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ABSTRACT 

 Currently, the Marine Corps and the Department of Defense do not leverage 

human-machine team pairing during the collection of human intelligence. Consequently, 

they may miss or not exploit key information gained from human sources during times of 

both peace and war. This research aims to examine the viability of leveraging 

human-machine team pairing during intelligence gathering operations with particular 

focus on detecting human deception. It provides an in-depth overview of the current 

unclassified practices used to detect deception, evaluates the viability of incorporating 

emerging technologies, and proposes an operator function model and employment model 

for a human-machine team pair to improve deception detection performance during 

enemy prisoners of war interviews. 
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I. INTRODUCTION 

All warfare is based on deception. 

—Sun Tzu, Art of War 
War is deceit. 

—Prophet Muhammad 

A. PURPOSE 

Detecting deception is a difficult task for a human to do accurately. Though there have 

been mixed results in studies, on average, people can only detect deception about 50% of the time.1 

This statistic does not change for intelligence operations conducted by military professionals. 

Currently, the techniques and procedures implemented by the military call for the utilization of the 

information gained or verified by enemy prisoners of war to conduct continuing operations. Due 

to the accuracy of current practices for detecting deception there is a certain level of risk associated 

with acting upon the knowledge gained through the interrogations or conversations with hostile 

combatants. Reducing this risk by improving deception detection accuracy could lead to more 

successful tactical engagements. To accomplish this, artificial intelligence (AI) and other 

technological advancements may provide an opportunity to leverage human-machine team pairing 

during intelligence gathering operations.2 Currently, the Marine Corps and the Department of 

Defense (DOD) do not optimally employ human-machine team pairing during the collection of 

 
1 Shannon C. Houck et al., “When Beliefs Lead to (Im)Moral Action: How Believing in Torture’s Effectiveness 

Shapes the Endorsement of Its Use,” Political Psychology 40, no. 6 (2019): 1315–39, 
https://doi.org/10.1111/pops.12590; Aldert Vrij et al., “Psychological Perspectives on Interrogation,” Perspectives 
on Psychological Science 12, no. 6 (November 2017): 927–55, https://doi.org/10.1177/1745691617706515; 
Verónica Pérez-Rosas et al., “Deception Detection Using Real-Life Trial Data,” in Proceedings of the 2015 ACM on 
International Conference on Multimodal Interaction, Seattle, WA, USA: ACM, 2015, 59–66, 
https://doi.org/10.1145/2818346.2820758. 

2 Pérez-Rosas et al., “Deception Detection Using Real-Life Trial Data”; Judee Burgoon et al., “Detecting 
Deception in the Military Infosphere: Improving and Integrating Human Detection Capabilities with Automated 
Tools,” Report Number AFRL-SR-AR-TR-07-0193 (Arlington, VA: AF Office of Scientific Research, April 25, 
2007), 
https://www.researchgate.net/publication/235028335_Detecting_Deception_in_the_Military_Infosphere_Improving
_and_Integrating_Human_Detection_Capabilities_with_Automated_Tools/link/0f31752e68cf733e76000000/downl
oad. 
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human intelligence (HUMINT).3 Consequently, the Marine Corps and the DOD may miss and 

therefore not exploit key information gained from human sources during times of peace and war.  

The purpose of this study is threefold. First, this thesis provides an in-depth overview of 

the current unclassified practices the intelligence communities (IC), the DOD, and the Marine 

Corps use to detect deception during operations. Second, this thesis will evaluate the potential 

benefits of leveraging human-machine team pairing to detect deception during intelligence 

gathering operations. Third, it will propose a method of integrating the current emerging 

technologies to aid human operators in human deception detection during interrogations and 

interviews.  

B. RELEVANCE  

Throughout history, deception has played a key role in gaining a strategic advantage on the 

battlefield, from the trojan horse used by the Greeks to Operation OVERLORD during World War 

II.4 When militaries achieve deception, they gain an advantage over their enemies. For militaries 

to deny their enemies this advantage and prevent deception from contaminating intelligence, there 

is a requirement for accurate intelligence collection and assessments. One of the most informative 

lines of intelligence is HUMINT. However, humans that provide such intelligence often employ 

deception tactics such as lying and evasiveness. Therefore, to effectively inform intelligence 

operations it is critical to detect when a person is lying or being evasive. One potential way to 

detect deception accurately would be the employment of technological advances.5  

The advent of the personal computer and other information technologies has caused a 

fundamental shift in warfare. From the integration of software in the F-35, to the use of unmanned 

aerial systems (UAS), to the use of computers as diagnostic gear for vehicles, technological 

advancements across battlespaces have worked to modernize and optimize the battlefield. These 

 
3 S. Keller-McNulty, “Quest for Truth: Deception and Intent Detection,” (Ft. Belvoir, VA: The MITRE 

Corporation; JASON Program Office, October 29, 2008), https://fas.org/irp/agency/dod/jason/quest.pdf; Richard 
Potember, “Perspectives on Research in Artificial Intelligence and Artificial General Intelligence Relevant to DOD” 
(Alexandria, VA: The MITRE Corporation; JASON Program Office, January 2017), 
https://fas.org/irp/agency/dod/jason/ai-dod.pdf. 

4 William B Breuer, Hoodwinking Hitler: The Normandy Deception (Westport: Praeger Publishers, 1993). 

5 Keller-McNulty, “Quest for Truth: Deception and Intent Detection.” 
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technologies, when employed correctly, have mitigated risks for friendly forces and civilian 

personnel. The human counterintelligence (CI) field is one area within the warfighting domain that 

seems untouched by these new advances. The DOD, and the Marine Corps, should identify the 

requirements for private industry to design new technologies for integration into HUMINT 

operations, as they have the potential to give the force an asymmetric advantage.  

C. METHODOLOGY AND SCOPE 

The research methodologies this thesis employs ties directly to its purposes. The first 

purpose as outlined above, provides an in-depth overview of the current unclassified practices the 

intelligence communities within the DOD and the Marine Corps use to detect deception during 

operations. It will do this through an in-depth review of Joint Publications (JP), Marine Corps and 

Army service doctrine, and Intelligence Community Directive (ICD)-203. The second purpose of 

this thesis will be to evaluate the potential benefits of leveraging human-machine team pairing to 

detect deception during human intelligence gathering operations. To accomplish this, I examine 

(a) the methodologies used to conduct interviews and interrogations, (b) the most current 

technologies proven to increase the accuracy in detecting deception, and (c) the trust relationship 

between humans and machines. The third purpose is to propose a method of integrating the current 

emerging technologies to aid human operators in the detection of deception during interrogations 

and interviews. This proposal will consist of two models, an employment model, and a system 

design model. The employment model’s design gives initial insights into appropriate roles and 

responsibilities for human and machine agents, within the developed system, Warfare Integrated 

Lie Detection System (WILDS). The proposed system design is based on an operator function 

model (OFM), stemming from a human factors systems engineering approach.   

There are three major approaches to detecting deception: human only, machine only, and 

a mix of human and machine paired together. While there is a vast amount of research pertaining 

to human-only and machine-only deception detection, this study focuses on their combined use, 

human-machine team pairing. Human-only techniques and machine-only techniques will be 

discussed but remain outside the scope of this research. This study focuses primarily on integrating 

currently existing non-invasive technology and algorithms into a joint cognitive system that 

includes both human and machine agents. To investigate, I draw on two major themes within the 
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discipline of psychology: 1) the development of trust between humans and machines; and 2) the 

impact of interview styles during interrogations.  

D. CHAPTER OVERVIEW 

This thesis includes five chapters. The first chapter provides an overview of the problem, 

its relevance, and then discusses the scope of study. The second chapter identifies the DOD’s and 

Marine Corps’ current approach to deception detection. Additionally, it explores the current 

tactics, techniques, and procedure implemented by military police (MP), interrogators, and 

intelligence gathering professionals. It identifies a heavy focus on human-only deception detection 

methodologies, through interviewing styles, while also providing employment strategies for older 

less reliable technologies such as the polygraph. Employing this approach towards deception 

detection, requires the acceptance of a higher-than-necessary risk for tactical leaders. Because 

there have been technological advances made towards accurately identifying deception, the Marine 

Corps and the DOD should employ that technology to reduce the risk which tactical leaders must 

accept on the battlefield. The scholarly works reviewed provides an understanding of the enabling 

technologies including sensors, algorithms, and the human components needed for the proposed 

deception detection system.  

The third chapter details the proposed integrated deception detection system designed for 

use with detainee interrogations by the Marine Corps, WILDS, and its proposed employment 

model. The proposed system takes a cognitive systems engineering modeling approach, to create 

an OFM. The approach selected enables us to model human-machine interaction, human-human 

interaction, and the overall system. Other approaches and models to design a system failed to 

consider either the human element, the machine element, or where the human and machine 

elements overlapped. Additionally, this model will help identify potential design flaws, training 

requirements, and qualification standards associated with the human role in automated deception 

detection.  

The fourth chapter provides a detailed analysis of OFM employment with specific focus 

on key roles and responsibilities of humans and machines. This chapter will also discuss the 

potential benefits and limitations. Finally, Chapter V presents the conclusions and 

recommendations for further research into this topic.  
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II. STATE OF THE FIELD 

A. CURRENT MILITARY APPROACH TO DECEPTION DETECTION  

1. Department of Defense / U.S. Army Doctrine 

International Law, Joint and Service level doctrine provide insight into the DOD’s current 

approach to detecting deception. The Geneva Conventions and various Joint and Army 

publications provide relevant information regarding the rights of prisoners of war, the detention 

process, and current practices used by DOD intelligence personnel to gather information. 

Additionally, these publications provide current deception detection methodologies which assist 

in the collection of valuable information.  

a. Geneva Conventions 

The Geneva Conventions are international treaties which govern how members of the 

treaties will conduct warfare, and the rights of those who engage in warfare.6 There are four articles 

of the Geneva Conventions which apply to prisoners of war. JP 3-63 explains these four articles 

and their application to the Joint Forces.  

(1) Geneva Convention for the Amelioration of the Condition of the Wounded and 
Sick in Armed Forces in the Field (GWS) (2) Geneva Convention for the 
Amelioration of the Condition of Wounded, Sick, and Shipwrecked Members of 
Armed Forces at Sea (3) The Geneva Convention Relative to the Treatment of 
Prisoners of War (GPW)… (4) The Geneva Convention Relative to the Protection 
of Civilian Persons in Time of War (GC).7  

Article 1 details the protections for those who were previously engaging in hostile actions 

on the battlefield, but due to injury or illness, they are no longer actively hostile. Additionally, it 

sets forth the rights for the collection of human remains and prohibits their abuse. Article 2 details 

the protections for those shipwrecked. It requires the humane treatment and rescue of persons at 

sea and the procedure for death at sea. Article 3 details the rights of enemy prisoners of war (EPW), 

 
6 Joint Chiefs of Staff, Detainee Operations, JP 3-63 (Washington, DC: Joint Chiefs of Staff, 2014), 

https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_63.pdf. 

7 Joint Chiefs of Staff, 15. 
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regulating their detention, facilities and treatments. Article 4 details the rights of civilians detained 

due to enemy actions. This article applies when non-state actors are involved in hostile actions. 

Articles 3 and 4 clearly prohibit the use of torture on any EPW or any persons detained by those 

adhering to the treaty.   

There are two major implications from this. First is that prisoners of war (POW’s) have 

rights that the U.S. must adhere to by International Law. Torture is strictly prohibited.8 Second, to 

expect an enemy to treat our friendly forces with dignity and respect, we must afford their detainees 

basic human rights. Not only does this foster a moral high ground, but to some degree, it provides 

a level of protection for friendly forces engaged in combat operations.    

b. Joint Publication’s 3–63: Detainee Operations  

Joint Publication 3-63, Detainee Operations, initially provides a background and legal 

considerations for the detainee operations. It then goes on to explain the detainee categories, as 

illustrated in Figure 1, defining each category subsequently.  

The word “detainee” include any person captured, detained, or otherwise under the 
control of DOD personnel…Belligerent: a person who is engaged in hostilities 
against the U.S. or its multinational partners during an armed conflict…Privileged 
belligerents are EPWs upon capture, and are entitled to combatant immunity for 
their lawful pre-capture war-like acts…Unprivileged enemy belligerents are 
belligerents who do not qualify for the distinct privileges of combatant 
status…Retained Personnel. An individual who is described by Article 28 of the 
GWS and Article GPW and who is in the custody or control of DOD. Personnel 
who into the following categories: official med personnel of the armed forces of the 
parties to the conflict…Civilian Internee. Any civilian, including those described 
by Article 4 of GC, who is in the custody or control of DOD during an armed 
conflict or occupation, such as those held for imperative reasons of security or 
protection. 9  

Following the defining of detainee categories JP 3-63 proceeds to explains the processes 

relating to the conduct of detainee operations, including the capture, screening processes, and the 

disposition, classification, and approval process. It is through this process by which intelligence 

 
8 Joint Chiefs of Staff, Detainee Operations. 

9 Joint Chiefs of Staff, 17. 
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personnel have access to the detainees and begin to assess if gathering viable intelligence 

information is possible.  

 
Figure 1. Detainee Categories10 

c. U.S. Army Field Manual 2-22.3: Human Intelligence Collection Operations 

The U.S. Army Field Manual 2-22.3 (FM 2-22.3), Human Intelligence Collection 

Operations, provides three primary points of discussion. First, it provides an overview of the entire 

HUMINT process. Second, it provides the current recommendations for approach techniques and 

questioning methodologies. Finally, it provides insight into how to detect deceit.  

The HUMINT collections process begins with screening. Essentially, all human sources 

have the potential to provide valuable information during times of warfare. The screening process 

not only identifies who may have the requisite knowledge; that friendly forces are seeking, but 

also who may be willing to share that information. After the screening process, an intelligence 

professional proceeds with collection planning and preparation informed by research. The research 

conducted usually pertains to background information regarding the interviewee, operational 

 
10 Source: Joint Chiefs of Staff, 17. 
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information, or basic verifiable information. The collections plan includes the approach, the 

questioning methodology, and resources necessary to verify all information gathered.11 The final 

preparations are typically administrative items such as coordination for an interview room, 

coordination to use a polygraph, obtaining any equipment necessary, or coordinating the use of an 

interpreter. After completing the planning phase, the intelligence professional moves into the 

execution phase, which includes the actual approach, questioning, and reporting. The collections 

process ends with an analysis of the information gained, and the application of it for follow-on 

operations.  

FM 2-22.3 states the objective of the approach phases is: “to establish a relationship with 

the source [detainee] that results in the source providing accurate and reliable information in 

response to the HUMINT collector’s questions.” 12 Importantly, it emphasizes the necessity to 

build rapport with the detainee and provides various approach methodologies to do so. Once the 

intelligence professional has built rapport with the detainee, various questioning approaches can 

be taken to gain intelligence information. Listed below are the various questioning approaches 

with a brief description.  

• Direct Approach- Essentially, this approach begins with control-type questions 

and then transitions to pertinent questions posed.13 

• Incentive Approach- This approach has the collector trade something the source 

wants for the information given.14 

• Emotional Approaches- These set of approaches use emotional vulnerabilities to 

gain information. Typically, interviewers leverage incentives.15  

 
11 Department of the Army, Human Intelligence Collector Operations, FM 2-22.3 (Washington, DC: 

Department of the Army, 2006), 133, https://fas.org/irp/doddir/army/fm2-22-3.pdf. 

12 Department of the Army, 140. 

13 Department of the Army, 144. 

14 Department of the Army, 145. 

15 Department of the Army, 146. 
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• We Know All- Interviewer suggest to the detainee that they are already aware of 

the information provided.16 

• File and Dossier-The interviewer prepares a file which has an excess of 

information to present in the interview. When paired with We Know All and 

extensive research it can be effective.17 

• Repetition- Used to induce cooperation from hostile detainee, essentially asking 

the same question continuously until the detainee answers.18 

• Rapid Fire- Multiple interviewers asking questions rapidly to cause flustering in 

the detainee which may result in detailed explanation.19 

• Silent- Interviewer uses silence to make the detainee speak due to discomfort.20  

• Change of Scenery- Moving the detainee from either an intimidating atmosphere 

to one of less intimidation, or the reverse.21  

• Mutt and Jeff- Using two interviewers with opposite dispositions to create a 

situation where the detainee builds rapport with one of them.22 

• False Flag- Interviewer poses as a non-U.S. military personnel to gain 

cooperation.23 

 
16 Department of the Army, 152. 

17 Department of the Army, 153. 

18 Department of the Army, 154. 

19 Department of the Army, 154. 

20 Department of the Army, 154. 

21 Department of the Army, 155. 

22 Department of the Army, 155. 

23 Department of the Army, 156. 
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From the list of approaches, we notice that all but the direct approach relies on emotional 

based techniques to manipulate the detainee’s willingness to share information. Relying heavily 

on emotional control by the interviewer presents challenges. These challenges include loss of 

control due to detainee actions or inactions, extreme stress due to warfare conditions, and other 

situational causations. The consequences can include bolstering the detainee unwillingness to 

respond, loss of established rapport, or even the accidental use of torture methods.24   

FM 2-22.3 explains that within the various approaches there are different types of questions 

including, initial, follow-up, non-pertinent repeat, control, and prepared.25 Each type of question 

has a purpose relating to the gathering of information. Additionally, it suggests avoiding leading, 

negative, compound, and vague questions.26 

Finally, FM 2-22.3 details a framework for how to detect deception with examples of 

application.   

• Repeat and control questions.  
• Internal inconsistencies. Frequently when a source is lying, the HUMINT 

collector will be able to identify inconsistencies in the timeline, the 
circumstances surrounding key events, or other areas within the questioning. 
For example, the source may spend a long time explaining something that took 
a short time to happen, or a short time telling of an event that took a relatively 
long time to happen. These internal inconsistencies often indicate deception.  

• Body language does not match verbal message. An extreme example of this 
would be the source relating a harrowing experience while sitting back in a 
relaxed position. The HUMINT collector must be careful in using this clue since 
body language is culturally dependent. Failing to make eye contact in the U.S. 
is considered a sign of deceit while in some Asian countries it is considered 
polite.  

• Knowledge does not match duty position or access. Based on the source’s job, 
duty position, or access the HUMINT collector should have developed a basic 
idea of the type and degree of information that an individual source should 
know. When the source’s answers show that he does not have the expected level 
of information (too much or too little or different information than expected), 
this may be an indicator of deceit. The HUMINT collector needs to determine 
the source of unexpected information.  

 
24 Vrij et al., “Psychological Perspectives on Interrogation.” 

25 Department of the Army, Human Intelligence Collector Operations. 

26 Department of the Army. 
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• Information is self-serving. Reporting of information that is self-serving to an 
individual or his group should be suspect. For example, a member of one ethnic 
group reporting generic atrocities by an opposing ethnic group or a source 
reporting exactly the right information needed to receive a promised incentive 
should be suspect. That is not to say that the information is necessarily false, 
just that the HUMINT collector needs to be sure to verify the information.  

• Lack of extraneous detail. Often false information will lack the detail of truthful 
information, especially when the lie is spontaneous. The HUMINT collector 
needs to ask follow-up questions to obtain the detail. When the source is unable 
to provide the details that they should know, it is an indicator of deceit. If the 
source does provide this additional information, it needs to be checked for 
internal inconsistencies and verified by repeat questions.  

• Repeated answers with exact wording and details. Often if a source plans on 
lying about a topic, he will memorize what he is going to say. If the source 
always relates an incident using exactly the same wording or answers repeat 
questions identically (word for word) to the original question, it may be an 
indicator of deceit. In an extreme case, if the source is interrupted in the middle 
of a statement on a given topic, he will have to start at the beginning in order to 
“get his story straight.”  

• Source appearance does not match story. If the source’s physical appearance 
does not match his story, it may be an indication of deceit. Examples of this 
include the source who says he is a farmer but lacks calluses on his hands or the 
supposed private who has a tailored uniform.  

• Source’s language usage does not match story. If the type of language, 
including sentence structure and vocabulary, does not match the source’s story, 
this may be an indicator of deceit. Examples of this include a farmer using 
university level language or a civilian using military slang.  

• Lack of technical vocabulary. Every occupation has its own jargon and 
technical vocabulary. If the source does not use the proper technical vocabulary 
to match his story, this may be an indicator of deceit. The HUMINT collector 
may require the support of an analyst or technical expert to identify this type of 
deceit.  

• Physical cues. The source may display physical signs of nervousness such as 
sweating or nervous movement. These signs may be indicators of deceit. The 
fact that an individual is being questioned may in itself be cause for some 
individuals to display nervousness. The HUMINT collector must be able to 
distinguish between this type of activity and nervous activity related to a 
particular topic. Physical reaction to a particular topic may simply indicate a 
strong emotional response rather than lying, but it should key the HUMINT 
collector to look for other indicators of deceit.  

• Failure to answer the question asked. When a source wishes to evade a topic, 
he will often provide an answer that is evasive and not in response to the 
question asked. For example, if the source is asked, “Are you a member of the 
insurgent organization?” and he replies, “I support the opposition party in the 
legislature,” he has truthfully answered a question, but not the question that was 
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asked. This is a subtle form of deceit since the source is seemingly cooperative 
but is in fact evading providing complete answers.27 

We can draw two primary conclusions from this evidence. First, the DOD has various ways 

of approaching and questioning a detainee. However, the majority of these tactics use emotion-

based logic, to persuade the detainee to provide information. Second, the interviewer has three 

tasks to accomplish simultaneously in an interview; control of the situation, gain pertinent 

information, and detect any deception which the detainee maybe attempting.  

2. Marine Corps 

The Marine Corps adheres to all the tactics and procedures outlined in the previous section. 

In addition to complying with the Joint Doctrine the Marine Corps has its own doctrine, Marine 

Corp Warfighting Publication 2–6 (MCWP 2-6), Counterintelligence. The Marine Corps 

traditionally operates as a component of the Joint Force. Because of the legal and sensitive nature 

of detention operations, most interviews occur at joint detention facilities, run by the U.S. Army. 

As such, the Marine Corps’ primary role is typically conducting tactical CI.28 This is the process 

by which the initial screening occurs after capture. Upon the transfer of the detainee from the care 

of the Marines into the care of the detention facility, the information collected during the tactical 

CI interview informs further HUMINT operations. Specifically, this information informs joint-

level intelligence professionals on which detainees maybe the best candidates for further 

questioning.  

3. Intelligence Community Directive (ICD) -203 

ICD-203 is a directive given to all intelligence professionals by the Director of National 

Intelligence. Designed to standardize the intelligence analyst’s products across all communities, it 

contributes to analysis and products produced by intelligence professionals. The directive 

“establishes the Intelligence Community Analytic Standards that govern the production and 

evaluation of analytic products; articulates the responsibility of the intelligence analysts to strive 

 
27 Department of the Army, 168–70. 

28 US Marine Corps, Counterintelligence, MCWP 2-6 (Quantico, VA: U.S. Marine Corps, 2004), 109–12, 
https://www.marines.mil/Portals/1/Publications/MCWP%202-6%20W%20Erratum%20Counterintelligence.pdf. 
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for excellence, integrity, and rigor in their analytic thinking and work practices.”29 Additionally, 

the directive establishes two primary outputs: a likelihood or probability level and a confidence 

level. The likelihood level is a measurement of an event occurring. Table 1 is the example provided 

in ICD-203 illustrating three examples of assessing the likelihood/probability levels.30 The table 

presents seven categories of likeliness for an event to occur and three options on how an analysist 

can verbalize the assessment, in chance, in probability, and in assigned percentages. This enables 

the analyst to present the information in either a qualitative or quantitative form. The second 

category is the confidence level. The confidence level provides the user and indication on the logic 

behind why the analysts assigned a probability level. The assessment of the confidence level can 

be based on the types of sources used in gathering the information, the timeliness of the 

information gathered, or the even the gathering processes used. Combining these two outputs 

together gives the user of the intelligence information gathered two standards by which they can 

rely on the information provided to them. HUMINT intelligence products comply with these 

standards, including those produced during detainee operations.  

Table 1. Likelihood Metric31 

almost 
no 

chance 

very 
unlikely 

unlikely roughly 
even 

chance 

likely very 
likely 

almost 
certain(ly) 

remote highly 
improbable 

improbable 
(improbably) 

roughly 
even odds 

probable 
(probably) 

highly 
probable 

nearly 
certain 

01-05% 05-20% 20-45% 45-55% 55-80% 80-95% 95-99% 

 

Now that we have a better understanding of the DOD’s and Marine Corps’ doctrine relating 

to deception detection, we can analyze how this doctrine was established. 

 
29 Director of National Intelligence, Analytic Standards, IC Directive 203 (Washington, DC: Office of the 

Director of National Intelligence, 2015), 1, https://fas.org/irp/dni/icd/icd-203.pdf. 

30 Director of National Intelligence, 3. 

31 Adapted from Director of National Intelligence, 3. 
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B. HISTORICAL DECEPTION DETECTION AND THE POLYGRAPH 

History provides a strong foundation to analyze how the current practices developed 

overtime. So, how did the IC, DOD, and Marine Corps arrive with these standards for detainee 

operations and deception detection methodologies? To answer this within the next section, we 

review historic interviewing methodologies used by the IC, DOD, and Marine Corps and the 

history and current doctrine of the polygraph.   

1. Interviewing Methodologies 

Previous scholarship outlines varying methodologies to elicit information from a detainee. 

I summarize those most commonly discussed in the literature along with the most commonly used 

practices. These include physical coercion (torture), psychological coercion (the Reid model), and 

rapport-based strategies (PEACE model and cognitive interview).  

a. Physical Coercion 

Torture is legally defined as, “specifically intended to inflict severe physical or mental pain 

or suffering.”32 The term “severe” is further defined as “excruciating or agonizing pain or pain 

equivalent in intensity to the pain accompanying serious physical injury such as organ failure, 

impairment of bodily function or even death.”33 Concurrent medical definition of torture is “an 

act by which severe pain or suffering, whether physical or mental, is intentionally inflicted on a 

person, for a purpose such as obtaining information or confession, punishment, intimidation, 

coercion, or for any reason based on discrimination of any kind.”34 As we can see there are 

differences between what medical professionals and legal professionals consider torture. There is 

also subjectivity relating to what constitutes pain, physical or mental, for individuals. For these 

reasons, it is difficult in some cases to define what does and does not constitute acts of torture. To 

best apply both of these definitions into a single concept, we define torture as the process by which 

force, or the threat of force is used in order to elicit information from a detained person.  

 
32 “Definition of Torture,” 18 § 2340–2340A (2004), https://www.justice.gov/file/18791/download. 

33 Definition of Torture. 

34 Jay W. Marks, “Medical Definition of Torture,” MedicineNet, June 3, 2021, 
https://www.medicinenet.com/torture/definition.htm. 
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Throughout history torture has been used for three primary purposes; to illicit a fear 

response which will produce “valuable” information, to intimidate, and to create propaganda.35 

As such, torture conducted by uniformed personnel is strictly prohibited by International Law, 

covered in the Geneva Conventions as well as Joint Publications, and service doctrine.36 The use 

of torture not only is subject to punishment by the UCMJ but it is also considered a war crime and 

can therefore can be adjudicated by the International Criminal Courts. Additionally, various 

studies have shown that the use of torture is an ineffective way of gaining information, despite 

popular opinion.37 This is inclusive of combating insurgencies, attempting to protect friendly 

forces, and for the purposes of major combat operations.38 We see each use of torture being 

ineffective through analyzing the effects of Operation TEARDROP during World War II, 

Operation Condor in the 1970s, and the Abu Ghraib incident during the Iraq War. It is for these 

various reasons that the use of torture during the conduct of CI operations is not only illegal but 

unproductive.  

b. Psychological Coercion 

A step up from physical coercion is psychological coercion. Essentially, this the process 

by which no physical contact occurs, but rather the are questions asked and psychological pressure 

put on a detainee elicits information. One of the primary models used to create this psychological 

pressure is the Reid Model. Though this model can be employed by the IC, DOD, and Marine 

 
35 Vrij et al., “Psychological Perspectives on Interrogation.” 

36 Department of the Army, Human Intelligence Collector Operations; U.S. Marine Corps, 
Counterintelligence; Joint Chiefs of Staff, Detainee Operations. 

37 Vrij et al., “Psychological Perspectives on Interrogation”; Houck et al., “When Beliefs Lead to (Im)Moral 
Action”; Joeann M. Salvati and Shannon C. Houck, “Examining the Causes and Consequences of Confession-
Eliciting Tactics during Interrogation,” Journal of Applied Security Research 14, no. 3 (July 3, 2019): 241–56, 
https://doi.org/10.1080/19361610.2019.1621508; Christopher Michael Sullivan, “The (in)Effectiveness of Torture 
for Combating Insurgency,” Journal of Peace Research 51, no. 3 (May 1, 2014): 388–404, 
https://doi.org/10.1177/0022343313520023; Ronnie Janoff-Bulman, “Erroneous Assumptions: Popular Belief in the 
Effectiveness of Torture Interrogation,” Peace and Conflict: Journal of Peace Psychology 13, no. 4 (November 
2007): 429–35, http://dx.doi.org.libproxy.nps.edu/10.1080/10781910701665766. 

38 Janoff-Bulman, “Erroneous Assumptions”; Salvati and Houck, “Examining the Causes and Consequences of 
Confession-Eliciting Tactics during Interrogation”; Houck et al., “When Beliefs Lead to (Im)Moral Action”; 
Sullivan, “The (in)Effectiveness of Torture for Combating Insurgency”; Vrij et al., “Psychological Perspectives on 
Interrogation.” 
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Corps, in recent years the influence of scholarly work has reduced its use. The Reid Model is an 

accusatorial method which has three parts: factual analysis, interviewing, and interrogation. 

During the factual analysis, the interviewer asks standard questions to establish a control reference 

of the detainee’s behavior, as well as basic facts of event occurrence. Following that is a behavior 

analysis interview. The interviewer’s task is to purposefully cause the detainee to lie or tell the 

truth. They observe any changes in physical or language pattern characteristics which the detainee 

displays. Once the interviewer has observed behavioral pattern changes not associated with the 

relevant event, they can transition to the interrogation stage. The purpose of this stage is to gain 

information which the detainee has but the interviewer lacks.39 One of the primary issues with this 

strategy is that it results in a high false confession rate. When applying that false information to 

the intelligence gathering process contamination occurs within the information provided to tactical 

leaders.  

c. Rapport-based Strategies  

As scholarly research continues to examine how to best gain accurate HUMINT from 

detained persons, rapport-based strategies are emerging as the best approach. Two of the most 

commonly used methods are the PEACE Model and the cognitive interview.  

The PEACE Model consists of the following steps: preparation and planning, engage and 

explain, account, closure, and evaluate.40 This methodology mirrors that which is currently used 

in doctrine.41 Essentially, the interviewer prepares to question the detainee, questions them using 

rapport building skills and active listening, upon completion any need for clarifications should be 

allowed and finally the interviewer should evaluate if any of the information gathered can be useful 

to follow on operations based on previous research. 

 
39 Salvati and Houck, “Examining the Causes and Consequences of Confession-Eliciting Tactics during 

Interrogation”; James Orlando, “Interrogation Techniques,” Office of Legislative Research, accessed June 4, 2021, 
https://www.cga.ct.gov/2014/rpt/2014-R-0071.htm. 

40 Orlando, “Interrogation Techniques.” 

41 Salvati and Houck, “Examining the Causes and Consequences of Confession-Eliciting Tactics during 
Interrogation”; Department of the Army, Human Intelligence Collector Operations; U.S. Marine Corps, 
Counterintelligence. 
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The Cognitive Interview Methodology has its foundation in psychology. It was developed 

in the 1970s and since then, has been used by various law enforcement and military personnel.42 

The technique is “a series of memory retrieval and communications techniques designed to 

increase the amount of information that can be obtained from an interviewee.”43 There are four 

main types of interview strategies: context reinstatement, report everything, variety of 

perspectives, and temporal order.44 Essentially, the methodology stimulates the area of recall for 

the brain and requires a significant amount of cognitive functionality using open-ended 

questioning tactics.45 In a meta-analysis study conducted by Amina Memon, Christian Meissner, 

and Joanne Fraser, “The Cognitive Interview: A Meta Analytic Review and Study Space Analysis 

of the Past 25 Years” observed that there is a “rather substantial increase in correct recall with the 

CI as compared with a structured interview.” 46 This suggests that the information gathered as part 

of rapport-based strategies may in fact be more useful to CI personnel than that of the other 

methodology of interviews. It is obvious that both methodologies are a better option than the use 

of physical or psychological coercion; however, the overall ability to detect deception remains at 

a 50% average.47  

2. Polygraph 

The use of a polygraph test is the only means which the DOD leverages to the presence of 

the physical responses typically associated with deception. Understanding its history, 

 
42 Keller-McNulty, “Quest for Truth: Deception and Intent Detection”; Salvati and Houck, “Examining the 

Causes and Consequences of Confession-Eliciting Tactics during Interrogation”; Amina Memon et al., “The 
Cognitive Interview: A Meta-Analytic Review and Study Space Analysis of the Past 25 Years,” Psychology, Public 
Policy, and Law 16, no. 4 (November 2010): 340–72, http://dx.doi.org.libproxy.nps.edu/10.1037/a0020518. 

43 Memon et al., “The Cognitive Interview,” 340. 

44 Memon et al., “The Cognitive Interview”; Aldert Vrij et al., “Increasing Cognitive Load to Facilitate Lie 
Detection: The Benefit of Recalling an Event in Reverse Order,” Law and Human Behavior 32, no. 3 (June 2008): 
253–65, http://dx.doi.org.libproxy.nps.edu/10.1007/s10979-007-9103-y; Keller-McNulty, “Quest for Truth: 
Deception and Intent Detection.” 

45 Keller-McNulty, “Quest for Truth: Deception and Intent Detection”; Memon et al., “The Cognitive 
Interview.” 

46 Memon et al., “The Cognitive Interview,” 357. 

47 Houck et al., “When Beliefs Lead to (Im)Moral Action”; Vrij et al., “Psychological Perspectives on 
Interrogation”; Pérez-Rosas et al., “Deception Detection Using Real-Life Trial Data.” 
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implementation procedure, results, and limitations is key to a comparison of current practices vice 

the implementation of emerging technologies.  

The idea of detecting deception has been around since lying has been around. Various 

historical examples can point to different cultures, times, and peoples using various abstract events 

to prove that the person in question is lying. From the Salem Witch Trials, to chewing rice powder 

in China, there has been a societal attempt to detect if a person is lying, with the assumption that 

lying is an emotional event.48 It is from this belief, paired with the advancement of medical 

technologies, that motivation for the polygraph’s invention was derived. The first iteration of it 

occurred in 1921, when John Larson attempted to create a device which accurately measured blood 

pressure, pulse rate, and respiration.49 The process behind this, which was tested by Larson, was 

to ask a subject a yes or no question; once there was an aggregated amount of data, the difference 

in a single profile suggested that individual with the differences was attempting to be deceptive.50 

From here, other devices similar to the one which John Larson created were adapted for mobility, 

but essentially since 1921, the premise of the polygraph has not changed.  

To employ a polygraph test, the DOD and Marine Corps have directives and doctrine 

establishing regulations. DOD Directive (DoDD) 5210.91, Polygraph and Credibility Assessment 

Procedures, set forth the authorized uses and rules for conducting an examination. MCWP 2-6 

provides operational context for the implementation and appropriate uses of the information 

gathered for intelligence professionals. 

Figure 2 illustrates the authorized uses of the polygraph for the DOD. It lists CI 

investigations and operations as an authorized use. DoDD 5210.91 lists the steps to be conducted 

as pre-test, data collection, test data analysis, and post-test. MCWP 2-6 concurs with this process. 

There are two types of tests: the Guilt Knowledge Test, also known as Concealed Information 

 
48 Don Grubin and Lars Madsen, “Lie Detection and the Polygraph: A Historical Review,” Journal of Forensic 

Psychiatry & Psychology 16, no. 2 (June 2005): 357–69, https://doi.org/10.1080/14789940412331337353. 

49 Grubin and Madsen, 360. 

50 Grubin and Madsen, 360–61. 
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Test, and Comparison Question Test.51 The possible results of the testing as used by DOD include 

No Deception Indicated, Deception Indicated, No opinion, No significant response, and Significant 

Response.52 These responses are congruent with the American Polygraph Association standards. 

MCWP 2-6, acknowledges the following list may affect the results of a polygraph.  

• Mental health disorder of any type. 
• History of heart or respiratory, circulatory, or nervous disorders.  
• Current medical disorder, including colds, allergies, or other conditions. 
• Drugs or alcohol use before the examination. 
• Mental or physical fatigue. 
• Pain or physical discomfort.53 

The research presents two outlooks on the results of the polygraph. The first typically is 

the outlook which states the polygraph is unable to accurately detect deception, rather it detects a 

physiological response to questions asked which produces inconsistent results. This is the position 

held by the U.S. Supreme Court.54 The second outlook is that with the proper training and 

questioning techniques the polygraph can increase the ability to detect deception from the average 

of 54% to 69.4%.55 

 
51 Charles R. Honts, Steven Thurber, and Mark Handler, “A Comprehensive Meta‐analysis of the Comparison 

Question Polygraph Test,” Applied Cognitive Psychology 35, no. 2 (March 2021): 411–27, 
https://doi.org/10.1002/acp.3779; Jerry A. Lewis and Michelle Cuppari, “The Polygraph: The Truth Lies Within,” 
Journal of Psychiatry & Law 37, no. 1 (Spring 2009): 85–92, https://doi.org/10.1177/009318530903700107. 

52 US Marine Corps, Counterintelligence; Department of Defense, Polygraph and Credibility Assessment 
Procedures, DoD Directive 5210.91 (Washington, DC: Department of Defense, 2020), 
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/521091p.pdf?ver=2019-04-22-104603-167. 

53 US Marine Corps, Counterintelligence. 

54 “The Truth About Lie Detectors (Aka Polygraph Tests),” American Psychological Association, August 5, 
2004, https://www.apa.org/research/action/polygraph. 

55 Honts, Thurber, and Handler, “A Comprehensive Meta‐analysis of the Comparison Question Polygraph 
Test”; Vrij et al., “Increasing Cognitive Load to Facilitate Lie Detection.” 
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Figure 2. Authorized Uses of the Polygraph56  

C. EMERGING MACHINE TECHNOLOGIES FOR DECEPTION DETECTION 

From the previous section we have a complete picture of the current practices within the 

DOD, Intelligence Community, and Marine Corps. We understand the history of these methods 

and their associated accuracy. In the following section we aim to analyze emerging technologies 

that increase the accuracy of detecting deception, including neuroimaging, video, audio, and other 

biometric technologies.  

1. Neuroimaging 

Neuroimaging is the process of measuring different forms of brain activity. Studies have 

shown that during deception events there is increase in the activity of the pre-frontal cortex.57 

There are three primary neuroimaging sensors used to detect changes in brain activity.58 The first 

is electroencephalogram (EEG), which measures electrical activity within the brain. The drawback 

 
56 Adapted from Department of Defense, Polygraph and Credibility Assessment Procedures. 

57 F. Andrew Kozel et al., “Detecting Deception Using Functional Magnetic Resonance Imaging,” Biological 
Psychiatry 58, no. 8 (October 15, 2005): 605–13, https://doi.org/10.1016/j.biopsych.2005.07.040. 

58 S.A. Bunge and I. Kahn, “Cognition: An Overview of Neuroimaging Techniques,” in Encyclopedia of 
Neuroscience (Elsevier, 2009), 1063–67, https://doi.org/10.1016/B978-008045046-9.00298-9. 
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of this methodology is the limited special resolution. The second neuroimaging technique that 

scientist have used to study deception is functional magnetic resonance imaging, FMRI. This 

technique measures activation of brain regions through the measurement of blood flow. This 

technique is not practical for DOD combat operations due to the nature of the equipment required 

for its conduct. The equipment is cost prohibitive requiring highly specialized personnel and 

training to operate. The final and newest neuroimaging technique is functional near-infrared 

spectroscopy, FNIRS. This optical imaging technique is portable and measures blood flow; at a 

depth penetration of 3cm.59 For deception detection this penetration depth is sufficient. The DOD 

has funded deception detection studies to explore the implementation of EEG and FMRI 

techniques. The U.S. Navy demonstrated a capability to classify deception, utilizing EEG, with a 

median 95% statistical confidence with less than 1% error rate for a concealed information test.60 

Nongovernmental scientist have also conducted successful research in classifying deception for 

both EEG and FNIRS.61 Of these studies the most successful employed EEG capabilities alone to 

identify if a yes-no answer was an intentional deception. They found they were able to classify 

 
59 “FAQ on NIRS” NIRx Medical Technologies, accessed June 4, 2021, https://nirx.net/faq. 

60 Lawrence A. Farwell et al., “Brain Fingerprinting Classification Concealed Information Test Detects US 
Navy Military Medical Information with P300,” Frontiers in Neuroscience 8 (December 23, 2014), 
https://doi.org/10.3389/fnins.2014.00410. 

61 Jiang Zhang et al., “A Look Into the Power of FNIRS Signals by Using the Welch Power Spectral Estimate 
for Deception Detection,” Frontiers in Human Neuroscience 14 (January 18, 2021): 606238, 
https://doi.org/10.3389/fnhum.2020.606238; Marzieh Daneshi Kohan et al., “Interview Based Connectivity Analysis 
of EEG in Order to Detect Deception,” Medical Hypotheses 136 (March 2020): 109517, 
https://doi.org/10.1016/j.mehy.2019.109517; Marzieh Daneshi Kohan et al., “EEG/PPG Effective Connectivity 
Fusion for Analyzing Deception in Interview,” Signal, Image and Video Processing 14, no. 5 (July 2020): 907–14, 
https://doi.org/10.1007/s11760-019-01622-1; Wenwen Chang et al., “Comparison of Different Functional 
Connectives Based on EEG during Concealed Information Test,” Biomedical Signal Processing and Control 49 
(March 2019): 149–59, https://doi.org/10.1016/j.bspc.2018.12.008; Haizhou Leng et al., “Sophisticated Deception in 
Junior Middle School Students: An ERP Study,” Frontiers in Psychology 9 (January 11, 2019): 2675, 
https://doi.org/10.3389/fpsyg.2018.02675; Yijun Xiong, junfeng Gao, and Ran Chen, “Connectivity Network 
Analysis of EEG Signals for Detecting Deception,” Journal of Physics: Conference Series 1176 (March 2019): 
032051, https://doi.org/10.1088/1742-6596/1176/3/032051; Zhen Yuan and Xiaohong Lin, “Mapping of the Brain 
Activation Associated with Deception Using Fused EEG and FNIRS,” in Neural Imaging and Sensing 2019, ed. 
Qingming Luo, Jun Ding, and Ling Fu (Neural Imaging and Sensing 2019, San Francisco, United States: SPIE, 
2019), 14, https://doi.org/10.1117/12.2508257; Roberto Vega et al., “Hemodynamic Pattern Recognition During 
Deception Process Using Functional Near-Infrared Spectroscopy,” Journal of Medical and Biological Engineering 
36, no. 1 (February 2016): 22–31, https://doi.org/10.1007/s40846-016-0103-6; Junfeng Gao et al., “A Novel 
Algorithm to Enhance P300 in Single Trials: Application to Lie Detection Using F-Score and SVM,” ed. Hans A. 
Kestler, PLoS ONE 9, no. 11 (November 3, 2014): e109700, https://doi.org/10.1371/journal.pone.0109700. 
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deception with a 99.85% accuracy.62 Studies pertaining to FNIRS indicated a capability of 

classifying deception with a 95.63% accuracy.63 However, neither of these results mimicked 

battlefield usage. More realistic battlefield conditions resulted in a lower accuracy rate of 

approximately 84%.64 Through combining both EEG and FNIRS, improvement in deception 

detection occurs.65 Overwhelming neuroimaging is still possible. In one study, which compared 

frequent liars to infrequent lairs, they showed that infrequent liar’s attempts at deception were 

easier to classify when compared to those who frequently lie.66 This means those trained in evasion 

tactics maybe able to employ them more effectively without detection.  

2. Natural Language Processing 

Natural Language Processing (NLP) is a subcomponent of artificial intelligence which 

enables machines to understand human languages. One potential application of NLP is the analysis 

of speech patterns during an interrogation to gauge deception. Though various studies suggest 

different methodologies and approaches, they are mostly inclusive of contextual applications such 

as word count and sentence count, or various other linguistics attributes such as repetition, 

complexity, and uncertainty.67 The DOD services and its research-based infrastructure has not 

 
62 Xiong, Gao, and Chen, “Connectivity Network Analysis of EEG Signals for Detecting Deception.” 

63 Vega et al., “Hemodynamic Pattern Recognition During Deception Process Using Functional Near-Infrared 
Spectroscopy.” 

64 Daneshi Kohan et al., “EEG/PPG Effective Connectivity Fusion for Analyzing Deception in Interview”; 
Vega et al., “Hemodynamic Pattern Recognition During Deception Process Using Functional Near-Infrared 
Spectroscopy.” 

65 Yuan and Lin, “Mapping of the Brain Activation Associated with Deception Using Fused EEG and FNIRS.” 

66 Fang Li et al., “Lie Detection Using FNIRS Monitoring of Inhibition-Related Brain Regions Discriminates 
Infrequent but Not Frequent Liars,” Frontiers in Human Neuroscience 12 (March 13, 2018): 71, 
https://doi.org/10.3389/fnhum.2018.00071. 

67 Christie M. Fuller, David P. Biros, and Rick L. Wilson, “Decision Support for Determining Veracity via 
Linguistic-Based Cues,” Decision Support Systems 46, no. 3 (February 2009): 695–703, 
https://doi.org/10.1016/j.dss.2008.11.001; Jeffrey T. Hancock et al., “On Lying and Being Lied To: A Linguistic 
Analysis of Deception in Computer-Mediated Communication,” Discourse Processes 45, no. 1 (December 17, 
2007): 1–23, https://doi.org/10.1080/01638530701739181; Victoria L. Rubin and Tatiana Lukoianova, “Truth and 
Deception at the Rhetorical Structure Level,” Journal of the Association for Information Science and Technology 66, 
no. 5 (2015): 905–17, https://doi.org/10.1002/asi.23216; Pérez-Rosas et al., “Deception Detection Using Real-Life 
Trial Data”; Lina Zhou et al., “Automating Linguistics-Based Cues for Detecting Deception in Text-Based 
Asynchronous Computer-Mediated Communications,” Group Decision and Negotiation 13, no. 1 (January 2004): 
81–106. 
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directly tied counterintelligence operations and NLP together to study statement accuracy; 

however, there  are two studies regarding the DOD’s use of all artificial intelligence capabilities, 

and both recommend the continuation of research into artificial intelligence and NLP.68 Linguistic 

Inquiry and Word Count (LIWC) is one of the most common commercially available programs 

currently used. Essentially the user inputs a string of text, and the program analyzes it and 

compares it to a dictionary. Based on the various categories of requested analysis, it produces a 

percent-based result.69 Outside military researchers, various other professionals are assessing the 

results of applying NLP to deception detection. Though studies vary from 60% to 74% accuracy, 

based on the approach, type of text, and algorithms used, the consensus is that natural language 

processing can help identify deception.70  

3. Other Biometric Monitoring 

In addition to neuroimaging and NLP, there are other technologies that studies have shown 

may produce more accurate results in attempting to detect deception. One is audio analysis, which 

includes frequency and pitch characterizations. Facial expression analysis, including facial 

expression, micro-facial expressions, and eye tracking, has been studied. Body language analysis, 

including hand gestures, head nodding, and posture is another studied technique. Thermal imaging, 

heart rate monitoring, and various other methodologies have also been studied.71 

D. ALGORITHMS 

To produce a desired output, the raw data collected by the various sensors needs 

processing. To do this, there are various algorithms that can be employed to remove noise and 

classify between deceptive and non-deceptive events. For example, the literature showed that 

 
68 Kristin E. Schaefer et al., “A Meta-Analysis of Factors Influencing the Development of Trust in Automation: 

Implications for Human-Robot Interaction:” (Fort Belvoir, VA: Defense Technical Information Center, July 1, 
2014), https://doi.org/10.21236/ADA607926; Potember, “Perspectives on Research in Artificial Intelligence and 
Artificial General Intelligence Relevant to DoD.” 

69 “How It Works,” LIWC, accessed June 5, 2021, http://liwc.wpengine.com/how-it-works/. 

70 Rubin and Lukoianova, “Truth and Deception at the Rhetorical Structure Level”; Hancock et al., “On Lying 
and Being Lied To”; Pérez-Rosas et al., “Deception Detection Using Real-Life Trial Data.” 

71 Keller-McNulty, “Quest for Truth: Deception and Intent Detection”; Pérez-Rosas et al., “Deception 
Detection Using Real-Life Trial Data.” 
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classifiers using linear discriminant analysis, support vector machines and convolutional neural 

networks could all successfully classify deception when processing brain signals.72 In order for 

NLP to successfully classify deception, various raw data inputs are provided to algorithms which 

constitute programs and toolkits. These algorithms conduct a comparison of known information to 

the entry. The most used algorithms are keyword extractions, named entity recognition, topic 

modelling, and knowledge graphs.73 From video signals scientists can use eye movement and 

facial expressions to classify deceptive events. For facial expressions, the use of traditional 

statistical methods like multivariate regression and Bayesian Methods is common, in addition to 

more modern methods like the Convolutional Neural Networks.74 These various algorithms are 

essentially what produces the data which can inform intelligence professionals if a detainee is 

attempting to be deceitful. Ensuring that parallel processing is available to minimize processing 

time and maximize feedback rates will be a critical element in any system looking to detect 

deception.  

 
72 Faryal Amber et al., “P300 Based Deception Detection Using Convolutional Neural Network,” in 2019 2nd 

International Conference on Communication, Computing and Digital Systems (C-CODE) (2019 2nd International 
Conference on Communication, Computing and Digital systems (C-CODE), Islamabad, Pakistan: IEEE, 2019), 
201–4, https://doi.org/10.1109/C-CODE.2019.8681025; Daneshi Kohan et al., “EEG/PPG Effective Connectivity 
Fusion for Analyzing Deception in Interview”; Daneshi Kohan et al., “Interview Based Connectivity Analysis of 
EEG in Order to Detect Deception”; Xiong, Gao, and Chen, “Connectivity Network Analysis of EEG Signals for 
Detecting Deception”; Vega et al., “Hemodynamic Pattern Recognition During Deception Process Using Functional 
Near-Infrared Spectroscopy.” 

73 “Top Natural Language Processing (NLP) Algorithms And Techniques For Beginners,” Programmer 
Backpack, June 21, 2020, https://programmerbackpack.com/top-natural-language-processing-nlp-algorithms-and-
techniques-for-beginners/; Hancock et al., “On Lying and Being Lied To”; “How It Works.” 

74 Guosheng Hu et al., “Deep Multi-Task Learning to Recognise Subtle Facial Expressions of Mental States,” 
in Computer Vision – ECCV 2018, ed. Vittorio Ferrari et al., vol. 11216, Lecture Notes in Computer Science (Cham: 
Springer International Publishing, 2018), 106–23, https://doi.org/10.1007/978-3-030-01258-8_7; Steven J. Pentland 
et al., “A Video-Based Screening System for Automated Risk Assessment Using Nuanced Facial Features,” Journal 
of Management Information Systems 34, no. 4 (October 2, 2017): 970–93, 
https://doi.org/10.1080/07421222.2017.1393304; Lin Su and Martin Levine, “Does ‘Lie to Me’ Lie to You? An 
Evaluation of Facial Clues to High-Stakes Deception,” Computer Vision and Image Understanding, Spontaneous 
Facial Behaviour Analysis, 147 (June 1, 2016): 52–68, https://doi.org/10.1016/j.cviu.2016.01.009; Mircea Zloteanu 
et al., “Veracity Judgement, Not Accuracy: Reconsidering the Role of Facial Expressions, Empathy, and Emotion 
Recognition Training on Deception Detection,” Quarterly Journal of Experimental Psychology 74, no. 5 (May 1, 
2021): 910–27, https://doi.org/10.1177/1747021820978851. 
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E. JOINT COGNITIVE SYSTEM AND HUMAN MACHINE TEAMING 

As technology has advanced, there are various sensing methods which may help 

intelligence professional gather accurate information through the detection of deception. However, 

attempting to replace the interviewer with a robot is unlikely to yield positive results. Building a 

system that leverages all the technological advances while keeping the interviewer in the loop may 

present the best solution to gain an asymmetrical advantage. To do this, we can investigate the 

Joint Cognitive System’s development which facilitates a machine and human team pair to achieve 

a goal.  

1. Joint Cognitive Systems Engineering: A Model for Human-Machine 
Teaming 

Systems engineering is defined as “a transdisciplinary and integrative approach to enable 

the successful realization, use, and retirement of engineered systems, using systems principles and 

concepts, and scientific, technological, and management methods.”75 It focuses on the 

development of a project’s life cycle inclusive of goals, purposes, needs, and design. It considers 

the people, end results, as well as processes which facilitate the accomplishment of goals.76 Our 

focus will be on defining anticipated customers’ needs and defining an operational concept by 

using methodologies related to Cognitive Systems Engineering (CSE) resulting in a Joint 

Cognitive System’s development.  

CSE is concerned with the modeling of human-machine interaction in such a way as to 

treat both human and machine agent(s) as individual “thinking” agents working together in a team 

in a given environment.77 This will facilitate both an interviewer being present as well as a 

machine that can help in detecting deception during the interview process. An essential component 

of cognitive engineering is human operator modeling. The goals of the modeling process are to 

 
75 INCOSE, “Systems Engineering Definition,” Incose.org, accessed June 4, 2021, 

https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-
definition#ENGINEERED_SYSTEM. 

76 INCOSE. 

77 Erik Hollnagel and David D. Woods, “Cognitive Systems Engineering: New Wine in New Bottles,” 
International Journal of Man-Machine Studies 18, no. 6 (June 1983): 583–600, https://doi.org/10.1016/S0020-
7373(83)80034-0. 
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determine the type and style of information presented to the human user, and to establish the 

technical demands of the system in the context of the user’s needs.78 The primary resultant of CSE 

is a Joint Cognitive System, defined as “the combination of human problem solver and automation 

technologies which act as co-agents to achieve goals and objectives in a complex work domain.”79  

One way to help design teams create a system is to create a model of processes. The 

Operation Function Model (OFM), typically used in CSE, is a tool designed specifically to assist 

in cognitive engineering of human–computer systems. Organized hierarchically, the model 

structurally accounts for where the human operator focuses his or her attention during a complex 

task. It consists of nodes, representing operator tasks and functions, and arcs, representing 

triggering events that cause the operator to change to another task or function. Operator function 

models help the designing of decision aids for search-and-rescue missions, ship navigation, ground 

control of orbiting satellites, and information retrieval in a corporate environment.80 We selected 

the OFM for the development of this system because it captures the cognitive events that occur 

between human agents, between human and machine agents, and the transitions between those 

events. 

2. Human-Machine Trust 

For any Joint Cognitive System or human-machine team pair to be effective, a trusting 

relationship between the human and the machine is necessary.81 There is an extensive amount of 

psychological research regarding trust. As technology continues to emerge linking humans to 

machine more research is on-going to understand how a machine component will differ from the 

established human-to-human trust relationship.  

 
78 Amanda C. Muller and S. Narayanan, “Cognitively-Engineered Multisensor Image Fusion for Military 

Applications,” Information Fusion 10, no. 2 (April 2009): 137–49, https://doi.org/10.1016/j.inffus.2008.08.008. 

79 Scott S. Potter et al., “Evaluating the Effectiveness of a Joint Cognitive System: Metrics, Techniques, and 
Frameworks,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, no. 3 (October 
2006): 314–18, https://doi.org/10.1177/154193120605000322. 

80 Muller and Narayanan, “Cognitively-Engineered Multisensor Image Fusion for Military Applications.” 

81 Ella Glikson and Anita Williams Woolley, “Human Trust in Artificial Intelligence: Review of Empirical 
Research,” Academy of Management Annals 14, no. 2 (July 2020): 627–60, 
https://doi.org/10.5465/annals.2018.0057. 
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Trust is defined as “the willingness of a party to be vulnerable to the actions of another 

party based on the expectation that the other will perform a particular action important to the 

trustor, irrespective of the ability to monitor or control that other party.”82 A machine, which for 

the purposes of this research has reference to AI, is “a highly capable and complex technology that 

aims to simulate human intelligence.”83 The steps which the machine performs typically includes 

sensing the outside world, processing the raw sensed information, producing a result, and 

conducting an assessment of the results produced.84 It is critical to understand how different 

factors can affect the establishment, maintenance, and destruction of trust between human and 

machines that they team with.      

According to psychological research, there are two types of trust which influence the 

development of a trusting relationship between human and machine: cognitive and emotional. 

Cognitive trust usually is referring to the logical trust which can be developed through use and 

time through a clear understanding of the contractual roles which the human is expecting the 

machine to perform.85 Elements which influence this include previous experience with machines, 

competence and knowledge level in the task being perform, ease of use, as well as the expectations 

of the machine.86 Emotional trust usually refers to how the human participants feels about the 

machine. Factors of influence include, attitudes, confidence level, satisfaction, and comfort.87 
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Conference on Fairness, Accountability, and Transparency, FAccT ’21 (New York, NY, USA: Association for 
Computing Machinery, 2021), 624–35, https://doi.org/10.1145/3442188.3445923; Schaefer et al., “A Meta-Analysis 
of Factors Influencing the Development of Trust in Automation.” 

86 Schaefer et al., “A Meta-Analysis of Factors Influencing the Development of Trust in Automation”; Tiffany 
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Each of these factors needs consideration during the development phase to yield the most 

advantageous system. 

Like human trust relationships, the maintenance of a relationship between a human and 

machine is key, particularly in stressful situations. Warfare is inherently chaotic and therefore 

stressful. It is critical that during stress that a system designed to assist a uniformed military 

member in the conduct of their job will perform its assigned role. As a study conducted by Drs. 

Paul Robinette, Alan Wagner, and Ayanna Howard, suggests, self-reported trust in AI decreases 

53% when the AI committed a known error.88 Additionally, the report also suggested that there 

was a strong correlation between trust and a willingness to use the AI in time critical situations.89 

Further studies suggest that even outside of time critical situations, when a machine errors, this 

has a negative influence on the trust relationship, and the operator has a tendency to avoid use of 

the system.90 In order to prevent this, three primary training suggestions were made: 1) ensure that 

training with a system encompasses common errors or failures, 2) integrate realistic scenario based 

training to overcome hesitations to use automation after failure, and 3) ensure participants are 

educated on the system through a full understanding of capabilities and limitations.91  

 
88 Paul Robinette, Ayanna M. Howard, and Alan R. Wagner, “Effect of Robot Performance on Human–Robot 

Trust in Time-Critical Situations,” IEEE Transactions on Human-Machine Systems 47, no. 4 (August 2017): 425–
36, https://doi.org/10.1109/THMS.2017.2648849. 

89 Robinette, Howard, and Wagner. 

90 Schaefer et al., “A Meta-Analysis of Factors Influencing the Development of Trust in Automation,” 16. 

91 Schaefer et al., 26. 
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III. PROPOSED SYSTEMS MODEL: WILDS 

A. PROPOSED EMPLOYMENT MODEL  

Figure 3 presents the proposed employment model of Warfare Integrated Lie Detection 

System (WILDS). The model identifies three major players in the employment of WILDS: the 

enemy, the interviewer, and WILDS. Further discussion on the roles of each major player and the 

relationships between each of them will occur later in this section.  

 
Figure 3. Proposed Employment Model 
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Figure 4. Proposed Operator Function Model92 

 

 
92 Adapted from J.D. Lee and T.F. Sanquist, “Augmenting the Operator Function Model with Cognitive 

Operations: Assessing the Cognitive Demands of Technological Innovation in Ship Navigation,” IEEE Transactions 
on Systems, Man, and Cybernetics - Part A: Systems and Humans 30, no. 3 (May 2000): 273–85, 
https://doi.org/10.1109/3468.844353; Benjamin Weyers et al., eds., The Handbook of Formal Methods in Human-
Computer Interaction, Human–Computer Interaction Series (Cham: Springer International Publishing, 2017), 
https://doi.org/10.1007/978-3-319-51838-1; Muller and Narayanan, “Cognitively-Engineered Multisensor Image 
Fusion for Military Applications.” 
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B. PROPOSED OPERATOR FUNCTION MODEL  

Figure 4 presents the proposed operator functional model for WILDS.93 The model 

sets the primary goal as detecting deception during EPW interrogations. It sets the 

functions for the machine sensors, such as the Brain Computer Interface (BCI), thermal 

imaging, heart rate sensors, and audio/visual inputs. The sub-functions are set as the 

algorithms required to process the raw data. The final action of the system produces a 

likelihood rating and associated confidence metric in compliance with the ICD-203.  

C. DISCUSSION OF OFM  

1. Overview 

WILDS’ operator function model, as illustrated in Figure 4, is an application of 

Joint Cognitive Systems Engineering. Essentially with an identified goal, the model 

enables the development of functions and subfunctions which supports an action to achieve 

the identified goal. We selected this form of modeling for two primary reasons. The first is 

because it is a goal-oriented model. Goal-oriented models facilitate keeping the focus on a 

defined end-state, rather than task-oriented models which focus on key performance 

metrics. The difference allows for more creative and innovative solutions development, 

regardless of who or what is performing each task to achieve the goal. This ties directly to 

the second reason, which is OFM facilitates human and machine interactions. Many other 

system model designs rely on the premise that either a human or a machine will achieve a 

goal independently. The OFM, however, recognizes there are tasks which are better suited 

for machines. Those tasks inform human decisions. Rather than designing a system 

discounting either the human or machine element, OFM leverages what a machine can do 

and provides a design which considers how the human will interact with the machine in 

order to achieve the defined end state.94 In doing this the model considers both the 

 
93 Lee and Sanquist, “Augmenting the Operator Function Model with Cognitive Operations”; Weyers 
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capabilities and limitation for the human and for the machine, permitting the machine to 

provide the human with the necessary information while leaving the human to understand 

the context and make continued decisions based on the information provided.95 For these 

two reasons the operator function model was selected to develop WILDS.  

2. Goals 

The goal Figure 4 presents is detecting deception during detainee interviews. 

Because an OFM’s purpose is to identify each stage and functionality of a developed 

system, the goal identified presents the main purpose of the system. It’s development stems 

from identifying the problem space, examining current processes, examining current 

technologies, and finding areas for improvements. As Chapter II outlines, the problem 

space is the capability of human operators being able to accurately detect deception with 

the intent of using the information gathered from human intelligence sources for 

operational purposes. After examining the current processes and technologies within this 

field, one viable solution would be creating a machine which detects deception accurately 

and provides results in a timely manner. This machine’s design must include detecting 

deception accurately and providing its results to a human, who can leverage the results in 

a context enabling tactical leaders to make better decisions. It is from this goal that the 

design of the operational function model for WILDS promulgated from.     

3. Functions 

The functions section of the OFM explains the methodology of achieving the goal. 

In the case of WILDS, to detect deception there are various sensors which will be present 

during the interview process. These sensors include thermal imaging, audio feeds, video 

feeds, FNIRS, and EEG sensors. To achieve the goal, the interviewer sets up the sensors 

and records. They then ask the detainee questions, and the detainee responds. The sensors 

are detecting changes in heart rate, temperature, blood flow to the brain, electrical signals 

within the brain, vocal pitches, body positioning, and language used by the detainee. This 

 
95 Potter et al. 
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is the raw data input to WILDS. This data is subsequently processed in such a way that a 

computer can understand it.   

4. Subfunctions 

For the raw data to be meaningful it needs processing in such a way that the results 

produced after processing are interpretable by a human. Therefore, upon the receipt of the 

sensing data, various algorithms are applied to the processed data. These are the 

subfunctions of WILDS. They include the connectivity and coherence processing 

algorithm, the stress monitoring algorithm, facial/body language monitoring algorithm, and 

the natural language processing algorithms. Each of these algorithms produce a result that 

is indicative if the detainee is lying. It is based on this information that the final steps can 

occur, and the goal is achievable.   

5. Actions 

The actions section of the OFM combines all the outputs of the subfunctions 

together to produce a meaningful result. For WILDS, these final steps which occur is the 

combination of each algorithm into a single useable percentage provided to the interviewer. 

This percentage informs the interviewer of the likeliness that the detainee is attempting to 

be deceptive. Additionally, it informs the interviewer of a confidence level in that 

percentage. This confidence level is based on the number of functions and subfunctions 

implemented during the process. A high confidence level is indicative of all the sensors 

and algorithms employment, while a low confidence level is indicative of either a sensor 

or algorithm failing to produce an initial result. These outputs are congruent with the 

requirements set forth in ICD-203, which ultimately enables further decisions made in the 

interview room.   

D. DISCUSSION OF PROPOSED EMPLOYMENT 

1. Overview 

The proposed employment model presented illustrates how WILDS can fits into 

EPW interviewers. The proposed model assumes that the HUMINT interviewer employing 
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WILDS has completed all necessary preparatory actions, including but not limited to 

coordinating and getting the approval for conducting the interview, planning the approach 

for questioning and responses, reserving a private interview room, setting up the interview 

room and sensors required for WILDS, and conducting a proper handover of the EPW with 

the proper military police handler. Upon completion of the handover, there are three 

pertinent relationships involved: the relationship between the prisoner and the interviewer, 

the relationship between the prisoner and WILDS, and the relationship between the 

interviewer and WILDS.  

For each relationship to be functional there is a flow of information which must 

occur. First, as indicated on Figure 3, WILDS must be sensing what the detainee is doing. 

Then the interviewer must ask a question. The type of question asked is dependent on the 

methodology by which the interviewer is working. Both closed ended—yes or no—or 

open-ended questions are acceptable for the use of WILDS. Once the prisoner responds to 

the question, the interviewer and WILDS processes that information. WILDS then 

produces a percentage of likeliness that the detainee is lying along with a confidence level 

in that percentage. The interviewer receives these results. Based on the training of the 

interviewer and the trust relationship built between WILDS and the interviewer, the 

interviewer would proceed with further planned questioning, adjusting for the honesty or 

lying occurring at the time. WILDS would continue to monitor and provide feedback on 

every question until the interview’s completion.        

2. Role of Enemy 

As discussed in Chapter II, there are three primary types of detainees which can 

provide useful information during an interview: an enemy-state actor, an enemy non-state 

actor (belligerent), and civilians (non-belligerent). Though there are various legal 

considerations for interviewing the different types of detainees, for effective 

counterintelligence gathering all detainees must provide a response. Therefore, the primary 

role of the detainee is to respond to the questions of the interviewer. Though on the surface 

this seems rather simple, two barriers may have a significant influence on if the detainee 

responds: failed communication and trained resistance.  
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Trained resistance to the interviewing process, traditionally seen in state or non-

state actors, is an attempt to protect the information they have. Typical resistance 

methodologies include failing to answer any questions posed regardless of by whom, 

failing to answer any question not related directly to their health or welfare, and providing 

only mandated requirements of the Geneva Conventions (name, rank, service number, and 

date of birth) when asked any questions. If these methodologies are being employed, the 

ability to gather intelligence through the employment of WILDS is drastically limited. 

Though the sensors are still able to monitor any changes that occur in the detainee, the 

reasons for these changes occurring cannot be correlated directly to a lie or intention to 

deceive. 

The second barrier to receiving a response is communication failure. Figure 5 

shows two paths of communication presented by Wilber Schramm.96 They illustrate that 

the recipient of the information must be able to understand questions posed to them. 

Therefore, if there is a foreign language involved, context from the questions is missing, 

or if there are multiple ways of interpreting a situation or question then the result may be 

no response to the questions posed by the interviewer. Being able to ensure that the 

pathways from is clear of any obstruction ensures clear communication and will yield better 

results for the interviewer.  

 
96 Wilber Schramm and Donald Roberts, “How Communication Works,” in The Process and Effects 

of Mass Communication, Rev (Urbana: University Of Illinois Press, 1971), 1–24. 
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Figure 5. Schramm’s Communication Model97 

3. Role of WILDS 

WILDS fits into the employment model as a member for the interviewing team. It 

works in conjunction with the interviewer, being able to detect changes in the detainee 

which are imperceivable to the human eye. These changes provide an indication that the 

detainee is lying or has the intent to be deceitful. If employed effectively this system can 

help to gather HUMINT from detainees which may be critical to operations conducted by 

military forces. To be employed effectively there are two primary inputs into WILDS and 

two primary outputs it provides.  

The two primary inputs into WILDS are the data collected by the sensors and the 

verbal response from the detainee. The data collected by the sensors is passive data, to 

include heart rate response, thermal imaging, and the other functions, as illustrated in 

Figure 4. For this input to be optimal, it should establish a baseline, meaning that the 

interviewer should have the sensors already turned on and working prior to the detainee 

answering any questions. This will allow the system to establish a baseline and then detect 

any changes regardless of verbal response from the detainee. The second input is the verbal 

response to the interviewer’s question from the detainee. The information analyzed in the 

verbal response includes, at minimum, a vocal analysis of pitch and language choice. 

Again, the sensors should be set prior to the detainee answering relevant questions to gain 
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a baseline. Additional to sensors being set prior to the detainee’s responses, the 

interviewer’s initial questions should provide a baseline to establish language patterns used 

by the detainee. The reasons these two inputs must remain separated is because the former 

requires only the presence of the detainee, while the later requires that the detainee provides 

a verbal response to the interviewer’s questions. Therefore, if the detainee is employing 

resistance tactics, as discussed in the previous section, the results may not be as accurate 

as when the detainee does at least provide an answer, deceptive or honest.  

As discussed in Chapter II, the Intelligence Community adheres to ICD-203, which 

requires analysist to provide a percentage of likeliness for an event to occur while also 

providing the confidence level in their assessment. As such, the two primary outputs of 

WILDS are the likeliness rating and the confidence rating. The likeliness rating WILDS 

would produce is a percentage on if the detainee is lying. 0% would indict a truthful answer, 

while 100% would indict that the detainee is lying. This would allow the interviewer to ask 

follow on questions, informed of what the detainee previous responses were. Additionally, 

WILDS would produce a confidence level. This confidence level would be based on the 

number of sensors applied. A reduction in the number of sensors applied to a single 

question would produce a lower confidence level output. One example of when the 

confidence level would be lower than 100% is if the detainee is applying resistance tactics 

to the interview. If the detainee fails to provide a response to the question, vocal analysis 

nor language processing occurs. The consequence is that the natural language processor 

and its congruent algorithms do not feed into the overall result. Therefore, the number of 

sensors contributing to the output would decrease, and the confidence level would reflect 

that decrease. The interviewer receives this percentage and confidence level near 

instantaneously.    

4. Role of Interviewer 

The interviewer is the other team member involved during the deception detection 

process. Though they remain the primary responsible party for the overall conduct of the 

interview, WILDS is performing the actual task of determining if a detainee is lying. Unlike 

either the detainee or WILDS the role of the interviewer starts prior to the interview and 
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finishes after processing the information gained in the interview. As such the interviewer’s 

roles has three sections: the preparation, the execution, and the results.  

Like the conduct of the preparation phase outlined in Chapter II, many of the 

responsibilities remain on the interviewer. This is inclusive of getting the approval to 

conduct the interview by the detention facility commanders, coordinating the interview 

room requirements, and developing an approach for the questions asked during the 

interview process.98 This last step, in particular, alters the conduct of the current processes. 

As explained in Chapter II, the current process of developing questions stems from the 

methodology employed. The interviewer selects a methodology they are most comfortable 

with, develops a list of potential questions to ask the detainee, and then moves into the 

execution phase. However, because there is an immediate feedback loop integrated into 

WILDS to inform the interviewer of deception, the ways which the interviewer develops 

question order changes from a list of questions to flow chart style. Figure 6 is a partial list 

of questions provided to counterintelligence specialists to help in the preparation of 

interview questions.99 Figure 7 illustrates what could be employed with WILDS providing 

feedback. The implementation of this plan would help to optimize time spent in the 

interview room as well as facilitate the gathering of information necessary for military 

operations.  

During the execution phase, the interviewer will have one output and two inputs, 

as depicted in Figure 3. The one output is the question directed at the detainee. We can see 

through the examination of Figure 7 that a proposed series of questions developed during 

the preparation phase would no longer rely on the detainee’s truthfulness, but rather the 

attempt to deceive would simply trigger a different line of questioning. An anecdotal 

example would follow along with Figure 7. The interviewer asks the initial question: What 

individual weapons does unit X have? The detainee’s answer produces a high likeliness 

and high confidence level of deception. Rather than repeating the question, the interviewer 

 
98 Department of the Army, Human Intelligence Collector Operations; US Marine Corps, 

Counterintelligence. 

99 Department of the Army, Human Intelligence Collector Operations. 



39 

proceeds with the following question: Does the unit have AK-47? The detainee answers 

no, again a high likeliness and confidence level of deception result. This would confirm 

that the enemy unit does have AK-47’s. Therefore, the attempt to deceive when detected 

could be just as informative as the detainee telling the truth. Due to the innate nature of 

EPW interviews, the interviewer is going to have two inputs the observed response of the 

detainee, and the assessment WILDS provides. Though the ultimate decision and 

responsibility will remain with the interviewer for the assessment on if the detainee is being 

deceitful, with the proper training the interviewer will learn to trust the inputs that WILDS 

provides. This will result in an increased likeliness of detecting deception by EPWs during 

interviews.  

 
Figure 6. Questioning Reference100 

 
100 Source: Department of the Army. 
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Figure 7. Question Diagram 

E. TRUST IN WILDS 

In Chapter II, we explored the current research regarding trust between humans and 

machines. From that exploration, three major conclusions are applicable to the 

implementation of WILDS and the ability to detect deception during EPW interviews.  

1. Clearly defining the responsibilities, capabilities, and limitation of the 

system to be employed can foster trust in a human-machine team pair.101  

2. Implementing scenario-based training that is tough and realistic can 

improve the trust relationship between the human and machine.102  

3. Within the training environment, purposefully causing errors for a valid 

reason will improve the trust relationship between human and machine.103  

Trust is a relationship formed between two entities in which each entity relies on 

the other to fulfill a set of understood responsibilities. As with any relationship, clearly 

defining what responsibilities are within the capacity of the trusted entity is one of the keys 

 
101 Jacovi et al., “Formalizing Trust in Artificial Intelligence.” 

102 Schaefer et al., “A Meta-Analysis of Factors Influencing the Development of Trust in 
Automation.” 

103 Schaefer et al. 
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to its success. Additionally, the trustee must clearly understand what realistic capabilities 

and limitations are for the trusted. Ultimately the trustee’s expectations have to be managed 

for trust to be established and retained.104 Figure 3 and its subsequent explanation clearly 

provides a set of responsibilities and designed outputs which WILDS is to provide to the 

interviewer during the execution phase. This includes accurately sensing various biometric 

elements of the detainee during the interview process and providing the interviewer with a 

percentage of likeliness that the detainee is attempting to be deceptive and an associated 

confidence level with that percentage. Through a clear identification of what WILDS’ roles 

are during the interview process, the process of developing trust within the interviewer-

WILDS team pair can begin.  

Once the interviewer understands the roles for which they are responsible and the 

roles for which WILDS is responsible, familiarization with employing WILDS in the 

toughest, yet most realistic environments can help to foster a trust relationship between the 

team pair. Prior to the execution of the tough realistic training event preparatory actions 

should occur. These preparatory actions should include education on the theory, including 

historical examples, if possible, familiarization events, and low stress employment 

opportunities. Each action works to develop the knowledge and understanding of the events 

expected to occur and provides a foundational reference for when situations do not match 

perfectly with training. Upon completion of these preparatory actions, tough realistic 

training scenarios should be employed. These scenarios should cover both the breadth and 

depth of problems which may occur in a realistic fashion. The scenario should attempt to 

induce a high level of stress for the personnel in training to complete an action. Upon the 

completion of the training scenario, there should be an in-depth review of decisions made 

and the congruent reasonings. This immediate review enables the development of trust 

between the human machine team (HMT) pair.  

Finally, for the establishment of a truly trusting relationship between the HMT pair 

a test should occur. The best way to do this is to purposefully cause WILDS to produce an 

inaccurate percentage of likeliness, in a scenario where that would be possible. One 
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example would be in a detainee attempting to employee evasive tactics through not 

providing any information. Though the system can monitor the detainee’s heart rate, 

temperature, blood flow, and electrical impulses, the refusal of the detainee to respond to 

a question may produce a result with lower confidence or a false positive. A potential result 

of this is distrust for WILDS. However, after working through this, the team pair will gain 

a better understanding of the limitations of WILDS. With this knowledge and experience, 

a higher level of trust and confidence is achievable so that when employed during a combat 

operation the result is deception detection with near perfect accuracy.  
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IV. CONCLUSIONS 

A. SUMMARY OF RESULTS 

This thesis identified a clear gap in HUMINT operations. The IC, DOD, and Marine 

Corps do not have a tool that enables high fidelity deception detection during 

interrogations. WILDS encompasses emerging sensor technologies and leverages 

advanced integration techniques. We demonstrate this human-machine teaming through an 

operator functional model. This model identified the goals of the system, the functions, 

sub-functions, and actions that operators would need to take to achieve the desired goals. 

The proposed system, WILDS, addresses the identified gap through leveraging various 

sensors inputs, fusing the collected data to produce a likelihood and confidence rating 

which can contribute to the interrogation and provide intelligence professionals with 

insight. To optimize the results, our proposal considered the interview and interrogation 

methodology as well as the trust relationship between the human agent and WILDS. The 

implementation of this proposal will translate into fewer casualties, reduced collateral 

damage, and improve the overall outcome in warfare for friendly forces.      

B. FUTURE WORK 

There are three major categories for future work: Future work on the development 

of WILDS, future work pertaining to employment options of WILDS, and future work 

regarding deception detection technologies.  

The next step in the development of WILDS would be the legal and ethical review. 

Following that verification, all parties involved in the implementation of WILDS—the 

interrogation teams, including military police and intelligence personnel—need to validate 

WILDS meets all the necessary requirements during interrogation operations. Upon 

completion of both reviews, the prototyping phase should begin. Prototyping development 

would require an in-depth knowledge on the following areas: BCI, thermal sensors, heart 

rate sensors, facial recognition, natural language processing, and the algorithms needed to 

integrate the data from these sensors. Additional considerations should include a basic 

understanding in material engineering, to build a field-ready system, and sensor processing. 
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The prototyping would consist of developing a single machine which would be present in 

the interrogation room and provided the inputs required for WILDS. Finally, a user-

friendly display would need development; this display would communicate both a 

likelihood rating and a confidence level to the operator. Upon the completion of 

prototyping WILDS, there would be a need for testing and evaluation. This testing and 

evaluation phase would need to include 1) testing the designed machine to ensure all 

sensors are functional in both the laboratory environment as well as in a field environment 

and 2) the comparison of human only vice the employment of WILDS deception detection.  

Separate from the future work on the development of WILDS would be the 

development of employment options for WILDS. This would include investigating other 

military applications, other intelligence community applications, and generally other 

government agencies. Future work could include the development of a variation on WILDS 

which could assist during Key Leader Engagements or other various Human Intelligence 

gathering operations where it would be critical to know if a person is lying outside of the 

interrogation room. Outside the military but still inside the Intelligence Community 

employing WILDS for the purpose of conducting interrogations or other Human 

Intelligence operations not specified to military operations, such as the identification of 

insider threats could be beneficial. Additionally, investigating if the same type of system 

is leverageable for the purposes of the Department of Homeland Security operations, 

Federal Bureau of Investigation criminal investigations, or even the local police force 

conducting criminal investigations. These domestic applications would again require both 

legal and ethical reviews to ensure the maintenance of rights to privacy.  

As various technologies continue to emerge and develop, it is critical that military 

planners and leaders continue to monitor their advancement for the purposes of leveraging 

them for deception detection. Fields of study which are continuing to develop rapidly 

include biometric sensors, cognitive science, and artificial intelligence. Additionally, any 

advancement in network security and computer security would also be of benefit to the 

deception detection field. Future work in any of these fields, while pairing it with the 

psychological perspectives on deception detection will provide continual advancements 

within this field.      
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C. FINAL THOUGHTS 

If, as Sun Tze asserts, all warfare is based on deception, then being able to detect 

deception provides a significant advantage on the battlefield. The DOD’s and the Marine 

Corps’ current approach to detecting deception during interrogation is as accurate as 

guessing heads or tails when flipping a coin. Improvement is both necessary and 

achievable. A system that can take advantage of the multiple biometric indicators present, 

in real time at the moment of deception, would fundamentally shift HUMINT operations. 

This is particularly the case if this system engenders trust by providing likelihood and 

confidence metrics to the operator. By leveraging these various technologies, integrating 

them into a dynamic system, and employing them with the purpose of detecting deception 

in enemy combatants, the DOD and Marine Corps can take what would be the flip of a coin 

and produce higher fidelity results, ultimately enhancing intelligence collected and 

counterintelligence operations.  

Within the discipline of systems engineering, there are various modeling 

approaches to systems designing. We selected the OFM as the best approach because it 

enables both human processes and machine processes modeling within a single design 

concept, contributing directly to achieving the goal of the model. Other various models fall 

short in modeling the human processes impact on the design of a given system. OFM is 

inclusive and holistic for human-machine team pairing system design.   

The DOD and the Marine Corps have the opportunity to gain an advantage over 

any enemy. Being able to detect deception when the stakes are high is just as critical as 

accurately inputting targeting data. On today’s battlefield, we rely heavily on human-

machine teams to do everything from monitoring maintenance to putting bombs on a target. 

Detecting deception can be no different. Employing a machine that can assist us in 

facilitating the gathering of information to be the best on the battlefield provides an 

asymmetric advantage.   
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