The Influence of Diet Quality on Vaginal Microbiota Composition in Pregnant Women

Tonya Y White, Lt Col, USAF, NC, PhD, NNP-BC

DISCLOSURES

- The opinions and assertions expressed herein are mine and do not necessarily reflect the official policy or position of the Uniformed Services University, US Air Force, or the Department of Defense
- I have no financial interest to declare

AGENDA

Introduction

- ✤ Introduction
- Definitions
- ✤ Literature review
- ✤ <u>Research gaps</u>
- ✤ Summary
- Research questions
- Specific aims

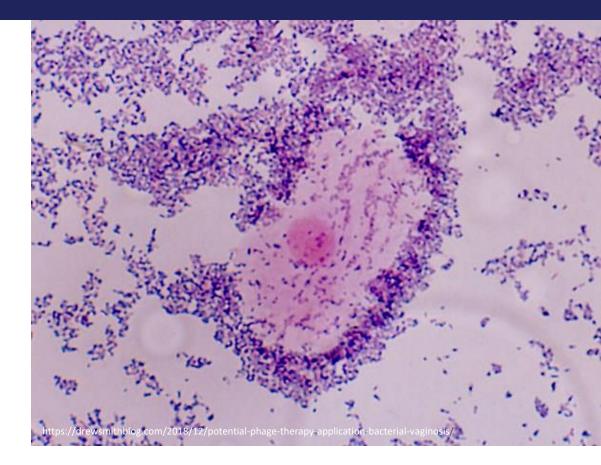
Methods

- Parent project
- Study design and sample
- ♦ Measures
- <u>Data analysis</u> and results
- Contributions
- Implications
- ♦ Limitations
- ♦ <u>Strengths</u>
- ✤ <u>Questions</u>

AGENDA

Introduction

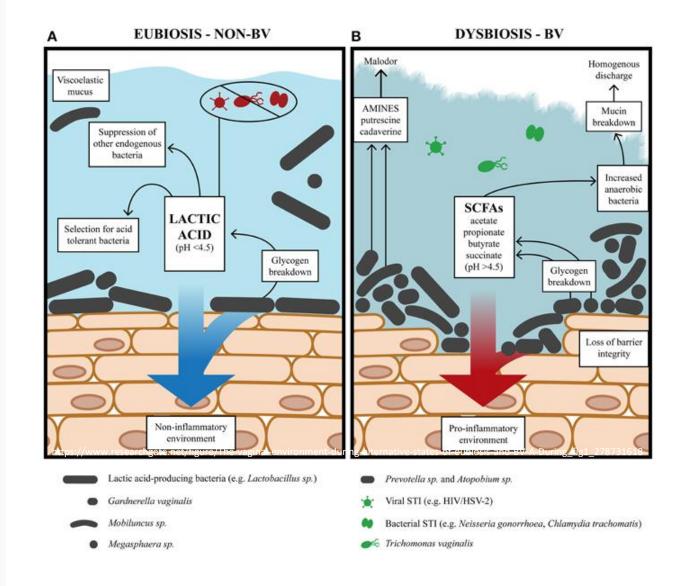
- ✤ Introduction
- Definitions
- ♦ Literature review
- Research gaps
- Study population
- Summary
- Research questions
- ✤ Specific aims


Methods

- Parent project
- <u>Study design and sample</u>
- * <u>Measures</u>
- ✤ Data analysis
- ✤ <u>Significance</u>
- Assumptions
- * Limitations
- ✤ <u>Strengths</u>
- <u>Questions</u>

INTRODUCTION

- Bacterial vaginosis (BV) is a dysbiotic condition
- Affects 30% of reproductive age women
- Greater risk for Preterm birth and STIs
- As many as 80% are asymptomatic
- The economic burden is \$15B
- Diet may play a role in shaping vaginal microbiota
- Understanding diet influences may have important clinical implications

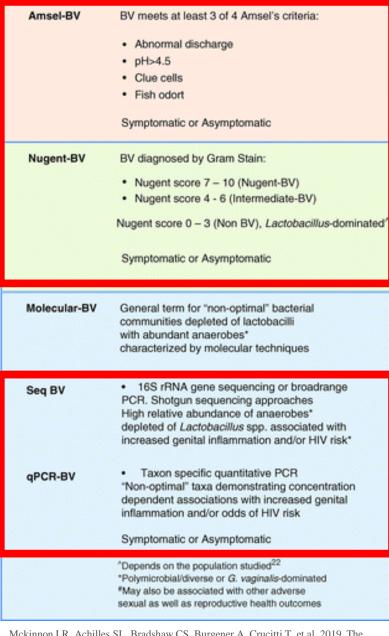


INTRODUCTION

Vaginal Microbiota

BV Associated Dysbiosis

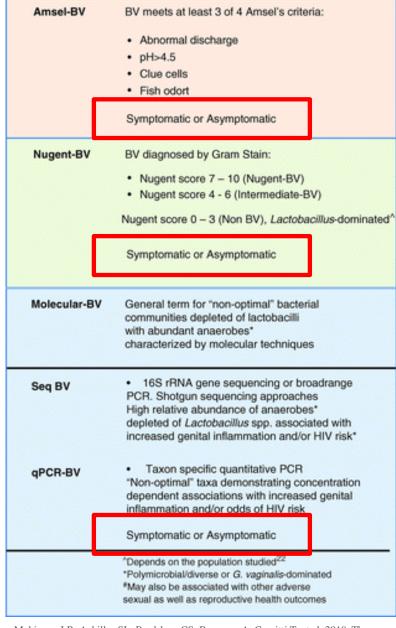
- Overgrowth of anaerobic and facultative bacteria
- Diverse polymicrobial composition
- Community Class type D


Amsel-BV	BV meets at least 3 of 4 Amsel's criteria:
	Abnormal discharge
	• pH>4.5
	Clue cells
	Fish odort
	Symptomatic or Asymptomatic
Nugent-BV	BV diagnosed by Gram Stain:
	 Nugent score 7 – 10 (Nugent-BV)
	 Nugent score 4 - 6 (Intermediate-BV)
	Nugent score 0 - 3 (Non BV), Lactobacillus-dominated
	Symptomatic or Asymptomatic
Molecular-BV	General term for "non-optimal" bacterial communities depleted of lactobacilli with abundant anaerobes" characterized by molecular techniques
Seq BV	 16S rRNA gene sequencing or broadrange PCR. Shotgun sequencing approaches High relative abundance of anaerobes* depleted of <i>Lactobacillus</i> spp. associated with increased genital inflammation and/or HIV risk*
qPCR-BV	 Taxon specific quantitative PCR "Non-optimal" taxa demonstrating concentration dependent associations with increased genital inflammation and/or odds of HIV risk
	Symptomatic or Asymptomatic
	*Depends on the population studied ²²
	*Polymicrobial/diverse or G. vaginal/s-dominated *May also be associated with other adverse
	sexual as well as reproductive health outcomes

INTRODUCTION

Defining BV Diagnosis

- The etiology is not well understood
- Inconsistencies in the literature



INTRODUCTION

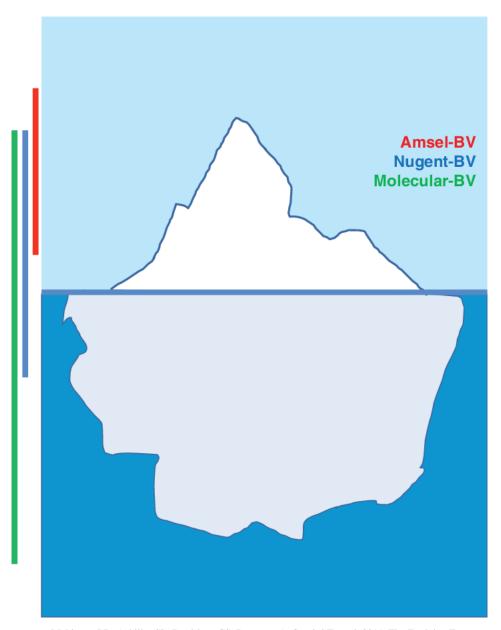
Defining BV Diagnosis

- Amsel criteria
- Nugent score
- Sequencing

INTRODUCTION

Defining BV Diagnosis

Not all women present with symptoms


Amsel-BV	BV meets at least 3 of 4 Amsel's criteria:
	Abnormal discharge
	• pH>4.5
	Clue cells
	Fish odort
	Symptomatic or Asymptomatic
Nugent-BV	BV diagnosed by Gram Stain:
	 Nugent score 7 – 10 (Nugent-BV)
	 Nugent score 4 - 6 (Intermediate-BV)
	Nugent score 0 - 3 (Non BV), Lactobacillus-dominated
	Symptomatic or Asymptomatic
Molecular-BV	General term for "non-optimal" bacterial communities depleted of lactobacilli with abundant anaerobes" characterized by molecular techniques
Seq BV	16S rRNA gene sequencing or broadrange PCR. Stotour sequencing approaches
	High relative abundance of anaerobes* depleted of <i>Lactobacillus</i> spp. associated with increased genital inflammation and/or HIV risk*
qPCR-BV	 Taxon specific quantitative PCR "Non-optimal" taxa demonstrating concentration dependent associations with increased genital inflammation and/or odds of HIV risk Symptomatic or Asymptomatic
	*Depends on the population studied ²² *Polymicrobial/diverse or G, vaginalis-dominated
	*May also be associated with other adverse
	sexual as well as reproductive health outcomes

INTRODUCTION

Defining BV Diagnosis

Molecular BV

INTRODUCTION

Molecular BV The Iceberg Concept

Women with BV are at greater risk for adverse health outcomes but go unrecognized

Mckinnon LR, Achilles SL, Bradshaw CS, Burgener A, Crucitti T, et al. 2019. The Evolving Facets of Bacterial Vaginosis: Implications for HIV Transmission. *AIDS Res. Hum. Retroviruses*. 35(3):219–28

Literature Review

The influence of diet on BV

- Majority used Nugent scores to define BV
- Micronutrients associated with BV
- Macronutrients associated with BV
- Diet quality associated with BV
- Diet may shape the composition of the vaginal microbiota

INTRODUCTION

Research Gaps

- Unclear what effect diet has on changes to the vaginal microbiota
- Inconsistencies in defining BV
- No studies have examined the longitudinal influence of diet on BV
- No studies on the influence of diet on molecular BV among pregnant women

Summary

- BV affects roughly a third of all women of reproductive age women predisposing them to adverse health outcomes
- As many as 80% of women with BV associated microbiota are asymptomatic
- Diet may play a role in shaping the vaginal microbiota composition
- The current body of literature has not addressed how diet quality influences the molecular composition of the vaginal microbiota
- This study was designed to begin to fill that gap by examining the longitudinal changes in the structure of the vaginal microbiota of the pregnant women who participated in the BEAM study

INTRODUCTION

Research Question & Aims

- Does diet quality predict alterations in the frequency of molecular BV?
- Assess the influence of diet quality on the vaginal communities to determine if differences in diet quality were associated with molecular BV
- Analyze the relationship of diet quality scores and molecular BV using diet data at 6-, 7-, and 8-month gestations

AGENDA

Introduction

- * Introduction
- <u>Definitions</u>
- ✤ <u>Literature review</u>
- Research gaps
- Study population
- Summary
- Research questions
- ✤ <u>Specific aims</u>

Methods

- Parent project
- Study design and sample
- ♦ Measures
- ✤ Data analysis
- ♦ Significance
- Assumptions
- ♦ Limitations
- ♦ Strengths
- Questions

Parent Project

Birth, Eating, and the Microbiome (BEAM, NR014826)

- NINR funded project
- IRB approval from University of Maryland, Baltimore
- The influence of diet on the vaginal microbiota and preterm birth among a pregnant cohort
- Data were collected from 2014 to 2018
- Data included demographic data, food photographs, & sequenced vaginal samples for 66 women

Study Design

BEAM Data

- Original analysis using longitudinal data collected prospectively
- The sample
 - 18 to 34 years old
 - Primigravid women with singleton pregnancies recruited between 12 to 22 weeks' gestation and were followed through delivery
 - Inclusion criteria: participants who had complete dietary and vaginal microbiota data for gestational months 6, 7, and 8
 - Exclusion criteria: more than one missing data point

Component HEI-2015 ¹	Max Points	Standard for Maximum Score	Standard for Minimum Score of Zero
Adequacy:			
Total Fruit ²	5	≥ 0.8 cup equivalent/1000 kcal	No Fruit
Whole Fruit ³	5	≥ 0.4 cup equivalent/1000 kcal	No Whole Fruit
Total Vegetables ⁴	5	≥ 1.1 cup equivalent/1000 kcal	No Vegetables
Greens and Beans ⁴	5	≥ 0.2 cup equivalent/1000 kcal	No Dark Green Vegetables or Beans or Peas
Whole Grains	10	≥ 1.5 ounce equivalent/1000 kcal	No Whole Grains
Dairy ⁵	10	≥ 1.3 cup equivalent/1000 kcal	No Dairy
Total Protein Foods ⁶	5	≥ 2.5 ounce equivalent/1000 kcal	No Protein Foods
Seafood and Plant Proteins ^{7,8}	5	≥ 0.8 ounce equivalent/1000 kcal	No Seafood or Plant Proteins
Fatty Acids ⁹	10	(PUFAs + MUFAs)/SFAs > 2.5	(PUFAs + MUFAs)/SFAs ≤ 1.2
Moderation:			
Refined Grains	10	≤ 1.8-ounce equivalents/1000 kcal	≥ 4.3 ounce equivalent/1000 kcal
Sodium	10	≤ 1.1 g/1000 kcal	≥ 2.0 g per 1000 kcal
Added Sugar	10	≤ 6.5 % of energy	≥ 26 % of energy
Saturated Fats	10	\leq 8 % of energy	≥ 16 % of energy

Measure

DIETARY INTAKE DATA

- FoodFoto[™] System
- Healthy Eating Index -2015
- Diet scores are continuous variables

HEI-2015 Components and Scoring Standards from the USDA's Center for Policy and Promotion (Krebs-Smith et al., 2018; USDA, 2018)

Component HEI-2015 ¹	Max Points	Standard for Maximum Score	Standard for Minimum Score of Zero		
Adequacy:					
Total Fruit ²	5	≥ 0.8 cup equivalent/1000 kcal	No Fruit		
Whole Fruit ³	5	≥ 0.4 cup equivalent/1000 kcal	No Whole Fruit		
Total Vegetables ⁴	5	≥ 1.1 cup equivalent/1000 kcal	No Vegetables		
Greens and Beans ⁴	5	≥ 0.2 cup equivalent/1000 kcal	No Dark Green Vegetables or Beans or Peas		
Whole Grains	10	≥ 1.5 ounce equivalent/1000 kcal	No Whole Grains		
Dairy ⁵	10	≥ 1.3 cup equivalent/1000 kcal	No Dairy		
Total Protein Foods ⁶	5	≥ 2.5 ounce equivalent/1000 kcal	No Protein Foods		
Seafood and Plant Proteins ^{7,8}	5	≥ 0.8 ounce equivalent/1000 kcal	No Seafood or Plant Proteins		
Fatty Acids ⁹	10	(PUFAs + MUFAs)/SFAs > 2.5	(PUFAs + MUFAs)/SFAs ≤ 1.2		
Moderation:					
Refined Grains	10	≤ 1.8-ounce equivalents/1000 kcal	≥ 4.3 ounce equivalent/1000 kcal		
Sodium	10	≤ 1.1 g/1000 kcal	≥ 2.0 g per 1000 kcal		
Added Sugar	10	≤ 6.5 % of energy	≥ 26 % of energy		
Saturated Fats	10	\leq 8 % of energy	≥ 16 % of energy		

Measure

DIETARY INTAKE DATA

• HEI-2015 Adequacy components

HEI-2015 Components and Scoring Standards from the USDA's Center for Policy and Promotion (Krebs-Smith et al., 2018; USDA, 2018)

Component HEI-2015 ¹	Max Points	Standard for Maximum Score	Standard for Minimum Score of Zero
Adequacy:			
Total Fruit ²	5	≥ 0.8 cup equivalent/1000 kcal	No Fruit
Whole Fruit ³	5	≥ 0.4 cup equivalent/1000 kcal	No Whole Fruit
Total Vegetables ⁴	5	≥ 1.1 cup equivalent/1000 kcal	No Vegetables
Greens and Beans ⁴	5	≥ 0.2 cup equivalent/1000 kcal	No Dark Green Vegetables or Beans or Peas
Whole Grains	10	≥ 1.5 ounce equivalent/1000 kcal	No Whole Grains
Dairy ⁵	10	≥ 1.3 cup equivalent/1000 kcal	No Dairy
Total Protein Foods ⁶	5	≥ 2.5 ounce equivalent/1000 kcal	No Protein Foods
Seafood and Plant Proteins ^{7,8}	5	≥ 0.8 ounce equivalent/1000 kcal	No Seafood or Plant Proteins
Fatty Acids ⁹	10	(PUFAs + MUFAs)/SFAs > 2.5	(PUFAs + MUFAs)/SFAs ≤ 1.2
Moderation:			
Refined Grains	10	≤ 1.8-ounce equivalents/1000 kcal	≥ 4.3 ounce equivalent/1000 kcal
Sodium	10	≤ 1.1 g/1000 kcal	≥ 2.0 g per 1000 kcal
Added Sugar	10	≤ 6.5 % of energy	≥ 26 % of energy
Saturated Fats	10	\leq 8 % of energy	≥ 16 % of energy

Measure

DIETARY INTAKE DATA

• HEI-2015 Moderation components

HEI-2015 Components and Scoring Standards from the USDA's Center for Policy and Promotion (Krebs-Smith et al., 2018; USDA, 2018)

Measure

VAGINAL MICROBIOTA DATA

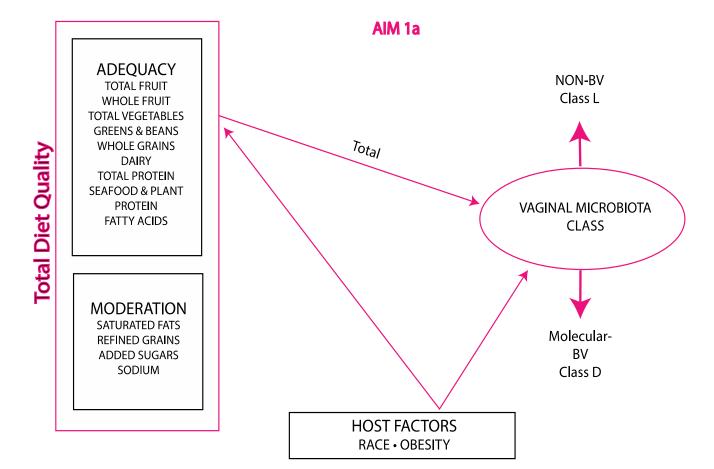
- VALENCIA
 - Community Class Types
 - Categorical variables
 - L class for 'non-BV group'
 - *D* class for 'molecular BV group'

Sample Characteristics

- Age range 18 34
- Gestation at delivery 34 -41
- Body Mass Index 17.9 60, 40% BMI > 30
- Race, 71% African American
- Education, 36% university degree
- Household Income, 20% > \$75K
- Employment status, 27% unemployed
- Marital status, 55% Single

Specific Aim 1

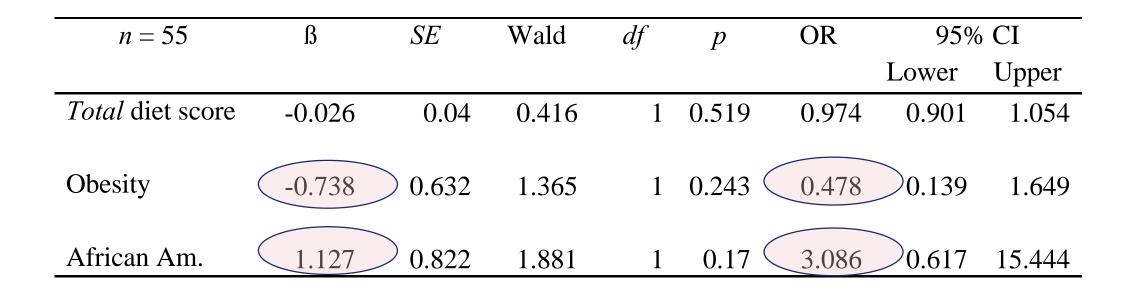
Assess the influence of *total, adequacy,* and *moderation* diet quality scores on the vaginal communities among the cohort controlling for race and obesity


 Hypothesis – The higher diet quality scores would be associated with lower the odds of molecular BV and the lower the diet quality scores the higher the odds of molecular BV

Specific Aim 1a

Assess the influence of <u>total</u> diet quality on the vaginal communities among the cohort controlling for race and obesity

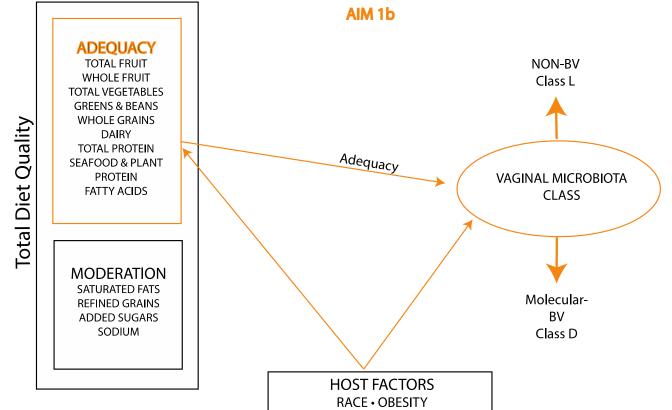
 Hypothesis 1a—The higher the <u>total</u> diet quality scores the lower the odds of molecular BV and the lower the <u>total</u> diet quality scores the higher the odds of molecular BV (class D)



Aim 1a

					\bigcirc			
<i>n</i> = 55	ß	SE	Wald	df	p	OR	95%	O CI
							Lower	Upper
Total diet score	-0.026	0.04	0.416	1	0.519	0.974	0.901	1.054
Obesity	-0.738	0.632	1.365	1	0.243	0.478	0.139	1.649
African Am.	1.127	0.822	1.881	1	0.17	3.086	0.617	15.444

Aim 1a

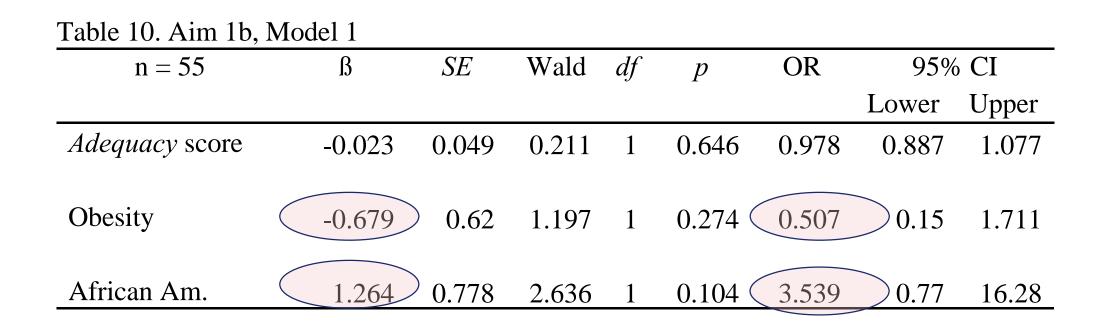


	<i>n</i> = 53	ß	SE	Wald	df	р	OR	95% CI		
								Lower	Upper	
METHODS	Total diet quality	-0.017	0.052	0.101	1	0.751	0.984	0.888	1.09	
Aim $1a$	African American	-1.409	1.465	0.925	1	0.336	0.244	0.014	4.315	
AIIII Ia	Single	0.883	0.901	0.96	1	0.327	2.419	0.413	14.148	
	Income > 75K	-2.449	1.434	2.919	1	0.088	0.086	0.005	1.434	
	University degree	0.73	1.161	0.396	1	0.529	2.076	0.213	20.222	
	Age	-0.182	0.093	3.782	1	0.052	0.834	0.695	1.001	
	Gestation	-0.659	0.285	5.358	1	0.021*	0.517	0.296	0.904	
	Forward Stepwise									
	Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
	Gestation at Del	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	
	Backward Stepwise									
	Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
	Gestation at Del	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	TICII
			28							Uniformed Services University

Specific Aim 1b

Assess the influence of <u>adequacy</u> scores on the vaginal communities among the cohort controlling for race and body mass index

 Hypothesis 1b—The higher the <u>adequacy</u> diet scores the lower the odds of molecular BV (class D) and the lower the <u>adequacy</u> scores the higher the odds of molecular BV (class D)



Aim 1b

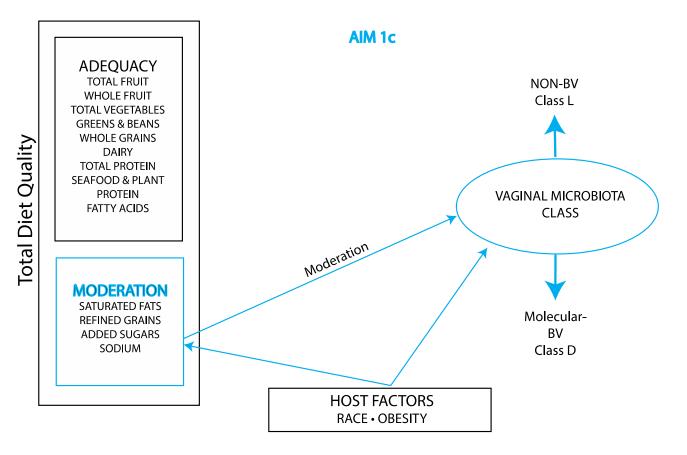
Table 10. Aim 1b, N	Iodel 1								
n = 55	ß	SE	Wald	df	$p \setminus$	OR	OR 95% CI		
							Lower	Upper	
Adequacy score	-0.023	0.049	0.211	1	0.646	0.978	0.887	1.077	
Obesity	-0.679	0.62	1.197	1	0.274	0.507	0.15	1.711	
African Am.	1.264	0.778	2.636	1	0.104	3.539	0.77	16.28	

Aim 1b

	<i>n</i> = 53	ß	SE	Wald	df	р	OR	95	% CI	
								Lower	Upper	_
METHODS	Adequacy score	-0.02	0.065	0.097	1	0.756	0.98	0.863	1.113	
Aim 1b	African American	-1.358	1.411	0.927	1	0.336	0.257	0.016	4.082	
AIIII TD	Single	0.903	0.903	1.001	1	0.317	2.467	0.421	14.475	
	Income > \$75K	-2.467	1.433	2.966	1	0.085	0.085	0.005	1.406	
	University degree	0.7	1.155	0.368	1	0.544	2.015	0.209	19.374	
	Age	-0.179	0.095	3.547	1	0.06	0.836	0.694	1.007	
	Gestation at		0.000	5 20 4	1	0.000*	0.510	0.000	0.000	
	Delivery	-0.656	0.286	5.284	1	0.022*	0.519	0.296	0.908	
	Forward Stepwise									
	Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
	Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	
	Backward Stepwise	-0.200	0.230	т.57т	I	0.052	0.005	0.577	0.750	
	Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	-
	Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	_
		31	2							

Uniformed Services University

	<i>n</i> = 53	ß	SE	Wald	df	р	OR	95	% CI	-
		·			Ū	-		Lower	Upper	
METHODS	Adequacy score	-0.02	0.065	0.097	1	0.756	0.98	0.863	1.113	-
Aim 1h	African American	-1.358	1.411	0.927	1	0.336	0.257	0.016	4.082	
Aim 1b	Single	0.903	0.903	1.001	1	0.317	2.467	0.421	14.475	
	Income > \$75K	-2.467	1.433	2.966	1	0.085	0.085	0.005	1.406	
	University degree	0.7	1.155	0.368	1	0.544	2.015	0.209	19.374	
	Age	-0.179	0.095	3.547	1	0.06	0.836	0.694	1.007	
	Gestation at Delivery	-0.656	0.286	5.284	1	0.022*	0.519	0.296	0.908	
	Forward Stepwise									-
	Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
	Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	
	Backward Stepwise									_
	Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
	Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	
		3	3							Uniformed Service


 \bigcup

Uniformed Services University

Specific Aim 1c

Assess the influence of *moderation* scores on the vaginal communities among the cohort controlling for race and body mass index

 Hypothesis 1c—The higher the <u>moderation</u> scores the lower the odds of molecular BV (class D) and the lower the moderation scores the higher the odds of molecular BV (class D)

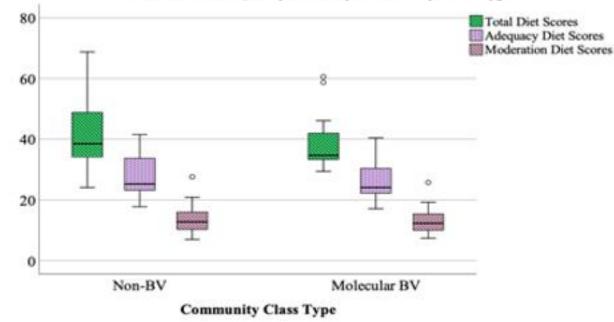
Aim 1c

<i>n</i> = 55	ß	SE	Wald	df	p	OR	95%	% CI
							Lower	Upper
<i>Moderation</i> score	0.012	0.078	0.023	1	0.878	1.012	0.868	1.18
Obesity	-0.634	0.63	1.014	1	0.314	0.53	0.154	1.822
African Am.	1.472	0.808	3.32	1	0.068	4.356	0.895	21.208

Aim 1c

<i>n</i> = 55	ß	SE	Wald	df	df p		95% CI	
							Lower	Upper
<i>Moderation</i> score	0.012	0.078	0.023	1	0.878	1.012	0.868	1.18
Obesity	-0.634	0.63	1.014	1	0.314	0.53	0.154	1.822
African Am.	1.472	0.808	3.32	1	0.068	4.356	0.895	21.208

<i>n</i> = 53	ß	SE	Wald	df	р	OR	95%	5 CI	
							Lower	Upper	
Moderation score	0.055	0.106	0.265	1	0.607	1.056	0.858	1.301	
African Am.	-1.023	1.384	0.546	1	0.46	0.36	0.024	5.417	
Single	0.89	0.9	0.978	1	0.323	2.435	0.417	14.203	
Income > \$75K	-2.622	1.486	3.114	1	0.078	0.073	0.004	1.337	
University degree	0.592	1.157	0.262	1	0.609	1.808	0.187	17.453	
Age	-0.185	0.091	4.13	1	0.042*	0.831	0.695	0.993	
Gestation at Delivery	-0.649	0.29	4.992	1	0.025*	0.523	0.296	0.923	
Forward Stepwise									
Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	
Backwards Stepwis	e								
Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	USU
		37							Uniformed Services University


<u>METHODS</u>

Aim 1c

		<i>n</i> = 53	ß	SE	Wald	df	р	OR	95%	6 CI	
									Lower	Upper	
		Moderation score	0.055	0.106	0.265	1	0.607	1.056	0.858	1.301	
<u>METHODS</u>	<	African Am.	-1.023	1.384	0.546	1	0.46	0.36	0.024	5.417	
Aim 1c		Single	0.89	0.9	0.978	1	0.323	2.435	0.417	14.203	
		Income > \$75K	-2.622	1.486	3.114	1	0.078	0.073	0.004	1.337	
	<	University degree	0.592	1.157	0.262	1	0.609	1.808	0.187	17.453	
	<	Age	-0.185	0.091	4.13	1	0.042*	0.831	0.695	0.993	
		Gestation at Delivery	-0.649	0.29	4.992	1	0.025*	0.523	0.296	0.923	
		Forward Stepwise									
		Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
		Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	
		Backwards Stepwise	\$								
		Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949	
		Gestation at Delivery	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958	USU
				20							Uniformed Services University

Research Questions

• Are differences in diet quality scores associated with molecular BV?

HEI - 2015 Diet Quality Scores by Community Class Type

Research Questions

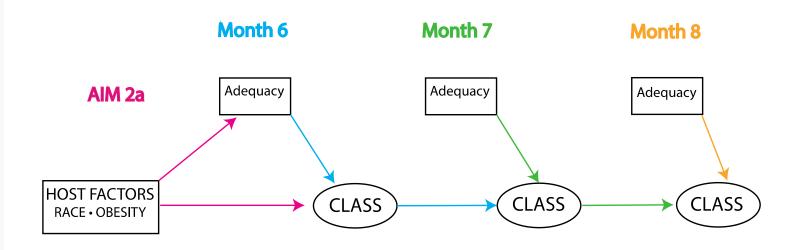
 Are there significant differences in the HEI-2015 total, adequacy, or moderation diet scores between women in the molecular BV compared to the non-BV group?

Ν	Mean HEI-2015 Diet Qu \bar{x} (SD)	uality Scores	
	<i>n</i> = 31	<i>n</i> = 24	
Component	Non-BV	Molecular BV	p
Total	41.6 (10.6)	38.1 (8.1)	0.086
Adequacy	28 (7.5)	25.9 (5.5)	0.061
Moderation	13.7 (4.8)	13 (4.1)	0.38

Research Questions

<i>n</i> = 55	ß	SE	Wald	df	p OR		95%	6 CI
							Lower	Upp
Adequacy scores	-0.024	0.05	0.23	1	0.632	0.976	0.885	1.07
Moderation scores	0.016	0.079	0.042	1	0.837	1.016	0.871	1.18
African Am.	1.328	0.846	2.463	1	0.117	3.774	0.719	19.82
Obesity	-0.656	0.631	1.08	1	0.299	0.519	0.151	1.78

Specific Aim 2


Analyze the relationship between a diet high in consumption of *adequacy and moderation* components and the community class using longitudinal diet and community class assignment data

 Hypothesis – The higher diet quality scores would be associated with lower odds of molecular BV and lower diet quality scores would be associated with higher the odds of molecular BV

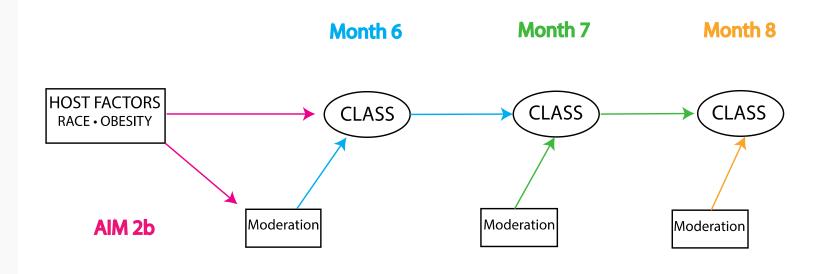
Specific Aim 2a

Analyze the relationship between a diet high in consumption of <u>adequacy</u> components and the community class using longitudinal diet and community class assignment data Hypothesis — low *adequacy* scores will be associated with increased odds of molecular BV (class D) and high *adequacy* diet quality scores will have decreased odds of molecular BV (class D) at respective timepoints (T₁, T₂, & T₃)

<u>METHODS</u>

Aim 2a

<i>n</i> = 54	ß	SE	Wald	df	р	OR	95%	6 CI
							Lower	Upper
Adequacy score	0.004	0.026	0.018	1	0.893	1.004	0.954	1.056
African American	0.929	0.6026	2.379	1	0.123	2.533	0.778	8.254
Obesity	-0.532	0.5259	1.024	1	0.312	0.587	0.209	1.646
6 Month	0.797	0.3462	5.294	1	0.021*	2.218	1.125	4.371
7 Month	0.056	0.249	0.05	1	0.822	1.058	0.649	1.723



df SE ß Wald OR 95% CI *n* = 52 р Aim 2a Upper Lower Adequacy score 0.004 0.0288 0.019 0.889 1.004 0.949 1.062 1 Single 1.339 0.6979 3.681 0.055 3.816 0.972 14.983 1 Income > \$75 -1.195 1.009 1.402 0.236 0.303 0.042 2.188 1 University Degree 39.012 2.062 0.8172 6.369 0.012* 7.864 1.585 1 Age -0.109 0.0611 3.199 0.074 0.897 0.795 1.011 1 Gestation at 0.771 Delivery -0.598 0.173 11.971 0.001* 0.55 0.392 1 6 Month 1.035 0.4414 5.493 0.019* 2.814 1.185 6.684 1 7 Month -0.06 0.3042 0.038 0.845 0.942 0.519 1.71 1

Uniformed Services University

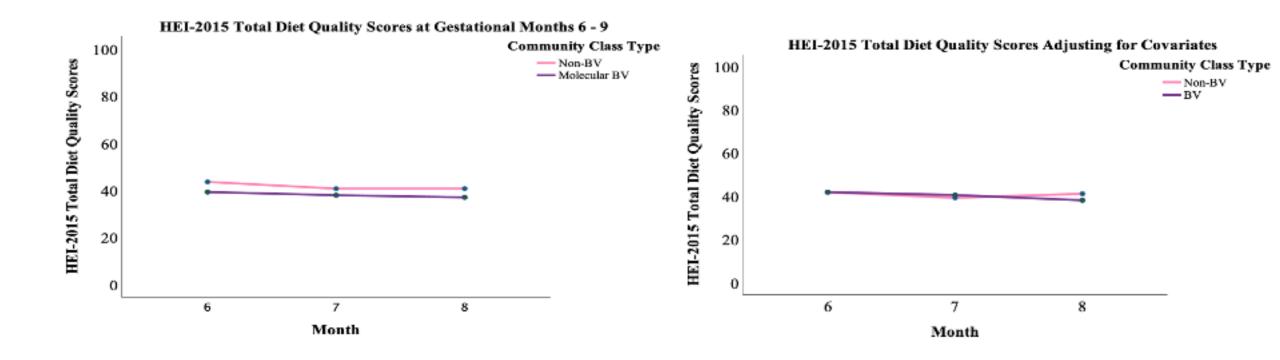
Specific Aim 2b

Analyze the relationship between a diet high in consumption of <u>moderation</u> components and the community class using longitudinal diet and community class assignment data Hypothesis — low *moderation* scores will be associated with increased odds of molecular BV (class D) and high *moderation* diet quality scores will have decreased odds of molecular BV (class D) at respective timepoints (T₁, T₂, & T₃)

<u>METHODS</u>

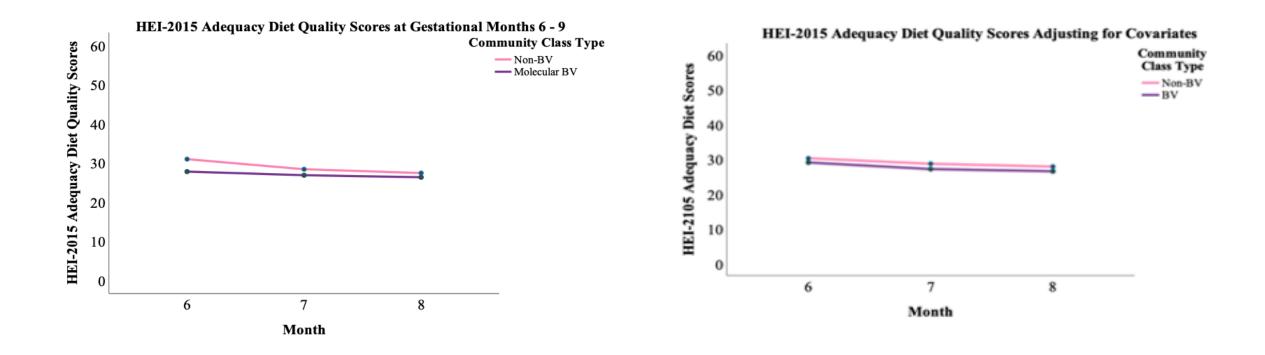
Aim 2b

n = 55	ß	SE	Wald	df	p	OR	95%	6 CI	
							Lower	Upper	
<i>Moderation</i> score	0.02	0.0324	0.39	1	0.532	1.02	0.958	1.087	
African American	0.837	0.6405	1.706	1	0.191	2.308	0.658	8.1	
Obesity	-0.498	0.5447	0.837	1	0.36	0.608	0.209	1.767	
6 Month	0.947	0.3317	8.159	1	0.004*	2.579	1.346	4.94	>
7 Month	0.24	0.2617	0.843	1	0.359	1.272	0.761	2.124	

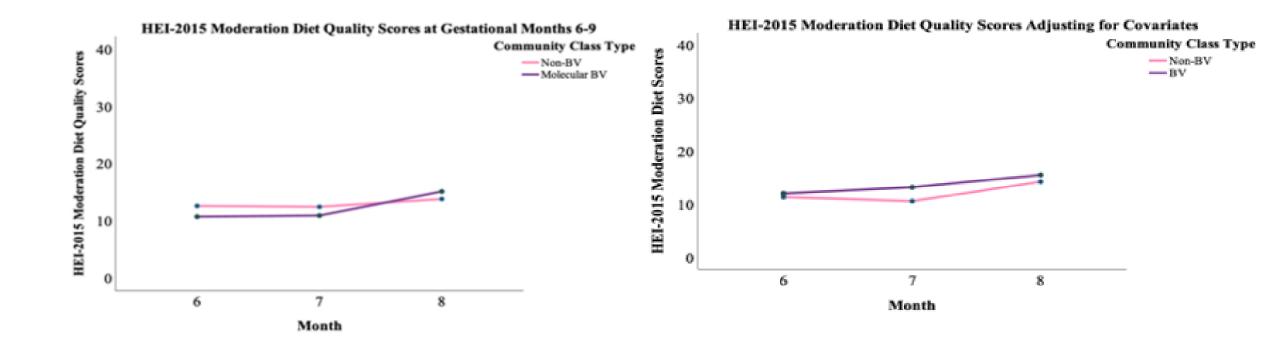


<u>METHODS</u>

	<i>n</i> = 53	ß	SE	Wald	df	р	OR	95%	% CI
Aim 2b								Lower	Upper
	Moderation score	0.03	0.038	0.603	1	0.437	1.03	0.956	1.11
	Single	1.203	0.7744	2.413	1	0.12	3.33	0.73	15.19
	Income > \$75K	-1.615	1.0212	2.501	1	0.114	0.199	0.027	1.472
	University Degree	2.248	0.8236	7.452	1	0.006*	9.471	1.885	47.57
	Age	-0.125	0.0616	4.146	1	0.042*	0.882	0.782	0.995
	Gestation at Delivery	-0.615	0.1757	12.229	1	0.000*	0.541	0.383	0.763
	6 Month	1.22	0.4288	8.101	1	0.004*	3.389	1.462	7.852
	7 Month	0.215	0.3608	0.354	1	0.552	1.239	0.611	2.514
								* *	USU


Uniformed Services University

METHODS HEI-2015 Total Diet Scores



METHODS HEI-2015 Adequacy Diet Scores

METHODS HEI-2015 Moderation Diet Scores

Assumptions

- Diet influences the composition of the gut microbiota that, in turn, shapes the composition of vaginal microbiota either systemically or proximally by way of the perineum
- Diet quality is related to diet scores

Military Implications

- Majority of women report experiencing vaginal symptoms in austere environments
- Symptoms interfere with duty
- BV is a significant predictor for repeat chlamydia infections

Practice Implications

- Treatment of BV needs a systemic approach
- Modifiable factors
- Younger women at greater risk

Nursing Implications

 Nursing education linking microbiome to health outcomes are lacking

Research Implications

- Explore the association between obesity and molecular BV
- Demographic characteristics associated with molecular BV

<u>METHODS</u>

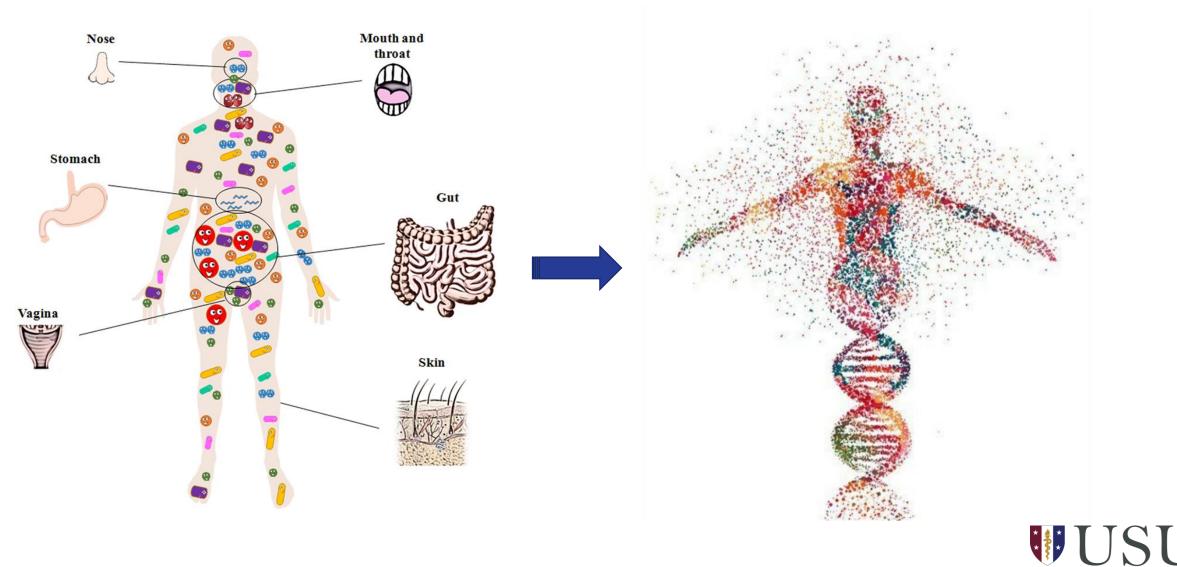
Limitations

- Underpowered
- Assumptions may not be true
- Generalizability of findings
- Self selected photos
- Self-collected vaginal swabs
- Could not isolate for pre- and pro-biotic foods
- Inability to control for other confounding variables

Strengths

- First known longitudinal study of the influence of diet on molecular BV
- Leveraged data from \$5M NINR funded project
- Expands on findings from the parent project

Thank you


Questions?

BACKSLIDES

MY JOURNEY

Uniformed Services University

Significance

Understanding the role diet plays in shaping the vaginal microbiota is critical because diet is readily modifiable and may be leveraged as an alternate or adjunct therapy in the treatment of BV toward improving women's health outcomes

<i>n</i> = 55	Range	\bar{x} (SD)	
Age	18 - 34	25.6 (4.9)	
Weeks' gestation at Delivery	34 - 41	38.6 (1.5)	
Body Mass Index	17.9 - 60	28.7 (8.4)	
		f	%
Obesity	$BMI \ge 30$	22	40
5	BMI < 30	33	60
	African American	39	70.9
Race	Non-African American	16	29.1
	University degree	20	36.4
Education	Non-university degree	34	63.6
	≥ 75K	11	20
Household Income	< 75K	42	76.4
	Missing	2	3.6
Employment	Unemployed	15	27.3
Status	Employed/Student	40	72.7
	Single	30	54.5
Marital Status	Married/with partner	25	45.5

Sample Characteristics

<u>METHODS</u>

Tests of Associations

Characteristic		Non-BV f (%)	Molecular BV f (%)	
Single	Yes	13 (43.3%)	17 (56.7%)	0.033*
	No	18 (72%)	7 (28%)	
African American	Yes	19 (48.7%)	20 (51.3%)	0.074
	No	12 (75%)	4 (25%)	
Income ≥ \$75K	Yes	10 (90.9%)	1 (9.1%)	0.015*
	No	20 (47.6%)	22 (52.4%)	
Unemployed	Yes	9 (60%)	6 (40%)	0.739
	No	22 (55%)	18 (45%)	
University Degree	Yes	15 (75%)	5 (25%)	0.035*
	No	16 (45.7%)	19 (54.3%)	
Obesity	Yes	13 (59.1%)	9 (40.9%)	0.739
	No	18 (54.5%)	15 (45.5%)	

Tests of Associations

Characteristic		Non-BV <i>f</i> (%)	Molecular BV f (%)	р
Single	Yes	13 (43.3%)	17 (56.7%)	0.033*
	No	18 (72%)	7 (28%)	
African American	Yes	19 (48.7%)	20 (51.3%)	0.074
	No	12 (75%)	4 (25%)	
Income ≥ \$75K	Yes	10 (90.9%)	1 (9.1%)	0.015*
	No	20 (47.6%)	22 (52.4%)	
Unemployed	Yes	9 (60%)	6 (40%)	0.739
	No	22 (55%)	18 (45%)	
University Degree	Yes	15 (75%)	5 (25%)	0.035*
	No	16 (45.7%)	19 (54.3%)	
Obesity	Yes	13 (59.1%)	9 (40.9%)	0.739
	No	18 (54.5%)	15 (45.5%)	

Tests of Associations

\overline{x} (SD)	Non-BV $f(\%)$ n = 31	Molecular BV $f(\%)$ n = 24) p
Age	27.2 (5)	23.4 (3.39)	0.003*
Weeks' gestation at delivery	39 (1.3)	38 (1.7)	0.031*
Overall HEI 2015 Total Score	41.6 (10.6)	38.1 (8.1)	0.183
Overall HEI 2015 Adequacy Score	28 (7.5)	25.9 (5.5)	0.263
Overall HEI 2015 Moderation Score	13.7 (4.8)	13 (4.1)	0.559

Univariate Analysis

<i>n</i> = 55	ß	SE	Wald	df	р	OR	95%	6 CI
							Lower	Upper
Total scores	-0.041	0.031	1.758	1	0.185	0.96	0.904	1.02
Adequacy scores	-0.048	0.042	1.269	1	0.26	0.953	0.877	1.036
<i>Moderation</i> scores	-0.037	0.063	0.353	1	0.552	0.963	0.852	1.09
African American	1.15	0.66	3.033	1	0.082	3.158	0.866	11.519
Obesity	-0.185	0.557	0.111	1	0.739	0.831	0.279	2.475
Unemployment	0.205	0.615	0.111	1	0.739	1.227	0.367	4.1
Single	1.213	0.578	4.401	1	0.036*	3.363	1.083	10.441
Income > \$75K	-2.398	1.093	4.81	1	0.028*	0.091	0.011	0.775
University degree	-1.501	0.667	5.062	1	0.024*	0.223	0.06	0.824
age	-0.18	0.065	7.615	1	0.006*	0.835	0.734	0.949
Gestational week at delivery	-0.419	0.204	4.239	1	0.04*	0.658	0.441	0.98

Aim 1a, Model 2

<i>n</i> = 53	ß	SE	Wald	df	р	OR	95% CI	
							Lower	Upper
Total diet quality	-0.017	0.052	0.101	1	0.751	0.984	0.888	1.09
African American	-1.409	1.465	0.925	1	0.336	0.244	0.014	4.315
Single	0.883	0.901	0.96	1	0.327	2.419	0.413	14.148
Income > 75K	-2.449	1.434	2.919	1	0.088	0.086	0.005	1.434
University degree	0.73	1.161	0.396	1	0.529	2.076	0.213	20.222
Age	-0.182	0.093	3.782	1	0.052	0.834	0.695	1.001
Gestation	-0.659	0.285	5.358	1	0.021*	0.517	0.296	0.904
Forward Stepwise								
Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949
Gestation at Del	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958
Backward Stepwise								
Age	-0.187	0.068	7.467	1	0.006*	0.83	0.726	0.949
Gestation at Del	-0.506	0.236	4.594	1	0.032*	0.603	0.379	0.958

