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1. INTRODUCTION
Prostate cancer (PCA) is a clinically and genetically heterogeneous and the development of a molecular
classification is critical to distinguish lethal from indolent tumors and minimize overtreatment. Recent
technological advances have enabled extraordinary insights into molecular changes occurring in PCA and the
PTEN and ERG genomic alterations have emerged as the most common in PCA. Furthermore, we have found
that PTEN loss is associated with PCA death most strongly in patients carrying ERG rearrangements, hence there
is an interest in exploiting such alterations for routine risk assessment. Furthermore, despite the fact that PTEN
and ERG molecular classification is widely accessible, our understanding of their interaction during disease

progression is very limited, and a molecular signature of PTEN/ERG loss in PCA is still lacking.

To address these issues, we have formed a collaborative, multi-disciplinary team – led by a urologic pathologist 
and computational biologist with expertise in PCA molecular pathology and cancer genomics – to perform a 
comprehensive molecular assessment of well-annotated prostate cancers in relation to PTEN and ERG status 
using existing and novel data. Our objectives are threefold: 1) to confirm that the tumors with loss of PTEN and 
lacking ERG rearrangement are among the most aggressive; 2) to characterize the expression profiles associated 
with PTEN and ERG alterations; and 3) to determine whether these expression profiles can improve the way we 
stratify prostate cancer patients into different risk groups. 

Findings from our proposed research have the potential for both immediate and long-term clinical and 
translational research applicability. First, by analyzing several large clinical cohorts from multiple institutions, 
we will be able to confirm the performance of these biomarkers in patient risk stratification. Second, we will also 
be able to assess if and how PTEN/ERG molecular signatures correlate with lethal disease risk in comparison to 
currently available prognostic assays. Third, we expect to identify novel molecular alterations responsible for the 
distinct clinical and biological behavior of tumors based on PTEN and ERG status. Lastly, we will also generate 
a wealth of information about the biologic drivers of prostate cancer behavior, which shall then be utilized by the 
entire PCA research community. 

2. KEYWORDS
Prostate cancer, PTEN, ERG, ETS, MYC, cell cycle, gene expression, RNA sequencing, Cap Analysis of Gene

Expression (CAGE)

3. ACCOMPLISHMENTS
Below are listed tasks, subtasks, and accomplishments for research sites 1 (coordinated by the initiating PI, Dr.

Marchionni), and site 2 (coordinated by the partnering PI Dr. Lotan).

SPECIFIC AIM 1 (Dr. Lotan) 

Expected tasks and milestones are summarized below. 

Specific Aim 1: Validate association of PTEN and ETS status with risk of lethal prostate cancer 
Timeline 

(Months) 

Major Task 1: Assessing prostatectomy cohorts on multiple tissue microarrays (TMA) for PTEN, 
ETS, and cell proliferation rate 

1-36

Subtask 1: Perform immunostaining for PTEN, ERG and Ki-67 and in situ hybridization on tissue 
microarrays (TMAs) from JHU and MSKCC cohorts; immunostaining for Ki-67 on HPFS/PHS 
cohort 

1-12

Subtask 2: Score immunostaining and in situ hybridization from Subtask 1 

• Digitally scan all slides using Aperio CS slide scanning system in Johns Hopkins OTS Core
facility

• Segment TMAs and upload to web-based browser, TMAJ (http://tmaj.pathology.jhmi.edu/)

• Dr. Lotan, Dr. Gopalan (MSKCC), and pathology fellow supervised by Dr. Lotan perform
scoring. Image analysis software (FRiDA on TMAJ) to be used for Ki-67 scoring

13-24



Subtask 3: Analysis of immunostaining and in situ hybridization data from Subtask 2 

• Multivariate models to assess association of PTEN/ETS status with metastasis and survival in
JHU and MSKCC cohorts

• Correlation of PTEN/ETS status with proliferation in JHU, MSKCC and HPFS/PHS cohorts

18-30

Milestone #1: Co-author manuscript on association of PTEN/ETS status with cell cycle gene 
expression, proliferation rate and risk of metastasis and death in multiple validation cohorts 31-36

Progress on Major Task 1 – Subtask 1:  Major activities for this 
activities included performing immunostaining and in situ 
hybridization on the JHU and MSKCC tissue microarray (TMA) 
cohorts. We have therefore performed and scored PTEN and ERG 
immunostaining on the JHU and MSKCC TMA cohorts, in addition 
to ETV1, ETV4 and ETV5 in situ hybridization on the JHU cohorts. 
Ki-67 immunostaining has been performed as proposed on both 
cohorts and automated scoring is pending. We also analyzed the 
PTEN/ERG/ETS data for association with metastasis and death from 
prostate cancer in the JHU and MSKCC cohorts. We have also 
correlated PTEN/ERG/ETS status of tumors in these cohorts with 
gene expression data from the same cohorts. 

Progress on Major Task 1 – Subtask 2: The scoring for ETS gene 
rearrangements (ETV1/4/5) (as well as PTEN and ERG) on the JHU 
tissue microarrays has been completed and analyzed.  Ki-67 
immunostaining on those arrays is completed. PTEN and ERG 

staining as well as Ki-67 staining is completed for these arrays as well.  All arrays have been digitally scanned 
and are viewed on our TMAJ viewer (Figure 1).  However digital automated scoring of Ki-67 has been 
challenging since it is difficult to normalize the number of positive detected nuclei (brown) to the negative tumor 
nuclei (blue).  This is because it is difficult to detect all negative tumor 
nuclei.  After examining the possibility of simply normalizing the number of 
positive tumor cells to the total area of the spot (i.e., density of positive cells 
per mm2 of tumor), which is the easiest method, we have decided that this is 
suboptimal since it can be confounded by the amount of tumor nuclei 
sampled in the TMA spot (Figure 1).  In this analysis, we find that lower 
grade tumors, with fewer tumor nuclei will have inappropriately low Ki-67 
density scores.  Thus, it is necessary to manually annotate all tumor-
containing spots. To pilot this manual annotation algorithm, we used a 
smaller JHU cohort of ~200 prostate cancer cases where tumor spots could 
be manually annotated more easily. In this analysis (Figure 2, below), we 
found that median Ki-67 levels (% tumor nuclei staining) were significantly 
elevated in tumors with PTEN loss compared to those with intact PTEN 
(p=0.006), regardless of ERG status (p=0.006).  Interestingly, cases with 
PTEN loss that were ERG negative showed increased variability in Ki-67 
levels, potentially consistent with our finding of their heterogeneous 
molecular status (see below).  However, we found this to be extraordinarily 
time-consuming and impractical to perform on 400 spots x 12 TMAs in the 
MSKCC cohort and 9 TMAs in the full JHU cohort. 

To automate the tumor annotation process, we piloted a new protocol for dual staining for Ki-67 (brown) 
and AE1/AE3 keratin (red) with p63 (brown) in the JHU TMAs.  This enabled us to train HALO image analysis 
software to identify the epithelial (glandular) components on each slide and automatically annotate them.  Then, 
using the p63 immunohistochemistry, we can manually exclude benign glands from the analysis.  Though still 
requiring a manual step, this is much more efficient than full manual annotation.  We have annotated all JHU 
TMAs and are now in the process of quantifying the Ki-67 using this algorithm.   

 
Figure 1: Ki-67 labelling in JHU cohort 
(200x magnification) 
 

Figure 2: Ki-67 labelling in JHU 
cohort by PTEN-ERG status. 
Median Ki-67  is median % tumor 
nuclei staining. 
 



Progress on Major Task 1 – Subtask 3:  For the HPFS/PHS tissue microarrays, we have completed and analyzed 
Ki-67 immunostaining.  Data comparing the percent of tumor cells labeling for Ki-67, stratified by PTEN and 
ERG status are presented in Table 1.  Exactly as reported in the JHU cohort described above, there was a 
statistically significant increase in Ki-67 labelling when comparing tumors that have PTEN loss and those that 
are PTEN intact, however there was not a significant difference in Ki-67 labeling between tumors with PTEN 
loss and ERG expression and those with PTEN loss that do not express ERG (p=0.68).  Thus, we anticipate we 
will further validate this finding in the full JHU and MSKCC cohorts as well. 

We have finalized the analysis of PTEN and ERG on the MSKCC cohort and examined the correlation of these 
molecular alterations with clinical outcomes (lethal prostate cancer) in multivariable models.  These results are 

presented in Table 2 and Figure 3 below, and were 
recently published in Journal of Urology  (Haney NM, 
Faisal FA, Lu J, Guedes LB, Reuter VE, Scher HI, 
Eastham JA, Marchionni L, Joshu C, Gopalan A*, 
Lotan TL*.  PTEN loss with ERG-negative status is 
associated with lethal disease after radical 
prostatectomy.  J Urol. 2020, 203(2):344-350.  *Equal 
Contribution. PMID: 31502941). 

Training and professional development: Nothing to 
report 

Results dissemination to communities of interest: 
Results from Major Task 1 – Subtask 3 were recently 
published in Journal of Urology  (Haney NM, Faisal 
FA, Lu J, Guedes LB, Reuter VE, Scher HI, Eastham 
JA, Marchionni L, Joshu C, Gopalan A*, Lotan TL*.  
PTEN loss with ERG-negative status is associated 
with lethal disease after radical prostatectomy.  J Urol. 
2020, 203(2):344-350.  *Equal Contribution. PMID: 

31502941). 

Table 1. Ki-67 labeling stratified by PTEN/ERG status in HPFS/PHS cohort 

Ki-67 (% positive tumor nuclei) P-value P-value

Any PTEN intact/ERG negative 0.8% Reference 0.02 

Any PTEN intact/ERG positive 0.3% 0.13 0.26 

Complete PTEN loss / ERG negative 1.3% 0.02 Reference 

Complete PTEN loss / ERG positive 1.1% 0.03 0.68 

Table 2: Multivariable models of association of PTEN-ERG status with lethal prostate cancer in the MSKCC cohort. 

Figure 3: Kaplan-Meier survival curves of freedom from 
lethal prostate cancer by PTEN and ERG status. Blue 
curve indicates PTEN intact and ERG negative in 363 
patients. Red curve indicates PTEN intact and ERG positive 
in 210 patients. Green curve indicates PTEN loss and ERG 
negative in 83 patients. Brown curve indicates PTEN loss 
and ERG positive in 120 patients. 



SPECIFIC AIM 2 (Dr. Marchionni) 

Expected tasks and milestones are summarized below. 

Specific Aim 2: Leverage multi-dimensional public domain data to discover genomic features and 
signaling pathways associated with PTEN loss in ERG-positive and ERG-negative PCa. 

Timeline 
(Months) 

Major Task 1: Exploratory analysis of genomics datasets 1-6

Subtask 1: Examine gene expression distributions and identify outliers and other potential 
problems: 

• Use statistical summaries and visualizations (e.g., principal component analysis, hierarchical
clustering)

• Apply appropriate transformation to the data if required

1-6

Major Task 2: Classify tumors based on PTEN, ETS, and MKI67 status. 6-24

Subtask 1: Use the EM-algorithm to classify tumors as positive or negative based on the expression 
levels of PTEN, ETS family members, and MKI67 

6-12

Subtask 2: Compare expression-based classification to IHC and in-situ based status from in Specific 
Aim 1 

12-30

Subtask 3: Analysis of PTEN and ETS status in cohorts available from GenomeDX and the public 
domain 

• Multivariate models to assess association of PTEN/ETS status based on genes expression
dichotomization with metastasis and survival in all cohorts

• Correlation of PTEN/ETS status based on genes expression dichotomization with proliferation in
all cohorts

12-24

Major Task 3: Comprehensive meta-analysis of differential gene expression programs modulated 
by PTEN and ETS status in prostate cancer and characterization of their biological and clinical 
correlates 

12-30

Subtask 1: Use generalized linear model to identify genes differentially expressed and differentially 
modulated by PTEN and ETS in prostate cancer 

12-24

Subtask 2: Identification of relevant biological processes and signaling pathways associated with 
PTEN/ETS molecular signatures in prostate cancer 

18-30

Subtask 3: Development and validation of predictive models based on associated with PTEN/ETS 
molecular signatures in prostate cancer 

24-36

Milestone #2: Co-author manuscript on comprehensive meta-analysis of genes and signaling 
pathways associated with PTEN/ETS status in prostate cancer 24-36

Milestone #3: Co-author manuscript on prognostic values of PTEN/ETS molecular signatures in 
prostate cancer 24-36

Progress on Major Task 1 – Subtask 1: We have 
performed exploratory data analysis on all clinically 
annotated prostate cancer datasets available from the 
public domain and through the collaboration with 
GenomeDX. We used statistical summaries and data 
visualizations techniques (e.g., principal component 
analysis, hierarchical clustering) to identify outliers and 
unwanted sources of variation in the data, applying 
appropriate pre-processing procedures and 
transformations as required. 

Progress on Major Task 2 – Subtask 1: We have used 
the EM-algorithm to classify tumors as positive or 
negative based on the expression levels of PTEN, ETS 
family members, and MKI67. Overall, ERG gene 
expression proved to be bimodal in all datasets analyzed, 
with nearly perfect concordance with results from IHC and 

Figure 4: Gene expression distributions for PTEN, ERG, 
ETV1, and ETV4 in the MSKCC cohort. The underlying 
distributions from the EM-algorithm are shown in red and 
blue. ERG and ETV1 expressions are clearly bimodal. 



CNV status. On the contrary, PTEN classification based on EM-classification of gene expression proved more 
challenging, with some degree of variation between datasets (an example in Figure 4 for the MSKCC cohort). 

Progress on Major Task 2 – 
Subtasks 2: We compared 
results between IHC based 
assessment of PTEN and ERG 
expression with classification 
obtained based on gene
expression using the EM 
algorithm. We performed this 
analysis on the MSKCCC, the 
HPFS/HPS, and the Natural 
History cohorts. For this analysis, 
IHC status was used as the gold-
standard and cross-tabulated with 

the prediction based on the EM-algorithm classification the ERG and PTEN gene expression levels. Overall, the 
concordance between IHC and EM-predictions was much higher for ERG status than for PTEN status (Table 3). 
Based on these findings, we decided to develop a more robust, multigene signature for PTEN classification using 

expression levels. 

Progress on Major Task 2 – Subtasks 3: This analysis produced a list of differentially expressed genes 
associated with ERG and PTEN status. These lists accounted for a core set of genes shared across the different 
datasets, as well as for genes differentially expressed only in each individual dataset considered. For this reason 
we therefore decided to focus on genes and pathways identified in a metanalysis in conjunction with the 
development of a prognostic signature (see below, section Progress on Major Task 3 – Subtasks 3). 

Progress on Major Task 3 – Subtask 1: 
During the first two years of project, we 
have developed and characterized in depth 
a consensus signature for PTEN loss using 
a meta-analytic approach. In the third year 
of the project, we have investigated the 
association of this signature with ERG 
status. This analysis has revealed that the 
ERG gene itself is among the top 
upregulated genes in our PTEN loss 

sigature (Figure 5). 

Based on this observation, we have 
therefore hypothesized that our PTEN 
signature could be heavily influenced by 
the ERG rearrangement, since this gene 
encodes a transcription factor. In order to 
test this hypothesis, we have therefore 
repeated the meta-analysis by splitting the 
samples by ERG status and then by fitting 
two separate Bayesian hierarchical models 
for differential expression by PTEN status. 

In the samples with ERG rearrangement, we observed a signature similar to the overall PTEN consensus signature 
we previously developed in year 2. On the contrary, in the samples without ERG rearrangement, we could not 
find any significant differences between samples with PTEN loss and PTEN intact. 

This finding was surprising, given that PTEN is a powerful tumor suppressor capable of triggering important 
molecular and functional changes. We speculated that this result could be caused by two reasons: 1) PTEN loss 
in the absence of ERG rearrangement, does not impact the cell in any significant way; or 2) The absence of ERG 

Table 3. Comparison between ERG status and PTEN status based on IHC and EM-
algorithm classification. Analyses were performed in the MSKCCC, the HPFS/HPS, and 
the Natural History cohorts. 

MSKCCC HPFS/PHS Natural History 
ERG PTEN ERG PTEN ERG PTEN 

Sensitivity 0.97 0.98 0.47 0.87 0.92 0.01 
Specificity 0.84 0.08 0.94 0.24 0.98 1.00 

Positive Predictive Value 0.82 0.70 0.88 0.79 0.97 1.00 
Negative Predictive Value 0.97 0.67 0.64 0.36 0.95 0.37 

Prevalence 0.42 0.69 0.50 0.77 0.41 0.63 
Detection Rate 0.41 0.68 0.24 0.67 0.38 0.01 

Detection Prevalence 0.50 0.96 0.27 0.84 0.39 0.01 
Balanced Accuracy 0.91 0.53 0.71 0.56 0.95 0.51 
Overall Accuracy 0.90 0.70 0.71 0.72 0.96 0.38 

Kappa 0.89 0.69 0.41 0.12 0.90 0.01 

Figure 5. PTEN signature from meta-analysis. PTEN signature obtained by 
multi-level model for cross-study detection of differential gene expression 
based on IHC calls on Natural History and HPFS cohorts. Figure shows the 
effect size of each cohort. ERG is one of the most upregulated genes associated 
with PTEN loss (red arrow). 



rearrangement generates a high level of heterogeneity that makes it hard to estimate difference between PTEN-
null and PTEN intact samples. The first hypothesis, however, is highly unlikely, given the fact that it is well-
established that PTEN loss triggers deep changes in cellular metabolism and growth. Therefore, we performed 
experiments to test if the second hypothesis was true. 

In order to test if tumors without ERG rearrangement presented overall higher heterogeneity levels than tumors 
with it, we stratified the samples based on their PTEN and ERG status. We used the divergence framework 
available through the R/Bioconductor package ’divergence. Using individual genes (for transcriptomic data) as 
features of interest, the normal samples were used to estimate baseline profiles and then the divergence was 
computed for the tumor samples in TCGA and HPFS cohorts. A similar analysis was conducted for the 
methylation and genomic mutation data from TCGA, using individual CpGs and mutations/copy-number-
variation as the features of interest. A random sampling based on the size of the smallest group was extracted 
from the resulting binary coding to compute the average hamming distances between pairs of samples, this step 
was performed with 1000 bootstraps.  

For all molecular data types and for both cohorts, we observed that the intra-group distances between the ERG 
positive samples (i.e., those with ERG rearrangement) were always significantly higher than between ERG 

negative tumors, thus confirming our hypothesis (Figure 6). 

Progress on Major Task 3 – Subtask 2: In our analysis of biological processes and signaling pathways 
associated with PTEN/ETS molecular signatures in prostate cancer, we saw a strong enrichment in immune 
related pathways upon PTEN loss (see Figure 7). This finding was particularly surprising given that PTEN is 
itself a key positive regulator of innate immune response. Disruption of PTEN expression has been previously 
reported to lead to decreased innate immune response. Remarkably, despite the loss of PTEN being associated 

Figure 6. Heterogeneity analysis in ERG positive and negative tumors. Average hamming distance based on 1000 bootstraps 
intra-samples between each group, showing that samples in absence of ERG rearrangement (ERG wild) presented higher levels of 
heterogeneity (higher distances) than samples with rearrangement (ERG fusion). Top left) Hamming distance based on CNV in 
TCGA; Top right) Hamming distance based on mutation in TCGA; Bottom left) Hamming distance based on divergence expression 
levels in TCGA and Bottom right) Hamming distance based on divergence methylation levels in TCGA. 



with higher expression of the immune checkpoint gene programmed death ligand-1 (PD-L1) in several cancer 
types this is not true in PCa. So far, current immunotherapeutic interventions, such as PD-1 blockade, in PCa have 
not been successful. One of the possible reasons is the lack of PD-L1 expression. Therefore, alternative targets 
must be considered for immunotherapy in PCa. One alternative target is the checkpoint molecule B7-H3 (CD276), 
whose expression has already been associated with PCa progression and worse prognosis and has been suggested 
as a target for immunotherapy. CD276 was one of the most concordant up-regulated genes in our signature 
(Figure 5) suggesting that its expression is associated with PTEN loss. The positive enrichment of MHC class II 
antigen presentation, neutrophil degranulation, vesicle-mediated transport, and FC receptor pathway-related 
genes suggests that PTEN-null tumors may be immunogenic. This observation has potential implications in the 
context of precision medicine since immune responsive tumors are more likely to respond to immunotherapies. 

Progress on Major Task 2 and 3 – Subtask 3: During the third year of research, however, we have generated a 
prognostic gene expression signature for prostate cancer progression using a combination of gene expression data 
from the public domain, as detailed below. To this end, a total of 674 primary prostate cancer samples (from 3 
distinct studies) were used for discovery of the gene signature, while an independent cohort of 248 samples was 
used for validation and signature performance assessment (see Table 4). 

Figure 7. Top enriched gene sets enriched across PTEN-null and PTEN-intact in the TCGA and meta-analysis (BHM) 
cohorts stratified by ERG status and overall. Heatmap of mean-centered log2 signed p-values (normalized enriched score 
multiplied by log10 of p-value) showing the top 10 enriched gene sets of each collection (ranked by signed p-value). 



First, we have performed a large scale differential expression analysis of gene expression data from different 
microarray platforms. We have 
identified 49 up-regulated and 26 
down-regulated genes in prostate 
cancer metastasis cases. We have then 
further optimized this signature using 
a ”forward search” process reducing 
the original list to just 14 up-regulated 
and 17 down-regulated genes. Finally, 
we have combined the gene 
expression levels for these genes into 
a meta-score for use in subsequent 
analyses, including multivariable Cox 
proportional hazard model analyses 
with other clinical and pathological 
variables (Age, PSA, T-stage ,and 
Gleason grade). 

To assess the performance of our signature, we measured the 
area under the receiver operating characteristic curve (AUC). 
In the training the AUC ranged from 0.78 to 0.88 (Figure 8, 
right panel), while in the testing cohort the AUC was 0.79 
(Figure 8, left panel), confirming the prognostic value of the 
signature.We performed Kaplan-Meier analyses in the testing 
cohort. Patients with higher signature meta-score had worse 
metastasis-free survival than those with lower score (p-value 
< 0.0001, see Figure 9). Additionally, we also performed 
survival analyses using individual gene expression levels 
rather than the signature meta-score. In this analysis, 7 out of 
14 up-regulated genes (TMSB10, IQGAP3, CST2, STC2, 
FOXH1, PTDSS1, HES6) were significantly associated with 
lower survival, while  8 out of the 17 down-regulated genes 
(AZGP1, NT5DC1, KCTD14, PTPRN2, UFM1, CCK, 
KIAA1210, POTEG) were significantly associated with better 
survival when highly-expressed.  

Most importantly, the signature meta-score was the only 
significant variable in the multivariable Cox regression 
analysis performed in the testing cohort. The model included 

Figure 8. Performance of the prognostic signature. ROC curves in the 3 training 
data sets with a summary ROC curve of all data sets combined (Left) and ROC curve 
in the independent testing data set (Right). 

Table 4. Collected data sets showing the number of samples and the number of metastasis cases. 3 datasets 
were used for training and one data set (GSE116918) was used as an independent validation cohort. 

Figure 9. Survival analysis in the testing cohort. Kaplan-
Meier curves based on signature meta-score. Patients with 
low score have a better metastasis-free survival than those 
with a high score (p-value < 0.0001). 



the meta-score together with age, PSA (prostate specific antigen), Gleason grade and T-stage, with a hazard ratio 
of 5.67 (95% CI : 2.02 - 15.9, see Figure 10)  

Collectively, these analyses show the importance of integrating gene expression data from multiple studies to 
identify accurate and consistent prognostic signatures. We are currently integrating this signature with PTEN and 

ERG classification obtained by the EM-algorithm, as previously described. 

Training and professional development: Nothing to Report. 

Results dissemination to communities of interest: Results from Major Task 1,2,3 were recently published in 
the following bioRxiv pre-print article: “Transcriptional landscape of PTEN loss in primary prostate cancer”, by 
Eddie Luidy Imada, Diego Fernando Sanchez, Wikum Dinalankara, Thiago Vidotto, Ericka M Ebot, Svitlana 
Tyekucheva,  Gloria Regina Franco, Lorelei Mucci, Massimo Loda, Edward M Schaeffer, Tamara Lotan, Luigi 
Marchionni. doi: https://doi.org/10.1101/2020.10.08.332049. This article is currently under review in Modern Pathology. 

SPECIFIC AIM 3 (Drs. Lotan and Marchionni) 

Expected tasks and milestones are summarized below. 

Specific Aim 3: Discover and validate gene regulatory and expression signatures associated with 
PTEN loss on genetically homogeneous ERG-positive and ERG-negative backgrounds. 

Timeline 

(Months) 

Major Task 1: Select 40 FFPE tumors from Johns Hopkins Surgical Pathology archives (20 ERG-
positive and 20 ERG-negative, ETV1-negative). Within each group 10 have heterogeneous PTEN 
loss, 5 have homogeneous PTEN loss and 5 have intact PTEN by IHC 

1-12

Subtask 1: Immunostaining 100 index tumors from Gleason 3+4=7 radical prostatectomies 1-6

Subtask 2: Score staining and select cases 4-8

Subtask 2: Punch blocks and prepare RNA for CAGE 8-12

Figure 10. Forest plot for Cox proportional hazards model results in the testing cohort. The signature meta-score is the only 
significant variable, outperforming other clinical and pathological variables. 



Major Task 2: Perform CAGE analysis of the tumors resulting from Major Task 1 of Specific 
Aim3. Technology assessment and troubleshooting in collaboration with Dr. Carninci (RIKEN, 
Japan) 

6-24

Subtask 1: CAGE library preparation, quality assessment, and sequencing 

• Performed at the Next Generation Sequencing Center (NGSC, Dr. Yegnasubramanian )
6-18

Major Task 3: Bioinformatics analysis of CAGE data generated in Major Task 2 of Specific Aim 
3. Technology assessment and troubleshooting in collaboration with Dr. Carninci (RIKEN, Japan)

12-36

Subtask 1: CAGE short reads quality evaluation and alignment to the reference genome 

• Performed using NGSC computing cluster (Dr. Wheelan)
12-24

Subtask 2: Quantification of expressed genomic regions using CAGE tags 

• Performed using the School of Public Health (SPH) High Performance Computing Cluster
(HPCC)

18-30

Subtask 3: Classification of expressed genomic regions, identification of active enhancers, 
promoters, and transcript 

• Performed using SPH HPCC

24-30

Subtask 4: Gene expression regulatory network reconstruction and analysis 

• Performed using SPH HPCC
24-36

Milestone #4: Co-author manuscript on CAGE analysis of PTEN/ETS status in prostate cancer 30-36

Progress on Major Task 1 – Subtask 1-3 (Dr. Lotan): These activities have been successfully completed. 

Progress on Major Task 2 – Subtasks 1 (Dr. Marchionni): During years 1 and 2 of the proposal, we have 
tested CAGE and nanoCAGE sequencing protocols using high quality RNA obtained from several prostate cancer 
cell lines. These protocols were optimized for an Illumina mySeq instrument. In year 3 of the proposal, we have 
focused on optimizing the protocols for RNA samples prepared from tissue specimens. We also worked on 
developing optimal multiplexing protocols, in order to take advantage of the higher sequencing throughput of the 
Illumina HiSeq2500 instrument. To this end, we have obtained RNA from 12 tumor samples, prepared the 

nanoCAGE libraries, and then performed sequencing, as detailed below. 

Tumor samples from Major Task 1 were multiplexed and the nanoCAGE protocol was used to the prepare the 
pooled libraries for sequencing. Before processing the samples on the Illumina HiSeq2500 instrument, we also 
performed after a successful mini-run on a mySeq instrument. For an unknown reason, however, the sequencer 
analytical pipeline failed to demultiplex the sequenced samples. We therefore extensively reviewed the 
experiments and performed an in depth troubleshooting. The quality control analysis in the whole dataset revealed 
that although the overall sequence quality was good (> 30 Phred Score), there was a high level of duplicated reads 
(82.6% and 64.2% for R1 and R2, respectively). 

We therefore attempted to analyze the sequencing data using an alternative pipeline. Specifically, we tried to 
process the libraries using the TagDust2 software, which also failed in demultiplexing the libraries. Next, we also 
aligned the reads to the human genome (hg38) to check if the sequences obtained were originating from the tumor 
RNA or from the sequencing kit by-products. In this analysis, only about ~6% of the reads aligned uniquely to 
the human genome, and around ~17% aligned to multiple loci, indicating that most of the sequences obtained 
were not originating from the human RNA from the tumors. Finally, we tried to align the sequences to the PhiX 
genome since this DNA was used during the library preparation to increase the library complexity. This analysis 
revealed that around ~46% of the reads aligned to the PhiX genome, highlighting potential problems during 
library preparation and/or sequencing (e.g., incorrect primer loading in the Illumina HiSeq2500). Unfortunately, 
due the COVID-19 pandemic in year 4, the development and troubleshooting of the nanoCAGE libraries had to 
be halted and this task could not be completed. We, however, were still able to complete our goals with an 
alternative strategy (see Major Task 3 bellow) 

Progress on Major Task 3 – Subtasks 1, 2, 3, and 4 (Dr. Marchionni) 

In year 1 and 2 of the project, we have created a comprehensive atlas of gene expression based on recent 
annotations from the FANTOM consortium based on CAGE-sequencing data (CAGE Associated Transcriptome, 



referred as FANTOM-CAT) and the recount2 database. This resource – called FC-R2 – accounts for gene 
expression summaries for over 109,000 genes across over 70,000 human samples. It encompasses expression 
information for dozens of thousands lncRNAs genes, including enhancers and promoters. This resource was used 
as an alternative venue for the study of lncRNAs due to the shortcomings of Major Task 2 – Subtask 1. It enabled 
us to explore enhancers, promoters and other lncRNAs that have not been explored in this context before. 

In year 3 of the project, we have leveraged the FC-R2 resource and we have performed differential expression 
analysis between PTEN-null and PTEN-intact samples (see Aim 2 – Major task 3 – subtask 2). In this analysis, 
we found 264 lnRNAs, including enhancers and promoters, associated with PTEN in PCa, with around half of 
them not previously reported in association with PCa and were only annotated in the FANTOM-CAT meta-
assembly. The FANTOM consortium has recently characterized hundreds of lncRNAs via molecular 
phenotyping, however none of the lncRNAs associated with PTEN-loss was included in their study, and therefore 
they still lack an assigned function. In this their study it was shown that the expression levels of genes in the same 
topological domain are highly correlated only in tissue types in which these genes play a functional role. For this 
reason, we characterized our novel PTEN associated lncRNAs by analyzing the expression correlation with 
nearby genes across all cancer types in TCGA. 

Among the FANTOM-CAT exclusive genes with the highest fold change in close proximity with coding genes, 
were CATG00000038715, CATG00000079217 and CATG00000117664. These genes were positioned in the 
same loci as the genes encoding for CYP4F2, FBXL7, and GPR158, respectively. These lncRNAs genes were 
mostly expressed in PCa as opposed to other cancer types in TCGA, which might suggest their function are 
associated with PCa progression (Figure 11). All these genes were shown to be highly correlated with their 
respective “local” coding gene. For example, CATG00000038715 is near CYP4F2 and CYP4F11, which encodes 
members of the cytochrome P450 enzyme superfamily, and the expression levels of CATG00000038715 and 
CYP4F2 were found highly correlated almost exclusively in PCa (R=0.91, p < 2.2e-16) suggesting that 
CATG00000038715 function might be associated with CYP4F2 in a highly specific manner in PCa (Figure 12). 

Figure 11 - Expression profiles of novel FANTOM-CAT genes CATG00000038715, CATG00000079217 and CATG00000117664 
across 33 cancer types. Violin-plots shows expression (log2 CPM+1) distribution. 



Moreover, all of the coding genes mentioned above (i.e. CYP4F2, FBXL7, and GPR158) are involved in immune 
response, corroborating with the results of the pathways analysis. 

Figure 12 - Person correlation of the unknown gene CATG00000038715 and CYP4F2 across cancer types. 
CATG00000038715 and CYP4F2 expression are shown to be highly correlated in prostate cancer. Moreover, 
CATG00000038715 expression is shown to be highly specific to prostate cancer. With exception of leukemia cells, none 
of the other tumors expressed high levels of CATG00000038715. 



Training and professional development: Nothing to Report. 

Results dissemination to communities of interest: : Results from Major Task 2 – Subtasks 2, 3, and 4 were 
recently published in Genome Research: “Recounting the FANTOM Cage Associated Transcriptome”, by Eddie-
Luidy Imada, Diego Fernando Sanchez, Leonardo Collado-Torres, Christopher Wilks, Tejasvi Matam, Wikum 
Dinalankara, Aleksey Stupnikov, Francisco Lobo-Pereira, Chi-Wai Yip, Kayoko Yasuzawa, Naoto Kondo, 
Masayoshi Itoh, Harukazu Suzuki, Takeya Kasukawa, Chung-Chau Hon, Michiel JL de Hoon, Jay W Shin, Piero 
Carninci, FANTOM consortium,  Andrew E Jaffe, Jeffrey T Leek, Alexander Favorov, Gloria R Franco, Ben 
Langmead, and Luigi Marchionni. doi: https://doi.org/ 10.1101/gr.254656.119 

4. IMPACT

Impact on prostate cancer research

We have successfully classified ERG status in all available datasets analyzed. Furthermore, we have successfully 
reproduced in an independent cohort our previous findings indicating that PTEN loss is associated with a worst 
prognosis in ERG/ETS-negative patients. 

We have successfully applied highly validated IHC and in situ hybridization assays to determine PTEN and ETS 
status in 2 additional cohorts (MSKCC and JHU) with accompanying gene expression data for future analysis.  
Association of PTEN with Ki-67 proliferation index has been performed and analyzed for two datasets.   

We have developed a consensus molecular signatures of PTEN loss in prostate, showing that PTEN-loss were 
associated with immune response pathways and biological processes. We have also revealed that ERG negative 
samples show a higher level of heterogeneity as compared with the ERG positive group, which can be associated 

with the worst prognosis observed in the former group. 

We have generated a comprehensive catalog of expression of coding and non-coding genes using the FANTOM-
CAT annotation and the recount2 atlas. Using this resource we have identified hundreds of lncRNAs associated 

with PTEN and ERG status and investigated potential roles for the top differentially expressed ones. 

This project will add significantly to prostate cancer research by further refinement and validation of this 
prognostic biomarker as we develop expression signatures in the next reporting periods. 

Impact on other disciplines: The implementation of the FC-R2 gene expression atlas based on recount2 gene 
expression summary and the FANTOM-CAT meta-transcriptome will provide a useful resource for studying 
enhancer and promoter expression in other fields beyond prostate cancer research. 

Impact on technology transfer: Nothing to Report. 

Impact on society beyond science: Nothing to Report. 

5. CHANGES/PROBLEMS

The major change in the research has been the fact that we could not get the CAGE and the nanoCAGE protocols 
to work properly. For these reason we have developed a bioinformatics pipeline that enables to quantify promoter 
and enhancer expression from standard RNA-sequencing data. We have then used this pipeline to implement 
recount2-FANTOM-CAT gene expression atlas. This resource represent a comprehensive compendium of gene 
expression across the human transcriptome containing over 109,000 genes, greatly expanding the features 
available for our analyses, by including distinct classes of coding and non-coding genes, such as messenger RNAs, 
intergenic lncRNAs, and expressed divergent promoters and enhancers. Using this resource we were able to 
analyze promoter and enhancer expression in PTEN and ERG prostate cancer tumors, ultimately attaining the 
scientific goals for which the use of CAGE and nanoCAGE were originally proposed. 



6. PRODUCTS

As results of the research activities supported on this award the following manuscripts were published: 

1. “Recounting the FANTOM CAGE-Associated Transcriptome.” Eddie Luidy Imada, Diego Fernando

Sanchez, Leonardo Collado-Torres,  et al. Genome Res. 2020 Jul; 30(7): 1073–1081.

doi: 10.1101/gr.254656.119. PMCID: PMC7397872

2. Functional annotation of human long noncoding RNAs via molecular phenotyping.” Jordan A. Ramilowski,

Chi Wai Yip, Saumya Agrawal,et al. Genome Res. 2020 Jul; 30(7): 1060–1072.

doi: 10.1101/gr.254219.119 - Correction in: Genome Res. 2020 Sep; 30(9): 13771. PMCID: PMC7397864

3. “PTEN Loss with ERG Negative Status is Associated with Lethal Disease after Radical Prostatectomy”.

Haney NM, Faisal FA, Lu J, et al. J Urol. 2020 Feb;203(2):344-350. doi: 10.1097/JU.0000000000000533.

Epub 2019 Sep 10. PMID: 31502941.

As results of the research activities supported on this award the following pre-print were published: 

1. “Transcriptional landscape of PTEN loss in primary prostate cancer” by Eddie Luidy Imada, Diego

Fernando Sanchez, Wikum Dinalankara, et al. Preprint in biorXiv doi:

https://doi.org/10.1101/2020.10.08.332049.

As results of the research activities supported on this award the following resources were made available: 

1. F2-RC gene expression atlas: http://marchionnilab.org/fcr2.html
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PTEN Loss with ERG Negative Status is Associated with Lethal
Disease after Radical Prostatectomy

Nora M. Haney, Farzana A. Faisal,* Jiayun Lu, Liana B. Guedes, Victor E. Reuter, Howard I. Scher,†
James A. Eastham, Luigi Marchionni, Corinne Joshu, Anuradha Gopalan‡ and Tamara L. Lotan‡

From the Departments of Urology (NMH, FAF, TLL), Pathology (LBG, TLL) and Oncology (LM, TLL) and Center for Computational Genomics (LM), Johns Hopkins
University School of Medicine and Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health (JL, CJ), Baltimore, Maryland, and
Departments of Pathology (VER, AG), Genitourinary Oncology (HIS) and Urology (JAE), Memorial Sloan Kettering Cancer Center, New York, New York

Purpose: Few groups have investigated the combined effects of PTEN loss and
ERG expression on the outcomes of metastasis of or death from prostate cancer
in surgically treated patients. We examined the association of PTEN/ERG
status with lethal prostate cancer in patients treated with radical
prostatectomy.

Materials and Methods: Included in analysis were 791 patients with clinically
localized prostate cancer treated with radical prostatectomy at a single institu-
tion. Genetically validated immunohistochemistry assays for PTEN and ERG
were performed on tissue microarrays. Multivariable Cox proportional hazard
models were used to assess the association of PTEN/ERG status with lethal
prostate cancer (defined as metastasis or prostate cancer specific death),
adjusting for patient age, race, pathological grade and stage, and surgical margin
status.

Results: Median followup in the cohort was 12.8 years. Of 791 cases 203 (25%)
demonstrated PTEN loss and 330 of 776 (43%) were ERG positive. On
multivariable analysis PTEN loss (HR 1.9, 95% CI 1.2e3.0, p[0.012) but not
ERG expression (HR 0.6, 95% CI 0.4e1.1, p[0.11) was associated with an
increased risk of lethal prostate cancer. The association of PTEN loss with
lethal disease only remained among men with ERG negative tumors (HR 2.3,
95% CI 1.3e4.1, p[0.005) and not ERG positive tumors (HR 1.1, 95% CI
0.6e2.1, p[0.81).

Conclusions: PTEN loss is associated with an increased risk of lethal prostate
cancer after radical prostatectomy and this risk is most pronounced in the sub-
group of patients with ERG negative tumors. This work corroborates the use of
PTEN and ERG status for risk stratification in surgically treated patients.
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PHOSPHATASE and tensin homolog is a commonly
deleted tumor suppressor in PCa. Its loss results in
unopposed activity of PI3K and up-regulation of the
oncogenic Akt/mTOR signaling pathways.1 PTEN
deletion frequently occurs as focal and subclonal
events in primary prostate tumors but homoge-
neous and heterogeneous loss can be reliably
detected by genetically validated IHC.2e4

PTEN loss is associated with adverse patholog-
ical features at RP and an increased risk of BCR
after RP.5e8 Few studies have been done to examine
the association of PTEN loss with more clinically
meaningful outcomes in surgically treated patients,
such as metastasis or death.3,9 Others have been
limited to outcomes in conservatively managed
cohorts.10e12

PTEN loss commonly occurs in tumors with ERG
gene rearrangements. Fusion of ERG (an ETS
family transcription factor) with the androgen
regulated gene TMPRSS2 is the most common
genomic rearrangement found in PCa, occurring in
about 50% of patients with PCa who are of Euro-
pean descent.13 TMPRSS2-ERG rearrangements by
translocation or deletion in tumor cells subse-
quently put ERG expression under the control of an
androgen regulated promoter. While ERG rear-
rangement alone does not predict poor prognosis in
surgical cohorts,14 animal studies suggest that ERG
rearrangement and PTEN loss may work synergis-
tically in tumor progression.12,15 However, retro-
spective clinical studies conflict.

Initial studies showed that PTEN loss in an ERG
positive background increased the risk of BCR after
surgery16,17 and yet larger studies have shown that
PTEN loss predicts BCR regardless of ERG sta-
tus.2,18 When death from PCa is the primary
outcome, PTEN loss with ERG negative status is
associated with worse survival.3,11,12 Data on a
population based, prospective cohort showed that
PTEN loss was associated with lethal progression
after surgery only when ERG status was negative.3

Reid et al performed FISH assays revealing that
PTEN deletion without ERG rearrangement pre-
dicted cancer specific death in a conservatively
managed cohort.11 To our knowledge only 1 study
has been done to examine PTEN/ERG status by IHC
in a large RP cohort uniformly treated at a single
institution.9 This study showed that while PTEN
loss predicted metastasis and PCa specific death
after RP, ERG status did not provide any additional
benefit.

Given the paucity of studies and conflicting
results, we investigated the combined effects of
PTEN and ERG status on long-term oncologic
outcomes in a large, surgically treated cohort
from a single institution. Using automated and
genetically validated IHC we examined the

association of PTEN and ERG status with lethal
PCa after RP.

MATERIALS AND METHODS

Study Population and Tissue Microarray
Construction
Institutional Review Board approval was obtained from
the 2 participating institutions, namely Memorial Sloan
Kettering Cancer Center and the Johns Hopkins Medical
Institutions (IRB No. NA 00091198). The cohort consisted
of men treated with RP of localized PCa between 1985 and
2003 at Memorial Sloan Kettering Cancer Center.19 Those
who received neoadjuvant or adjuvant ADT, or radiation
therapy were excluded from study. Only patients with
available slides, blocks and followup information were
included in the final cohort, which included 915 RP
specimens with a total of 2,745 tumor cores in TMA sets.

H&E slides of the RP specimens were reviewed and
slides containing tumor were marked and matched with
corresponding paraffin blocks. Tissue cores (0.6 mm) were
punched out in triplicate from randomly selected locations
in marked tumor areas and mounted in blank recipient
blocks using an automated tissue microarrayer (Beecher
Instruments, Sun Prairie, Wisconsin). Samples were from
the largest tumor focus in most cases. Separate tumor foci
were punched only when there were small tumor foci with
no dominant nodule. TMAs were tested with validated
IHC to determine PTEN/ERG status.

Clinicopathological and long-term followup informa-
tion was available on all patients in the final cohort. The
primary outcome was lethal PCa, defined as distant
metastasis detected on imaging or PCa specific death.
This composite definition of lethal PCa was chosen since
metastasis-free survival is a strong surrogate for survival
in patients with localized PCa.20

Immunohistochemistry Assays and Scoring
PTEN and ERG IHC were performed in a CLIA (Clinical
Laboratory Improvement Amendments) accredited labo-
ratory on the Ventana Discovery Ultra platform (Ventana
Medical Systems, Tucson, Arizona) using previously
validated protocols.2e4,21 Briefly, these assays use rabbit
antihuman PTEN antibody (Clone D4.3 XP, Cell
Signaling Technology") or rabbit antihuman ERG anti-
body (EPR3864). After staining all TMAs were scanned
at 20! magnification using an Aperio" device and
segmented into TMAJ (http://tmaj.pathology.jhmi.edu/)
for scoring.

PTEN and ERG protein status was blindly scored by
trained urological pathologists (LBG and TLL). PTEN
was scored as homogeneous PTEN loss if all tumor glands
sampled in a given case showed cytoplasmic and nuclear
PTEN loss compared to surrounding internal control
benign glands in stroma. PTEN was scored as heteroge-
neous PTEN loss if some but not all tumor tissue sampled
in a given case showed PTEN loss. PTEN was scored as
intact if all tumor tissue sampled showed PTEN. ERGwas
scored as positive if any tumor glands showed nuclear
ERG expression. ERG was scored as negative if no
sampled tumor gland showed ERG expression.
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Statistical Analysis
Clinicopathological characteristics of the PTEN/ERG
status subgroups were compared using the Wilcoxon or
Kruskal-Wallis test for continuous variables and the chi-
square test for categorical variables. Univariable and
multivariable Cox proportional hazard regression models
were constructed to estimate the HR and 95% CI of lethal
PCa. Patient age and race, pathological grade and stage,
and surgical margin status were included in the multi-
variable model. We used the Kaplan-Meier method to
examine the risk of lethal PCa stratified by PTEN and
ERG status.

All tests were 2-sided with p <0.05 considered statis-
tically significant. Analyses were done with SAS",
version 9.4.

RESULTS
Tumor was present on TMA slides in 915 cases, of
which 791 (86%) had interpretable staining results
with adequate PTEN control staining. Of the 791
cases with PTEN staining data 776 (93%) had
informative staining results for ERG. PTEN loss
was present in 203 of 791 cases (26%), of which 96
(12%) and 107 (14%) showed homogeneous and
heterogenous PTEN loss, respectively. ERG
expression was present in 330 of 776 cases (43%).
PTEN loss was more common among ERG positive
than ERG negative cases (120 of 330 or 36% vs 83 of
446 or 19%, p <0.001). PTEN loss and ERG
expression were more prevalent in EA men than in
AA men with PTEN loss in 27% of EA vs 9% of AA

men (p[0.003) and ERG expression in 44% of EA vs
21% of AA men (p <0.001).

On IHC PTEN loss was associated with adverse
pathological features at RP (table 1). Of the 192
tumors with PTEN loss 76 (approximately 38%)
were GG 3-5 compared to 108 of 577 GG 3-5 tumors
(18%) with intact PTEN (p <0.001). Similarly, 98 of
203 PTEN loss tumors (48%) were nonorgan
confined while 29% with PTEN intact demonstrated
extraprostatic disease (p <0.001).

Median followup was 12.8 years. Lethal PCa
events developed in 92 of the 776 patients (12%)
with complete PTEN and ERG results. On multi-
variable analysis PTEN loss was significantly
associated with an increased risk of lethal PCa (HR
1.98, 95% CI 1.15e3.04, p[0.012, table 2). ERG
expression did not predict lethal PCa on multivari-
able analysis (HR 0.64, 95% CI 0.36e1.11, p
[0.113). Table 2 and the figure show the associa-
tion of joint categories of PTEN loss and ERG status
with lethal PCa. Compared to cases with PTEN
intact and ERG negative status, PTEN loss with
ERG negative status was the only subgroup signif-
icantly associated with an increased risk of lethal
progression on univariable analysis (HR 3.76, 95%
CI 2.27e6.21, p <0.001) and multivariable analysis
(HR 2.31, 95% CI 1.29e4.14, p[0.005, log rank p
<0.001). ERG positive cases with PTEN loss carried
a higher risk of lethal disease on univariable anal-
ysis (HR 1.84, 95% CI 1.06e3.18, p[0.030).

Table 1. Clinicopathological characteristics of patients stratified by PTEN and ERG status

PTEN (791 pts) ERG (776 pts) PTEN/ERG (776 pts)

Loss Intact
p

Value* Neg Pos
p

Value*
PTEN Intact/ERG

Neg
PTEN Intact/ERG

Pos
PTEN Loss/ERG

Neg
PTEN Loss/ERG

Pos
p

Value*

No. pts 203 588 e 466 330 e 363 210 83 120 e
Median age at RP 62.60 61.32 0.026 62.33 60.36 0.002 62.08 59.55 63.33 61.43 <0.001
No. race (%): 0.016 0.003 0.001

European
American

189 (93.1) 512 (87.1) 387 (86.8) 301 (91.2) 309 (85.1) 190 (90.5) 78 (94.0) 111 (92.5)

African
American

5 (2.5) 49 (8.3) 42 (9.4) 11 (3.3) 40 (11.0) 8 (3.8) 2 (2.4) 3 (2.5)

Other 5 (2.5) 15 (2.6) 9 (2.0) 10 (3.0) 9 (2.5) 5 (2.4) 0 5 (4.2)
No. Grade

Group (%):
<0.001 <0.001 <0.001

1 33 (16.3) 216 (36.7) 119 (26.7) 122 (37.0) 108 (29.8) 100 (47.6) 11 (13.3) 22 (18.3)
2 83 (40.9) 253 (43.0) 191 (42.8) 141 (42.7) 163 (44.9) 86 (41.0) 28 (33.7) 55 (45.8)
3 44 (21.7) 56 (9.5) 65 (14.6) 34 (10.3) 46 (12.7) 9 (4.3) 19 (22.9) 25 (20.8)
4 19 (9.4) 32 (5.4) 39 (8.7) 11 (3.3) 26 (7.2) 5 (2.4) 13 (15.7) 6 (5.0)
5 13 (6.4) 20 (3.4) 24 (5.4) 9 (2.7) 16 (4.4) 4 (1.9) 8 (9.6) 5 (4.2)

No. stage (%): <0.001 0.066 <0.001
T2 105 (51.7) 417 (70.9) 291 (65.3) 219 (66.4) 253 (69.7) 152 (72.4) 38 (45.8) 67 (55.8)
T3 87 (42.9) 156 (26.5) 135 (30.3) 106 (32.1) 99 (27.3) 55 (26.2) 36 (43.4) 51 (42.5)
T4 11 (5.4) 15 (2.6) 20 (4.5) 5 (1.5) 11 (3.0) 3 (1.4) 9 (10.8) 2 (1.7)

No. margin (%): 0.230 0.737 0.695
Neg 122 (60.1) 381 (64.8) 285 (63.9) 207 (62.7) 236 (65.0) 134 (63.8) 49 (59.0) 73 (60.8)
Pos 81 (39.9) 207 (35.2) 161 (36.1) 123 (37.3) 127 (35.0) 76 (36.2) 34 (41.0) 47 (39.2)

No. PTEN loss (%): e e e e e e e e e e
Heterogenous 96 (47.3)
Homogeneous 107 (52.7)

*Wilcoxon test or Kruskal-Wallis test for continuous variables and chi-square test for categorical variables.

346 LETHAL DISEASE AFTER PROSTATECTOMY

Copyright © 20 American Urological Association Education and Research Inc Unauthorized reproduction of this article is prohibite20



However, this was not significant on multivariable
analysis (HR 1.09, 95% CI 0.56e2.12, p[0.809).

DISCUSSION
Long-term studies demonstrating an association
between PTEN loss and clinically meaningful out-
comes such as metastasis or cancer specific death
have been lacking. Moreover, studies of the modi-
fying effect of ERG status on PTEN loss have
conflicted. Using FISH techniques in large cohorts
to determine PTEN/ERG status is time-consuming
and technically challenging. Using automated and
validated IHC, we found that PTEN loss was
significantly associated with an approximately
twofold increased risk of lethal PCa in a large cohort
treated with RP and followed long-term at a single
institution. This risk was only significant in the
subgroup of patients with PTEN loss and with ERG

negative tumors. Patients with PTEN loss but ERG
positive tumors were not at increased risk for lethal
progression. These findings support the clinical
usefulness of automated and inexpensive IHC as-
says for PTEN and ERG for risk stratification and
treatment in post-RP cases.

At this institution we routinely perform PTEN
and ERG IHC testing in GG 1 biopsies. Loss of
PTEN, particularly when ERG is negative, is a
relative contraindication to active surveillance.
Given these results, we plan to incorporate PTEN/
ERG testing in the RP setting to guide post-
operative management.

Our group genetically validated automated IHC
for PTEN detection to study PTEN loss.2e4 There is
high correlation of automated IHC with FISH.
Intact PTEN immunostaining is 91% specific for the
absence of PTEN deletion by FISH, and 97% and

Table 2. Univariable and multivariable Cox proportional hazard models for lethal prostate cancer

No. Cases No. Controls

Univariable Multivariable*

HR (95% CI) p Value HR (95% CI) p Value

PTEN:
Intact 46 542 Referent e Referent e
Loss 47 156 3.25 (2.16e4.88) <0.001 1.87 (1.15e3.04) 0.012

ERG:
Neg 62 384 Referent e Referent e
Pos 30 300 0.64 (0.41e0.99) 0.043 0.64 (0.36e1.11) 0.113

PTEN/ERG:
PTEN intact/ERG neg 35 328 Referent e Referent e
PTEN intact/ERG pos 10 200 0.47 (0.23e0.96) 0.037 0.48 (0.18e1.26) 0.136
PTEN loss/ERG neg 27 56 3.76 (2.27e6.21) <0.001 2.31 (1.29e4.14) 0.005
PTEN loss/ERG pos 20 100 1.84 (1.06e3.18) 0.030 1.09 (0.56e2.12) 0.809

* Adjusted for age at RP, race, grade group, stage and surgical margin status.

Kaplan-Meier survival curves of freedom from lethal PCa by PTEN and ERG status. Blue curve indicates PTEN intact and ERG negative in
363 patients. Red curve indicates PTEN intact and ERG positive in 210 patients. Green curve indicates PTEN loss and ERG negative in 83
patients. Brown curve indicates PTEN loss and ERG positive in 120 patients.
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65% sensitive for the detection of homozygous and
hemizygous deletion by FISH, respectively.4 The
effects of fixation technique and duration, tissue
processing type and slide or block age are largely
negligible.22 Interobserver variability is minimal
with k values consistently above 0.9.3 IHC also
provides significant cost and time savings compared
to FISH.

Several studies have demonstrated the prog-
nostic role of PTEN in predicting upgrading at
surveillance biopsy, discontinuation of active sur-
veillance, adverse pathology at RP and BCR after
surgery.5e8,23e25 PTEN loss strongly correlates with
unfavorable histological features, including intra-
ductal carcinoma, cribriform Gleason pattern 4 and
stromogenic PCa.26

However, only a few studies have been done to
investigate the effect of PTEN loss stratified by
ERG status on metastasis and death outcomes.
Reid et al found that PTEN deletion without ERG
rearrangements by FISH increased the risk of
cancer specific death in a conservatively managed
cohort, although they could not reproduce this
finding in a larger cohort.11 In a surgically treated
cohort Ahearn et al used IHC to determine that
PTEN loss and ERG negative tumors were asso-
ciated with lethal progression.3 However, data
were collected from national population based
studies including patients treated for more than 20
years at multiple institutions with self-reporting
relied on for followup. Leapman et al analyzed
424 cases treated with RP at a single institution
and found that ERG status did not add to the
c-index of the CAPRA-S (Cancer of the Prostate
Risk Assessment Post-Surgical) score and PTEN.9

However, it was not explicitly examined whether
cases with PTEN loss had worse outcomes when
ERG was negative compared to those that were
ERG positive.

It is unclear why some previous studies have
shown that PTEN loss with ERG positive status was
associated with the highest risk of BCR after sur-
gery.16,17,27 Long-term followup has shown that
ERG negative PTEN loss is the subgroup at
increased risk for lethal progression.3,11,12 One
important caveat is that due to the frequency of
PTEN loss among ERG positive tumors there are
substantially more ERG positive tumors with PTEN
loss than ERG negative tumors with PTEN loss.
Thus, smaller studies were almost certainly under-
powered to compare the effects of PTEN loss on
ERG positive and ERG negative backgrounds while
larger studies revealed no effect of ERG status on
the association of PTEN loss with BCR.

Furthermore, BCR is a different outcome than
metastasis or death. Since salvage radiation and
ADT are generally introduced after BCR, biomarkers

predictive of a response to radiation therapy or ADT
may be associated with metastasis and death but not
with BCR. Thus, while there may be a lack of
interaction between PTEN and ERG for an associa-
tion with BCR, this interaction may be seen in co-
horts with longer followup (perhaps those in which
ADT is introduced early) for an association with
metastasis and death. Clearly additional trials are
necessary to formally test this hypothetical interac-
tion of PTEN/ERG with radiation therapy and/or
ADT after BCR.

Preclinical studies have been done to examine the
influence of PTEN/ERG status on androgen
signaling. PTEN loss has been demonstrated to
down-regulate AR and AR driven gene transcrip-
tion.28,29 Murine models have shown that in the
absence of ERG expression PTEN negative tumors
demonstrate diminished AR signatures compared to
PTEN positive tumors but these signatures are
restored to almost normal in the presence of ERG
expression.15 Similarly, Blee et al found that tumors
in mice with PTEN deletions and TP53 mutations
but without ERG expression lost AR expression and
were resistant to enzalutamide while the same tu-
mors with ERG expression maintained AR expres-
sion and were sensitive to enzalutamide.30 They
further described the reliance of tumors with PTEN
and p53 loss (and lacking ERG expression) on a
separate RB/E2F1 pathway, which could be
chemotherapeutically targeted with a CDK4/6 in-
hibitor such as palbociclib, known for use in breast
cancer. It is possible that this androgen indepen-
dence among ERG negative tumors with PTEN loss
modulates tumor progression and contributes to
subsequent metastasis, castrate resistance and PCa
specific mortality.

Study limitations include patient selection since
only 74 men were nonEA. Therefore, the findings
may not be generalizable to AA or other minority
men in whom PTEN loss and ERG rearrangements
are significantly less common. Additionally, rele-
vant clinical and pathological information were
missing in this patient cohort, including the preop-
erative prostate specific antigen level and patho-
logical node status. Overall the number of lethal
events in our cohort was not high at 92. This raises
the potential for overfitting our multivariable model
and yet this study remains one of the largest data
sets of surgically treated tumors with available
PTEN and ERG status.

As tumors with PTEN loss without ERG rear-
rangement were associated with poor prognosis in
this cohort, there is the possibility that these 2 sub-
types also share specific adverse morphological or
histological features.30 Additionally, other molecu-
lar subtypes could be mutually exclusive with ERG
expression and, thus, contribute to lethal outcomes
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in patients with ERG negative tumors. Further
research can be done to explore the genomic back-
ground and molecular underpinnings of the
aggressive behavior of PTEN loss/ERG negative
tumors.

Lastly, risk stratification tools, such as the
CAPRA-Sm which incorporate clinicopathological
parameters after RP, still remain valuable prog-
nostic tools. However, molecular and genomic
tests are becoming increasingly available to pro-
viders. Additional studies are required to compare
PTEN/ERG IHC tests to commercially available
gene panel assays in predictive models. For
example, initial studies have suggested that
PTEN loss performs similarly to the cell cycle
proliferation score.9 However, studies comparing

PTEN to the OncotypeDx" test as well as to
Decipher" are warranted since PTEN IHC testing
is considerably less expensive than RNA based
tests.

CONCLUSIONS
Using a highly validated and automated IHC
assay we found that PTEN loss was associated
with an increased risk of lethal PCa in surgically
treated patients. This risk remained significant
only in the subgroup of patients with ERG nega-
tive tumors. This work corroborates the combined
use of PTEN and ERG IHC assays as prognostic
tools for risk stratification and treatment man-
agement after RP.
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EDITORIAL COMMENT

The authors report that loss of PTEN expression on
IHC using a CLIA certified assay correlated with
death from PCa and the prediction was strongest in
ERG negative tumors. As they note, this finding is
somewhat controversial since PTEN loss was pre-
viously associated with biochemical recurrence in
ERG positive tumors (reference 27 in article). It is
likely that the stratification based on ERG status
was due to arbitrary differences in other prognostic
features such as age and grade between ERG posi-
tive and ERG negative tumors in the cohort, which
has been observed previously.1

The most important feature of this study is the
association of PTEN status with hard outcomes,
namely metastasis and death from PCa. Similar
findings were reported recently using an immuno-
fluorescent based IHC assay.2 The findings also
make biological sense since PTEN signaling
pathway alterations are common in metastatic

PCa, implying that they are selected for during
progression.

Developing prognostic biomarkers in PCa has
proved challenging, primarily because the Gleason
GG is so powerful. Given the repeated association of
PTEN loss with adverse outcomes, mostly recurrence
after surgery but also adverse pathological features
and progression in patients on surveillance, this study
adds substantially to data arguing that PTEN should
be used routinely as a tissue based biomarker when
assessing PCa biopsies and RPs. It finally might be
time for molecular biomarkers that provide prediction
of hard outcomes independent of grade and stage, like
PTEN and AZGP1,3 to be moved into clinical practice.

James D. Brooks
Department of Urology

Stanford University
Stanford, California
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Long noncoding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing
lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes, including human
diseases. We present here FC-R2, a comprehensive expression atlas across a broadly defined human transcriptome, inclusive
of over 109,000 coding and noncoding genes, as described in the FANTOMCAGE-Associated Transcriptome (FANTOM-
CAT) study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility
of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal
and diseased human samples. In particular, we (a) identify tissue-specific transcription profiles for distinct classes of coding
and noncoding genes, (b) perform differential expression analysis across thirteen cancer types, identifying novel noncoding
genes potentially involved in tumor pathogenesis and progression, and (c) confirm the prognostic value for several enhanc-
er lncRNAs expression in cancer. Our resource is instrumental for the systematic molecular characterization of lncRNA by
the FANTOM6 Consortium. In conclusion, comprised of over 70,000 samples, the FC-R2 atlas will empower other re-
searchers to investigate functions and biological roles of both known coding genes and novel lncRNAs.

[Supplemental material is available for this article.]

Long noncoding RNAs (lncRNAs) are commonly defined as tran-
scripts longer than 200 nucleotides that are not translated into
proteins. This definition is not based on their function, since
lncRNAs are involved in distinct molecular processes and biologi-
cal contexts not yet fully characterized (Batista and Chang 2013).
Over the past few years, the importance of lncRNAs has clearly
emerged, leading to an increasing focus on decoding the conse-
quences of their modulation and studying their involvement in
the regulation of key biological mechanisms during development,
normal tissue and cellular homeostasis, and in disease (Esteller
2011; Batista and Chang 2013; Ling et al. 2015).

Given the emerging and previously underestimated impor-
tance of noncoding RNAs (ncRNAs), the FANTOM Consortium

has initiated the systematic characterization of their biological
function. Through the use of Cap Analysis of Gene Expression se-
quencing (CAGE-seq), combined with RNA-seq data from the pub-
lic domain, the FANTOM Consortium released a comprehensive
atlas of the human transcriptome, encompassing more accurate
transcriptional start sites (TSSs) for coding and noncoding genes,
including numerous novel long noncoding genes: the FANTOM
CAGE-Associated Transcriptome (FANTOM-CAT) (Hon et al.
2017). We hypothesized that these lncRNAs can be measured in
many RNA-seq data sets from the public domain and that they
have been so far missed by the lack of a comprehensive gene
annotation.

Although the systematic analysis of lncRNAs function is be-
ing addressed by the FANTOM Consortium in loss-of-function
studies, increasing the detection rate of these transcripts
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combining different studies is difficult because of the heterogene-
ity of analytic methods employed. Current resources that apply
uniform analytic methods to create expression summaries from
public data do exist but can miss several lncRNAs because of their
dependency on a preexisting gene annotation for creating the
gene expression summaries (Tatlow and Piccolo 2016;
Lachmann et al. 2018). We recently created recount2 (Collado-
Torres et al. 2017b), a collection of uniformly processed human
RNA-seq data, wherein we summarized 4.4 trillion reads from
over 70,000 human samples from the NCBI Sequence Read
Archive (SRA), The Cancer Genome Atlas (TCGA) (The Cancer
Genome Atlas Research Network et al. 2013), and the Genotype-
Tissue Expression (GTEx) (The GTEx Consortium 2013) projects
(Collado-Torres et al. 2017b). Importantly, recount2 provides anno-
tation-agnostic coverage files that allow requantification using a
new annotation without having to reprocess the RNA-seq data.

Given the unique opportunity to access the latest results to
the most comprehensive human transcriptome (the FANTOM-
CAT project) and the recount2 gene agnostic summaries, we ad-
dressed the previously described challenges, building a compre-
hensive atlas of coding and noncoding gene expression across
the human genome: the FANTOM-CAT/recount2 expression atlas
(FC-R2 hereafter). Our resource contains expression profiles for
109,873 putative genes across over 70,000 samples, enabling an
unparalleled resource for the analysis of the human coding and
noncoding transcriptome.

Results

Building the FANTOM-CAT/recount2 resource
The recount2 resource includes a coverage track, in the form of a
bigWig file, for each processed sample. We built the FC-R2 expres-
sion atlas by extracting expression levels from recount2 coverage
tracks in regions that overlapped unambiguous exon coordinates
for the permissive set of FANTOM-CAT transcripts, according to
the pipeline shown in Figure 1. Since recount2’s coverage tracks
do not distinguish between genomic strands, we removed ambig-
uous segments that presented overlapping exon annotations from
both strands (see Methods section and Supplemental Methods).
After this disambiguation procedure, the remaining 1,066,515 ex-
onic segments mapped back to 109,869 genes in FANTOM-CAT
(out of the 124,047 starting ones included in the permissive set
[Hon et al. 2017]). Overall, the FC-R2 expression atlas encompasses
2041 studies with 71,045 RNA-seq samples, providing expression

information for 22,116 coding genes and 87,763 noncoding
genes, such as enhancers, promoters, and other lncRNAs.

Validating the FANTOM‐CAT/recount2 resource
We first assessed how gene expression estimates in FC-R2 com-
pared to previous gene expression estimates from other projects.
Specifically, we considered data from the GTEx Consortium (v6),
spanning 9662 samples from 551 individuals and 54 tissues types
(The GTEx Consortium 2013). First, we computed the correlation
for the GTEx data between gene expression based on the FC-R2 at-
las and on the GENCODE (v25) genemodel in recount2, which has
been already shown to be consistent with gene expression esti-
mates from the GTEx project (Collado-Torres et al. 2017b), observ-
ing a median correlation ≥0.986 for the 32,922 genes in common.
This result supports the notion that our preprocessing steps to dis-
ambiguate overlapping exon regions between strands did not sig-
nificantly alter gene expression quantification.

Next,we assessedwhether gene expression specificity, asmea-
sured in FC-R2, wasmaintained across tissue types. To this end, we
selected and compared gene expression for known tissue-specific
expression patterns, such as keratin 1 (KRT1), estrogen receptor 1
(ESR1), and neuronal differentiation 1 (NEUROD1) (Fig. 2).
Overall, all analyzed tissue-specific markers presented nearly iden-
tical expression profiles across GTEx tissue types between the alter-
native gene models considered (see Fig. 2 and Supplemental Fig.
S1), confirming the consistency between gene expression quantifi-
cation in FC-R2 and those based on GENCODE.

We also assessed whether there are genes that are not ex-
pressed in any of the normal tissues included in GTEx. Out of
109,869 genes, 681 (0.6%) (see Supplemental Figs. S3, S4) were
not expressed in any tissue included in GTEx, and they were over-
represented in the FANTOM-CAT permissive set (χ2 test, P-value<
2.2×10 16).

Tissue-specific expression of lncRNAs
It has been shown that, although expressed at a lower level, en-
hancers and promoters are not ubiquitously expressed and are
more specific for different cell types than coding genes (Hon
et al. 2017). In order to verify this finding, we used GTEx data to
assess expression levels and specificity profiles across samples
from each of the 54 analyzed tissue types, stratified into four dis-
tinct gene categories: coding mRNA, intergenic promoter
lncRNA (ip-lncRNA), divergent promoter lncRNA (dp-lncRNA),
and enhancer lncRNA (e-lncRNA). Overall, we were able to con-
firm that these RNA classes are expressed at different levels and
that they display distinct specificity patterns across tissues, as
shown for primary cell types by Hon et al. (2017), albeit with
more variability, likely due to the increased cellular complexity
present in tissues. Specifically, coding mRNAs were expressed at
higher levels than lncRNAs (log2 median expression of 6.6 for cod-
ingmRNAs, and of 4.1, 3.8, and 3.1 for ip-lncRNA, dp-lncRNA, and
e-lncRNA, respectively). In contrast, the expression of enhancers
and intergenic promoters was more tissue-specific (median=0.41
and 0.30, respectively) than that observed for divergent promoters
and coding mRNAs (median=0.13 and 0.09, respectively) (Fig.
3A). Finally, when analyzing the percentage of genes expressed
across tissues by category, we observed that coding genes are, in ge-
neral, more ubiquitous, whereas lncRNAs are more specific, with
enhancers showing the lowest percentages of expressed genes
(mean ranging from88.42% to 41.98%) (see Fig. 3B), in agreement

Figure 1. Overview of the FANTOM-CAT/recount2 resource develop-
ment. FC-R2 leverages two public resources, the FANTOM-CAT genemod-
els and recount2. FC-R2 provides expression information for 109,873
genes, both coding (22,110) and noncoding (87,693). This latter group
encompasses enhancers, promoters, and other lncRNAs.
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with the notion that enhancer transcription is tissue-specific (Ong
and Corces 2011).

Differential expression analysis of coding and noncoding genes in
cancer
We analyzed coding and noncoding gene expression in cancer
using TCGA data. To this end, we compared cancer to normal
samples separately for 13 tumor types, using FC-R2 requantified
data. We further identified the differentially expressed genes
(DEGs) in common across the distinct cancer types (see Fig. 4).
Overall, the number of DEGs varied across cancer types and by
gene class, with a higher number of significant coding than non-
coding genes (FDR≤0.01) (see Table 1). A substantial fraction of
these genes was exclusively annotated in the FANTOM-CAT
meta-assembly, suggesting that relying on other gene models
would result in missing many potential important genes (see
Table 1). We then analyzed differential gene expression consen-
sus across the considered cancer types. A total of 41 coding
mRNAs were differentially expressed across all of the 13 tumor
types after global correction for multiple testing (FDR≤10−6)
(see Supplemental Table S1). For lncRNAs, a total of 28 divergent
promoters, four intergenic promoters, and three enhancers were
consistently up- or down-regulated across all the 13 tumor types
after global correction for multiple testing (FDR≤0.1) (see
Supplemental Tables S2–S4, respectively).

A usual task performed after differential gene expression anal-
ysis is to identify biological processes and pathways associated
with the DEGs. To this end, gene set enrichment methods are usu-
ally employed; however, this requires detailed gene-to-function
annotations, which are mostly lacking for lncRNAs. One possible
way to assist prioritizing noncoding transcripts for follow-up
functional studies is to identify association with other features
along the genome. As an example of this type of analysis, we
have assessed the overlap between single-nucleotide polymor-
phisms (SNPs) associated with cancer in GWAS studies and the
list of DEGs we identified. On average, the percentage of DEGs
overlapping cancer SNPs ranged from 6.6% in dp-lncRNA to
10.21% in ip-lncRNA across the 13 cancer types (see Supplemental
Table S5).

Next, we reviewed the literature to identify functional corre-
lates for these consensus genes. Most of the up-regulated coding
genes (Supplemental Table S1) participate in cell cycle regulation,
cell division, DNA replication and repair, chromosome segrega-
tion, and mitotic spindle checkpoints. Most of the consensus
down-regulated mRNAs (Supplemental Table S1) are associated
with metabolism and oxidative stress, transcriptional regulation,
cellmigration and adhesion, andwithmodulation ofDNAdamage
repair and apoptosis.

Three down-regulated dp-lncRNA genes, GAS1RR, RPL34-DT,
and RAP2C-AS1, were reported to be implicated in cancer
(Supplemental Table S2). The first one controls epithelial-

Figure 2. Tissue-specific expression in GTEx. Log2 expression for three tissue-specific genes (KRT1, NEUROD1, and ESR1) in GTEx data stratified by tissue
type using FC-R2- and GENCODE-based quantification. Expression profiles are highly correlated and expressed consistently in the expected tissue types
(e.g., KRT1 is most expressed in skin, NEUROD1 in brain, and ESR1 in estrogen-sensitive tissue types like uterus, Fallopian tubes, and breast).
Correlations are shown on top for each tissue marker. Center lines, upper/lower quartiles, and whiskers represent the median, 25/75 percentiles, and 1.5
interquartile range, respectively. Additional tissue-specific markers are shown in Supplemental Figure S1.
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mesenchymal transition, the second is associated with tumor size
increase, whereas the third is associated with urothelial cancer af-
ter kidney cancer transplantation (Zhao et al. 2015b; Shang et al.
2016; Zhou et al. 2016). Among the up-regulated dp-lncRNAs
(Supplemental Table S2), SNHG1 has been implicated in cellular
proliferation andmigration and invasion of different cancer types,
and to be strongly up-regulated in osteosarcoma, nonsmall lung
cancer, and gastric cancer (Cao et al. 2013; Sun et al. 2017).

Among the ip-lncRNAs ubiquitously down-regulated (see
Supplemental Table S3), MIR99AHG has been identified in many
different tumor types, including leukemia, breast, vulvar, prostate,
and bladder cancer (Emmrich et al. 2014; Sun et al. 2014;Gökmen-
Polar et al. 2016; Ni et al. 2016; Li et al. 2017). For instance, in vul-
var squamous cell carcinoma, MIR99AHG and MIR31HG expres-
sions are correlated and associated with tumor differentiation (Ni
et al. 2016). Similarly, MIR99AHG down-regulation in ER-positive
breast cancer is associated with progression, recurrence, and me-
tastasis (Gökmen-Polar et al. 2016). In contrast, increased expres-
sion of SNHG17 (an ip-lncRNA) (see Supplemental Table S3) was
associated with short term survival in breast cancer and with tu-
mor size, stage, and lymph node metastasis in colorectal cancer
(Zhao et al. 2015a;Ma et al. 2017). In addition, LINC01311, anoth-
er ip-lncRNA (Supplemental Table S3), was found to be up-regulat-
ed in liver cancer and metastatic prostate cancer (Zhu et al. 2016).
Even though we did not identify any cancer association for com-
mon e-lncRNAs, one among those we identified, LINC02884, has
been previously reported to be up-regulated in late-onset
Alzheimer’s disease (Humphries et al. 2015). Furthermore, the en-

hancer lncRNA class also yielded the lowest number of genes in
common among all cancer types, reinforcing the concept that en-
hancers are expressed in a tissue-specific manner (see Fig. 3A and
Supplemental Table S4).

Finally, we focusedmore in depth on prostate cancer (PCa) as
a prototypical example, andwewere able to confirmprevious find-
ings for both coding and noncoding genes (see Supplemental Fig.
S2). For coding genes, we confirmed differential expression for
known markers of PCa progression and mortality, like ERG,
FOXA1, RNASEL, ARVCF, and SLC43A1 (Yu et al. 2010; Lin et al.
2011). Similarly, we also confirmeddifferential expression for non-
coding genes, likePCA3, the first clinically approved lncRNAmark-
er for PCa (Bussemakers et al. 1999; de Kok et al. 2002), PCAT1, a
prostate-specific lncRNA involved in disease progression
(Prensner et al. 2011), MALAT1, which is associated with PCa
poor prognosis (Ren et al. 2013), CDKN2B-AS1, an antisense
lncRNA up-regulated in PCa that inhibits tumor suppressor genes
activity (Kotake et al. 2011; Gutschner and Diederichs 2012), and
theMIR135host gene, which is associatedwith castration-resistant
PCa (Huang et al. 2015).

Confirming prognostic enhancers
Chen and collaborators have recently surveyed enhancer expres-
sion in nearly 9000 patients from TCGA (Chen et al. 2018), using
genomic coordinates from the FANTOM5 project (Andersson et al.
2014), identifying 4803 expressed genomic regions with prognos-
tic potential in one or more TCGA tumor types. We therefore

A

B

Figure 3. Expression profiles across GTEx tissues. (A) Expression level and tissue specificity across four distinct RNA categories. The y-axis shows log2 ex-
pression levels representing each gene using itsmaximum expression in GTEx tissues expressed as transcripts permillion (TPM). The x-axis shows expression
specificity based on entropy computed from median expression of each gene across the GTEx tissue types. Individual genes are highlighted in the figure
panels. (B) Percentage of genes expressed for each RNA category stratified by GTEx tissue facets. The dots represent themean among samples within a facet
and the error bars represent 99.99% confidence intervals. Dashed lines represent the means among all samples.
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leveraged the FC-R2 atlas to identify prognostic coding and non-
coding genes using both univariate and multivariate Cox propor-
tional hazard models, comparing our results for e-lncRNAs with
those reported by Chen and colleagues. To this end, we started
by comparing gene annotations and genomic overlap between
the studies. This was necessary because Chen and collaborators re-
lied on the enhancer regions reported by Andersson et al. (2014),
which is based on the observation of bidirectional transcription.
Our resource, on the contrary, relies on the latest updated
FANTOM-CAT annotation, which takes into account other fea-

tures, such as the epigenetic context, when defining RNA catego-
ries. Out of the 4803 genomic regions found prognostic by Chen
and collaborators (Chen et al. 2018), we could unambiguously
map 1218 regions to exons annotated in the FANTOM-CAT gene
models for the four RNA categories we considered in our study
(corresponding to a total of 1046 unique genes). Overall, despite
the mentioned differences in annotation and quantification (see
Supplemental Table S6), we were still able to confirm the prognos-
tic value for 466 genes out of the 1046 reported by Chen et al.
(2018), including KLHDC7B-DT (also known as enhancer 22),

Figure 4. Differential expression for selected transcripts from distinct RNA classes across tumor types. Box plots for selected differentially expressed genes
between tumor and normal samples across all 13 tumor types analyzed. For each tissue of origin, the most up-regulated (on the left) and down-regulated
(on the right) gene for each RNA class is shown. Center lines, upper/lower hinges, and the whiskers, respectively, represent the median, the upper and lower
quartiles, and 1.5 extensions of the interquartile range. Color coding on the top of the figure indicates the RNA classes (red formRNA, purple for dp-lncRNA,
cyan ip-lncRNA, and green for e-lncRNA). These genes were selected after global multiple testing correction across all 13 tumor types (see Supplemental
Tables S1–S4).

Table 1. Differentially expressed genes in cancer

dp-lncRNA e-lncRNA ip-lncRNA mRNA

Cancer type Total Up Down Up Down Up Down Up Down

Bile 7010 200 (60) 313 (90) 186 (89) 203 (99) 47 (12) 84 (17) 2658 (106) 3319 (97)
Bladder 7680 344 (125) 319 (87) 140 (68) 149 (67) 65 (19) 82 (7) 3112 (201) 3469 (61)
Breast 15,290 753 (291) 721 (202) 656 (377) 583 (305) 207 (50) 178 (32) 6109 (296) 6083 (244)
Colorectal 13,685 490 (164) 592 (168) 381 (203) 400 (196) 130 (32) 160 (28) 5538 (371) 5994 (132)
Esophagus 4883 87 (21) 193 (50) 90 (38) 184 (103) 40 (11) 48 (2) 1921 (83) 2320 (77)
Head and neck 10,517 442 (138) 401 (96) 267 (139) 251 (112) 100 (23) 109 (18) 4329 (256) 4618 (53)
Kidney 15,697 734 (238) 820 (281) 535 (299) 486 (209) 203 (45) 200 (48) 6349 (525) 6370 (114)
Liver 10,554 346 (94) 395 (106) 230 (102) 248 (123) 90 (16) 112 (19) 4164 (174) 4969 (95)
Lung 17,143 864 (338) 835 (304) 893 (512) 729 (396) 242 (76) 213 (39) 7523 (532) 5844 (212)
Prostate 13,183 686 (287) 654 (218) 418 (254) 452 (214) 175 (55) 167 (30) 5153 (489) 5478 (128)
Stomach 11,309 528 (213) 518 (164) 462 (291) 436 (240) 144 (51) 129 (22) 4509 (558) 4583 (89)
Thyroid 14,264 752 (284) 804 (318) 527 (295) 594 (332) 161 (39) 174 (47) 5403 (189) 5849 (308)
Uterus 12,906 641 (285) 713 (235) 454 (263) 612 (341) 210 (79) 225 (54) 5135 (335) 4916 (181)
Mean 11,855 528 (195) 560 (178) 403 (225) 410 (211) 140 (39) 145 (28) 4762 (317) 4909 (138)
SD 3650 237 (102) 218 (89) 225 (137) 189 (107) 67 (23) 55 (16) 1557 (167) 1234 (77)

Table summarizes the number of significant DEGs (FDR<0.01) between tumor and normal samples across the 13 cancer types, analyzed for each gene
class considered. Counts are for DEGs up- and down-regulated in cancer; values in parentheses are the number of genes exclusively annotated in the
FANTOM-CAT gene model. Mean and standard deviation across cancer types are shown at the bottom.
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which was highlighted as a promising prognostic marker for kid-
ney cancer (Supplemental Fig. S5).

We then considered the FANTOM-CAT RNA classes across the
different tumor types. We were able to identify a variable number
of genes significantly associated with overall survival (FDR≤0.05)
in univariate Cox proportional hazards models (see Supplemental
Tables S7–S10). Among the consensus DEGs identified across all
tumor types, 40 out of 41 coding mRNAs, 25 out of 28 dp-
lncRNAs, four out of four ip-lncRNAs, and two out of three e-
lncRNAs were found to be associated with survival (see
Supplemental Tables S11–S14). Kaplan–Meier curves for selected
differentially expressed genes for each RNA category are shown
in Supplemental Figure S6. Finally, we performed multivariable
analysis controlling for relevant clinical and pathological charac-
teristics in each tumor type. Overall, despite a number of genes be-
ing associated with such variables, we obtained similar results (see
Supplemental Tables S15–S22).

Discussion
The importance of lncRNAs in cell biology and disease has clearly
emerged in the past few years, and different classes of lncRNAs
have been shown to play crucial roles in cell regulation and ho-
meostasis (Quinn and Chang 2016). For instance, enhancers—a
major category of gene regulatory elements, which has been
shown to be expressed (Andersson et al. 2014; Arner et al. 2015)
—play a prominent role in oncogenic processes (Herz et al. 2014;
Sur and Taipale 2016) and other human diseases (Hnisz et al.
2013). Despite their importance, however, there is a scarcity of
large-scale data sets investigating enhancers and other lncRNA cat-
egories, in part due to the technical difficulty in applying high-
throughput techniques such as ChIP-seq and Hi-C over large co-
horts, and to the use of gene models that do not account for
them in transcriptomics analyses. Furthermore, the large majority
of the lncRNAs that are already known—and that have been
shown to be associated with some phenotype—are still lacking
functional annotation.

To address these needs, the FANTOM Consortium has first
constructed the FANTOM-CAT metatranscriptome, a comprehen-
sive atlas of coding and noncoding genes with robust support from
CAGE-seq data (Hon et al. 2017); then, it has undertaken a large
scale project to systematically target lncRNAs and characterize
their function using a multipronged approach (Ramilowski et al.
2020). In a complementary effort, we have leveraged public
domain gene expression data from recount2 (Collado-Torres et al.
2017a,b) to create a comprehensive gene expression compendium
across human cells and tissues based on the FANTOM-CAT gene
model, with the ultimate goal of facilitating lncRNAs annotation
through association studies. To this end, the FC-R2 atlas is already
in use in the FANTOM6 project (https://fantom.gsc.riken.jp/6/) to
successfully characterize lncRNA expression in human samples
(Ramilowski et al. 2020).

In order to validate our resource, we have compared the gene
expression summaries based on FANTOM-CAT gene models with
previous, well-established gene expression quantifications, dem-
onstrating virtually identical profiles across tissue types overall
and for specific tissue markers. We have then confirmed that dis-
tinct classes of coding and noncoding genes differ in terms of over-
all expression level and specificity pattern across cell types and
tissues. We also have observed a small subset of genes that were
not expressed in the large majority of the samples analyzed in
the GTEx project. These genes were mostly classified as small

RNAs and enhancers, which was expected given that the RNA-
seq libraries included in recount2 did not target small RNAs, and en-
hancers are usually expressed at a lower level. We further reveal
that this subset of genes not expressed in any normal tissue is
also associated with a lower level of support of the corresponding
FANTOM-CAT gene models (Hon et al. 2017).

Furthermore, using the FC-R2 atlas, wewere also able to iden-
tifymRNAs, promoters, enhancers, and other lncRNAs that are dif-
ferentially expressed in cancer, both confirming previously
reported findings and identifying novel cancer genes exclusively
annotated in the FANTOM-CAT gene models, which have been
thereforemissed in prior analyseswith TCGAdata. Finally, we con-
firmed the prognostic value for some of the enhancer regions re-
cently reported by Chen and colleagues in the TCGA (Chen
et al. 2018) by performing a systematic screening for survival asso-
ciation of both coding and noncoding genes that are quantifiable
in the FC-R2 resource. Overall, we identified several genes with po-
tential prognostic value across the analyzed cancer types in TCGA;
however, further corroboratory studies in independent patient co-
horts are necessary to validate these associations.

Collectively, by confirming findings reported in previous
studies, our results demonstrate that the FC-R2 gene expression at-
las is a reliable and powerful resource for exploring both the coding
andnoncoding transcriptome,providing compelling evidence and
robust support to the notion that lncRNA gene classes, including
enhancers and promoters, despite not being yet fully understood,
portend significant biological functions. Our resource, therefore,
constitutes a suitable and promising platform for future large scale
studies in cancer andother humandiseases,which in turnhold the
potential to reveal important cues to the understanding of their bi-
ological, physiological, and pathological roles, potentially leading
to improved diagnostic and therapeutic interventions.

Finally, all results, data, and code from the FC-R2 atlas are
available as a public tool. With uniformly processed expression
data for over 70,000 samples and 109,873 genes ready to analyze,
we want to encourage researchers to dive deeper into the study of
ncRNAs, their interaction with coding and noncoding genes, and
their influence on normal and disease tissues. We hope this new
resource will help pave the way to develop new hypotheses that
can be followed to unwind the biological role of the transcriptome
as a whole.

Methods

Data and preprocessing
The complete FANTOM-CAT gene catalog (inclusive of robust, in-
termediate, and permissive sets) was obtained from the FANTOM
Consortium within the frame of the FANTOM6 project (Ramilow-
ski et al. 2020). The genes were annotated using official HUGO
Gene Nomenclature Committee (HGNC) symbols (https://www
.genenames.org) when available. For genes without HGNC sym-
bols, we named themaccording toHGNC instructions (see Supple-
mental Table S23). The remaining genes were referred to using the
official ID fromtheConsortiumthat annotated the gene (Ensembl/
FANTOM). This catalog accounts for 124,245 genes supported by
CAGE peaks, and it includes those described by Hon et al. (2017).
In order to remove ambiguity due to overlapping among exons
from distinct genes, the BED files containing the coordinates for
all genes and exons were processed with the GenomicRanges R/
Bioconductor package (Lawrence et al. 2013) to obtain disjoint
(nonoverlapping) exon coordinates. To avoid losing strand
information from annotation, we processed data using a two-step
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approach by first disjoining overlapping segments on the same
strand and then across strands (Fig. 5). The genomic ranges (dis-
joint exon segments) that mapped back to more than one gene
were discarded. The expression values for these ranges were then
quantified using recount.bwtool (Ellis et al. 2018) (code at https
://github.com/LieberInstitute/marchionni_projects). The result-
ing expression quantifications were processed to generate Ranged-
SummarizedExperiment objects compatible with the recount2
framework (Collado-Torres et al. 2017a,b) (code available from
https://github.com/eddieimada/fcr2). Thus, the FC-R2 atlas pro-
vides expression information for coding and noncoding genes (in-
cluding enhancers, divergent promoters, and intergenic lncRNAs)
for 9662 samples from the GTEx project, 11,350 samples from
TCGA, and over 50,000 samples from the SRA.

Correlation with other studies
To test if the preprocessing steps used for FC-R2had amajor impact
on gene expression quantification, we compared our data to the
published GTEx expression values obtained from recount2 (version
2, https://jhubiostatistics.shinyapps.io/recount/). Specifically, we
first compared the expression distribution of tissue-specific genes
across different tissue types and then computed the Pearson’s cor-
relation for each gene in common across the original recount2 gene
expression estimates based on GENCODE and our version based
on the FANTOM-CAT transcriptome.

Expression specificity of tissue facets
Weanalyzed the expression level and specificity of each gene strat-
ified by RNA category (i.e., mRNA, e-lncRNA, dp-lncRNA, ip-
lncRNA) using the same approach described by Hon et al. (2017)
(see Supplemental Methods). Briefly, overall expression levels for
each gene were represented by the maximum transcript per mil-
lion (TPM) values observed across all samples within each tissue

type in GTEx. Gene specificity was based on the empirical entropy
computed using themean expression value across tissue types. The
99.99% confidence intervals for the expression of each category by
tissue typewere calculated based onTPMvalues. Geneswith a TPM
greater than 0.01 were considered to be expressed.

Identification of differentially expressed genes
We analyzed differential gene expression in 13 cancer types, com-
paring primary tumor with normal samples using TCGA data from
the FC-R2 atlas. Gene expression summaries for each cancer type
were split by RNA category (coding mRNA, intergenic promoter
lncRNA, divergent promoter lncRNA, and enhancer lncRNA) and
then analyzed independently. A generalized linear model ap-
proach, coupled with empirical Bayes moderation of standard er-
rors (Smyth 2004), was used to identify differentially expressed
genes between groups. The model was adjusted for the three
most relevant coefficients for data heterogeneity as estimated by
surrogate variable analysis (SVA) (Leek and Storey 2007).
Correction formultiple testingwas performed across RNA category
by merging the resulting P-values for each cancer type and apply-
ing the Benjamini–Hochberg method (Benjamini and Hochberg
1995). Overlapping between DEG and GWAS SNPs was performed
using the FANTOM-CAT gene regions coordinates and the SNPs
positions obtained from the GWAS catalog (Buniello et al. 2019).

Prognostic analysis
To evaluate the prognostic potential of the genes in FC-R2, we per-
formed bothmultivariate and univariate Coxproportional hazards
regression analysis separately for each RNA class (22,106 mRNAs,
17,404 e-lncRNAs, 6204 dp-lncRNAs, and 1948 ip-lncRNAs) across
each of the 13 TCGA cancer typeswith available survival follow-up
information (see Supplemental Methods; Supplemental Table
S24). Genes with FDR≤0.05, using the Benjamini–Hochberg cor-
rection (Benjamini and Hochberg 1995) within each cancer type
and RNA class, were deemed significant prognostic factors.We fur-
ther analyzed the prognostic value of the consensus differentially
expressed genes we identified comparing tumors to normal sam-
ples by intersecting the corresponding gene lists with those ob-
tained by Cox proportional regression. Finally, in order to
compare our results to previous prognostic analyses, we obtained
data on enhancers position and prognostic potential from Chen
et al. (2018), performed a liftOver to the hg38 genome assembly
to match FC-R2 coordinates, and assessed the overlap between
prognostic genes identified in the two studies.

Data access
All data are available from http://marchionnilab.org/fcr2.html.
Expression data can be directly accessed through https://
jhubiostatistics.shinyapps.io/recount/ and the recount Biocon-
ductor package (v1.9.5 or newer) at https://bioconductor.org/
packages/recount as RangedSummarizedExperiment objects orga-
nized by the Sequence Read Archive (SRA) study ID. The data
can be loaded using R-programming language and are ready to
be analyzed using Bioconductor packages, or the data can be ex-
ported to other formats for use in another environment. All code
used in this manuscript is available for reproducibility and
transparency at GitHub (https://github.com/eddieimada/fcr2
and https://github.com/LieberInstitute/marchionni_projects). A
compressed archive with all scripts used is also available as Supple-
mental Code.

A

B

Figure 5. Processing the FANTOM-CAT genomic ranges. This figure
summarizes the disjoining and exon disambiguation processes performed
before extracting expression information from recount2 using the
FANTOM-CAT gene models. (A) Representation of a genomic segment
containing three distinct, hypothetical genes: gene A having two isoforms,
and genes B and C with one isoform each. Each box can be interpreted as
one nucleotide along the genome. Colors indicate the three different
genes. (B) Representation of disjoint exon ranges from example in panel
A. Each feature is reduced to a set of nonoverlapping genomic ranges.
The disjoint genomic ranges mapping back to two or more distinct genes
are removed (crossed gray boxes). After removal of ambiguous ranges, the
expression information for the remaining ones is extracted from recount2
and summarized at the gene level.
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Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their func-
tions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of
285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic re-
sponses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhib-
ited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular
phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-
date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further
exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
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Over 50,000 loci in the human genome transcribe long noncoding
RNAs (lncRNAs) (Iyer et al. 2015; Hon et al. 2017), which are de-
fined as transcripts at least 200 nucleotides (nt) long with low or
no protein-coding potential. Although lncRNA genes outnumber
protein-coding genes in mammalian genomes, they are compara-
tively less conserved (Ulitsky 2016), lowly expressed, and more
cell-type-specific (Hon et al. 2017). However, the evolutionary
conservation of lncRNA promoters (Carninci et al. 2005) and the
structural motifs of lncRNAs (Chu et al. 2015; Xue et al. 2016)
suggest that lncRNAs are fundamental biological regulators. To
date, only a few hundred human lncRNAs have been extensively
characterized (de Hoon et al. 2015; Quek et al. 2015; Volders
et al. 2015; Ma et al. 2019), revealing their roles in regulating tran-
scription (Engreitz et al. 2016b), translation (Carrieri et al. 2012),
and chromatin state (Gupta et al. 2010; Guttman et al. 2011;
Guttman and Rinn 2012; Quinn and Chang 2016; Ransohoff
et al. 2018).

Our recent FANTOM5 computational analysis showed that
19,175 (out of 27,919) human lncRNA loci are functionally impli-
cated (Hon et al. 2017). Yet, genomic screens are necessary to com-
prehensively characterize each lncRNA.One common approach of
gene knockdown followed by a cellular phenotype assay typically
characterizes a small percentage of lncRNAs for a single observable
phenotype. For example, a recent large-scale screening using
CRISPR interference (CRISPRi) found that ∼3.7% of targeted
lncRNA loci are essential for cell growth or viability in a cell-type-
specific manner (Liu et al. 2017). In addition, CRISPR-Cas9 experi-
ments targeting splice sites identified∼2.1%of lncRNAs that affect
growth of K562 (Liu et al. 2018), and a CRISPR activation study re-
vealed∼0.11% lncRNAs to be important for drug resistance inmel-
anoma (Joung et al. 2017). However, many of these studies target
the genomic DNA, potentially perturbing the chromatin architec-
ture, or focus on a single cellular assay, possiblymissing other rele-
vant functions and underlying molecular pathways.

As a part of the FANTOM6 pilot project, we established an au-
tomated high-throughput cell culture platform to suppress 285
lncRNAs expressed in human primary dermal fibroblasts (HDFs)
using antisense LNA-modified GapmeR antisense oligonucleotide
(ASO) technology (Roux et al. 2017).We then quantified the effect
of each knockdown on cell growth and morphology using real-
time imaging, followed by Cap Analysis Gene Expression (CAGE)
(Murata et al. 2014) deep sequencing to revealmolecular pathways
associated with each lncRNA. In contrast to cellular phenotyping,
molecular phenotyping provides a detailed assessment of the re-
sponse to a lncRNA knockdown at themolecular level, allowing bi-
ological pathways to be associated to lncRNAs even in the absence
of an observable cellular phenotype. All data and analysis results
are publicly available (see Data access), and results can be interac-
tively explored using our in-house portal (https://fantom.gsc.riken
.jp/zenbu/reports/#FANTOM6).

Results

Selection and ASO-mediated knockdown of lncRNA targets
Human dermal fibroblasts are nontransformed primary cells that
are commonly used for investigating cellular reprogramming
(Takahashi et al. 2007; Ambasudhan et al. 2011), wound healing
(Li and Wang 2011), fibrosis (Kendall and Feghali-Bostwick
2014), and cancer (Kalluri 2016). Here, an unbiased selection of
lncRNAs expressed in HDFs was performed to choose 285
lncRNAs for functional interrogation (Methods; Supplemental

Table S1; Fig. 1A–C). Using RNA-seq profiling of fractionated
RNA, we annotated the lncRNA subcellular localization as the
chromatin-bound (35%), nucleus-soluble (27%), or cytoplasmic
(38%) (Fig. 1D). We then designed a minimum of five non-over-
lapping antisense oligonucleotides against each lncRNA (Supple-
mental Methods; Supplemental Table S2; Fig. 1E,F) and
transfected them individually using an automated cell culture
platform to minimize experimental variability (Fig. 1G). The
overall knockdown efficiencies across 2021 ASOs resulted in me-
dian value of 45.4%, and we could successfully knockdown 879
out of 2021 (43.5%) ASOs (>40% knockdown efficiency in at least
two primer pairs or >60% in one primer pair) (Supplemental Ta-
ble S2). ASOs targeting exons or introns were equally effective,
and knockdown efficiencies were independent of the genomic
class, expression level, and subcellular localization of the lncRNA
(Supplemental Fig. S1A–D).

A subset of lncRNAs are associated with cell growth
and morphology changes
To evaluate the effect of each lncRNA knockdown on cell growth
and morphology, we imaged ASO-transfected HDFs in duplicate
every 3 h for a total of 48 h (Supplemental Table S3) and estimat-
ed their growth rate based on cell confluence measurements (Fig.
2A,B). First, we observed across all ASOs that changes in cell
growth and morphological parameters were significantly correlat-
ed with knockdown efficiency (Supplemental Fig. S1E). Consider-
ing both successful knockdown and significant growth inhibition
(Student’s two-sided t-test FDR≤0.05), 246 out of 879 ASOs
(∼28%) showed cellular phenotype (Fig. 2C; Supplemental Table
S3).

To assess globally whether the observed growth inhibition is
lncRNA-specific, we used all 194 lncRNAs successfully targeted by
at least two ASOs (Supplemental Fig. S2A) and found that ASOs tar-
geting the same lncRNA were significantly more likely to have a
concordant growth response than ASOs targeting different
lncRNA (empirical P=0.00037) (Supplemental Methods; Supple-
mental Fig. S2B). However, different ASOs targeting the same
lncRNA typically showed different effects on growth, possibly
due to variable knockdown efficiencies or differences in targeted
lncRNA isoforms, as well as off-target effects. To reliably identify
target-specific cellular phenotype, we applied conditional cutoffs
based on the number of successful ASOs per each lncRNA (Supple-
mental Methods; Supplemental Fig. S2C) and identified 15/194
lncRNAs (7.7%) with growth phenotype (adjusted background
<5%) (Supplemental Fig. S2D). We validated A1BG-AS1, which
was previously implicated in cell growth (Bai et al. 2019),
CATG00000089639, RP11-195F19.9, and ZNF213-AS1 by measur-
ing theMKI67 proliferation proteinmarker upon knockdownwith
siRNAs and with selected ASOs (Fig. 2D; Supplemental Fig. S2E).

In addition to cell growth, we also explored changes in cell
morphology (Fig. 2E). Using amachine learning-assisted workflow
(Methods), each cell was segmented and itsmorphological features
representing various aspects of cell shapes and sizes were quanti-
fied (Fig. 2F; Supplemental Table S3; Carpenter et al. 2006). As
an example, knockdown of 14/194 lncRNAs (7.2%) affected the
spindle-likemorphology of fibroblasts, as indicated by a consistent
decrease in their observed eccentricity without reducing the cell
number, suggesting possible cellular transformation toward epi-
thelial-like states. Collectively, we observed 59/194 lncRNAs
(∼30%) affecting cell growth and/or morphological parameters
(Fig. 2G; Supplemental Table S3).
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Molecular phenotyping by CAGE recapitulates cellular
phenotypes and highlights functions of lncRNAs

Next, we selected 340 ASOs with high knockdown efficiencies
(mostly >50%; median 71.4%) and sequenced 970 CAGE libraries
to analyze 154 lncRNAs (Fig. 3A; Supplemental Table S4). To assess
functional implications by individual ASOs, we performed differ-
ential gene expression, Motif Activity Response Analysis (MARA)
(The FANTOMConsortium et al. 2009), and Gene Set Enrichment
Analysis (GSEA) (Fig. 3B–F; Subramanian et al. 2005), and com-
pared them with cellular phenotype.

We globally observed significant knockdown-mediated tran-
scriptomic changes (which generally correlated with KD efficiency)

(Supplemental Fig. S3A),with∼57%ofASOs showing at least 10 dif-
ferentially expressed genes (FDR≤0.05; abs[log2FC] >0.5). For 84
divergent-antisense lncRNAs (targeted by 186 independent ASOs)
(SupplementalMethods),we found their partner gene to be general-
ly unchanged (median abs[log2FC] =∼0.13), with an exception of
two significantly down-regulated and three significantly up-regulat-
ed genes (FDR≤0.05) (Supplemental Fig. S3B). We have, however,
noticed a common response in a large number of ASOs (∼30%–

35% of all responding ASOs), such as down-regulation of cell-
cycle-related pathways, up-regulated stress genes and pathways, or
altered cell metabolism and energetics (Supplemental Fig. S3C,D).

When comparing knockdown-mediatedmolecular and cellu-
lar response, we found that transcription factor motifs that

E

F

BA C

D

G

Figure 1. Selectionof lncRNA targets, their properties, and the studyoverview. (A) CAGEexpression levels at log2TPM(tagspermillion) andhumandermal
fibroblasts (HDFs) specificity of lncRNAs in the FANTOMCAT catalog (Hon et al. 2017) (N=62,873; gray), lncRNAs expressed in HDFs (N=6125; blue), and
targeted lncRNAs (N=285; red). The dashed vertical line indicatesmost lowly expressed lncRNA target (∼0.2 TPM). (B) Gene conservation levels of lncRNAs
in the FANTOMCAT catalog (gray), lncRNAs expressed in HDFs (blue), and targeted lncRNAs (red). Crossbars indicate themedian. No significant difference
is observedwhen comparing targeted and expressed inHDF lncRNAs (Wilcoxon P=0.11). (C ) Similar to that in Bbut for genomic classes of lncRNAs.Most of
the targeted lncRNAs and those expressed in HDFs are expressed fromdivergent promoters. (D) Subcellular localization (based on relative abundances from
RNA-seq fractionation data) for targeted lncRNAs. Chromatin-bound (N=98; blue); nuclear soluble (N=76; green); cytoplasmic (N=108; red). Black con-
tours represent thedistributionof all lncRNAs expressed inHDFs. (E) Example ofZNF213-AS1 loci showing transcriptmodel, CAGE, andRNA-seq signal along
with targeting ASOs. (F) Number of ASOs for target lncRNAs and controls used in the experiment. (G) Schematics of the study.
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promote cell growth, including TFDP1, E2F1,2,3, and EP300, were
positively correlated with the measured cell growth rate, whereas
transcription factor motifs known to inhibit growth or induce
apoptosis (e.g., PPARG, SREBPF, and STAT2,4,6) were negatively
correlated (Fig. 3D; Supplemental Fig. S4A; Supplemental Table

S6). Moreover, correlations of growth with GSEA pathways (Fig.
3F; Supplemental Fig. S4B; Supplemental Table S6) or with
FANTOM5 coexpression clusters (Supplemental Fig. S4C) showed
that cell growth and replication-related pathways were positively
correlated with the measured growth rate, whereas those related

E

F

BA C

D G

Figure 2. Cell growth and morphology assessment. (A) Selected example (PTPRG1-AS1) showing the normalized growth rate estimation using a match-
ing NC_A (negative control). (B) Correlation of the normalized growth rate for technical duplicates across 2456 Incucyte samples. (C) Density distribution
of normalized growth rates (technical replicates averaged) 252 ASOs targeting lncRNAs with successful knockdown (KD) and growth phenotype (blue)
consistent in two replicates (FDR <0.05 as compared to matching NC_A; 246 ASOs inhibited growth), 627 ASOs targeting lncRNAs with successful KD
(purple), 270 negative control (NC_A) samples (gray), and 90 mock-transfected cells (Lipofectamine only) samples (yellow). (D) MKI67 staining (growth
inhibition validation) for four selected lncRNA targets after siRNA and ASOs suppression. (E) Incucyte cell images of selected distinct cell morphologies
changes upon an lncRNA KD. (F) An overview of the cell morphology imaging processing pipeline using a novel lncRNA target, CATG000089639.1, as
an example. (G) lncRNAs (N=59) significantly (FDR <0.05) and consistently (after adjusting for the number of successfully targeting ASOs) affecting
cell growth (N=15) and cell morphologies (N=44).
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to immunity, and cell stress and cell deathwere negatively correlat-
ed. We found that among 53 ASOs implicated in a growth-inhibi-
tion pathway based on the CAGE profiles, only 43% of them
showed growth inhibition in the real-time imaging. This might
suggest better sensitivity of transcriptomic profiling when detect-
ing phenotypes as compared to live cell imaging methods, which
are more prone to a delayed cellular response to the knockdown.

Additionally, morphological changes were reflected in the
molecular phenotype assessed by CAGE (Supplemental Fig. S4D).

Cell radius and axis length were associat-
ed with GSEA categories related to actin
arrangement and cilia, whereas cell com-
pactness was negatively correlated with
apoptosis. The extensive molecular phe-
notyping analysis also revealed pathways
not explicitly associated with cell growth
and cell morphology, such as transcrip-
tion, translation, metabolism, develop-
ment, and signaling (Fig. 3E).

Next, to globally assess whether in-
dividual ASO knockdowns lead to
lncRNA-specific effects, we scaled the ex-
pression change of each gene across the
whole experiment and compared differ-
entially expressed genes (Fig. 3B) of all
possible ASO pairs targeting the same
lncRNA target versus different lncRNAs
(Supplemental Methods; Supplemental
Table S5). We found that the concor-
dance of the same target group was sig-
nificantly greater than that of the
different target group (comparing the
Jaccard indices across 10,000 permuta-
tions) (Supplemental Fig. S5A), suggest-
ing that ASO knockdowns are
nonrandom and lead to more lncRNA
specific effects than the nontargeting
ASO pairs. Further, by requiring at least
five common DEGs (FDR≤0.05, abs
[log2FC] > 0.5, abs[Z-score] > 1.645) and
ASO-pairs significantly above the non-
targeting ASO pairs background (P≤
0.05), we identified 16 ASO pairs, target-
ing 13 lncRNAs, exhibiting reproducible
knockdown-mediated molecular re-
sponses in human dermal fibroblasts
(Supplemental Fig. S5B). Corresponding
GSEA pathways and MARA motifs of
these 16 ASO pairs are shown in
Supplemental Figure S5C.

siRNA validation experiments
To evaluate whether the lncRNA-specific
effects can be measured by other knock-
down technologies, nine lncRNAs, with
relatively mild growth phenotype, were
subjected to siRNA knockdown. Measur-
ing transcriptional response, we noted
that higher concordance was observed
for ASO modality alone (Supplemental
Fig. S5D). The observed discrepancies in

the transcriptional response between ASO- and siRNA-mediated
knockdowns could be contributed by theirmode of action and var-
iable activities in different subcellular compartments. Next, a con-
cordant response was found for (5/36) ASO-siRNA pairs targeting
three lncRNAs (Supplemental Fig. S5E; Supplemental Table S5),
enriched in the cytoplasm (MAPKAPK5-AS1), soluble nuclear
fraction (LINC02454), and in the chromatin-bound fraction
(A1BG-AS1). Although we cannot completely exclude the techni-
cal artifacts of each technology, concordant cellular response
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Figure 3. CAGE predicts cellular phenotypes. (A) RT-qPCR knockdown efficiency for 2021 ASO-trans-
fected samples (targeted lncRNAs only). Gray dashed line indicates 50% KD efficiency generally required
for CAGE selection. Purple dashed lines indicate median KD efficiency (71.5%) for 375 ASOs selected for
CAGE sequencing. After quality control, 340 ASOs targeting lncRNAs were included for further analysis.
(B) Distribution of significantly differentially expressed genes (up-regulated: FDR<0.05, Z-score > 1.645,
log2FC>0.5; and down-regulated: FDR<0.05, Z-score <−1.645, log2FC<−0.5) across all 340 ASOs. (C)
Motif Response Activity Analysis (MARA) across 340 ASOs. Scale indicates Z-score of the relative motif ac-
tivity (the rangewas set to abs[Z-score] = <5 for visualization purposes). (D) Correlation between normal-
ized growth rate and motif activities across 340 ASOs targeting lncRNAs with highlighted examples.
Motif sizes shown are scaled based on the HDF expression of their associated TFs (range 1 to ∼600
TPM). (E) Enriched biological pathways across 340 ASOs. Scale indicates GSEA enrichment value calcu-
lated as−log10(p) × sign(NES). (F ) Same as inD but for selected GSEA pathways. Pathways sizes are scaled
based on the number of associated genes.
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exhibited by using ASOs alone suggests that lncRNAs, in part, are
essential regulatory elements in cells. Yet, our study generally war-
rants a careful assessment of specific findings from different
knockdown technologies, including CRISPR-inhibition, and dem-
onstrates a requirement of using multiple replicates in a given tar-
get per each modality.

ZNF213-AS1 is associated with cell growth and migration
Extensive molecular and cellular phenotype data for each ASO
knockdown can be explored using our portal https://fantom.gsc
.riken.jp/zenbu/reports/#FANTOM6. As an example of an lncRNA
associatedwithcell growthandmorphology (Fig. 2G),weshowcase
ZNF213-AS1 (RP11-473M20.14). This lncRNA is highly conserved
in placental mammals, moderately expressed (∼eight CAGE tags
per million) in HDFs, and enriched in the chromatin-bound frac-
tion. Four distinct ASOs (ASO_01, ASO_02, ASO_05, and ASO_06)
strongly suppressedexpressionofZNF213-AS1,whereas expression
of the ZNF213 sense gene was not significantly affected in any of
the knockdowns. The four ASOs caused varying degrees of cell
growth inhibition (Fig. 4A). ASO_01 and ASO_06 showed a reduc-
tion in cell number, aswell as anup-regulationof apoptosis and im-
mune and defense pathways in GSEA, suggesting cell death.While
cell growth inhibition observed for ASO_02 and ASO_05 was con-
firmed by MKI67 marker staining (Fig. 2D; Supplemental Table

S7), the molecular phenotype revealed suppression of GSEA path-
ways related to cell growth, as well as to cell proliferation, motility,
and extracellular structure organization (Fig. 4B).We also observed
consistent down-regulation ofmotifs related to the observed cellu-
lar phenotype, for example, EGR1, EP300, SMAD1…7,9 (Fig. 4C).

As cellmotility pathwayswere affected by the knockdown,we
tested whether ZNF213-AS1 could influence cell migration. Based
on the wound-closure assay after transient cell growth inhibition
(mitomycin C and serum starvation) (Supplemental Fig. S2F,G),
we observed a substantial reduction of wound closure rate (∼40%
over a 24-h period) in the ZNF213-AS1-depleted HDFs (Fig. 4D,
E). The reduced wound healing rate should thus mainly reflect re-
duced cell motility, further confirming affected motility pathways
predicted by the molecular phenotype.

As these results indicated a potential role of ZNF213-AS1 in
cell growth and migration, we used FANTOM CAT Recount 2 at-
las (Imada et al. 2020), which incorporates The Cancer Genome
Atlas (TCGA) data set (Collado-Torres et al. 2017), and found rel-
atively higher expression of ZNF213-AS1 in acute myeloid leuke-
mia (LAML) and in low-grade gliomas (LGG) as compared to
other cancers (Supplemental Fig. S6A). In LAML, the highest ex-
pression levels were associated with mostly undifferentiated
states, whereas in LGG, elevated expression levels were found
in oligodendrogliomas, astrocytomas, and in IDH1 mutated tu-
mors, suggesting that ZNF213-AS1 is involved in modulating

E

BA C

D

Figure 4. ZNF213-AS1 regulates cell growth, migration, and proliferation. (A) Normalized growth rate across four distinct ASOs (in duplicate) targeting
ZNF213-AS1 as compared to six negative control samples (shown in gray). (B) Enrichment of biological pathways associated with growth, proliferation,
wound healing, migration, and adhesion for ASO_02 and ASO_05. (C) Most consistently down- and up-regulated transcription factor binding motifs in-
cluding those for transcription factors known to modulate growth, migration, and proliferation such as for example EGR family, EP300, GTF2I.
(D) Knockdown efficiency measured by RT-qPCR after wound closure assay (72 h posttransfection) showing sustained suppression (65%–90%) of
ZNF213-AS1. (E) Transfected, replated, and mitomycin C (5 µg/mL)-treated HDF cells were scratched and monitored in the Incucyte imaging system.
Relative wound closure rate calculated during the 24 h postscratching shows 40%–45% reduction for the two targeting ASOs (ASO_02 [N=10] and
ASO_05 [N=13]) as compared to NC_A transfection controls (N=33, shown in gray) and the representative images of wound closure assay 16 h
postscratching.
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differentiation and proliferation of tumors (Supplemental Fig.
S6B–E). Further, univariate Cox proportional hazard analysis as
well as Kaplan-Meier curves for LGG were significant and consis-
tent with our findings (HR=0.61, BH FDR=0.0079). The same
survival analysis on LAML showed a weak association with
poor prognostic outcome, but the results were not significant
(Supplemental Fig. S6F,G).

RP11-398K22.12 (KHDC3L-2) regulates KCNQ5 in cis

Next, we investigated in detail RP11-398K22.12 (ENSG00000229
852), where the knockdowns by two independent ASOs
(ASO_03, ASO_05) successfully reduced the expression of the tar-
get lncRNA (67%–82% knockdown efficiency, respectively) and
further down-regulated its neighboring genes, KCNQ5 and its
divergent partner novel lncRNA CATG00000088862.1 (Fig. 5A).
Although the two genomic loci occupy Chromosome 6 and
are 650 kb away, Hi-C analysis (Supplemental Methods; Supple-
mental Fig. S7; Supplemental Table S8) showed that they are locat-
ed within the same topologically associated domain (TAD) and
spatially colocalized (Fig. 5B). Moreover, chromatin-enrichment
and single molecule RNA-FISH of RP11-398K22.12 (Fig. 5C;
Supplemental Table S9) suggested its highly localized cis-regulato-
ry role.

In FANTOM5 (Hon et al. 2017), expression levels of RP11-
398K22.12, KCNQ5, and CATG00000088862.1 were enriched in
brain and nervous system samples, whereas GTEx (The GTEx
Consortium 2015) showed their highly specific expression in the
brain, particularly in the cerebellumand the cerebellar hemisphere
(Fig. 5D). GTEx data also showed that expression of RP11-
398K22.12 was highly correlated with the expression of KCNQ5
and CATG00000088862.1 across neuronal tissues (Fig. 5E,F), with
the exception of cerebellum and the cerebellar hemisphere,
potentially due to relatively lower levels of KCNQ5 and
CATG00000088862.1, whereas levels of RP11-398K22.12 re-
mained relatively higher. Additionally, we found an eQTL SNP
(rs14526472) overlappingwithRP11-398K22.12 and regulating ex-
pression of KCNQ5 in brain caudate (P=4.2×10−6; normalized ef-
fect size −0.58). All these findings indicate that RP11-398K22.12
is implicated in the nervous system bymaintaining the expression
of KCNQ5 and CATG000 00088862.1 in a cis-acting manner.

Discussion

This study systematically annotates lncRNAs through molecular
and cellular phenotyping by selecting 285 lncRNAs from human
dermal fibroblasts across a wide spectrum of expression, conserva-
tion levels and subcellular localization enrichments. Using ASO
technology allowed observed phenotypes to be associated to the
lncRNA transcripts, whereas, in contrast, CRISPR-based approach-
es may synchronically influence the transcription machinery at
the site of the divergent promoter or affect regulatory elements
of the targeted DNA site. Knockdown efficiencies obtained with
ASOs were observed to be independent of lncRNA expression lev-
els, subcellular localization, and of their genomic annotation, al-
lowing us to apply the same knockdown technology to various
classes of lncRNAs.

We investigated the cis-regulation of nearby divergent pro-
moters, which has been reported as one of the functional roles
of lncRNA (Luo et al. 2016). However, in agreement with previous
studies (Guttman et al. 2011), we did not observe general patterns

in the expression response of divergent promoters (Supplemental
Fig. S3B). Recent studies suggest that transcription of lncRNA loci
that do not overlap with other transcription units may influence
RNA polymerase II occupancy on neighboring promoters and
gene bodies (Engreitz et al. 2016a; Cho et al. 2018). Thus, it is plau-
sible that transcription of targeted lncRNA was maintained, de-
spite suppression of mature or nascent transcripts using ASOs.
This further suggests that the functional responses described in
this study are due to interference of processed transcripts present
either in the nucleus, the cytoplasm, or both. Although it is argu-
able that ASOs may interfere with general transcription by target-
ing the 5′-end of nascent transcripts and thus releasing RNA
polymerase II, followed by exonuclease-mediated decay and tran-
scription termination (aka “torpedo model”) (Proudfoot 2016),
most of the ASOs were designed across the entire length of the
transcript. Since we did not broadly observe dysregulation in near-
by genes, interference of transcription or splicing activity is less
likely to occur.

We observed a reduction in cell growth for ∼7.7% of our tar-
get lncRNA genes, which is in line with previous experiments us-
ing CRISPRi-pooled screening, which reported 5.9% (in iPS cells)
of lncRNAs exhibiting a cell growth phenotype (Liu et al. 2017).
Although these rates aremuch lower than for protein-coding genes
(Sokolova et al. 2017), recurrent observations of cell growth phe-
notypes (including cell death) strongly suggest that a substantial
fraction of lncRNAs play an essential role in cellular physiology
and viability. Further, when applying image-based analysis, we
found that lncRNAs affect cell morphologies (Fig. 2G), which has
not been so far thoroughly explored.

Several lncRNAs such as MALAT1, NEAT1, and FIRRE have
been reported to orchestrate transcription, RNA processing, and
gene expression (Kopp and Mendell 2018) but are not essential
for mouse development or viability. These observations advocate
for assays that can comprehensively profile the molecular changes
inside perturbed cells. Therefore, in contrast to cell-based assays,
functional elucidation via molecular phenotyping provides com-
prehensive information that cannot be captured by a single phe-
notypic assay. Herein, the number of overlapping differentially
expressed genes between two ASOs of the same lncRNA targets in-
dicated that 10.9% of lncRNAs exert a reproducible regulatory
function in HDF.

Although the features of selected lncRNAs are generally simi-
lar to those of other lncRNAs expressed in HDFs (Fig. 1B–D), the
cell-type-specific nature of lncRNAs and the relatively small sam-
pling size (119 lncRNAs with knockdown transcriptome profiles)
used in our study may not fully represent the whole extent of
lncRNA in other cell types. However, lncRNA targets that did not
exhibit amolecular phenotypemay be biologically relevant in oth-
er cell types or cell states (Li and Chang 2014; Liu et al. 2017). At
the same time, our results showed that particular lncRNAs ex-
pressed broadly in other tissues (e.g., in the human brain) were
functional in HDFs (such as RP11-398K22.12). Although the exact
molecularmechanisms of RP11-398K22.12 are not yet fully under-
stood, its potential role in HDFs suggests that lncRNAs may be
functionally relevant across multiple tissues in spite of the cell-
type-specific expression of lncRNAs.

Further, we used siRNA technology to knockdown lncRNA
targets as a method for independent validation. When comparing
the transcriptomes perturbed by ASOs and siRNAs, concordance
was observed only for three out of nine lncRNAs. This discrepancy
is likely due to different modes of actions of the two technologies.
Whereas ASOs invoke RNaseH-mediated cleavage, primarily active
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in the nucleus, the siRNAs use the RNA-inducing silencing com-
plex (RISC) mainly active in the cytoplasm. LncRNAs are known
to function in specific subcellular compartments (Chen 2016)
and their maturity, secondary structures, isoforms, and functions

could be vastly different across compartments (Johnsson et al.
2013). Since the majority of functional lncRNAs are reported to
be inside the nucleus (Palazzo and Lee 2018; Sun et al. 2018),
ASO-mediated knockdowns, which mainly target nuclear RNAs,
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Figure 5. RP11-398K22.12 down-regulates KCNQ5 and CATG00000088862.1 in cis. (A) Changes in expression levels of detectable genes in the
same topologically associated domain (TAD) as RP11-398K22.12 based on Hi-C analysis. Both KCNQ5 and CATG00000088862.1 are down-reg-
ulated (P<0.05) upon the knockdown of RP11-398K22.12 by two independent ASOs in CAGE analysis (left) as further confirmed with RT-qPCR
(right). (B) (Top) Representation of the chromatin conformation in the 4-Mb region proximal to the TAD containing RP11-398K22.12, followed
by the locus gene annotation, CAGE, RNA-seq, and ATAC-seq data for native HDFs. (Bottom) Schematic diagram showing Hi-C predicted con-
tacts of RP11-398K22.12 (blue) and KCNQ5 (gray) (25-kb resolution, frequency≥5) in HDF cells. Red line indicates RP11-398K22.12 and KCNQ5
contact. (C) FISH image for RP11-398K22.12, suggesting proximal regulation. TUG1 FISH image (suggesting trans regulation) is included as a
comparison; (bar = 10 µm). (D) GTEx atlas across 54 tissues (N=9662 samples) shows relatively high expression levels of RP11-398K22.12 in 13
distinct brain regions samples (highlighted). (E) Expression correlation for RP11-398K22.12 and KCNQ5 in eight out of 13 distinct brain regions,
as highlighted in D. (F ) Expression correlation for RP11-398K22.12 and CATG00000088862.1 in eight out of 13 distinct brain regions, as high-
lighted in D.
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are generally more suitable for functional screenings of our
lncRNA (62% found in the nuclear compartment). Besides, the dy-
namics of secondary effects mediated by different levels of knock-
down from different technologies are likely to be observed as
discordance when considering the whole transcriptome, where
this kind of discordance has been reported previously (Stojic
et al. 2018). In contrast, in the MKI67 assay, where only a single
feature such as growth phenotype is assayed, siRNAknockdown re-
vealed higher reproducibility with ASO knockdown. This suggest-
ed that the growth phenotype might be triggered by different
specific pathways in ASO- and siRNA-knockdowns.

Previous studies suggest that lncRNAs regulate gene expres-
sion in trans epigenetically, via direct or indirect interaction with
regulators such as DNMT1 (Di Ruscio et al. 2013) or by directly
binding to DNA (triplex) (Mondal et al. 2015) or other RNA-bind-
ing proteins (Tichon et al. 2016). Analysis of cellular localization
by fractionation followed by RNA-seq and in situ hybridization
can indicate whether a given lncRNAmay act in trans by quantify-
ing its abundance in the nuclear soluble fraction as compared to
cytoplasm. Althoughmost lncRNAs in the nuclear soluble fraction
may affect pathways associated with chromatin modification, ad-
ditional experiments to globally understand their interaction part-
ners will elucidate the molecular mechanism behind trans-acting
lncRNAs (Li et al. 2017; Sridhar et al. 2017).

In summary, our study highlights the functional importance
of lncRNAs regardless of their expression, localization, and conser-
vation levels. Molecular phenotyping is a powerful and generally
more sensitive to knockdown-mediated changes platform to reveal
the functional relevance of lncRNAs that cannot be observed based
on the cellular phenotypes alone. With additional molecular pro-
filing techniques, suchasRNAduplexmaps in livingcells todecode
common structural motifs (Lu et al. 2016), and Oxford Nanopore
Technology (ONT) to annotate the full-length variant isoforms of
lncRNAs (Hardwick et al. 2019), the structure-to-functional rela-
tionship of lncRNAs may be elucidated further in the future.

Methods

Gene models and lncRNA target selections
The gene models used in this study were primarily based on the
FANTOM CAGE-associated transcriptome (CAT) at permissive
level as defined previously (Hon et al. 2017). From this merged as-
sembly, there were ∼2000 lncRNAs robustly expressed in HDFs
(TPM≥1). However, we selected lncRNA knockdown targets in
an unbiased manner to broadly cover various types of lncRNAs
(TPM≥0.2). Briefly, we first identified a list of the lncRNA genes
expressed in HDFs, with RNA-seq expression at least 0.5 fragments
per kilobase permillion andCAGE expression at least 1 tag permil-
lion. Then, we manually inspected each lncRNA locus in the
ZENBU genome browser for (1) its independence from neighbor-
ing genes on the same strand (if any), (2) support from RNA-seq
(for exons and splicing junctions) and CAGE data (for TSSs) of
its transcript models, and (3) support from histone marks at TSSs
for transcription initiation (H3K27ac) and along the gene body
for elongation (H3K36me3), from the Roadmap Epigenomics
Consortium (Roadmap Epigenomics Consortium et al. 2015). A
representative transcript model, which best represents the RNA-
seq signal, was manually chosen from each locus for design of an-
tisense oligonucleotides. In total, 285 lncRNA loci were chosen for
ASO suppression. Additional controls (NEAT1, protein coding
genes) (Supplemental Table S1) were added, including MALAT1

as an experimental control. For details, please refer to the
Supplemental Methods.

ASO design
ASOs were designed as RNase H-recruiting locked nucleic acid
(LNA) phosphorothioate gapmers with a central DNA gap flanked
by 2–4 LNA nucleotides at the 5′ and 3′ ends of the ASOs. For de-
tails, please refer to the Supplemental Methods.

Automated cell culturing, ASO transfection, and cell harvesting
Robotic automation (Hamilton) was established to provide a stable
environment and accurate procedural timing control for cell cul-
turing and transfection. In brief, trypsin-EDTA detachment, cell
number and viability quantification, cell seeding, transfection,
and cell harvesting were performed with automation. All transfec-
tionswere divided into 28 runs on aweekly basis. ASO transfection
was performed with duplication. In each run, there were 16 inde-
pendent transfections with ASO negative control A (NC_A,
Exiqon) and 16 wells transfected with an ASO targeting MALAT-
1 (Exiqon).

The HDF cells were seeded in 12-well plates with 80,000 cells
in each well 24 h prior to the transfection. A final concentration of
20 nM ASO and 2 µL Lipofectamine RNAiMAX (Thermo Fisher
Scientific) were mixed in 200 µL Opti-MEM (Thermo Fisher
Scientific). The mixture was incubated at room temperature for
5min and added to the cells, whichweremaintained in 1mL com-
plete medium. The cells were harvested 48 h posttransfection by
adding 200 µL RLT buffer from the RNeasy 96 kit (Qiagen) after
PBS washing. The harvested lysates were kept at −80°C. RNA was
extracted from the lysate for real-time quantitative RT-PCR
(Supplemental Methods).

ASO transfection for real-time imaging
The HDF cells were transfected manually in 96-well plates to facil-
itate high-throughput real-time imaging. The cells were seeded
24 h before transfection at a density of 5200 cells per well. A final
concentration of 20 nM ASO and 2 µL Lipofectamine RNAiMAX
(Thermo Fisher Scientific) were mixed in 200 µL Opti-MEM
(Thermo Fisher Scientific). After incubating at room temperature
for 5 min, 18 µL of the transfection mix was added to 90 µL com-
plete medium in each well. The ASOs were divided into 14 runs
and transfected in duplicate. Each plate accommodated six wells
of NC_A control, twowells ofMALAT1 ASO control, and twowells
of mock-transfection (Lipofectamine alone) control.

Phase-contrast images of transfected cells were captured every
3 h for 2 d with three fields per well by the Incucyte live-cell imag-
ing system (Essen Bioscience). The confluence in each fieldwas an-
alyzed by the Incucyte software. Themean confluence of eachwell
was taken along the timeline until the mean confluence of the
NC_A control in the same plate reached 90%. The growth rate in
each well was calculated as the slope of a linear regression. A nor-
malized growth rate of each replicate was calculated as the growth
rate divided by themean growth rate of the sixNC_A controls from
the same plate. Negative growth rate was derived when cells shrink
and/or detach. As these rates of cell depletion could not be normal-
ized by the rate of growth, negative values were maintained to in-
dicate severe growth inhibition. Student’s t-test was performed
between the growth rate of the duplicated samples and the six
NC_A controls, assuming equal variance.

FANTOM6 pilot study

Genome Research 1069
www.genome.org

 Cold Spring Harbor Laboratory Press on January 27, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.254219.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.254219.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.254219.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.254219.119/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


Cell morphology quantification
For each transfection, a representative phase-contrast image at a
single time point was exported from the Incucyte time-series.
These raw images were first transformed to probability maps of
cells by pixel classification using ilastik (1.3.2) (Berg et al. 2019).
The trained model was then applied to all images where the pre-
dicted probability maps of cells (grayscale, 16 bits tiff format)
were subsequently used for morphology quantification in
CellProfiler (3.1.5) (Carpenter et al. 2006). For details, please refer
to the Supplemental Methods.

MKI67 staining upon lncRNA knockdown
For the selected four lncRNA targets showing >25% growth inhibi-
tion, we used two siRNAs and two ASOs with independent se-
quences. The transfected cells were fixed by adding prechilled
70% ethanol and incubated at −20°C. The cells were washed
with FACS buffer (2% FBS in PBS, 0.05%NaN3) twice. FITC-conju-
gated MKI67 (20Raj1, eBioscience) was applied to the cells and
subjected to flow cytometric analysis. Knockdown efficiency by
siRNA was determined by real-time quantitative RT-PCR using
the same three primer pairs as for ASO knockdown efficiency.
For details, please refer to the Supplemental Methods.

Wound closure assay
TheHDF cells were transfectedwith 20nMASOas described earlier
in 12-well plates. The cells were replated at 24 h posttransfection
into a 96-well ImageLock plate (Essen BioScience) at a density of
20,000 cells per well. At 24 h after seeding, cells form a spatially
uniform monolayer with 95%–100% cell confluence. The cells
were incubated with 5 µg/mL mitomycin C for 2 h to inhibit cell
division. Then, medium was refreshed and a uniform scratch was
created in each well by the WoundMaker (Essen BioScience). The
closure of the wound was monitored by Incucyte live-cell imaging
system (Essen Bioscience) every 2 h for 24 h. The RNAwas harvest-
ed after the assay for real-time quantitative RT-PCR. For details,
please refer to the Supplemental Methods.

Cap analysis of gene expression (CAGE)
Fourmicrograms of purified RNAwere used to generate libraries ac-
cording to the nAnT-iCAGE protocol (Murata et al. 2014). For de-
tails, please refer to the Supplemental Methods.

Chromosome conformation capture (Hi-C)
Hi-C libraries were prepared essentially as described previously
(Lieberman-Aiden et al. 2009; Fraser et al. 2015a) with minor
changes to improve the DNA yield of Hi-C products (Fraser et al.
2015b). For details, please refer to the Supplemental Methods.

Data access
All raw andprocessed sequencing data generated in this study have
been submitted to the DNA Data Bank of Japan (DDBJ; https://
www.ddbj.nig.ac.jp/) under accession numbers DRA008311,
DRA008312, DRA008436, and DRA008511 or can be accessed
through the FANTOM6 project portal https://fantom.gsc.riken
.jp/6/datafiles. The analysis results can be downloaded from
https://fantom.gsc.riken.jp/6/suppl/Ramilowski_et_al_2020/data/
and interactively explored using our in-house portal https
://fantom.gsc.riken.jp/zenbu/reports/#FANTOM6.
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Genome Research 28: 285–294 (2018)

Corrigendum: 3′ UTR lengthening as a novel mechanism in regulating cellular senescence
Meng Chen, Guoliang Lyu, Miao Han, Hongbo Nie, Ting Shen, Wei Chen, Yichi Niu, Yifan Song, Xueping Li,
Huan Li, Xinyu Chen, Ziyue Wang, Zheng Xia, Wei Li, Xiao-Li Tian, Chen Ding, Jun Gu, Yufang Zheng,
Xinhua Liu, Jinfeng Hu, Gang Wei, Wei Tao, and Ting Ni

The authors would like to correct Figure 3, panel J, in which the rightmost upper image of SA-β-gal stained
293T cells following short hairpin RNA (shRNA)-mediated knockdown of RRAS2 with sh769 (RRAS2-KD-
sh769) was inadvertently, and due to a labeling error, taken from the same original source image presented
in themiddle upper panel, which shows increased SA-β-gal activity following RRAS2 knockdown by a different
shRNA (sh646). This correction does not affect any of the conclusions of the article. The corrected image
representative of RRAS2-KD-sh769 is provided below, and Figure 3 has been updated in the article online.

The authors thankNing Yuan Lee for bringing this error to their attention and apologize for any confusion this
may have caused.

Additionally, the authors have provided a revised Supplemental Figure S7 file in which the redundant succes-
sive Supplemental figure files have been removed. This can be found in the Revised Supplemental Material
online.

doi: 10.1101/gr.270165.120

Figure 3. Panel J, rightmost upper image.
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Genome Research 30: 1060–1072 (2020)

Corrigendum: Functional annotation of human long noncoding RNAs via molecular
phenotyping
Jordan A. Ramilowski, Chi Wai Yip, Saumya Agrawal, Jen-Chien Chang, Yari Ciani, Ivan V. Kulakovskiy,
Mickaël Mendez, Jasmine Li Ching Ooi, John F. Ouyang, Nick Parkinson, Andreas Petri, Leonie Roos,
Jessica Severin, Kayoko Yasuzawa, Imad Abugessaisa, Altuna Akalin, Ivan V. Antonov, Erik Arner,
Alessandro Bonetti, Hidemasa Bono, Beatrice Borsari, Frank Brombacher, Christopher J.F. Cameron, Carlo
Vittorio Cannistraci, Ryan Cardenas, Melissa Cardon, Howard Chang, Josée Dostie, Luca Ducoli,
Alexander Favorov, Alexandre Fort, Diego Garrido, Noa Gil, Juliette Gimenez, Reto Guler, Lusy Handoko,
Jayson Harshbarger, Akira Hasegawa, Yuki Hasegawa, Kosuke Hashimoto, Norihito Hayatsu, Peter Heutink,
Tetsuro Hirose, Eddie L. Imada, Masayoshi Itoh, Bogumil Kaczkowski, Aditi Kanhere, Emily Kawabata,
Hideya Kawaji, Tsugumi Kawashima, S. Thomas Kelly, Miki Kojima, Naoto Kondo, Haruhiko Koseki,
Tsukasa Kouno, Anton Kratz, Mariola Kurowska-Stolarska, Andrew Tae Jun Kwon, Jeffrey Leek,
Andreas Lennartsson, Marina Lizio, Fernando López-Redondo, Joachim Luginbühl, Shiori Maeda, Vsevolod
J. Makeev, Luigi Marchionni, Yulia A. Medvedeva, Aki Minoda, Ferenc Müller, Manuel Muñoz-Aguirre,
Mitsuyoshi Murata, Hiromi Nishiyori, Kazuhiro R. Nitta, Shuhei Noguchi, Yukihiko Noro, Ramil Nurtdinov,
Yasushi Okazaki, Valerio Orlando, Denis Paquette, Callum J.C. Parr, Owen J.L. Rackham, Patrizia Rizzu,
Diego Fernando Sánchez Martinez, Albin Sandelin, Pillay Sanjana, Colin A.M. Semple, Youtaro Shibayama,
Divya M. Sivaraman, Takahiro Suzuki, Suzannah C. Szumowski, Michihira Tagami, Martin S. Taylor,
Chikashi Terao, Malte Thodberg, Supat Thongjuea, Vidisha Tripathi, Igor Ulitsky, Roberto Verardo, Ilya
E. Vorontsov, Chinatsu Yamamoto, Robert S. Young, J. Kenneth Baillie, Alistair R.R. Forrest, Roderic Guigó,
Michael M. Hoffman, Chung Chau Hon, Takeya Kasukawa, Sakari Kauppinen, Juha Kere, Boris Lenhard,
Claudio Schneider, Harukazu Suzuki, Ken Yagi, Michiel J.L. de Hoon, Jay W. Shin, and Piero Carninci

The authors would like to correct the misspelling of an author’s name and the inadvertent omission of two
affiliations for that author, which are as follows: Christopher J.F. Cameron, Department of Biochemistry,
Rosalind and Morris Goodman Cancer Research Center, McGill University, Montréal, Québec H3G 1Y6,
Canada and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven,
Connecticut 06510, USA.

These updates are reflected in the revised manuscript online.

doi: 10.1101/gr.270330.120
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 16 

ABSTRACT 17 
PTEN is the most frequently lost tumor suppressor in primary prostate cancer (PCa) and its loss is associated with 18 

aggressive disease. However, the transcriptional changes associated with PTEN loss in PCa have not been described in 19 

detail. Here, we applied a meta-analysis approach, leveraging two large PCa cohorts with experimentally validated 20 

PTEN and ERG status, to derive a transcriptomic signature of PTEN loss, while also accounting for potential 21 

confounders due to ERG rearrangements. Strikingly, the signature indicates a strong activation of both innate and 22 

adaptive immune systems upon PTEN loss, as well as an expected activation of cell-cycle genes. Moreover, we made 23 

use of our recently developed FC-R2 expression atlas to expand this signature to include many non-coding RNAs 24 

recently annotated by the FANTOM consortium. With this resource, we analyzed the TCGA-PRAD cohort, creating a 25 

comprehensive transcriptomic landscape of PTEN loss in PCa that comprises both the coding and an extensive non-26 

coding counterpart.  27 
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Introduction 28 
Previous molecular studies have explored the genomic heterogeneity of prostate adenocarcinomas (PCa) revealing 29 

distinct molecular subsets characterized by common genome alterations (1–3). Among these molecular alterations, 30 

loss of the tumor suppressor gene phosphatase and tensin homolog (PTEN) – which is implicated in the negative-31 

regulation of the PI3K-AKT-mTOR pathway – has been identified as one of the most common genomic drivers of 32 

primary PCa (4,5). Since alterations in the PI3K pathway are present in more than 30% of human cancers, the 33 

identification of an expression signature associated with PTEN loss has been investigated in different tumor contexts, 34 

including breast, bladder, lung, and PCa (6,7).  35 

Assessment of PTEN status by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in large 36 

clinical PCa cohorts has shown a consistent association with adverse pathological features such as high Gleason score, 37 

extra-prostatic extension, as well as prognostic value for biochemical recurrence and cancer-related death (4,8). IHC-38 

based assessment of PTEN status has been shown to correlate tightly with genomic alterations of the PTEN locus and 39 

captures not only loss of the gene, but also mutation and epigenetic changes that lead to PTEN functional 40 

inactivation(4,9,10) and the potential clinical utility of PTEN IHC as a valuable prognostic marker has been 41 

demonstrated previously (11–14).  42 

Though PTEN is involved in a myriad of cellular processes spanning cellular proliferation to tumor 43 

microenvironment interactions (5), the transcriptional landscape related to PTEN expression has not yet been explored 44 

in depth, and the role of long non-coding RNAs (lncRNAs) remains elusive (15). These observations, added to the 45 

evidence that subtle PTEN downregulation can lead to cancer susceptibility (16), demonstrate the important role of 46 

PTEN in cancer biology but also highlight the need for additional studies. 47 

Similarly, gene rearrangements of the ETS transcription factor, ERG, with the androgen-regulated gene 48 

Transmembrane Serine Protease 2 (TMPRSS2) are present in ~50% of PCa from patients of European descent. 49 

TMPRSS2-ERG fusion (herein denoted as ERG+
 for fusion present and ERG-

 for absence of fusion) has been shown to 50 

activate the PI3K-kinase pathway similarly to PTEN loss (17), leading to increased proliferation and invasion. 51 

Importantly, tumors harboring TMPRSS2-ERG rearrangements show an enrichment for PTEN loss (17,18). The co-52 
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occurrence of these two genomic alterations makes it challenging to dissect the contributions of each to the 53 

transcriptomic landscape. 54 

The goal of this study was to elucidate the transcriptional landscape of PTEN loss in PCa through the analysis 55 

of two large and very well clinically-curated cohorts, for which PTEN and ERG status was assessed by clinical-grade IHC: 56 

The Natural History (NH) cohort, in which patients that underwent radical prostatectomy for clinically localized PCa did 57 

not receive neoadjuvant therapy or adjuvant hormonal therapy prior to documented distant metastases (19); and the 58 

Health Professionals Follow-up Study (HPFS) cohort in which the patients were followed for over 25 years (20). Based 59 

on IHC-assessed PTEN status for these cohorts, we built a PTEN-loss signature highly concordant across the 60 

independent datasets, in both presence and absence of TMPRSS2-ERG fusion. Overall, this PTEN-loss signature was 61 

associated with cellular processes associated with aggressive tumor behavior (e.g., increased motility and proliferation) 62 

and, surprisingly, with increases in gene sets related to the immune response. In addition, through our recently 63 

developed FANTOM-CAT/recount2 (FC-R2) resource (21)
 
and copy-number-variation data, we expanded this signature 64 

beyond coding genes and report the non-coding RNA repertory resulting from PTEN loss.  65 

  66 
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Methods 67 

Data collection and Immunostaining 68 

All expression data used in this work were gathered from public domain databases. In this work, we made use of three 69 

cohorts: FC-R2 TCGA, Natural History (NH), and Health Professionals Follow-up Study (HPFS). Information about each 70 

cohort is summarized in Table 1. Information about PTEN status by immunohistochemistry for the HPFS cohort was 71 

readily available and therefore obtained from the public domain. For NH cohort samples, IHC staining for PTEN and 72 

ERG were performed using a previously validated protocol (22). Last, for TCGA we used the Copy Number Variation 73 

(CNV) called by the GISTIC algorithm to define PTEN status and expectation-maximization algorithm to define ERG 74 

status. 75 

 76 

Meta-analysis of NH and HPFS cohorts 77 

We performed a meta-analysis approach using a Bayesian hierarchical multi-level model (BHM) for cross-study 78 

detection of differential gene expression implemented in the Bioconductor package XDE (23)
 
on microarray-based 79 

cohorts to obtain a PTEN-null signature from PTEN IHC validated samples. The model was fitted using the delta gp 80 

model with empirical starting values and 1000 bootstraps were performed. All remaining parameters were set to 81 

default values. This analysis was also performed stratifying the samples by ERG status to evaluate the impact of the 82 

ERG rearrangement in the signature. 83 

 84 

Differential expression analysis in the TCGA cohort 85 

A generalized linear model (GLM) approach coupled with empirical Bayes moderation of standard errors
 
and voom 86 

precision weigths (24,25) was used to detect differentially expressed genes in the TCGA cohort. The models were 87 

adjusted for surrogate variables with the SVA package (26). Adjusted p-values controlling for multiple hypothesis 88 

testing were performed using the Benjamini-Hochberg method and genes with false discovery rate (FDR) equal or less 89 

than 0.1 were reported (27). 90 

 91 

Gene set enrichment analysis (GSEA) 92 

The results from the meta-analysis performed in the NH and HPFS cohort were ranked by the weighted size effect 93 

(average of the posterior probability of concordant differential expression multiplied by the Bayesian effect size of 94 
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each cohort). The results from the TCGA cohort were ranked by t-statistics. Ranked lists were tested for gene set 95 

enrichment. Gene set enrichment analysis (GSEA) was performed using a Monte Carlo adaptive multilevel splitting 96 

approach, implemented in the fgsea (28)
 
package. A collection of gene sets (Hallmarks, REACTOME, and GO Biological 97 

Processes) were obtained from the Broad Institute MSigDB database. The androgen response gene set was obtained 98 

from Scheaffer et al (29). Gene sets with less than 15 and more than 1500 genes were removed from the analysis, 99 

except for the GO biological processes whose max size was set to 300 to avoid overly generic gene sets. The enriched 100 

pathways were collapsed to maintain only independent ones using the function collapsePathways from fgsea. 101 

  102 
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Results 103 

Meta-analysis of Natural History and Health Professionals Follow-Up Study cohorts 104 

We sought to obtain a consensus signature of PTEN loss that could be reproduced across independent cohorts. We 105 

utilized a meta-analysis approach leveraging a multi-level model for cross-study detection of differential gene 106 

expression (DGE). We fitted a Bayesian hierarchical model (BHM) for analysis of differential expression across multiple 107 

studies that allowed us to aggregate data from two previously described tissue microarray-based cohorts where PTEN 108 

and ERG status was determined by IHC (Table 1 and Figure 1) and we derived a PTEN-loss signature (Figure 2). In this 109 

analysis, we observed 813 genes for which the differential expression was highly concordant (Bayesian Effect Size (BES) 110 

³ 1, posterior probability of concordant differential expression (PPCDE) ³ 0.95) (Table S1). 111 

The consequences of PTEN loss on cell cycle regulation and tumor cell invasion has been extensively reported 112 

previously (4,30,31). Accordingly, beyond PTEN itself, the top DEG genes in our signature reflected this profile (Figure 113 

2 and Table S1). Dermatopontin (DPT) (BES = -2.59, PPCDE = 1) and Alanyl membrane aminopeptidase (ANPEP) (BES = 114 

-2.53, PPCDE = 1) were found down-regulated upon PTEN loss. Leucine-Rich Repeat Neuronal 1 (LRRN1) was among 115 

the genes up-regulated upon PTEN loss (BES = 3.36, PPCDE = 1). These and other genes found differentially expressed 116 

upon PTEN loss have all been shown to be associated with a more aggressive phenotype in several cancer types (5) . 117 

Notably, we found ERG among the top upregulated genes in the signature (Figure 2). As expected (18,32,33), 118 

ERG rearrangement was more common among cases with PTEN loss compared to intact PTEN in all cohorts (Fisher 119 

exact test, p £ 0.001). Given this enrichment, it was not surprising that ERG was among the most up-regulated genes 120 

in the BHM signature, as well as PLA2G7, which has been shown to be among the most highly overexpressed genes in 121 

ERG-rearranged PCa compared to those lacking ERG rearrangements (34). The presence of ERG and ERG-regulated 122 

transcripts in the PTEN-loss signature suggested that this signature might be confounded by enrichment of ERG 123 

rearranged tumors among the tumors with PTEN loss. 124 

Since ERG rearrangements represent a major driver event in PCa and PTEN loss is enriched in ERG-rearranged 125 

tumors, we next investigated the role of ERG in our PTEN-loss signature. To this end, we repeated the Bayesian 126 

hierarchical model for the analysis of differential expression by stratifying the samples by ERG status. In the background 127 

with ERG rearrangement, we observed a similar signature to the previous overall PTEN-loss signature, but without the 128 

aforementioned ERG-associated genes (Supplementary figure S1 and Supplementary table S2). However, in the 129 
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absence of ERG rearrangement, we could not find any significant differences between samples with or without PTEN 130 

loss. This was unexpected given that PTEN is a powerful tumor suppressor capable of triggering multiple molecular 131 

changes. 132 

 133 

Extending the PTEN-loss signature 134 

To validate our PTEN loss signatures in an orthogonal cohort, we next examined the TCGA PRAD cohort (35), where 135 

PTEN status was estimated by genomic copy number (CN) assessment, which was closely aligned with PTEN gene 136 

expression (Figure S3). We recently developed a comprehensive expression atlas based on the FANTOM-CAT 137 

annotations. This meta-assembly is currently the broadest collection of the human transcriptome (21,36). These gene 138 

models include many novel lncRNA categories such as enhancers and promoters, allowing the signature to be further 139 

expanded beyond the coding repertoire. We used TCGA expression data from the FC-R2 expression atlas (21) to 140 

perform DGE analysis stratified by the PTEN status as derived from CN analysis. We also performed the same analysis 141 

in a stratified manner as in the HPFS and NH cohorts, using the ERG expression with expectation maximization (EM) 142 

algorithm to define ERG status given the bimodal nature of ERG expression in PCa. Interestingly, we were able to detect 143 

differential expression between PTEN-null and PTEN-intact samples without ERG rearrangement in the TCGA cohort, 144 

which used high-throughput sequencing as opposed to gene expression microarrays, suggesting that there the lack of 145 

signal in the previous analysis can be a reflection of the potential limitations with the later technology. 146 

We observed 521 differentially expressed genes (DEG) when comparing PTEN-null and PTEN-wild-type samples 147 

(FDR £	0.01, LogFC ≥ 1), of which 257 were coding genes and 264 were non-coding genes (Supplementary Table S3). 148 

When stratifying the samples by ERG status, we obtained 435 and 364 DEG in the background with and without ERG 149 

rearrangement (Supplementary Table S4 and S5), respectively, with similar proportions of coding and non-coding 150 

genes. Using Correspondence-at-the-top (CAT) analysis of the coding genes, we observed a higher concordance than 151 

expected by chance between the TCGA PTEN-loss signature and that from the BHM (Figure S4). This confirmed that 152 

CN is a reasonable proxy to IHC-staining in TCGA which allowed us to expand this signature beyond coding RNAs.  153 

In this analysis, we were able to detect a variety of lncRNAs that are already known to be involved in PCa 154 

development and progression. Notably, several differentially expressed lncRNAs were already reported to be 155 
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associated with PCa (37–46) (e.g. PCA3, PCGEM1, SCHLAP1, KRTAP5-AS1, Mir-596) (Supplementary Table S3-S5). PCA3 156 

is a prostate-specific lncRNA overexpressed in PCa tissue. Similarly, lncRNA PCGEM1 expression is increased and highly 157 

specific in PCa where it promotes cell growth and it has been associated with high-risk PCa patients (41,42). On the 158 

other hand, KRTAP5-AS1 expression has not been directly associated with PCa.  159 

Also ranked high among lncRNAs differentially expressed were the lncRNAs SChLAP1 and its uncharacterized 160 

antisense neighbor AC009478.1. SchLAP1 is overexpressed in a subset of PCa where it antagonizes the tumor-161 

suppressive function of the SWI/SNF complex and can independently predict poor outcomes (45,46). On the other 162 

hand, the role of AC009478.1 in PCa development is still unknown. Interestingly, SchLAP1 and AC009478.1 expression 163 

is strongly correlated in the TCGA datasets only in PCa (R = 0.94, p < 2.2e-26) and bladder cancer (R = 0.85, p < 2.2e-164 

26) (Figure S5). 165 

Strikingly, a substantial proportion of lncRNAs associated with PTEN loss were not yet associated with PCa. Out 166 

of the 264 DE non-coding genes, 134 were novel and annotated only in the FANTOM-CAT meta-assembly annotation 167 

(Table 2). Among the FANTOM-CAT exclusive genes, those with the highest fold change in close proximity with coding 168 

genes were CATG00000038715, CATG00000079217, and CATG00000117664 (Figure S6). These genes were mostly 169 

expressed in PCa as opposed to other cancer types in the TCGA dataset (Figure 3).  170 

Among the downregulated genes were CATG00000038715 and CATG00000079217. CATG00000038715 is in 171 

close proximity to CYP4F2 and CYP4F11, encoding members of the cytochrome P450 enzyme superfamily. Expression 172 

of CATG00000038715 and CYP4F2 are highly correlated (R=0.91, p < 2.2e-16) in PCa, and expression of the former was 173 

highly specific for PCa (Figure S7). CATG00000079217 is in close proximity to the coding gene FBXL7, an F-box gene 174 

which is a component of the E3 ubiquitin ligase complex. While expression of FBXL7 and CATG00000079217 showed 175 

only a weak correlation (R=0.14, p < 7.4e-4), CATG00000079217 expression was notably higher in PCa and breast 176 

cancer than in other cancers, and it was moderately correlated with several PCa biomarkers (e.g. KLK2, KLK3, STEAP2, 177 

PCGEM1, SLC45A3) (41,42,47–51)
 
(R=0.37-0.57, p < 2.2e-16) in TCGA. 178 

CATG00000117664 was among the most upregulated lncRNA and it is located near GPR158, a G protein 179 

coupled receptor highly expressed in brain. The expression between GPR158 were correlated (R=0.54, p < 2.2e-16), 180 

and CATG00000117664 expression was shown to be highly specific to PCa (52) (Figure S7). 181 
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 182 

PTEN loss induces the innate and adaptive immune system 183 

We performed Gene Set Enrichment Analysis (GSEA) using fgsea (28)
 
and tested both the BHM- and TCGA-generated 184 

molecular signatures for enrichment in three collections of the Molecular Signature Database (MSigDB) (53,54): 185 

HALLMARKS, REACTOME, and GO Biological Processes (BP). Results were similar in both signatures, with positive 186 

enrichment of proliferation and cell cycle-related gene sets (e.g. MYC1 targets, MTORC1 signaling, cell cycle 187 

checkpoints, and DNA repair) and both innate and adaptive immune system associated gene sets (e.g. Neutrophil 188 

degranulation, MHC antigen presentation, interferon-alpha, and gamma) (Figure 4-5 and Supplementary Table S6-189 

S20). The positive enrichment of MHC antigen presentation, interferon-alpha and -gamma in PTEN-null tumors is 190 

consistent with our previous study showing that the absolute density of T-cells is increased in PCa with PTEN loss (55). 191 

  Since PTEN-null tumors are known to have decreased androgen output, which is a strong suppressor of 192 

inflammatory immune cells (29,56,57), we hypothesized that this decrease in androgen levels could activate an 193 

immune response. We, therefore, performed a GSEA analysis using a collection of androgen-regulated genes from 194 

Schaeffer et al. (29) to test if the PTEN-null signature was enriched in this gene set. Both the TCGA- and BHM-signature 195 

were shown to be positively enriched in genes that were shown to be repressed upon dihydrotestosterone treatment 196 

(NES =1.39-155, FDR £ 0.05) (Figure S8).  197 

  198 
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Discussion 199 
With an estimated prevalence of up to 50%, PTEN loss is recognized as one of the major driving events in PCa (58). 200 

PTEN antagonizes PI3K-AKT/PKB and is a key modulator of the AKT-mTOR signaling pathways which are important in 201 

regulating cell growth and proliferation. Accordingly, PTEN loss is consistently associated with more aggressive disease 202 

features and poor outcomes. Saal and collaborators previously generated a transcriptomic signature of PTEN loss in 203 

breast cancer (6). While this signature was correlated with worse patient outcomes in breast and other independent 204 

cancer datasets, including PCa, the signature unsurprisingly fails to capture key characteristics of PCa such as ERG-205 

rearrangement (6,11). Significantly, a transcriptomic signature reflecting the landscape of PTEN loss in PCa has not 206 

been described to date. 207 

Immunohistochemistry (IHC) assay is a clinically utilized technique to determine the status of the PTEN gene, 208 

with high sensitivity and specificity for underlying genomic deletions (59) (Figure 1). Therefore, we analyzed 209 

transcriptome data from two large PCa cohorts – the Health Professional Follow-up Study (HPFS) and the Natural 210 

History (NH) study – for which IHC-based PTEN and ERG status was available (n = 390 and 207, respectively), deriving 211 

a PTEN-loss gene expression signature specific to PCa (Figure 2 and Supplementary Table S1). Genes that are associated 212 

with increased proliferation and invasion in several cancer types, such as DPT, ANPEP and LRRN1, were among the 213 

most concordant DEG in this signature. DPT has been shown to inhibit cell proliferation through MYC repression and 214 

to be down-regulated in both oral and thyroid cancer (60,61). It has also been shown to control cell adhesion and 215 

invasiveness, with low expression leading to a worst prognosis (61,62). ANPEP is known to play an important role in 216 

cell motility, invasion, and metastasis progression (62,63), and lower expression of this gene has been associated with 217 

the worst prognosis (64). LRRN1 is a direct transcriptional target of MYCN, and an enhancer of EGFR and IGRF signaling 218 

pathway (65). Higher levels of LRRN1 expression promote tumor cell proliferation, inhibiting cell apoptosis, and play 219 

an important role in preserving pluripotency-related proteins through AKT phosphorylation (65–67), leading to a poor 220 

clinical outcome in gastric and brain cancer.  221 

Notably, ERG was shown to be upregulated in our signature, which led us to perform a stratified analysis to 222 

avoid capturing signals driven mostly by ERG overexpression. Surprisingly, we were not able to detect significant 223 

differences by PTEN status in the HPFS and NH cohorts, which were quantified by gene expression microarrays, in the 224 

ERG-
 samples. Conversely, when analyzing the TCGA cohort, we were able to detect significant changes by PTEN status 225 
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in the ERG-
 samples (Supplementary Tables S3-S5). However, given the known limitations of gene expression 226 

microarrays performed on formalin fixed material, such as the limited dynamic range of expression values (68), we 227 

believe that the HPFS and NH datasets were limited by the technology employed. Nevertheless, concordance between 228 

the BHM- and TCGA- cohorts were similar in both the overall and the ERG+
 background comparison (Supplementary 229 

Figure S4). 230 

We observed in the TCGA cohort several lncRNAs that have already been associated with PCa progression were 231 

found in our signature. PCA3 acts by a variety of mechanisms such as down-regulation of the oncogene PRUNE2 and 232 

up-regulation of the PRKD3 gene by acting as a miRNA sponge for mir-1261 leading to increase proliferation and 233 

migration(37,38). Conversely, knockdown of PCA3 can lead to partial reversion of epithelial-mesenchymal transition 234 

(EMT) (39)
 
which can lead to increased cell invasion, motility, and survival (40).  Although KRTAP5-AS1 has not been 235 

associated with PCa, it has recently shown that KRTAP5-AS1 can act as a miRNA sponge for miRNAs, such as mir-596, 236 

which targets the oncogene CLDN4 which enhances the invasion capacity of cancer cells and promote EMT (40,43), 237 

thereby overexpression of KRTAP5-AS1 can lead increased levels of CLDN4 (44). Mir-596 has also been shown to be 238 

overexpressed in response to androgen signaling and associated with anti-androgen therapy resistance (44).  239 

Moreover, many lncRNAs exclusively annotated in the FANTOM-CAT were associated with PTEN-loss and were 240 

shown to be expressed mostly in PCa (Figure 3). Since these genes are novel genes without elucidated function, we 241 

analyzed potential roles for these genes by looking at coding genes located in the same loci. Among the top DE lncRNAs, 242 

genes within proximity to coding genes were CATG00000038715, CATG00000079217, and CATG00000117664 (Figure 243 

S6) which are positioned in the same loci as CYP4F2, FBXL7, and GPR158, respectively. CYP4F2 is involved in the process 244 

of inactivating and degrading leukotriene B4 (LTB4). LTB4 is a key gene in the inflammatory response that is produced 245 

in leukocytes in response to inflammatory mediators and can induce the adhesion and activation of leukocytes on the 246 

endothelium.(69). FBXL7 regulates mitotic arrest by degradation of AURKA, which is known to promote inflammatory 247 

response and activation of NF-κB (70,71). Likewise, increase expression of GPR158 is reported to stimulate cell 248 

proliferation in PCa cell lines, and it is linked to neuroendocrine differentiation (72). 249 

We consistently observed a strong enrichment in immune response genes and gene sets upon PTEN loss 250 

(Figure 4 and Supplementary Tables S6-S20). Immune-associated genes (i.e. GP2 and PLA2G2A) were found amongst 251 
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the top up-regulated genes in our signature (Figure 2). Positive enrichment of Interferon-alpha- and gamma-response 252 

genes (FDR ≤ 0.01) further suggests that a strong immuno-responsive environment, with both innate and adaptive 253 

systems activated, is developed in PTEN-null tumors (Figure 5). The positive enrichment of MHC class II antigen 254 

presentation, neutrophil degranulation, vesicle-mediated transport, and FC receptor pathway-related genes suggests 255 

that PTEN-null tumors may be immunogenic (Figure 4). This finding was particularly surprising given that PTEN is itself 256 

a key positive regulator of innate immune response, controlling the import of IRF3, which is responsible for IFN 257 

production. Accordingly, disruption of PTEN expression has previously been reported to lead to decreased innate 258 

immune response (73). Conversely, it has also been hypothesized that the increased genomic instability caused by, or 259 

associated with, PTEN loss can increase immunogenicity in the tumor micro-enviroment (TME) (74). This finding is of 260 

particular interest given that immune-responsive tumors can be good candidates for immunotherapy-based 261 

approaches. 262 

Remarkably, despite loss of PTEN being associated with higher expression of the immune checkpoint gene 263 

programmed death ligand-1 (PD-L1) in several cancer types (75,76) this is not true in PCa (77). So far, current 264 

immunotherapeutic interventions, such as PD-1 blockade, in PCa have not been successful. One of the possible reasons 265 

is the lack of PD-L1 expression (77). Therefore, alternative targets must be considered for immunotherapy in PCa. One 266 

alternative target is the checkpoint molecule B7-H3 (CD276), whose expression has already been associated with PCa 267 

progression and worse prognosis (78) and has been suggested as a target for immunotherapy (79,80). CD276 was one 268 

of the most concordant up-regulated genes in our signature (Figure 2) suggesting that its expression is associated with 269 

PTEN loss. Interestingly, B7-H3 expression may be down-regulated by androgens (81). 270 

The effects of androgen on the immune system has already been extensively studied and reviewed (56). 271 

Androgens are known to suppress inflammatory immune cells and to impair the development and function of B- and 272 

T-cells (57). We, therefore, hypothesized that the decreased levels of androgen in PTEN-null TME could lead to an 273 

unsuppressed immune system. By testing our signature for enrichment in androgen-related genes (AR) derived from 274 

Schaeffer et al. (29), we observed that upon PTEN-loss, androgen-sensitive genes that are typically suppressed by DHT 275 

are positively enriched, indicating that androgen levels or androgen response in PTEN-null tumors may be lower than 276 

in their PTEN-intact counterparts (Figure S8). This decrease in AR-signaling has been described in PTEN-null tumors, in 277 
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which activation of PI3K pathway inhibits AR activity. (82). Furthermore, AR inhibition activates AKT signaling by 278 

inhibiting AKT phosphatase levels further boosting cell proliferation (82), which has also been noted in this study 279 

(Figure 3). Finally, in the non-coding repertoire, both PCA3 and PCGEM1 are modulated by androgen (83,84) and were 280 

down-regulated upon PTEN loss which tracks with the observed decreased androgen response in PTEN-null tumors 281 

(Figure S6 and S8). 282 

  283 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.10.08.332049doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.332049
http://creativecommons.org/licenses/by-nc/4.0/


15/42 

 284 

Conclusion 285 
Altogether, we have generated a highly concordant gene signature for PTEN loss in PCa across three independent 286 

datasets. We show that this signature was highly enriched in proliferation and cell cycle genes, leading to a more 287 

aggressive phenotype upon PTEN loss, which is concordant with the literature. Moreover, we have shown that PTEN 288 

loss is associated with an increase in both innate and adaptive immune response. Although the literature shows that 289 

PTEN loss usually leads to immuno-suppression, we find evidence that this finding may be reversed in PCa. This 290 

observation has potential implications in the context of precision medicine since immune responsive tumors are more 291 

likely to respond to immunotherapies. Therefore, PTEN-null tumors might benefit more from this approach than PTEN-292 

intact tumors. Potentially, PTEN status can guide immunotherapy combination with other approaches such as 293 

androgen ablation. 294 

Finally, by leveraging the FC-R2 resource, we were able to highlight many lncRNAs that may be associated with 295 

PCa progression.  Although functional characterization these lncRNAs is beyond the scope of this study, we have shown 296 

that these novel lncRNAs are highly specific to PCa and track with several coding mRNAs and lncRNAs already reported 297 

to be involved in PCa development and progression, most notably, genes involved in immune response. By providing a 298 

PCa-specific signature for PTEN loss, as well as highlighting potential new players, we hope to empower further studies 299 

on the mechanisms leading to the development of PCa as well its more aggressive subtypes aiding in the future 300 

development of potential biomarkers, drug targets and guide therapies choice. 301 

  302 
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Figures and Tables 525 
Cohort PTEN-null PTEN-intact N 

TCGA 95 321 416 

HPFS 91 299 390 

Natural History 56 151 207 

Total 242 771 1,013 

 526 

Table 1. Cohorts summary Table shows cohorts summary for the 3 cohorts used in this study: TCGA (only primary tumor samples 527 

with high Gistic scores were used); Health Professional Follow-up Study (all); and Natural History cohort (samples with IHC call 528 

available). PTEN-null represents samples with PTEN deletion and PTEN-intact regular primary tumors. 529 
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 531 

 

PTEN-null vs PTEN-intact overall PTEN-null vs PTEN-intact in ERG+ PTEN-null vs PTEN-intact in ERG- 

Coding genes 257 (13) 226 (7) 185 (10) 

Non-coding genes 264 (134) 209 (117) 179 (82) 

Total 521 (137) 435 (124) 364 (92) 

 532 

Table 2. Summary of differentially expressed genes between PTEN-null and PTEN-intact with logFC ³ 1 and FDR £ 0.01 across 533 

different ERG backgrounds. Number in parenthesis shows the number of genes exclusive to the FANTOM-CAT annotations. 534 
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Figure 1. PTEN immunostaining in tissue microarray (TMA) spots from the Natural History Cohort.  Left panel: intact PTEN protein 536 

is present in all sampled tumor glands (brown chromogen).  Right panel: PTEN loss in all sampled tumor glands.  Images reduced 537 

from 40X.  538 
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 539 

Figure 2. Cross-study meta-analysis of differential gene expression. Genes in the same loci as PTEN such as RLN1 and ATAD1 540 

were found down-regulated. PTEN-null vs PTEN-intact meta-analysis of HPFS/PHS and NH cohorts with Bayesian Hierarchical 541 
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Model for DGE using XDE showing the top 25 most concordant differentially up- and down-regulated genes. PTEN status were 542 

based on IHC assays. 543 
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 545 

Figure 3. Expression profiles of novel FANTOM-CAT genes CATG00000038715, CATG00000079217 and CATG00000117664 across 546 

33 cancer types. Violin-plots shows expression (log2 CPM+1) distribution. 547 
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 549 

 550 

Figure 4. Top enriched gene sets enriched across PTEN-null and PTEN-intact in the TCGA and BHM cohorts stratified by ERG 551 

status and overall. Heatmap of mean-centered log2 signed p-values (normalized enriched score multiplied by log10 of p-value) 552 

showing the top 10 enriched gene sets of each collection (ranked by signed p-value). 553 
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 555 

 556 

Figure 5. Expression of immune-related genes stratified by PTEN status. Top 20 were selected based on the leading edge of the 557 

GSEA of the adaptive and innate immune system gene sets from REACTOME. Significances based on t-test between PTEN-null and 558 

PTEN-intact using log2 CPM+1 values. Significance cutoffs: *=£ 0.05; **£0.01; *** £ 0.001; ****£0.0001. 559 
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Supplementary Figures and Tables 561 

 562 

 563 
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Figure S1. Cross-study of differential gene expression in PTEN-null vs PTEN-intact in ERG+ samples. Meta-analysis of HPFS/PHS 564 

and NH cohorts with Bayesian Hierarchical Model for DGE using XDE showing the top 25 most concordant differentially up- and 565 

down-regulated genes. PTEN status were based on IHC assays. 566 
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 568 

Figure S3. PTEN expression levels stratified by CNV. Figure shows PTEN expression levels distribution by copy number variation 569 

(CNV), called by GISTIC algorithm. 570 
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 572 

Figure S4. Correspondence-at-the-top (CAT) plot between TCGA CNV-based calls and the Bayesian Hierarchical Model approach 573 

(BHM). Agreement of genes ranked by t-statistics (TCGA) and average Bayesian Effect Size (BHM). Lines represent agreement 574 

between tested cohorts for PTEN-intact vs PTEN-null. Black-to-light grey shades represent the decreasing probability of agreeing 575 

by chance based on the hypergeometric distribution, with intervals ranging from 0.999999 (light grey) to 0.95 (dark grey). Lines 576 

outside this range represent agreement in different cohorts with a higher agreement than expected by chance. 577 
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 579 

Figure S5. Expression of AC009478.1 is shown to be highly specific to PRAD, BLCA, to a lesser extent in UECA and BRCA. Figure 580 

shows raw expression values of SchLAP1 and AC009478.1 across cancer types. Pearson correlations and p-values are shown in 581 

red. 582 
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 584 

Figure S6. Expression of FANTOM-CAT lncRNAs genes (top) and close coding genes (bottom) stratified by PTEN status. Significances 585 

based on t-test between PTEN-null and PTEN-intact using log2 CPM+1 value. Significance cutoffs: *=£ 0.05; **£0.01; *** £ 0.001; 586 

****£0.0001. 587 

 588 
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 590 

Figure S7. Person correlation gene CATG00000038715 and CYP4F2 across cancer types. CATG00000038715 and CYP4F2 591 

expression are shown to be highly correlated in PCa. Moreover, CATG00000038715 expression is shown to be highly specific to 592 

PCa. With exception of leukemia cells, none of the other tumors expressed high levels of CATG00000038715. 593 
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 595 

Figure S8. Gene set enrichment for Androgen repressed genes. Gene set enrichment analysis of gene signature showing positive 596 

enrichment of genes repressed by dihydrotestosterone after 6 hours of exposure obtained from Schaeffer et al.48. Enrichment for 597 

BHM-signature is shown in panel A and TCGA-signature in panel B. 598 
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