simply instantiated once and used throughout the product’s lifecycle. It

continuously evolves along with the product. The speed and rate of pipeline evolution is affected by the

processes and roles that change at a much slower pace than technology, and most organizations don’t start

by fully automating everything. Instead, the automation of processes is realized over time. As a result, two

views of the DevSecOps requirements were created along with the corresponding maturity and capability

levels.

The first, and primary, perspective is a software lifecycle view of the requirements, as shown in Figure 6:

DevSecOps System Requirements. In the figure, the Governance and System Infrastructure boxes

represent the requirements focused on the enablement of the software development lifecycle, while the

other boxes represent the engineering activities performed on a product under development as it iteratively

evolves. Each requirement has a key that articulates the category and a unique number, referred to as “Id”

in modeling diagrams. The numbers break down to show encapsulation. For example: Sys_5 is the higher

requirement and Sys_5.1 and Sys_5.2 are more detailed requirements. Sys_5.1.1 is a child of Sys_5.1. At a

minimum, all requirements have an Id, title, requirement statement (referred to as “text” in modeling

diagrams), and a stereotype. Stereotypes are used to capture the maturity level and capability attributes of

the requirements. In addition to these basic characteristics, many requirements have additional informative

information (referred to as “documentation” in the modeling diagrams). This information is provided in

order to help the model user understand the intent and expectation of the requirement.

Figure 6: DevSecOps System Requirements

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

In addition to the encapsulation, or containment relationship between the requirements captured in the

numbering system, there are trace relationships (i.e., requirement to requirement) among many

requirements. A summary of these trace relationships can be found at the end of this document in Figure

58: Requirements to Requirements Relationship Matrix. In the detailed modelling diagrams, these

relationships are shown via a dotted line with one of the following labels: “trace,” “copy,” “Depends on,”

and “deriveReqt.”

• “Trace” is the most general form of a relationship as it indicates nothing more than the existence of a

relationship between the two requirements.

• “Copy” relationships are contextual copies of two or more requirements. While the text of the

requirements is identical, the title and requirement attributes differ in order to contextually articulate

the various ways that the given requirement must be implemented to satisfy the needs of the system.

• “Depends on” is used to show the dependency between 2 requirements in which one requirement must

be satisfied in order to achieve the other requirement.

• Finally, a “deriveReqt” relationship simply provides an origin or driver relationship for a given

requirement.

The trace relationship among requirements, as shown in Figure 58: Requirements to Requirements

Relationship Matrix is not an exhaustive relationship matrix as other requirements relationships do exist.

In general, the requirements are written to capture the ideal state of DevSecOps. However, as the authors

started building the model it became clear that the ideal state of DevSecOps is too much for a person or

group to adopt all at once. In fact, most of the DevSecOps adoptions the authors have observed have been

instantiated and executed using an iterative approach that evolves into the ideal state. This insight led to

the creation of maturity levels as defined in Table 2: DevSecOps Maturity Levels, where level 1 is the least

mature and level 4 is the ideal state of DevSecOps. Each requirement has been mapped to a maturity level,

as summarized in Figure 7: Requirements to Maturity Levels Matrix. The levels are accumulative in

nature. For example, in order to address and meet the level 2 requirements, you must also address and meet

all level 1 requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 7: Requirements to Maturity Levels Matrix

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

As a DevSecOps system matures, so will its capabilities. The second perspective that requirements are

mapped to is a capability view. All requirements are mapped to the 10 capabilities shown in Figure 8:

DevSecOps Capabilities, and grouped under a top-level capability referred to as the DevSecOps Pipeline

Capability.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 8: DevSecOps Capabilities

These capabilities are groupings of requirements that, when combined, define a collective competency in

performing a set of functional activities across the product lifecycle. These capabilities are defined in Table

1: DevSecOps Capability Definitions. The capability levels represent the measure of consistency and

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

completeness, which is usually achieved through increased automation, in which functional activities are

performed. The requirements maturity level represents the minimal capability level the given requirement

is expected to meet. For example, if a given requirement is mapped to the Planning & Tracking capability

and maturity level 3, then in order to consider the requirement met, it would need to achieve the capability

expectations of Planning & Tracking level 3. The requirement’s maturity can grow as the level of

capability improves. For example, one could implement a maturity level 3 requirement at capability level

4.

Table 1: DevSecOps Capability Definitions

Name Documentation

Configuration

Management

Configuration Management is the set of activities used to establish and maintain the integrity of the

system and product under development, and associated supporting artifacts, throughout their useful lives.

Different levels of control are appropriate for different supporting artifacts and implementation elements

and for different points in time. For some supporting artifacts and implementation elements, it may be

sufficient to maintain version control of the artifact or element that is traced to a specific instance of the

system or product under development in use at a given time, past or present, so that all information

related to a given instance, or version, of the system or product under development is known. In which

case, all other variations of the artifacts and elements can be discarded as subsequent iterations are

generated or updated. Other supporting artifacts and implementation elements may require formal

configuration in which case baselines are defined and established at predetermined points in the lifecycle.

Baselines, and subsequent changes, are formally reviewed and approved, and serve as the basis for

future efforts. The configuration management capability of a system matures as the consistency and

completeness of the integrity controls are put in place to capture all supporting artifacts and

implementation elements associated with the system and product under development while keeping pace

with the DevSecOps pipeline through automation and integration with all aspects of the lifecycle. This

includes; (1) the relationship between artifacts and elements for a given instance, or version, of the

system or product under development, (2) capturing sufficient information to identify and maintain

configuration items, even if those who created them are no longer available, (3) defining the level of

control each artifacts and elements requires based on technical and business needs, (4) systematically

controlling and monitoring changes to configuration items, and (5) enforcement and logging of all required

relevant stakeholder reviews and approvals, based on the organization, project, and team policies and

procedures.

Configuration

Management Level 1

• All supporting artifacts and implementation elements that require configuration control are identified and

documented.

• The level of configuration control for each supporting artifact and implementation element is defined.

• While the configuration management of supporting artifacts may be a fully manual process, an

automated version control system, or set of systems, must be in place to track current and historical

versions of files used to create implementation elements.

Configuration

Management Level 2

• Automated configuration management system(s) are in place for all identified supporting artifacts and

implementation elements.

• Immutable logging of all changes to configuration items and associated metadata, such as who made

the change, when the change occurred, and what was changed.

• Changes to the system and product under development is associated with an approved requirement or

change request.

• All relevant stakeholders are notified when changes to configuration items are requested.

• Some integration between the automated version control system used for file tracking and other aspects

of the DevSecOps pipeline has occurred in order to enable the automatic triggering of other activities.

• The automated version control system traces relationships between test artifacts and requirements, and

test results and associated artifacts to a specific instance of the system or product under development in

use at a given time, past or present.

Configuration

Management Level 3

• Manage and control the volatility of change. Be able to identify impacted supporting artifacts and

implementation elements a given change request will impact.

• Use automatic discovery tools to scan current instance of system and product under development, and

associated configurations, to identify mismatches between current instance and approved versions under

configuration management in order to ensure integrity of the instantiated instances. Automatically report

all mismatches to relevant stakeholders.

• The system shall automatically maintain an audit trail of all system configuration changes to include what

was changed, who/what changed it, when the change occurred.

• System only allows authorized individuals, or entities, to make specific types of changes to the product

under development based on the individual’s role, or entity’s purpose, and where they are in the

DevSecOps pipeline.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Name Documentation

Configuration

Management Level 4

• Automatically correct any misconfiguration of the currently instantiated system and product under

development based on approved supporting artifacts and implementation elements under configuration

control.

• The system shall monitor user activities and actively identify security-related actions and system

configuration changes that are uncharacteristic of the given user and notify relevant stakeholders of the

uncharacteristic behavior to validate the change was appropriate and to avoid insider threats.

• A fully automated change proposal process, where changes are proposed and automatically routed to

relevant stakeholders for approval and implemented by the system.

Deployment Deployment is the set of processes related to the delivery or release of the product under development

into the environment in which users of the product interact with the product. The deployment capabilities

of the system mature with increased levels of automation, advanced rollback and release functionality,

along with disaster recovery, speed, and accuracy.

Deployment

Level 1

• The system can manually recover if a failure occurs in a deployed product, deploying the product at the

last known acceptable state.

Deployment

Level 2

• A quality criteria for the deployment of the system and product under development is defined.

While monitoring for failures can be a combination of manual and automated detection processes:

• The system can automatically recover if a failure occurs in a deployed product, deploying the product at

the last known acceptable state.

• The system can automatically recover the product to a previously working state in the event of system

failure.

• The system can track the changes between deployed products, and the personnel and reasoning

involved in the change.

Deployment

Level 3

• Both the system and product under development are fully automated in terms of orchestration and

deployment into target environments

• Various release strategies are supported to include canary, Blue-Green, multiple service, batch, rolling,

and A/B Testing.

• The product under development is deployed continuously, supported by sufficient automation in which

no human intervention is required to release the product to its users.

• The system shall automatically collect the necessary data to monitor the system and product under

development for failures and quality issues, and alert relevant stakeholders when corrective actions are

required.

• In the event that a failure or cancellation occurs during deployment of the product or system, the system

will automatically restore a the most recent working version.

• Automated updating or patching of software used by the system. Patches are rolled out automatically to

the various parts of the system.

Deployment

Level 4

• Continuous improvement of the testing procedures is performed based on the data collected from the

system and product under development tests.

• The system shall automatically identify and track when the defined quality criteria has not been met and

the automated quality controls have been bypassed. All relevant stakeholders will be automatically

notified and the non-compliance issue will be tracked to closure.

DevSecOps Pipeline The DevSecOps pipeline is a socio-technical system composed of both software tools and processes. As

the capability matures it seamlessly integrates three traditional factions that sometimes have opposing

interests: development values features, security values defensibility, and operations values stability. A

DevSecOps pipeline emerges when continuous integration of these three factions is used to meet

organizational, project, and team objectives and commitments.

Hosting Services Hosting services are made up of the underlying infrastructure and platforms that both the system and

product under development operate upon. This includes the various cloud providers, on premises bare-

metal and virtualization, networks, and other SaaS that is utilized along with the management,

configuration, access control, ownership, and personnel involved.

Hosting Services Level

1

• The hosting services adequately support the scalability, reliability, regulatory, and security requirements

to operate, maintain, and build an organizations product.

• The hosting services provide compatibility with the testing frameworks and tools utilized throughout

system and product development lifecycles.

Hosting Services Level

2

• Logs from hosting services are aggregated, auditable, and analyzable.

• System transaction logs are available and immutable.

• Performance metrics can be visualized, analyzed for hardware, software, database and network

components.

• Role-based access control is utilized throughout.

• All information collected uses proper techniques to maintain privacy and sensitivity concerns, and can be

properly disposed of when necessary.

• All configuration items are identified and resources are planned and executed in order to maintain

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Name Documentation

configuration integrity of the given item.

• Disaster recovery processes are documented and supported.

Hosting Services Level

3

• The system infrastructure is provisioned using IaC and is automated.

• Captured metrics can generate alerts based off of defined values.

• Ability to automatically alert and communicate metrics associated with security risks of the underlying

infrastructure to stakeholders so they can manage risk and make decisions regarding risk and impact to

software applications.

• Automatic upgrading of operating system software, and supporting services.

Hosting Services Level

4

• Qualities such as performance, capacity, security, compliance and risk tolerance are continuously being

monitored using automated tools. Results from the automated tools are automatically reported to all

relevant stakeholders to ensure the quality of the automated process and to identify and track

improvements to quality attributes.

• System configuration and performance are continuously being monitored using automated tools to

identify and report all anomalies. Results from the automated tools are automatically reported to all

relevant stakeholders so they can manage risk and make decisions.

• Infrastructure is immutable and can be automatically replaced vs update in place.

Integration Integration is the process of merging changes from multiple developers made to a single code base.

Integration can be made manually on a periodic basis, typically by a senior or lead engineer, or it can be

made continuously by automated processes as individual changes are made to the code base. In either

case the purpose of integration is to assemble a series of changes, merge and deconflict them, build the

product and ensure that it functions as intended and that no change broke the whole product, even if

those changes worked in isolation.

Integration Level 1 • Documented, repeatable, processes exist which may be manual, automated, or some combination of the

two

• Some individual processes (e.g., merging changes) may require expert subjective judgement

• Processes may require manual intervention between phases and/or to coordinate steps between

disparate systems

• Some human-human and human-process contact occurs outside the orchestration pipeline

• Process initiation is manual and irregular

Integration Level 2 • Most individual processes are scripted and repeatable

• Expert subjectivity has been removed from all processes by adopting processes with objective criteria for

success

• An orchestrated integration pipeline exists; however, it may not be fully automated

• Some human-human and human-process contact occurs outside the orchestration pipeline

• Integration process initiation is regular whether manual or automated

Integration Level 3 • All individual processes are scripted and fully automated

• An orchestrated integration pipeline controls all processes from start to finish

• All human-process contact occurs from within the context of the orchestration pipeline (e.g., approvals

captured in ticketing system, SCM, etc. and orchestration continues)

Integration Level 4 • The entire integration pipeline is fully automated requiring no manual intervention

• The entire integration pipeline runs in near real time as changes are committed to the code base

• Alerts, notifications and results of integration are sent to relevant engineers automatically

• A successfully integrated product is ready for delivery with no additional manual processes required

Monitor & Control Monitor and Control involves continuously monitoring activities, communicating status, and taking

corrective action in order to proactively address issues and to consistently improve performance. More

mature projects automate as much of this as possible. Appropriate visibility enables timely corrective

action to be taken when performance deviates significantly from what was expected. A deviation is

significant, if when left unresolved, it precludes the project from meeting its objectives. Items that should

be monitored include cost, schedule, effort, commitments, risks, data, stakeholder involvement, corrective

action progress as well as task & work product attributes like size, complexity, weight, form, fit or function.

Monitor & Control

Level 1

• All supporting artifacts and implementation elements that require monitoring and control are identified

and documented.

• The level of monitor and control for each supporting artifact and implementation element is defined.

• A policy and plan for planning and performing the monitor and control capability is established and

maintained.

• The work products of the monitor and control capability are placed under appropriate levels of control.

Monitor & Control

Level 2

• The people performing or supporting the monitor and control capability are trained as needed.

• Automated monitor and control system(s) are in place for all identified supporting artifacts and

implementation elements.

• Automated collection of work products, measures, and measurement results are in place.

• Automated comparison of actual measurements to expected measurements is performed and deviations

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Name Documentation

are quantified.

• Automated alerting when significant deviations occur.

Monitor & Control

Level 3

• The relevant stakeholders of the monitor and control capability are identified, involved, and are obtaining

the information they need to make decisions.

• Automated sharing of monitor and control information to relevant stakeholders.

• Stakeholders can tailor the visualizations of the information provided to meet their needs.

Monitor & Control

Level 4

• The monitor and control capability is itself subject to monitored and controlled and corrective action is

taken when necessary.

• Automated collection of monitor control capability work products, measures, measurement results and

improvement information including records of significant deviation, criteria for significant deviation, and

corrective action results are in place.

• Root causes of defects and other problems in the monitor and control capability are identified and

corrected.

• Monitor and control capability is itself subject to continuous improvement.

Planning & Tracking Planning and Tracking is the set of practices used to define tasks and activities, along with the resources

needed to perform them, required to achieve an objective, or commitment, and track progress, or lack

thereof, towards achieving the given objective. It provides the mechanisms required to inform relevant

stakeholders where an effort currently is within the process and whether it is on track to provide the

expected outcomes. These mechanisms allow relevant stakeholders to determine what has been

accomplished and what adjustments or corrective actions need to occur to account for impediments and

other unforeseen issues. Ideally, impediments and issues are proactively identified and addressed.

Practices include documenting activities and breaking them down into actionable work in which resources

can be assigned, capturing dependence, forecasting, mapping work to requirements, data collection,

tracking progress to commitments and reporting status. The planning and tracking capability of a system

matures as the automation and integration of associated practices increases.

Planning & Tracking

Level 1

Manual practices, with possible use of some rudimental tools, that collect and store information used to

track and report status and outputs from planning and tracking activities.

Planning & Tracking

Level 2

• Planning and tracking tools are used to define tasks and activities, along with the resources needed to

perform them, required to achieve an objective, or commitment, and track progress, or lack thereof,

towards achieving the given objective.

• The tools provide the ability to capture and associate planning and tracking metadata, such as

estimates, assumptions, prioritization, assignment, status, commitments, assets, association to

implementation elements and supporting artifacts, and agreements. Metadata may consist of mostly

manually collected information, with minimal automation.

• Automated visualization techniques are used to organize activities, understand dependencies,

coordinate multi-team efforts, and road mapping future commitments. The automated system is used to

relevant stakeholders to share project plans and status of current activities with relevant stakeholders.

Planning & Tracking

Level 3

• The planning and tracking tools are able to coordinate multiple value streams at the organizational level.

Planning and tracking activities are integrated to include both technical and non-technical activities, such

as quality assurance, documentation, testing and configuration management. Dependencies between

technical and non-technical activities can be visualized in order to coordinate efforts and identify issues.

• Metadata is used to support estimation, projections and what-if scenarios simulations. Organizations,

projects and teams are able customized metadata, and associated use, in order to meet relevant

stakeholder needs.

• The planning and tracking tools are integrated with other tools in order to automatically collect metadata

associated with various value stream activities. This includes defect, issues, and non-compliance efforts

as they are automatically discovered and subsequently addressed and tracked to closure and asset

management.

• Automated stakeholder notification and status reporting, and associated visualizations, are used to notify

relevant stakeholders of changes to plan or commitments, status of current activities, deviations from

defined thresholds, and asset renewals and maintenance.

Planning & Tracking

Level 4

Data is used to:

• apply statistical analytical methods to planning and tracking practices in order to improve and optimize

the team’s, project’s, and organization’s ability to meet objectives and commitments

• provide objective quantitative status to relevant stakeholders

• automatically generate tasking and execute processes based on plan.

Quality Assurance Quality Assurance is a set of independent activities (i.e., free from technical, managerial, and financial

influences, intentional or unintentional) designed to provide confidence to relevant stakeholders that the

DevSecOps processes and tools are appropriate for and produce products and services of suitable quality

for their intended purposes. It assumes that the organization's, team's, and project's policies and

procedures have been defined based on all relevant stakeholder needs which will result in a value stream

that consistently produces products and services that meet all relevant stakeholder expectations. The

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Name Documentation

quality assurance capability of a System matures as its ability to assess adherence to, and the adequacy

of the defined policies and procedures.

Quality Assurance

Level 1

• All relevant stakeholders associated with the products and services associated with the product under

development and the system that support it have been identified.

• All relevant stakeholder expectations and regulatory requirements are documented.

• Policies and procedures are developed and documented to describe how the DevSecOps processes

and tools are required to be used in order to meet all relevant stakeholder requirements.

• Documented policies and procedures may use traditional document centered approach and

dissemination may be a manual process.

• All current policies and procedure are readily available to all personnel

Quality Assurance

Level 2

• Automated tools are used to maintain configuration control of policies and procedures

• All relevant stakeholders are automatically notified of changes to policies and procedures

• Independent resources have been identified and a plan exists to review or audit activities that have been

defined within the documented policies and procedures

• DevSecOps processes and tools are periodically audited based on the plan to identify non-compliance

with policies and procedures and inadequacies regarding the value stream’s ability to consistently

produce products and services which meet all relevant stakeholders’ expectation and regulatory

requirements. The audits may be conducted manually, use automation, or a combination pf both.

• All identified non-compliance and inadequacies are independently documented, reported to relevant

stakeholders, and tracked to closure.

Quality Assurance

Level 3

• DevSecOps tools are configured to automatically enforce policies and procedures as a product under

development progresses through the system.

• Automated processes are monitored by an independent resource in order to detect and report

noncompliance issues to all relevant stakeholders

• Non-compliance and inadequacy issues identified through automated, or manual, auditing are

documented and tracked to closure using an automated issue tracking system that is consistent with the

tools used for all other planning and tracking purposes, in order to integrate all efforts that must be

planned and tracked to completion.

• All quality assurance tools, such as origin and static analysis tools, are fully integrated into the system’s

pipeline and associated policies are automatically enforced as the product under development progresses

through the system.

• The System automatically monitors and enforces compliance to defined quality criteria as defined for

both the product under development and the system regarding the implementation of enhancements and

modifications.

Quality Assurance

Level 4

• All automated activities are continuously being audit for non-compliance issues through the use of

automated tools, with regards to both the System and Product under development.

• Results from the automated auditing tools are automatically reported to all relevant stakeholders to

ensure the quality of the automated auditing process, in addition to tracking non-compliance issues to

resolution.

• The system shall automatically identify and track when the defined quality criteria has not been met or

the automated quality controls have been bypassed. All relevant stakeholders will be automatically

notified and the non-compliance issue will be tracked to closure.

Software Assurance Software Assurance is the level of confidence that software functions only as intended and is free from

vulnerabilities, either intentional or unintentionally designed or inserted as part of the software, throughout

the full software lifecycle. It consists of two independent, but interrelated, assertions:

1. The software functions only as intended. It exhibits only functionality intended by its design and does

not exhibit functionality not intended.

2. The software is free from vulnerabilities, whether intentionally or unintentionally present in the software,

including software incorporated into the final system.

It is the responsibility of the DevSecOps system to ensure that software that meets the organization's

threshold for software assurance is allowed to be deployed and operated.

Software Assurance

Level 1

• All relevant stakeholders and expectations with regards to the products and services associated with the

product under development and the system that support it have been identified.

• System functional and non-functional requirements are documented.

• A comprehensive software bill of materials (SBOM) is compiled detailing all components that make up

the DevSecOps system.

• All relevant system constraints and regulatory requirements are documented.

• Software assurance processes and tools are inventoried and policies and procedures written setting out

how they are to be used to meet assurance requirements.

• Documented policies and procedures may use traditional document centered approach and

dissemination may be a manual process.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Name Documentation

Software Assurance

Level 2

• Software assurance related DevSecOps metrics are defined and collected.

• Baseline and threshold levels for software assurance are established.

• Metrics are tracked over time and made available to all stakeholders as needed.

• Results of system functional testing are collected and periodically analyzed.

• Known vulnerabilities in all components that make up the DevSecOps system are periodically collected

and analyzed.

• Processes and polices are in place to periodically compare present metrics to past and make

adjustments as necessary.

• Processes and policies are in place and reviewed periodically review reports from all software assurance

products.

• Processes and policies are in place to identify when the level of software assurance implied by captured

metrics and reports exceeds the organization's threshold and to make adjustments as necessary.

Software Assurance

Level 3

• The organization has established a comprehensive risk analysis and management program.

• Software assurance metrics, reporting, and analysis are incorporated into the risk management process.

• Results of the risk management process are incorporated into software assurance policies and

procedures.

• Software assurance metrics and thresholds are periodically updated as a result of risk management

activities.

• The organization prioritizes software assurance tasks based on the level of risk to the organization.

Software Assurance

Level 4

• All software assurance tools, or as many as are feasible, are run continuously and reports disseminated

automatically to all relevant stakeholders.

• Software that fails to meet the organization's software assurance thresholds is automatically prevented

from being delivered or deployed.

• Automated procedures are in place to remediate software assurance issues found within the operating

DevSecOps system.

Solution Development Solutions development determines the best way of satisfying the requirements to achieve an outcome. Its

goals are to: evaluate baseline requirements and alternative solutions to achieve them; select the

optimum solution; create a specification for the solution. Each development value stream develops one or

more solutions, which are products, services, or systems delivered to the customer, whether internal or

external to the Enterprise.

Solution Development

Level 1

• All development activities and tools have been identified and documented

• Provide tools to enable users to edit, compile, and review source code

• Provide the ability for developers to trace links between requirements, architectural elements, and

implementation elements

• Provide a repository for all requirements and associated metadata

• Provide manual processes for assuring security and privacy compliance

• Processes for transitioning between development components are defined and documented

• Individual processes are scripted and repeatable

• Processes may require manual intervention between phases and/or to coordinate steps

• Process initiation may be manual or automated

Solution Development

Level 2

• Transitions between implementation elements, and supporting artifacts, are automated, possibly

manually triggered

• Identify and document secure coding practices and development coding standards

• Provide traceability of software code origins to provide a SBOM and verify use of most recent third-party

components

Solution Development

Level 3

• Transitioning between development components are fully automated, either triggered on a periodic

schedule or automatically triggered based upon completion of another component’s activity

• Support determination of requirement feasibility and validation analysis

• Support model-based software engineering in order to provide continuous, iterative, and traceable

requirements model

• Support policy as code (e.g., STIG enforcement)

Solution Development

Level 4

• Transitioning between development components is performed continuously without human intervention

• Continuously audit code commits, with alerts to relevant stakeholders

• Enable “digital twin” modeling of the production system

• Support advanced analysis to ensure compliance

Verification &

Validation

Verification and validation are the set of activities and evidence that the system or application under

development has met the requirements and criteria that is expected. It includes the general realm of

testing, verifying, and validation activities and matures as automation, feedback, and integration with other

elements increase.

Verification &

Validation Level 1

• All relevant stakeholders with regards to the products and services associated with the product under

development and the system that support it have been identified.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Name Documentation

• All testing cases, procedures, and their artifacts are can be configured, stored, and maintained for a

given instance of a product under development.

• The system and product under development supports the necessary technologies to execute tests.

Verification &

Validation Level 2

• Automated tools are used to trace tests to requirements.

• Automated tools are used to trace tests cases and artifacts to specific versions of a product under

development.

• Automated tools are used to configure, store, and execute tests.

• Test coverage reports are generated and captured for a specific instance of the system or product under

development.

• Tests are performed across multiple phases of the software lifecycle such as development, test, and

operations providing feedback continuously.

• Security patching is automatically tested, resulting in automated report generation and delivery.

• Both functional and non-function tests are manually or automatically executed.

Verification &

Validation Level 3

• Tests are executed automatically using a continuous integration technique.

• A MBSE approach is used to plan and execute testing of the system and product under development.

• The system and product under development automatically executes quality tests that either passes or

fails the appropriate component under test based on quality metrics for any change being made.

Appropriate monitoring of the system and product under development enforces the quality metrics.

• The system provides the necessary environment to perform advanced security testing such as Fuzz, and

Penetration testing activities.

The PIM defines DevSecOps pipeline capability as a socio-technical system composed of both software

tools and processes. As the capability matures it seamlessly integrates three traditional factions that

sometimes have opposing interests: development values features, security values defensibility, and

operations values stability. A DevSecOps pipeline emerges when continuous integration of these three

factions is used to meet organizational, project, and team objectives and commitments. Figure 9:

DevSecOps Pipeline shows another view of the DevSecOps pipeline and the iterative processes and

interactions it must support. Figure 59: Capabilities to Requirements Relationship Matrix provides a

summary mapping of capabilities to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 9: DevSecOps Pipeline

1.4.1 Getting Started

When using the model, it is important to start with Table 3: Glossary. The terms defined in the Glossary

have specific definitions within the context of the model that go beyond the standard English definition of

the word or phrase. Two key terms used throughout the model are “system” and “product under

development.” Once familiar with the terms in the glossary, the next step is to consider your use case for

using the model. While there are several potential uses of the model, two of the most common are: (1) the

creation of a new DevSecOps pipeline in support of a new product or in modernizing an existing product,

and (2) evaluating an existing DevSecOps pipeline for areas of improvement. In either case it is important

to first understand the vision of the product to be built and maintained as well as any regulatory or

environmental constraints that will be put on the DevSecOps pipeline instantiation, as this will drive many

of your decisions.

In use case 1, the software lifecycle view of the requirements, as shown in Figure 6: DevSecOps System

Requirements, along with the maturity ratings will probably best suit your initial needs. Start with the

maturity level 1 requirements. In general, maturity level 1 is focused on the basic engineering, security,

and operational practices needed to start producing a product, even if done with minimal automation and

integrated tooling (i.e., relying on manual processes). Level 2 is about actually being able to claim you are

doing DevSecOps, as it is when automation and integrated tools and associated processes really start to

come into play. With that said, it is important not to skip level 1 and go straight to level 2 or any higher

level. Level 1 allows you to understand what you need, and it will guide your tool selection, configuration,

automation, and integration decisions going forward. Remember, most organizations don’t start by fully

automating everything. Instead, the automation of processes is realized over time. The model’s DevSecOps

system requirements perspective organizes the requirements in a way that instinctively maps them to a

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

product lifecycle, thus forming a natural grouping of concerns based on traditional roles within an

organization and the tools used in supporting associated activities.

For use case 2, the focus is on improving an existing DevSecOps pipeline which means improving existing

capabilities and identifying missing or deficient capabilities. In this case, the DevSecOps Capabilities view

as shown in Figure 8: DevSecOps Capabilities, along with the capability levels, will probably best suit

your needs. This will allow you to look holistically at the pipeline and determine which lower-level

capabilities are lacking (i.e., which are the weakest link) and potentially holding back the higher-level

capability in terms of throughput, quality, security, and other quality attributes.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2 Dictionaries

2.1 DevSecOps Maturity Levels

Table 2: DevSecOps Maturity Levels

Term Documentation

Maturity Level 1 Performed Basic Practices: This represents the minimum set of engineering, security, and operational

practices that is required to begin supporting a product under development, even if only performed in an

ad-hoc manner with minimal automation, documentation, or process maturity. This level is focused on

minimal development, security and operational hygiene.

Maturity Level 2 Documented/Automated Intermediate Practices: In addition to meeting the level 1 practices. This level

represents the transition from manual ad-hoc practices to the automated and consistent execution of

defined processes. This set of practices represents the next evolution the maturity of the product under

development’s pipeline by providing the capability needed to automate the practices that are most often

executed or produce the most unpredictable results. These practices include defining process that enable

individuals to perform activities in a repeatable manner.

Maturity Level 3 Managed Pipeline Execution: In addition to meeting the level 1 and 2 practices. This level focuses on

consistently meeting the information needs of all relevant stakeholders associated with the product under

development so that they can make informed decisions as work items progress through a defined

process.

Maturity Level 4 Proactive Reviewing and Optimizing DevSecOps: In addition to meeting the level 1-3 practices. This level

is focused on reviewing the effectiveness of the system so that corrective actions are taken, when

necessary, as well as quantitively improving the system’s performance as it relates to the consistent

development and operation of the product under development.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.2 Glossary

Table 3: Glossary

Term Description

Chain of Custody Everything that happens in the system as it relates to a configuration items (CI). A record of chain of

custody provides evidence of what is in the CI, how it has been changed or modified, by whom, and when

in sufficient details that the CI could be recreated. The evidence is immutable and provides a sufficient

level of detail to satisfy audit and regulatory requirements.

Code Coverage code coverage is a measure used to describe the degree to which the source code of a program is

executed when a particular test suite runs [Wikipedia 2021].

Common

Vulnerabilities and

Exposures (CVE)

Identifies, defines, and categorizes publicly disclosed cybersecurity vulnerabilities [The MITRE

Corporation 2021a].

Common Weakness

Enumeration (CWE)

Common Weakness Enumeration (CWE) is a community-developed list of software and hardware

weakness types. It serves as a common language, a measuring stick for security tools, and as a baseline

for weakness identification, mitigation, and prevention efforts [The MITRE Corporation 2021b].

Continuous Integration Integration is the process of merging changes from multiple developers made to a single code base.

Continuous Integration is the process of merging changes from multiple developers, conducting

integration tests, staging the system for acceptance testing, and potentially staging the product for final

delivery, in an automated fashion in real or near real time as changes are made.

DevSecOps A cultural and engineering practice that breaks down barriers and opens collaboration between

development, security, and operations organizations using automation to focus on rapid, frequent delivery

of secure infrastructure and software to production. It encompasses intake to release of software and

manages those flows predictably, transparently, and with minimal human intervention/effort [U.S. General

Services Administration 2021].

Implementation

Elements

Physical or digital components of the realized system or product under development used to achieve a

capability or set of capabilities. Elements of the implementation are distinct from supporting artifacts and

elements, such as architecture, design, test, analysis, requirements, reports, etc.

ITSM service desk The Information Technology Service Management (ITSM) service desk is the single point of contact

between the service provider and the service consumer or user.

Kanban board A Kanban board is used to manage work at a personal, team or organization level. They visually depict

work at various stages of a process using cards to represent work items and columns to represent each

stage of the process. Cards are moved from left to right to show progress and to help coordinate teams

performing the work. A Kanban board may be divided into horizontal "swimlanes" representing different

kinds of work or different individuals, teams or organizations performing the work [Wikipedia 2021d].

Knowledge

Management

The process of creating, sharing, using and managing the knowledge and information of an organization

[Girard 2015].

MBSE Model-based systems engineering (MBSE) is a formalized methodology that is used to support the

requirements, design, analysis, verification, and validation associated with the development of complex

systems [Shevchenko 2020]

Minimally Viable

Capability Release

The initial set of features suitable to be fielded to an operational environment that provides value to the

end user in a rapid time line. The minimally viable capability release (MVCR) delivers initial end user

capabilities to enhance some mission outcomes. The MVCR is analogous to a minimum marketable

product [U.S. Department of Defense 2020].

Minimum Viable

Product

An early version of the software to deliver or field basic capabilities to users to evaluate and provide

feedback on. Insights from minimum viable products (MVPs) help shape scope, requirements, and design

[U.S. Department of Defense 2020].

Monitor and Control Monitoring and Control is the continuous monitoring of project activities and the enactment of corrective

action(s). Measures are used to determine progress by comparing current status to expected status or

behavior. When the project deviates significantly from what was expected, appropriate corrective actions

are taken. Moreover, learning and innovation occur and improvements are made from leveraging

knowledge learned from continuous feedback.

Orchestration System A tool or collection of tools used to automatically coordinate and execute many tasks together in order to

streamline and optimize frequent, repeatable processes, with an expected level of assurance.

Organization An administrative structure in which people collectively manage one or more projects or work groups as a

whole, share a senior manager, and operate under the same policies [Chrissis 2011]

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Term Description

Product Under

Development

For the scope of this model, product under development is defined as the specialized product,

component, application, or bundled applications being built and/or maintained by the system in order to

meet the needs of a specific end use.

Project For the scope of this model, project applies broadly to any managed set of interrelated activities and

resources, including people, that delivers one or more products or services to a customer or end user

[Chrissis 2011]

Quality Assurance A strategic and systematic approach to monitoring the engineering tools, practices, and processes used to

ensure the quality of a product under development in order to assure relevant stakeholders that the

product under development will fulfill relevant stakeholders’ expectations and regulatory requirements.

Expectations are ideally explicitly stated through service level agreements, requirements, goals, etc., and

not simply implied.

Relevant Stakeholders A Stakeholder is a group or individual that is affected by or is in some way accountable for the outcome of

an undertaking. A relevant stakeholder is a stakeholder that is identified for involvement in specific

activities and is included in a plan [Chrissis 2011]. It includes technical staff of various domains,

operational users and representatives, and business units such as legal, contracts, finance, compliance,

privacy, and security. The group or individual can be internal or external to the organization.

Requirements 1) A condition or capability needed by a stakeholder to solve a problem or achieve an objective. 2) A

condition or capability that must be met or possessed by a solution or solution component to satisfy a

contract, standard, specification or other formally imposed documents. 3) A documented representation of

a condition or capability as in (1) or (2).

Scrum Board A Scrum board is a tool used to visually display current project work, specifically work that has been taken

into the current sprint. At a high level, it shows what has not been started, what is currently being worked

on, and what has been completed. Virtual boards use software designed to look like the physical boards,

but they are viewed and changed electronically. Virtual board layouts can be customized based on the

target audience (i.e. the people doing the work or relevant stakeholders who want to know the progress of

the effort) [Study.com 2020].

Security and Privacy

Engineering Principles

A set of principles defined in the System and Services Acquisition (SA-8) control family [Joint Task Force

Transformation Initiative Interagency Working Group 2020] that are used in the specification, design,

development, implementation, and modification of the system, product under development, and

associated sub-components.

Software Assurance Software Assurance is the practice of ensuring that a piece of software, or complete software-centric

system, functions only as intended and is free of known vulnerabilities. It is a holistic practice that

incorporates software requirements, architecture, testing, vulnerability management, risk management

and operational policies and procedures to reduce, and ideally eliminate, risk to the organization's mission

as a result of software defects.

System For the scope of this model, system is defined as the set of people, processes, tools and technology

working together as part of an interconnected DevSecOps network designed to collect, process, store,

evaluate, deliver, deploy, and monitor a product under development and all associated artifacts.

Team A group of people with complementary skills and expertise who work together to accomplish specified

objectives [Chrissis 2011]

Test Artifacts Tangible by-products that are generated automatically, manually, or a combination of both, while planning,

performing, and reporting on testing activities in order to (1) verify and validate the product under

development, (2) monitor and verify the DevSecOps process, and (3) establish transparency between

members of a project team and all relevant stakeholders. Thus, all by-products must contain accurate

information and details.

Trace A logical link that specifies a relationship between two or more entities.

Traceability The ability to determine a set of logical links between two or more entities across the development

lifecycle.

Value Streams Value streams represent the series of steps that an organization uses to implement solutions that provide

a continuous flow of value to a customer [Scaled Agile, Inc. 2021].

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3 System Requirements

3.1 1 Governance

3.1.1 Gov_1 Track Changes Associated to Requirements

The system shall be able to track and associate any changes to the system or product under development to

a given requirement, either functional or non-functional, and, if applicable, change request (CR) through

the development lifecycle.

Figure 10: Track Changes Associated to Requirements

3.1.2 Gov_2 Track progress with Scrum/Kanban Boards

The system shall be able to track requirements and tasks using either a Scrum board or a Kanban board.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 11: Track Progress with Scrum/Kanban Boards

Documentation:

Depending on the selected Agile Framework, the product under development will use either Scrum,

Kanban, or a combination of both for project planning and tracking purposes.

In general, the system should support the Agile/DevSecOps concept of breaking down activities and tasks

into small enough efforts to allow for fast iteration and adjustment for unforeseen events as goals and

objectives change based on knowledge gained through experience and relevant stakeholder feedback.

3.1.2.1 Gov_2.1 Provide filtered views of multiple Scrum/Kanban boards

The system shall be able to support multiple Scrum board(s) and Kanban board(s) simultaneously using

metadata filtering to provide different views of the program status.

Documentation:

Depending on the size and makeup of the software and operation engineering staff supporting the product

under development, it could have multiple teams and value streams. All teams and value streams needing

custom Scrum/Kanban boards in order to plan and track efforts at the individual, team, and organizational

levels.

3.1.2.2 Gov_2.2 Road Mapping

The system shall be able to support future and currently planned activities in order to allow teams to

visualize future work and associated projections.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Road mapping can be used to support future projections, identifying enablers and other long lead time

issues that need to be addressed in order to achieve projections, release planning, and "what-if" scenarios.

3.1.2.3 Gov_2.3 Capture Work

The system shall be able to capture and estimate work elements.

Documentation:

A dynamic plan may need to add work elements, remove work elements, reorder existing work elements,

or re-estimate existing work elements.

3.1.2.3.1 Gov_2.3.1 Remove Work

The system shall be able to remove work elements.

3.1.2.3.2 Gov_2.3.2 Add Work

The system shall be able to add and estimate new work elements.

3.1.2.4 Gov_2.4 Team and Organizational Dependencies

The system shall be able to associate and display dependencies between team(s) and other organization

abstractions.

Documentation:

Due to the tight integration of both practices and tools between team(s) and other organizations in

DevSecOps, this practice facilitates collaboration efforts as teams perform their work.

3.1.2.4.1 Gov_2.4.1 Subordinate Plans

The system shall be able to establish and maintain tasks associated with "non-coding" activities such as

quality assurance, documentation, testing, and configuration management.

3.1.2.4.2 Gov_2.4.2 Plan Transparency

The system shall continuously share plans with relevant stakeholders in order to enable analysis, problem

detection, and issue resolution, and to eliminate information silos.

3.1.3 Gov_3 Task Creation

The system shall be able to capture tasks for doing work.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 12: Task Creation

Documentation:

In both Scrum and SAFe, teams work stories (requirements) and individuals work tasks. If all tasks

associated with a story are completed, then the stories' acceptance criteria and definition of done should be

met.

3.1.3.1 Gov_3.1 Task Metadata

The system shall be able to capture metadata associated with a given task.

Documentation:

Organizations, projects, teams, and individuals working within the development and operational

environments have different data needs and require the ability to customize the metadata associated with

tasking and requirements. For example, some will want to capture estimates in story points while other

will want to capture estimates in ideal hours. They may also want to capture who the task was assigned to,

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

add comments associated with the work, etc. For requirements, examples of metadata include who

requested the capability/requirement, who owns the requirement, who validated/tested the requirement, if

the requirement was satisfied, what version of the software the requirement was first implemented in.

3.1.3.1.1 Gov_3.1.1 Requirements Mapping to Planning and Tracking

The system shall be able to associate requirements to multiple layers of a program's planning and tracking

structure.

Documentation:

Depending on the abstraction layer and Agile framework, a requirement could be associated to multiple

organizational structures. For example, if using SAFe, an epic could be associated with multiple value

streams. Or a feature could be associated with a single program increment (PI), but the implementation of

the feature crosses between multiple teams working within the PI.

3.1.3.1.1.1 Gov_3.1.1.1 Mapping Requirements to Tasks

The system shall be able to associate tasks to requirements.

3.1.3.1.2 Gov_3.1.2 Task Assignment

The system shall be able to associate a given task to the entity responsible for performing the task.

Documentation:

In this case, the entity could be an individual, organization, project, team, etc., or a combination of entities

based on needs for planning, tracking, and oversight.

3.1.3.2 Gov_3.2 Dependency Tracking

The system shall be able to associate and display dependency between tasks.

3.1.4 Gov_4 Metrics

The system shall be able to automatically collect, correlate and display metrics associated with

productivity, reliability, quality, security, and operations of both the system and the product under

development and associated technologies, approaches, and methods, and models used throughout the

product's life in order to achieve an organization's objectives and business needs.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 13: Metrics

Documentation:

DevSecOps metrics should provide on-demand and transparent visibility of the system and product under

development statuses across their respective lifecycles. A good metrics program should be able to identify

and effectively remove waste from the process and prevent its recurrence. It also forms the basis of

effective risk management by helping to ensure that the organization and project is performing within

established standards, constraints, and requirements.

Automation is needed in order to avoid manual collection, aggregation, and reporting.

3.1.4.1 Gov_4.1 Development Progress

The system shall be able to collect and display quantitative measures that can be used to assess the status

of the software development progress and associated quality.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

For example: requirements volatility, schedule performance, defect density, changes to size estimates, etc.

3.1.4.2 Gov_4.2 Requirements Metrics

The system shall be able to provide quantitative insight into the requirements process

Documentation:

For example: Using data from tracking requirements changes, providing change activity, volatility,

implemented, trends, and so forth. Using requirements and development activity to provide requirements

status through development.

3.1.4.3 Gov_4.3 Code Coverage Metrics

The system shall be able to provide code coverage data associated with each test performed against a

specific instance or version of the system or product under development.

3.1.4.4 Gov_4.4 Continuous Data Monitoring

The system shall perform continuous data monitoring and alert relevant stakeholders when data falls

outside of set thresholds or statically established normal behaviors.

3.1.4.5 Gov_4.5 Security Metrics

The system shall be able to continuous measure and monitor the System's and the product under

development's security performance

3.1.4.6 Gov_4.6 Stakeholder Metrics

The system shall be able to provide relevant stakeholders with indicators and other measures needed to

make early development and real-time operational decisions as they relate to defined objectives.

Documentation:

Relevant stakeholders should be able to readily implement and define measurements to support problem

analysis, progress tracking, and process improvement as it relates to their given role and responsibilities.

For example, they should be able to determine the status of their functional or non-functional requirements

as they relate to risk.

3.1.5 Gov_5 Knowledge Management

The system shall provide integrated knowledge management

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 14: Knowledge Management

Documentation:

The information stored in knowledge management should be visible, accessible, and shareable with all

relevant stakeholders across an organization. It should empower relevant stakeholders to effectively

collaborate in the development and sharing of knowledge in an easily consumable way so that the

knowledge can be quickly acted upon. This knowledge can be used as a basis for retrospectives and

subsequent improvement activities.

3.1.5.1 Gov_5.1 Planning and Tracking Documentation

The system shall be able to capture and track outputs from organizationally-defined planning and tracking

ceremonies.

Documentation:

Depending on the selected Agile framework, different ceremonies are prescribed and practiced. For

example, if using Scrum, the following ceremonies are normally practiced, each with different objectives

and outputs: release planning, sprint planning, daily scrum meeting, sprint review, and sprint retrospective.

In addition to ceremonies associated with various Agile frameworks, there are engineering ceremonies

such as peer reviews and other technical reviews that have respective objectives and outputs.

3.1.5.1.1 Gov_5.1.1 Commitments

The system shall be capable of documenting negotiated commitments between relevant stakeholders in the

project plan.

3.1.5.1.1.1 Gov_5.1.1.1 External Commitments

The system shall be capable of reporting and tracking commitments made to external entities.

3.1.5.1.1.2 Gov_5.1.1.2 Changes to Commitments

The system shall be capable of capturing changes to commitments and the agreement of affected

stakeholders to the modified commitment.

3.1.5.1.2 Gov_5.1.2 Assumptions and Estimates

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The system shall be able to record planning assumptions and estimates.

3.1.5.1.3 Gov_5.1.3 Stakeholder Review

The system shall be able to share project plans and the status of current activities with all relevant

stakeholders in a transparent and continuous way.

Documentation:

This should include periodic project plan reviews with senior management.

In order to achieve fast and continuous iterations of the product under development, stakeholder reviews

must focus on dependencies, impediments, and defects as they arise.

3.1.5.1.3.1 Gov_5.1.3.1 Requirements Activities

The system shall be able to provide status updates regarding activities related to managing requirements to

relevant stakeholders.

Documentation:

This should include periodic requirements management activities reviews with senior management.

3.1.5.1.3.2 Gov_5.1.3.2 Test Activities

The system shall be able to provide status updates regarding activities related to testing to relevant

stakeholders.

3.1.5.1.3.3 Gov_5.1.3.3 Quality Assurance and Monitoring Activities

The system shall be able to provide status updates regarding activities related to quality assurance and

system assurance to relevant stakeholders.

3.1.5.1.3.4 Gov_5.1.3.4 Configuration Management Activities

The system shall be able to provide status updates regarding activities related to configuration items.

Documentation:

This usually includes standard reports that document configuration management activities and the content

of software baselines. Activities include baseline audits of configuration items to verify that they conform

to the documentation that defines them and the tracking of change requests and problem reports for all

configuration items (i.e., changes and problems are recorded, analyzed, reviewed, approved, and tracked to

closure).

3.1.5.1.3.5 Gov_5.1.3.5 Agreement Level Activities

The system shall be able to provide status updates regarding service and operational level agreements.

3.1.5.1.3.6 Gov_5.1.3.6 Risk Activities

The system shall be able to provide status updates regarding changes to existing risks and the creation of

new risks to relevant stakeholders.

Documentation:

Ideally, risk management is a dynamic process where risk identification, analysis, treatment, and

monitoring are automated.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Where applicable, the system should be able to put quantitative thresholds in place that can automatically

trigger risk mitigation actions.

3.1.5.1.4 Gov_5.1.4 Change Management of Project Plan

The system shall be able to manage changes to the project plan.

Documentation:

This implies some sort of version control or the ability to undo or revert changes to the current plan.

3.1.5.2 Gov_5.2 Documented Policies and Procedures

The system shall be able to document and disseminate policies and procedures associated with various

teams and other organizational abstractions.

Documentation:

Documented policies and procedures form the basis of quality assurance activities. Without documented

policies and procedures there is no basis for audits.

3.1.5.3 Gov_5.3 Software Lifecycle

The system shall be able to document and disseminate the defined software lifecycle with defined stages.

3.1.5.4 Gov_5.4 Quality Assurance

The system shall be capable of supporting an independent assurance function to review or audit activities

and work products associated with documented policies and procedures.

Documentation:

Quality assurance ensures activities are done based on policies and procedures in accordance with a plan.

Its goal is to provide unbiased evidence that allows relevant stakeholders to make informed decisions as

artifacts or implementation elements flow through the DevSecOps pipeline. Quality assurance activities

can help identify unsatisfactory products or services early in the lifecycle, as well as critical information

gaps.

Quality assurance will need to adopt and utilize automation wherever feasible in order to keep pace with

the DevSecOps pipeline and provide timely feedback that is relevant within development and operational

lifecycles. Automated quality gates and feedback loops help identify process irregularities which can lead

to product and service defects.

3.1.5.4.1 Gov_5.4.1 Audit of Project Tracking and Oversight

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with project tracking and oversight functions.

3.1.5.4.2 Gov_5.4.2 Audit of Requirements Management

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with managing requirements.

3.1.5.4.3 Gov_5.4.3 Audit of Development

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with development.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.1.5.4.4 Gov_5.4.4 Audit of Testing

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with testing.

3.1.5.4.5 Gov_5.4.5 Audit of Software Assurance

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with assuring both the system and product under development.

3.1.5.4.6 Gov_5.4.6 Audit of Risk Management

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with risk management activities.

Documentation:

Quality assurance activities include (1) reviewing the implementation of mitigation strategies to associated

risks and evaluating their effectiveness, (2) validating that the automated monitoring and execution

system(s) are working and that relevant stakeholders will be notified when risk thresholds are going to be

exceeded, and (3) ensuring risks are properly being identified, analyzed, documented, communicated, and

tracked.

3.1.5.4.7 Gov_5.4.7 Audit of Measurement Strategy

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with the measurement strategy and associated metrics, information

management, and reporting processes.

Documentation:

Quality assurance should be reviewing the measurement strategy to ensure that the strategy aligns process

metrics and measures over functional, non-functional, and acceptance criteria as evidence of progress and

to assess the readiness of deliverables and the organization's ability to meet service and organizational

level agreements.

3.1.5.4.8 Gov_5.4.8 Audit of Operations

The system shall be capable of supporting an independent quality assurance review or audit of activities

and work products associated with the operational performance of both the system and product under

development.

Documentation:

In general, quality assurance activities in production environments should be performed non-obtrusively.

This is achieved through the collection of data regarding user feedback, product performance and

supporting infrastructure in such a way that supports continuous evaluation of the production environment

with the goal of promoting the continuous and uninterrupted operation of the system or product under

development.

3.1.5.5 Gov_5.5 Service and Operational Level Agreements

The system shall be able to capture and maintain service level agreements and operational level

agreements between acquirers and suppliers.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 An operational level agreement should exist between the system and product under development teams in

order to document roles and responsibilities between the two parties, as well as the agreed to services

needed to meet the organization's overall service level agreements with relevant stakeholders associated

with the product under development.

3.1.5.5.1 Gov_5.5.1 Maintenance Agreements

The system shall be able to capture and track the status of software and hardware licensing and

maintenance agreement information.

3.1.5.5.2 Gov_5.5.2 Agreement Requirements and Acceptance

The system shall be able to capture functional and non-functional requirements, and acceptance criteria of

the agreed to services.

3.1.5.6 Gov_5.6 Roles and Responsibilities

The system shall be able to capture defined roles, responsibilities, accountabilities, and authorities as they

relate to both the system and product under development lifecycles.

3.1.5.7 Gov_5.7 Decision Points

The system shall be able to track work items has the progress through a defined work flow and inject

decision points throughout the work flow as required by the relevant stakeholders.

3.1.5.7.1 Gov_5.7.1 Automated Decisions

The system shall be able to automate routine decisions based on quantitative date and defined thresholds.

Documentation:

Decision points and preferred course of actions exist throughout development and operational lifecycles. In

order to allow for a continuous flow of value through the DevSecOps pipeline, the system must enable

timely and effective decision-making through automation. This requires relevant stakeholders to pre-

authorize decisions based on well-defined thresholds. For example, code may automatically progress

through to integration testing once it passes all unit tests, or approved requirements may automatically

progress to the design phase once all tasking in a plan is completed.

Automated decisions also support risk reduction activities, by reducing the risk of manual error. It can also

be used to automatically trigger mitigation strategies when defined thresholds are met.

3.1.5.7.1.1 Gov_5.7.1.1 Automated Decision Monitoring

The system shall capture data associated with automated decisions made and make data readily available to

relevant stakeholders in order for relevant stakeholders to confirm correct actions are being taken as

anticipated.

3.1.5.7.2 Gov_5.7.2 Decision Point Notifications

The system shall notify relevant stakeholders when a work item is waiting for a decision to be made prior

to continuing through the defined work flow.

Documentation:

In the case automated decision making, notifications are needed when a work items does not meet the

defined criteria and requires human intervention.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.1.5.7.3 Gov_5.7.3 Decision Point Data

The system shall collect, store, and share data required to enable a decision to be made by relevant

stakeholders.

3.1.5.7.4 Gov_5.7.4 Decision Logging

The system shall record, trace, and report decisions made in real time.

Documentation:

This should include items such as when the decisions were made. Who or what made the decision? What

data was used in the decision-making process?

Logs should be protected in order to adhere to confidentiality, integrity, and availability security principles.

3.1.5.8 Gov_5.8 Measurement Strategy

The system shall be able to document and disseminate the organization, project and team measurement

strategy.

Documentation:

A measurement strategy addresses questions such as: What are the objectives? How are these objectives

broken down into goals? How will the goals will be measured? What are some of the key drivers to

achieving the goals? What are the actionable, measurable items that indicate success? What are the

questions that a given metric is trying to answer? Who is the audience for a given metrics? How is the

data collected, calculated/formulated, reported, and stored? What assumptions must be taken into

consideration when interpreting a given metric? How should a given metric be interpreted? How should a

given metric NOT be used?

3.1.6 Gov_6 System Assurance

The system shall be designed and build in compliance with security and privacy engineering principles.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 15: System Assurance

3.1.6.1 Gov_6.1 System Monitoring Enforcement

The system shall be capable of enforcing security and privacy engineering principles.

3.1.6.2 Gov_6.2 System Non-compliance Detection

The system shall capable of detecting non-compliance issues related to security and privacy engineering

principles.

3.1.6.3 Gov_6.3 Infrastructure as Code

The system shall enforce the use of machine-readable definition files in managing and provisioning

computing infrastructure.

Documentation:

The system should automate server setup, program installation, and infrastructure/resource management.

This includes enforcing configuration settings as captured in the system's configuration management and

deployment tools (i.e., undoing any manual changes to the system outside of the tools).

3.1.6.4 Gov_6.4 Security Risk

The system shall be able to manage software vulnerabilities and security risks of both the system and the

product under development.

Documentation:

Managing security risks includes the ability to identify, prioritize, categorize, and mitigate risks.

3.1.6.5 Gov_6.5 System Accountability and Traceability

The system shall trace security-relevant actions and system configuration changes to the entity on whose

behalf the action was taken.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.1.6.6 Gov_6.6 Permissions Based on Roles and Responsibilities

The system shall support role-based permissions in order to control user and sub-system privileges based

on the permissions needed to accomplish only the specified task.

3.1.7 Gov_7 Defect and Issue Tracking

The system shall be able to capture identified defects or issues found through either automated or manual

testing.

Figure 16: Defect and Issue Tracking

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.1.7.1 Gov_7.1 Planning and Tracking Defects to Closure

The system shall integrate the planning and tracking of defects and issues to closure with other planning

and tracking activities.

3.1.8 Gov_8 Non-compliance Tracking

The system shall be able to capture identified non-compliance issues found through either quality

assurance or other automated monitoring capabilities.

Figure 17: Non-compliance Tracking

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.1.8.1 Gov_8.1 Planning and Tracking Non-compliance to Closure

The system shall integrate the planning and tracking of non-compliance issues to closure with other

planning and tracking activities.

3.1.8.2 Gov_8.2 Software Quality Feedback

The system shall be able to automatically provide timely feedback on quality-related issues to the

contributor that introduced the change.

3.1.9 Gov_9 Document and Manage Identified Risks

The system shall be able to document and manage identified risks associated with cost, resources,

schedule, technical factors, and security throughout the system's and product under development's lives.

Figure 18: Document and Manage Identified Risks

Documentation:

In DevSecOps, risk management should be a continual process of assessments and reassessments

compounded with the appropriate mitigations.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Due to the continuous nature of DevSecOps and the tight coupling of relevant stakeholders, risk

identification processes must include the relationships, interactions, and impacts of risks from multiple

perspectives.

3.1.9.1 Gov_9.1 Provider Risks

The system shall be able to quantify and track the risks associated with a given supplier.

Documentation:

Dependencies between suppliers (both open source and purchased) of both the system and product under

development implementation elements must be tracked and evaluated regarding the risks associated with

the use of a given supplier. Unacceptable risks must be mitigated and monitored.

3.1.9.2 Gov_9.2 Risk Categorization and Prioritization

The system shall provide an ability to categorize and prioritize risks as they relate to the organization or

project's risk profile and regulatory compliance requirements.

3.2 2 Requirements

3.2.1 Req_1 Document Requirements

The system shall be able to capture requirements for the product under development.

Figure 19: Document Requirements

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Documentation:

This should capture both the functional and non-functional needs of the operational user of the product

under development as well as provide views of the requirements from the relevant stakeholders'

perspectives.

In addition to the users' perspectives, care should be taken to capture all relevant stakeholder perspectives,

such as the operational requirements needed in order to enable the delivery and sustainment of the product

under development in a secure way.

3.2.1.1 Req_1.1 Requirement Metadata

The system shall be able to capture metadata associated with a given requirement.

Documentation:

Organizations, projects, teams, and individuals working within the development and operational

environments have different data needs and require the ability to customize the metadata associated with

tasking and requirements. For example, some will want to capture estimates in story points while other

will want to capture estimates in ideal hours. They may also want to capture who the task was assigned to,

add comments associated with the work, etc. For requirements, some will want to capture who requested

the capability/requirement, who owns the requirement, who validated/tested that the requirement was

satisfied, what version of the software the requirement was first implemented in, etc.

3.2.1.1.1 Req_1.1.1 Test Association

The system shall be able to trace test artifacts to requirements.

Documentation:

Requirements validation is used to check for errors at the initial phase of development, as the error may

increase excessive rework when detected later in the development process. Requirements validation

activities usually include checks for: completeness, consistency, validity, realism, ambiguity, and

verifiability. Test case generation, prototyping, requirements reviews, automated consistency analysis, and

walk-throughs are typical requirements validation techniques.

3.2.1.1.2 Req_1.1.2 Definition of Ready

The system shall be able to provide a mechanism for allowing a requirement to be marked as ready for

prioritization and consideration in that the requirement is sufficiently detailed to be considered actionable.

Documentation:

The determination of actionable is related to the level of detail in the requirements and where it is on the

product development process. For example, if using SAFe, a requirement may be sufficiently detailed to be

allocated to a value train, but not sufficiently decomposed to be allocated to a program increment.

3.2.1.1.3 Req_1.1.3 Planning and Tracking Mapping to Requirements

The system shall be able to associate requirements to multiple layers of a program's planning and tracking

structure.

3.2.1.1.3.1 Req_1.1.3.1 Mapping Tasks to Requirements

The system shall be able to associate tasks to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Documentation:

In general, all tasks should be grounded by requirements in order to understand why the task is relevant.

By associating tasks to requirements, if a requirement is changed or removed, the associated tasks can be

updated to reflect the change so that appropriate action is taken in performing the task. This reduces

rework and technical debt. Depending to the granularity of the documented tasks and requirements, many

requirements may be associated with a single task or the inverse.

3.2.1.1.3.2 Req_1.1.3.1.1 Requirement Change Notification

The system shall be able to notify engineers of changes made to requirements as they relate to assigned

tasks.

3.2.1.1.4 Req_1.1.4 Architecture Association

The system shall be able to trace architectural elements to requirements.

Documentation:

Any changes to requirements can lead to iterating through downstream activities within the lifecycle. A

trace enables impacted activities to be identified and worked as needed.

3.2.1.1.5 Req_1.1.5 Minimum Viable Product

The system shall be able to support the identification and tracking of requirements associate with the

minimum viable product (MVP) or minimally viable capability release (MVCR) for a given capability.

Documentation:

This implies one or more views of both the capability breakdown and the effort associated with producing

the needed capability are needed.

3.2.1.2 Req_1.2 Requirements Articulation

The system shall capture requirements in a format that is both human readable and supports automation.

Documentation:

This will require the use of formal methods to ensure well-formed requirements that can be consistently

interpreted by both humans and machines.

3.2.2 Req_2 Requirements Abstraction Layers

The system shall be able to capture different levels of requirement abstractions and associated

requirements between the abstraction layers.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 20: Requirements Abstraction Layers

Documentation:

Requirement decomposition and allocation varies depending on what Agile framework an organization is

using. For example, if using SAFe, they will need to break requirements down from epics to features to

stories/enablers.

This may require more than one hierarchy or multiple associations between requirements.

3.2.3 Req_3 Requirements Prioritization

The system shall be able to prioritize requirements and capture the rationale associated with the

prioritization process used.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 21: Requirements Prioritization

3.2.4 Req_4 Requirements Validation

The system shall be able to support requirements feasibility and validation analysis, in which identified

problems and agreed on actions of detected problems are collected and tracked to completion.

Figure 22: Requirements Validation

Documentation:

Requirements validation is used to check for errors at the initial phase of development, as the error may

increase excessive rework when detected later in the development process. Requirements validation

activities usually include checks for: completeness, consistency, validity, realism, ambiguity, and

verifiability. Test case generation, prototyping, requirements reviews, automated consistency analysis, and

walk-throughs are typical requirements validation techniques.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Feasibility analysis looks at the risks associated with a given requirement and its potential impact to the

system or product under development as a whole.

3.2.5 Req_5 Change Management of Requirements

The system shall be able to manage changes to the requirements.

Figure 23: Change Management of Requirements

Documentation:

This implies some sort of configuration control system. Such as change logs, the ability to undo or revert

changes to a requirement, and the ability to map a specific requirement instance to a specific software

instance or version.

It also implies that any changes to requirements are reviewed by relevant stakeholders for concurrence to

the change prior to implementation.

3.2.5.1 Req_5.1 Requirements Process

The system shall be able to track the state of a given requirement.

Documentation:

A requirement naturally evolves from concept to being implemented in a system or product under

development or withdrawn and never implemented. A requirement process can consist of activities such as

elicitation, analysis/refinement, validation, acceptance, allocation, and implementation. The system needs

to be able to track the status of a given requirement.

3.2.6 Req_6 Requirements Authorization

The system shall be able to assign role-based authorization to view, modify, and/or create requirements to

individual users.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 24: Requirements Authorization

3.3 3 Architecture & Design

3.3.1 Arc_1 Requirement Mapping

The system shall be able to trace architectural elements to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 25: Requirement Mapping

Documentation:

Any changes to the architecture can lead to iterating through downstream activities within the lifecycle.

Architecture changes should also be validated against upstream activities to make sure the architecture still

meets the requirements. A trace enables impacted activities to be identified and worked as needed.

3.3.2 Arc_2 Implementation Mapping

The system shall be able to trace architectural elements to implementation elements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 26: Implementation Mapping

3.3.3 Arc_3 MBSE

The system shall be able to support model-based systems engineering (MBSE).

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 27: MBSE

Documentation:

At a minimum, this implies the ability to build and maintain model-based representations of the system and

product under development in an architecture tool using Systems Modeling Language (SysML) or

equivalent modeling language which should enable the effective exchange of information between all

relevant stakeholders involved in the development process.

In a more advanced system that is embracing digital engineering concepts, this could include the capacity

to predict operational performance and quantify uncertainty in models of the system or product under

development in a simulated, representative environment or digital twin.

3.3.3.1 Arc_3.1 Model Requirements

The system shall be able to model the functional and non-functional requirements in a continuously

iterative and traceable way.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The architectural representation of the system and product under development is usually represented in

multiple views such as static, dynamic, and allocation views in order to address all functional and non-

functional requirements.

3.3.4 Arc_4 Software Assurance

The system shall be able to support the incorporation of security and privacy engineering principles into

the product under development's architecture and design.

Figure 28: Software Assurance

Documentation:

Technical requirements around expectations regarding security and privacy engineering principles should

be characterized as part of the requirements definition process in order to validate that architecture and

design decisions are sufficient to meet security and privacy expectations.

3.3.4.1 Arc_4.1 Security Feature and Attack Models

The system shall be able to support the analysis of the product under development's security features and

attack models.

3.3.4.2 Arc_4.2 Trust Boundaries

The system shall be able to clearly identify and document trust boundaries.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.3.4.2.1 Arc_4.2.1 Product and System Boundaries

The system shall be able to clearly identify and document trust boundaries between the system and the

product under development.

3.3.4.3 Arc_4.3 Defense-in-Depth

The system shall be able to support the documentation of how the product under development is

incorporating isolation and defense-in-depth principles.

Documentation:

Isolation and defense-in-depth expectations should be characterized as technical requirements in order to

demonstrate that the selected approach(es) are sufficient for the product under development.

3.3.4.4 Arc_4.4 Cryptographic Design

The system shall be able to document how the product under development is incorporating cryptographic

methodologies.

Documentation:

Technical requirements will be needed in order to demonstrate that the selected methodologies are

appropriate and sufficient for the product under development.

3.4 4 Development

3.4.1 Dev_1 Mapping to Requirements

The system shall be able to trace implementation elements to requirements.

Figure 29: Mapping to Requirements

3.4.2 Dev_2 Mapping to Architecture

The system shall be able to trace architectural elements to implementation elements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 30: Mapping to Architecture

3.4.3 Dev_3 Mapping to Tests

The system shall be able to trace implementation elements to test artifacts.

Figure 31: Mapping To Tests

3.4.4 Dev_4 Secure Software Development

The system shall be able to support the use of secure coding practices and tooling throughout the

development lifecycle.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 32: Secure Software Development

3.4.4.1 Dev_4.1 Origin Analysis

The system shall be able to support the use of origin analysis, or software composition analysis, tools to

enforce the organization's policy regarding the use of third-party software.

Documentation:

Most modern software products consist of a collection of third-party software, to include open source,

which may have both know (i.e., common vulnerabilities and exposures (CVEs)) and unknown

vulnerabilities. Vulnerabilities are constantly being discovered and reported against third-party and open-

source software that may have been deployed in the product under development. The system must be able

to identify known vulnerabilities in both the system and product under development so that the risk can be

mitigated.

3.4.4.2 Dev_4.2 Software Bill of Materials

The system shall be able to generate a software bill of materials (SBOM) for the product under

development.

Documentation:

An SBOM allows the producer to ensure all components are up to date and to respond quickly to new

vulnerabilities. It allows a user to evaluate the risks associated with the product under development

[Wikipedia 2021c].

3.4.4.2.1 Dev_4.2.1 SBOM Versions

The SBOM shall include implementation elements, and associated versions shall be traceable to the

product under development when it is released.

Documentation:

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

This supports a software bill of materials and traceability of the development components.

3.4.4.2.2 Dev_4.2.2 SBOM Configuration Settings

The SBOM shall include all implementation elements settings related to the product under development

when it is released.

3.4.4.3 Dev_4.3 Static Code Analysis

The system shall be able to support the use of static analysis tools in order to enforce the organization's

policy regarding coding standards.

Documentation:

Static code analysis tools are used to reduce the risk of software vulnerabilities caused by poor coding

practices, such as those defined as common weakness enumerations (CWEs).

Static analysis examines the system without executing it and can be applied to design representations,

source code, binaries, and bytecode. Tools include attack modeling, source code analyzers, obfuscated

code detection, bytecode or binary disassembly, human review/inspection, origin analysis, digital signature

verification, configuration checking, permission manifest analysis, development/sustainment version

control, deliberate obfuscation, rebuild and compare, and formal methods.

3.4.4.4 Dev_4.4 Product Accountability and Traceability

The system shall trace all changes made to the product under development to the entity on whose behalf

the action was taken.

3.4.5 Dev_5 Code Reviews

The system shall be able to support both informal and formal code reviews.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 33: Code Reviews

Documentation:

Code reviews have been proven effective at finding defects in code. The methods and approaches used to

effectively review code varies throughout the software engineering community. Some common approaches

include Fagan inspection, pair programming, walk-throughs, or other change-based code review processes.

The system needs to be able to support the adopted code review approach and provide a measurement

construct for determining the effectiveness of the selected approach. If the selected approach is not meeting

the product under development's quality needs, then other techniques should be incorporated into the code

review process. Data should continue to be collected to quantify the impact of changes to the code review

process and continuously monitor the effectiveness.

3.4.5.1 Dev_5.1 Code Monitoring

The system shall automatically monitor code submissions to identify code that does not adhere to

established coding standards.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.4.6 Dev_6 Orchestration

The system shall provide orchestration capabilities to automatically coordinate and execute many tasks

together.

Figure 34: Orchestration

Documentation:

Orchestration can be applied to task associated with the system, the product under development or a

combination of both in order to streamline and optimize frequent, repeatable processes.

3.4.6.1 Dev_6.1 Continuous Integration

The system shall provide a continuous integration capability that is integrated with the system's

configuration management, automated testing, and planning and tracking capabilities.

3.4.6.2 Dev_6.2 Use of Verifiable Sources

The system shall only use trusted sources when orchestrating tasks.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Documentation:

In general, an orchestrator should only interact with a trusted system that enforce specified security

policies.

3.4.7 Dev_7 Configuration Management

The system shall provide configuration management capabilities to identify, document, control, and ensure

the functional and physical characteristics of all configuration items.

Figure 35: Configuration Management

Documentation:

Configuration items include source code, build artifacts, documentation, libraries, third-party software, etc.

as they relate to both the system and the product under development.

A configuration management ecosystems often includes an integrated combination of source code

management, automated build, packaging, deployment, and baseline verification tools.

3.4.7.1 Dev_7.1 Product Source Code Repository

The system shall be able to maintain configuration of all source code associated with the product under

development.

3.4.7.2 Dev_7.2 Product Artifact Repository

The system shall be able to maintain configuration of all product artifacts associated with a given instance

of the product under development.

Documentation:

Artifacts include requirements, designs, risks, security concerns and mitigations, interface definitions, etc.

as they relate to a given configuration item.

3.4.7.3 Dev_7.3 Product Test Repository

The system shall be able to maintain configuration of all test artifacts associated with a given instance of

the product under development.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.4.7.4 Dev_7.4 Product Software Repository

The system shall be able to maintain configuration of all implementation elements of third party or open-

source software used in a given instance of the product under development.

3.4.7.5 Dev_7.5 System Source Code Repository

The system shall be able to maintain configuration of all source code associated with each system instance.

3.4.7.6 Dev_7.6 System Artifact Repository

The system shall be able to maintain configuration of all product artifacts associated with a given instance

of the system.

Documentation:

Artifacts include requirements, designs, risks, security concerns and mitigations, interface definitions, etc.

as they relate to a given configuration item.

3.4.7.7 Dev_7.7 System Test Repository

The system shall be able to maintain configuration of all test artifacts associated with a given instance of

the system.

Documentation:

Just as the product under development evolves over time, so will the system. In both cases the evolution

must be tested to identify any defects or errors made during the evolution process and to ensure quality

attributes are present. While a separate process may be needed to maintain configuration of test artifacts

associated with some aspects of the system, in general, it is preferred to use the same configuration

management mechanisms as those used for the product under development.

3.4.7.8 Dev_7.8 System Software Repository

The system shall be able to maintain configuration of all implementation elements of third-party or open-

source software used in a given instance of the system.

3.4.7.9 Dev_7.9 Chain of Custody

The system shall maintain a chain of custody for all configuration items.

3.4.7.9.1 Dev_7.9.1 Immutable Version

The system shall embed immutable version identifications into all configuration items and include these in

the SBOM.

3.4.7.10 Dev_7.10 Unauthorized Changes

The system shall be able to automatically identify any unauthorized changes to a configuration item.

3.4.7.10.1 Dev_7.10.1 Unauthorized Change Alert

The system shall automatically notify relevant stakeholder of unauthorized changes to a configuration

item.

3.4.7.11 Dev_7.11 Source Code Editor

The integrated development environment (IDE) will include a source code editor.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.4.7.12 Dev_7.12 Compiler and Interpreter

The IDE will include appropriate compilers and interpreters for the required programming and scripting

languages.

3.4.7.13 Dev_7.13 Build Automation

The IDE shall be integrated with the build automation processes.

3.4.7.14 Dev_7.14 Debugger

The IDE shall include a debugger capability for the required programming languages.

3.4.7.15 Dev_7.15 Static Code Integration

The IDE shall include syntax-based static code analysis capabilities.

Documentation:

While some static code analysis requires the system or product under development to be completely

compiled prior to running the static analysis, many general and security-related coding standard violations

can be identified prior to submitting changes to the build process. By integrating as much functionality

into the IDE as possible, it will reduce the number of findings later in the development lifecycle when they

are more expensive.

3.4.7.16 Dev_7.16 Version Control

The IDE shall be integrated with the configuration management capabilities of the system.

3.4.8 Dev_8 Integrated Development Environment (IDE)

The system shall provide programmers with the comprehensive facilities needed to develop software for

both the product under development's and system's targeted environments.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 36: Integrated Development Environment (IDE)

3.4.9 Dev_9 Development Information Radiator

The system shall support the near real-time reporting of development status to all relevant stakeholders.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 37: Development Information Radiator

Documentation:

An information radiator could take several forms, such as an email, a posting on a message board, a

physical display in a public area, or a combination of multiple approaches.

The near real-time development status provided should be based on the information needs of the relevant

stakeholders and should not simply be a display of information that is easily obtained but that does not

provide the information needed to make relevant decisions.

3.5 5 Test

3.5.1 Tes_1 Manual Testing

The system shall be able to capture manual testing artifacts.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 38: Manual Testing

3.5.1.1 Tes_1.1 Manual Test Cases

The system shall be able to capture test cases.

3.5.1.2 Tes_1.2 Manual Test Results

The system shall be able to capture test results.

3.5.1.3 Tes_1.3 Link Manual Testing to Software Instance

The System shall be able to associate manual test results to a specific instance of the system or product

under development.

3.5.2 Tes_2 Requirement Association

The system shall be able to trace test artifacts to requirements.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 39: Requirement Association

3.5.3 Tes_3 Automated Testing

The system shall be able to capture automated testing artifacts.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 40: Automated Testing

3.5.3.1 Tes_3.1 Link Automated Testing to Software Instance

The system shall be able to associate test results and associated artifacts to a specific instance of the system

or product under development.

3.5.3.2 Tes_3.2 Dynamic Application Security Testing

The system shall be able to support the use of dynamic code analysis tools in order to test the system or

product under development against runtime vulnerability scenarios.

Documentation:

Types of dynamic code analysis include network scanners, network sniffers, network vulnerability

scanners, host-based vulnerability scanners, and host application interface scanners.

3.5.3.3 Tes_3.3 Test Tool Compatibility

The system's automated testing capability shall be compatible with both the underlining system technology

and the product under development technology.

Documentation:

For example, if the targeted environment for the product is Linux, then integrating automated testing tools

that only support a Windows environment would be unacceptable. Just like having testing tools only

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

designed to work in Java would be unacceptable for a product under development that is written

completely in Python.

3.5.3.4 Tes_3.4 Quality Evaluation

The system shall automatically ensure that system and product under development enhancements and

modifications meet defined quality criteria prior to operational deployment.

Documentation:

Evaluation testing may include:

- Build Verification Testing (also known as smoke testing, confidence testing, build verification testing,

and build acceptance tests) which is an automated test intended to reveal simple failures due to build

problems by building and deploying software systems and performing a subset of tests enough to reveal

those simple failures.

- A/B Test compares two versions of software against one another where the new “B” version is served to

a small set of requestors for the purpose of selectively evaluating new software for improvements against

the “A” version.

- Blue/Green deployments is a CI/CD technique where production and staging environments alternate their

role.

3.5.4 Tes_4 Code Coverage

The system shall be able to provide code coverage data associated with each test performed against a

specific instance or version of the system or product under development.

Figure 41: Code Coverage

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.5.5 Tes_5 Penetration and Fuzz Testing

The system shall be able to provide a controlled environment in which penetration and fuzz testing can be

performed against both the system and the product under development without adversely impacting the

operational or development environments.

Figure 42: Penetration and Fuzz Testing

3.5.6 Tes_6 Testing Information Radiator

The system shall support the near real-time reporting of test results to all relevant stakeholders.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 43: Testing Information Radiator

Documentation:

While automated testing results should be reported instantly when using a fully integrated DevSecOps

environment in order to address issues found as soon as possible, manual testing results could take more

time to report and address.

An information radiator could take several forms, such as an email, a posting on a message board, a

physical display in a public area, or a combination of multiple approaches.

3.5.7 Tes_7 Multi-phase Testing

The system shall support both manual and automated testing throughout the development, maintenance

and operational life cycles.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 44: Multi-phase Testing

Documentation:

The system needs to be able to support different types of testing, such as unit, build, integration,

performance, load, exploratory, usability, regression, security, acceptance, GUI, etc. throughout the various

stages, or life cycles, the system or product under development may be in so that issues can be addressed

as efficiently as possible and that feedback can be obtained as early as possible.

The testing must also be able to support various testing objectives such as: detecting bugs, demonstrating

working functionality, evaluating user experience, ensuring compliance with regulations, and improving

operational effectiveness and suitability.

3.5.7.1 Tes_7.1 Functional and Non-Functional Testing

The system shall be able to support both manual and automated testing of both functional and non-

functional attributes.

Documentation:

Functional testing techniques may include use case testing, exploratory testing, checklist-based testing,

boundary value analysis, decision tables, decision coverage, pair-wise testing, attacks, classification trees,

etc.

Non-functional activities may include performance, usability, security, reliability, accessibility,

availability, maintainability, interoperability, recoverability, and extensibility.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.6 6 Delivery

3.6.1 Del_1 Release Management

The system shall support the automation of releases.

Figure 45: Release Management

Documentation:

Release management is the process of building, testing and delivering a product as a whole or in batches.

This requirement is applicable to both the system and the product under development. This requirement

could be satisfied by the orchestration requirement by applying an orchestration of the release, delivery,

and deployment processes.

Automation of a release can include more than just building the product. It can also include integration of

new code branches, pre-commit validation, rollback of integration failures, environment provisioning, code

deployment, canary deployment patterns, testing, security validation, documentation, obtaining approvals,

etc.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.6.2 Del_2 ITSM Service Desk

The system shall provide an integrated ITSM service desk capability to manage the end-to-end delivery of

services to users.

Figure 46: ITSM Service Desk

Documentation:

This requirement is applicable to both the system and the product under development, as both have users

that will need servicing.

3.6.3 Del_3 Continuous Delivery

The system shall support continuous delivery.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 47: Continuous Delivery

Documentation:

Continuous delivery is the automatic deployment of all code changes to a testing and/or production

environment after the build stage. This can include a progression approach to delivery based on the testing

strategy being used. For example, the system could automatically deliver a release one environment in

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

order to run an initial set of automated tests. If initial tests pass, then progress the release to a different

environment for additional testing. Assuming all tests pass, the system could automatically deploy the

release to production. Assuming the system is connected to the production environment, the system's

continuous delivery capability could be used to enable continuous deployment. Continuous deployment is

when every change that passes all stages of development and automated testing is released to the end user

automatically and with no human intervention.

3.6.3.1 Del_3.1 Delivery Failure Restoration

The system shall be able to automatically restore the environment to a previous state when the deployment

of a new release fails or is canceled.

3.6.4 Del_4 Product Recovery

The system shall be able to automatically restore a product under development to a previous known stable

state when a product failure occurs.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 48: Product Recovery

3.6.5 Del_5 System Recover

The system shall be able to automatically recover to a previous known stable state when a system failure

occurs.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 49: System Recover

3.6.6 Del_6 Configuration Item Integrity

The system shall ensure the integrity of all configuration items in transit and identify any unauthorized

changes to a deployed configuration item.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 50: Configuration Item Integrity

Documentation:

In DevSecOps, the environment in which a configuration item is deployed should also be a configuration

item using infrastructure as code.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.7 7 System Infrastructure

3.7.1 Sys_1 System's Non-functional Requirements

The system's infrastructure shall be designed and implemented to meet the organizations or specific

product under development's reliability, security, dependability, scalability, and regulatory needs.

Figure 51: System's Non-functional Requirements

Documentation:

The system's infrastructure can be made up of cloud services, on-premises hardware, or a combination of

both. It may also be made of multiple networks which may or may not be interconnected.

3.7.2 Sys_2 Automated Provisioning

The system shall enable infrastructure provisioning through automated mechanisms with machine-readable

definition files.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 52: Automated Provisioning

3.7.3 Sys_3 System Maintenance

The system shall be continuously monitored and enhanced based on issues regarding performance,

capacity, security, compliance, and risk tolerance.

Figure 53: System Maintenance

3.7.3.1 Sys_3.1 Infrastructure Telemetry

The system shall continuously collect infrastructure telemetry of both the development and operational

application under development environments.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.7.3.2 Sys_3.2 Log Management

The system shall include capabilities that include log aggregation, log analysis, and log auditing.

3.7.3.3 Sys_3.3 Performance Monitoring

The system shall monitor hardware, software, database, and network performance.

3.7.3.4 Sys_3.4 Anomaly Reporting

The system shall monitor the system configuration and performance in order to identify and report any

anomalies.

3.7.4 Sys_4 Communication

The system shall support multiple forms of communication in order to allow individuals to tailor the ways

in which information is communicated to them.

Figure 54: Communication

Documentation:

Human factors engineering should be taken into account when designing and implementing the system's

communication mechanisms. The speed, frequency, and accessibility of data impacts how and if the

information is used in terms of appropriateness and timeliness as it relates to actions and decisions.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.7.5 Sys_5 Information Management

The system information tools and services shall be integrated into the relevant DevSecOps pipelines within

the system and product under development lifecycles processes as needed to meet the organization's,

project's, and team's informational needs.

Figure 55: Information Management

3.7.5.1 Sys_5.1 System Logs

The system transaction logs shall be centrally located and stored in a format that meets the organization's,

project's, and team's information needs.

3.7.5.1.1 Sys_5.1.1 Immutable Logs

The system transaction logs should be immutable.

3.7.5.1.2 Sys_5.1.2 Log Visualization & Analysis

The system shall support the ability to visualize log data in various ways and perform log analysis.

Documentation:

This helps to find anomalous patterns.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.7.5.2 Sys_5.2 Information Storage

The system shall store information collected in such ways as to allow information producers and

consumers the ability to rapidly and consistently gather, store, transform, and retrieve the information

based on a defined retention period.

3.7.5.2.1 Sys_5.2.1 Information Security, Retention, and Disposal

The system shall secure, retain, and dispose of information being collected, stored, processed, or

transmitted based on the sensitivity and privacy concerns and the laws and regulations associated to the

given information.

3.7.5.2.1.1 Sys_5.2.1.1 Policy as Code

The system shall implement policy as code.

Documentation:

With policy as code, the system can incorporate software versions of policies earlier and more effectively

into lifecycles, compared to manual methods. Relevant stakeholders can apply policies more consistently

and more rapidly to any number of development flows and deployments, at different stages of DevSecOps

pipelines and in other contexts. As the numbers of applications and the policies governing them rise, policy

as code also facilitates automated testing of adherence to policies that is efficient and error free, compared

to manual testing that is rapidly overwhelmed. Through use of policy as code, relevant stakeholders can

ensure that as the application and IT activities of a given enterprise or organization increase, it can

continue to apply security, compliance, and other rules with reliability, scalability, and cost-effectiveness

[Milgram 2020].

3.7.5.2.1.2 Sys_5.2.1.2 Vulnerability Management

The system shall support Security Content Automation Protocol (SCAP) [Wikipedia 2021b] and container

configuration policies. These policies can be defined as needed.

Documentation:

Provides automated policy enforcement.

3.7.5.2.2 Sys_5.2.2 Need to Know

The system shall control access to information based on an individual's or application's needs.

3.7.5.2.3 Sys_5.2.3 Information Security Risks

Security risks of the underlying infrastructure shall be measured and quantified, so that the total risks and

impacts to software applications are understood.

3.7.5.2.4 Sys_5.2.4 Disaster Recovery

A disaster recovery plan shall be documented to provide mitigations in the event of a disaster.

Documentation:

At a minimum, the plan must include (a) a list and description of possible disasters (b) an inventory of

assets and services, (b) the location of data, (c) a data backup approach, (d) an identification of the disaster

recovery team.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3.7.6 Sys_6 Infrastructure Configuration Management

An infrastructure configuration plan shall be developed that accounts for all infrastructure configuration

items.

Figure 56: Infrastructure Configuration Management

3.7.6.1 Sys_6.1 Asset Inventory

An inventory of all system infrastructure assets associated within the system shall be maintained.

3.7.6.2 Sys_6.2 Infrastructure as Code Configuration

The system shall maintain infrastructure as code using a configuration management application.

3.7.7 Sys_7 Automated Patch Management

The system shall enable a process by which the operating system software and supporting services are

upgraded automatically.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 57: Automated Patch Management

3.7.7.1 Sys_7.1 Automated Patch Testing

The system shall automatically test new patches on applications which run on it, informing appropriate

parties if decision points are reached.

3.7.7.2 Sys_7.2 Configuration Scripts

The system shall execute configuration scripts that provision the infrastructure, security policy,

environment, and the application system components.

3.7.7.3 Sys_7.3 Immutable Infrastructure

The system shall deploy an immutable infrastructure.

Documentation:

Containers are an example of an immutable infrastructure.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The concept of immutable infrastructures is an IT strategy in which deployed components are replaced in

their entirety, rather than being updated in place. Deploying an immutable infrastructure requires

standardization and emulation of common infrastructure components to achieve consistent and predictable

results.

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Appendix

Requirements To Requirements Relationships Matrix

Figure 58: Requirements to Requirements Relationship Matrix

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Capabilities To Requirements Relationships Matrix

Figure 59: Capabilities to Requirements Relationship Matrix

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

References/Bibliography

URLs are valid as of the publication date of this document.

[Chrissis 2011]

Chrissis, Mary Beth; Konrad, Mike; & Sandy Shrum. CMMI for Development: Guidance for

Process Integration and Product Improvement - Third Edition. Pearson Education, Inc. 2011.

[U.S. General Services Administration 2021]

U.S. General Services Administration. DevSecOps Guide: Standard DevSecOps Platform

Framework. U.S. General Services Administration Website. May 17, 2021 [accessed].

https://tech.gsa.gov/guides/dev_sec_ops_guide.

[U.S. Department of Defense 2020]

Department of Defense. DoD Instruction 5000.87, Operation of the Software Acquisition

Pathway. October 2, 2020.

[Wikipedia 2021a]

Wikipedia. Code coverage. Wikipedia Website. February, 1 2021 [accessed].

https://en.wikipedia.org/wiki/Code_coverage.

[The MITRE Corporation 2021a]

The MITRE Corporation. CVE. CVE Website. July 13, 2021 [accessed]. https://cve.mitre.org

[The MITRE Corporation 2021b]

The MITRE Corporation. CWE – Common Weakness Enumeration. CWE Website. July 13, 2021

[accessed]. https://cwe.mitre.org

[IEEE 2021]

IEEE. IEEE Standard for DevOps: Building Reliable and Secure Systems Including Application

Build, Package, and Deployment. IEEE Std 2675-2021. Software & Systems Engineering

Standards Committee of the IEEE Computer Society, IEEE SA Standards Board, Approved 9

February 2021.

[Girard 2015]

Girard, John P. & Girard, JoAnn L. (2015). Defining knowledge management: Toward an applied

compendium. Online Journal of Applied Knowledge Management. Volume 3. Issue 1. 2015. Page

14.

[Milgram 2020]

Milgram, Jason. Policy as Code: how we got there and why you benefit. LinkedIn. Published

October 8, 2020. https://www.linkedin.com/pulse/policy-code-how-we-got-why-you-benefit-

jason-milgram

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

[Study.com 2020]

Study.com. Scrum Board: Definition & Examples. Study.com Website. January 5, 2020

[accessed]. https://study.com/academy/lesson/scrum-board-definition-examples.html.

[Wikipedia 2021b]

Wikipedia. Security Content Automation Protocol. Wikipedia Website. May 17, 2021 [accessed].

https://en.wikipedia.org/wiki/Security_Content_Automation_Protocol.

[Wikipedia 2021c]

Wikipedia. Software Bill of Materials. Wikipedia Website. February 1, 2021 [accessed].

https://en.wikipedia.org/wiki/Software_bill_of_materials.

[U.S. Army 2021d]

Wikipedia. Kanban board. Wikipedia Website. February 1, 2021 [accessed].

https://en.wikipedia.org/wiki/Kanban_board.

[Shevchenko 2020]

Shevchenko, Nataliya. An Introduction to Model-Based Systems Engineering (MBSE) [blog

post]. SEI Blog. January 5, 2020 [accessed]. https://insights.sei.cmu.edu/sei_blog/2020/12/an-

introduction-to-model-based-systems-engineering-mbse.html.

[Scaled Agile, Inc. 2021]

Scaled Agile, Inc. Value Steams. Scaled Agile Framework (SAFe). April, 27 2021 [accessed].

https://www.scaledagileframework.com/value-streams/.

[Joint Task Force Transformation Initiative Interagency Working Group 2020]

Joint Task Force Transformation Initiative Interagency Working Group. Security and Privacy

Controls for Information Systems and Organizations. NIST Special Publication. (SP) 800-53,

Revision. 5. https://doi.org/10.6028/NIST.SP.800-53r5

[Woody 2020]

Woody, Carol; Chick, Timothy; Reffett, Aaron; Pavetti, Scott; Laughlin, Richard; Frye, Brent; &

Bandor, Michael. 2020. DevSecOps Pipeline for Complex Software-Intensive Systems: Addressing

Cybersecurity Challenges. The Journal on Systemics, Cybernetics and Informatics: JSCI, Volume

18. Number 5. 2020. Pages 31-36. ISSN: 1690-4.

[U.S. Department of Defense 2018]

U.S. Department of Defense. DoD Reference Architecture Description,

https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun1

0.pdf .

CMU/SEI-2021-TR-010 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2021

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

DevSecOps Platform-Independent Model: Requirements and Capabilities

5. FUNDING NUMBERS

FA8702-15-D-0002

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2021-TR-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

SEI Administrative Agent

AFLCMC/AZS

5 Eglin Street

Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

14. SUBJECT TERMS

15. NUMBER OF PAGES

98

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

