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ABSTRACT 

 The Mobile CubeSat Command and Control (MC3) ground station network is a 

program designed to enable many organizations to command and control very small 

satellites (or CubeSats) in low-earth orbit. The MC3 network currently consists of ground 

stations that are geographically dispersed and utilize non-standard configurations of 

commercial off-the-shelf equipment. The non-standard configuration of each location 

poses a challenge for the small staff of MC3 network operators who monitor network and 

ground station health status. These operators rely on software and automation to ensure 

the MC3 network is healthy and can support any organization’s mission. However, the 

problem is that a normal state in one location can look different from the normal state at 

another location in terms of equipment and, therefore, health status. Determining the 

normal state using machine learning will facilitate further analysis of ground station 

health and the implementation of near-real-time health status monitoring to augment the 

MC3 network operators’ capabilities. The research focused on using the K-means++ 

unsupervised machine learning clustering algorithm to model the normal state. This 

research could not conclusively determine the normal state of the NPS MC3 ground 

station, but it does establish a launch point for further work. 
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I. INTRODUCTION 

A. PROJECT STATEMENT 

The Mobile CubeSat Command and Control (MC3) ground station network is a 

program designed to enable many organizations to command and control very small 

satellites (or “CubeSats) in low-earth orbit (LEO). This thesis refers to this class of very 

small satellites as CubeSats. The MC3 network currently consists of ground stations that 

are geographically dispersed. The participating organizations include U.S. government 

agencies, universities, academies, and foreign partners. The program aims to be low-cost, 

inclusive, and flexible, according to Dr. Minelli at the 2019 SmallSat Conference (Minelli 

et al., 2019). These goals are supported by utilizing commercial off-the-shelf equipment,  

open-source libraries, and software-defined radios (SDR) that are not always standardized 

across individual ground stations.  

The non-standard configuration of each location poses a challenge for the small 

staff of MC3 network operators who monitor ground station health status. Keeping the staff 

size small is ideal to meet the goal of low-cost but hinders the manual monitoring capability 

within the MC3 network. These operators rely on software and automation to ensure the 

MC3 network is healthy and can support any organization’s mission. However, the 

problem is that a normal state in one location can look different from the normal state at 

another location in terms of equipment and, therefore, health status data.  

1. Objective 

This thesis aims to use machine learning to determine the normal state of the Naval 

Postgraduate School (NPS) MC3 ground station. Determining the normal state using 

machine learning will facilitate further analysis of ground station health and the 

implementation of near-real-time health status monitoring. 

2. Methodology 

The datasets collected from various sensors at the NPS MC3 ground station are 

utilized to explore the feasibility of applying machine learning techniques to identify the 
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normal state. The data parameters are environmental, power, vibration, and electrical. The 

machine learning technique was limited to open-source unsupervised machine learning, 

specifically clustering with K-means++. This approach was based on previous applications 

in aerospace.  

3. Analysis and Results 

The analysis focused on using the K-means++ unsupervised machine learning 

clustering algorithm. This research uses a script written in Python that relies on several 

data analysis packages, such as Scikit-learn, to format the data and apply the K-means++ 

clustering algorithm (Pedregosa et al., 2011). Before the analysis with K-means++, the 

research applied the elbow method and silhouette scores to determine the fit or the ideal 

number of clusters in the data. 2D and 3D scatter plots illustrate the results for up to three 

parameters. 

B. PROBLEM IDENTIFICATION AND HYPOTHESIS 

All ground stations are mostly identical to one another, but each location has unique 

considerations and various hardware configurations. Therefore, the normal state model for 

one ground station does not effectively represent that of another ground station. 

Unsupervised machine learning is a possible solution to obtaining the normal state of 

individual ground stations with minimal intervention from the MC3 operations team.  

The literature review in Chapter 2 introduces the MC3 ground station network, 

explains supervised and unsupervised machine learning, and reviews machine learning 

applications in aerospace. Chapter 3 details the methodology used during the data 

collection and analysis for this research. Chapter 4 presents the results gained from the 

initial data collection, analysis, and visualization. Chapter 5  concludes the research and 

discusses possible areas of future studies. 
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II. LITERATURE REVIEW 

A. MOBILE CUBESAT COMMAND & CONTROL (MC3) GROUND 
STATIONS 

The MC3 ground station network is designed to command and control CubeSats in 

low-earth orbit (LEO). MC3 also provides access for government and non-government 

entities for research and design (R&D) using CubeSats. The initial fielding of the MC3 

ground control network took place in 2011 and, as of 2021, has nine ground station sites, 

according to the MC3 team (Minelli et al., 2019). The ground station sites as of May 2021 

are listed in Table 1. The defining feature of the MC3 network is cost-effectiveness.  

Table 1. MC3 Ground Station Locations and Status 

Site (Designator) Location Capability Status 
Space and Missile Defense 

Command (SMDC) 
Huntsville, AL S-Band Active 

Naval Information Warfare Center 
Pacific (NIWC-PAC) 

Pearl City, Hawaii UHF/S-
Band/X-

Band 

Future 

Naval Postgraduate School (NPS) Monterey, CA UHF/S-
Band 

Active 

Space Dynamics Laboratory (SDL) Logan, UT UHF/S-
Band 

Active 

University of New Mexico / 
Cosmiac (UNM) 

Albuquerque, NM UHF/S-
Band 

Active 

Air Force Institute of Technology 
(AFIT) 

Dayton, OH UHF/S-
Band 

Active 

U.S. Coast Guard Academy 
(USCGA) 

New London, CT S-Band Active 

Malabar Transmitter Annex (MLB) Palm Bay, FL UHF/S-
Band 

Active 

University of Alaska, Fairbanks 
(UAF) 

Fairbanks, AK S-Band Active 

 

The cost-effective MC3 ground station network provides an R&D environment 

accessible to organizations with limited budgets for small experimental projects with 
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CubeSats. Several MC3 ground station network features contribute to cost-effectiveness, 

including COTS hardware and open-source software (Minelli et al., 2019). Shown in 

Figure 1 is the MC3 ground station located at Malabar Transmitter Annex in Palm Bay, 

FL, and shows the typical layout of an MC3 ground station. This type of hardware and 

software allows the MC3 ground network to be flexible and accommodating to users’ 

requirements.  

 
Figure 1. MC3 Ground Station Located at Malabar Transmitter Annex in 

Palm Bay, FL. Source: Minelli et al. (2019). 

The MC3 ground station network is linked together through the Satellite Agile 

Transmit Receive Network (SATRN) software. SATRN was created by the Space 

Dynamics Laboratory (SDL) and was designed to support the MC3 network mission and 

CubeSat operations (Minelli et al., 2019). The basic architecture for SATRN is depicted in 

Figure 2. Figure 2 includes the client, server, ground site, and CubeSat to visualize how 

SATRN ties all the pieces of the MC3 network together and provides bent-pipe 

communications from the user to the CubeSat (Minelli et al., 2019).  
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Figure 2. SATRN Architecture Depicting the Client, Server, and Ground 

site. Source: Minelli et al. (2019). 

The MC3 network operations are continually evolving to meet specific user 

requirements and supporting more users. The requirements are increasing, but the size of 

the MC3 operations team is remaining the same. Increased automation has been identified 

as essential to keeping the MC3 network operational 24/7 while not increasing the current 

manning of the Satellite Operations Center (SOC) at NPS. Currently, the SOC is not staffed 

by operators 24/7 (Minelli et al., 2019). Maintaining a reliable network to conduct R&D 

using CubeSats is a primary focus of the MC3 operators and SOC.  

B. MACHINE LEARNING 

Machine learning algorithms have numerous classifications, but only supervised 

and unsupervised algorithms will be discussed in this review and thesis. Both supervised 

and unsupervised machine learning requires dataset inputs from which observation outputs 

are produced. In the chapter “Introduction to Machine Learning Algorithms” of the book 

New Advances in Machine Learning, Dr. Ayodele describes the difference between 

supervised and unsupervised machine learning. Dr. Ayodele highlights that supervised 

machine learning requires a labeled dataset input, while unsupervised machine learning 

only requires variable inputs from any dataset (Ayodele, 2010). Supervised or unsupervised 

machine learning is applied to individual situations primarily dependent on the presence of 

labeled datasets.   
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1. Supervised Machine Learning 

Supervised machine learning requires the use of labeled datasets. It aims to set the 

conditions for a machine to learn a classification system that has already been created and 

not make a completely new classification system (Ayodele, 2010). A common example of 

supervised machine learning is recognizing handwritten letters and checking for 

correctness against the label. Dr. Kelleher et al. used letters as an example of a classification 

system that humans made when discussing supervised machine learning applications in his 

MIT Press journal “Fundamentals of Machine Learning for Predictive Data Analytics”  

(Kelleher et al., 2020). Figure 3 is an example of a labeled dataset used for training during 

supervised machine learning. The top box is the label, and the bottom box is the 

handwritten letter that the algorithm is trying to recognize.  

 
Figure 3. Example of a Labeled Dataset for Supervised Machine Learning. 

Adapted from Kelleher et al. (2020). 

2. Unsupervised Machine Learning 

Unsupervised machine learning does not rely on labeled datasets and instead 

generally uses extensive unlabeled input data. The goal of unsupervised machine learning 

is to get the machine to learn how to produce the correct outputs without being told the 

right answer (Ayodele, 2010). Dr. Ayodele discussed two types of approaches for 

unsupervised machine learning in his chapter “Types of Machine Learning Algorithms.”  
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The first approach noted by Dr. Ayodele uses a reward or punishment system to 

reinforce the desired classification or deter an undesired classification. This approach did 

seem to resemble supervised machine learning, but the difference is that this approach is 

not forcing a predetermined classification. Instead, this approach is rewarding or punishing 

a decision made by the machine that aims to maximize rewards or minimize punishments 

(Ayodele, 2010). Dr. Ayodele pointed out that this approach can be time-consuming due 

to the constant trial-and-error type learning behavior and does require intervention by a 

human during the learning process. The benefit noted for this approach is that humans can 

provide decision guidance when working with a limited amount of data that does not cover 

every possibility in a system (Ayodele, 2010).  

The second approach discussed by Dr. Ayodele for unsupervised machine learning 

uses clustering. The goal of clustering is to cluster data together by similarities (Ayodele, 

2010). This approach is more unsupervised than the first approach, but it does assume that 

the clusters represent relevant classifications. The human is left to figure out what the 

clusters represent in the analyzed system (Ayodele, 2010). While appearing more 

unsupervised, the second approach still requires human intervention after the outputs have 

been produced to assign relevancy to the clustering outputs.  

K-means clustering is a widely used clustering algorithm for unsupervised machine 

learning and is the predecessor to K-means++. To properly understand K-means++, an 

understanding of K-means is needed.  Dr. Ayodele summarized K-means as simply trying 

to minimize the distance between data points and the center of a cluster (Ayodele, 2010). 

The simplicity of applying K-means makes the clustering algorithm accessible and a 

reliable starting point for analysis. The K-means algorithm, described by Dr. Ayodele, aims 

to minimize the objective function, such as the squared error function shown in Equation 

1 (Ayodele, 2010).   

 
2( )

1 1

k n
j

i j
j i

J x c
= =

= −∑ ∑  (1) 
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In Equation 1 
2( )j

i jx c− is the distance measurement that is being minimized. The 

distance is between the data point ( )j
ix and the cluster center jc (Ayodele, 2010). The flow 

of the K-means algorithm is described in the following numbered list and visualized in 

Figures 4 and 5. 

  
1. Place K points into the space represented by the objects that are being 

clustered. These points represent initial group centroids. 
2. Assign each object to the group that has the closest centroid. 
3. When all objects have been assigned, recalculate the positions of the K 

centroids. 
4. Repeat Steps 2 and 3 until the centroids no longer move. This produces 

a separation of the objects into groups from which the metric to be 
minimized can be calculated. (Ayodele, 2010)  
 

 
Figure 4. K-means Iteration Flow Chart. Source: Ayodele (2010). 

Figure 5 represents the centroids' starting locations and subsequent movements 

towards the final location at the cluster centers. The movement of the centroid takes place 

after every iteration in Figure 4.  
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Figure 5. Example of m1 and m2 Moving to the Center of Two Clusters. 

Source: Ayodele (2010).  

C. INDUCTIVE MONITORING SYSTEM (IMS)  

In 2004 at the International Conference on Artificial Intelligence, David Iverson 

proposed a monitoring system that backed away from the model-based reasoning that was 

the current standard for monitoring systems (Iverson, 2004). Iverson’s proposal was the 

Inductive Monitoring System (IMS). He used machine learning to produce the model or 

nominal dataset, as he called it. The data collected is indexed and organized into a data 

vector consisting of all the data measurements sampled or derived from various sensors. 

According to Iverson, a large dataset used for training the machine learning algorithm will 

likely contain almost all the value combinations required to determine the normal state of 

the system. Iverson used Table 2 below to demonstrate a visual example of the data vector 

of sampled measurements.  

Table 2. Sample IMS Vector. Source: Iverson (2004). 

Pressure 
A 

Valve 1 
Position 

Pressure 
B 

Valve 2 
Position 

Pressure 
C 

Temperature 
1 

Temperature 
2 

2857.2 86.4% 1218.4 96.2% 1104.1 49.8 37.6 
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Once the data is organized into data vectors, a clustering algorithm such as K-means 

can cluster the vectors, as highlighted by Dr. Ayodele in the chapter “Type of Machine 

Learning Algorithms” (Ayodele, 2010). Iverson used the data in Table 3 to demonstrate a 

visual example of the cluster structure of the clustered data vectors. Table 3 represents two 

clusters that have been labeled as “High” and “Low” determined by a clustering algorithm 

using a large data structure of vectors.  

Table 3. Sample IMS Cluster Structure. Source: Iverson (2004). 

 Pressure 
A 

Value 1 
Position 

Pressure 
B 

Valve 2 
Position 

Pressure 
C 

Temperature 
1 

Temperature 
2 

High 2857.6 86.8% 1219.2 96.3% 1105.0 50.1 38.2 
Low 2855.8 86.2% 1215.7 95.5% 1103.2 49.6 37.5 

 

The determination of the normal state clusters is the first key to IMS. These 

individual clusters can characterize the performance of a system as long as the operating 

conditions are covered in the dataset vectors (Iverson, 2004). The need for many operating 

conditions in the dataset vectors again stressed the need for an extensive operational 

dataset.  

The next step in IMS is comparing real-time or near-real-time data vectors to the 

normal state clusters and calculating the deviation of new data from the normal state 

cluster. The deviation from the normal state will characterize the current system 

performance (Iverson, 2004). How much deviation from the normal state is acceptable is 

dependent on the system in which IMS is applied. For example, spacecraft will have less 

tolerance for deviation than a ground station satellite dish. IMS can be applied to any 

system in which operating data can be collected and compared against real-time or near-

real-time data.  

Iverson presented at the International Conference on Artificial Intelligence an 

analysis using IMS of the STS-107 Columbia mission. The IMS analysis focused on the 

data from the temperature sensors from the shuttle’s wings. The results of the IMS analysis 

of the wings are visualized in Figure 6. IMS detected a deviation from the baseline almost 
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immediately after the foam strike on the wing, 17 days before the reentry and detection by 

mission control. A damaged thermal protection system on the left-wing caused the 

deviation off baseline due to the foam strike during launch. The baseline was generated 

using previous Columbia flights’ sensor data (Iverson, 2004). Iverson used this example to 

highlight the usefulness and versatility of IMS.  

 
Figure 6. IMS Results for STS-107. Source: Iverson (2004) 

D. APPLICATIONS OF IMS IN CUBESATS 

Michelle Haddock and Serbinder Singh explored using an IMS-type system 

deployed in a CubeSat for their respective theses at California Polytechnic State University. 

Haddock’s thesis was titled “Inductive Monitoring Systems: A CubeSat Ground-Based 

Prototype” and focused on creating a prototype for IMS verification in a ground-based 

controlled setting (Haddock, 2016). Singh’s thesis was titled “A Data-Driven Approach to 

CubeSat Health Monitoring” and focused on testing adapted IMS approaches for spacecraft 

health monitoring (Singh, 2018). Both theses had a similar flow for the relationship 

between the learning and monitoring algorithms, as seen in Figures 7 and 8. 
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Figure 7. Learning and Monitoring Algorithm Relationship. Source: 

Haddock (2016) 

 
Figure 8. Learning and Monitoring Algorithm Relationship. Source: Singh 

(2018) 

Haddock initially used the same approach as Iverson in the learning algorithm and 

implemented K-means for testing. This approach using K-means did provide convergence 

of clusters with the testing data (Haddock, 2016). The test supported the previous success 

that Iverson demonstrated with K-means (Iverson, 2004). Haddock also implemented and 

tested K-means++, which provided a noticeable improvement over K-means in the time 

required for cluster convergence. K-means++ improves on K-means by choosing the 

starting location of the center of the clusters, or centroids, spaced far enough away from 

one another to create unique clusters. K-means chooses random locations unless the user 

specifies the locations for the starting centroids with no regard to how close the cluster 

centroids may be to one another. K-means++ removes the need for the user to specify the 

starting locations and improves unique cluster convergence (Haddock, 2016). Haddock’s 
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use of K-means++ in the learning algorithm improved over the original systems proposed 

by Iverson. 

Singh analyzed the original IMS approach by Iverson from a data-driven 

perspective for implementation in California Polytechnic University’s, PolySat lab. Singh 

noted that there was no need for the human monitoring the system to be an expert on the 

system when using IMS. Moreover, a human does not need to know what a healthy system 

should look like because the learning algorithm in IMS determines what a healthy system 

looks like based on the data collected during the system’s normal operation (Singh, 2018). 

The data-driven analysis by Singh highlighted again that IMS is system agnostic.  
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III. METHODOLOGY 

The research design for this thesis drew from the previous work of Haddock, Singh, 

and Iverson. Iverson generally described the use of IMS in different systems with a focus 

on space vehicles. Both Haddock and Singh implemented IMS for CubeSat health 

monitoring. The previous success demonstrated by Haddock and Singh with CubeSat 

health monitoring helped guide the direction of this research towards an unsupervised 

cluster-based K-means++ algorithm due to its simplicity and effectiveness during the 

learning portion of a health monitoring system. Applying unsupervised machine learning 

using the K-mean or K-means++ algorithm is outlined in the approaches of all three 

previous IMS applications from the review of the literature.  

The K-means++ algorithm was implemented over the standard K-means algorithm 

in this thesis based on the positive results from Haddock’s thesis and success with CubeSat 

health monitoring. With the K-means++ algorithm selected, the data collected at the NPS 

ground station was the next step for the design. The first data set contained environmental 

data only. The environmental data included temperature, relative humidity, and dew point 

from six separate locations on the NPS ground station. The second data set contained 

environmental, power, and vibration data. The third data set contained environmental, 

vibration, and pointing data. Datasets were added and removed as the research evolved 

based on sensor testing, raw data observations, and the addition of new sensors. The 

reasoning for the inclusion or exclusion of data is discussed in the results. 

The analysis algorithm and data set identification allowed for the analysis 

application design to be initiated. For each of the datasets (one, two, and three), the flow 

of the application was identical, and only the data input changed. The analysis application’s 

internal script changed to accommodate the various datasets that were each formatted 

differently from their sensor sources. Comma-separated values (CSV) files were used to 

output the sensor data and input data to the application. The application flow for analysis 

is depicted in Figure 9, with the objective of this thesis labeled as “Thesis Objective.” 
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Figure 9. Data and Application Flow Chart. Adapted from Haddock (2016) 

and Singh (2018). 

A. RESEARCH QUESTIONS 

The following research questions were proposed during the initial design of the 

research to create a complete machine learning and monitoring application based on IMS. 

These proposed research questions covered the entire analysis and application, as this was 

the proposed scope of this thesis. Some questions were answered throughout the research 

design and analysis, some were not, and some questions led to more questions that will be 

discussed in the results and future work. 

1. What data are collected by the NPS ground station?  

2. How often is the data collected at the NPS ground station?  

3. How and where is the data from the NPS ground station stored? 

4. Are additional sensors needed to produce a normal state? 

5. What other Department of Defense (DOD) systems could this approach be 

applied? 

6. Should a cloud-based solution be explored for flexibility and processing? 

7. Can the data from the sensors be analyzed in real-time?  
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8. What processing capability is needed for real-time machine learning 

analysis and forecasting? 

9. Can anomalies and faults be mitigated autonomously? 

10. With improved resiliency and autonomy, can the ground stations become 

more expeditionary? 

11. What are the applications for a more expeditionary ground station? 

B. SETTING AND SAMPLE 

The data analyzed was generated at the NPS ground station during operational 

periods. A model was not used to generate the data; only operational ground station data 

was analyzed. During the duration of this research, the ground station added additional 

sensor and data output capabilities. Ground station changes are discussed as each data 

collection tool is introduced and explained.  

C. DATA COLLECTION 

This section presents how the data was collected and stored before analysis. 

1. Environmental Data 

Environmental data points were collected using the Network Technologies 

Incorporated ENVIROMUX environmental monitoring system, as shown in Figure 10 

(Network Technologies Inc, 2021).  

 

 
Figure 10. NTI ENVIROMUX E-5D Medium Enterprise Monitoring System. 

Source: Network Technologies Inc (2021) 
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The environmental data collected was timestamped and labeled by the location of 

the sensor on the ground station. The NPS ground station has six environment sensor 

locations. The serial number corresponds to the ground station location. All data for this 

thesis was collected at the NPS ground station site with SERIALNUM equal to 100. The 

SERIALNUM column is excluded from Table 4. The environmental data collected are the 

temperature (C), relative humidity (%), and dew point (C). The collection locations are 

inside the dome, on the high power amplifier (HPA), disk control box, and internal to the 

Enviromux sensor system. The data is sampled at a 5-minute interval. A sample of the 

environment data as output into the CSV file is shown in Table 4. Only one sensor was 

shown as an example in Table 4. 

Table 4. Environmental Data Sample  

 

2. Vibration Data 

Vibration data points were collected using a Remote Monitoring Solutions  

Sensaphone 4–20mA type vibration sensor, as shown in Figure 11 (Sensaphone, 2021) 

RECORDDATE UTC EXTSENS1TMP 
(C) 

EXTSENS1RH 
(%) 

EXTSENS1DEW 
(C) 

9/4/2021 17:00 1617984002 24 36 8.8 
9/4/2021 17:05 1617984302 25 35 8.5 
9/4/2021 17:10 1617984602 25 35 8.6 
9/4/2021 17:15 1617984902 25 35 8.5 
9/4/2021 17:20 1617985202 25 35 8.5 
9/4/2021 17:25 1617985502 25 35 8.5 
9/4/2021 17:30 1617985802 25 35 8.5 
9/4/2021 17:35 1617986102 25 34 8.1 
9/4/2021 17:40 1617986402 25 34 8.3 
9/4/2021 17:45 1617986702 25 34 8.1 
9/4/2021 17:50 1617987002 25 34 8.3 
9/4/2021 17:55 1617987302 25 34 8.4 
9/4/2021 18:00 1617987602 25 33 8 
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Figure 11. Sensaphone 4–20 mA Type Vibration Sensor. Source: Sensaphone 

(2021) 

The vibration data collected was timestamped and collected at one location on the 

moving dish of the NPS ground station. The vibration data was collected in mm/sec at an 

interval of about 0.3 seconds or approximately 3–4 Hz. A sample of the vibration data as 

output into the CSV file is shown in Table 5.  

Table 5. Vibration Data Sample 

TIME RESPONSE 
(mm/sec) 

17:29:25.803 0.11 
17:29:26.070 0.11 
17:29:26.342 0.12 
17:29:26.636 0.12 
17:29:26.907 0.12 
17:29:27.202 0.09 
17:29:27.473 0.09 
17:29:27.771 0.12 
17:29:28.043 0.12 
17:29:28.314 0.13 
17:29:28.586 0.10 

 

3. Power Data 

Power data points were collected using a CyberPower Switched-by-Outlet Power 

Distribution Unit (PDU), as shown in Figure 12 (CyberPower, 2021). 
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Figure 12. CyberPower PDU81001 Switched Metered-by-Outlet PDU. 

Source: CyberPower (2021). 

The power data was timestamped and labeled according to the NPS ground station 

location and the internet protocol (I.P.) address of the PDU. The power data was collected 

from the ground station components’ main power supply in amps at an interval of 60 

seconds. A sample of the power data as output into a CSV is shown in Table 6. 

Table 6. Power Data Sample 

RECORDDATE UTC SITE IP_ADDRESS OUTLET5 
(AMP) 

OUTLET6 
(AMP) 

20.11.2020, 
17:53:35.898 

1605894815 NPS 192.168.151.25 0 2.3 

20.11.2020, 
21:11:56.385 

1605906716 NPS 192.168.151.25 0 2.3 

20.11.2020, 
21:12:00.956 

1605906720 NPS 192.168.151.25 0 2.3 

20.11.2020, 
21:13:00.352 

1605906780 NPS 192.168.151.25 0 2.3 

20.11.2020, 
21:14:00.920 

1605906840 NPS 192.168.151.25 0 2.3 

20.11.2020, 
21:15:00.292 

1605906900 NPS 192.168.151.25 0 2.3 

20.11.2020, 
21:16:00.836 

1605906960 NPS 192.168.151.25 0 2.3 

 

4. Dish Pointing Data 

Pointing data was collected using SATRN. The network layout of SATRN is shown 

in Figure 2. SATRN, as discussed in the MC3 section of the literature review, ties the client, 

server, ground site, and CubeSat together within the MC3 network. The point data is output 
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from SATRN through an application programming interface (API). The API enables 

SATRN to output in a few formats, but the CSV output format was used for this thesis as 

the universal output format for all data collected. The pointing data is timestamped, and 

the data points collected were the dish pointing azimuth, dish pointing elevation, and the 

range of the dish to the satellite. The azimuth and elevation were recorded in degrees, and 

the range was recorded in km. A sample of the pointing data as output into a CSV is shown 

in Table 7. 

Table 7. Pointing Data Sample 

Time Azimuth 
(Deg) 

Elevation 
(Deg) 

Range 
(K.M.) 

2021-04-09T17:30:04.824Z 323.89 0 2378.36 
2021-04-09T17:30:05.824Z 323.99 0.01 2372.96 
2021-04-09T17:30:06.824Z 324.11 0.06 2367.57 
2021-04-09T17:30:07.824Z 324.22 0.11 2362.18 
2021-04-09T17:30:08.824Z 324.33 0.16 2356.81 
2021-04-09T17:30:09.824Z 324.44 0.20 2351.44 
2021-04-09T17:30:10.824Z 324.55 0.25 2346.07 
2021-04-09T17:30:11.824Z 324.67 0.30 2340.72 

 

D. DATA ANALYSIS 

The data analysis was conducted using the Python programming language with 

several open-source packages. Python is an open-source programming language licensed 

by the Python Software Foundation (Python Software Foundation, 2021). The bulk of the 

analysis was done using Scikit-learn for machine learning and NumPy for data analysis. 

Both Scikit-learn and NumPy are open-source software packages that work within the 

Python programming environment (NumPy, 2021). Scikit-learn is also commonly referred 

to as sklearn. According to “Scikit-learn: Machine Learning in Python” by Pedregosa et 

al., sklearn does not utilize graphical processing unit (GPU) acceleration to process the 

machine learning algorithms. Being open-source and not requiring a GPU makes sklearn 

ideal for application in this thesis because it can run on almost any type of computer without 

any special hardware (Pedregosa et al., 2011).  
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E. ASSUMPTIONS 

The primary assumption during data collection at the NPS ground site is that the 

data collected represents normal operating conditions, and the ground site is currently 

operating normally. The primary assumption during the data analysis is that the software 

packages such as sklearn and NumPy are functioning correctly.   
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IV. RESULTS 

The results present three datasets. Each of these datasets was an evolution of the 

data collection and analysis code. The data points were collected at various times from 

November 2020 to April 2021, and the code varied from each dataset but followed the 

same methodology. This chapter only presents a sample of the outputs from the results. 

The complete set of outputs are in Appendix A, and the python code that generated the 

results is in Appendix B.  

A. DATASET ONE 

Dataset one focuses solely on environmental data and serves as a partial validation 

that K-means++ was clustering data. Figure 13 is referred to as an elbow curve. The elbow 

curve is used to visually determine the optimal number of clusters to use in K-means++. 

Haddock, in her thesis, described the elbow as the natural bend that occurs right before the 

rapid decrease in the variance within the clusters as the number of clusters increases. She 

added that the slope significantly decreases after the bend, resulting in an elbow, and the 

decrease in slope indicated only marginal improvement with the addition of more clusters 

(Haddock, 2016). The elbow bend point is the optimal number of clusters based on the 

elbow curve. Based on Figure 13, five clusters are the optimal number of clusters based on 

the elbow curve.  

Figure 14 is the first set of environmental data points analyzed displayed with K-

means++ in a color-coded scatter plot. The different colors visually represent separate 

clusters. The number of clusters was determined to be five based on the elbow curve 

analysis in Figure 13. The first observation drawn from Figure 14 is that the ambient 

temperature and dew point data are consistent. The dew point temperature will always be 

less than the ambient temperature. If the dew point temperature were higher than the 

ambient temperature, then the relative humidity would be over 100% which is impossible. 

The second observation drawn from Figure 14 is the presence of clusters. The clusters 

appear to be in five continuous groups, which indicates K-means++ successfully analyzed 

and clustered the input data.  
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Figure 13. NPS Dome Environmental Data Elbow Curve 

 
Figure 14. NPS Dome Temperature (C) vs Dew Point (C) with K-means++ 

Clusters 
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Figure 15 visualizes the environmental data with five clusters but with a visual 

representation of relative humidity and temperature instead of temperature and dew point, 

as in Figure 14. The clusters are grouped into separate blob-like sections, indicating 

successful analysis and clustering. The appearance of the data looks different visually, but 

the clusters are present in both figures.  

 
Figure 15. NPS Dome Relative Humidity (C) vs Temperature (C) with K-

mean++ Clusters 

The hour-of-the-day variable was introduced after the promising analysis of the 

environmental data.  Figure 16 visualizes the analysis of relative humidity, temperature, 

and hour-of-the-day in three dimensions. The addition of a three-dimensional visualization 

added complexity to the visual analysis and indicated that three-dimensional visualization 

would likely be the limit of visual analysis. The data points and clusters are visible in Figure 

16, but only confirmation of clustering can be validated from the visualization.  
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Figure 16. NPS Dome Relative Humidity (C) vs Temperature (C) vs Hour of 

the Day (UTC) 

Dataset one’s large set of environmental data collected over months was ideal for 

validating the methodology and K-means++ implementation. The analysis of dataset one 

did fall short of confirming a complete normal state of the NPS ground station because the 

analysis was limited to time and environmental data, which led to adding additional data 

sources in dataset two. 

B. DATASET TWO 

Dataset two introduced power and vibration data to the environmental data. The 

addition of data from two other sources serves two purposes. The first purpose is to test the 

combination of multiple data sources with data sampled at different rates into a single 

dataset that can be analyzed. The missing data caused by data points sampled at different 
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times are filled using a simple linear interpolation. The second purpose of dataset two is to 

build on the dataset one results and observe the clustering of additional data collected from 

the NPS ground station.  

The data collected from the CyberPower PDU, when visualized, showed minimal 

fluctuation and low fidelity in current measurements. Figure 17 highlights the lack of 

change and fidelity over a month-long period. A closer look at the data exported from the 

PDU to the CSV file confirmed that the fidelity of the current measurements was only to a 

tenth of an amp. This level of fidelity would likely provide marginal results during analysis. 

 
Figure 17. NPS Power PDU Time (UTC) vs Current (Amps) 

The marginal results predicted by the visualization of the power data in Figure 17 

were confirmed and analyzed of dataset two.  As the data is analyzed, Figure 18 confirmed 

that the optimal number of clusters is five. Figure 19 visualizes the K-means++ analysis of 

dataset two and clusters generated from outlet1, the outlet for the vibration sensor, and the 

responses recorded from the vibration sensor while the dish is moving during a satellite 

pass. Figure 19 visualizes marginal results for the power data and vibration data because 

the clusters mainly generate off the vibration data.  
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Figure 18. NPS Power, Environmental, and Vibration Data Elbow Curve 

 
Figure 19. NPS Ground Station Vibration Sensor Outlet (Amps) vs Vibration 

Response (mm/sec) 

Figure 20 builds on Figure 19 and visualizes the additional environmental variable 

of HPA temperature in three dimensions to confirm the marginal results of the power data. 

The visualization confirmed the marginal nature of the power data and highlighted that the 

temperature data exhibited the same marginal results during a pass. The results of dataset 

two were enlightening because the results showed that some data being analyzed may not 
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be relevant for short analysis periods, such as a pass length. As a result, dataset three was 

structured to analyze data that was relevant during a pass length.  

 
Figure 20. NPS Ground Station Vibration Sensor Outlet (Amps) vs Vibration 

Response (mm/sec) vs HPA Temperature (C) 

C. DATASET THREE 

Dataset three consists of the data collected from the vibration sensor, environmental 

sensors, power sensors, and dish pointing data. However, the analysis using K-means++ 

only uses the vibration response data and the dish pointing data for analysis. The use of 

these two sub-datasets is based on the results from dataset two. Dataset three includes ten 

satellite passes with a mix of high, medium, and low maximum elevation parameters. Three 

identical low and high maximum elevation paths were conducted, while four medium 
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maximum elevation paths were conducted. The parameters of the paths are presented in 

Tables 8, 10, and 12 by starting azimuth, max elevation, and ending azimuth.  

Silhouette coefficients were calculated in dataset three as another means to 

determine the optimal number of clusters and compare against the elbow method used in 

previous datasets. From the sklearn documentation, the silhouette coefficient is the mean 

of the intra-cluster distance and the nearest-cluster distance with the best value of one and 

the worst value of negative one (Pedregosa et al., 2011). The clusters are more compact 

and spaced apart from one another as the silhouette coefficient approaches one, a 

characteristic of distinct clusters. The silhouette coefficient method opens up the path to a 

more autonomous means of determining the optimal number of clusters. A visual 

interpretation of an elbow curve is not required when using the silhouette coefficient 

method. Tables 9, 11, 13, 14, and 15 display the silhouette coefficients alongside the elbow 

curves in Figures 21, 24, 27, 30, 32, but the elbow curve method was favored for dataset 

three in determining the optimal number of clusters because it was used in the previous 

datasets.  

Each of the paths, low, medium, and high, is presented separately before all the 

paths are combined to visualize the difference in vibration responses at different max 

elevations. Separating the visualizations aided in analyzing and understanding what data 

the K-means++ algorithm is possibly favoring for determining clusters. The determination 

of specific data being favored is helpful in future scaling and normalization of datasets.  

1. Low Max Elevation Path 

The low max elevation path had the least vibration response with most data points 

between 0.04 and 0.1 mm/sec, as seen in Figures 22 and 23.  

Table 8. Low Max Elevation Path Parameters 

Starting Azimuth (degrees) Max Elevation (degrees) Ending Azimuth (Degrees) 
323.89 10.61 74.06 
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Table 9. Low Max Elevation Path Silhouette Coefficients 

Number of Clusters Silhouette Coefficient (Max = 1) 
2 0.66 
3 0.62 
4 0.60 
5 0.59 
6 0.58 
7 0.57 
8 0.57 
9 0.56 

 
Figure 21. NPS Low Dish Path and Vibration Data Elbow Curve 
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Figure 22. NPS Ground Station Low Elevation (deg) vs Vibration Response 

(mm/sec) 
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Figure 23. NPS Ground Station Low Elevation (deg) vs Azimuth (deg) vs 

Vibration Response (mm/sec) 

2. Medium Max Elevation Path 

The medium max elevation path had the middle vibration response with most data 

points between 0.04 and 0.12 mm/sec, as seen in Figures 25 and 26.  

Table 10. Medium Max Elevation Path Parameters 

Starting Azimuth (degrees) Max Elevation (degrees) Ending Azimuth (degrees) 
243.80 40.90 43.99 
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Table 11. Medium Max Elevation Path Silhouette Coefficients 

Number of Clusters Silhouette Coefficient (Max = 1) 
2 0.66 
3 0.62 
4 0.59 
5 0.58 
6 0.57 
7 0.56 
8 0.56 
9 0.56 

 

 
Figure 24. NPS Medium Dish Path and Vibration Data Elbow Curve 
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Figure 25. NPS Ground Station Medium Elevation (deg) vs Vibration 

Response (mm/sec) 

 

 
Figure 26. NPS Ground Station Medium Elevation (deg) vs Azimuth (deg) vs 

Vibration Response (mm/sec 
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3. High Max Elevation Path 

The high max elevation path had the most vibration response with most data points 

between 0.04 and 0.2 mm/sec, as seen in Figures 28 and 29.  

Table 12. High Max Elevation Path Parameters 

Starting Azimuth (degrees) Max Elevation (degrees) Ending Azimuth (degrees) 
220.57 62.20 135.47 

 

Table 13. High Max Elevation Path Silhouette Coefficients 

Number of Clusters Silhouette Coefficient (Max = 1) 
2 0.68 
3 0.63 
4 0.60 
5 0.58 
6 0.57 
7 0.568 
8 0.56 
9 0.55 

 

 
Figure 27. NPS High Dish Path and Vibration Data Elbow Curve 
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Figure 28. NPS Ground Station High Elevation (deg) vs Vibration Response 

(mm/sec) 

 

 
Figure 29. NPS Ground Station High Elevation (deg) vs Azimuth (deg) vs 

Vibration Response (mm/sec 
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4. Combined Paths 

The combined paths analyzed all ten paths of data as a single dataset. The two-

dimensional visualization is represented in Figure 31, and the three-dimensional 

visualization is represented in Figure 33. Figure 31 looks similar to the two-dimensional 

visualization in Figures 22, 25, and 28 but with an increase in density. The three-

dimensional visualization for the combined dataset differs from the visualization in Figures 

23, 26, and 29 because it is beginning to fill in the normal state. The variation of the path 

parameters demonstrates that the algorithm is learning what the normal state looks like, 

and it simply needs more data. Figure 33 has the appearance of a pseudo-noise floor for 

the normal state.  

Table 14. Combined Elevation Path Silhouette Coefficients 

Number of Clusters Silhouette Coefficient (Max = 1) 
2 0.71 
3 0.64 
4 0.62 
5 0.59 
6 0.59 
7 0.58 
8 0.56 
9 0.57 
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Figure 30. NPS Dish Path and Vibration Data Elbow Curve 
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Figure 31. NPS Ground Station Elevation (deg) vs Vibration Response (mm/

sec) 

Table 15. Combined Elevation and Azimuth Path Silhouette Coefficients 

 
Number of Clusters Silhouette Coefficient (Max = 1) 

2 0.78 
3 0.74 
4 0.70 
5 0.52 
6 0.55 
7 0.54 
8 0.568 
9 0.57 
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Figure 32. NPS Combined Dish Path and Vibration Data Elbow Curve 
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Figure 33. NPS Ground Station Combined Elevation (deg) vs Azimuth (deg) 
vs Vibration Response (mm/sec) 
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V. CONCLUSION, DISCUSSION, AND SUGGESTIONS FOR 
FUTURE WORK 

 This thesis could not conclusively determine the normal state of the NPS MC3 

ground station, but it does establish a launch point for further work. This research answered 

questions one through five of the initially proposed research questions, but questions six 

through eleven remain unanswered. However, the answers to questions one through five 

are not final and require further research.  

1. What data are collected by the NPS ground station?  

2. How often is the data collected at the NPS ground station?  

3. How and where is the data from the NPS ground station stored? 

4. Are additional sensors needed to produce a normal state? 

5. What other Department of Defense (DOD) systems could this approach be 

applied? 

6. Should a cloud-based solution be explored for flexibility and processing? 

7. Can the data from the sensors be analyzed in real-time?  

8. What processing capability is needed for real-time machine learning 

analysis and forecasting? 

9. Can anomalies and faults be mitigated autonomously? 

10. With improved resiliency and autonomy, can the ground stations become 

more expeditionary? 

11. What are the applications for a more expeditionary ground station? 

A. CONCLUSION AND DISCUSSION 

The environmental, power, vibration and pointing data are collected at the NPS 

MC3 ground station at varying levels of fidelity. However, based on the results, more and 

higher fidelity sensors are required to reliably determine the normal state and any deviation 
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from that normal state. The power data fidelity level identified in dataset two highlighted 

that sensor selection criteria are needed to produce significant data. Along with the fidelity, 

the sample rate of data points needs further examination to promote significant data but 

limit marginal data that only expends storage space and processing power during analysis. 

The placement of the sensors on the ground station can drastically change the data 

collected, especially for the temperature and vibration sensors. A vibration sensor located 

on the moving dish will likely produce a more significant response than one placed on the 

inside dome wall. However, that vibration sensor on the dome wall may indicate a systemic 

problem in the ground station when analyzed with the other collected data points. The 

placement location of sensors is another aspect of data collection that needs further research 

and testing. 

The early testing of the Python analysis code revealed a data storage and formatting 

challenge. The data used for analysis was exported from the respective data collection 

source to CSV files and then manually transferred via physical media to a separate 

computer for formatting and analysis. The use of physical media to transfer data was time-

consuming and did not allow for rapid acquisition of new data for analysis, especially in a 

constrained COVID-19 environment. A network-based data export capability would 

greatly benefit further research.  

Varying data and time formats from each data source required additional functions 

to standardize the data before analysis. Standardization of the data format should be applied 

before entry into a network-based database. Offloading the data formatting from the 

analysis and future monitoring applications would free up processing power for analysis.  

This methodology can be applied to any system on which data samples from 

multiple sensors can be collected for a specified period of time. The longer the period of 

time and the more data samples collected, the more likely the normal state model generated 

by the learning algorithm will be accurate. Iverson stated that IMS could be used in any 

system with these data collection capabilities (Iverson, 2004). With the decreasing cost of 

computing power and availability of low-cost, high-quality sensors, monitoring using 

unsupervised machine learning has wide-ranging potential. 
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B. FUTURE WORK 

Multiple topics for future work are proposed throughout the conclusion and 

discussion. Figure 34 illustrates a roadmap for suggested future work. The green arrows 

and text represent the most promising work for the advancement of unsupervised machine 

learning in the MC3 network, determining the normal state of the NPS ground station, and 

implementing a near-real-time health monitoring system.  Cloud/network-based 

integration would provide versatility and responsiveness to the research and monitoring. 

An increase in the number of data sensors and data collected will help build a broad base 

to support the normal state determination. Once the normal state is determined and 

validated, the implementation of the monitoring application will close the loop and provide 

that near-real-time health monitoring system. 

 
Figure 34. Future Work Roadmap 
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APPENDIX A. RESULTS 

Appendix A includes all the raw result outputs from dataset three. Additional 

variations of these results can be generated by modifying the python analysis code in 

Appendix B. 

 

For n_clusters=2, The Silhouette Coefficient is 0.6660936911262124 
For n_clusters=3, The Silhouette Coefficient is 0.6279133470182224 
For n_clusters=4, The Silhouette Coefficient is 0.6091073585013047 
For n_clusters=5, The Silhouette Coefficient is 0.5940793265895957 
For n_clusters=6, The Silhouette Coefficient is 0.5872856662005118 
For n_clusters=7, The Silhouette Coefficient is 0.5786171048411128 
For n_clusters=8, The Silhouette Coefficient is 0.5730788725975419 
For n_clusters=9, The Silhouette Coefficient is 0.5671866795844146 
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For n_clusters=2, The Silhouette Coefficient is 0.6600310822405209 
For n_clusters=3, The Silhouette Coefficient is 0.6231704736783132 
For n_clusters=4, The Silhouette Coefficient is 0.6033003251427791 
For n_clusters=5, The Silhouette Coefficient is 0.5901506341670502 
For n_clusters=6, The Silhouette Coefficient is 0.5802265075087698 
For n_clusters=7, The Silhouette Coefficient is 0.574861637273819 
For n_clusters=8, The Silhouette Coefficient is 0.5686836146525064 
For n_clusters=9, The Silhouette Coefficient is 0.5643451683871253 
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For n_clusters=2, The Silhouette Coefficient is 0.9305612273953091 
For n_clusters=3, The Silhouette Coefficient is 0.7639762604274862 
For n_clusters=4, The Silhouette Coefficient is 0.7363590454594308 
For n_clusters=5, The Silhouette Coefficient is 0.6138137458251015 
For n_clusters=6, The Silhouette Coefficient is 0.5989778680726051 
For n_clusters=7, The Silhouette Coefficient is 0.5884904794049439 
For n_clusters=8, The Silhouette Coefficient is 0.5907709404151086 
For n_clusters=9, The Silhouette Coefficient is 0.5755226230599041 
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For n_clusters=2, The Silhouette Coefficient is 0.9292253959073893 
For n_clusters=3, The Silhouette Coefficient is 0.7612353006210434 
For n_clusters=4, The Silhouette Coefficient is 0.7334715614067241 
For n_clusters=5, The Silhouette Coefficient is 0.6122348063841742 
For n_clusters=6, The Silhouette Coefficient is 0.597802012810985 
For n_clusters=7, The Silhouette Coefficient is 0.5882641785256938 
For n_clusters=8, The Silhouette Coefficient is 0.5917733115653747 
For n_clusters=9, The Silhouette Coefficient is 0.5748919562881005 
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For n_clusters=2, The Silhouette Coefficient is 0.665028441965702 
For n_clusters=3, The Silhouette Coefficient is 0.6281452510944467 
For n_clusters=4, The Silhouette Coefficient is 0.6077864381443278 
For n_clusters=5, The Silhouette Coefficient is 0.5941933357864291 
For n_clusters=6, The Silhouette Coefficient is 0.5836274148678351 
For n_clusters=7, The Silhouette Coefficient is 0.5777091932687017 
For n_clusters=8, The Silhouette Coefficient is 0.5726587713244643 
For n_clusters=9, The Silhouette Coefficient is 0.5671256414343041 
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For n_clusters=2, The Silhouette Coefficient is 0.6596284793088887 
For n_clusters=3, The Silhouette Coefficient is 0.623280784536207 
For n_clusters=4, The Silhouette Coefficient is 0.6032380862657333 
For n_clusters=5, The Silhouette Coefficient is 0.5902736022226094 
For n_clusters=6, The Silhouette Coefficient is 0.5812722515568808 
For n_clusters=7, The Silhouette Coefficient is 0.5725771628347588 
For n_clusters=8, The Silhouette Coefficient is 0.569184564832598 
For n_clusters=9, The Silhouette Coefficient is 0.5630194590714188 
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For n_clusters=2, The Silhouette Coefficient is 0.9307734061636478 
For n_clusters=3, The Silhouette Coefficient is 0.7636280259325146 
For n_clusters=4, The Silhouette Coefficient is 0.7366169306001592 
For n_clusters=5, The Silhouette Coefficient is 0.6133865493748198 
For n_clusters=6, The Silhouette Coefficient is 0.5985322248404447 
For n_clusters=7, The Silhouette Coefficient is 0.5898694940613574 
For n_clusters=8, The Silhouette Coefficient is 0.5736916946964169 
For n_clusters=9, The Silhouette Coefficient is 0.576196209390065 
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For n_clusters=2, The Silhouette Coefficient is 0.9294416164914073 
For n_clusters=3, The Silhouette Coefficient is 0.7611579943345965 
For n_clusters=4, The Silhouette Coefficient is 0.7343787305856271 
For n_clusters=5, The Silhouette Coefficient is 0.6128892375727621 
For n_clusters=6, The Silhouette Coefficient is 0.5967672535898704 
For n_clusters=7, The Silhouette Coefficient is 0.5889706358231183 
For n_clusters=8, The Silhouette Coefficient is 0.5708569873711213 
For n_clusters=9, The Silhouette Coefficient is 0.5739781681125123 
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For n_clusters=2, The Silhouette Coefficient is 0.6649594268946978 
For n_clusters=3, The Silhouette Coefficient is 0.6279594312467356 
For n_clusters=4, The Silhouette Coefficient is 0.6078085054792793 
For n_clusters=5, The Silhouette Coefficient is 0.5946445657771765 
For n_clusters=6, The Silhouette Coefficient is 0.5853252364681679 
For n_clusters=7, The Silhouette Coefficient is 0.5794543874787849 
For n_clusters=8, The Silhouette Coefficient is 0.5713582739641703 
For n_clusters=9, The Silhouette Coefficient is 0.566692552264133 

 

 
 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6595099476259819 
For n_clusters=3, The Silhouette Coefficient is 0.6232536032014647 
For n_clusters=4, The Silhouette Coefficient is 0.6030704428552417 
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For n_clusters=5, The Silhouette Coefficient is 0.5898353059426649 
For n_clusters=6, The Silhouette Coefficient is 0.5810052111207067 
For n_clusters=7, The Silhouette Coefficient is 0.5732257879724694 
For n_clusters=8, The Silhouette Coefficient is 0.5674194019493447 
For n_clusters=9, The Silhouette Coefficient is 0.5651870756035587 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.9307818786297365 
For n_clusters=3, The Silhouette Coefficient is 0.7638584193202802 
For n_clusters=4, The Silhouette Coefficient is 0.7357828499278102 
For n_clusters=5, The Silhouette Coefficient is 0.6146221590927551 
For n_clusters=6, The Silhouette Coefficient is 0.5994233768565284 
For n_clusters=7, The Silhouette Coefficient is 0.5876787913378563 
For n_clusters=8, The Silhouette Coefficient is 0.5721038565525433 
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For n_clusters=9, The Silhouette Coefficient is 0.5756819478461006 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.9294536411322791 
For n_clusters=3, The Silhouette Coefficient is 0.7609474651598498 
For n_clusters=4, The Silhouette Coefficient is 0.7343080863577438 
For n_clusters=5, The Silhouette Coefficient is 0.6118570336789476 
For n_clusters=6, The Silhouette Coefficient is 0.5969445380392611 
For n_clusters=7, The Silhouette Coefficient is 0.5879064903076265 
For n_clusters=8, The Silhouette Coefficient is 0.5721213907969821 
For n_clusters=9, The Silhouette Coefficient is 0.5744153774946328 
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For n_clusters=2, The Silhouette Coefficient is 0.6495626814364096 
For n_clusters=3, The Silhouette Coefficient is 0.614257702594421 
For n_clusters=4, The Silhouette Coefficient is 0.595823867750173 
For n_clusters=5, The Silhouette Coefficient is 0.583889718474442 
For n_clusters=6, The Silhouette Coefficient is 0.575988943347529 
For n_clusters=7, The Silhouette Coefficient is 0.5685641288837039 
For n_clusters=8, The Silhouette Coefficient is 0.5635029379754702 
For n_clusters=9, The Silhouette Coefficient is 0.5595565001622446 

 

 
 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6640797396548737 
For n_clusters=3, The Silhouette Coefficient is 0.6177225986192904 
For n_clusters=4, The Silhouette Coefficient is 0.5951418553494483 
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For n_clusters=5, The Silhouette Coefficient is 0.5804941743616523 
For n_clusters=6, The Silhouette Coefficient is 0.5711272313928686 
For n_clusters=7, The Silhouette Coefficient is 0.5658945014956323 
For n_clusters=8, The Silhouette Coefficient is 0.5586135062711107 
For n_clusters=9, The Silhouette Coefficient is 0.5567313586776889 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.9003138184413342 
For n_clusters=3, The Silhouette Coefficient is 0.8308655148767751 
For n_clusters=4, The Silhouette Coefficient is 0.792953980067198 
For n_clusters=5, The Silhouette Coefficient is 0.6757742993104305 
For n_clusters=6, The Silhouette Coefficient is 0.6552933891438999 
For n_clusters=7, The Silhouette Coefficient is 0.6370957788651562 
For n_clusters=8, The Silhouette Coefficient is 0.6166135755404532 
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For n_clusters=9, The Silhouette Coefficient is 0.6082867718584035 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.8823687373176661 
For n_clusters=3, The Silhouette Coefficient is 0.803348567678576 
For n_clusters=4, The Silhouette Coefficient is 0.7679895543774335 
For n_clusters=5, The Silhouette Coefficient is 0.6504169000154896 
For n_clusters=6, The Silhouette Coefficient is 0.630328760762678 
For n_clusters=7, The Silhouette Coefficient is 0.6199485744732294 
For n_clusters=8, The Silhouette Coefficient is 0.5985116796974531 
For n_clusters=9, The Silhouette Coefficient is 0.5887183134011512 
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For n_clusters=2, The Silhouette Coefficient is 0.6488043069985987 
For n_clusters=3, The Silhouette Coefficient is 0.6140406199550499 
For n_clusters=4, The Silhouette Coefficient is 0.5952100288273509 
For n_clusters=5, The Silhouette Coefficient is 0.5852398313915677 
For n_clusters=6, The Silhouette Coefficient is 0.575785298915239 
For n_clusters=7, The Silhouette Coefficient is 0.5685082013760426 
For n_clusters=8, The Silhouette Coefficient is 0.5628196186366358 
For n_clusters=9, The Silhouette Coefficient is 0.5597525925963832 

 

 
 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6639769292140553 
For n_clusters=3, The Silhouette Coefficient is 0.6175632714098288 
For n_clusters=4, The Silhouette Coefficient is 0.5943567656387757 
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For n_clusters=5, The Silhouette Coefficient is 0.5802535049328704 
For n_clusters=6, The Silhouette Coefficient is 0.5706734228759832 
For n_clusters=7, The Silhouette Coefficient is 0.564802266875791 
For n_clusters=8, The Silhouette Coefficient is 0.5605338137027868 
For n_clusters=9, The Silhouette Coefficient is 0.5557747488521222 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.9003997993008455 
For n_clusters=3, The Silhouette Coefficient is 0.8304061798592213 
For n_clusters=4, The Silhouette Coefficient is 0.7938152183648608 
For n_clusters=5, The Silhouette Coefficient is 0.6787934170281836 
For n_clusters=6, The Silhouette Coefficient is 0.6525501279000385 
For n_clusters=7, The Silhouette Coefficient is 0.6381188151964549 
For n_clusters=8, The Silhouette Coefficient is 0.620551219396405 
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For n_clusters=9, The Silhouette Coefficient is 0.6032410664111615 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.8824668100542858 
For n_clusters=3, The Silhouette Coefficient is 0.8027863586083128 
For n_clusters=4, The Silhouette Coefficient is 0.766817239278739 
For n_clusters=5, The Silhouette Coefficient is 0.6490984206492102 
For n_clusters=6, The Silhouette Coefficient is 0.6293102309384982 
For n_clusters=7, The Silhouette Coefficient is 0.6164148800705778 
For n_clusters=8, The Silhouette Coefficient is 0.5969166199984697 
For n_clusters=9, The Silhouette Coefficient is 0.5868887498916382 
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For n_clusters=2, The Silhouette Coefficient is 0.6485990007913757 
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For n_clusters=3, The Silhouette Coefficient is 0.6142309326436637 
For n_clusters=4, The Silhouette Coefficient is 0.5962657109006916 
For n_clusters=5, The Silhouette Coefficient is 0.5833251578485438 
For n_clusters=6, The Silhouette Coefficient is 0.5748793955227559 
For n_clusters=7, The Silhouette Coefficient is 0.5696498384393258 
For n_clusters=8, The Silhouette Coefficient is 0.5649080721306031 
For n_clusters=9, The Silhouette Coefficient is 0.5595977001007452 

 

 
 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6640951538782159 
For n_clusters=3, The Silhouette Coefficient is 0.6173721748574945 
For n_clusters=4, The Silhouette Coefficient is 0.5950083981595532 
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For n_clusters=5, The Silhouette Coefficient is 0.5805722044524045 
For n_clusters=6, The Silhouette Coefficient is 0.5718158458393817 
For n_clusters=7, The Silhouette Coefficient is 0.5656287562520947 
For n_clusters=8, The Silhouette Coefficient is 0.5590510870797014 
For n_clusters=9, The Silhouette Coefficient is 0.5545526554654774 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.9003937577081761 
For n_clusters=3, The Silhouette Coefficient is 0.830527753286595 
For n_clusters=4, The Silhouette Coefficient is 0.7934384188726147 
For n_clusters=5, The Silhouette Coefficient is 0.6770735748625119 
For n_clusters=6, The Silhouette Coefficient is 0.6541820132512696 
For n_clusters=7, The Silhouette Coefficient is 0.6388515175388225 
For n_clusters=8, The Silhouette Coefficient is 0.6141146795557548 
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For n_clusters=9, The Silhouette Coefficient is 0.6035343486559936 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.8824528223871805 
For n_clusters=3, The Silhouette Coefficient is 0.8033785674699083 
For n_clusters=4, The Silhouette Coefficient is 0.7695829596948284 
For n_clusters=5, The Silhouette Coefficient is 0.6513127385113583 
For n_clusters=6, The Silhouette Coefficient is 0.6298166996834618 
For n_clusters=7, The Silhouette Coefficient is 0.6149118486830031 
For n_clusters=8, The Silhouette Coefficient is 0.5959638878815015 
For n_clusters=9, The Silhouette Coefficient is 0.5861714130145079 
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For n_clusters=2, The Silhouette Coefficient is 0.6491518595101199 
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For n_clusters=3, The Silhouette Coefficient is 0.6141673817785293 
For n_clusters=4, The Silhouette Coefficient is 0.5946195753272223 
For n_clusters=5, The Silhouette Coefficient is 0.5841127186971257 
For n_clusters=6, The Silhouette Coefficient is 0.5750617930542855 
For n_clusters=7, The Silhouette Coefficient is 0.5694457709094166 
For n_clusters=8, The Silhouette Coefficient is 0.5648567936290979 
For n_clusters=9, The Silhouette Coefficient is 0.5586912115028386 

 

 
 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6636481624410627 
For n_clusters=3, The Silhouette Coefficient is 0.6173610916639006 
For n_clusters=4, The Silhouette Coefficient is 0.5952084573719343 
For n_clusters=5, The Silhouette Coefficient is 0.5810679357950641 
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For n_clusters=6, The Silhouette Coefficient is 0.5707425885137803 
For n_clusters=7, The Silhouette Coefficient is 0.5645996894252385 
For n_clusters=8, The Silhouette Coefficient is 0.5582674179844994 
For n_clusters=9, The Silhouette Coefficient is 0.5554028223910805 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.9004335111780254 
For n_clusters=3, The Silhouette Coefficient is 0.8304199591694837 
For n_clusters=4, The Silhouette Coefficient is 0.7934394497000533 
For n_clusters=5, The Silhouette Coefficient is 0.67696894093557 

For n_clusters=6, The Silhouette Coefficient is 0.6546727114945686 
For n_clusters=7, The Silhouette Coefficient is 0.6411289912329604 
For n_clusters=8, The Silhouette Coefficient is 0.6155923390955069 
For n_clusters=9, The Silhouette Coefficient is 0.6048800460509356 
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For n_clusters=2, The Silhouette Coefficient is 0.8824949128623985 
For n_clusters=3, The Silhouette Coefficient is 0.8027628920244758 
For n_clusters=4, The Silhouette Coefficient is 0.7682506849762937 
For n_clusters=5, The Silhouette Coefficient is 0.6487703822768061 
For n_clusters=6, The Silhouette Coefficient is 0.6296264989358301 
For n_clusters=7, The Silhouette Coefficient is 0.6166266311973361 
For n_clusters=8, The Silhouette Coefficient is 0.5960129453791122 
For n_clusters=9, The Silhouette Coefficient is 0.5877810789781595 
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For n_clusters=2, The Silhouette Coefficient is 0.6450738216938539 
For n_clusters=3, The Silhouette Coefficient is 0.6097909803076133 
For n_clusters=4, The Silhouette Coefficient is 0.5915435615245994 
For n_clusters=5, The Silhouette Coefficient is 0.5807925128586988 
For n_clusters=6, The Silhouette Coefficient is 0.5714826674733159 
For n_clusters=7, The Silhouette Coefficient is 0.5652444917454542 
For n_clusters=8, The Silhouette Coefficient is 0.5610147453976717 
For n_clusters=9, The Silhouette Coefficient is 0.5588149686577855 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6833677904739591 
For n_clusters=3, The Silhouette Coefficient is 0.6264021921933344 
For n_clusters=4, The Silhouette Coefficient is 0.5991387114098354 
For n_clusters=5, The Silhouette Coefficient is 0.5839802423188313 
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For n_clusters=6, The Silhouette Coefficient is 0.5718968066177139 
For n_clusters=7, The Silhouette Coefficient is 0.5640481067627112 
For n_clusters=8, The Silhouette Coefficient is 0.5598547988278584 
For n_clusters=9, The Silhouette Coefficient is 0.5549042539387564 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.8724029250525156 
For n_clusters=3, The Silhouette Coefficient is 0.8251846609753427 
For n_clusters=4, The Silhouette Coefficient is 0.7783448849827457 
For n_clusters=5, The Silhouette Coefficient is 0.7413294636598955 
For n_clusters=6, The Silhouette Coefficient is 0.7071175002476782 
For n_clusters=7, The Silhouette Coefficient is 0.6829281112095771 
For n_clusters=8, The Silhouette Coefficient is 0.6703891886260314 
For n_clusters=9, The Silhouette Coefficient is 0.6467353136570996 
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For n_clusters=2, The Silhouette Coefficient is 0.8060027681313787 
For n_clusters=3, The Silhouette Coefficient is 0.7486494661519573 
For n_clusters=4, The Silhouette Coefficient is 0.6913533374253987 
For n_clusters=5, The Silhouette Coefficient is 0.6592561447095443 
For n_clusters=6, The Silhouette Coefficient is 0.631083959712522 
For n_clusters=7, The Silhouette Coefficient is 0.6130689733957352 
For n_clusters=8, The Silhouette Coefficient is 0.5990568275907581 
For n_clusters=9, The Silhouette Coefficient is 0.5909370898363774 
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For n_clusters=2, The Silhouette Coefficient is 0.6442623864702967 
For n_clusters=3, The Silhouette Coefficient is 0.6096968437420853 
For n_clusters=4, The Silhouette Coefficient is 0.5920357946871688 
For n_clusters=5, The Silhouette Coefficient is 0.5804527177178417 
For n_clusters=6, The Silhouette Coefficient is 0.5713698346558206 
For n_clusters=7, The Silhouette Coefficient is 0.5661968084875927 
For n_clusters=8, The Silhouette Coefficient is 0.5615742371061955 
For n_clusters=9, The Silhouette Coefficient is 0.5581910157477895 

 

 
 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6845728904763417 
For n_clusters=3, The Silhouette Coefficient is 0.6262633191164899 
For n_clusters=4, The Silhouette Coefficient is 0.5996638911349859 
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For n_clusters=5, The Silhouette Coefficient is 0.5835838906199832 
For n_clusters=6, The Silhouette Coefficient is 0.5728106508281139 
For n_clusters=7, The Silhouette Coefficient is 0.5646806697319662 
For n_clusters=8, The Silhouette Coefficient is 0.5595296011364533 
For n_clusters=9, The Silhouette Coefficient is 0.5541184108764984 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.872432595198676 
For n_clusters=3, The Silhouette Coefficient is 0.8253674919285936 
For n_clusters=4, The Silhouette Coefficient is 0.7791029862082302 
For n_clusters=5, The Silhouette Coefficient is 0.7421311913375119 
For n_clusters=6, The Silhouette Coefficient is 0.7130538256407758 
For n_clusters=7, The Silhouette Coefficient is 0.6887241872149181 
For n_clusters=8, The Silhouette Coefficient is 0.6664913397855695 



82 

For n_clusters=9, The Silhouette Coefficient is 0.6506565972440226 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.8060959427577198 
For n_clusters=3, The Silhouette Coefficient is 0.7489549977250487 
For n_clusters=4, The Silhouette Coefficient is 0.6916734266026439 
For n_clusters=5, The Silhouette Coefficient is 0.6587260310283632 
For n_clusters=6, The Silhouette Coefficient is 0.6317231449829467 
For n_clusters=7, The Silhouette Coefficient is 0.6139526881632444 
For n_clusters=8, The Silhouette Coefficient is 0.5976935738139929 
For n_clusters=9, The Silhouette Coefficient is 0.5866231463292421 
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For n_clusters=2, The Silhouette Coefficient is 0.644698377953107 
For n_clusters=3, The Silhouette Coefficient is 0.6097280860298011 
For n_clusters=4, The Silhouette Coefficient is 0.5913042248123969 
For n_clusters=5, The Silhouette Coefficient is 0.5804238144463842 
For n_clusters=6, The Silhouette Coefficient is 0.5731311465823171 
For n_clusters=7, The Silhouette Coefficient is 0.566812128513393 
For n_clusters=8, The Silhouette Coefficient is 0.5617535094861289 
For n_clusters=9, The Silhouette Coefficient is 0.5580138417679226 

 

 
 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.6837009672894909 
For n_clusters=3, The Silhouette Coefficient is 0.6257277913803952 
For n_clusters=4, The Silhouette Coefficient is 0.598724508870682 
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For n_clusters=5, The Silhouette Coefficient is 0.5833338256839933 
For n_clusters=6, The Silhouette Coefficient is 0.5722572063121593 
For n_clusters=7, The Silhouette Coefficient is 0.5655389257478809 
For n_clusters=8, The Silhouette Coefficient is 0.5576799040777747 
For n_clusters=9, The Silhouette Coefficient is 0.5541749006087021 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.8723867634887597 
For n_clusters=3, The Silhouette Coefficient is 0.8250555299954209 
For n_clusters=4, The Silhouette Coefficient is 0.777585823614723 
For n_clusters=5, The Silhouette Coefficient is 0.740399279802734 
For n_clusters=6, The Silhouette Coefficient is 0.710362478002766 
For n_clusters=7, The Silhouette Coefficient is 0.6847571773098295 
For n_clusters=8, The Silhouette Coefficient is 0.6707186282385402 
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For n_clusters=9, The Silhouette Coefficient is 0.6533137597110338 

 

 
 
 

For n_clusters=2, The Silhouette Coefficient is 0.8059714041045408 
For n_clusters=3, The Silhouette Coefficient is 0.7483666061416031 
For n_clusters=4, The Silhouette Coefficient is 0.6911417933717611 
For n_clusters=5, The Silhouette Coefficient is 0.658736978206778 
For n_clusters=6, The Silhouette Coefficient is 0.6313289644724451 
For n_clusters=7, The Silhouette Coefficient is 0.6133978015452647 
For n_clusters=8, The Silhouette Coefficient is 0.598981373950408 
For n_clusters=9, The Silhouette Coefficient is 0.5878982437159738 
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For n_clusters=2, The Silhouette Coefficient is 0.7090767334437937 
For n_clusters=3, The Silhouette Coefficient is 0.637482951423615 
For n_clusters=4, The Silhouette Coefficient is 0.6195271193574252 
For n_clusters=5, The Silhouette Coefficient is 0.5882943661748177 
For n_clusters=6, The Silhouette Coefficient is 0.5927358139148533 
For n_clusters=7, The Silhouette Coefficient is 0.5829674194232175 
For n_clusters=8, The Silhouette Coefficient is 0.5669226080330054 
For n_clusters=9, The Silhouette Coefficient is 0.5700264543613299 
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For n_clusters=2, The Silhouette Coefficient is 0.7804090158381637 
For n_clusters=3, The Silhouette Coefficient is 0.7409086011043108 
For n_clusters=4, The Silhouette Coefficient is 0.704986760372301 
For n_clusters=5, The Silhouette Coefficient is 0.5257009177799129 
For n_clusters=6, The Silhouette Coefficient is 0.5491451985980098 
For n_clusters=7, The Silhouette Coefficient is 0.5430333840033923 
For n_clusters=8, The Silhouette Coefficient is 0.5635235203801531 
For n_clusters=9, The Silhouette Coefficient is 0.5686712533888169 
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APPENDIX B. PYTHON CODE 

Appendix B includes the Python analysis code used in dataset three. This code 

evolved with the datasets.  

# thesis_ml_nps.py 
# Grabs, combines, normalizes, and runs unsupervised machine learning (K-means++) 
# Created by: Tim Marczewski (TJM) 
 
 
#Imports - libraries and toolkits 
from mpl_toolkits.mplot3d import Axes3D 
#mplot3d 
#Matplotlib mplot3d toolkit 
#The mplot3d toolkit adds simple 3D plotting capabilities to matplotlib by supplying an 
axes object that can create a 2D projection of a 3D scene. The resulting graph will have the 
same look and feel as regular 2D plots. 
#https://matplotlib.org/2.2.2/mpl_toolkits/mplot3d/index.html 
#Copyright 2002 - 2012 John Hunter, Darren Dale, Eric Firing, Michael Droettboom and 
the Matplotlib development team; 2012 - 2018 The Matplotlib development team. 
import datetime as dt 
#The datetime module supplies classes for manipulating dates and times. 
#While date and time arithmetic is supported, the focus of the implementation is on 
efficient attribute extraction for output formatting and manipulation. 
#https://docs.python.org/3/library/datetime.html 
#Copyright 2001-2021, Python Software Foundation. 
import pandas as pd  
#pandas 
#pandas is a fast, powerful, flexible and easy to use open source data analysis and 
manipulation tool,built on top of the Python programming language. 
#https://pandas.pydata.org/ 
#Fiscally sponsored project of NumFOCUS. 
#The mission of NumFOCUS is to promote open practices in research, data, and scientific 
computing by serving as a  
#fiscal sponsor for open source projects and organizing community-driven educational 
programs. 
import matplotlib.pyplot as plt 
#Matplotlib: Visualization with Python 
#Matplotlib is a comprehensive library for creating static, animated, and interactive 
visualizations in Python. 
#https://matplotlib.org/ 
#Copyright 2002 - 2012 John Hunter, Darren Dale, Eric Firing, Michael Droettboom and 
the Matplotlib development team; 2012 - 2021 The Matplotlib development team. 
#Fiscally sponsored project of NumFOCUS. 
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from sklearn.cluster import KMeans 
from sklearn.metrics import silhouette_score 
#scikit-learn - Machine Learning in Python 
#Simple and efficient tools for predictive data analysis 
#Accessible to everybody, and reusable in various contexts 
#Built on NumPy, SciPy, and matplotlib 
#Open source, commercially usable - BSD license 
#https://scikit-learn.org/stable/ 
import numpy as np 
#Nearly every scientist working in Python draws on the power of NumPy. 
#NumPy brings the computational power of languages like C and Fortran to Python, a 
language much easier to learn and use. With this power comes simplicity: a solution in 
NumPy is often clear and elegant. 
#2019-2020 NumPy. All rights reserved. 
#https://numpy.org/ 
import os 
 
#Functions  
 
#cat_data() - Uses the RECORDDATE in UTC to categorize the hour of the day a sample 
was collected 
#example 2021-02-23 22:01:43.34 will get a cat value of 22 
#this can be used to further analyze data based on the time of day it is collected 
def cat_data(df): 
    index = pd.DatetimeIndex(df['RECORDDATE']) # the column of RECORDDATE is 
used to index 
    df.iloc[index.indexer_between_time('0:00', '0:59:59', include_start=True, 
include_end=True),1] = 0 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('1:00', '1:59:59', include_start=True, 
include_end=True),1] = 1 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('2:00', '2:59:59', include_start=True, 
include_end=True),1] = 2 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('3:00', '3:59:59', include_start=True, 
include_end=True),1] = 3 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('4:00', '4:59:59', include_start=True, 
include_end=True),1] = 4 
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    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('5:00', '5:59:59', include_start=True, 
include_end=True),1] = 5 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('6:00', '6:59:59', include_start=True, 
include_end=True),1] = 6 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('7:00', '7:59:59', include_start=True, 
include_end=True),1] = 7 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('8:00', '8:59:59', include_start=True, 
include_end=True),1] = 8 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('9:00', '9:59:59', include_start=True, 
include_end=True),1] = 9 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('10:00', '10:59:59', include_start=True, 
include_end=True),1] = 10 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('11:00', '11:59:59', include_start=True, 
include_end=True),1] = 11 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('12:00', '12:59:59', include_start=True, 
include_end=True),1] = 12 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('13:00', '13:59:59', include_start=True, 
include_end=True),1] = 13 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('14:00', '14:59:59', include_start=True, 
include_end=True),1] = 14 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('15:00', '15:59:59', include_start=True, 
include_end=True),1] = 15 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
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    df.iloc[index.indexer_between_time('16:00', '16:59:59', include_start=True, 
include_end=True),1] = 16 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('17:00', '17:59:59', include_start=True, 
include_end=True),1] = 17 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('18:00', '18:59:59', include_start=True, 
include_end=True),1] = 18 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('19:00', '19:59:59', include_start=True, 
include_end=True),1] = 19 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('20:00', '20:59:59', include_start=True, 
include_end=True),1] = 20 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('21:00', '21:59:59', include_start=True, 
include_end=True),1] = 21 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('22:00', '22:59:59', include_start=True, 
include_end=True),1] = 22 
 
    index = pd.DatetimeIndex(df['RECORDDATE']) 
    df.iloc[index.indexer_between_time('23:00', '23:59:59', include_start=True, 
include_end=True),1] = 23 
     
    return df 
     
 
def import_env_data(data): # the import environmental data function works to import the 
environmental data from the ENVIROMUX 5D sensors. The data is imported as a CSV 
file 
    data_env = pd.read_csv(data, sep='\t') # the data for this CSV file is tab dilinitated 
    df = pd.DataFrame(data_env) 
    df = df.drop(columns=['UTC']) 
    df['RECORDDATE']= pd.to_datetime(df['RECORDDATE'], format="%d.%m.%Y, 
%H:%M:%S.%f") 
 
    df.rename(columns = {'EXTSENS1TMP':'dome_tmp',  
                     'EXTSENS1RH':'dome_rh',  
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                     'EXTSENS1DEW':'dome_dew',  
                     'EXTSENS2TMP':'dome_box_tmp',  
                     'EXTSENS2RH':'dome_box_rh',  
                     'EXTSENS2DEW':'dome_box_dew',  
                     'EXTSENS3TMP':'hpa_pwr_tmp', 
                     'EXTSENS3RH':'hpa_pwr_rh',  
                     'EXTSENS3DEW':'hpa_pwr_dew',  
                     'EXTSENS4TMP':'hpa_tmp',  
                     'EXTSENS4RH':'hpa_rh',  
                     'EXTSENS4DEW':'hpa_dew',  
                     'INTTMP':'envm_tmp',  
                     'INTRH':'envm_rh',  
                     'INTDEW':'envm_dew', 
                     'SERIALNUM':'cat'},  
          inplace=True) 
     
    df = cat_data(df) #Call the categorize data function 
     
    #df = df.set_index('RECORDDATE') 
     
    return df # The data file is formatted and turned into a data frame which can then be 
exported to the main function 
 
def import_vibe_data(data): # Import vibration data function works at importing the 
vibration data collected on the NPS satellite dish. That is important as a CSV file. 
    data_vibe = pd.read_csv(data, sep='\t') # To CSV file is tab diliniated 
    df = pd.DataFrame(data_vibe) 
    
########################################################################
#### 
    data_date = '2021-04-09' ############################UPDATE WITH DATA 
DATE! 
    
########################################################################
#### 
    df.columns = ['RECORDDATE','Response'] 
     
    df['RECORDDATE'] = data_date + ' ' + df['RECORDDATE'].astype(str) # The date 
format collected on the path data was not consistent with the other data collected. This 
required re-formatting of the datetime 
     
    df['RECORDDATE']= pd.to_datetime(df['RECORDDATE']) # converted from string to 
datetime object 
     
    df.insert(1, 'cat', 100) # the category column is inserted in the data frame 
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    df = cat_data(df) #Call the categorize data function 
     
    return df 
 
def import_path_data(data): # the import tathata function format the past data collected 
during a satellite pass on the NPS satellite dish. Data is imported as a CSV file 
    data_path = pd.read_csv(data, sep=',') #The CSV file is, delineated 
    df = pd.DataFrame(data_path) 
    df.rename(columns = {'Time':'RECORDDATE'}, inplace=True) 
 
    df["RECORDDATE"] = pd.to_datetime(df["RECORDDATE"], format="%Y-%m-
%dT%H:%M:%S.%fZ") # The date format collected on the path data was not consistent 
with the other data collected. This required re-formatting of the datetime 
    df.insert(1, 'cat', 100) # the category column is inserted in the data frame 
     
    df = cat_data(df) # call the categorize data function 
     
    return df 
 
def cluster_2d(df,n,x,y,csv): #2 dimensional clustering using K means unsupervised 
machine learning 
     
    g = df.copy() 
    g = g[[x,y]] 
 
    n_cluster = range(1, 10) 
    kmeans = [KMeans(n_clusters=i).fit(g) for i in n_cluster] 
    scores = [kmeans[i].score(g) for i in range(len(kmeans))] 
    for i in range(2,10): 
        kmeans = KMeans(n_clusters=i).fit(g) 
        label = kmeans.labels_ 
        sil_coeff = silhouette_score(g, label, metric='euclidean') 
        print("For n_clusters={}, The Silhouette Coefficient is {}".format(i, sil_coeff)) 
 
    fig, ax = plt.subplots(figsize=(6,2)) 
    ax.plot(n_cluster, scores) 
    plt.xlabel('Number of Clusters') 
    plt.ylabel('Score') 
    plt.title('Elbow Curve\n' + csv) 
    plt.show(); 
 
    kmeans = KMeans(n_clusters=n) #Add n to define number of 
clusters################################### 
    kmeans.fit(g) 
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    clusters=g.copy() 
    clusters['cluster_pred']=kmeans.fit_predict(g) 
 
    plt.scatter(clusters[x],clusters[y], c=clusters['cluster_pred'],cmap='rainbow') 
    plt.xlabel(x) 
    plt.ylabel(y) 
    plt.title('K Means Clusters 2D\n' + csv) 
    plt.show() 
     
def cluster_3d(df,n,x,y,z,csv): # 3 dimensional clustering using K means unsupervised 
machine learning 
 
    h = df.copy() 
    h = h[[x,y,z]] 
     
    n_cluster = range(1, 10) 
    kmeans = [KMeans(n_clusters=i).fit(h) for i in n_cluster] 
    scores = [kmeans[i].score(h) for i in range(len(kmeans))] 
    for i in range(2,10): 
        kmeans = KMeans(n_clusters=i).fit(h) 
        label = kmeans.labels_ 
        sil_coeff = silhouette_score(h, label, metric='euclidean') 
        print("For n_clusters={}, The Silhouette Coefficient is {}".format(i, sil_coeff)) 
         
 
    fig, bx = plt.subplots(figsize=(6,2)) 
    bx.plot(n_cluster, scores) 
    plt.xlabel('Number of Clusters') 
    plt.ylabel('Score') 
    plt.title('Elbow Curve\n' + csv) 
    plt.show(); 
 
    km = KMeans(n_clusters=n) 
    km.fit(h) 
    km.predict(h) 
    labels = km.labels_ 
    #Plotting 
    fig = plt.figure(1, figsize=(7,7)) 
    ax = Axes3D(fig, rect=[0, 0, 0.95, 1], elev=48, azim=134) 
    ax.scatter(h.iloc[:,0], h.iloc[:,1], h.iloc[:,2], 
              c=labels.astype(np.float), edgecolor="k") 
    ax.set_xlabel(x) 
    ax.set_ylabel(y) 
    ax.set_zlabel(z) 



100 

    plt.title('K Means Clusters 3D\n' + csv); 
           
 
 
#Possible future work 
#Saving data by sampling higher only during passes 
#Vibe data noise floor, sampling, Highlighting the spikes 
#Nominal State vs Pass State 
 
# MAIN - used as the main code to call other functions 
def main(): 
     
    csv_path = './data_9apr/path' 
    csv_vibe = 'data_9apr/vibe/combined_vibe.csv' 
    csv_env = 'data_9apr/env/env_data.csv' 
 
    path_csv = os.listdir(csv_path) # individual CSV files called for analysis 
    vibe_csv = csv_vibe # individual CSV files called for analysis 
    env_csv = csv_env # individual CSV files called for analysis 
     
     
    #path_csv = ['23FEB21/path_TimSAT_21-02-23_21-43-24.csv', '23FEB21/
path_TimSAT_21-02-23_22-00-43.csv','23FEB21/path_TimSAT_21-02-23_22-16-
54.csv'] # individual CSV files called for analysis 
    #vibe_csv = '' 
    #env_csv = '23FEB21/Tim_env_data_02_23_2021.csv' # individual CSV files called for 
analysis 
     
    df_env = import_env_data(env_csv) # calling the import environmental data function to 
create the enviornment dataframe 
     
     
    df_path_vibe_all = pd.DataFrame() #Creating an empty data frame that will later be used 
to aggregate all the data frames from each individual pass 
     
    length_path = len(path_csv) # set number of passes to be analyzed, based off of number 
of CSV files called 
     
    df_vibe = import_vibe_data(vibe_csv) # select the individual vibration CSV that 
corresponds to the path data 
    df_env = import_env_data(env_csv) # calling the import environmental data function to 
create the enviornment dataframe 
         
    df_vibe = df_vibe.set_index('RECORDDATE') # set the index to the record date 
    df_env = df_env.set_index('RECORDDATE') 
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    #print(df_vibe) 
    #print(df_env) 
    for itr in range(length_path): # iterate across the number of CSV files  called 
 
        df_path = import_path_data(csv_path + '/' + path_csv[itr]) #select an individual path 
CSV 
        min_path = df_path['RECORDDATE'].min() # find the earliest record date in the pass 
data 
        max_path = df_path['RECORDDATE'].max() # find the latest record date in the pass 
data 
         
 
        #df_vibe = import_vibe_data(vibe_csv) # select the individual vibration CSV that 
corresponds to the path data 
         
        #print(df_vibe) 
         
 
        df_path = df_path.set_index('RECORDDATE') # set the index to the record date 
        #df_vibe = df_vibe.set_index('RECORDDATE') # set the index to the record date 
        #df_env = df_env.set_index('RECORDDATE') 
        #print(df_vibe) 
         
 
        df_vibe_hold = df_vibe.loc[df_path.index.min():df_path.index.max()] # Size the 
vibration dataframe to within the time frame of the pass 
        #df_vibe = df_vibe.loc[min_path:max_path] 
         
        df_env_hold = df_env.loc[df_path.index.min():df_path.index.max()] # Size the 
environmental dataframe to within the time frame of the pass 
        #df_env = df_env.loc[min_path:max_path] 
         
        #print(df_env) 
         
        #print(df_vibe) 
 
        df_path_vibe = [df_path,df_vibe_hold,df_env_hold] # create a series of data frames 
        df_path_vibe = pd.concat(df_path_vibe) # imput series of data frames into 
concatenate function 
        df_path_vibe = df_path_vibe.sort_index() #Sort the concatenated dataframe by 
RECORDDATE index 
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        df_path_vibe = df_path_vibe.loc[df_path_vibe['cat'] != 100] #Remove error category 
data 
        df_path_vibe = df_path_vibe.interpolate(limit_direction='both') # interpolate to fill in 
not a number (NaN) values where linearly interpolated values 
        #df_path_vibe = df_path_vibe.fillna(method='bfill') 
        #df_path_vibe = df_path_vibe.fillna(method='ffill') # fill in backwards to fill any NaN 
values left after interpolation 
         
        if df_path_vibe_all.empty: # check to see if the path 5 all data frame used to aggregate 
all the passes is empty. This indicates the first run through the loop 
         
            df_path_vibe_all = df_path_vibe # set the path vibol data frame to the value of the 
first iteration through the for loop 
             
        else: 
             
            df_path_vibe_holder = [df_path_vibe_all,df_path_vibe] 
            df_path_vibe_all = pd.concat(df_path_vibe_holder) # adds the current iteration 
data to last pass data to aggregate the values together 
             
             
        #print(df_path_vibe_all) 
 
        x = 'Range' 
        y = 'Response' 
        n = 3 
        cluster_2d(df_path_vibe,n,x,y,path_csv[itr]) # run the 2D cluster and plot using the 
2d cluster function 
 
        x = 'Elevation' 
        y = 'Response' 
        n = 3 
        cluster_2d(df_path_vibe,n,x,y,path_csv[itr]) # run the 2D cluster and plot using the 
2d cluster function 
 
        x = 'Azimuth' 
        y = 'Response' 
        n = 3 
        cluster_2d(df_path_vibe,n,x,y,path_csv[itr]) # run the 2D cluster and plot using the 
2d cluster function 
 
        x = 'Azimuth' 
        y = 'Elevation' 
        z = 'Response' 
        n = 3 
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        cluster_3d(df_path_vibe,n,x,y,z,path_csv[itr]) # run the 3D cluster and plot using the 
3d cluster function 
         
    x = 'Azimuth' 
    y = 'Elevation' 
    z = 'Response' 
    n = 3 
     
    joined_path_csv= "\n".join(path_csv) 
     
    cluster_2d(df_path_vibe_all,n,y,z,joined_path_csv) 
     
    cluster_3d(df_path_vibe_all,n,x,y,z,joined_path_csv) # run the 3D cluster and plot the 
aggregated data from all selected passes using the 3d cluster function 
     
 
    #df_path_vibe_all.to_csv(r'test2.csv', index = True) 
    #print(df_path_vibe_all) 
 
if __name__ == "__main__": 
    main() 
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