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ABSTRACT 

As combat vehicles and other legacy systems age and are required to perform 

additional capabilities on increasingly remote battlefields, the Marines responsible for 

them currently lack tools necessary to diagnose and fix these critical assets independent 

from higher echelon corrective maintenance service support. For a Light Armored 

Reconnaissance detachment conducting distributed maritime operations and tasked with 

providing organic precision fires, small unit leaders and maintainers are responsible for 

performing all levels of diagnostics with minimal direct support, a situation that 

threatens expeditionary advanced base operations when vehicles inevitably fail. At 

the operator level, current troubleshooting procedures are primitive and fail to 

capitalize on recent breakthroughs in computation and causal reasoning algorithms. 

An automated program driven by a causal Bayesian network allows the maintainer to 

input observed symptoms into a model that directs their attention to the most 

probable causes of failure. Expert knowledge, Bayesian learning techniques, and 

automated reasoning are applied to determine network structure, model 

parameters, and the degree to which various symptoms affect output. When linked 

to a user interface, the maintainer can now quickly and accurately diagnose a degraded 

system from a handheld device, hundreds of nautical miles from the nearest maintenance 

bay. 
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Executive Summary

This study seeks to demonstrate the viability of Causal Bayesian Network (CBN) models
to support the diagnosis of degraded systems and equipment to inform troubleshooting and
repair decisions. Operating beyond the reach of higher echelon support, small unit leaders of
littoral combat team (LCT) attachmentswill be solely responsible formaintaining equipment
that is vital for mission success and enabling expeditionary advanced base operations
(EABO). The current approach to corrective maintenance favors centralizing forces around
the higher-echelon expertise and cumbersome equipment of battalion level maintenance.
Due to the nature of distributed maritime operations (DMO), the decentralized force must
provide their leaders, maintainers, and technicians at the first-echelon with every resource
possible to persist independently while remaining mission capable.

An automated program using CBN logic can empower first-echelon maintainers to ac-
curately diagnose degraded equipment without the support of cumbersome diagnostic
machines or senior-maintainer expertise. Mature, open-source software is available for
implementing CBNs that can be rendered in a user-friendly graphical user interface (GUI)
application and loaded onto a handheld device or toughbook. The user gathers information
about a degraded system, inputs that information into the model, and based on automated
reasoning, the model provides the user with the likely root causes of the failure and an
associated probability that each potential cause is responsible for the system fault or failure.

Two main approaches can be used to construct CBN structure and determine model pa-
rameters. This first is through expert elicitation. A subject matter expert can enumerate all
known system components and causal relationships between these components. The second
method involves estimating the network structure and parameters using data. This method
is preferred when the requisite system data can be readily captured, or when it is too costly
to elicit expert support. For this research, three CBN models were built to represent causal
dependencies between components of a Light Armored Vehicle (LAV) automotive system.
First, an “expert” model was manually constructed by enumerating all components and
direct component causal dependencies derived from an LAV technical manual (TM). Next,
a “learned” model was built which estimated network structure from data. Lastly, a “hybrid”
model was built that resulted from a review and subsequent modification of the estimated

xv



network structure of the learned model based on subjective expert reasoning. For all three
models, parameters were estimated from the notional dataset used to build the learned and
hybrid models. These models are linked to a GUI to demonstrate model functionality. In
addition to demonstrating the potential utility of CBNs for augmenting maintainers’ diag-
nostic capabilities, the fact that CBNs can be learned from data indicates a means by which
better data collection can be translated into improved maintenance processes. Specifically,
if data is available in a format similar to the notional dataset that we employ for constructing
the data-driven CBNs, then the methodology presented in this thesis for constructing the
learned and hybrid models provides a roadmap to leveraging that data to make improved
maintenance decisions.

The potential for using automated processes to support corrective maintenance extends well
beyond CBNs. Diagnostic CBNmodel output can provide inputs for a cost-utility optimiza-
tion model, determining a sequence of optimal troubleshooting steps and an estimated cost
of repair.

While better equipping maintainers to make decisions should result in faster maintenance
turnaround, a higher level of material readiness, and a reduction in Class IX repair part
costs, further research should be conducted to quantify this benefit to the Marine Corps.
Those results can inform the depth and breadth of automated diagnosis implementation
across other Marine Corps systems and platforms. While this validation may justify further
investment in data-driven automated corrective maintenance processes and divestment of
current limited methods outlined in the technical manuals (TMs), this study qualitatively
verifies how the CBN can serve as the foundation for translating both expert knowledge and
data into a form that is directly applicable to operational decision-making.
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CHAPTER 1:
Introduction

1.1 Background
The latest National Defense Strategy directs the services to modernize programs, sustain
efforts towards resilient and agile logistics, and “invest broadly in military application
of autonomy, artificial intelligence, and machine learning, including rapid application of
commercial breakthroughs, to gain competitive military advantages” (Mattis 2018). While
the Marine Corps is automating the supply chain process for corrective maintenance and
replenishment of class IX repair parts for non-consumable end items, we lack a mod-
ern method for supporting tactical-level maintainers who are directly responsible for the
resiliency of material system capabilities deployed to support sea control and sea denial
operations, maritime domain awareness, forward command, control, communications, com-
puters, combat systems, intelligence, surveillance, reconnaissance, and targeting (C5ISRT)
and counter-C5ISRT, and forward sustainment operations.

As the equipment and technology we put into the hands of the warfighter grows more
complex, the maintainer’s ability to diagnose and repair more complex systems must ex-
pand at the same rate. Distributed maritime operations (DMO) and expeditionary advanced
base operations (EABO) can function only if we provide small units with enabling capa-
bilities that allow them to be self-sufficient. This requirement is highlighted by the 38th
Commandant of the Marine Corps, General David H. Berger, in his Commandant’s Plan-
ning Guidance (CPG). General Berger (2019) charges leaders at every level to dramatically
rethink entrenched processes and service orthodoxy. Equipment, weapons, tools, and pro-
cesses earmarked as cumbersome and antiquated must be divested of and replaced with
capabilities aligned with EABO guiding principles. These ideas and concepts take tangible
shape with the release of the Tentative Manual for Expeditionary Advanced Base Opera-
tions (TM EABO). In this seminal document, the United States Marine Corps (2021) begins
to define this vision of the littoral combat team (LCT) future force construct and inspires a
future operating environment where the time and distance required for evacuation reduces
the responsiveness of the maintenance system, risks reducing littoral force capability, and
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threatens the mission.

1.2 Thesis Motivation

1.2.1 Purpose
The purpose of this research is to address deficiencies in human-centric processes for
diagnosing and repairing degraded systems and equipment by demonstrating a data-driven
automated diagnostic decision support tool capable of streamlining the troubleshooting
process.

1.2.2 Defining the Problem
Material readiness deficiencies occur under the broader context of an antiquated model for
conducting forward correctivemaintenance. These problems are exacerbated in a distributed
maritime environment as an attachment to a larger task force (i.e., a Marine expeditionary
unit (MEU) or LCT). Currently, the Marine Corps asks attachment commanders to operate
under the construct of higher echelon service and support that is not properly outfitted to
process their unique corrective maintenance issues. For instance, a regular infantry battalion
that forms the nucleus of the battalion landing team (BLT) lacks the experience and resources
to fix M777 Howitzer cannons or light armored vehicles (LAVs). Therefore, it is the sole
responsibility of the attachment to provide internal corrective maintenance support. In many
instances, the material sustainability of a critical supporting attachment will depend solely
on the attachment Platoon Commander, Platoon Sergeant, a Non-Commissioned Officer
non-commissioned officer (NCO) mechanic or technician, and whatever tools they can
carry with them. When breakdowns occur and recovery by higher echelons of support is not
an option, these small unit leaders will be forced to decide whether to sanitize and abandon
equipment or continue their diagnostic efforts. The current maintenance construct imposed
on the future battlefield will inevitably lead to exposed capability gaps resulting in delayed
repair, a less agile force, class IX waste, diminished capability, and higher costs.

1.2.3 Current Approach to the Problem
Given this attachment force organization construct, non-routine corrective maintenance
problems present a significant challenge. Without a departure from antiquated procedures
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held over from past conflicts fought in deserts and on large land masses, corrective main-
tenance efforts at both the tactical and organizational level will continue to weigh on
operations and support (OS) life-cycle costs while producing marginal contributions to
mission readiness.

The current processes for handling complex mechanical failures beyond the attachment
personnel’s experience and expertise are defined by the equipment’s technical manual (TM).
EachTMhas an associated level of either 10, 20, 30, or 40. This correspondswith a respective
maintenance echelon, where 10 is the lowest (operator level) echelon and 40 is the highest
(depot level) echelon. A 10 level TM purposefully lacks the depth and detail to enable
somebody at the first echelon to handle in-depth corrective maintenance issues. These TMs
contain troubleshooting decision trees for corrective maintenance diagnosis.

The TM approach can rely on subjective and arbitrary prioritization by the maintainer.
Degraded equipment may present multiple signs indicative of an issue. That information
taken as a whole is likelymore valuable than the sum of each piece of information separately,
but the TM approach cannot capitalize on this information synergy. Depending on what
system fault evidence is initially detected and pursued, a user may go down multiple
TM decision tree paths, conduct multiple tests, and possibly replace multiple parts before
addressing the true cause of the problem.

Often, the troubleshooting decision tree recommends actions that are impossible when
operating in a remote distributed maritime environment. For instance, in the Operator’s
Manual, Light Armored Vehicle LAV-2A2 (Legacy) Automotive/Hull (TM 08594C-10/2-
LG), the phrase “notify organizational maintenance” appears 116 times. While this option
exists when training in CONUS or fighting as part of a light armored reconnaissance (LAR)
battalion, the LAR platoon attached to a MEU or LCT does not have this luxury.

Common solutions to residual readiness problems at the organizational level include costly,
cumbersome, risky, and generally unsavory options such as:

1. Committing more time and resources to training and equipping maintenance
personnel

2. Restricting battalions to centralized operations due to vehicle and equipment
maintenance and recovery support limitations
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3. Civilian contractors having to deploy to dangerous remote outposts at sig-
nificant cost to the federal government and taxpayer

1.2.4 A Look into the Future
If the Marine Corps plans on utilizing the LAV as an organic precision fires (OPF) platform,
it must ensure the LAV is resilient enough to withstand mechanical and combat-related
breakdowns and continue to operate as a critical asset to the EABOmission.When operating
remotely while conducting distributed maritime operations (DMO), vehicle recovery is not
an option.A commander has the option of either fixing or abandoning degraded or inoperable
equipment. Resilient design and robust platforms do not eliminate the requirement for
human intervention in restoring the functionality of degraded and dead-lined equipment.
In an information age pervasive with nearly limitless pocket-sized computation and data
storage power, we can continue to provide our first echelon maintainers with doubtfully
useful 300+ page TMs, or we can use an automated program to streamline troubleshooting
by quickly and accurately diagnosing system faults and failures. The need for such solutions
grows as the complexity of the systems and technology put in the hands of the warfighter
increases.

1.2.5 An Automated Approach
Machines can store data, compute statistics, and use algorithms to inform decisions. To
fully harness the power of computation, machines can be used to detect patterns in data and
provide inference where humans would not think to look. Visionaries like David Ferrucci
(of IBM “Watson” fame) imagine machines “that can combine deductive and inductive
processes to develop, apply, refine, and explain” (Lohr 2013).

Kasparov (2017) describes the decades when many of the brightest minds in computer
science asserted that developing a chess playing program that could defeat a grandmaster
was the holy grail of computer programming. He goes on to describe how ultimately,
Moore’s law won out, and simple “brute force” algorithms proved sufficient to beat world
champion human players. Using these algorithms, a programmer can teach a chess machine
the rules of chess. They can implement logic so it knows which pieces can move where
and how checkmate is achieved. They can tell it how valuable a queen is relative to a pawn.
“Knowledge” is anything that goes beyond these basic rules and mechanics. If you program
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it with the knowledge that a pawn is worth more than a queen, it will go into battle willing to
lose the queen with no hesitation and likely throw the game away with it. Now, what if those
values are not explicitly built into the program? What if you tell it the rules and let it figure
out the rest? Let the machine figure out that rooks are more valuable than bishops, that
doubled pawns can be weak, that open files can be useful. This opens up the possibility of
creating a strong chess machine, and also a machine that allows humans to learn something
new from what the machine discovers and how it discovers it (Kasparov 2017).

We can similarly ponder what happens if we omit our qualitative bias about the physical
structure of a system and instead let the machine figure out that leaking coolant hoses
cause radiator cores to malfunction, which in turn causes an engine to overheat. It may
detect, without prompting, that a loss in steering function can be caused by either a broken
hydraulic fluid reservoir or steering fluid pump then assign a probability distribution that
it is one or the other given circumstantial evidence and information. Also, it may tell us
that the condition of fuel injector nozzles only depends on injector pump timing if black
smoke is being emitted from the exhaust. We often use computation to answer questions,
but harnessing the true power of computation points us to questions humans would not think
to ask (Kasparov 2017).

1.3 Thesis Objective
The author’s approach to answering key issues and objectives involves implementation of a
Causal BayesianNetwork causal Bayesian network (CBN) to demonstrate how an automated
program can better support the diagnosis of system faults and failures. A secondary purpose
is to demonstrate how data can be used with network structure and model parameter
learning methods to learn system components and the strength of causal dependencies
among system components. Based on the author’s familiarity with the LAV, the LAV hull
and automotive component system was selected as the subject of the model. Three directed
acyclic graphical models are built to demonstrate various methods for determining causal
dependencies between LAV automotive system components and evidence ofmalfunction for
the LAV automotive system. With these networks and accompanying data, we determined
model parameters and utilize established algorithms implemented in software to query
these various CBNs for inference. The first model, our “expert” network, uses the TM
to determine dependencies between components and evidence. The second model, our
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“learned” network, uses causal dependencies detected in simulated data to learn network
structure. The third model is our “hybrid” network, where each arc was reviewed to ensure
directional dependencies identified by the software’s algorithm were reasonable. The same
data used to estimate network structure for our learned model was used to estimate network
parameters for all three models.

1.3.1 Functional Diagnostic Models
For the sake of this research, we define evidence as an observed or measured system or
system component status presented to the user. Some examples of evidence in our LAV
example could include an engine (system component) that doesn’t run (status) or a tire
that’s flat. In some cases, evidence could be an external factor like air temperature. Inputting
evidence in the model updates the parameters, or conditional probability tables, associated
with relevant system components or evidence nodes. These updated conditional probability
tables inform the relative likelihood of the root cause of failure, the basis for model output.
The outputs of thesemodels can informfirst echelonmaintainers about themost likely source
of mechanical failure, focusing their troubleshooting effort. System operators can combine
this information with their experience and knowledge of the cost of testing and replacing
various parts to quickly and accurately diagnose a mechanical failure and expeditiously take
corrective action. Additionally, system analysts can use learned networks estimated from
data to detect otherwise unknown causal dependencies between system components.

1.4 Thesis Organization
Chapter II of this thesis addresses the concept of Causal Bayesian Networks and provides a
literature review of contributions and breakthroughs in the field of probabilistic graphical
modeling. Chapter III will detail the methods used to build the three CBNs representing
causal dependencies between LAV automotive components and evidence and the associated
conditional probability table parameters. Chapter IV provides graphical and quantitative
analysis of themodels and addresses querying of themodel for inference. ChapterV provides
conclusions, recommendations on larger scale implementation, and recommendations on
future studies.
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CHAPTER 2:
Background and Related Work

This chapter will provide a general overview of probability theory and CBNs, explore
breakthroughs in the field of probabilistic graphical modeling and automated reasoning,
and discuss the development and implementation of CBNs as a diagnostic support tool.

2.1 General Overview

2.1.1 Introduction
Aebischer et al. (2017) describes the CBN as a modeling methodology that meets all
criteria to represent the combination of system expert knowledge and beliefs with empirical
evidence and case data. With the help of open-source software, the resulting model can
be easily encoded and rendered in an intuitive graphical user interface. The processes
and mathematics supporting a CBN can provide exact closed form solutions or accurate
approximate inference. They are capable of managing an extensive range of network breadth
and complexity, but flexible enough to incorporate various types of data. Also, they are
powerful enough to account for direct and indirect probabilistic relationships between
several variables. Lastly, the body of research behind the CBN is mature enough to utilize
machine learning techniques for analyzing and updating models. (Aebischer et al. 2017).

2.1.2 Network Structure
The CBN is a directed acyclic graphical representation of a system where each node
corresponds to a component or attribute of the system and arcs indicate a causal dependency
between a parent node and a child node. Therefore, this parent-child node relationship and
the respective directed arc incident to both nodes comprise the foundation of a CBN
(Aebischer et al. 2017). The most basic CBN is a two-node network where the parent
node is considered a potential cause and the child node the resulting effect. We consider
a mechanical example where the condition of an engine’s exhaust valve may determine
whether exhaust is present in the engine compartment, and the presence of exhaust depends
only on the condition of the exhaust valve. We can think of the node as a discrete random
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variable, where the component status equates to variable levels. We can assign a probability
that an observation of these random variables will take on a respective level. Figure 2.1
depicts this network and the respective probabilities that the representative nodes will be
in a given state prior to attaining any knowledge or “evidence” about the status of these
components. A model without inputted evidence is akin to selecting a random vehicle and
having no prior knowledge of its mechanical status.

Exhaust in Engine Compartment

Present
Not Present

27.0
73.0

Exhaust Valve

Normal
Bent
Broken

84.0
7.00
9.00

Figure 2.1. A two-node network

The trivial network in Figure 2.1 is a straightforward example. In order to understand
confounding network structures, let’s add more complexity to our network. We know that a
defective valve spring can exert uneven or excessive pressure on the exhaust valve, causing
it to break or bend at high engine temperatures. In probabilistic graphical terms, this is
called a “serial” network, one of three basic confounding local network structures found in
a CBN. Figure 2.2 depicts a serial network prior to the user attaining system knowledge or
inputting that evidence into the network.
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Exhaust in Engine Compartment

Present
Not Present

27.0
73.0

Exhaust Valve

Normal
Bent
Broken

84.0
7.00
9.00

Valve Spring

Normal
Worn
Bent

90.0
 1.0
9.00

Figure 2.2. Serial network structure example

Slightly altering our example, consider a case where problems with an exhaust valve may
potentially cause exhaust to appear in the engine compartment and/or a reduction in engine
power due to compression loss. When a cause can have two or more potential effects, in
graphical terms we call this a “divergent” network. Figure 2.3 depicts a divergent network
and the respective probabilities the exhaust valve is in a particular state and the probabilities
the user will observe exhaust in the engine compartment and/or a reduction in power.
Again, no evidence has been input into this model, akin to approaching a vehicle blind to
information about the exhaust valve, engine compartment, and engine power.
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Exhaust in Engine Compartment

Present
Not Present

27.0
73.0

Exhaust Valve

Normal
Bent
Broken

84.0
7.00
9.00

Reduction in Power

Yes
No

22.0
78.0

Figure 2.3. Divergent network structure example

The third and final basic network structure is the “convergent” network, which exists when
one effect has two potential causes. For instance, exhaust in the engine compartment may be
due to either a head gasket problem or an exhaust valve problem. This situation is graphically
depicted in Figure 2.4. Again, we represent here a situation where no evidence has been
input into the model, and only knowledge about the prior probabilities the components are
in a respective state exists.
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Exhaust in Engine Compartment

Present
Not Present

28.0
72.0

Exhaust Valve

Normal
Bent
Broken

84.0
7.00
9.00

Head Gasket

Normal
Leaking

96.7
3.32

Figure 2.4. Convergent network structure example

These three basic network structures form the building blocks for constructingmore complex
probabilistic graphical networks. Figure 2.5 incorporates serial, convergent and divergent
structures to form a simplified model of an engine system and its components. Attaining
information about the status of a component renders its corresponding node an evidence
node when that information is input into the model. Nodes with status information that is
likely readily available for the user to input are highlighted in green in Figure 2.5.
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Figure 2.5. Simplified representation of causal dependencies between com-
ponents and evidence of a diesel engine system

It is important to contrast this simplified model with what a visual of a real world graphical
representation of a more complex system. Figure 2.6 depicts a small segment of a Bayesian
Network with 448 nodes and 908 arcs built to support the diagnosis of medical patients. As
the number of arcs and nodes increases, we lose visual tractability and gain an appreciation
for the challenges in rendering a model by manually enumerating all nodes and arcs.

12



Figure 2.6. A small portion of a complex network including 908 arcs and
448 nodes. This network was built to support diagnosis of medical patients.
Source: Pradhan et al. (1994).

2.2 Model Parameters: The Conditional Probability Table
Each node in a Bayesian network has an associated conditional probability table (CPT)
that describes the probability a component is in a particular state given a set of known
conditions. The values that comprise a node’s conditional probability table are a function
of its CPT and its parent node(s)’ CPTs (Aebischer et al. 2017). Table 2.1 shows the CPT
for the “Exhaust in Engine Compartment” node from Figure 2.4. The CPT in Table 2.1
describes the probabilities that we would see exhaust in the engine compartment given
known evidence about the status of the exhaust valve and head gasket.

Table 2.1. Example conditional probability table for the network depicted in
Figure 2.4

Node
Exhaust Valve Bent Broken Normal
Head Gasket Normal Leaking Normal Leaking Normal Leaking

Exhaust in Engine
Compartment

Yes 0.93 0.96 0.96 0.98 0.02 0.85
No 0.07 0.04 0.04 0.02 0.98 0.15

For instance, if the exhaust valve is bent and the condition of the head gasket is normal,
there is a 0.93 probability the user will observe exhaust in the engine compartment.
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2.3 Automated Reasoning and Inference
Reasoning algorithms, Bayesian probability theory, inference calculation techniques, and
computation comprise the set of tools necessary to query a network for useful inference.
When we input evidence information into our model, logic is applied via the directed sepa-
ration (“d-separation”) algorithm to map dependencies between conditionally independent
nodes. The resulting path contains the set of nodes and arcs that connect all direct and
indirect causal dependency relationships between the evidence node and all other nodes in
the network. Once the reasoning algorithm determines the dependency structure, exact or
approximate inference techniques are applied to calculate updates to the relevant CPTs. The
reasoning algorithm process ensures information input into the model will only influence
adjacent nodes where marginal dependency exists. (Nodes that share an arc are consid-
ered adjacent nodes.) This is sometimes called network propagation or information flow.
To exemplify how information inputs can alter flow, consider the converging networks in
Figures 2.7 and 2.8 where the child node represents a medical patient potentially presenting
a cough and the two parent nodes represent potential causes, a cold or the flu. Evidence
input into the model is indicated by the gray boxes. With no information about the presence
of a cough, there is no dependency between the presence of a cold and the presence of flu,
and having confirmed the patient has a cold will not alter their probability of having the flu.
Figure 2.7 demonstrates this temporary lack of dependency between the non-adjacent cold
and flu nodes. Notice the probability of the patient having the flu remains at 3% after cold
evidence is input into the model. However, confirming the presence of a cough “activates” a
dependency between the two parent nodes. In this case, if you can confirm the patient does
not have the cold, it is more likely the cough symptom is a result of the flu, and we would
expect the probability of the flu to increase as we see with the same CBN depicted in Figure
2.8. The probability the patient has the flu has now increased from 12% to 15.7%, and there
exists an “active trail” between cold and flu where there was once d-separation.
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Cough

Present
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86.2

Flu

Yes
No

3.00
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Cold

Yes
No

6.38
93.6

a. Cannot confirm or deny cough

Cough
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10.8
89.2

Flu

Yes
No

3.00
97.0

Cold

Yes
No

   0
 100

b. Doctor confirms the patient does not
have a cold

Figure 2.7. Lack of dependency between cold and flu node (note how in-
putting evidence about a cold does not impact the probability the patient
has the flu)

Cough

Present
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   0

Flu

Yes
No

12.0
88.0

Cold

Yes
No

26.8
73.2

a. Doctor confirms the patient has a cough

Cough

Present
Not Present

 100
   0

Flu

Yes
No

15.7
84.3

Cold

Yes
No

   0
 100

b. Additionally, Doctor confirms the
patient does not have a cold

Figure 2.8. Activated dependency between Cold and Flu node (note how
inputting evidence about a cold now impacts the probability the patient has
the flu)

For small networks, exact inference can be calculated using Bayes’ theorem and the chain
rule of probability. For larger networks, an exact inference calculation is classified as NP
hard, so a process that uses Monte Carlo simulation to randomly generate observations from

15



the CBN can be used to perform approximate inference (Scutari and Dënis 2015).

2.4 Constructing Estimated Networks from Data

2.4.1 Benefits of a Data Driven Approach
A dataset of fully observed instances of network variables enables learning of network
structure and network parameters. It is often more convenient, cost effective, and interesting
for the analyst to use data to estimate network structure via learning algorithms. Koller
and Fr̈iedman (2009) explain the pitfalls in relying purely on expert knowledge solicitation
to construct CBNs. There are many examples of systems that are too large, too complex,
and contain too many variable interactions to be effectively modeled by an expert with the
requisite amount of knowledge in a reasonable amount of time. For some systems, such
experts may not exist. As the methods for capturing data increase and the cost of data
plummets, the information age may afford the analyst the ability to obtain readily available
volumes of data more easily than human expertise, and the data may prove more informative
than the expert. This data can be used to estimate network structure for diagnostic inference.

As a disclaimer, it is important to note that models learned from data will vary in their
goodness-of-fit. As an approach limited by computation power and imperfect data samples,
these models are limited if a near precise representation is required (Koller and Fr̈iedman
2009). In their seminal piece on network learning, Chow and Liu (1968) first determined
how to approximate probabilistic causal network structure. They found it is important to
consider empirical risk and overfitting when constructing a model from data. Conditional
independence tests and network scoring methods exist to provide the analyst with relative
quantifiable measures of model accuracy. When it is critical to assess the confidence in
an approximate model, network construction via model averaging, conditional indepen-
dence testing, and/or Markov chain Monte Carlo simulation may be employed (Koller and
Fr̈iedman 2009). Cross-validation or network scoring (Scutari and Dënis 2015) can then be
applied to learned CBNs to obtain unbiased estimates of goodness-of-fit (Scutari 2020).

A very different motivation for learning a model through data lies in our ability to explore a
learned network to glean knowledge from the discovered arc set and various network paths.
Because each individual arc represents a direct causal relationship while arc paths indicate
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indirect causal relationships, this distinction makes CBN structure learning a richer tool for
detecting dependencies in data than other simpler statistical methods (Koller and Fr̈iedman
2009).

Not only does structure learning allow us to discover unidentified causal relationships
between known variables, it also provides the opportunity to discover hidden causes. Heck-
erman (2020) describes how models can be scored with and without inclusion of “hidden
variables” to determine if one exists. This, combined with search algorithms, provides one
method for identifying possible hidden variables.

2.4.2 Causation vs. Correlation
Pearl (1988), developing extensions from the pioneering work of Chow and Liu (1968),
explores whether it is possible to confidently ascribe direction to the arcs in a learned
network. Recall arc direction represents the cause (emanating from parent node) and effect
(to child node) dependency relationship between two nodes. If the direction of network arcs
estimated from data indicate causal direction, how can we be sure this was not a detection
of spurious correlation (Simon 1954)? To aid in determining if X causes Y or Y causes X,
we can introduce variable Z. If Z is found to correlate with Y but not X, the tail of the arc
projects from X to the arc head at Y. This does not mean X and Z are the ultimate causes of
Y (Pearl 1988), and care should be given to review causal direction in an estimated network.
Pearl (1988) concludes that “the construct of causality is merely a tentative, expedient device
for encoding complex structures of dependencies in the closed world of a predefined set of
variables.”

2.5 Learning the Parameters of Bayesian Networks
The required parameters in a discrete CBN model are the respective node probabilities
conditioned on the various levels of its parent node (Scutari and Dënis 2015). These values
form the substance of a CPT. Precise probabilistic numerical parameters are often more
difficult to ascertain from experts than network structure, so parameter estimation is themore
common technique (Koller and Fr̈iedman 2009). Two main approaches exist for estimating
network parameters: 1) the maximum likelihood estimate (MLE), and 2) the Bayesian
approach (Scutari and Dënis 2015).
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2.6 Other Applications
There are many applications for CBNs beyond diesel enginemaintenance diagnosis support.
De Kleer and Williams (1986), Davis (1984), and Genesereth (1984) examined how belief
networks can be used to diagnose multiple malfunctioning components in a digital circuit.
Peng and Reggia (1986) used Bayesian networks to support detection of disease. Sutton
and McCallum (2004) showed how the similar concept of conditional random fields can be
used for text analysis and entity recognition, similar to the model in Figure 2.9. Temporal
causal models can be constructed for target tracking and for tracking robot localization for
automated movement (Fox et al. 1999). Causal models can be used for classification (Koller
and Fr̈iedman 2009) and discovering user clusters (Breese et al. 1999). Bayesian networks
can be used to conduct collaborative filtering for content delivery (social media feeds, search
engine results, directed marketing, etc.), where graphical models of system user preferences
can be used to determine preferences of users in general (Heckerman 2020). Deeper medical
extensions include learning gene cell networks (Sachs et al. 2005) and prenatal diagnosis
(Norman et al. 1998).

Figure 2.9. A graphical model developed for text analysis and recognition.
Source: Chun Wei Lin et al. (2020).

2.7 The Value of Information
Pearl (1988) defines the value of any information source as “the difference between the
utilities of two optimal strategies, one providing the freedom of choosing different actions
for different source outcomes, and the other providing no such freedom.” An objective
application of this definition can assist in determining the usefulness of an information
source and whether the cost of pursuing information from that source is worthy of an
investment (Pearl 1988). Koller and Fr̈iedman (2009) explain how actions in mechanical
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troubleshooting involve running diagnostic tests to direct the user’s attention to the problem,
identifying and confirming the source of the problem, and supporting actions that remedy
the issue. Both types of actions have a cost and an optimal strategy. Imagine a broken
vehicle that requires either an engine replacement or an oil change. Pursuing either option
will provide useful information. If the mechanic changes the oil and it fixes the problem, he
receives information about the source of the problem. If he changes the oil and it doesn’t fix
the problem, he knows it requires an engine replacement. Prior to his decision, the user must
consider whether the cost of pursuing either option (change the oil or replace the engine)
is a worthy investment. A program using CBN logic tells you there’s a high probability the
engine is broken beyond repair and must be replaced, but there’s also a low probability it
only requires an oil change. Based on my intuitive cost-utility model, I will change the oil
first regardless of the low likelihood it solves the problem. A maintenance support tool like
the one built for this thesis can complement decision-theoretic utility techniques, or simple
common sense, to help select a sequence of testing and repair actions. Heckerman, Breese
and Rommelse (1995) take this a step further by augmenting probabilistic models with
cost utility models to define an optimal series of repair and testing actions given a current
state of known information, and the user can thereby compute the expected cost of repair at
each step. Additionally, diagnostic CBNs can potentially inform a user about the probability
they are witnessing a mere sensor or signal malfunction versus a potentially catastrophic
malfunction, a potentially lifesaving distinction in an aircraft cockpit or elsewhere.
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CHAPTER 3:
Model Formulation

Programs driven by CBNs can support diagnosis and troubleshooting decisions based on
input of multiple observed symptoms into a model that evaluates and returns a probability
distribution of the most likely source of the defect. This chapter describes the composition
of a CBN and the various methods used to construct a CBNmodel representation of a LAV.
It explains the reasoning and processes behind model inference and presents a graphical
user interface for easy model query.

3.1 Graphical Model of the LAV Automotive System
A graphical representation of the causal dependencies in a system can be constructed by
connecting themultiple serial, diverging, and converging component sub-trees that comprise
an entire network. When an expert possesses sufficient knowledge of these dependencies,
it is possible to fully define the system network by manually enumerating the complete
set of directed arcs corresponding to all parent (cause) and child (effect) relationships.
Because the LAV TM 08594C-10/2-LG provides the basic causal relationships between
LAV components and evidence necessary to diagnose a degraded LAV at the operator level,
this same information can be used to determine CBN structure. For instance, the first step
in the TM troubleshooting decision tree asks whether some evidence of a malfunction is
present. This becomes a child node connected by one of the graph’s directed arcs. If evidence
exists, it directs you to the next step which may reference a malfunctioning component that
is the cause of the evidence. This component represents the parent node, thus rendering
one of the many directed arcs in our network. This step can be repeated multiple times
until the decision tree directs you to the actual source of the problem, producing a new arc
at every step in the process. For = steps in the troubleshooting path, there will be = − 1
directed arcs added to the overall set of arcs in the network. Once all possible routes in the
troubleshooting decision trees are defined for all evidence of malfunction identified by the
user and addressed in the TM, a directed acyclic graph (DAG) representation of the causal
dependencies in our system is rendered. Figure 3.1 shows this resulting expert network
derived from the LAV TM.
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Figure 3.1. A graphical representation of causal dependency relationships
between LAV automotive components and evidence nodes

In Figure 3.1, the multiple levels represent serial network structure and residual cause and
effect relationships, similar to the smaller example from Figure 2.2.

3.2 From a DAG to a CBN
The second major step in constructing a CBN is defining the network parameters that
comprise the values for each node’s CPT. The dimensions of the associated CPTs are
determined by the number of variables each node conditionally depends on, or the in-
degree of each node. Looking at the CPT in Figure 2.1, we know that exhaust in the engine
compartment depends on the status of the exhaust valve and the status of the head gasket.
There are two ways to determine these conditional probabilities. The first method involves
elicitation of a subject matter expert to extract conditional probabilities based upon their
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subjective degrees of belief (Koller and Fr̈iedman 2009). These probabilities may then be
directly applied to the CPTs. The second method involves estimating the parameters from
data. Data in the form of a text file can be input into software that computes the classic
frequentist and maximum likelihood estimates (MLEs) for parameters (Scutari and Dënis
2015). Table 3.1 provides an example of what a small portion of this dataset might look
like, where each observation corresponds to a vehicle, each column header is a node in
our network, and each value in the table represents one of the discrete levels or component
statuses that node may take on. Open-source software packages can then apply MLE logic
or Bayesian posterior distributions to translate these data into model parameters applied to
an already pre-defined expert network to create a functional CBNmodel (Scutari and Dënis
2015).

Table 3.1. A subset of engine component data with one variable per column
and one observation per line, similar to a text file format compatible with
bnlearn R software (Scutari and Dënis 2015).
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Vehicle 1 Normal Normal Normal Full Normal
Vehicle 2 Normal Slow Normal Empty Normal
Vehicle 3 Normal Normal Normal Empty Normal
Vehicle 4 Above 220◦ Seized Normal Empty Normal

3.3 Developing Data
The data-driven method for estimating network structure and parameters relies on the CBN
developer’s access to a dataset with the relevant information and a sufficient number of obser-
vations. The author developed a notional dataset for the sake of demonstration. The dataset
structure is similar in form and content as the example in Figure 3.1, with one variable per
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column and one observation per line (Scutari and Dënis 2015). Construction of this dataset
utilized random variate simulation to generate factor values by node and observation for the
respective entries. The author was careful to build probabilistic dependencies into the values
when it made reasonable sense based on a limited understanding of the system. For instance,
an observation where the value for “brake shoes” was determined to be “worn” had a higher
probability of “brake noise” taking on the value “squealing.” Calculations confirmed the
resulting dependency relationships satisfied the definition of probabilistic dependence. All
data is categorical and derived from multinomial distributions with simulated probabilities
determined by these built-in dependencies. This was replicated to populate values across
151 nodes identified in the TM for 400 observations to round out the dataset. This data was
then applied to our network structure DAGs from Section 3.2 via the software’s MLE logic
for estimating parameters, completing our first of three CBNs.

3.4 Learned and Hybrid Networks
Multiple methods exist to estimate both parameters and network structure from data. To
explore these methods, the author utilized the same open-source software and derived
notional dataset to build a completely “learned” CBN. These methods have been extended
to include processes for model selection to avoid over-fitting. The DAG representing this
estimated structure is depicted in Figure 3.2. Each resulting arc can be explored to discover
causal dependencies that were previously unknown to the system expert.
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Figure 3.2. Learned network estimated from dataset

Given limits in computation, it is impossible for search algorithms to pick the best network
from the set of all possible networks when every :th node has : > 1 parent nodes. This
problem is classified as NP-hard and quickly becomes intractable as the number of nodes in a
network increases (Heckerman 2020). The resulting estimated solution is an approximation.
While clever extensions to search methods exist to mitigate this problem, when time and
network size allows, the best solution may be supervised network quality control. For
instance, when an estimated network has a manageable number of arcs, like the 185 in our
learned network from Figure 3.2, it is possible for an expert to individually inspect each
node and reverse the direction of the arc when dependency was detected but causation is
attributed in the wrong direction. They may also decide to remove the arc completely if the
relationship represented by the arc does not meet a subjective level of reason. This process
was applied to our learned model, yielding a “hybrid” model structure depicted in Figure
3.3.
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Figure 3.3. Hybrid network estimated from dataset and refined by human
system expert

3.5 Model Inference
To query the network, the user may input known evidence into the system then analyze
the updated CPTs to glean useful diagnostic decision support. Just as Figures 2.7 and 2.8
demonstrated conditional information flow in converging network structure, the directed
separation algorithm determines the set of node CPTs that will be updated throughout the
entire network given the input evidence. Approximate inference methods, like the Monte
Carlo method implemented in the software used for this research, alleviate the NP-hard
computational burden when querying the LAV model.
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Figure 3.4. How Bayes’ theorem and the chain rule of probability is used
to determine exact inference in simple networks. Source: Aebischer et al.
(2017).

For smaller models like the two-node network depicted in 3.4, it is possible to calculate
exact inference using Bayes’ theorem and the chain rule of probability.

3.6 Graphical User Interface
In addition to understanding and implementingmodel construction techniques and inference
logic, the analyst must provide a medium for ease of providing model inputs, processing the
information, and interpreting outputs. This will maximize model applicability and usability
for the end user.
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Figure 3.5. Diagnostic tool graphical user interface developed in Shiny

While model inputs and outputs can be expressed as code and programming language, we
can demonstrate how easy-to-use graphical interfaces are utilized to support input and output
visualization while software running in the background handles the logic and computation.
Figure 3.5 is a screenshot of a graphical user interface (GUI) application implemented in
the Shiny software package and embedded in a web browser that allows for ease in querying
our expert model.
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CHAPTER 4:
Analysis

This chapter exhibits results ofmodel analysis and presents techniques formodel comparison
and model selection. A user interface to support model query is also presented.

4.1 Model Comparison
Applying the various methods for determining network structure and model parameters
renders a variety of resultant models. It is possible to determine the degree to which two
models agree with one another by counting and classifying the specific arcs across both
networks. We can select an incumbent network and compare it with a contending network.
Specifically, we can count the number of true positive arcs, false positive arcs, and false
negative arcs. True positives are arcs that appear in both networks. False positives appear
in the contending network but not the incumbent. False negatives appear in the incumbent
but not the contending (Scutari 2020). Figure 4.1 is a visual comparison of our expert
and learned models. The red arcs represent false positives, and blue arcs represent false
negatives. Of particular interest in this situation are the false positives, as they potentially
indicate causal dependencies between nodes that are detected by the data but otherwise
unknown to the expert. One particular false positive suggests a directional dependency
relationship from "shocks" to "communications equipment error."
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Figure 4.1. An overlay comparing our expert model with the learned model.

Table 4.1 conveys the similarities and differences in our models by the number of true
positives, false positives and false negatives. We see more false positives than true positives
when treating the expert model as the incumbent and comparing it to the the learned
model. This tells us that there are a significant number of potential causal dependencies
between components that are unknown to the subject matter expert or system technician.
To investigate the arcs that fall in the false positive category, we look at the symmetric
differences between the two models’ sets of arcs. Inspecting these arcs, we see that there
is a possible causal dependency between the turbo clamps being loose and the engine not
starting, the status of the coil springmay affect the steering, and broken shocks can impact the
communications equipment on the vehicle. For this last example, LAV operators generally
understand their radios are more likely to cut out when riding over bumpy terrain, but this
is neither intuitive nor explicitly addressed in the TM. Looking further down Table 4.1, we
see our hybrid model agrees more with the initial expert design. Recall our hybrid model
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relies on human applied subjective reasoning, overriding instances where the machine found
random or spurious correlation in the data.

Table 4.1. Comparing models by exploring the intersection of arc sets.

Incumbent Contender True Positives False Positives False Negatives
Expert Learned 83 102 74
Learned Hybrid 122 31 63
Expert Hyrbid 102 51 55

4.2 Model Selection

4.2.1 Model Scoring
Given a model and a data set similar to the one in Table 3.1, we can compute a model score
that is a goodness-of-fit indicator measuring how well our model reflects the dependence
structure identified in our data (Scutari and Dënis 2015). This value can support model
selection decisions when considering scaling our network. If a network score is calculated
for both a sparse model and an augmentedmodel, a quantifiable justification can bemade for
including or rejecting the augmenting nodes and arcs. Also, as potentially new data becomes
available, a model can be scored against this new information to assess fit. Running a score
for our three models by computing a Bayesian information criterion (BIC) value (where
values closer to 0 indicate a better fit), we compute scores of -19,762.42, -18,132.95 and
-19,098 for the expert, learned and hybrid models respectively. These results confirm the
efficacy of the scoring method as the data used to compute the score was also used to create
the learned model.

4.2.2 Cross Validation
Another way to evaluate model performance is through a cross validation holdout technique.
To execute this technique, first split the data observations into two disjoint sets, a training
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and test set and estimate network structure using the training set. Next, use a loss function
to measure its performance against the test set (Koller and Fr̈iedman 2009). Computing the
expected loss for our three models using the log-likelihood loss function and the same input
data used to construct our learned model, we compute values of 42.64, 42.04, and 43.99 for
our expert, learned and hybrid models, respectively, where the lower value indicates a better
fit. This suggests that although our hybrid model is loosely built from causal dependencies
found in the data, cross validation using the log-likelihood loss function prefers selection
of the expert model.
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CHAPTER 5:
Summary and Conclusions

5.1 Summary of Results
The methods explored to design an automated tool for diagnostic support rendered limited
models that demonstrate the utility of probabilistic graphical networks. TheCBN is undoubt-
edly an apt representation of beliefs about system component causal dependencies that is
useful in determining direct and indirect causes of malfunctions depending on presented
symptoms. These beliefs can be determined by expert elicitation or data analysis, which
form the two main approaches to CBN model construction. Coupled with node dependency
algorithms and computation power, the resulting systems have the useful property of being
easily queried for inference by inputting observed evidence. The outputs, updated CPTs for
particular nodes of interest, can then direct the user to the likely source of the problem.

5.1.1 Reasoning in Expert Systems
CBNs may be constructed by eliciting expert knowledge. Three major components must
be explicitly enumerated by the expert: the network nodes, network arcs, and respective
node CPTs. The network nodes consist of the union of the set of system components and
the set of all evidence that gives insight into the status of a component. The expert can
then determine which nodes directly interact with one another and how they influence one
another, yielding the set of network arcs and arc directions. The conditional probability
table framework for each node is defined by the in-degree of that node and the associated
levels of its parent nodes. The expert will assign probabilities that the node is in a given
state for every combination of parent node states. The resulting CBN can then be queried
for inference. This is a viable approach for constructing a Bayesian network for relatively
simple networks where knowledge of the network is abundant and the expert’s time is not
too valuable to divert their attention. When these criteria are not met, a data driven solution
becomes more appealing.
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5.1.2 The Power of Data
It is not always practical or preferable to construct a CBN from expert elicitation. Given the
powerful data driven methods and freely available software demonstrated in this research,
the CBN programmer should consider if estimating a network from data is the preferred
method. For instance, construction of a CBN representation of a fifth-generation fighter jet
would require participation from numerous industry representatives and is likely too costly
if not unrealistic. Also, the diminishing cost and abundance of accessible data means data
driven CBN solutions may be the less cumbersome option. Our results tell us that models
built from data provide feasible solutions for CBN programmers. For the sake of model
accuracy, it is important to rely on a large enough quantity of data that is representative
of system causal dependencies. Even when this data exists, we have seen how network
estimation algorithms can often detect dependencies but fail to properly ascribe the cause
and effect direction. Lastly, recall that networks learned from data allow the analyst the
potential to discover direct and indirect causal dependencies that are otherwise unknown.

5.2 Recommendations
If the status quo for conducting higher echelon corrective maintenance does not translate
to DMO and the future operational environment, then we must fully enable maintainers at
the tactical unit level to independently diagnose and repair degraded systems. While much
research has focused on automated supply chain operations in this future environment, a
resupply that fails to deliver the correct Class IX supplies due to misdiagnosis costs time,
resources, and most importantly, warfighting capability. The current approach outlined in
the TM treats various pieces of fault evidence and information as independent from another,
but when multiple symptoms are present, the whole of the information is likely more useful
than the sum of the particular pieces. A rich CBN model is able to weigh input interaction
effects on outputs, capitalizing on the synergy of dependency in information about system
components. This research demonstrates how this logic can be implemented in software and
uploaded onto a technician’s handheld device. TheMarine Corps should direct attention and
resources to continue this research by partneringMarine Corps Systems Command (MCSC)
as a topic sponsor with Naval Postgraduate School (NPS). Concurrently, investments can
be made to modernize how we track system maintenance, which would have the additional
benefit of digital data capture for the purpose of developing system specific CBNs.
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5.2.1 Data Management
Upgrades in maintenance related data capture and management can provide an avenue for
designing complex networks and continuously informing and improving the models with
model comparison methods as new data becomes available. Currently, LAV maintenance
records are transcribed by hand into maintenance logbooks. A digitized logbook would
provide the perfect platform for capturing this data. A digital logbook would harness the
power of computation by submitting to long-term memory all vehicle data and maintenance
records. In addition to the typical function of a maintenance logbook, a digital maintenance
logbook program installed on a tablet or toughbook could continuously update a CBN
model as new data is constantly being input by multiple users across the service and allow
the user to run queries for diagnostic support. Results can be input into a cost utility model
that lays out optimal step-by-step troubleshooting steps. Photos and help tools could render
along with the output, guiding the user through each performance step. Additionally, these
enhanced logbooks would have the benefit of network connectivity where it can passively
interact with Global Combat Support System (GCSS), streamlining the Class IX supply
part replenishment process.

5.2.2 Program Improvement
Results from this research suggest that using CBNs to support equipment diagnostics has
the potential to provide real benefits to material readiness and repair part budgets. The
research presented satisfies much of the model verification burden, but much is yet to be
gained by model validation. An enriched model approved by subject matter experts could be
tested against current procedures to quantify the benefit of automated diagnostic tools. Once
this head to head evaluation provides marginal measurements of performance improvement,
these parameters can be used in a discrete event simulation (DES) similar to the one depicted
in Figure 5.1. The probability of a misdiagnosis, %("), and the time to troubleshoot, C) ,
can be captured and treated as systematically controlled independent variables, data can be
collected over multiple iterations, and statistical analysis performed to determine measures
of effectiveness such as mean number of operational vehicles and repair part expenditures
over an operational cycle.
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Figure 5.1. Discrete event graph representing the stages of an operational
cycle for the LAV.

The results of this experiment would quantify the level of model effectiveness and potential
return on investment, signaling the proper breadth and depth of investment in implementation
across other systems maintained by the Marine Corps.

5.2.3 Program Implementation
For relatively simple, closed systems like an LAV, very minimal investments of time,
resources and energy would be required to develop of a working model that could be fielded
to LAV mechanics. The presented method of engineering a CBN from a TM can be used to
build an initial workingmodel to be improved upon after expert review and comparisonswith
data. The open-source software freely available to run these programs and develop a user
interface are sufficient for this purpose. However, larger and more complex systems would
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likely require additional support from industry. The Marine Corps should designate specific
systems similar in number of sub-components and complexity for initial implementation.
After implementing and monitoring improvements in corrective maintenance turn-around,
an incremental approach can be taken when designating additional platforms for method
replication.

5.3 Areas for Future Research
Due to the author’s limited access to real world data, a notional dataset was constructed
that loosely represents real world causal dependencies between LAV system components.
Researchers attempting to further this work should assess whether GCSS can provide input
data for model construction. Otherwise, a concerted data collection effort could consist of
inputting handwritten vehicle maintenance logs into a digital format. Also, having a way to
use data to determine otherwise unknown conditional causal dependencies between com-
ponents can inform research on using CBNs to determine where sensors should be placed
on vehicles to detect potential symptoms of mechanical problems. Combining this with
an understanding of which parent node component status is likely to trigger a malfunction
presents an opportunity to develop of a scheme for preventing breakdowns andmalfunctions
before they occur. Additionally, undirected graphical representation of systems and Markov
networks could potentially support a program for automated diagnostic support and should
be explored further.
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