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ABSTRACT 

 Airplane accidents are usually catastrophic, and the majority of flight-related 

accidents are caused by a lack of situational awareness during flight. To improve flight 

safety, we built a model to detect the cognitive states of pilots from their 

psychophysiological signals so that the aviators can be warned before falling into a 

dangerous mental state, including channelized attention, diverted attention, and 

startle/surprise. The research is composed of time series analysis and classification. We 

used seasonal decomposition, exponential smoothing, and autoregressive integrated 

moving average models to analyze the numerical psychophysiological measurements of 

18 pilots and utilize such measurements to distinguish their cognitive states by 

classification methods, such as random forest, support vector machine, and logistic 

regression. The results can be a part of the risk management mechanism to alert pilots 

when necessary. The deliverables include a classification model of the problem and an 

analysis of the solutions obtained from the model. These models are written in R so that 

anyone can run calculations in real time to monitor the cognitive states of pilots and to 

support follow-on/future analysis work. 
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Executive Summary

A lack of situational awareness (SA) during flight is the major cause of flight-related
accidents (Moroze and Snow 1999). That is, pilots who are distracted, asleep, or in other
risky mental states fail to maintain their focus during flight effectively. The Commercial
Aviation Safety Team (CAST) discovered that 13 out of 18 fatal events from 2003 to
2012 could be attributed to the loss of control in-flight were caused by lack of SA among
flight crews (Rosenkrans 2015). In other words, these flight crews all experienced mental
diversion. Therefore, analyzing the cognitive states of pilots is important to avoid distraction
for flight safety.

Two years ago, Kaggle, a subsidiary of Google, hosted a competition named “Reducing
Commercial Aviation Fatalities,” which challenged data scientists and machine learning
practitioners around the world to build a model capable of monitoring a pilot’s mental state
in real time by measuring his or her psychophysiological data, including electroencephalo-
gram (EEG) recordings, electrocardiogram (ECG) signal, respiration (R), and galvanic skin
response (GSR) (Kaggle 2019).

Subsequently, the Electronics and Communication Engineering CMR Institute of Technol-
ogy in India analyzed the dataset from the Kaggle competition and published an article in
the Second International Conference on Smart Systems and Inventive Technology (Mishra
et al. 2019). The same dataset was also analyzed in 2019 in a master’s degree thesis by a
student in the Netherlands (Crĳnen 2019). These two analyses revealed the importance and
complexity of the dataset and how valuable the results could be for the aviation.

Additionally, a similar study conducted by the National Aeronautics and Space Adminis-
tration (NASA) Langley Research Center also used EEG, ECG, GSR, and R signals from
13 participants as input features to predict seven different pilot cognitive states consisting
of diverted attention, channelized attention, low workload, high workload, confirmation
bias, startle/surprise, and rest (Harrivel et al. 2017). NASA’s research showed that correctly
identifying pilots’ mental states is feasible by analyzing psychophysiological data.

In this research, our objective is to build a model using the dataset from the Kaggle
competition to detect pilots’ mental states (defined as either "safe" or "dangerous") to give

xvii



an immediate warning if they fall into hazardous mental states so that they will have more 
time to regain SA before the altered state becomes irreparable.

The performance of the classification m odel i ndicates t hat t he R andom F orest method 
outperforms all other classifiers, including Logistic Regression, Support Vector Machines, 
K-Nearest Neighbors, and Recursive Partitioning and Regression Trees, with approximately 
90% reliability to discern pilots’ mental states. Furthermore, according to the result of the 
Feature Importance assessment from the Random Forest algorithm, we can detect whether 
a pilot is distracted approximately 90% of the time by simply measuring his or her ECG, 
GSR, and R values.

In an attempt to predict pilots’ mental states before they fall into a dangerous state, we also 
performed a time series analysis under the presumption that pilots’ psychophysiological 
values can be predicted in terms of time. We interpreted the time series data using Naïve, 
Seasonal Decomposition, Exponential Smoothing, Auto-Regressive Integrated Moving Av-
erage (ARIMA), and Ensemble models. The forecasting performance shows that ECG, 
GSR, and R signals are predictable, and the ARIMA model performs the best in those three 
modalities.

Flight safety is crucial not only to mission success but civilian air travel. Therefore, we 
encourage researchers from around the world with interests in both commercial and military 
aviation safety to join the research in this field in order to reduce aviation mishaps caused 
by human factors. With our effort, flight accidents can be forestalled, and many lives can be 
saved.
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CHAPTER 1:
Introduction

1.1 The Origin of This Research
Two years ago, the data science community and subsidiary of Google, Kaggle, sponsored
a competition named “Reducing Commercial Aviation Fatalities” (Kaggle 2019) that chal-
lenged data scientists and machine learning practitioners around the world to build a model
capable of monitoring a pilot’s mental state in real time through psychophysiological data,
such as electroencephalogram recordings, electrocardiogram signal, respiration, and gal-
vanic skin response, of the aviator. According to Kaggle (2019), many lives will be saved
in the future if pilots can be alerted when they fall into an abnormal mental state while
operating the aircraft.

Due to the Kaggle competition rules (Kaggle 2019), the solution would not be available
even when the competition was over. Yet, such research is valuable for both commercial
and military aviation because it is still not possible to eliminate aviation fatalities entirely
due to human factors as long as there is a need for human pilots onboard. Thus, I decided
to use this topic as my thesis research in order to contribute to aviation safety.

1.2 Cognitive States
Before starting this research, two questions needed to be answered. The first problem is
to analyze cognitive states of pilots, such as channelized attention, diverted attention, and
startle/surprise for the purpose of reducing aviation fatalities. In military aviation, channel-
ized attention is proven to be one of the most important factors attributed to insufficient
situational awareness (SA) of pilots (Moroze and Snow 1999). Moroze and Snow (1999)
also mention that some experts in this field have observed that the absence of SA of a flight
crew is the most widely recognized factor that leads to aviation mishaps.

In addition, the research to comprehend a flight crew’s psychological states, as mentioned
previously, has been suggested as a safety enhancement (SE) to remedy pilots’ deficiency
of airplane state awareness (ASA) because the Commercial Aviation Safety Team (CAST)
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discovered that 13 out of 18 commercial flight fatal events from 2003 to 2012were attributed
to the loss of control in-flight caused by flight crew loss of SA, and mental diversion
was involved in every one of these instances (Rosenkrans 2015). Therefore, analyzing the
cognitive states of pilots is imperative in order to enable pilots to overcome distractions and
to ensure flight safety.

The second question is whether aviators’ cognitive states can be classified and predicted by
simultaneously measuring their psychophysiological signals. Recent research by National
Aeronautics and Space Administration (NASA) Langley Research Center (Harrivel et al.
2017) used pre-processed electroencephalogram (EEG), galvanic skin response (GSR),
electrocardiogram (ECG), and respiration (R) signals from 13 participants as input features
to predict seven different pilot cognitive states (diverted attention, channelized attention,
low workload, high workload, confirmation bias, startle/surprise, and rest). NASA’s study
provided the overall best accuracy—area under the curve (AUC) 0.95withEEG,R, andGSR,
and AUC 0.93 with ECG and GSR. The outcome of NASA’s research shows that correctly
identifying pilots’ mental states is feasible and looks promising through the analysis of
psychophysiological signals (EEG, ECG, GSR, and R).

1.3 Research Objectives
The dataset analyzed in our thesis is from the Kaggle competition (Kaggle 2019), which
contains the same four modalities (EEG, ECG, GSR and R) as in NASA’s research, but
is from 18 participants. Furthermore, instead of seven mental states, four states (baseline,
channelized attention, diverted attention, and startle/surprise) are included. As we know
from the aforementioned information, those dangerous cognitive states contribute to flight
accidents. As a result, our objective is to build a model to detect pilots’ mental states in
dichotomy (non-detriment and danger) for the purpose of immediately informing pilots
when they fall into a hazardous mental state so that they will have more time to regain
situational awareness.

In addition, we are trying to predict the patterns in terms of time pilots would have before
losing “airplane state awareness.” In this way, we can further generalize the time series
patterns in which pilots experience distractions, which would induce one of the three
cognitive states in an attempt to provide an effective early warning to the flight crew to
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execute any proper measures for flight safety.

1.4 Thesis Structure
Chapter 2 reviews previous works related to our research analyzing similar datasets. Chapter
3 describes the methodology and workflow of this research, including information of the
data, time series, and classification methods. Chapter 4 demonstrates our results from
the overall analysis. Chapter 5 provides the research conclusion and recommendations for
further improvements.
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CHAPTER 2:
Background

In this chapter, we review previous works related to our research, focusing especially
on one article (Mishra et al. 2019) published in the Second International Conference on
Smart Systems and Inventive Technology (ICSSIT 2019), and one master’s degree thesis
(Crĳnen 2019) from the Cognitive Science andArtificial Intelligence Department of Tilburg
University in the Netherlands. Both applied different approaches to analyze datasets from
the Kaggle Competition.

2.1 LiteratureReview:ReducingCommercialAviationFa-
talities Using Support Vector Machines

Mishra and his team published an article in the Second International Conference on Smart
Systems and Inventive Technology titled “Reducing Commercial Aviation Fatalities Using
Support Vector Machines” (Mishra et al. 2019). In this research, they claim that if there
is no effective method to decrease the pilots’ inaccurate decision-making due to distrac-
tion, the flight accident frequency will be positively correlated to the growing number of
activities in the sky. This is because there are plenty of factors contributing to flight crews’
intense workload and that influences pilots’ concentration. Such factors include departure
and approach operations, dealing with heavy traffic in aerospace, and poor meteorological
conditions. Similarly, the Safety Enhancement recommendation made by CAST, “Airplane
State Awareness – Training for Attention Management,” places an emphasis on the limita-
tions of human performance during flight (Rosenkrans 2015).

In an effort to reduce aviation accidents, Mishra and his team managed to build a model
capable of detecting 400 pilots’ cognitive states by their physiological data, using a Support
Vector Machine (SVM) as a classifier. They also found a non-linear separable quality in the
data by applying data visualization, so the Gaussian Kernel function was implemented in
their model optimization. Moreover, using EEG, ECG, GSR, and R signal values as inputs,
they created a user interface webpage for identifying mental states of humans.

While reviewing this research paper, we noticed one description inconsistent with the data
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source Mishra and his team cite (Kaggle 2019). In the introduction section, they state that
the physiological data from 18 participants is provided for algorithm training purposes.
However, their data for training the model is a sample dataset of 400 pilots, which is, in
fact incompatible with the dataset from the Kaggle competition. Besides, their final result
of 95.5% accuracy is generated from 382 rows of data out of 400 rows. We assume they
are using a much bigger database that consisted of 400 pilots for training the algorithm and
randomly sampled one row of data from each pilot to compose a test dataset of 400 pilots.
If so, the data generation must be a huge process because the scale of the experiment is
substantial in contrast with what NASA performed with 24 participants.

Moreover, Mishra and his team suggest that machine learning models can be applied to
understand pilots’ current cognitive condition prior to each flight as a means of preventing
flight accidents. As a matter of fact, channelized attention, diverted attention, and star-
tle/surprise are the expected reactions with respect to different scenarios. We also know that
the situations change rapidly during flight because of the velocity of movement. Knowing
the captain is currently in a state of channelized attention before boarding does not mean he
or she will be distracted during the mission. A more realistic approach would detect flight
crews’mental states in themoment of operating the aircraft and providing an instant warning
signal to alert pilots when they might be entering a dangerous state so that pilots would be
able to fix the problem before actually neglecting necessary procedures of operation as a
result of interruption.

In addition, given the fact that Mishra and his team do not present their final model in this
article, other researchers will find it difficult to continue with this research. Therefore, we
provide our model as an initial point for future researchers who are interested in this field,
so they can continue refining the algorithm in an attempt to better predict pilots’ cognitive
states using machine learning methods or any newly developed computation technique.

2.2 Literature Review: Predicting a Pilot’s Cognitive State
from Physiological Measurements

A thesis, titled “Predicting a Pilot’s Cognitive State from Physiological Measurements” by
J.A. Crĳnen in 2019 analyzes the same dataset from the Kaggle competition “Reducing
Commercial Aviation Fatalities” (Crĳnen 2019). In that thesis, the author asserts that
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although machine intelligence can do the majority of the work for pilots during flight, there
are still some critical decisions that need to be made by the flight crew themselves. Thus,
this thesis mainly focuses on developing a better strategy to make pilots concentrate when
it is necessary to resolve problems on their own in the cockpit.

The thesis research conducted by Crĳnen (2019) begins by investigating the feasibility
of using physiological data to forecast the mental states of a pilot and distinguished the
engineering predictors attributing to the accuracy of themodel. Crĳnen (2019) alsomentions
that pilots perceiving themselves in a dangerous mental state do not necessarily remove the
threat because their decision to recover from an abnormal state relies on the personality
traits of the individual pilot, such as self-satisfaction and over-optimism. For example, the
captain may choose to ignore the warning if he/she is too confident in his/her skills to follow
standard procedures. Hence, the accurate prediction of cognitive states and an unignorable
alarm which pilots must react to will make the decision-making process in the cockpit safer.

Due to the policy of the Kaggle competition, researchers cannot acquire the complete test
dataset. So, we used the training dataset and separated it into training, validation, and test
sub-datasets. One previous research (Marcel and Millan 2007) regarding EEGs states that
the pattern of brainwaves is unique to each person so that the EEG can be a means for bio-
metric recognition. Another article (Saechia et al. 2005) also mentions that every human
heart is different. For this reason, using EEG data as inputs to characterize individuals is
viable. Under those circumstances, it might not be a great idea to strictly separate training,
validation, and test datasets by crew number. Even though the brainwaves can be generalized
by similarities to every person while receiving the same stimulation (Jahangir and Pirouz
2020), there is still uniqueness in each individual’s bio-electricity. Therefore, it is possible
to lose some important correlations without considering individual cases.

Instead of using only the original data measured from the sensor, Crĳnen (2019) also
uses psychophysiological and statistical methods to extract features from each modality as
additional inputs. In Crĳnen’s thesis research, such methods as sliding window, frequency
domain analysis, and longitudinal bipolar method are used. Even if it is possible to obtain
a deeper understanding from those descriptive statistical features, the increase in model
complexity (Castrounis 2021) might cause other problems, including overfitting and losing
fidelity of the data itself.
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Thus, in Crĳnen’s research, two major tasks are conducted. The first one is the classification
of cognitive states. In this task, a Gradient Boosting Machine (GBM) classifier is imple-
mented because of its flexibility and ability to adapt to outliers and unbalanced datasets.
Unlike NASA, which used AUC, Crĳnen (2019) claims the balanced F-score, or more
simply the F1 score, is a more appropriate measure of accuracy for unbalanced numbers of
response variables. An F1 score of 0.55 is generated in this task, and overfitting is discovered
because of the significant drop in F1 score when it is compared to training and validation
results. The second task is to determine a switch in mental states. Four extracted features are
used as inputs for training a logistic regression model due to their statistical significance.
The AUC score of the result is 0.53, meaning the performance of this model is similar to
binary random selection.

Based on the previously mentioned computational experiment, Crĳnen (2019) provides the
following conclusions.

• As to engineering features, GSR, ECG, and respiration data provide the most signifi-
cant contributions, which is consistent with our own experimental result.

• Even though the performance of cognitive states classification does not outperform
NASA’s outcome, the accuracy is similar for every participant in the test dataset.

• The AUC value equals 0.53, meaning the cognitive states change and thus can distin-
guish whether the change in mental states fails to be detected when extracted features
from the raw data are used as inputs.

• A model’s ability to classify cognitive states differs according to the individual as
evidenced by the results that show different performances among different pilots. In
other words, physiological qualities rely upon the human. Responses to the distinctive
psychological states differ among individuals as well.

Based on the findings just described, it would be a better strategy to train the data using all
participants’ signals simultaneously in order to gain sufficient information by taking human
factor relationships into consideration. The main purpose of our model is to alert pilots
when they are in a dangerous state intellectually, so the model is designed to determine
whether a pilot is either focusing on flying or preoccupied by any external stimulus.
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CHAPTER 3:
Methodology and Modeling

3.1 Methodology Overview
Figure 3.1 shows the workflow of our thesis research. This workflow is described in the
main steps that follow.

• Raw Data: Two datasets were downloaded from the Kaggle competition “Reducing
Commercial Aviation Fatalities” webpage (Kaggle 2019): the training dataset and the
test dataset. Due to the Kaggle competition policy, we were not able to acquire the
complete test set. Therefore, we decided to use only the training dataset and split the
data into three parts for training, validation, and testing purposes.

• Exploring Data Analysis: Data exploration is a preliminary and necessary step
in data analysis (Shelby 2018). It allows us to understand the basic structure and
characteristics of the data, such as distributions, correlations, types, and number of
variables, before it is processed. In this step, we chose data visualization to help us
gain deeper insight.

• Data Processing: After having the basic picture of what the data looks like, we
needed to adjust the data to the appropriate form in order to initiate future modeling.
In our case, we conducted time series analysis because all the records are based on a
time sequence. In addition, our objective is to alert pilots when they fall into adverse
mental states. To this end, we further converted the multi-class responses into binary
variables.

• Modeling: In our time series analysis, we found the predictability of electrocar-
diogram (ECG), galvanic skin response (GSR), and respiration (R) data. Thus, we
applied those predictions to the classification model intending to check the feasibility
of predicting future mental states through current psychophysiological data. Also, we
managed to train a model to distinguish current intellectual states by using all the
predictors except time.

• Performance Evaluation: This was a crucial and recursive step for verifying our
model’s effectiveness. If the result was not effective, then we needed to choose
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another method of classification. The accuracy from the confusion matrix, AUC, and
F1 score were adopted in our experiment as the criteria for evaluating performance.

Each of the steps depicted in Figure 3.1 is expanded upon in the following sections.

Figure 3.1. Workflow of this research process.

3.2 Data Description
We used actual psychophysiological evidence from 18 pilots in this dataset who were
exposed to multiple disruptive activities. Outside of a flight simulator, the benchmark
training set comprised a series of managed tests performed in a non-flight scenario. The
pilots underwent distractionsmeant to induce one of the following three cognitive conditions
(Kaggle 2019):

• Channelized Attention (CA) is defined as the condition that occurs when an in-
dividual is too concentrated on the mission to notice other important information.
The bench-marking experiments were designed by making the participants play an
enjoyable video game that included a puzzle.

• Diverted Attention (DA) is defined as the condition of an individual’s mind being
distracted by decision-related behavior or thinking processes. This state was induced
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through a screen-tracking activity done by the participants. Regularly, before switch-
ing to the tracking mission, a math question came up that had to be answered.

• Startle/Surprise (SS) is defined as a response triggered by making the participants
watch videos that included pop-up scares.

A set of two pilots, each assigned a unique identification, were tracked over time in each trial
and exposed to the experiment, which was designed to induce the psychological states of
channelized attention (CA), diverted attention (DA), or startle / surprise (SS). The dataset
includes three experiments (one for each state) where only one of the mental states was
triggered in the pilots. In other words, the pilots would be in either a safe mental state or a
dangerous mental state in each experiment. For every timestamp in the dataset, the aim is
to predict the pilots’ actual response from each experiment.

Each sensor worked at a sample rate of 256 Hz. As this is physiological data from actual
humans, the data may include noise and untruthful values.

3.2.1 Data Variables
The data variables for this dataset included the following:

• crew: A special identity for a pair of pilots. A total of nine crews are present in this
dataset.

• experiment: One of CA,DA, and SS. The training dataset includes these three studies.
• time: The duration in seconds of the evaluation.
• seat: A pilot in the seat on the left is (0) or right is (1).
• eeg (prefix): A total of 20 different electroencephalogram signals (Figure 3.2).
Blocka (2018) recommends that an EEG examination is used to look at the brain’s
electrical function. Brain cells interact through electric signals. An EEG scan, which
captures brainwave forms, may help recognize issues connected with certain opera-
tions. As shown in Figure 3.2, 10 to 20 tiny metal disks are connected to the scalp
with cables. The electrodes measure the electrical activities of the brain and transmit
messages to the device. The resulting traces behave like wavy lines of ups and downs,
and these lines help physicians diagnose irregular trends easily. An irregularity can
be triggered by a neurological disease.
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Figure 3.2. In order to document the unpremeditated EEG, the globally
accepted 10-20 system is usually used. Source: Malmivuo et al. (1995).

• ecg: Three-point Signal electrocardiogram (Figure 3.3). A resolution/bit of 0.012215
`V and a scale of –100 mV to +100 mV were present in the detector. The data was
gathered in micro-volts (mV). It is one of the easiest and quickest methods used
to measure the heart. The electrodes are attached to the ECG machine by leads.
Electromagnetic waves are generated, evaluated, and printed out. No energy goes
through the body using this method. Instead, normal electrical signals regulate the
various areas of the heart to maintain blood pumping. An ECG tracks these impulses
to demonstrate how quickly the heart is pounding, how it is pumping (steadily or
irregularly), and how quickly and when it is beating (normal or fast). Differences in
an ECG may signify several heart-related problems (Saechia et al. 2005).
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Figure 3.3. Portable three-lead ECG monitor. Source: Kristensen et al.
(2016).

• r: An indicator of the rise and fall of the chest. The sensor had a 0.2384186 `V
resolution/bit and a spectrum of –2.0 V and +2.0 V. The data is described in micro-
volts.

• gsr: An indicator of electrodermal function (Figure 3.4). The sensor had a 0.2384186
`V resolution/bit and a spectrum of –2.0 V and +2.0 V. The data is described inmicro-
volts. The galvanic skin response (GSR), also recognized as skin conductance (SC),
relates to shifts in the behavior of the sweat gland, which indicates the magnitude of
the emotional condition or emotional arousal of the participants (Shi et al. 2007).

Figure 3.4. Galvanic skin response sensor. Source: Myroniv et al. (2017).

• event: The pilot’s condition at a specified time: one of A = baseline, B = SS, C = CA,
D = DA.
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3.3 Time Series Analysis
Based on the result of data exploration for each numerical variable (EEG, ECG, GSR, and
R) with respect to time, we can observe that there are potential patterns in this dataset, as
can be seen from Figures 3.5 to 3.7. In an effort to further discover their relationships and
forecasting power regarding time, we conducted a time series analysis.

Figure 3.5. The variation of ECG, GSR, and respiration recordings during a
channelized attention (CA) experiment; safe (red), dangerous (blue-green).
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Figure 3.6. The variation of ECG, GSR, and respiration recordings during a
diverted attention (DA) experiment; safe (red), dangerous (blue-green).

Figure 3.7. The variation of ECG, GSR, and respiration recordings during a
startle / surprise (SS) experiment; safe (red), dangerous (blue-green).

According to Brockwell and Davis (2016), a time series is a dataset indexed by time-

15



ordered data points. Analysis of a time series involves different models to evaluate time
series data with a view to derive useful information and other data characteristics. Time
series forecasting inputs the observed historical data into a mathematical model to estimate
the possible values during a specific period in the future.

Assuming that those psychophysiological signals are predictable through time, we can
combine the predictions from the time series model with the classification methods to
further forecast the mental states of pilots in an attempt to prevent a loss of SA of the flight
crews in advance.

3.3.1 Data Processing
Before starting the time series modeling, we needed to restructure the data. The original
training set contains more than 4.8 million rows. It occupies 1.15 gigabytes of computer
memory without starting programming for analysis. Due to computational limitations, we
condensed the dataset to one row per 0.1 second (Figure 3.8).
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Figure 3.8. Time Series Data Restructure; the upper table shows the data
before restructuring by averaging the column values within each 0.1 second;
the lower table shows the restructured data after averaging the column values
within each 0.1 second.

We also used the mean value of each numerical variable according to the new time intervals
and focused on the data with a single pilot (crew = 1 and seat = 0) who was the captain of
Crew 1. Because some psychophysiological data are unique to each person, such as EEG
(Marcel andMillan 2007) and ECG data (Saechia et al. 2005), we considered it a reasonable
approach to sample the data from a specific participant as part of our inputs for time series
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analysis.

In addition, we converted the four states (CA, DA, SS, and Baseline) into binary responses
(baseline and abnormal) in accordance with our objective, which is to distinguish whether
a pilot falls into a dangerous mental state.

3.3.2 Time Series Models
In this section, we describe the time series models in order of complexity, from least to most
complex.

Naïve

Using the Naïve model, we set all estimates to be just the value of the last observation for
Naïve forecasts (Yoshida 2020).

This is expressed as
.̂C+1 = .C . (3.1)

Hyndman andAthanasopoulos (2018) claim that, for several estimations relating to financial
time series, this approach works surprisingly well. Since a Naïve forecast is ideal as the data
matches a random walk (current value as a next-period forecast), it is also referred to as a
random walk forecast.

The prediction for time C + 1 can be written as

.̂C+1 = .C−: , (3.2)

where k is the seasonal lag (Yoshida 2020).

Seasonal Decomposition (STL)

Data from a time series may exhibit a few patterns, and splitting a time series into different
element components is always useful for further analysis (Hyndman and Athanasopoulos
2018).
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The main time series components are the following (Yoshida 2020):

• trend: When there is a long-term rise or decrease in the dataset, we identify it as a
trend. A trend can be nonlinear.

• seasonal (periodic) patterns: When seasonal factors (e.g., a specific date of the
year) can influence a time series, we call it a Seasonal Pattern. It always appears
periodically; for instance, every 60 days or every week.

• cycle: When data shows fluctuations in an irregular manner, we call it a cycle. A
similar example is the volatile nature of the bull and bear stock markets.

• noise: This is the remaining, unidentified variance from the previously described data
components.

STL is a flexible and stable tool for time series decomposition. It is an acronym for “Seasonal
and Trend decomposition using Loess,” and loess refers to a nonlinear and nonparametric re-
lationship estimation procedure. STL is also stable for outliers, and hence, predictions of the
trend, cycle, and seasonal elements are not influenced by occasional irregular observations
(Hyndman and Athanasopoulos 2018).

In our analysis, we used an stl function in the R programming language with seasonal win-
dow (s.window) to decompose a time series dataset to observe the seasonal patterns, trend,
and irregular components. By analyzing the time series decomposition, wemay further fore-
cast future psychophysiological values. According to Hyndman andAthanasopoulos (2018),
seasonal window (s.window) is the number of consecutive time stamps to be included in
the seasonal component to approximate each value.

Exponential Smoothing (ETS)

Exponential Smoothing is an obvious extension of the moving average method (Yoshida
2020). Hyndman and Athanasopoulos (2018) mention that the weighted means of past
observations are the forecasts generated by exponential smoothing, with the weights de-
creasing exponentially as the observations become older. Specifically, the more recent the
observation is, the larger the weight is. This structure provides efficient and precise pre-
dictions over a broad variety of time series. Equation 3.3 shows the basic idea of weighted
average, where 0 ≤ U ≤ 1 is the smoothing parameter.
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.̂)+1|) = U.) + U(1 − U).)−1 + U(1 − U)2.)−2 + · · · . (3.3)

The function ets in the R programming language was used in this analysis. Through op-
timizing the likelihood function, this model not only measures both the initial states and
smoothing parameters, but also scans over a limited parameter space to ensure the final
model has predictive power (Hyndman et al. 2008).

Auto-Regressive Integrated Moving Average (ARIMA)

Another method of time series forecasting is provided by ARIMA models. The two most
commonly employed techniques to time series forecasting that have complementary ap-
proaches to the issue are the exponential smoothing andARIMAmodels. Although exponen-
tial smoothing models focus on the concepts of trend and seasonality, the auto-correlations
in the data are represented by ARIMA models (Hyndman and Athanasopoulos 2018).

An ARIMA model is composed of the following three components (Yoshida 2020):

• Auto-Regressive Component: For the next time periods, the AR(p) component
references the prior time periods as predictors.

• Moving Average Component: Using an error regression technique, the MA(q) com-
ponent minimizes the residual errors.

• Integrated Component:
– The first order difference is denoted by AR(1), i.e., .C − .C−1.
– Generally, only the variations between the first and second order are considered.
– In an effort tomake the time series stationary, this component is used to eliminate
trends.

The following three numbers could well summarize a non-seasonal ARIMAmodel (Yoshida
2020):

• p: The number of auto regressive terms.
• d: The number of non-seasonal differences.
• q: The number of moving-average terms.

This is called an ARIMA(p,d,q) model.
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The auto.arima function in the forecast package of R was used in this thesis. It enables
the possibility to automatically optimize the ARIMA(p,d,q) model that provides the best fit
over the training period, including engaging with the seasonal effects (Yoshida 2020).

Ensemble

The Ensemble model is a mixture of various models in the time series (Yoshida 2020). In
our analysis, we constructed an Ensemble model by averaging the values predicted by the
following models:

• Seasonal Decomposition (STL);
• Exponential Smoothing (ETS);
• Auto-Regressive Integrated Moving Average (ARIMA).

3.3.3 Performance Evaluation
Hyndman and Athanasopoulos (2018) maintain that when using genuine forecasts, it is
important to determine forecast accuracy. Therefore, the scale of the residuals is not a good
indicator of how large the true forecast errors would be. It is only important to assess the
precision of predictions when considering how well a model does on additional data that
has not been utilized when fitting the model.

It is a standard practice to divide the dataset into two groups, training and test data, while
selecting models, where the training data is used to approximate the parameters of a forecast
model and the test data is used to measure its accuracy. Since the test data is not used to
assess the predictions, a reliable indicator should be given about how accurately the model
is able to predict new data (Hyndman and Athanasopoulos 2018).

The subsequent sections address the process of measuring predictive performance and
precision with the rolling horizon method. In addition, we further explain the accuracy
measurements used to calculate the performance of the models that fit our time series
dataset.

Time Series Cross-Validation / Rolling Horizon

Hyndman and Athanasopoulos (2018) also describe that time series cross-validation is an
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advanced usage of training/test sets to verify the accuracy of the model (Figure 3.9). There
are a number of test sets in this method, each one consisting of a single observation. The
split training dataset only comprises the observations that happened before the test data was
assessed. Thus, in building the prediction, no future observations should be included. As
an accurate prediction dependent on a small training set cannot be achieved, the earliest
observations are not treated as testing data.

Figure 3.9. Rolling Horizons for time series model performance evaluation.
We evaluate performance by repeatedly fitting the forecasting models to
“rolling periods” and then measuring the performance in forecasting over the
horizon that will be used in practice. This approach mimics the train/test
dataset method used throughout the machine learning process. Source:
Yoshida (2020).

We began to fit our models in our research to the first ten timestamps (per 0.1 second) or
one second. We then extended the training set iteratively by an additional second until it
surpassed 50 seconds, refitted the algorithm, and reassessed the accuracy of the model on
the test set.

Accuracy Measurements

Yoshida (2020) asserts that there are multiple metrics that can be applied to assess the
performance of time series models (including all the standard statistical approaches, such
as Mean Squared Error (MSE)). Those tests, however, are not always scale-free (a desired
property).
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There are two methods that are now becoming effective forecasting assessment criteria:

• The Mean Absolute Percentage Error (MAPE) calculates the difference in prediction
error and divides it by the real observation value,

"�%� =
1
#

#∑
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.8

. (3.4)

• The Mean Absolute Scaled Error (MASE) measures the forecast error in contrast to
the error of a Naïve model forecast (F),
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The scale-free property of both MASE and MAPE implies that their values do not depend
on the magnitude of the observations.

We defined two thresholds for our analysis that gave proof of the effectiveness and predictive
power of a model:

• The 1-Step and 10-Step MAPE values are below 0.2. This suggests a difference
between predicted and actual time series values of less than 20 percent.

• The 1-Step and 10-Step MASE values are less than 1. These could mean that in the
time series, the model provided would forecast future observations more precisely
than a simple Naïve model.

These thresholds allowed us to efficiently assess numerous time series models.

3.4 Classification Methods
Our research objective is to build a model to detect pilots’ mental states (normal or danger-
ous) according to their real-time psychophysiological data (EEG, ECG,GSR, and respiration
signals). To this end, we used classification methods to train our best model intending to
become aware of pilots’ mental states rapidly and accurately.
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3.4.1 Data Processing
First, we looked at the distribution of the response variable. From Figures 3.10 to 3.13,
we can easily notice the serious unbalance of observations with respect to the response
variable. In order to make the data format consistent with our objective, we converted the
response variable “event” into a binary one.

Figure 3.10. The distribution of events in each experiment before dichotomiz-
ing. A = baseline (red), B = SS (green), C = CA (blue-green), D = DA
(purple).
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Figure 3.11. The distribution of the events with respect to each experiment
after dichotomizing. 0 = safe (red), 1 = dangerous (blue-green).

Figure 3.12. The distribution of events before dichotomizing. A = baseline
(red), B = SS (green), C = CA (bluegreen), D = DA (purple).
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Figure 3.13. The distribution of events after dichotomizing. 0 = safe (red),
1 = dangerous (bluegreen).

Second, we dropped the column of “experiment,” since it is obviously correlated to the
“event.” According to the data description (Kaggle 2019), every experiment would trigger
only one response, so a participant would either stay at baseline or be distracted.

Third, we transformed “crew” and “seat” to be categorical because they represent a specific
pilot.

Fourth, we randomly chose a sample size of 1/1000 with replacement from the original
training dataset, so that we could have an independently and identically distributed (IID)
dataset for training our algorithm (Stewart 2016) given that IID assumptions are required
for most machine learning procedures (Nouretdinov et al. 2001).

Last, we divided the sample data into 80% (training) and 20% (validation) to calculate the
initial performance. Then, we randomly sampled another dataset to be our test data which
was not being used for training the model.

3.4.2 Classification Methods
The classification models implemented in this thesis are as follows.
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Logistic Regression

Logistic regression is an algorithm used in machine learning for classification problems,
such as estimating the probability that our dataset corresponds to one class over another
(Yoshida 2020). For example, we are interested in forecasting the probability that a person,
based on the amount of the balance owed, would default on repaying his or her credit card
balance (Figure 3.14).

Figure 3.14. The predicted probabilities of whether a person will default on
repaying their credit card given the amount of the balance owed, by logistic
regression. All predicted values are between 0 and 1. Source: James et al.
(2013).

We can think of the response as

% (default = Yes | Balance). (3.6)

If the response variable is “Yes” or “No”,

let
5 (-) = %(. = 1|-), (3.7)
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and then the logistic regression model can be written as

5 (-) = exp(V0 + V1-)
1 + exp(V0 + V1-)

. (3.8)

where V0 and V1 are coefficients estimated given the data.
This is equivalent to

5 (-)
1 − 5 (-) = exp(V0 + V1-). (3.9)

If we take log at both sides of the equation, then we have

;>�( 5 (-)
1 − 5 (-) ) = V0 + V1-. (3.10)

This is referred to as a logit function and it constructs a linear equation of - . In this thesis,
we used the glm function in the R programming language for logistic regression (Yoshida
2020).

Support Vector Machine (SVM)

The aim of the SVM algorithm is to locate a hyperplane in a multi-dimensional space that
correctly classifies the data points (Yoshida 2020).

Support vectors are data points located closest to the hyperplane that impact the hyperplane’s
direction and orientation (Figure 3.15). We optimize the margin of the classifier through
these support vectors (Yoshida 2020).
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Figure 3.15. There are two types of observations that are either blue or
purple. The hyperplane of the maximum margin is seen as a solid line. The
gap between the solid line to one of the dotted lines is the margin. An
example of the support vectors is displayed where the two blue points and
the purple point intercept the dotted lines. The arrows signify the distance
from those points to the hyperplane. The purple and blue grid displays a
classifier’s judgment centered on the separate hyperplane. Source: James
et al. (2013).

In this analysis, we used the svm function in the R programming language from the e1071
package to fit the SVM model (Yoshida 2020).

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a method that preserves every accessible case and classifies
new data or cases based on a measure of distance (Figure 3.16). It is often used to assign
a data point to a certain category because of the similarity of its surroundings (Yoshida
2020).
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Figure 3.16. A new point is now given the most common mark of its K-
Nearest Neighbors. Source: Yoshida (2020).

Similarity is described between two data points by a distance metric (Yoshida 2020).

Here, we used the knn function in the R programming language to fit the model for
classification (Yoshida 2020).

Recursive Partitioning and Regression Trees (rpart)

Decision trees classify data points partitioning the data set as awhole (Figure 3.17). Decision
trees are simple, straightforward, and user friendly, but not always precise (James et al. 2013).

30



Figure 3.17. Decision tree of our training dataset by the rpart function.

The rpart algorithm in the R programming language, which is implemented in the functions
in this thesis by recursively separating the dataset, implies that the subsets resulting from a
split are further split before a predetermined termination criterion is achieved. The separation
is focused on the independent variable at each point, resulting in the greatest possible
reduction in the dependent variable’s heterogeneity (Yoshida 2020).

Random Forests

Random Forests are an ensemble approach that involves averaging and bootstrapping. This
approach uses multiple similar distributed trees to bootstrap training data samples. When
trees are sufficiently developed, it is also possible to reduce bias. In addition, the Random
Forests algorithm decreases the variation by averaging noisy unbiased trees. By minimizing
similarity between trees using data bootstrapped for each tree and sampling accessible
variable-sets at each node, it maximizes the effects of variance reduction (Yoshida 2020).
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For several types of datasets, the Random Forests approach is one of the most robust
machine learning methods. In addition, without variable deletion, it can manage thousands
of inputs, and provides an analysis of what variables are significant in the classification
process (Figure 3.18). More importantly, even when a substantial percentage of the data is
missing, this method remains efficient at retaining high accuracy (Yoshida 2020).

Figure 3.18. Feature Importance graphs from the Random Forests method;
X-axis: Accuracy(Left); Gini(Right); Y-axis: The importance of predictors in
descending order.

In this thesis, the randomForest function in the R programming language from the ran-
domForest package was used to build the Random Forests model (Yoshida 2020).

3.4.3 Performance Evaluation
There are three evaluation criteria used in this analysis. We explain them in the following
paragraphs. Figure 3.19 is a two-by-two confusion matrix, which is the most important tool
for evaluating binary classification performance.
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Figure 3.19. Confusion matrix. Source: Yoshida (2020).

Accuracy

Accuracy evaluates how many observations were properly classified, whether positive or
negative. On extremely unbalanced data, however, we should avoid employing accuracy as
a criterion. In such a situation, by merely classifying all observations as the majority class,
it is easy to get a high accuracy rate. Applying accuracy is generally a good start when the
data is balanced as well as when every class is identically distributed (Yoshida 2020).

Hence,

Accuracy =
TP + TN

TP + TN + FP + FN , (3.11)

where TP represents true positive; TN denotes true negative; FP indicates false positive;
and FN means false negative.

Area Under the Curve (AUC)

AUC is a model performance measurement for the problems of classification at different
threshold settings. The probability curve represents the Receiver Operating Characteristics
(ROC), and the degree or capability of separability is expressed by AUC. This shows how
well the model will distinguish various categories. The stronger the model is, the higher the
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AUC. This technique is used to assess the performance of classification models, as shown
in Figure 3.20 (Yoshida 2020).

Figure 3.20. Area Under the ROC Curve; the AUC calculates the whole two-
dimensional region below the entire ROC curve. X-axis: 1 − Specificity, also
known as the false positive rate; Y-axis: Sensitivity, also known as the true
positive rate. Source: Yoshida (2020).

F1 Score

The F1 score is the Precision and Recall Weighted Average. This score takes into consider-
ation all false positives and false negatives. It is not as easy to explain as accuracy, but the
F1 score is generally more useful than accuracy, especially for unequally distributed classes
(Crĳnen 2019).
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CHAPTER 4:
Results and Analysis

4.1 Results of Time Series Analysis
By accurately predicting pilots’ mental states in advance, we can give out a warning before
they become distracted. In other words, pilots will be more cautious of loss of SA by
knowing that they might be heading toward an unmitigated disaster. For this reason, we
started this research using time series analysis.

4.1.1 Assumptions
We conducted the time series analysis based on the following assumptions:

• Wecan distinguish a pilot’smental state by processing his or her real-time psychophys-
iological signals. In this research, we used electroencephalogram, electrocardiogram,
galvanic skin response, and respiration data.

• The psychophysiological values of a pilot can be predicted by time series models.
Here, we assumed that the correlation in the time series will provide the predictive
power to forecast future mental states of a pilot.

If the assumptions just stated hold, we can predict a pilot’s state of mind beforehand and
gain more time for pilots to adjust themselves to stay focused on flying.

4.1.2 Experiment Using Electroencephalogram Data
In the beginning, we chose the first column of the EEG series data, which is denoted as
eeg_fp1, in order to test the predictability of the electroencephalogram through time. As
mentioned in Chapter 3, an electroencephalogram is unique to each person (Saechia et al.
2005), so we minimized our data to exclude all but the eeg_fp1 signals from the captain
of the first crew.

Considering the efficiency of processing such a large amount of data, we restructured our
data from approximately every 0.004 seconds per observation (Figure 4.1) to every 0.1
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second per observation (Figure 4.2). To achieve this goal, we took the average value of all
the eeg_fp1 data within every 0.1 second window to be a new observation.

Figure 4.1. Before averaging the eeg_fp1 within each 0.1 second;
time: The original time stamps;
eeg_fp1: The original eeg_fp1 values.

Figure 4.2. After averaging the eeg_fp1 within each 0.1 second;
Series.Times: The new time stamps (per 0.1 second);
mfp1: The mean eeg_fp1 values within each new time stamp.

After the data processing just described, we began to train our time series models—such
as Naïve, Seasonal Decomposition (STL), Exponential Smoothing (ETS), Auto-Regressive
Integrated Moving Average (ARIMA), and Ensemble models—by using the observations
from within the first 50 seconds.

Figure 4.3 shows the time series model performance in eeg_fp1. We used 1-step and 10-
step MAPE and MASE to evaluate the error between the predictions and the true values.
Nonetheless, the 10-step MAPE values are all greater than the 0.2 criteria, which means the
difference between forecasting and true values is greater than 20% when using the Naïve
model as a baseline.
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Figure 4.3. Model performance comparison of eeg_fp1 values.
Model order (from top to bottom): Naive, Seasonal Decomposition, Expo-
nential Smoothing, ARIMA, Ensemble.
First column: MAPE for one step in time horizon.
Second column: MAPE for ten steps in time horizon.
Third column: MASE for one step in time horizon.
Fourth column: MASE for ten steps in time horizon.

This result tells us that eeg_fp1 values are not predictable through time series models. The
reason for this might be that the mean values of each 0.1 second interval would cause a
signal distortion and make them lose their predictability.

Thus, we tried using the random forest algorithm to give us the importance comparison of
our predictors in an attempt to find the top three significant variables. Then, we could use the
time series models to re-examine the viability of forecasting psychophysiological signals by
using those important variables as inputs. If the result was still not stable, we would be able
to conclude that trying to find the predictability of psychophysiological signals would not
be realistic in this research. Nevertheless, it would allow for future research opportunities
on this subject.

4.1.3 Predictor Importance Assessment
From the Feature Importance graphs (Figure 4.4), through the Random Forest method, we
can see that electrocardiogram, respiration, and galvanic skin response are the top three
features contributing to the homogeneity of the nodes and leaves in the resulting random
forest. Hence, we used these three signals to refit our time series models to verify whether
it is achievable to predict the psychophysiological data through time.
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Figure 4.4. Feature Importance graphs from the Random Forest method.
X-axis: Accuracy (upper); Gini (lower). Y-axis: The importance of predictors
in descending order; the common top four predictors: ecg, r, gsr, crew.
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4.1.4 Experiment Using Electrocardiogram Data
We generated the model performance comparison table for ECG data (Figure 4.5) by
replicating the methods for fitting the eeg_fp1 time series model.

Figure 4.5. Model performance comparison of ECG values.
Model order (from top to bottom): Naive, Seasonal Decomposition, Expo-
nential Smoothing, ARIMA, Ensemble.
First column: MAPE for one step in time horizon.
Second column: MAPE for ten steps in time horizon.
Third column: MASE for one step in time horizon.
Fourth column: MASE for ten steps in time horizon.

The result shows that all time-series models are in conformity with MAPE less than 0.2 and
MASE less than 1 (except the Naïve model), which means that all models possess predictive
power for this ECG data. Furthermore, the ARIMA model performs the best overall.

4.1.5 Experiment Using Galvanic Skin Response Data
The result for this data (shown in Figure 4.6) indicates that the galvanic skin response (GSR)
can be forecast through time, and the ARIMA model offers the best in overall performance.
In addition, all time series models are in conformity with MAPE less than 0.2 and MASE
less than 1 (except the Naïve model), which means that all models possess predictive power
for GSR values.
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Figure 4.6. Model performance comparison of GSR values.
Model order (from top to bottom): Naive, Seasonal Decomposition, Expo-
nential Smoothing, ARIMA, Ensemble.
First column: MAPE for one step in time horizon.
Second column: MAPE for ten steps in time horizon.
Third column: MASE for one step in time horizon.
Fourth column: MASE for ten steps in time horizon.

4.1.6 Experiment Using Respiration Data
Figure 4.7 shows that respiration signals can be predicted through time and that the ARIMA
model still performs the best among all the time series models. Moreover, all time series
models are in conformity with MAPE less than 0.2 and MASE less than 1 (except the Naïve
model), which means that all models possess predictive power for Respiration data.

Figure 4.7. Model performance comparison of Respiration values.
Model order (from top to bottom): Naive, Seasonal Decomposition, Expo-
nential Smoothing, ARIMA, Ensemble.
First column: MAPE for one step in time horizon.
Second column: MAPE for ten steps in time horizon.
Third column: MASE for one step in time horizon.
Fourth column: MASE for ten steps in time horizon.
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4.1.7 Time Series and Prediction by Random Forest
From the previous experiments, we found that electrocardiogram, galvanic skin response,
and respiration signals are predictive and that the ARIMA model provides the best perfor-
mance in the three experiments. Consequently, we decided to combine the result from the
ARIMA model with the Random Forest classification method to verify the usefulness of
predicting future events (mental states) from 50 seconds to 100 seconds.

First, we converted the response variable to a binary factor and split the observations of the
first 50 seconds into 80% training and 20% validation datasets. The model performance in
the validation set is 93% Accuracy with 95% Sensitivity and 63% Specificity.

Second, we used the random forest classification method to generate predictions from 50.1
seconds to 100 seconds. Then, we applied the predictions as inputs for the Random Forest
model to compare the predicted events versus the true values from the original dataset.

The result is shown in the following graph (Figure 4.8).

Figure 4.8. Accuracy of predictions from 50.1 seconds to 100 seconds. X-axis:
Time in seconds; Y-axis: Accuracy of prediction.

When compared solely by their accuracy, we can see there is no specific pattern for this
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irregular fluctuation, and the change of these accuracy rates also contradicts the principle
of the time series forecast, which is that the longer we predict from the present time, the
worse performance we have (Yoshida 2020).

Therefore, we conclude that using the time series to analyze psychophysiological data may
not be useful for experiments of such short durations. Nevertheless, this finding allows for
future research opportunities on this subject. In the next section, we mainly focus on the
classification method by using present signals as inputs to evaluate whether there is a model
that can accurately tell whether a pilot is falling into a dangerous mental state.

4.2 Results of Classification Methods
At this stage, we tried to find an algorithm that could accurately classify the pilots’ mental
states (safe or dangerous) through the processing of psychophysiological data (electroen-
cephalogram, electrocardiogram, galvanic skin response, and respiration signals) so that we
would be able to alert pilots who are gradually falling into a high-risk mental state (i.e.,
channelized attention, diverted attention, and startle / surprise).

The initial step in finding the best classification algorithm is to randomly select a sample
size of 1/1000 with replacement from the original training dataset so that we could have an
independently and identically distributed subset for training our algorithm (Stewart 2016)
given that IID assumptions are required for machine learning procedures (Nouretdinov et al.
2001).

Then, we divided the sample data into 80% (training) and 20% (validation) to evaluate the
initial performance of the models according to Accuracy, Sensitivity, and Specificity from
the confusion matrix provided by the caret package in the R programming language and
AUC as the criterion to choose the best fit model.

After we had the preliminary best fit classifier, we tried to tune its parameters to achieve
better performance by the chosen classification model.

The final step was to randomly sample another dataset as our test data, which was not used
for training this model for the purpose of an unbiased evaluation of the final model fit. We
not only calculated the Accuracy, but also used the F1 score to give us another perspective
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on the overall performance, especially when we had imbalanced classes of the response
variable.

4.2.1 Performance Comparison of Different Classifiers
Here, we summarize the respective performance of the Stepwise Logistic Regression, Sup-
port Vector Machines (SVM), K-Nearest Neighbors (KNN), Recursive Partitioning and
Regression Trees (rpart), and Random Forest models as shown in Figures 4.9 to 4.13:

Figure 4.9. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Stepwise Logistic Regression model.

Figure 4.10. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the SVM model.
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Figure 4.11. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the acKNN model.

Figure 4.12. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the rpart model.

Figure 4.13. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Random Forest model.
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Figure 4.14. ROC comparison for different classifiers; Logit (black), SVM
(red), KNN (blue), rpart (green), Random Forest (brown).

Figure 4.15. Performance comparison of different classifiers (Logit, SVM,
KNN, rpart, Random Forest); the bold type denotes the most desired value.

From the ROC graph (Figure 4.14) and the performance comparison table (Figure 4.15), we
can see that the Random Forest Classifier performs the best overall when using Accuracy,
Sensitivity, Specificity, and AUC as the evaluation criteria. In Figure 4.15, the bold type
denotes the most desired value.

In the next step, we focused on the Random Forest model with a different tuning length for
the purpose of finding out whether the Random Forest model could perform even better.
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4.2.2 Performance Comparison of Random ForestModels with Differ-
ent Tuning Lengths

In this section, we tried a few different tuning lengths to test whether we could produce a
higher performance using the Random Forest algorithm. We also added an F1 score as a
supplement criterion because the response variable classes are not evenly distributed and
an F1 score is useful in this situation (Crĳnen 2019). The tuneLength enables the program
to automatically tune the algorithm. For each tuning parameter, the tuneLength indicates
the number of different values to explore (Kuhn 2015).

Figure 4.16. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Random Forest model without tuning.

Figure 4.17. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Random Forest model with tuneLength = 20.
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Figure 4.18. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Random Forest model with tuneLength = 30.

Figure 4.19. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Random Forest model with tuneLength = 40.

Figure 4.20. Performance comparison of the Random Forest model with
different tuning lengths (none, 20, 30, 40); the bold type denotes the most
desired value.

According to Figures 4.16 to 4.20, we found that the Random Forest model performs the
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best when the tuning length equals to 30. This is our best classification model from the
validation dataset by far.

4.2.3 Performance of the Random Forest Model on the Test Dataset
Due to the Kaggle competition rules (Kaggle 2019), we could not obtain the complete
test dataset to evaluate our final model fit. Thus, we used a randomly selected and unbiased
dataset that was also the same size as the data for the above evaluation procedure. In addition,
we simulated this process 1,000 times and used the average Accuracy, AUC, and F1 score
as our final model performance index (Figure 4.21).

Figure 4.21. The best model mean performance values from 1,000 test
datasets.

Figure 4.21 shows the final performance of our best Random Forest model so far by
averaging the results from 1,000 independent test datasets. These values indicate that this
model is capable of successfully distinguishing the binary mental states of a pilot (safe
or dangerous) approximately 90% of the time. Furthermore, the approximately 0.92 F1
score demonstrates that this model can do a fair job of identifying different mental states
even though the response classes are imbalanced (2849.692 observations for the safe and
2017.308 observations for the dangerous by averaging 1,000 samples).

4.2.4 Importance of Predictors from the Random Forest Model
From the Feature Importance graphs (Figure 4.22), we can see that electrocardiogram,
respiration, and galvanic skin response are the top three features that contribute to the
accuracy and homogeneity of the nodes and leaves in the resulting Random Forest model.
This result is not surprising because generally when we become nervous or shocked by a
sudden event, our heartbeat rate and rhythm of breathing will change; additionally, some
people even start to sweat. The variation pattern in the electroencephalogram, however, is
not that intuitive from visualizing the signal values.
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Figure 4.22. Feature Importance graphs from the Random Forest model. X-
axis: Accuracy (upper); Gini (lower); Y-axis: The importance of predictors in
descending order; the common top four predictors: ecg, r, gsr, crew.

Here, we tried to find out whether we could use only electrocardiogram, respiration, and
galvanic skin response data to identify pilots’ mental states. We also tried to add the fourth
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predictor, “crew,” which is also ranked as the fourth important from the Feature Importance
graph, to test how the individual’s electrocardiogram signal influences the algorithm based
on a research conclusion that the electrocardiogram is unique to each person (Marcel and
Millan 2007). Figures 4.23 to 4.24 show the results of this experiment.

Figure 4.23. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Random Forest model with three predictors (ecg,
r, gsr).

Figure 4.24. The confusion matrix with the threshold value of 0.5 and the
performance metrics for the Random Forest model with four predictors (ecg,
r, gsr, crew).

Figure 4.25 shows that themodel using only the electrocardiogram, respiration, and galvanic
skin responses as predictors performs better overall than the models to which “crew” has
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been added and that use all variables from the validation dataset. In addition, themodel using
electrocardiogram, respiration, galvanic skin response, and crew as predictors performs
slightly better than the model that did not use the crew predictor in the test data.

From the results presented, we conclude that it does not matter whether we choose Model
1, 2, or 3, respectively, as shown in Figure 4.26. We can still have approximately 90%
discriminability of pilots’ mental states (safe or dangerous) by using the Random Forest
model as a classifier. Those slight differences according to the result in Figures 4.25 and
4.26 might be the reason for the uniqueness of the electrocardiogram and some artifacts or
noise that cannot be handled by the Random Forest model.

Figure 4.25. Performance comparison of Random Forest models with dif-
ferent combinations of predictors on the validation dataset; the bold type
denotes the most desired value.
Model 1: The model with three predictors (ecg, r, gsr).
Model 2: The model with four predictors (ecg, r, gsr, and crew).
Model 3: The model with all predictors (20 eeg-prefix recordings, ecg, r, gsr,
crew, and seat).

Figure 4.26. The mean performance values from 1,000 test datasets; the
bold type denotes the most desired value.
Model 1: The model with three predictors (ecg, r, gsr).
Model 2: The model with four predictors (ecg, r, gsr, and crew).
Model 3: The model with all predictors (20 eeg-prefix recordings, ecg, r, gsr,
crew, and seat).

Due to the limited information from the Kaggle competition, there are many unknowns in
this dataset, such as the equipment for gathering the data and how accurately those data
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were collected. Such factors absolutely affect our data analysis process and we might need
multiple similar datasets to further verify our assumptions.

In comparison to recent similar studies, our research result is useful and straightforward.
Based on the outcome of our experiments, we can gain an awareness that the pilot is being
distracted by simply monitoring his or her electrocardiogram, respiration, and galvanic skin
response, and such data collecting procedures are apparently easier and less burdensome for
a pilot during flight than running an electroencephalogram, which would require attaching
20 sensors on the pilot’s scalp.
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CHAPTER 5:
Conclusion

5.1 Summary
In this chapter, we summarize the thesis in terms of time series analysis and classification
methods and also provide recommendations for future research.

5.1.1 Time Series Analysis
In an attempt to predict pilots’ mental states before they fall into a dangerous state, we
conducted time series analysis under the presumption that the psychophysiological values
of a pilot can be predicted in terms of time. We found that ECG, GSR, and respiration
signals are predictable, and the ARIMA model performs the best in those three modalities
within the first 50 seconds.

Nevertheless, the inconsistent accuracy of predictions in the range between 50 seconds to
100 seconds shows the mental states of pilots are not predictable. Thus, we conclude that
using the time series to analyze psychophysiological datamay not be feasible for experiments
of such short durations. This finding, however, allows for future opportunities for research
on this topic.

5.1.2 Classification Methods
Among all the classifiers we have tested, the Random Forest model provides the best
performance, with an accuracy rate of 0.90, AUC of 0.88, and F1 score of 0.92 when we
used all predictors (crew, seat, EEG, ECG, GSR, and respiration) as inputs.

According to the Feature Importance graphs from the Random Forest model (Figure 5.1),
ECG, GSR, respiration, and crew are the top four most important features that contribute to
accuracy and homogeneity of the nodes and leaves in the resulting random forest.
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Figure 5.1. Feature Importance graphs from the Random Forest model. X-
axis: Accuracy (upper); Gini (lower). Y-axis: The importance of predictors in
descending order; the common top four predictors: ecg, r, gsr, crew.
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Thus, we tried to refit the model with these top four features and test the model’s perfor-
mance. The average performance from 1,000 test datasets (Figure 5.2) shows that the model
using ECG, GSR, respiration, and crew as predictors (Model 2) performs slightly better than
the model that did not use the crew predictor (Model 1) and the model using all predictors
(Model 3).

Figure 5.2. The mean performance values from 1,000 test datasets; the bold
type denotes the most desired value.
Model 1: The model with three predictors (ecg, r, gsr).
Model 2: The model with four predictors (ecg, r, gsr, and crew).
Model 3: The model with all predictors (20 eeg-prefix recordings, ecg, r, gsr,
crew, and seat).

We conclude that it does not matter whether we choose Models 1, 2, or 3 shown in Figure
5.2. We can still have an approximately 90% ability to discern pilots’ mental states (safe
or dangerous) by using the Random Forest model as a classifier. Those slight differences
according to the results might be caused by the uniqueness of electrocardiogram data to each
person (Saechia et al. 2005) and some artifacts or noise which cannot be entirely handled
by the Random Forest model.

According to the results of our experiments, we can detect whether a pilot is distracted
approximately 90% of the time, simply by measuring his or her electrocardiogram, respi-
ration, and galvanic skin response signals. Keeping that in mind, our model is effective and
easier to interpret that the methods presented in recent similar studies.

5.2 Recommendations for Future Research
First, while conducting the time series analysis, we were not able to use the entire dataset for
the model training due to the limitation of computer capability. This kind of constraint can
be overcome, however, when future analysts train the algorithm with a much more advanced
and powerful computer or a more advanced parallel computing skill in programming.
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Second, to achieve optimal performance of the model with multiple similar datasets it would
be best to have datasets generated from similar experiments to test the reliability of using
the Random Forest model as a classifier. If that method is still the best, then we can further
apply this algorithm to the real flight environment for the ultimate goal of reducing aviation
fatalities.

Third, although flight safety is crucial to mission success, we encourage researchers from
around the world with interests in both commercial and military aviation safety to join
the research in this field for the purpose of reducing aviation mishaps caused by human
factors. With our effort, flight accidents can be forestalled, and with continued research and
enhancements to our methods, many more lives can be saved.
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