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Summary 

The purpose of this study was to establish a validated trust in automation manipulation to 

use in future research. Specifically, this experiment compared a high reliability system to a low 

reliability system with the intention of creating significant and meaningful differences in system 

trust and system use. Twenty-two unmanned aircraft system operators were assigned to one of 

two (high and low) system reliability conditions of a hypothetical Target Identification System 

(TIS). Subjective trust in the system and behavioral use of the system were measured. Although 

the hypothesized effect size of the trust manipulation was not achieved, results obtained suggest 

that subjects’ level of fatigue moderated the effects of trust in the automated system. Across 

fatigue levels, subjects in the high system accuracy condition trusted the automated system more 

than subjects in the low system accuracy condition. Moreover, the most fatigued group trusted 

the high accuracy system, and distrusted the low accuracy system, more than the low and 

medium fatigued groups.   
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Introduction 

Historically, technology assessments such as the U.S. Department of Defense’s (DoD) 

Unmanned Systems Roadmap have asserted that greater autonomy produces more effective 

military systems. However, this path has not been as straightforward as hoped. There are serious 

questions about traditional views on how autonomous systems function alongside humans. For 

example, an analysis of fratricide incidents involving the Patriot Missile system concluded, 

counterintuitively, that complex technologies increase the need for operator expertise (Hoffman 

et al., 2014). Reversing years of precedent in federally funded autonomy research, the 2012 

Defense Science Board report, recommended military technology procurement programs 

abandon the focus on supervisory control and “levels of autonomy” and develop a reference 

framework around human-computer collaboration (Systems et al., 2012). Better understanding 

the operator’s trust in automation is essential to developing such a framework. 

Present unmanned aerial vehicle (UAV) operations are automated to such a degree that 

the operator largely monitors the flight with few manual inputs (Cummings et al., 2014). While 

highly automated systems offer several advantages, such as reduced crewing requirements and 

reduced workload, improper levels of trust in automation can lead to catastrophic consequences. 

Improper trust calibration is typically categorized as “misuse” or “disuse” of automation, both of 

which are behaviors that undermine performance and safety (Parasuraman & Riley, 1997). 

Misuse is characterized by an inappropriate reliance on automation, such as when a pilot over-

trusts the autopilot function and fails to intervene when necessary. Disuse of automation is the 

inappropriate rejection of automation, for instance, when Army UAV operators reject using 

Shadow’s highly reliable auto-landing feature in favor of a manual landing, which requires a 

complex multi-step checklist, increasing the risk of human error. Successful use of automation 

requires understanding the factors that encourage misuse and disuse of automated agents.  

Trust researchers have identified numerous endogenous and exogenous factors that 

contribute to an operator’s trust in automation (for reviews, see [Hoff & Bashir, 2015; Lee & 

See, 2004]). However, one of the strongest factors that predicts trust in automation is the 

automation’s performance (Hancock et al., 2011; McLeod et al., 2005; Schaefer et al., 2016). 

Generally, automation that is more reliable or dependable is more likely to be trusted. Hancock 

et al.’s (2011) meta-analysis on the factors influencing trust in robots found that robot 

performance (e.g., dependability, reliability, predictability) had a stronger effect on trust 

compared to the user’s ability (e.g., expertise, prior experience), characteristics (e.g., personality, 

propensity to trust, demographics), the robot’s attributes (e.g., robot type, adaptability, 

anthropomorphism), and environmental factors (e.g., team communication, task type). Similarly, 

a meta-analysis conducted by Schaefer et al. (2016) on the factors influencing trust in 

autonomous systems found that automation capability and behavior had a greater effect on trust 

than human cognitive factors and demographics. Human emotive factors (e.g., the user’s 

confidence in the automation, attitudes toward the automation, and/or commitment to the 

automation) were the only human dimension that showed a comparable effect size to automation 

capability and behavior. 

Other research has found significant effects on trust when the automated system’s 

reliability level is manipulated (Bagheri & Jamieson, 2004; Bailey & Scerbo, 2007; Bliss & 

Acton, 2003; Cahour & Forzy, 2009; Cummings et al., 2010; Donmez et al., 2006; Ho et al., 
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2005; Kazi et al., 2007; Moray et al., 2000; Stedmon et al., 2007). Schaefer et al. provided a 

succinct summary, “systems with highly reliable behavior and communication engender trust 

across differing task contexts” (2016, p. 17). Although errors occur in human-centered human 

automation, the reduction of all types of error increases the reliability of a system and thus 

positively influences trust development (de Vries et al., 2003). Conversely, miss rate and false 

alarm rate degrades trust and adversely affects performance (Wickens et al., 2009; Yamada & 

Kuchar, 2006). Further research suggests that the degree of task difficulty influences trust level 

much more than the type of error that appears. Trust in the automation system increases when the 

targets detected are perceived by the operator to be a difficult target to identify. Madhavan and 

Wiegmann (2007) suggested that trust degrades when the automation system misses or provides 

a false alarm while detecting what the operator perceives to be an easily identifiable target. 

“Master and colleagues (2005) found a significant change in trust between conservative and 

risky systems but no difference in trust based on error rates” (Schaefer et al., 2016, p. 16). 

Critically, the level of trust that an operator feels toward an automated agent is independent from 

how appropriate their level of trust is for the agent. Increasing an operator’s trust level should not 

be the ultimate goal if it leads to misuse by over-trusting the agent when it should not be used. 

One factor that may critically influence trust in automation is fatigue. Fatigue is 

associated with increased reaction times, reduced reaction accuracy, and reduced attention levels, 

all of which increase the risk for a mishap. It is possible that fatigue also reduces the decision-

making capability required to aptly rely on an automated agent, leading to disastrous outcomes. 

However, before exogenous factors like fatigue can be tested as elements influencing unmanned 

aircraft system (UAS) operator trust in automation, we must first establish a valid method of 

inducing and measuring operator trust. The purpose of this experiment is to validate a new 

method of manipulating trust in automation in a UAS for use in future research. 

Prior research has typically manipulated trust in automation by varying the automated 

system’s reliability level. Generally, the more reliable the system is at performing its job, the 

more trust a human feels toward the system, and the more the human uses the system. The 

relationship between system reliance and operator trust is well documented in experiments using 

an automatic space shuttle cabin air management system simulation (Chavaillaz et al., 2016), an 

auto-correcting multi-task flight simulator (Bagheri & Jamieson, 2004), and automated target 

identification aids in simulated combat scenarios (Ross, 2008; Wang et al., 2009). While prior 

research shows a consistent positive relationship between agent reliability and human trust, there 

is currently no established method of systematically varying an automated agent’s reliability in 

the Universal Mission Simulator (UMS) to induce different levels of UAS operator trust. The 

UMS is the Army’s flight simulator for the Shadow and Gray Eagle UAS platforms. 

For this study, we used prior research as a guide for developing our own trust 

manipulation in the United States Army Aeromedical Research Laboratory (USAARL) UAS 

simulator, the UMS at USAARL. These experiments generally have the operator complete a 

complex task with the help of an automated aid that performs at contrasting reliability levels. For 

instance, Bagheri and Jamieson (2004) used the Multi-Attribute Task Battery (MAT-B), where 

subjects performed a tracking, fuel management, and system-monitoring task with the help of an 

automated aid that assisted with the system-monitoring requirement. The reliability of the aid 

was manipulated to successfully alert a certain percentage of system failures (87.5% vs. 

56.25%). In Chavaillaz et al.’s (2016) experiment, subjects interacted with a cabin air 
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management system simulation modified from previous research. An automated aid assisted the 

operator with system faults during their four-part complex process control task. Reliability level 

of the aid was defined as the percentage of correct diagnoses made by the system (100% vs. 80% 

vs. 60%). Wiegmann et al. (2001) asked subjects to diagnose the validity of pump failures in a 

waste processing facility simulation with the help of a diagnostic aid that was 100%, 80%, or 

60% reliable. While there would be benefits to using one of these previously validated trust 

manipulations in the current study, there are two main reasons for developing our own 

manipulation in the UMS. First, because of logistical limitations (e.g., the restrictions guarding 

USAARL’s UMS software), we are unable to acquire and apply the exact trust manipulations 

validated in prior research to our simulator. Therefore, we created a new target identification aid 

using the built-in functions within the UMS software. Second, to increase realism and to most 

directly benefit the population of interest (Army UAS operators), we believe it is essential to test 

subjects in the most realistic UAS setting possible as opposed to testing them in a non-UAS 

simulator or in a less realistic UAS simulator taken from previous research. Validating a trust 

manipulation in USAARL’s UMS will lay the foundation for future studies investigating 

exogenous factors that cause mishaps resulting directly from an operator’s misuse or disuse of 

automation. 

As unmanned systems have proven their worth on the battlefield, DoD has allocated an 

increasing percentage of its budget to developing and acquiring these systems (see: Unmanned 

Systems Integrated Roadmap FY2017-2042). Unmanned systems will continue to be critical to 

U.S. operations because of the capability and performance advantages these systems provide the 

Soldier. Additionally, these systems permit operations in riskier conditions than manned systems. 

Further, Future Vertical Lift (FVL) efforts are working toward the capability of single operator 

control of multiple UAVs simultaneously, which will require automated systems in the UAS to 

offset operator task load. Because of this inevitable future, we must deeply understand the nature 

of trust between humans and automated systems. As the DoD continues to acquire new systems, 

it is imperative that the science continues to test human-system interactions to achieve the 

highest possible level of operator performance. 

Methods 

Research Design 

In this study, a between-subjects experimental design evaluated operator trust in an 

automated target identification system (TIS) developed for use in USAARL research projects 

using the UMS. The TIS employed two levels of reliability for accurately detecting targets, high 

reliability (90% accuracy, 10% false positives) and low reliability (70% accuracy, 30% false 

positives). The TIS provided an alert on the mission manager that a target was detected and the 

operator had to verify the existence of the target. False positives were when there was an alert 

and no target. 

Subjects 

Twenty-two healthy (see COVID-19 Impacts below) rated UAS operators with Military 

Occupational Code (MOS) 15C (MQ-1, Gray Eagle) or 15W (RQ-7, Shadow) were recruited 

from resident non-commissioned officer professional military education classes conducted at 
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Fort Rucker, AL. Volunteers were eligible for participation if they currently held either MOS 

15C or 15W. Demographics information is provided in Table 1. All flights were conducted after 

duty hours and subjects were compensated with a $100 gift card for participation.  

All methods (recruitment and experimental) were carried out in accordance with current 

regulations and guidelines. Prior to the execution, this study was reviewed and approved in 

accordance with the Medical Research Development Command policies. This project was 

determined to be exempt according to 32 CFR 219.104(d) (3) (i) and (ii). 

COVID-19 Impacts 

Planning and active recruitment was temporarily halted when the population of potential 

volunteers at the Fort Rucker Non-Commissioned Officer Academy (NCOA) became 

unavailable due to COVID-19 precautions mandated by changes in the Health Protection Posture 

of the Fort Rucker Garrison. The NCOA initially cancelled, and then subsequently pivoted their 

courses to an online instruction format. When in-person classes resumed, we coordinated 

COVID-19 protection measures with the NCOA to ensure subject safety and restarted 

recruitment actions. Subjects were pre-screened telephonically with a COVID-19 questionnaire 

24 hours prior to their scheduled appointment, re-screened with a COVID-19 questionnaire upon 

arrival at the lab, scanned for a fever, required to wear a mask, wash their hands prior to the 

experiment, and answered a post experiment follow-up questionnaire 72 hours following the 

experimental session to check for symptoms. 

Equipment 

Universal Mission Simulator. 

USAARL employs the Army’s UMS, a computer based device that replicates the 

operational controls within a UAS operator shelter for the Shadow or Gray Eagle weapon 

systems. This device was modified with three video cameras, which simultaneously recorded 

operator actions and instrument indications during flight. The UMS was also modified to capture 

all operator keyboard input and generate a repeatable threat scenario across all subjects. Thus, 

the only change in the scenario between conditions was TIS accuracy.  

 

 Army’s Universal Mission Simulator with the operator’s console in the foreground. 
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Questionnaires 

Propensity to Trust. 

Before the mission, subjects completed the Adapted Propensity to Trust Questionnaire 

(Jessup et al., 2019), which is a 6-item measure of the propensity to trust automated agents. 

Example items include, “Generally, I trust automated agents,” “Automated agents are reliable.” 

State Fatigue. 

Before and after the mission, subjects answered a five-item measure of fatigue (the 

fatigue subscale) from the Profile of Mood States (POMS) questionnaire (Biehl & Landauer, 

1975; McNair et al., 1971). This questionnaire asks subjects to rate how exhausted, weary, 

sluggish, fatigued, and worn-out they feel “right now.” 

Subjective Workload. 

After the mission, subjects completed the NASA-Task Load Index (Hart & Staveland, 

1988) V 1.0.3 as a measure of subjective workload via an iPad App.  

Self-Reported Trust Measures. 

After the mission, subjects were asked to complete the Checklist of Trust between People 

and Automation (CTPA) questionnaire (Jian et al., 2000), and the Human Computer Trust (HCT) 

questionnaire (Madsen & Gregor, 2000). Data from these instruments provided a measure of 

subjective trust in the TIS.  

Post-Mission Questionnaire. 

After the trust questionnaires, subjects answered several questions about their general 

experience with TIS, such as “What did you like about the TIS?”/“What did you dislike about 

the TIS?,” etc. These data allowed the researchers to perform a text analysis on trust-related 

language. 

Demographic Questionnaire. 

After the trust questionnaires, subjects were asked to complete a demographic 

questionnaire with age, rank, gender, months as a UAS operator, and total flight time.  

Procedure 

All interested persons who responded to the recruitment efforts were instructed to report 

to the laboratory at a time convenient to the volunteer and the research staff. All research periods 

were held after the volunteer’s normal duty day. Prior to participating in the study, volunteers 

were briefed by a member of the research team on the study procedures in a quiet conference 

room. They were then given an unlimited amount of time to read and review the informed 

consent document; volunteers were provided a copy of the informed consent document for their 

records. After providing informed consent, subjects completed the pre-measure of the Propensity 
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to Trust Scale and the State Fatigue surveys and were assigned to either the high or the low 

system reliability condition. Condition assignment was counter-balanced. 

Next subjects were provided a mission briefing (Appendix B) following the Army’s 

mission, enemy, troops, terrain, time, and civilian concerns (METT-TC) format. The primary 

mission was searching for a high-value target in a civilian high foot-traffic area. The secondary 

mission was to test the new TIS. Subjects were briefed that the TIS would identify threat 

armored personnel carriers, providing them a grid location. They were asked to verify the 

presence of threat vehicles and provide a spot report either confirming or denying the presence of 

the threat armored personnel carriers, prior to the TIS alert disappearing from their mission 

manager. The subject’s use of the TIS was recorded via video and screen captures, and was 

quantified by the investigators (e.g., number of times the subject clicked on the TIS’s suggested 

target). The subjects were briefed that other assets were managing the aircraft and they were only 

tasked with the control of the payload and the mission as briefed. 

Once seated, the eye-tracking cameras were calibrated, and then the mission started when 

the operator assumed control of an MQ-1 Gray Eagle loitering at 10,000 feet above ground level 

(AGL) of the mission area of interest. Mission duration was 60 minutes. After completing the 

mission, the Subjective Workload, Self-Reported Trust Measures, Post-Mission Questionnaire, 

and Demographic Questionnaire were administered. 

Results 

Demographics 

Twenty-two healthy, rated UAS operators (18 male) with MOS 15C or 15W participated 

in the study. This resulted in a normally distributed sample of 11 subjects in each condition. The 

demographic summary is provided in Table 1. There were no statistically significant differences 

between the groups in age, t(20) = .17, p = .87; rank, t(20) = .49, p = .63; gender, t(20) = 1.1,  p = 

.29; months experience, t(20) = .16, p = .88; and total hours, t(20) = .15, p = .88. 

Table 1. Study Group Demographic Summary 

 

Age in years 

(Mean/SD)
35.6/5.5 28.5/3.4 28.1/6.2

Rank (SGT/SSG) 17/5 9/2 8/3

Gender (M/F) 18/4 8/3 10/1

Months 

Experience 

(Mean/SD)

73.7/26.0 72.8/34.0 77.4/14.1

Total Hours 878/577 897/742 860/386

Demographic 

Element

Combined 

Groups

90% 

Accuracy 

Group

70% 

Accuracy 

Group

Note: No statistical difference found between High Accuracy and Low 

Accuracy groups, p≤.05 (2-tailed)
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Propensity to Trust 

There were no statistical differences in pre-existing attitudes to system trust between the 

groups based on the analysis of the a priori administered propensity to trust scale, t(20) = .17,     

p = .86. 

Checklist of Trust between People and Automation (CPTA) 

Analysis of the CPTA mean values showed no difference in the system trust between the 

groups, t(20) = 3.0, p = .77. 

Human Computer Trust Questionnaire (HCT) 

Analysis of the HCT mean values showed no difference in the system trust between the 

groups, t(20) = .24, p = .82. 

Trust Manipulation Findings  

To assess how system accuracy affects trust in automation, we first performed a 

manipulation check using independent samples t-test (one-tailed). Specifically, we asked subjects 

to report the extent to which: “The system analyzes problems consistently.” Subjects in the 90% 

accuracy condition reported that their system analyzed problems more consistently than subjects 

in the 70% accuracy condition (mean difference = .91, p < .05). 

To evaluate the extent to which the subjects trusted the automated system, we asked them 

to assess the extent to which: “When I am uncertain about a decision, I believe the system rather 

than myself.” Independent sample t-tests indicated that, when uncertain, subjects in the 90% 

accuracy condition believed the system more than subjects in the 70% accuracy condition (mean 

difference = 1.36, p < .05). 

Influence of Fatigue on Trust 

This study was designed as a precursor to a follow-on study that will examine whether 

the impact of system accuracy on trust-in-automation differed according to experienced levels of 

fatigue. Therefore, fatigue questions were included and their effects examined. To accomplish 

this, we first developed a three-item measure of fatigue from subjects’ answers to three post-

study questions. Specifically, subjects were asked on a 0-4 scale to report on the extent to which 

they felt “Fatigued,” “Sluggish,” and “Worn-out.” The Cronbach’s alpha of this three-item 

measure was .86. To develop meaningful indicators of fatigue, we collapsed raw fatigue scores 

into three categories (“Low” = Aggregate fatigue score = 0-1; “Medium” = Aggregate fatigue 

score = 1-2; “High” = Aggregate fatigue score = 3-4). 

We then employed a univariate general linear model (GLM) analysis where we entered 

condition and fatigue levels as fixed effects (Table 2 & Figure 2). We also added the number of 

months of simulator experience that subjects reported as a covariate. In our model, we created an 

interaction term by combining the study condition to which each subject was assigned with their 

reported level of fatigue. 
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The results we obtained suggest that the level of fatigue subjects experienced in the study 

moderated the effects of system accuracy on trust in the automated system (F = 3.8; p < .05). An 

inspection of the plot of these values reveals that, across fatigue levels, subjects in the 90% 

accuracy condition trusted the automated system more than subjects in the 70% accuracy 

condition (mean difference = 2.27, p < .01). The most marked difference was among subjects 

exhibiting ‘high” levels of fatigue (mean difference = 5.02), although subjects experiencing 

“medium” (mean difference = 1.38) and “low” (mean difference = .41) levels of fatigue also 

exhibited differences that were consistent with this pattern. 

Table 2. Assessing Trust -in-Automation Across Study Conditions and Fatigue Levels 

 

 

 

 Estimated marginal means of trust in automated system by study condition and fatigue 

level. 
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Discussion & Recommendations 

For this study, we evaluated a trust in automation manipulation for use in future research 

on the effects of fatigue on system trust. This experiment was designed to validate a novel TIS 

method for manipulating operator trust using an operationally relevant device, the UMS. We 

used this system to compare how high and low reliability systems produce significant and 

meaningful differences in system trust and its use by the subjects. Additionally, the experimental 

results suggest that the level of fatigue subjects reported moderated the effects of system 

accuracy on trust in the automation. Moreover, the trends showed that the fatigued subjects 

trusted the high accuracy system, and distrusted the low accuracy system, more than the other 

groups. 

By testing these relationships in a controlled experiment, this study supports the general 

proposition that system accuracy is a key factor that individuals weigh when determining the 

extent to which they trust an automated system. A key finding of this study is that operators’ 

fatigue levels moderate this effect in important ways. Specifically, the more fatigued that 

operators were, the more that they relied on system accuracy when determining the extent to 

which they trusted the automated system. 

In contrast to some prior research that reports how individuals’ fatigue levels encourage 

them to increasingly depend on automated systems, the findings from this study align with more 

targeted work that details how increased levels of fatigue actually heighten operator sensitivity to 

system failures. For example, Reichenbach et al. (2011)’s examination of how individuals 

employ decision-aids found that operators who were sleep-deprived were more sensitive to 

failures in their decisions to employ automation. In addition, Wohleber et al. (2019) found that as 

subjects in their multi-UAS simulation study fatigued over time, they tended to become more 

sensitive to system reliability. They specifically observed that in lower reliability conditions, 

subjects became less dependent on automation as their experiment progressed and fatigue levels 

rose. 

Work by Banks et al. (2014) and Wohleber et al. (2019) suggest that this phenomenon 

may occur when actors view monitoring an automated system as an additional sub-task that they 

must manage while performing their primary tasks. As fatigue levels increase, individuals in 

these situations become more motivated to economize their efforts. Consistent with effort-

regulation dynamics, this can lead operators to devote fewer cognitive resources to monitoring 

the automated system in order to devote more cognitive energies to their own decision-making 

(i.e., without the aid of the automated system) (Hockey, 2017; Sauer et al., 2003). This can create 

problems for operators, especially in situations where relying on an automated system could 

increase their decision accuracy and overall effectiveness. 

These perspectives suggest that it is important for designers to construct automated 

systems that motivate individuals across fatigue levels to display an appropriate reliance on and 

trust in a given technology. To accomplish this, operators must perceive that a given technology 

removes some of their workload burden while placing few (if any) additional cognitive demands 

on them. Future research is needed to determine exactly what types of tasks and workload levels 

might increase individuals’ motivations to trust a technology enough that they appropriately off-

load task functions to a given automated system.  
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Study Fatigue 

As noted above, all subjects participated in this study in the evenings after their 

scheduled duty day. To place this in context, the duty day for these individuals began around 

0530 for physical training. Followed by a full day of in-person training at the Non-

Commissioned Officer Academy. Most subjects started the informed consent process at 

USAARL at about 1800, after a 12+ hour duty day. To evaluate the impact of being well rested, 

we attempted to recruit subjects to participate during their off-duty days; however, these students 

only had one day of no scheduled activities per week and no one was willing to participate in this 

study on those days. 

Study Limitations 

Changes to the health protection posture within USAARL, NCOA, and at Ft. Rucker 

prevented the total recruitment effort of N=34 for this project. Historical data used to complete 

the power analysis indicated that similar manipulations resulted in a large effect size of Cohen’s 

d = 1.0, however the current study yielded an effect size much lower, less than 0.2. Further 

research is necessary to determine how to modify the trust manipulation in order to yield a larger 

effect size.  
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Appendix A. Acronyms and Abbreviations 

AGL above ground level 

CTPA Checklist of Trust between People and Automation 

DoD Department of Defense 

FVL Future Vertical Lift 

HCT Human Computer Trust 

M male 

MAT-B Multi-attribute Task Battery 

METT-TC mission, enemy, terrain, troops, time, civil considerations 

MOS Military Occupational Specialty 

NCOA Noncommissioned Officers Academy 

POMS Profile of Mood States 

SD standard deviation 

TIS target identification system 

UAS unmanned aircraft system 

UAV unmanned aerial vehicle 

UMS universal mission simulator 

USAARL U.S. Army Aeromedical Research Laboratory 
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Appendix B. USAARL Mission Brief 
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