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ABSTRACT 

Electromagnetic pulse (EMP) weapons are widely recognized as a potential 

disruption to infrastructures that are based on electronic equipment. Use of an EMP 

platform presents a significant opportunity for aggressive actors to disable infrastructure 

without causing physical damage to structures or individuals. As more aspects of society 

depend on electronic controls, passive measures of protection for critical systems will be 

more valuable for maintaining a viable national security posture. This leads to the natural 

question: are construction materials and natural materials viable methods to shield 

sensitive electronics from EMP fields? By discretizing Maxwell’s equations for 

electromagnetics via a finite-difference time-domain method, we can observe the 

behavior of the electric field as it propagates through various materials to see if they 

provide adequate protection. From this discretization, we were able to analyze individual 

material properties to find the best traits for protective measures. We found that the 

electrical conductivity is the most significant material property that contributes to 

attenuation of electric fields, with increases in conductivity corresponding to approximate 

exponential decreases in the magnitude of electric field propagation. After running these 

simulations, we find that many common construction and natural materials 

offer significant protection, but electric fields from an EMP could be large enough to 

penetrate the layer at damaging levels. 
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CHAPTER 1:
Introduction and Problem Background

1.1 Context
As the United States continually adopts and improves electronically controlled infrastruc-
ture in military and civilian realms, the improvements in production come with increased
susceptibility to disruption by adversarial forces [1]. A significant threat with potential to
damage electrical wiring and control systems is the electromagnetic pulse (EMP), with spe-
cific attention paid to the EMP generated by a high altitude electromagnetic pulse (HEMP)
burst [2] from a nuclear weapon blast. These hold the potential to cause prolonged damage
to electrical systems, which may have cascading effects similar to those observed in 2005
after Hurricane Katrina on a much larger geographic scale [2]. Due to the potential for
significant damage to infrastructure and national defense, examination and improvement of
national assets has become a priority for U.S. government (USG) officials [3].

1.2 Motivation
Although EMPs present a significant threat to national security, experimental data on them
is very limited, which creates gaps in our knowledge [3]. In particular, there is almost
no empirical testing data on HEMP due to a 1963 test ban treaty between the USG and
the Soviet Union [1]. The early time (E1) effects of HEMP provide a highly concerning
threat. This E1 HEMP field would be produced in the first microsecond after a high altitude
nuclear blast and generate the largest electric field by far [4], as illustrated in Figure 1.1.
This could prevent safety systems from engaging before significant damage from later time
HEMP stages [5]. Due to both the wide area effect from a blast at satellite altitude [6] and
the available delivery by multiple non-friendly states [1], this EMP delivery mechanism
presents a concern to security interests.

1.2.1 History
Although electromagnetic effects were expected in early nuclear tests, the mechanisms
were not well understood and the predictions were not highly accurate [4]. Some of the
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Figure 1.1. Parts of HEMP and maximum values of a generic signal
Source: [4].

earliest observations of EMP effects were during the early 1950s, in the form of what British
researchers called radioflash [7]. This and other key events are listed in Table 1.1.

The only instances of deliberate HEMP testing occurred in the 1960s, with both the U.S. and
Soviet Union conducting tests in 1962. The most well-known being the U.S. Starfish Prime
test at Johnston Atoll, which produced effects over 1400 km away in Hawaii by damaging
streetlamps and a few other electrical systems [8]. Due to the lack of understanding of the
mechanism of HEMP, the instrumentation on hand was not sufficient to gather quality data,
although the data acquired was enough to confirm the presence of E1 HEMP [4]. Models
and analysis were conducted afterward to build a model that would reasonably explain
HEMP effects, although the true effects of the Starfish Prime test could not be definitively
confirmed [9]. Russian tests in 1962 also provided evidence of E1 HEMP effects, with
testing related damage occurring in antenna systems and diesel generators [4]. Further
empirical testing of HEMP was discontinued in 1963 when the USG and the Soviet Union
signed the Limited Test Ban Treaty, effectively ending all full scale testing on E1 HEMP [2].
Due to this lack of empirical data, computer models have been necessary for testing theory.
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Table 1.1. Key Events in EMP History
Source: [4]

Year Event

1945 TRINITY EVENT; electronic equipment shielded reportedly because of Fermi’s ex-
pectation of EM signals from a nuclear burst

1951 C.H. Papas of LASL proposes prompt gamma-produced Compton currents as sources
of EMP

1951-1952 First deliberate EMP observations made by Shuster, Cowan, and Reines
1951-1953 First British atomic tests; instrumentation failures attributed to "radioflash"

1957 Bethe makes estimate of high-altitude EMP signals using electric dipole model (early-
time peak incorrect)

1957 Haas makes magnetic field measurements for PLOMBBOB test series (interest in EMP
possibly setting off magnetic mines)

1958 Joint British/U.S. meeting begins discussions of system EMP vulnerability and hard-
ness issues

1958 Kampaneets (USSR) publishes open literature paper on EMP from atomic explosion
1959 Pomham and Taylor of the U.K. present a theory of "radioflash"

1962 FISHBOWL high-altitude tests; EMP measurements driven off scale; first-indications
of the magnitude of high-altitude EMP signal

1962 SMALL BOY ground burst EMP test
1963 Open literature calls for EMP hardening of military systems begin to appear

1963-1964 First EMP system tests carried out by Air Force Weapons Laboratory (AFWL) (now
Air Force Research Laboratory, Directed Energy Directorate)

1963-1964
Longmire gives a series of EMP lectures at AFWL; presents detailed theory of ground
burst EMP and shows that the peak of the high-altitude EMP signals is explained by
magnetic field turning (magnetic dipole signal)

1964 First note in the LASL/AFWL EMP notes series published

1965 Karzas and Latter publish first open literature paper giving high-frequency approxi-
mation for the high-altitude magnetic dipole signal

1967 Construction of ALECS as the first guided-wave simulator is completed for EMP
simulation on missiles

1967 AJAX underground nuclear test
1969 Close-in EMP mechanisms recognized and evaluated by Graham and Schaefer

1970 EMP underground test feasibility recognized and preliminary design presented by
Schaefer

1973 First joint nuclear EMP meeting at AFWL

1974 MING BLADE underground EMP test for confirmation of near surface burst EMP
models

1975 DINING CAR underground EMP test as the first system hardware EMP test

1.2.2 Susceptibility
Due to advances in technology and the lack of testing, the actual effects of E1 HEMP
on modern electronics is still poorly understood [2]. The effects of HEMP have only
been observed in vacuum tube systems, which are on the order of 10 million times more
resistant than modern circuit systems [10]. Further testing has been conducted using
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underground nuclear blasts [7] which have improved the understanding of the associated
physics, but has not yielded comparably valuable information about effects on equipment.
The current threat assessment expects communication equipment to be the most affected set
of technology [10]. Deliberate protection measures have been developed and constructed,
most notably the Faraday cage, but are not 100% effective at disrupting electromagnetic
waves [11].

1.3 Roadmap
This thesis will examine the effects of E1 HEMP by numerically simulating depth penetra-
tion of the electrical and magnetic fields from the EMP generating event. Chapter 2 looks
at previous work and the basis for the mathematical model that describe the propagation
of EMP waves. Chapter 3 derives and implements the equations that govern the propa-
gation through media. Chapter 4 summarizes and shows the results obtained through our
implementation and analyzes the effects of varying the input parameters. Finally, Chapter
5 presents conclusions and potential directions of future work. The code used to generate
the data is included in the Appendix.

4



CHAPTER 2:
Previous Work Analysis

2.1 Previous Works
The related previous work can be divided into two categories: analysis of HEMP and
analysis of Maxwell’s equations. Each of these categories has multiple components that
were examined in this review.

2.1.1 High Altitude Electromagnetic Pulse
Specific data on the effects of a HEMP blast are not readily available to the public as the
details from the generating events would require disclosure of classified weapons platforms
[2]. As such, publicly available studies cover either approximation of EMP environments
or infrastructure susceptibility.

A key base for unclassified analysis of HEMP environments was provided by Oak Ridge
National Laboratory [12]. In this report, the team analyzed a nominal 3.3 megaton nuclear
burst above the atmosphere. Specifically, they studied the peak electric field values at
various geographic points within line of sight of a burst. Using early computer algorithms,
they found nominal values based on a specific burst location and specific radii from the
epicenter. These results aligned with other work calculating maximum detection distance
for high altitude nuclear explosions [13].

From these simulations, they found a nominal warhead could generate a peak electric field
on the order of 5 times 105 V

m at the peak below the blast with decreasing magnitude further
from the blast [12]. This peak electric field was for the E1 HEMP value, which occurs
in the first few µs after the blast as seen in Fig 1.1. In retroactive analysis of the Starfish
Prime event, the peak electric fields were calculated to be significant enough to have caused
damage in Honolulu, as the EMP induced electric field caused street light bulbs to go out [9].

Other documents provide a strong overview of the effects of E1 HEMP in relation to
U.S. susceptibility. These documents provide nominal values for generic blasts and the
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relationship between height of burst (HOB) and radius of effect [4]. This work indicates
that a single burst at 400 km HOB will cover a 2400 km radius, enough to cover most of the
contiguous U.S. It also calculates the relative effects to other EM methods, including FM.
These works discuss qualitative and approximate effects on electronics and potential area
of effect, with the conclusion that a single blast could feasibly affect the entire U.S. [14].
This is illustrated in Figure 2.1, which illustrates the effect from a low yield weapon at a
relatively low altitude of 75 km above the middle of the country.

Figure 2.1. Map illustrating magnitude of E1 electric field from HEMP
detonated 75 km above the central U.S. Source: [4].

2.1.2 Maxwell’s Equations
Maxwell’s equations have been analyzed both analytically and numerically. The numerical
solutions are discretizations of the analytic formulations and used more frequently due to
advances in computation power [15], especially in situations where the analytic solution is
not easily solvable.
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Evaluation Methods
The relationship between electric andmagnetic fields are described byMaxwell’s equations,
a set of differential equations that relate Faraday’s, Ampere’s, and Gauss’s laws [16]. These
equations serve as the basis for current studies in electromagnetics. These equations are well
understood in their analytic form, having been separated into Cartesian components [17]
for directional analysis.

Early methods of solving Maxwell’s equations focused on the frequency domain [15]
for steady-state problems, as it offers a closed form solution that was solvable on early
calculating devices. During the early implementation of modern computers, more advanced
frequency domain solutions were used, although they reached their limits due to sizes of
problem sets and their poor fit with non-metallic objects. This led to the rise of time domain
solving techniques.

There have been commercial software implementations for Maxwell’s equations either
produced by companies or implemented on their platforms. COMSOL has developed
a finite element method solver based on proprietary code that they sell for evaluation
of electromagnetic waves in various objects [18]. Additionally, there are MATLAB finite
difference algorithms published [19], although the specific implementation relies on induced
fields inside a space rather than a field entering a space.

Finite Difference
A popular numerical method for solving Maxwell’s equations is the finite-difference time
domain (FDTD) method, which focuses on numerically solving spatial values at various
time steps. This technique was first employed by Yee to find solutions to electromagnetic
problems without closed form solutions [20], offering a numerical approach to solve the
system of partial differential equations. Yee’s method relied on building a grid where each
spatial point is influenced by its previous value and the values at neighboring points offset
by half steps in space and time and is shown in Figure 2.2. The technique was expanded to
complicated structures in three-dimensional Cartesian space [21] and eventual employment
in spherical coordinates [22]. The spherical coordinates offered some improvement over
Cartesian space, although it was more apt to lose stability at the boundaries for large
problems.
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Figure 2.2. Rectangular coordinate representation of the Yee grid, which
shows the relationship between electric fields on boundary lines and magnetic
fields on faces. Source: [20].

The FDTD method’s stability is dependent on viable spatial and time steps that ensure
accuracy is not lost at each step. This was previously formulated and bounded by Courant et
al. [23] for Maxwell’s equations. Their method develops bounds to the differential equation
so that the wave does not pass any spatial step without evaluation in a single time step.
This means the spatial step has to be less than the time step divided by wave propagation
rate, a requirement known as the Courant-Freidrichs-Lewy (CFL) condition for differential
equations. Additional key events in the expansion of FDTD methods can be seen in Table
2.1.

2.2 Gaps in Analysis
Though many of the individual elements have been analyzed, there is very little available
literature on depth penetration of an EMP. Specifically, there is little available describing
passive protective measures against an E1 HEMP attack. The effect on material selection
and thickness variation on EMP attenuation is a current knowledge gap.
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Table 2.1. Partial History of FDTD
Adapted from [15].
Key Events in FDTD

Year Paper
1966 Yee describes the basis for the FDTD method

1975 Taflove andBrodwin confirmnumerical stability
criterion

1980 Taflove coined term FDTD and publishedmodel
of 3-D penetration to metal cavity

1987,90
Finite Element TimeDomain (FETD) and Finite
Volume Time Domain (FVTD) methods intro-
duced Cangellaris et al., and Shankar et al.

2000 Rylander and Bondeson introduced a stable, hy-
brid FDTD-FE technique

2003 DeRaedt introduced unconditionally stable one-
step FDTD technique

9
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CHAPTER 3:
Methodology and Model

3.1 Solving Technique
To conduct EMP wave penetration analysis, we use the FDTD technique to analyze
Maxwell’s equations in various media. We choose this method as it provides relatively
simple formulations for handling anisotropic dielectric materials (i.e., those having differ-
ing property values when measured in differing directions) and those that vary along their
geometry. In order to do this, we use a discretization technique on the differential forms of
Maxwell’s equations. This discretization works by taking the known value from solving at a
starting time for every point and taking a small step to solve for the values at every location
at the next time step. In setting up this evaluation, the problem space is modeled such
that a wave propagates in one-dimension with field values existing in the two other spatial
dimensions. The space is developed so that a modeled EMP wave will enter the space,
attenuate, and exit the space. The behavior in the attenuation portion is of key interest in
this problem.

3.2 Algorithm Derivation
In order to make the calculations for the EMP penetration, the correct derivation of
Maxwell’s equations must be found and then be discretized effectively. The goal is to
take distinct, finite steps in the temporal and spatial dimensions to solve for specific times
and spaces, rather than a closed form solution for the field strength at arbitrary times and
locations. This is accomplished first by rearranging Maxwell’s equations to a usage form,
and second by numerically placing them into the one-dimensional Yee grid so that it can be
implemented by a computer algorithm.

3.2.1 Maxwell’s Equations
To begin, the proper implementation of Maxwell’s equations was derived for implementa-
tion. The common represented starting point is given as [24], [19]:

11



∇ × ®H −
∂ ®D
∂t
= ®J (3.1a)

∇ × ®E +
∂ ®B
∂t
= − ®M (3.1b)

∇ · ®D = ρe (3.1c)

∇ · ®B = ρm (3.1d)

where

• ®H is the magnetic field
• ®E is the electric field
• ®D is the electric displacement
• ®B is the magnetic flux density
• ®J is the electric current density
• ®M is the magnetic current density
• ρe is the electric charge density
• ρm is the magnetic charge density

Using the definitions [19]:

®D = ε ®E (3.2a)
®B = µ ®H (3.2b)

and plugging into (3.1), Maxwell’s equations are now represented as:

12



∇ × ®H = ε
∂ ®E
∂t
+ ®J (3.3a)

∇ × ®E = µ
∂ ®H
∂t
− ®M (3.3b)

∇ · ε ®E = ρe (3.3c)

∇ · µ ®H = ρm (3.3d)

where

• ε is the permittivity
• µ is the permeability

In common representation, ε = ε0εr , which represents the permittivity of a space as the
permittivity of free space times the relative permittivity. We take ε0 ≈ 8.854 × 10−12 F

m .
Similarly, µ = µ0µr , where µ0 = 4π × 10−7 H

m .

The electric and magnetic current densities can each be separated into the conduction and
impressed current densities, [19]:

®J = ®Jc + ®Ji (3.4a)
®Jc = σ

e ®E (3.4b)
®M = ®Mc + ®Mi (3.4c)
®Mc = σ

m ®H (3.4d)

where

• σe is the electric conductivity
• σm is the magnetic conductivity
• Jc is the conduction current density
• Ji is the impressed current density
• Mc is the conduction magnetic density

13



• Mi is the impressed magnetic density

The two divergence equations, (3.3c) and (3.3d), are not used in the development of the
FDTD equations [19], but can be used to verify the results obtained from derivation using
the two curl equations, (3.3a) and (3.3b). Plugging in the equivalencies for the electric and
magnetic current densities updates the representation of Maxwell’s equations to:

∇ × ®H = ε
∂ ®E
∂t
+ σe ®E + ®Ji (3.5a)

∇ × ®E = −µ
∂ ®H
∂t
− σm ®H − ®Mi (3.5b)

For eachmaterial property in (3.5), there exists a direction component and potential variation
across the material. This means the material could have differing values for any property
ε, µ, σe, or σm in each of the i, j, and k planes. Further, each material can vary with
positionally. This set of equations is valid for any combination of materials, assuming
the values for each property are modeled correctly. Each of these properties generalize
appropriately and were considered during discretization.

Using the definition of the curl of an equation [25], the original curl can be expanded as:

∇ × ®H =
(
∂H3
∂y
−
∂H2
∂z

)
®i +

(
∂H1
∂z
−
∂H3
∂x

)
®j +

(
∂H2
∂x
−
∂H1
∂y

)
®k (3.6a)

∇ × ®E =
(
∂E3
∂y
−
∂E2
∂z

)
®i +

(
∂E1
∂z
−
∂E3
∂x

)
®j +

(
∂E2
∂x
−
∂E1
∂y

)
®k (3.6b)

which allows solving for each of the directional components. To do this, set each direction
from (3.6) to the component in (3.5). This can be done across all six direction components
without loss of generality to be:

∂H3
∂y
−
∂H2
∂z
= ε1

∂E1
∂t
+ σe

1 E1 + Ji1 (3.7)
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which simplifies to

∂E1
∂t
=

1
ε1

(
∂H3
∂y
−
∂H2
∂z
− σe

1 E1 − Ji1

)
(3.8)

Upon applying the above calculation to all the directional components, the fields can be
written as:

∂E1
∂t
=

1
ε1

(
∂H3
∂y
−
∂H2
∂z
− σe

1 E1 − Ji1

)
(3.9a)

∂E2
∂t
=

1
ε2

(
∂H1
∂z
−
∂H3
∂x
− σe

2 E2 − Ji2

)
(3.9b)

∂E3
∂t
=

1
ε3

(
∂H2
∂x
−
∂H1
∂y
− σe

3 E3 − Ji3

)
(3.9c)

∂H1
∂t
=

1
µ1

(
∂E2
∂z
−
∂E3
∂y
− σm

1 H1 − Mi1

)
(3.9d)

∂H2
∂t
=

1
µ2

(
∂E3
∂x
−
∂E1
∂z
− σm

2 H2 − Mi2

)
(3.9e)

∂H3
∂t
=

1
µ3

(
∂E1
∂y
−
∂E2
∂x
− σm

3 H3 − Mi3

)
(3.9f)

Since we only consider the 1-D case, we don’t use the terms that depend on y and z direction
movement (i.e., there no variation in y and z directions). An additional consideration is
that Mi = 0 since there is not a physical meaning for this term in wave propagation [26].
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∂E1
∂t
=

1
ε1

(
−σe

1 E1 − Ji1
)

(3.10a)

∂E2
∂t
=

1
ε2

(
−
∂H3
∂x
− σe

2 E2 − Ji2

)
(3.10b)

∂E3
∂t
=

1
ε3

(
∂H2
∂x
− σe

3 E3 − Ji3

)
(3.10c)

∂H1
∂t
=

1
µ1

(
−σm

1 H1
)

(3.10d)

∂H2
∂t
=

1
µ2

(
∂E3
∂x
− σm

2 H2

)
(3.10e)

∂H3
∂t
=

1
µ3

(
−
∂E2
∂x
− σm

3 H3

)
(3.10f)

Two trends are readily apparent from the derivations. The first is the lack of propagation
through space for the E1 and H1 fields from (3.10a) and (3.10d). Both vary with time,
but have no spatial derivative terms meaning there is no propagation through space in the
one-dimensional case. This means that at any location away from the source the value of
the field in that direction is zero. The only propagating fields are the transverse fields to the
direction of travel. The second key is the coupled nature of the electric and magnetic fields.
The E3(3.10c) and H2(3.10e) fields are completely decoupled from (3.10b) and (3.10f),
allowing for update based only on calculated E3 and H2 values.

3.2.2 Finite Difference Discretization
For discretizing in one-dimension, a modified Yee grid is established for offsetting the time
and spatial dimensions of the electric and magnetic fields. For the temporal offset, the
magnetic field update is shifted 1

2∆t from the electric field update. This is seen in 3.1,
where at spatial position (i), the magnetic field update occurs at the time midpoint between
each electric field update. This technique is sometimes known as a leapfrog scheme [27]
for updating in time.

For the spatial offset, the three-dimensional model is simplified to a single dimension of
wave travel. At the time n each electric field acts at the spatial location (i) and the magnetic
field at (i) occurs at the midpoint of the space between (i) and (i + 1). This is from
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Figure 3.1. Time Discretization of E and H Fields

collapsing the three-dimensional model down, where the electric field updated at vertices
and the magnetic field updated at the center of faces. This is illustrated in 3.2, with magnetic
field components bordered on each side by electric field components and vice-versa.

Figure 3.2. Spatial Discretization of E and H Fields

The techniques for derivation will be the same for both the E3 and H2 propagation, so the
specific equation manipulation will only be shown for E3.

∂E3
∂t
=

1
ε3

(
∂H2
∂x
− σe

3 E3 − Ji3

)
(3.11)

By replacing the derivatives with finite differences and using a linear interpolation in t to
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move E3 to the n + 1
2 time step, the formulation becomes:

En+1
3 (i)−En

3 (i)
∆t = 1

ε3

(
H

n+ 1
2

2 (i)−H
n+ 1

2
2 (i−1)

∆x − σe
3 (i)

En
3 (i)+En+1

3 (i)
2 − J

n+ 1
2

i3

)
(3.12)

By moving like terms together and factoring out common values, the equation is simplified
to:

( 1
∆t +

σe
3 (i)

2ε3(i)
)En+1

3 (i) = ( 1
∆t −

σe
3 (i)

2ε3(i)
)En

3 (i) +
1

∆xε3(i)
(H

n+ 1
2

2 (i) − H
n+ 1

2
2 (i − 1))

− 1
ε3(i)

J
n+ 1

2
i3 (i)

(3.13)

By isolating the En+1
3 term and applying this technique to H2, this brings the final set of

equations to:

En+1
3 (i) =

2ε3(i)−∆tσe
3 (i)

2ε3(i)+∆tσe
3 (i)

En
3 (i) +

2∆t
2∆xε3(i)+∆x∆tσe

1 (i)
(H

n+ 1
2

2 (i) − H
n+ 1

2
2 (i − 1))

− 2∆t
2ε3(i)+∆tσe

3 (i)
J

n+ 1
2

i3 (i)

(3.14a)

H
n+ 1

2
2 (i) =

2µ2(i)−∆tσm
2 (i)

2µ2(i)+∆tσm
2 (i)

H
n− 1

2
2 (i) + 2∆t

2∆xµ2(i)+∆x∆tσm
2 (i)
(En

3 (i + 1) − En
3 (i)) (3.14b)

The variables ε(i), µ(i), σe(i), σm(i),∆t, and ∆x are constant in any media for any speci-
fied location (i), these variables can be treated as constant coefficients and simplify the
representation of the equations to:

En+1
3 (i) = ce1En

3 (i) + ce2(H
n+ 1

2
2 (i) − H

n+ 1
2

2 (i − 1)) − ce3J
n+ 1

2
i3 (i) (3.15a)

H
n+ 1

2
2 (i) = ch1H

n− 1
2

2 (i) + ch2(En
3 (i + 1) − En

3 (i)) (3.15b)

where the electrical and magnetic coefficients calculated as:
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ce1 =
2ε3(i) − ∆tσe

3 (i)

2ε3(i) + ∆tσe
3 (i)

(3.16a)

ce2 =
2∆t

2∆xε3(i) + ∆x∆tσe
1 (i)

(3.16b)

ce3 =
2∆t

2ε3(i) + ∆tσe
3

(3.16c)

ch1 =
2µ2(i) − ∆tσm

2 (i)

2µ2(i) + ∆tσm
2 (i)

(3.16d)

ch2 =
2∆t

2∆xµ2(i) + ∆x∆tσm
2 (i)

(3.16e)

3.2.3 Error Bounds
The finite difference method has an error bound of on the order of the square of the spatial
difference [19]. This O((∆x)2) accuracy is due to the use of the central difference definition
of a derivative. This error is obtained using the Taylor series expansion of a function
f (x + h) and f (x − h) and adding them. The Taylor series expansion of f (x + h) is [28]

f (x + h) = f (x) + h f ′(x) +
h2

2!
f ′′(x) +

h3

3!
f (3)(x) + ... (3.17)

and

f (x − h) = f (x) − h f ′(x) +
h2

2!
f ′′(x) −

h3

3!
f (3)(x) + ... (3.18)

Subtracting (3.18) from (3.17) gives

f (x + h) − f (x − h) = f (x) + h f ′(x) +
h2

2!
f ′′(x) +

h3

3!
f (3)(x) + ...

− f (x) + h f ′(x) −
h2

2!
f ′′(x) +

h3

3!
f (3)(x) + ... (3.19)
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which comes to

f (x + h) − f (x − h) = 2h f ′(x) +
2h3

3!
f (3)(x) + ... (3.20)

By rearranging and solving for f ′(x), the equation for the first derivative of f (x) becomes

f ′(x) =
f (x + h) − f (x − h)

2h
+

2h2

3!
f (3)(x) + ... (3.21)

When this is expressed in the final central difference form, the equation is

f ′(x) =
f (x + h) − f (x − h)

2h
+O(h2) (3.22)

This expansion shows that the error on the derivative term of the FDTD discretization is
a function of ∆x, and that using a central difference definition for the derivative puts the
error on the order of the spatial difference squared. By selecting a ∆x that meets desired
accuracy, an appropriate value of ∆t can be found that meets the CFL criterion.

3.3 Code Development
Some techniques for this code were modeled after a MATLAB code from [19], which
implements FDTD for Maxwell’s equations by inducing a current in a vacuum between two
perfect electric conductor (PEC) plates. The induction creates two waves propagating in
opposite directions along the x-axis until they reflect off the PEC plates at the boundary and
return with an equal magnitude wave of opposite sign. This setup allows the analysis of
waves reflecting and attenuating in an enclosed space. A visualization of the model code
can be seen in Figure 3.3 where we see two equal waves propagating in opposite directions
toward PEC plates at the boundary.

In order to increase accessibility and usability of this analysis, the implementation was
built in the open-source language Python using the numpy package. However, these tech-
niques are not exclusive to Python and can be implemented in any mathematical computing
language.
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Figure 3.3. Visual Example of Model Code

To implement this algorithm, this code uses one-dimensional arrays to model the spatial
aspect of both the electric field, E, and the magnetic field, H. The E-field is discretized using
depth
∆x + 1 nodes to represent the entire depth of the material and the H-field is discretized

with depth
∆x nodes that represented the space between each E-field node as explained in (3.15).

By building the arrays this way, each element of the array represents the fields spaced at
intervals of ∆x. The bounds for this version are more in line with an EMP entering a space
and passing through rather than being enclosed and reflected in a space.

To apply the electric field to the space, a Gaussian waveform function, seen in Figure 3.4,
was used to simulate the front edge of the approaching electric field and applied to the first
E-field element. This waveform is of the form:

W = Ae−(
t−a
b )

n

(3.23)

where

• A is the magnitude of the initial field
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• t is the time step index
• a and b are EM wave properties provided by [19]
• n controls the shape of the waveform (larger value makes the wave peak wider)

Specifically, the values of n were 2 for Gaussian, 1 for sub-Gaussian, and 10 for super-
Gaussian in Figure 3.4. The other values were held constant to the values used later in the
implementation of the algorithm for testing.

Figure 3.4. Shape of Gaussian Waveforms

Over each time step, the update formula from (3.15) is applied to the H-field at time n + 1
2 ,

which is then used to update the E-field at time n + 1. Finally, the value at the boundary is
updated in accordance with the Gaussian wave applied as the incoming wave for each time
step. The boundaries for this implementation are not used, as the waveform simulates the
field that enters the space and the simulation stops as the wave exits the material of interest,
demonstrated in Figure 3.5. By implementing this over arrays and looping through time,
the complexity of this operation is O(nt) where n is the size of the field arrays and t is the
number of time steps.

To determine the applicable sizes of ∆x and ∆t, the CFL equation for one-dimensional
propagation from [19] can be used to form boundaries. The equation

v∆t ≤ ∆x (3.24)
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Figure 3.5. Visual Example of Modified Code

gives the relationship between the time and distance differences. With v representing the
speed of the wave, the speed of light is used as an upper bound on the potential speed of
an electromagnetic wave at c ≈ 3 × 108 m

s . After rearranging the values, the relationship
between ∆t and ∆x becomes:

∆x
∆t
≥ 3 × 108 m

s
(3.25)

which gives a bound on the ratio of spatial and temporal steps in free space. The speed of
light represents a lower bound for this ratio in free space, but a smaller ratio can be used for
materials with slower wave propagation.

The technique also allows for approximation of the depth penetration of the peak E-field val-
ues for the specified material by using the equation to calculate the speed of electromagnetic
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waves in a medium [29]. By using the equation

v =
1
√
εµ

(3.26)

with the values ε and µ for the specific material, the algorithm run time can be adjusted to
test various materials for effectiveness at reducing the field at various depths.

In order to perform analysis on realistic materials, Table 3.1 gives values of εr , µr , and
σe for various known naturally occurring and construction materials. Due to the fact the
system examines propagation in non-magnetic materials, σm is not observed and set to zero
for calculations [30].

Table 3.1. Electromagnetic Properties of Materials
Adapted from [31], [32], [33], [34], [35], [36], [37], [38], [39], [40].

Material Properties
Material Relative Relative Electric

Permittivity (εr ) Permeability (µr ) Conductivity (σe)
Air 1.03 1 ≈ 5 × 10−15

Wood (Moist) 2 1 10−4 − 10−3

Wood (Dry) 2 1 10−16 − 10−14

Water (20◦C) 80.2 1 5 × 10−4 − 5 × 10−2

SeaWater (20◦C) 73 1 4.8
Sand (Dry) 3 - 6 1 - 1.01 ≈ .008
Sand (Wet) 20-30 1 - 1.01 ≈ .01
Clay 5 - 40 1 .3 − 6 × 10−3

Rocky Soil 7 1 ≈ .001
Limestone 6 1.01 .2 − 1 × 10−3

Sandy Soil (Dry) 3 1 ≈ .006
Sandy Soil (Wet) 5-17 1 ≈ .008
Concrete 4.5 2 - 10 ≈ .01 − .2
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CHAPTER 4:
Results and Analysis

To test this implementation, multiple variations of the experiment were analyzed. These
tests are based on a generic magnitude of electric field entering the material and then
begin to attenuate, as opposed to the magnitude of the field generated by a source. This
allows for analysis of material effects on attenuation rather than other interactions related to
propagation. Specifically, all tests will look at the trends using a wave load of 104 V

m , which
is on the order of magnitude of calculated values from previous experiments [12]. Outputs
follow the trends of the electric field magnitude, as these have been demonstrated to be the
driver for damage to systems [9]. Unless otherwise specified, the algorithm’s spatial and
temporal were set to ∆x = 1mm and ∆t = 3ps, the exponent of the Gaussian waveform is
2, and the depth is 1m.

4.1 Tuning Material Parameters
In order to test the material parameters, three sets of variables were modified. The base case
considered is the propagation in a free-space scenario, where the values of εr and µr = 1
and the value of σe = 0. This case causes very little degradation of the field, and peak
values are within 99.95% of the original field strength after 1000mm. Subsequently, each
parameter was modified in across a range of values for typical construction materials as
found in Table 3.1. This allowed us to analyze the influence each parameter has on wave
attenuation within the overall system.

As seen in Figure 4.1, we see that the increasing electrical conductivity values significantly
alters the magnitude of the electric field at full depth. It has the highest impact of the
material parameters, as it is the only parameter tested that can cause > 90% attenuation
over the tested depth for values found in Table 3.1. We observe relatively little improvement
at early increases, but each order of magnitude increase in σ results in a faster attenuation
rate. The solution to a traveling plane wave is expected to be an exponential with a negative
exponent [41], so this behavior is in line with expectation.

When examining the permittivity variation, as seen in Figure 4.2, variable increases will
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Figure 4.1. Tuning Electrical Conductivity Values with Static εr = 1 and
µr = 1 (1000 mm)

attenuate the field at depth but not to the degree of the conductivity. Over the tested depth
of 1m, we saw attenuation of the electric field of approximately 11% at ε = 5 and doubling
the attenuation for each subsequent doubling of the ε value.

Figure 4.2. Tuning Permittivity Values with Static µr = 1 and σ = 0 (1000
mm)

Permeability value variation do not as significantly affect electric field for most expected
values, as illustrated in Figure 4.3. In the range of expected values for actual materials,
the µr values will not be the driving force for decreasing the overall electric field, as
permeability within the most common range decreases the electric field by less than 10%
of the original electric field. That said, the materials of focus tended to be non-metallic,
which significantly restricted the expected range for permeability.
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Figure 4.3. Tuning Permeability Values with Static εr = 1 and σ = 0 (1000
mm)

In addition to examining the attenuation of the field over space, we can plot the trend in the
resulting field at a given depth. In this, we ran the same type of simulation with a range of
material values, then plotted the field values at a given depth as the parameter was increased.
From this, we calculated regression analysis to characterize the trend in the modeled space
with the expectation that a regression curve could approximate the expected field value at a
given depth.

Figure 4.4 shows the value of the electric field at specific depths for a range of electrical
conductivity values. It was generated by taking each value of σe at intervals of 0.005 in
the range of [0,0.1]. Each marker represents values of the field at either the 250mm or
1000mm depth at equally spaced points. When tuning the electrical conductivity, we see a
very fast drop off in the electric field strength at given depths. The point corresponding to
σe = 0 shows no significant attenuation at any depth, but increasing the value affects the
propagation very quickly, which aligns with the trend seen in Figure 4.1.

By conducting both polynomial and exponential regression, we see the best fit to the
conductivity via exponential regression, which aligns with frequency-based analysis of
wave propagation., but see less accuracy at full depth or at the edge of the penetration. We
see in (4.1) that the constant intercept term for the regression shows large deviation from
the initial field applied, indicating the quadratic model would not be viable for predicting
effects of small conductivity inputs at the 1000mmdepth and that a higher degree polynomial
would be necessary to appropriately predict the trend at this depth. It also highlights the
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Figure 4.4. Comparing Conductivity with Depth (Varied Depth)

diminishing return of increasing conductivity values as the depth increases.

250 : Emax = 9262.88e−41.92σ (4.1)

1000 : Emax = 3846.33e−135.12σ

Figure 4.5 provides similar visualization for adjusting the permittivity values in the range
[0,100] at intervals of five. The points indicate the curve representing this relationship is
beginning to approach horizontal, which would point to there being diminishing returns on
increasing an object’s permittivity for wave attenuation.

Figure 4.5. Comparing Permittivity with Depth (Varied Depth)
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By conducting regression on the permittivity relationship, we observe a relationship that is
best approximated by a cubic curve for the specified range of permittivity values. Although
higher values of ε would likely deviate from this curve, these values would be outside the
expected range for any material used in construction projects.

250 : Emax = −.005ε3 + 1.4ε2 − 152.1ε + 10376.1 (4.2)

1000 : Emax = −.020ε3 + 3.9ε2 − 273.2ε + 10001.9

Figure 4.6 shows a similar trend for the variation of the permeability in materials, although
the shape of the curve differs. The curve when varying µ does not appear to approach a
horizontal asymptote in this figure but would likely approach a diminishing return based
on 4.3. The lack of this shape is likely due to the low expected permeability values in
non-metals, which constituted the main portion of tested parameters.

Figure 4.6. Comparing Permeability with Depth (Varied Depth)

Similar to above, we see that quadratic regression provides a tool for examining permeability
value variation. What we see in (4.3) is the coefficient of the leading term is negative. This
indicates that at these range of values of µ there is not a decreasing return on increasing
the parameter. However, the range tested on permeability is smaller than in permittivity,
meaning the values may have not reached the level of diminishing returns.
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250 : Emax = −9.65µ2 + 9.28µ + 10012.02 (4.3)

1000 : Emax = −1.75µ2 − 292.20µ + 10445.57

When examining the polynomial regression on these, curves, it is important to recognize
the predictor is only valid for the modeled depth.

One point to note is the potential error numerical dispersion in FDTD methods and their
influence on parameter importance [42]. Specifically, the ε and µ variables are susceptible
to this, as the wave input to the system was narrow when compared to the spatial step size.

4.2 Tuning spatial and Temporal Parameters
Grid structure analysis was conducted by varying the values of ∆x and ∆t such that (3.24) is
satisfied. To test and validate this in materials, a reference material with εr = 3, µr = 3, and
σe = .03 was used to test attenuation. These values provide a numerically viable starting
point since v = 1√

3∗ε0∗3∗µ0
≈ 108. This value allows test of ∆x and ∆t that differ by at least

eight orders of magnitude. For experimentation, these values were coupled and so that their
ratio was on the order of 108, along with the base case developed for free space.

The first item of note is that the rates of convergence do differ between differing step sizes.
When examining Figure 4.7, we observe the parameters with the smallest step size show
the same rate of attenuation. The larger step sizes show a faster rate of decrease, indicating
a larger error term affecting the calculated value. That said, all these variations converge to
within .165% of the starting field values within our test range.

4.3 Threshold Values
Since this model works most effectively at evaluating attenuation of waves as they propagate
through the material, tests were run on specific materials to find thresholds of field decrease.
Below a layer of the construction material of concrete, the natural barriers of clay and
limestone, and an underwater venue were tested as potential protective layers.

Table 4.1 reinforces the previously found relationships between material parameters as
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Figure 4.7. Tuning the Temporal and spatial Steps with Constant Material
(1000 mm)

related to attenuation. The conductivity is by far the most significant factor to affect when
the field decreases to the specified threshold. Of the solid materials, concrete showed the
best rate of attenuation. This intuitively holds, as it has relatively high values of each
material parameter. We also see that the distance to decrease field magnitudes increases
as the threshold value is tightened. This aligns with the asymptotic behavior seen in the
spatial charts in Section 4.1.

Table 4.1. Material Threshold Depths
Depth of Threshold

εr / µr / σe 10% 1% 0.1% 0.01% 0.001%

4 / 4 / .1 119mm 241mm 390mm 1206mm 2447mm
Concrete
20 / 1 / .01 2245mm 8175mm 13299mm 18538mm 23843mm
Clay
6 / 1 / .2 155mm 311mm 580mm 1809mm 5713mm
Limestone
73 / 1 / 4.8 22mm 46mm 118mm 369mm 785mm
Sea Water

4.4 Non-Homogeneous Layering
Since it would be very uncommon to have a perfectly homogeneous material, we developed
and ran a set of parameters for a dual property material and compared it with the boundaries
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expected of its constituent properties. We used properties of dry and moist sandy soil to
examine the trend for a continuous function and jump discontinuity of the properties.

As seen in Figure 4.8, non-homogeneity provides additional benefit over a homogeneous
layer with a higher value of εr . The reason for the improved values is due to reflection at
each boundary when the permittivity in the new layer is higher. At each change in εr , a
portion of the propagating field is reflected back.

Figure 4.8. Wave Penetration with Non-Static Permittivity (1000 mm)

The magnitude of the reflection is a function of the relative permittivities as given by [43]:

r =
(εr1 − εr2)

2

(εr1 + εr2)2
(4.4)

This gives the percent of the wave reflected at any interface between materials. This
explains the large decrease in the jump discontinuity, where approximately 53% of the wave
is reflected. We also see much steeper descent in the rate of attenuation in the material
where the permittivity varies as a function of space. At each step of the discretization,
approximately .02% of the wave is reflected. This magnitude of reflection varies and is
slightly larger at the beginning, eventually flattening as the (ε − ∆x) the value of the largest
value of ε.

4.5 Metamaterials
There is a special subset of artificially designed materials that have negative values for both
ε and µ [44]. We examined these metamaterials to see if they have application in EMP
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shielding along with other known applications in electronic systems.

For testing the effect of σe, we used nominal values that would demonstrate variation. We
observe in Figure 4.9 that sigma significantly affects metamaterials in the opposite manner
as traditional materials. In the base case of σe = 0, we see expected deterioration of the
electric field. Unlike traditional materials, we see a sharp decrease in the shielding effect
with the increase in permittivity. Due to the mechanism for propagation and the deliberate
construction of metamaterials, the metamaterials act as an amplifier when the conductivity
is high.

Figure 4.9. Tuning Conductivity Values with Static εr = −10 and µr = −10
(1000 mm)

Looking at coupled variations on the εr and µr values, we observe in Figure 4.10 that the
permittivity values have more effect than the permeability values with the presence of a
conductivity value.

We observe in Figure 4.11 that the metamaterials offer less shielding than traditional
materials with the same magnitude of permittivity and permeability. As noted in Figure
4.9, conductivity values inhibit the ability of metamaterials to reduce electric fields, and
thus have higher field values at exit.

4.6 Waveform Variation
For all the previous calculations, we used a Gaussian waveform where the value of n in
(3.23) is two. Differing the values of n in this equation offer analysis with waveforms of
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Figure 4.10. Tuning Permeability and Permittivity Values with σe = .001
(1000 mm)

Figure 4.11. Comparing Positive and Negative Parameters with σe = .001
(1000 mm)

slightly varying shapes. As the value of n increases, the width of the wave increases.

As can be seen in Figure 4.12, the effects of sub and super-Gaussian waves are not significant
over the depth tested. We do see slower rates of attenuation with the super-Gaussian wave,
which is expected due to the wider wave containing more energy to attenuate. Although
these waveforms have slightly different rates of attenuation, all the iterations have peak
values at the end within .05% of the original wave magnitude.
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Figure 4.12. Attenuation Relationship to Waveform Value (1000 mm)
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CHAPTER 5:
Conclusion and Further Study

5.1 Conclusions
We can see that the use of construction and earthen materials does offer potential for
acting as a passive protector by reducing the magnitude of the electric field from an E1
HEMP event. That said, specific thresholds may require deep layers to adequately protect,
meaning that simply placing an electronic system underground would not protect a finely
sensitive system without additional protection via other measures. We can summarize the
key takeaways as:

• Within a normal range of values, electrical conductivity is the parameter that most
affects the attenuation of the field, followed by permittivity, and finally permeability

• The calculated field will converge with altered CFL parameters so long as ∆t ≤

∆x ×
√
εµ

• Concrete and limestone offer protection that attenuates the field by > 99.9% at
1000mm, but not every earthen material can replicate this

• Non-homogeneous layers can provide additional protection by adding reflection to
attenuation

• Metamaterials do not indicate suitability as a shield layer from electric field propaga-
tion

• Variations in the electric field waveform do not significantly affect the expected
attenuation of the field

Specific tuning of parameters and depth would be dependent on the electronic system being
protected and the expected blast magnitude. Since nominal values were used in this analysis,
the specific level of protection could not be calculated for any given event, but trends were
determined for types of materials. Once the wave enters the protective layer, we found that
electric conductivity is by far the most significant material property for reducing electric
field propagation.

Overall, E1 HEMP protection is a complex environment that requires many assumptions
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due to the lack of available specific details. That said, we can perform behavior analysis
and see the types of capabilities that would offer a level of passive protection from the
peak damage by electric field propagation. This document presents baseline details on the
interaction of the varied components that affect wave attenuation and offers a starting point
for expanded analysis of protective measures.

5.2 Further Study
There are multiple directions to extend this solution set, chiefly in the solving technique and
the parameters of the problem. Addition differential solvers offer validation and opportunity
to improve efficiency in larger spaces. Parameter extension offers opportunity to examine
the effects in higher dimensions and with more complex material property arrangements.

When looking at further solving methods, Galerkin methods and finite volume solvers offer
good directions of validation and expansion on this work. These solving methods can
be used in conjunction with experimental testing to shape solving environments for larger
scale problem sets. Additionally, to improve performance, expansion to programming
languages tuned toward scientific computing provide a method to expand the problem space
in calculations.

To provide a more robust picture of attenuation, this problem can also be solved in higher
dimensions. The natural next step is a 2-D and 3-D extensions in the Cartesian plane. The
equations in (3.9) offer the starting point for discretization along the generalized version of
the Yee grid. Appropriate simplifications and discretizations can then be used to model the
higher dimensional problem in the same manner as the 1-D case. This higher dimension
case also offers the first opportunity to use materials with anisotropic dielectric properties
corresponding to each directional component. Additionally, further testing should examine
numerical dispersion within the system and test differing widths for wave forms interacting
with the media.

Further material expansion provides an additional direction of study. Interactions and
ordering of composite barriers can provide a more comprehensive picture of the preferred
materials for HEMP protection. Including open air as a layer could provide a more robust
indication of behavior by including reflection of waves reaching the boundary layer, as the
current model uses a nominal value entering the layer rather than a nominal value hitting the
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layer. Additionally, since metals have extremely high permittivity values, they could offer
additional parameter examination and layering options. These differences could indicate
the role of material ordering in passive EMP protections.

39



THIS PAGE INTENTIONALLY LEFT BLANK

40



APPENDIX: FDTD Python Code

def oneD_FDTD( r e =1 , s i g =0 , rm=1 , i n i t =1e4 , dep th =1 , dx=1e−3 , d t =3e−12 , n =2 ) :

' ' '
S i n g l e Ma t e r i a l FDTD
Runs t h e f i n i t e e l emen t c a l c u l a t i o n f o r p ropaga t i o n o f e l e c t i c and magne t i c f i e l d s t h rough a
ma t e r i a l i n one d imens ion f o r a homogeneous ma t e r i a l . I t t h en s t o r e s and r e t u r n s maximum f i e l d
v a l u e s i n s p a c i a l and t empora l d i r e c t i o n s . Th i s code i s d e s i gn ed f o r a s i n g l e ma t e r i a l a t a
s p e c i f i e d dep th . I t c a l c u l a t e s t h e t ime f o r t h e f r o n t edge o f a EM wave t o p e n e t r a t e t o t h e
depth , and s i m u l a t e s t h a t many s t e p s .

I n p u t s :
re : r e l a t i v e p e r m i t t i v i t y
s i g : e l e c t r i c a l c o n d u c t i v i t y
rm : r e l a t i v e p e rm e a b i l i t y
i n i t : i n i t i a l e l e c t r i c f i e l d va l u e
dep th : t h i c k n e s s o f m a t e r i a l i n me t e r s
dx : s i z e o f s p a t i a l s t e p
d t : s i z e o f t empora l s t e p
n : e xponen t o f Guass ian waveform f u n c t i o n

S imu l a t i o n P r o p e r t i e s
dep th : t h i c k n e s s o f m a t e r i a l i n me t e r s
t ime s t e p s : how many p i c o s e c ond s run
i n i t : i n i t i a l e l e c t i c f i e l d
' ' '

eps_0 = 8.854187817 e−12 # f r e e space p e r m i t t i v i t y
mu_0 = 1.256637061 e−6 # f r e e space p e rm e a b i l i t y

m_sig = 0 # a lways z e ro f o r non−magne t i c s y s t em

eps = eps_0 ∗ r e # p e r m i t t i v i t y i n t h i s m a t e r i a l
mu = mu_0 ∗ rm # p e rm e a b i l i t y i n t h i s m a t e r i a l

# Speed o f waves i n t h e medium
v = 1 / math . s q r t (mu∗ eps ) # speed o f l i g h t i n t h e medium

# Number o f s t e p s i n space
nx = math . f l o o r ( dep th / dx )+200 # number o f c e l l s i n 1D problem space

# Time t o f u l l y p e n e t r a t e
s t e p s = round ( ( ( nx−200)∗ dep th ∗ dx ) / ( v ∗ d t ) )+200

# I n i t i a l i z e f i e l d and ma t e r i a l a r r a y s
Ce1 = np . z e r o s ( nx +1)
Ce2 = np . z e r o s ( nx +1)
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Ce3 = np . z e r o s ( nx +1)
E = np . z e r o s ( nx +1)
Jz = np . z e r o s ( nx +1)
eps = eps ∗np . ones ( nx +1)
s igma_e = s i g ∗np . ones ( nx +1)

Ch1 = np . z e r o s ( nx ) ;
Ch2 = np . z e r o s ( nx ) ;
H = np . z e r o s ( nx ) ;
mu = mu∗np . ones ( nx ) ; # Doesn ' t have t o be uni form , can be
sigma_m = m_sig∗np . ones ( nx ) ; # l i k e above , based on v a l u e s from above

# Ca l c u l a t e upda t e c o e f f i c i e n t s
# E l e c t r i c
Ce1 = np . mu l t i p l y ( ( 2 ∗ eps − d t ∗ s igma_e ) , 1 / ( 2 ∗ eps + d t ∗ s igma_e ) )
Ce2 = np . mu l t i p l y ( ( 2 ∗ d t / dx ) , 1 / ( 2 ∗ eps + d t ∗ s igma_e ) )
Ce3 = np . mu l t i p l y (( −2∗ d t ) , 1 / ( 2 ∗ eps + d t ∗ s igma_e ) )
# Magnet ic
Ch1 = np . mu l t i p l y ( ( 2 ∗mu − d t ∗sigma_m ) , 1 / ( 2 ∗mu + d t ∗sigma_m ) )
Ch2 = np . mu l t i p l y ( ( 2 ∗ d t / dx ) , 1 / ( 2 ∗mu + d t ∗sigma_m ) )

## De f i n e t h e Gauss ian sou r c e waveform
t ime = d t ∗np . a r ange ( s t e p s )
Jz_waveform = i n i t ∗ np . exp (−abs ( ( ( t ime −2e −10) /5 e −11))∗∗ n ) # Used t o s im u l a t e e l e c t r i c

# f i e l d coming as wave

# E l e c t r i c f i e l d e n t e r i n g boundary
E [ 0 ] = Jz_waveform [ 0 ] # F i r s t v a l u e i n waveform co r r e s pond s t o l e a d i n g edge

# o f E f i e l d

pen = round ( 1 / dx ∗ ( v ∗ d t ∗ s t e p s ) ) # dep th p e n e t r a t i o n c a l c u l a t i o n i n mm

mag_s to re = np . z e r o s ( s t e p s )
mag_space = np . z e r o s ( nx )
e l e _ s t o r e = np . z e r o s ( s t e p s )
e l e _ s p a c e = np . z e r o s ( nx +1)

t o t 1 = np . a r ange ( s t e p s )
t o t 2 = np . a r ange ( nx )
t o t 3 = np . a r ange ( pen )

f o r t im e _ s t e p in t o t 1 :
# upda t e J z f o r t h e c u r r e n t t ime s t e p ( unneeded u n l e s s add ing induced wave i n t e r n a l )
# Jz [ J i _ i n d e x ] = Jz_waveform [ t im e _ s t e p ]

# upda t e magne t i c f i e l d
H=np . mu l t i p l y ( Ch1 ,H)+ np . mu l t i p l y ( Ch2 , E [ 1 : nx+1]−E [ 0 : nx ] )
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# upda t e e l e c t r i c f i e l d
E [ 1 : nx ] = np . mu l t i p l y ( Ce1 [ 1 : nx ] , E [ 1 : nx ] ) + np . mu l t i p l y ( Ce2 [ 1 : nx ] ,H[ 1 : nx ] − H[ 0 : nx −1] )

#+np . m u l t i p l y ( Ce3 [ 1 : nx ] , J z [ 1 : nx ] ) # Zero u n l e s s i n d u c i n g

# S t o r e max v a l u e s i n each p ropaga t i n g f i e l d ( t ime −wise )
mag_s to re [ t im e _ s t e p ] = np . amax ( abs (H) )
e l e _ s t o r e [ t im e _ s t e p ] = np . amax ( abs (E ) )

# S t o r e max v a l u e s i n each p ropaga t i n g f i e l d ( space−wise )
mag_space = np . maximum ( mag_space , abs (H) )
e l e _ s p a c e = np . maximum ( e l e _ sp a c e , abs (E ) )

E [0 ]= Jz_waveform [ t im e _ s t e p ]

mag_s to re = np . a round ( mag_s tore , 10) # Rounds dec ima l t o 10 p l a c e s
e l e _ s t o r e = np . a round ( e l e _ s t o r e , 10) # Keeps from s t o r i n g v a l u e s below accuracy
mag_space = np . a round ( mag_space , 10)
e l e _ s p a c e = np . a round ( e l e _ sp a c e , 10)

pr in t ( 'Max␣E␣ f i e l d ␣ a t ␣ t h e ␣ end␣ of ␣ t h e ␣ t ime ␣ s im u l a t i o n ␣ i s ␣%.4e␣V/m ' %( e l e _ s t o r e [ −100 ] ) )

re turn e l e _ sp a c e , pen #mag_store , e l e _ s t o r e , mag_space
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