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Abstract 

Submerged aquatic vegetation (SAV) growing in estuarine and coastal 
marine systems provides crucial ecosystem functions ranging from 
sediment stabilization to habitat and food for specific species. SAV 
systems, however, are sensitive to a number of environmental factors, both 
anthropogenic and natural. The most common limiting factors are light 
limitation, water quality, and salinity, as reported widely across the 
literature. These factors are controlled by a number of complex processes, 
however, varying greatly between systems and SAV populations. This 
report seeks to conduct an exhaustive examination of factors influencing 
estuarine and coastal marine SAV habitats and find the common threads 
that tie these ecosystems together. Studies relating SAV habitats in the 
United States to a variety of factors are reviewed here, including 
geomorphological and bathymetric characteristics, sediment dynamics, 
sedimentological characteristics, and water quality, as well as hydrologic 
regime and weather. Tools and methods used to assess each of these 
important factors are also reviewed. A better understanding of 
fundamental environmental factors that control SAV growth will provide 
crucial information for coastal restoration and engineering project 
planning in areas populated by SAVs. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Background 

Submerged aquatic vegetation (SAV) in coastal systems provides a variety 
of critical ecosystem functions, including carbon sequestration, sediment 
stabilization, wave energy reduction, water-quality improvement, and 
habitat creation for diverse communities and important species across the 
nation. A number of factors are placing coastal SAV ecosystems at risk 
globally, including sediment starvation, subsidence, and water-quality 
issues, (Kirwan and Megonigal 2013; Orth et al. 2006). Many of these 
factors are also influenced by human activities. Improving the condition of 
these degraded coastal systems often requires targeted restoration efforts; 
however, these efforts often lack sufficient information or key data for 
effective project planning. The success of these restoration efforts hinges 
on creating a sustainable physical environment suitable for the growth of 
the targeted species as well as ecosystem development. This targeting may 
involve placement of soil or sediment substrate to raise the surface 
elevation or improve soil conditions to support desired habitat. 

One type of SAV, seagrass, dominates in coastal and estuarine systems and 
is of particular ecological importance, providing food and critical habitat 
for numerous species. Seagrasses inhabit three defined bioregions in 
North America, the Temperate North Atlantic (in estuaries and lagoons), 
the Tropical Atlantic (in back reefs and on shallow banks) (Figure 1a), and 
the Temperate North Pacific (in estuaries, lagoons, and the coastal surf 
zone) (Figure 1c; Short et al. 2007). Seagrass is currently in decline 
globally owing to the aforementioned factors influencing its habitat 
(Eleuterius 1987; Kirwan and Megonial 2013; Orth et al. 2006). 
Identifying the specific conditions to promote seagrass and other coastal 
SAV recovery and growth is mentioned as one of the “important yet 
essentially unanswered questions” globally in the US Geological Survey’s 
(USGS) report Seagrass Status and Trends in the Mississippi Sound from 
1940–2002 (Moncreiff 2007, 79). 
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Figure 1. Bioregion where seagrass submerged aquatic vegetation (SAV) occurs in North 
America. SAV’s location on the globe is shown in the top-right inset. Important physical 

characteristics of each respective biozone are outlined along with seagrass species that occur 
there (depths represent maximum reported depth, figure modified from Short et al. 2007, 8). 

 

The important factors for SAV survival are more thoroughly studied and 
understood in estuarine and other well-protected environments. These 
environments are typically characterized by shallow bathymetry, fine-
grained substrate, and relatively low-energy conditions, where wave 
exposure and light are identified as primary limiting factors for SAV 
growth (Boer 2007; Koch 2001; Livingston, Mcglynn and Niu 1998). Along 
sandy barrier islands, SAV habitat has been related to the barrier island’s 
stability and size, but there is a need to better study and quantify the 
conditions that promote SAV recovery and growth here (Carter et al. 2011; 
Eleuterius 1987; Pham, Biber and Carter 2014). SAV in these 
environments face dynamic conditions and additional threats not 
experienced in other SAV systems, like rapid burial and erosion as well as 
high-energy wave events (Pham, Biber and Carter 2014). 
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Most studies use a method of SAV mapping to understand environmental 
factors important for this habitat. SAV growth is mapped in coastal and 
estuarine waters using field and remote-sensing methodologies. Hyper-
spectral, multispectral, and RGB (red, green, and blue) aerial imagery can 
show locations of potential SAV beds, which can then be ground truthed to 
verify presence or absence and species (Carter et al. 2011; Reif et al. 2011). 
Understanding the spatial pattern of SAV growth and how it changes over 
time can provide valuable information about habitat requirements (Carter 
et al. 2011). Studies outlining findings relating the physical environment to 
SAV growth and the methods used to draw these conclusions are outlined 
in this report. Knowledge of these important habitat-controlling factors 
can be applied to develop suitability or similar predictive models 
(DeMarco et al. 2018). Such models can be applied to consider SAV 
impacts when designing restoration or other coastal projects. 

Objective 

This work seeks to investigate and establish correlations between SAV 
living in the coastal zone, including shallow marine and estuarine 
environments, and a variety of factors in its environments. The ultimate 
focus of this work is on geomorphological features and substrate 
characteristics, from which guidance can be developed for the selection of 
appropriate substrate material and conditions to support a variety of 
coastal SAV growth. This guidance will enable 

• rapid assessment to determine whether available source material is 
appropriate for a given restoration 

• identification of appropriate locations for restoration efforts and site 
conditions that must exist or be created for restoration success 

• identification of potential issues at sites where restoration has not been 
successful or where an ongoing restoration effort requires adaptive 
management to increase its likelihood of success 

• improvement of the efficiency and success of coastal vegetation 
restoration efforts, which will aid planners and managers during the 
planning stage. 

This literature review synthesizes available information on multiple 
parameters that are critical for coastal SAV growth. The review also 
outlines site conditions documented in the literature leading to varying 
levels of success for coastal SAV growth and establishment. This effort 
investigated and compiled established correlations between the different 
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geomorphological parameters, sediment characteristics, and coastal 
vegetation growth. This report, therefore, establishes the current state of 
knowledge and identifies gaps needing future field efforts. 

Approach 

A literature search was conducted to synthesize available information on 
multiple parameters for coastal and marine SAV growth. The parameters 
considered in the literature search included geomorphological conditions, 
topography and bathymetry, hydrological regime, sedimentology, physical 
processes, and water quality. For each of these parameters, the following 
aspects were investigated: vegetation characteristics and requirements, 
sediment characteristics and requirements, factors affecting vegetation 
growth, and tools and methods typically used for assessment. Finally, 
published relationships and correlations are either described or compiled 
into a table. 
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2 Geomorphology and Bathymetry 

Submerged aquatic vegetation (SAV) habitat characteristics and 
requirements 

Geomorphological and bathymetric characteristics of a coastal 
environment can heavily influence whether it is a suitable habitat for SAV. 
Coastal and estuarine SAV species primarily occur in relatively shallow 
water environments where they have sufficient light and protection from 
waves (with the exception of Phyllospadix spp. along the rocky Pacific 
coast) (Eleuterius 1987; Short et al. 2007; Yates, Morrison and Greening 
2011). In North America, these requirements place coastal SAV in bays, 
estuaries, behind barrier islands, or in most other protected, shallow, 
coastal environments (Short et al. 2007). 

According to the literature reviewed, coastal geomorphological and 
bathymetric environments suitable for SAV growth are broken down into 
five general groups (Table 1a–c). These groups include back barrier 
platforms and shoals, bays and lagoons, estuaries, areas adjacent to rocky 
islands, and the swash zone. Many of these environments overlap with each 
other. Many bays can also be classified as estuaries (Mobile Bay, Alabama, 
and the Columbia River Estuary are two examples). Bays are grouped with 
sounds here, so this environment includes bodies of water that have a 
greater marine contribution to water and morphology than estuaries. 
Barrier islands frequently serve as the landform separating sounds and 
lagoons from the marine environment, so the back barrier could be 
considered either part of the bay or the lagoon behind it. In New England 
and along the West Coast, rocky islands frequently occur within estuaries 
and bays. Table 1 provides species and habitat characteristics for SAV in 
major US examples of these environments as well as references for each. 

Back-barrier platforms and shoals: These landforms typically exist 
along coastlines with ample sand supply, where wave and other nearshore 
processes maintain subaerially exposed sandy barrier islands along with 
associated subaqueous platforms and shoals. These features frequently 
provide protection from waves to a back-barrier lagoon area, where 
marshes and SAV are often found. 

Larger barrier islands provide more protection from wave and current 
energies such that the area behind the island is more conducive for 
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seagrass growth and survival (Fonseca 1996; Fonseca and Bell 1998; Koch 
2001; Koch et al. 2006b; Fonseca, Koehl and Kopp 2007). Thus, the 
overall size of a barrier island plays a huge factor in the establishment and 
long-term survival of seagrasses. 

Barrier islands provide the primary protection for coastal seagrass beds 
along the Mississippi-Alabama coastlines—for example, whether these 
beds exist in estuaries or directly around the islands (Moncreiff 2007). The 
geomorphology of barrier islands can change slowly or rapidly, affecting 
seagrass distribution (Short et al. 2007). In the past few decades, as the 
Petit Bois barrier island (Mississippi) decreased in size by 40%, the 
seagrass beds behind the island also decreased significantly (Carter et al. 
2011). Examples listed in the table include the Mississippi-Alabama 
Barrier Islands, Louisiana Chandeleur Barrier Islands, and North Carolina 
Barrier Islands. 

Bays and lagoons: This grouping also includes sounds. These are all 
semienclosed, large bodies of water with significant marine influence. 
Bays, lagoons, and sounds are similar environments, characterized for the 
purposes of this report as a body of relatively open water protected from 
waves by barrier islands, spits, or other landforms. 

The morphology of these water bodies varies widely, with some shallow 
enough or with water clear enough to support SAV throughout, while 
others only maintain fringing SAV. SAV typically only occurs along 
mainland shorelines in the Mississippi Sound, for example where wave 
energy is minimized and the depth is shallow enough for sufficient light 
penetration. In the Puget Sound, on the other hand, the water is clear 
enough to allow SAV growth at greater depths within the sound. Examples 
listed in the table include Long Island Sound of New York, Connecticut, 
and Rhode Island; Mississippi Sound of Mississippi and Alabama; Pamlico 
Sound, North Carolina; and Puget Sound, Washington. 

Estuaries: Estuaries are characterized by the meeting of a freshwater 
source (river) and the marine environment, often supporting fringing 
marshes and tidal creeks, especially in coastal zones with a low gradient 
and a significant tidal range (trailing-edge, for example, US Gulf Coast and 
East Coast). Estuaries can have qualities like bays and lagoons and often 
fall into both categories, but they are generally better protected from 
coastal waves. Estuaries typically support finer-grained and organic-rich 
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bottom substrates, often contributing to an increase in suspended matter 
(sediment and organic) and subsequently turbidity. 

Higher levels of turbidity can reduce the habitable depth for seagrasses 
because of reduced light penetration. Turbidity and other impacts on light 
availability are discussed in section 4 of this report. SAV typically exists in 
estuaries in the intertidal or subtidal zones along fringing marshes and 
within tidal creeks and tributaries. Major examples of estuaries shown in 
the table include Mobile Bay, Alabama; the Chesapeake Bay of Delaware, 
Maryland, and Virginia; and Yaquina Bay, Oregon. 

Adjacent to rocky islands: Rocky islands occur along leading-edge 
(tectonically active) or glacially influenced coastlines. In the United States, 
these coastline types are found along the West Coast and in New England, 
respectively. Rocky islands may be present within some of the larger 
coastal systems mentioned above, like bays and estuaries. 

SAV occurs typically in shallow areas on a protected side of rocky islands 
or around rocky islands within an estuary. The enclosing water body may 
be sheltered from waves, allowing the island to add extra protection for 
SAV habitats. Rocky coastal zones tend to have coarser-grained sediments 
and often clearer water. A trend in increased depth of SAV habitat is clear 
in these environments (Table 1). Examples of rocky-island SAV habitats 
listed in the table include Naragansett Bay, Rhode Island, and the Puget 
Sound, Washington. 

Swash zone: The swash zone is the area along the coast where waves 
crash and the energy is the highest. The majority of SAV cannot tolerate 
these conditions. 

Plants in the genus Phyllospadix provide the only exception to the typical 
low-energy, soft-bottom environmental requirements for SAV. These 
seagrasses attach to rocks in rocky intertidal and subtidal swash zones 
along the West Coast and can withstand higher and more constant wave 
energy (Wyllie-Echeverria and Ackerman 2003). 

Factors affecting SAV growth 

Geomorphology and bathymetry influence SAV habitat primarily in that 
they control and are controlled by other important environmental 
parameters like light availability, erosion and deposition, water quality, 
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currents, and temperature. The primary limiting factors for SAV in the 
coastal zone are water quality, light availability, and physical exposure 
(energy) (Beck, Lruczynski and Sheridan 2007). 

A significant body of work addresses how these factors correlate with SAV 
growth (see Carter, Rybicki and Landwehr 2000; Duarte et al. 2007; Heck 
et al. 2000). Information on most of these specific parameters are provided 
in their respective sections of this report. In this section, the specific 
geomorphological and bathymetric characteristics of the environments 
where SAVs are observed will be discussed. Geomorphology and 
bathymetry are interrelated, as SAV-suitable depth ranges will vary 
according to geomorphologically controlled factors such as wave exposure, 
grain size, and turbidity, and bathymetric features could also be considered 
part of geomorphology. These factors not only affect where SAVs grow 
regionally but also their local and patch-scale distributions (Thayer, 
Kenworthy and Fonseca 1984). For example, seagrass SAV tends to grow on 
elevated sections of the sea bottom, 5–45 cm above the average surrounding 
bathymetry (Eleuterius 1987). In the case of small-scale variations, it may 
be hard to distinguish whether the original bathymetry controls the growth 
of SAV or the SAV is influencing the bathymetry by sequestering sediment. 
In the case of restorations, experiments have shown that varying the 
geomorphological characteristics of a seagrass planting site can lead to 
different rates of growth and levels of establishment success across a variety 
of environments deemed suitable for that species (Thayer, Kenworthy and 
Fonseca 1984). 

Among all of the environments categorized in the previous section, 
excluding the rocky nearshore swash zone (Phyllospadix spp. only), the 
geomorphology and bathymetry of each setting meets basic environmental 
requirements, making them conducive to coastal SAV growth. These basic 
requirements are outlined in the following sections, each focusing on a 
specific important element for SAV growth. 

Relatively shallow water: The water-depth limitation for SAV growth 
is primarily a light-limitation issue, of which some species are more 
tolerant. Suspended matter (sediment and organics) in the water column 
as a primary control on depth range is clear when SAV bed depths in 
relatively low- and high-turbidity areas are compared (see the Mississippi 
Sound versus the Florida Keys in Table 1). Water depth may change in 
some areas because of subsidence or tectonic shifts, affecting SAV 
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habitability. For example, seagrass SAV died in areas deepening because of 
subsidence caused by oil, gas, and water extraction along coastal Texas 
(Pulich and Onuf 2007). 

Protection from waves and currents: SAV generally grows in sheltered 
areas like coastal lagoons, bays, and estuaries, because they are sheltered 
from energetic waves and often exist landward of barrier islands or coral 
reefs (Fonseca 1996; Koch et al. 2006a; Short et al. 2007; Pilkey, Cooper 
and Lewis 2009). These types of sheltered environments provide protection 
against the current, wave, and wind energies that cause sediment 
resuspension and consequently increase turbidity and deposition (Koch 
2001). 

Exposure of SAV to current and wave energy depends largely on the local 
geomorphology and can affect plant establishment and growth. Too much 
energy can prevent SAV from establishing altogether (Robins and Bell 
2000). 

Most SAV requires some sort of protection from coastal waves, but 
different species require varying levels of protection. Halodule wrightii, 
for example, is the only species observed to populate the semiexposed 
north shore of back bay Matagorda Bay, while other species of SAV only 
inhabit sections of the bay with very limited fetch relative to the dominant 
wind direction (Adair, Moore, and Onuf 1994). Only the Phyllospadix 
species are able to tolerate significant waves on a regular basis (Wyllie-
Echeverria and Ackerman 2003). 

Storms events can damage SAV beds, but studies show that, when growing 
in a typically suitable environment, seagrasses have evolved to handle the 
acute damage from large storms (Michot et al. 2002; Heck and Byron 
2006; Carter et al. 2011). For example, in 1969, Hurricane Camille 
destroyed hundreds of hectares of seagrass beds in Mississippi and 
Chandeleur Sounds. The barrier islands protecting Chandeleur Sound 
remained intact, while Ship Island was cut in two and a new inlet formed. 
The seagrass beds in still-protected Chandeleur Sound recovered more 
quickly than those behind the split Ship Island (Eleuterius 1987). 

The chronic increase in current and wave energy because of increased 
exposure may contribute to SAV losses. For example, the growth of 
Camille Cut (the new Ship Island inlet) may have been a factor in the 
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reduction of seagrass areas behind Ship Island in the Mississippi Sound 
(USACE 2014a, 2014b). In addition, following Hurricane Camille, seagrass 
species diversity behind Ship Island decreased. 

Slow and limited deposition and erosion: Established SAV beds can 
tolerate deposition and erosion that occurs at an average rate slow enough 
for the SAV to adjust to over time, but SAV can be buried and killed by 
sedimentation caused by shifting coastal geomorphology or rapid 
deposition caused by storm events (Short and Neckles 1999; Short et al. 
2007). SAV along the back-barrier platform of Ship Island, Mississippi, 
has been observed to tolerate ~5 cm/yr of sand deposition, but SAV was 
unable to establish in zones of frequent overwash that experience higher 
average depositional rates (Eisemann et al. 2019). SAV slowly repopulates 
with different species along the Chandeleur Islands, Louisiana, changing 
SAV community dynamics and potentially reducing diversity (Franze 
2002; Poirrier and Handley 2007). 

Shifting of sand is a primary factor influencing the size, shape, and 
distribution of seagrass beds in Mississippi Sound (Eleuterius 1987). In 
Mississippi Sound, most beds form meadows parallel to and between sand 
bars that run perpendicular to the island shoreline. The increased 
elevation around the seagrass beds is due to deposition of sediment caused 
by seagrass stems and leaves (Koch et al. 2006b). 

Tools for assessment 

Assessing how geomorphological and bathymetric characteristics are 
related to SAV growth can be done in a number of ways. One way is to note 
the general environment while conducting a study (for example, enclosed 
estuary versus barrier island). SAV mapping can be conducted by using 
aerial imagery where patches are visible through the water column. 
Imagery types useful for this application include hyperspectral, 
multispectral, natural color, and black and white (Carter et al. 2011; Reif et 
al. 2011). Field surveys and ground truthing can provide verification for 
aerial imagery results or provide another method for mapping SAV. SAV 
location and characteristics can then be compared with geomorphological 
and bathymetric data to assess their relationship to these factors. 

To rigorously quantify bathymetry and topography, and subsequently 
geomorphological characteristics, aerial LiDAR from planes or drones can 
be employed. LiDAR elevations can reveal static characteristics like the 



ERDC/EL SR-21-6 11 

 

location and elevation of islands and shoals as well as how these features 
change (Anderson, Carter, and Funderburk 2016; Eisemann et al. 2018b). 
This type of information, coupled with information about local SAV 
growth, can reveal how these factors are related (Eisemann et al. 2019). 
Advancements in LiDAR technology allow bathymetry measurements up 
to ~10 m1 deep in some coastal environments, depending on water clarity 
(Mitchell, Thayer and Hayman 2010). Water depth is also frequently 
measured using transducer sonar units mounted on boats. Sonar can map 
bathymetry in areas too deep for LiDAR to penetrate. Coastal 
geomorphological changes can also be observed using repeated aerial 
photography and shoreline locations over time (Carter et al. 2011). 

Published relationships 

Various species of SAV grow in every coastal region of the United States, 
and numerous studies record the presence of SAV species in a wide range of 
coastal systems, as described in the previous sections. A thorough, but 
surely nonexhaustive, list of published studies documenting SAV present in 
coastal regions around the United States and associated geomorphological 
and bathymetric characteristics of those habitats follows (Table 1a–c). 

 

 

1. For a full list of the spelled-out forms of the units of measure used in this document, please refer 
to US Government Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing 
Office, 2016), 248–52, https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-
STYLEMANUAL-2016.pdf. 
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Table 1a. Growth environments and characteristics for a variety of SAV species occurring along the Tropical North Atlantic coast of the United States (see 
Figure 1). This region includes the Gulf of Mexico coastline and the Atlantic coast of Florida. Some reports did not provide water depths, and some only 

provided information relative to tidal levels. The available data are presented here, and when information was not available, the cell contains a dash (—). 

Region or environment Plant species Geomorphological and 
bathymetric characteristics Water depth Reference 

Galveston Bay, TX 
shoal grass (Halodule wrightii) 

star grass (Halophila engelmannii) 
turtle grass (Thalassia testudinum) 

Back-barrier bay 
back-barrier platforms 
estuaries 

-— Pulich and Onuf (2007)* 

Laguna Madre, TX 
manatee grass (Syringodium 

filiforme) 
turtle grass (T. testudinum) 

shoal grass (Halodule wrightii) 

Back-barrier bay 
back-barrier platforms 
estuaries 

-— Pulich and Onuf (2007)* 

Galveston and  
Matagorda Bays, TX 

star grass (Halophila engelmannii) 
turtle grass (T. testudinum) 

water celery (Vallisneria americana 
Back-barrier platforms Subtidal Adair et al. (1994) 

Galveston and  
Matagorda Bays, TX 

shoal grass (Halodule wrightii) 
wigeon grass (Ruppia maritima) 

waternymph (Najas guadalupensis) 

Back-barrier platforms, occasionally 
along northern bay shoreline 

Lower intertidal 
and  

upper subtidal 
Adair et al. (1994) 

Matagorda Bay, TX shoal grass (Halodule wrightii Northern bay shoreline -— Adair et al. (1994) 

Chandeleur Sound, LA 

turtle grass (T. testudinum) 
manatee grass (S. filiforme) 

shoal grass (Halodule wrigthii) 
star grass (Halophila engelmani)i 

wigeon grass (R. maritima) 

Shallow back-barrier platforms and 
shoals -— Poirrier and Handley (2007)* 

Chandeleur Sound, LA wigeon grass (R. maritima) 
shoal grass (Halodule wrightii) 

shoreline marshes (R. maritima) 
washover fans (both) -— Franze (2002) 

Mississippi Sound,  
MS and AL shoal grass (Halodule wrightii) Back barrier platforms 2 m and less,  

1.3 m and less 
Moncreiff et al. (1998)* 
Carter et al. (2011) 

Mississippi Sound, AL wigeon grass (R. maritima) bay and river mouths (low salinity 
areas) -— Stout and Lelong (1981)* 

Perdido Bay, AL shoal grass (Halodule wrightii) 
turtle grass (minor, T. testudinum) Back-barrier platforms -— Stout and Lelong (1981)* 

Lelong (1988)* 

Mobile Bay, AL water celery (V. americana) 
wigeon grass (R. maritima) Estuaries (mostly fresh to brackish) -— Stout and Lelong (1981)* 

Southwest FL Shelf  
and Big Bend Coast Paddle grass (Halophilia decipiens) Continental shelf 9–30+ m Continental Shelf Associates Inc. 

(1989)* 
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Region or environment Plant species Geomorphological and 
bathymetric characteristics Water depth Reference 

Florida Keys star grass (Halophilia engelmanni Bays 
continental shelf Up to 20 m  Iverson and Bittaker (1986) 

Big Bend Coast, FL shoal grass (Halodule wrightii) Shallow nearshore shoals exposed 
during low tide 

Between high 
tide and lower 

low tide 
elevation 

Iverson and Bittaker (1986) 

Big Bend Coast, FL 
turtle grass (T. testudinum) 

manatee grass (S. filiforme) 
shoal grass (Halodule wrightii) 

Shallow areas not exposed during low 
tide 

Deeper than 
low low tide 

elevation 
Iverson and Bittaker (1986)** 

Florida Estuaries general Estuaries ~1 m Carlson and Madley (2007)* 

Big Bend Coast, FL wigeon grass (R. maritima) River mouths (low salinity areas) -— Iverson and Bittaker (1986) 

Big Bend Coast, FL manatee grass (S. filiforme)  Up to 6–8 m Iverson and Bittaker (1986) 

Florida Keys manatee grass (S. filiforme) Bays 
continental shelf Up to 8–10 m Iverson and Bittaker (1986) 

Atlantic Florida Coast shoal grass (Halodule wrightii) Shallow nearshore areas, intertidal -— Thayer et al. (1984) 

* Information or source derived from Seagrass Status and Trends in The Northern Gulf of Mexico: 1940–2002 (Handley et al. 2007). 
** These beds grew alongside sponges, and macroalgae, sponges, gorgonians, corals, and bryozoans colonized the outer edges of beds (Iverson and Bittaker 1986). 
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Table 1b. Growth environments and characteristics for a variety of SAV species occurring along the Temperate North Atlantic coast of the United States 
(see Figure 1). Some reports did not provide water depths, and some only provided information relative to tidal levels. The available data are presented 

here, and when information was not available, the cell contains a dash (—). 

Region or environment Plant species Geomorphological and 
bathymetric characteristics Water depth Reference 

Central New England  
(Waquoit Bay, Narragansett 

Bay) 
eelgrass (Zostera marina) 

Adjacent to rocky islands, within 
embayments and coves, along edges 
of salt-marsh ponds 

Typically 1–2 m water depth, 
Range: +2 to −12 m relative 

to mean sea level (within tidal 
range) 

Short et al. (1993) 
Moore and Short (2006) 

Central New England  
(Great Bay) 

wigeon grass (Ruppia 
maritima) 

Deep salt-marsh pans and estuary 
drainage channels Up to 4 m Short et al. (1993) 

Pamlico Sound  
and Back Sound, NC 

eelgrass (Z. marina) 
shoal grass (Halodule wrightii)  

wigeon grass (R. maritima) 

Marsh embayments, adjacent to 
shoals and islands in the sound Up to 1.2 m Short et al. (1993) 

Thayer et al. (1984) 

Chesapeake Bay seagrass (Zostera sp.) Fringing edges of marshy lower 
estuary <2 m Moore et al. (2000) 

Chesapeake Bay seagrass (Ruppia sp.) 
Fringing edges of marshy upper and 
central estuary, lower estuary 
tributaries 

<2 m Moore et al. (2000) 

Chesapeake Bay pondweed (Potamogeton sp.) Fringing edges of marshy upper 
estuary and estuary tributaries <2 m Moore et al. (2000) 

Chesapeake Bay freshwater SAV Far upper estuary and estuary 
tributaries <2 m Moore et al. (2000) 

Long Island Sound eelgrass (Z. marina) 
wigeon grass (R. maritima) 

General—Long Island Sound -— Holst et al. (2003) 

Long Island Sound eelgrass (Z. marina) 

Tidal creeks, harbors, small bays, 
protected areas all along Long Island 
Sound coast (historical) 
Similar environments, primarily only 
east of the Connecticut River 
(modern) 

0.5–3.5 m mean low water Holst et al. (2003) 
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Table 1c. Growth environments and characteristics for a variety of SAV species occurring along the Temperate North Pacific coast of the US (see Figure 1). 
Some reports did not provide water depths, and some only provided information relative to tidal levels. The available data is presented here, and when 

information was not available the cell contains a dash (-). 

Region or environment Plant species Geomorphological and 
bathymetric characteristics Water depth Reference 

US Pacific Coast seagrass (Phyllospadix 
sp.) 

Exposed, rocky coastlines 
(attaches to rocks) Subtidal and intertidal Short et al. (2007) 

Wyllie-Echeverria and Ackerman (2003) 

US Pacific North West seagrass (Zostera sp.) estuaries and bays, soft-
bottom, intertidal and subtidal  Subtidal and intertidal Wyllie-Echeverria and Ackerman (2003) 

AK Coast, south of arctic circle 
(largest population: Izembek 

Lagoon, AK) 
eelgrass (Z. marina) 

Coastal lagoons and bays, 
found under sea ice 
sometimes 

~1.3 m water depth 
McRoy, 1969 
Short et al. (2007) 
Wyllie-Echeverria and Ackermann (2003) 

Puget Sound, WA eelgrass (Z. marina) 

Adjacent to rocky islands, 
within embayments, offshore 
of pocket beaches, all within 
sound 

Intertidal and shallow 
sub-tidal, +1 to −8.8 m 

mean low low water 

Dowty et al. (2005) 
Berry et al. (2003) 

Yaquina Bay, OR eelgrass (Z. marina) 
Estuaries and enclosed bays 0 to +2.3 m  

(mean low low water to 
high tide mark) 

Shafer et al. (2016) 

WA, OR, CA dwarf eelgrass  
(Z. Japonica, introduced) 

Estuaries and enclosed bays 0 to +2.3 m mean low 
low water 

Short et al. (2007) 
Shafer et al. (2016) 

US Pacific Coast Continental 
Shelf eelgrass (Z. marina) Shallow continental shelf 

waters -— Wyllie-Echeverria and Ackerman (2003) 

Areas with coverage smaller than 
5 km2: Netarts Bay, OR; Yaquina 
Bay, OR; Tillamook Bay, OR; Coos 

Bay, OR; Tomales Bay, CA; San 
Francisco Bay, CA; San Diego 

Bay, CA 

eelgrass (Z. marina) 
dwarf eelgrass  

(Z. Japonica, introduced) 

Bays and estuaries 

-— Wyllie-Echeverria and Ackerman (2003) 

Grays Harbor, WA eelgrass (Z. marina) Bays and estuaries -— Philips (1984) 

Willapa Bay, WA 
eelgrass (Z. marina) 

dwarf eelgrass  
(Z. Japonica, introduced) 

Bays and estuaries 
— Wyllie-Echeverria and Ackerman (2003) 

Humboldt Bay, CA eelgrass (Z. marina) Bays and estuaries -— Harding et al. (1975) 
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3 Physical Processes (Sediment Dynamics) 

SAV habitat characteristics and requirements 

SAV growth can considerably influence physical processes such as water 
movement and sediment dynamics in estuarine and marine environments, 
and, conversely, these dynamics can impact SAV habitat when severe 
enough (Visser et al. 2015). Madsen et al. (2001) suggest that meadow-
forming SAV species (such as Zostera, Halodule, Thalassia, and 
Vallisneria) have a significantly different effect on currents and sediment 
movement than canopy-forming SAV species (such as Hydrilla, 
Myriophyllum). A higher proportion of biomass is distributed near the 
water-sediment interface in SAV meadows. Meadow-forming SAV is 
therefore effective at sediment stabilization (Abdelrhman 2003). 
Alternatively, the biomass of canopy-forming SAV is greatest near the 
water surface and least at the sediment-water interface, thus allowing 
more sediment resuspension. Nonetheless, both types of SAV can play an 
important role in reducing wind-generated sediment resuspension by 
dampening wave activity and redirecting currents (James, Barko and 
Butler 2004). To date, limited data are available that quantitatively 
determine SAV tolerance to various physical processes. The primary 
physical processes affecting SAV growth include sediment erosion, 
resuspension, deposition, and subsidence (Madsen et al. 2001). 

Factors affecting growth 

Sediment erosion and resuspension 

Erosion in estuarine and marine environments generally occurs via waves, 
severe storms, and anthropogenic activities that disturb sediments 
(Leonardi et al. 2016; Xue et al. 2009). Despite the ability of SAV to reduce 
sediment erosion, a decrease in SAV bed elevation may be observed 
depending on the extent to which sediment is eroded. In some 
circumstances, large swaths of SAV can be removed during severe erosion 
events, but plants are typically able to quickly repopulate the area if it 
remains habitable (Carter et al. 2011). New dredging activities typically 
avoid SAV growth areas, but the original establishment of channels often 
cut through SAV habitat, permanently reducing habitable area (Carlson 
and Madley 2007; Pulich and Onuf 2007). Frequent boat traffic can also 
cause SAV habitat loss via propeller scarring and fishing and crabbing 
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activities that involve dragging gear (Holst et al. 2003; Carlson and 
Madley, 2007).  

Natural erosion patterns typically observed in estuarine and protected 
marine environments do not adversely affect SAV growth and distribution 
(Madsen et al. 2001). Some research suggests that a certain amount of 
local erosion is important for healthy SAV growth, as buried detritus may 
be removed and resuspended into the water column to maintain carbon-
nitrogen balance in sediment (Dauby et al. 1995). Conversely, nutrients 
also enter the water column via resuspension. Cowan, Pennock, and 
Boynton (1996) reported that the sediment-water exchange of nutrients 
can provide up to 80% of phosphorus and nitrogen required by 
phytoplankton. The resulting growth of phytoplankton increases light 
attenuation along with the suspended particles. Some reports have 
attributed SAV dieback to increased turbidity during sediment 
resuspension events (Chesapeake Bay Program 2012; Orth et al. 2004). 
Turbidity caused by sediment erosion has been reported to be temporary 
depending on the settling velocity of the particles, and it will often pass 
before causing lasting effects (Madsen et al. 2001). 

Sediment deposition 

Sediment deposition has been shown to have very little effect on SAV 
under normal, fair-weather conditions (Madsen et al. 2001). Severe storm 
events can quickly deposit large volumes of sediment, bury SAV, or cover 
photosynthetically active portions of the plants with settled particles 
(James, Barko and Butler 2004). Erosion of materials from land and 
redeposition into the shallow-water zone can smother SAV beds (Beck, 
Lrucznski, and Sheridan 2007). An example of this includes wash-over 
deposits, which are devoid of SAV behind some barrier island systems 
(Eisemann 2016). Sediment accumulation accommodation capacity in 
SAV beds can be somewhat determined by plant morphology: tall, canopy-
forming SAV is not as susceptible to sediment burial as meadow-forming 
SAV (Koch 2001; Potouroglou et al. 2017). In either case, slow sediment 
deposition can increase elevation of SAV beds over time. Higher SAV bed 
elevation may cause a shift in plant distribution, where deeper areas 
become colonized and diebacks may be observed in shallower, intertidal 
areas as SAV becomes exposed during low tide. As observed with sediment 
erosion, sediment deposition is generally part of a natural cycle in which 
increases in SAV bed elevation can gradually increase exposure to surface 
currents and waves (Koch 2001). Sediments then eventually erode away 
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because of more intense wave impacts, leading to the subsequent 
reduction in SAV bed elevation (Madsen et al. 2001). Anthropogenic 
deposition can also impact SAV beds, as sediments placed during dredging 
activities are often rapidly deposited and thick enough to smother SAV or 
prevent it from establishing in an otherwise suitable area (Carlson and 
Madley 2007). 

Subsidence 

Coastal subsidence refers to the sum of shallow and deep subsidence that 
causes the downward displacement of the land (Cahoon, Reed, and Day 
1995). Relative sea-level rise along the Texas coast, in part attributed to 
subsidence from oil, gas, and groundwater removal, is likely the cause of 
observed SAV loss in specific areas (Pulich and Onuf 2007). Direct data 
are limited regarding the effects of subsidence on SAV growth and 
distribution; however, subsidence will increase depths and consequently 
light attenuation above SAV beds, influencing the habitable zone as it did 
in Texas. 

Tools for assessment 

In determining changes in coastal environments, several remote-sensing 
technologies provide reliable tools for data collection and continuous 
monitoring. Analytical tools for determining both erosion and deposition 
include topographic light detection and ranging (LiDAR), bathymetric 
LiDAR, and orthorectified aerial or satellite imagery. USGS (2017) reports 
the use of interferometric synthetic aperture radar (InSAR) to measure 
elevation changes. At present, the InSAR is reportedly the most effective 
means of measuring changes in large-scale land surface altitude, as high-
density measurements over large areas are made by using radar signals 
from Earth-orbiting satellites (USGS 2017). LiDAR, particularly airborne 
LiDAR bathymetry (ALB), is an efficient, high-resolution, laser-based tool 
to monitor geomorphology in coastal environments (Long et al. 2010). 

Published relationships 

Water movement, the presence of SAV, and sediment dynamics are all 
strongly correlated in coastal systems, as each factor is contingent on the 
other. The number of available studies quantitatively correlating the 
theoretical relationships are limited, however. Koch and Gust (1999) noted 
tide-dominated environments where SAV blades and stands exhibit a 
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unidirectional lean, directing friction velocities of the moving water above 
the SAV canopy, ultimately reducing current velocity within the SAV bed. 
Environments dominated by waves, however, tended to show an increase 
in potential sediment erosion in SAV beds as the constant changing of 
blade directions allowed for greater interactions between the SAV bed and 
the water column (Madsen et al. 2001). 
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4 Sedimentology 

SAV habitat characteristics and requirements 

Sediment characteristics in aquatic environments play a critical role in the 
biogeochemical cycling of inorganic and organic matter (Griffiths et al. 
2017), greatly contributing to the overall health of SAV. As discussed in 
section 2, the presence of SAV can also affect sediment dynamics and 
consequently the sedimentology within the system it inhabits (Tinoco et al. 
2017). The complexity of substrate properties relative to SAV growth and 
distribution is generally site- and species-specific and is therefore difficult 
to generalize. Several studies have investigated SAV growth and 
distribution in sediment of various characteristics to determine threshold 
limits and optimal growth parameters for healthy SAV environments (Boer 
2007; Czerny and Dunton 1995; Duerte et al. 2007). The primary 
sedimentology factors affecting SAV growth and distribution in estuarine 
and marine sediments include grain size, organic matter content, pore-
water nutrients, and sulfides. 

Factors affecting growth 

Grain size 

Sediment grain size is an important characteristic that directly affects the 
physical, as well as chemical and biological, properties of the substrate 
(Barth 2011). Observations from previous studies demonstrate that the 
primary impact of sediment grain size on SAV growth is related to the 
plant’s ability to establish roots securely into substrate (Ailstock, Shafer, 
and Magoun 2010; Handley and Davy 2002). Li et al. (2012) analyzed the 
relationship between SAV growth and particle size distribution and found 
that smaller grain size sediments encouraged faster growth and 
development, while SAV growth in a coarse sand and gravel media led to 
uprooting and dislodgement of the plant. These findings are consistent with 
those from Koch and Beer (1996) and Denny (1980), in which the primary 
relationship between substrate particle size and SAV growth was the ability 
of the roots to penetrate and remain anchored in the sediment. Koch (2001) 
simulated sediment grain sizes using various sizes of glass beads, in which 
Ruppia maritima was found to exhibit maximum growth in fine to 
medium-coarse media. Most SAV species have been reported to grow in a 
wide range of substrates, from coarse sand to mud (Anderson 1972). 
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SAV growth can also be affected by the geochemical processes that occur 
in sediment of certain grain sizes (Koch 2001). The presence of fine-
grained material (silt, clay) in sediment influences pore-water 
geochemistry, ultimately affecting nutrient availability. As clay and silt 
become dominant relative to sand, the pore-water exchange at the 
sediment-water interface decreases, because sediment pores are 
considerably smaller and have less connectivity (Huettel, Berg, and Kostka 
2014). Koch (2001) concluded that reductions in pore water and pore-
water exchange increases nutrient concentrations and phytotoxins 
(phenols, organic acids, hydrogen sulfide, or reduced iron and manganese) 
in high-salinity sediments. SAV is sustained in sediment with low pore-
water exchange in oligohaline or mesohaline environments, since 
phytotoxin concentrations are not as elevated as those found in high-
salinity systems (Capone and Kiene 1988). Conversely, pore-water 
exchange in coarse sediments is much higher than in finer sediment, and 
thus nutrient availability is reduced (Huettel, Berg, and Kostka 2014). A 
coarse-sediment substrate will remain more oxygenated, and phytotoxins 
are reduced as a result of the increased exchange of solutes through 
advective porewater seepage, providing an advantageous environment for 
SAV growth in high-salinity environments (Koch 2001). The effect of 
sediment grain size on SAV growth in both marine and estuarine 
environments have been shown to be species specific; however, different 
species vary in their response to substrate conditions (Batiuk et al. 1992; 
Leschen, Ford, and Evans 2010; Dunton 1990). Table 2 lists the published 
sediment grain sizes colonized by healthy SAV in either natural or 
simulated marine and estuarine environments. 

Table 2. Sediment grain sizes colonized by healthy SAV in natural and simulated estuarine 
and marine environments as reported in literature. 

Environment Species Fines (%) Reference 

Freshwater to 
estuarine Vallisneria americana 

6.0–10.0 

14.0 (clay) 

48.0 (silt) 

Batiuk et al. (1992) 

Hutchinson (1975) 

Hutchinson (1975) 

Estuarine Ruppia maritima 1.8–9.2 

11.0–14.0 

Livingston et al. (1998) 

Dunton (1990) 

Estuarine to 
marine Halodule wrightii 

1.8–9.2 

14.0 

8.1–28.8 

10.2–12.4 

0.8–14.7 

Livingston et al. (1998) 

Dunton (1994) 

Dunton (1990) 

Murphey and Fonseca (1995) 

Hoskin (1983) 
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Environment Species Fines (%) Reference 

Grady (1981) 

Marine 

Syringodium filiforme 
1.8–9.2 

7.3–9.9 

1.9 

Livingston et al. (1998) 

Hoskin (1983) 

Wood et al. (1969) 

Thalassia testudinum 

22.0 

23.0–35.0 

4.8 

14.6 

2.2–17.1 

1.0–34.0 

12.2–34.1 

0.8–14.7 

Lee and Dunton (1996) 

Kaldy and Dunton (2000) 

Wood et al. (1969) 

Scoffin (1970) 

Koch (2001) 

Burrell and Schubel (1977) 

Hoskin (1983) 

Grady (1981) 

Zostera marina 

35.0 

2.3–56.3 

13.0 

14.0 

15.0 

Leschen et al. (2010) 

Koch (2001) 

Krause-Jansen et al. (2011) 

Marshall and Lukas (1970) 

Orth (1977) 

Organic matter 

Sediment organic matter content is typically defined as the percentage by 
mass of organic material (nonlithological) composing sediment. The 
accumulation of organic matter in SAV beds is primarily attributed to the 
burial of decaying rhizomes and roots or the trapping of decaying plant 
shoots or leaves over time (Brenner et al. 2006). In a range of salinity 
environments, numerous studies have reported that optimal SAV growth 
occurs in substrates with <5% organics (Murphey and Fonseca 1995; Dan 
et al. 1998; Moore, Shields, and Jarvis 2010). The mechanism by which 
SAV growth is affected by sediments with high organic matter content is 
not thoroughly understood, but it is suggested to be associated with 
nutrient bioavailability (Koch 2001). As nutrients become associated with 
organic deposits, its bioavailability is reduced, particularly in fine-grained 
substrates (Pollman et al. 2017). A small number of SAV species, including 
Zostera marina and Posidonia oceanica, were reported to grow in 
substrates containing between 6.5% and 16.4% organic matter (Koch 
2001). It is noteworthy, however, that SAV species tolerant of high organic 
matter content exhibited a positive correlation between leaf size and 
percentage of organic matter. Lee and Dunton (2000) concluded that the 
increased photosynthetic activity due to the larger leaf surface area 
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produces more oxygen in the rhizosphere that, in turn, neutralizes 
detrimental effects associated with organic carbon content. Although the 
organic matter threshold of <5% has been concluded as a safe limit for 
most SAV species in high-salinity environments (Barko and Smart 1983), 
tolerance of organic matter content is species and site specific. Table 3 
summarizes the range of organic matter content in sediment colonized by 
healthy SAV species as reported from previous studies. 

Table 3. Sediment organic matter (%) ranges in healthy SAV beds presented in previous 
studies. 

Environment Species Organic 
matter (%) Reference 

Freshwater to 
estuarine Vallisneria americana 

2.0–8.0 

0.3–5.56 

1.0–5.3 

<6.5 

Moore et al. (2010) 

Kreiling et al. (2007) 

Batiuk et al. (1992) 

Hutchinson (1975) 

Estuarine Ruppia maritima <2 

3.25 

Ward et al. (1984) 

Kemp et al. (1984) 
Estuarine to 

marine Halodule Wrightii 0.77–3.62 Murphey and Fonseca (1995) 

Marine 

Syringodium filiforme 2.5 Wood et al. (1969) 

Thalassia testudinum 0.5–2.3 

3.5–4.9 

Koch (2001) 

Wood et al. (1969) 

Zostera marina 

0.77–3.62 

1.25 

1.25 

0.41–1.38 

0.4–5.3 

6.37–7.57 

Murphey and Fonseca (1995) 

Marshall and Lukas (1970) 

Orth (1977) 

Dan et al. (1998) 

Koch (2001) 

Short et al. (1993) 

Nutrients 

In estuarine and marine aquatic environments, several studies show that 
limited nutrients in sediment do not prevent SAV from colonizing certain 
areas (Koch 2001; Boer 2007; Bintz et al. 2003). Nonetheless, nutrients 
can be a limiting factor in optimal SAV growth. Although SAV can take up 
nutrients from the water column, most nutrients are absorbed from the 
substrate (Gu and Hoyer 2005; Shivers 2010). Nutrient availability is 
generally correlated with sulfide production in the substrate (Lamers et al. 
2013). In the presence of sulfide, the stable metal-sulfide precipitants 
formed with plant micronutrients prevent uptake by the roots in reducing 
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environments. Metals such as copper, zinc, cadmium, and nickel form 
stable, typically insoluble sulfide compounds, whereas sodium and 
potassium form weakly stable, typically insoluble compounds (Wright and 
Reddy 2009). At present, limited information is available regarding 
optimal nutrient concentrations in healthy SAV beds in estuarine and 
marine environments. 

Sulfides 

Sulfides in aquatic environments are produced by “sulfate-reducing 
bacteria during organic carbon oxidation and nutrient mineralization” 
(Pollard and Moriarty 1991, 11). The microbial population of marine 
systems function similarly to those of freshwater environments in organic 
carbon degradation and nutrient regeneration. However, “distinct 
physiological groups of bacteria dominate carbon catabolism in each 
system” (Capone and Kiene 1988, 725). High sulfate concentrations 
present in seawater cause sulfate reduction to exceed methoanogenesis, 
which increases as salinity decreases (Capone and Kiene 1988). Although 
the activity of sulfate-reducing bacteria stimulates plant growth as 
nutrients are mineralized, the concurrent uptake of sulfide by the plants 
can be detrimental (Pollman et al. 2017). The biogeochemical factors that 
determine sediment sulfide levels are iron, organic matter, and oxygen 
(Pollman et al. 2017). 

Sulfide toxicity to SAV can be increased under eutrophic conditions. As 
phytoplankton population increases and light availability is reduced, 
photosynthesis rates are lowered, which leads to reduced oxygen 
production in the rhizosphere. Oxygen produced by macrophyte roots can 
inhibit activity of sulfate-reducing bacteria, allowing SAV to thrive in 
saline sediments or prevent restricted plant growth. Oxygen released by 
SAV roots can also directly oxidize sulfides, limiting their toxic effects (Lee 
1999; Pezeshki and DeLaune 2012). Additionally, iron in the sediment can 
sufficiently sequester dissolved sulfides to form precipitates (Lamers et al. 
2013). 

Sediment sulfide thresholds under varying light conditions are presumably 
different among SAV species. Previous studies report adverse effects on 
photosynthesis and growth upon exposure to sulfide at concentrations 
between 1000–2000 µM (Carlson, Yarbro, and Barber 1994). Eldridge and 
Morse (2000) suggest that sulfide in marine sediments may be toxic to 
SAV at concentrations above 1000 µM. Table 4 summarizes the reported 
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effects of sulfide on various SAV species. As observed from the data 
presented, sulfide toxicity to SAV may be largely contingent on (1) plant 
biomass, which governs oxygen production in the rhizosphere; (2) water 
clarity, which determines the photosynthesis rate; (3) sediment organic 
matter content, and (4) salinity. Sufficient data regarding sulfide threshold 
limits in sediments providing toxicity results of various SAV species in 
estuarine and marine sediments are yet to be published. 

Table 4. Sediment sulfide concentrations (µM) tolerated by healthy SAV. 

Environment Species 
Sulfide 

concentration 
(µM)  

SAV condition 
Reference 

Marine 

Thalassia 
testudinum 

Up to 1000 
to 

2000 

Healthy 
to 

dying 

Lee and Dunton (2000) 
Carlson et al. (1994) 
Eldridge and Morse (2000) 
Carlson et al. (1994) 

Zostera marina 

400 
to 

2000 

Reduced 
photosynthesis  

to 
root degeneration 

Smith et al. (1998) 
Pregnall et al. (1984) 

Tools for assessment 

Sampling and analytical approaches for sediment characterization may 
vary depending on analysis type and data acquisition time. In some 
instances, field sampling and on-site data collection may be required for 
monitoring purposes, whereas total characterization of a particular site 
may require more in-depth laboratory testing. Thus, analytical tools to 
measure sediment grain size, organic matter content, nutrients, and 
sulfides for both laboratory and field use will be discussed. 

Sediment Grain Size 

When determining sediment grain size, particle-size analysis and bulk 
density measurements are important to obtain not only to separate 
particle sizes but also to estimate sand, silt, and clay volumes. Laser 
diffraction analysis of the substrate can further differentiate and measure 
silts and clays with a great degree of reproducibility on small samples 
(Zobeck 2004). 
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Organic Matter Content 

For organic matter measurements, analytical instruments, measuring total 
carbon (TC), total inorganic carbon (TIC), and total organic carbon (TOC) 
are highly reliable sources of organic carbon determination in sediments. 

Nutrients 

Two primary sample types can be assessed to characterize potential 
nutrient availability in sediments: pore waters and sediment mineralogy. 
Micronutrients and other metals in pore waters can be analyzed using 
inductively coupled plasma mass spectrometry (ICP-MS) and optical or 
atomic emission spectroscopy (O/AES). Total nitrogen can be determined 
on-site using a portable near infrared spectroscopic meter. 

Sulfides 

Acid volatile sulfides (AVS) can be measured using a colorimetric method 
after sulfide is volatilized after the addition of acid and converted to a gas 
at room temperature. Hydrogen sulfide is purged from the sample using 
an inert gas and trapped in a sodium hydroxide solution, which is then 
analyzed via colorimetry with a mixed-diamine reagent (MDR). The 
sulfide binds to the reagent-forming methylene blue, which is measured 
using a spectrometer. In many cases, AVS and simultaneously extracted 
metals (SEM) are performed together in marine sediments to characterize 
the formation of AVS-SEM metal toxicants. The redox potential, related to 
the state of sulfides in the pore water, can be measured using an electrode 
instrument. 

Published relationships 

Several studies demonstrated correlations between sedimentological 
characteristics (organic matter, salinity, sulfide generation, and sediment 
grain size) and SAV growth (Koch 2001; Cammen 1982; Marchand et al. 
2006). As salinity increases from mesohaline to euhaline environments, 
sulfate levels are elevated, increasing the potential for sulfide conversion 
within the sediment. Sulfide generation is strongly correlated to organic 
matter, since the magnitude and distribution of various microbial 
activities is determined by the amount of organic material present in the 
substrate (Rui et al. 2016). Organic matter in the sediment becomes a food 
source for the bacteria, which increases respiratory activity and the 
reduction of sulfate. Moreover, sulfide levels in sediment can also be 
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correlated with grain size. It is important to note that the extent to which 
sulfide penetrates the sediment from the water is based on the grain size of 
the substrate (Huettel and Webster 2001). When sulfate levels in the 
overlying water column are low, sediment sulfide concentrations are low 
as well. When sulfate concentrations in the water column are high, 
however, sediment sulfide content can vary from high to low depending on 
the sediment grain size (Pollman et al. 2017). 
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5 Water Quality 

Water quality is critical for SAV health, and poor water quality is 
hypothesized to be the major cause for the loss of seagrasses around the 
world (Beck, Lruczynski, and Sheridan 2007; Lee, Parks, and Kim 2007). 
While reduced light availability is typically the main factor causing 
reductions in SAV abundance, increases in water temperature and carbon 
dioxide concentration, both attributed to poor water quality, seem to also 
have negative impacts on SAV survival. 

Factors affecting growth 

Light availability 

Light availability for photosynthesis is the main driver for seagrass SAV 
survival (Orth and Moore 1983; Cambridge et al. 1986). Seagrass health is 
considered an indicator for light availability and water clarity in an area. 
Water clarity is an important water-quality characteristic that determines 
the distribution of all SAV, as it directly affects the light availability to the 
aquatic ecosystem. Seagrass SAV distribution is limited by the amount of 
light that reaches the bottom of the water column (Dennison et al. 1993). 
Water clarity requirements of seagrasses have been identified in previous 
studies detailing the minimum light requirements needed to support 
seagrass growth in a range of salinity zones (Dennison et al. 1993, Steward 
et al. 2005; Burd and Dunton 2001). The combination of increased 
freshwater runoff and nutrient input reduces light availability, which 
hinders SAV growth. Lefcheck et al. (2018) found a strong correlation 
between reduced nutrient input and increasing SAV coverage in the 
Chesapeake Bay, Virginia. 

Because light availability controls the depths at which SAV can grow, as 
addressed in section 1, researchers have developed relationships on how 
deep an SAV species can grow on the basis of light attenuation (Duarte 
1991, Duarte et al. 2007). In accordance with the Beer-Lambert Law, the 
light extinction coefficient or attenuation factor of light through water is 
described by the equation 

 
zK D

d oI I e−= , (1) 
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where Id is light intensity at depth, I0 is light intensity at the surface, e is 
the natural base log, Kz is the light extinction coefficient, and D is depth of 
the light intensity measurement in meters. Light intensity is measured by 
Watts per square meter. By including light intensity at the depth and the 
surface, the above equation can be solved for the light extinction 
coefficient 

 ( ) 1ln lnz o dK I I D−− ∗= . (2) 

After Kz is calculated, ln is the natural log, and the light intensity required 
(Ir) to photosynthesize for any given seagrass species in various Kz 
environments can be determined with the equation 

 ( ) 1ln – lno r zD I I K −= ∗ . (3) 

Photocells are required to measure light intensity, but are expensive and 
rarely available to most researchers. Secchi depth (Sd) measurements are 
more commonly used to measure light intensity (Duarte et al. 2007). Sd 
can be accurately converted to Kz (Poole and Atkins 1929; Graham 1966; 
Idso and Gilbert 1974; Duarte 1991) using the equation 

 

1.7
z

d

K
S

=
. (4) 

By using published relationships between Sd or Kz with known depth of 
seagrass colonization (Zc), the depth a species of seagrass can grow 
according to water clarity can be determined (Duarte 1991; Nielsen et al. 
2002; Duarte et al. 2007) (Table 5). Duarte (1991) and Duarte et al. (2007) 
described the negative relationship between the depth of colonization of a 
seagrass species (Zc) and the light extinction coefficient (Kz). Using data 
from 424 published reports describing Kz and Zc, Duarte et al. (2007) 
found a very strong (r2 = 0.61, p < 0.001) negative relationship between Kz 
and Zc. The negative linear relationship using all the published data 
reported by Duarte et al. (2007) is 

 ( ) ( ) ( ) ( )1log 0.07 0.019 –1.03 0.04c zZ m K m−= ± ± . (5) 
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There was considerable variation in the Zc for the same species in different 
geographic areas (Table 5), which is explained by water turbidity (Duarte 
et al. 2007). Regions with lower light extinction coefficient values had 
deeper known depths of colonization. 

Another way of describing the depth limits of seagrass growth and 
colonization in relation to water clarity is through examination of the 
percentage of surface light that reaches the bottom. Percent light through 
the water (PLW) is the amount of surface light that reaches the depth 
where seagrasses grow. The PLW is expressed as 

 
[( )( )] 100e eK DPLW e −= × , (6) 

where Kz and D again are the light extinction coefficient and depth of the 
light measurement in meters, respectively. PLW is only one aspect of the 
light available for a seagrass to photosynthesize. 

Another major aspect that can affect light availability is the presence of 
epiphytic algae growing on the blades or leaves of the seagrass. Percent 
light at the leaf (PLL) is the amount of light available for the plant to use 
for photosynthesis. PLL is expressed as 

 ( )( )[( )( )] 100e eK BPLL PLW e −= × , (7) 

where Be is epiphyte coverage of the leaf and Ke is the biomass-specific 
epiphytic light attenuation coefficient (Twilley et al. 1985; Vermaat and de 
Bruyne 1993; Kemp, Bartleson, and Murray 2000). The required 
percentage of surface light that reaches the leaf blade for survival and 
growth varies not only between species but also for the same species in 
different regions (Lee, Park, and Kim 2007) (Table 6). In addition, surface 
light requirements vary with species-specific salinity requirements. For 
example, in the Chesapeake Bay, Carter, Rybicki, and N. Landwehr (2000) 
found that most freshwater SAV species require 13% surface light, while 
Kemp et al. (2004) stated that species in brackish water require 22% 
surface light. 

In clear waters like those of the Mediterranean Sea, the seagrass Halophila 
stipulacea is able to grow at depths of 145 m (Short et al. 2007). There are 
very few instances where seagrasses inhabit areas deeper than 2 m in the 
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continental United States. The historical distribution of most seagrasses in 
the continental United States is usually confined to depths less than 5 m 
(Short et al. 2007). In areas of clear water along the US coast, like Big 
Bend and the Florida Keys, seagrasses grow at depths of 20 m (Iverson 
and Bittaker 1986; Mattson et al. 2007). Discussion of specific 
colonization depths and other bathymetric topics are covered in section 1. 

Turbidity and Total Suspended Solids 

Numerous factors affect light attenuation. Two factors commonly 
associated with light attenuation are turbidity and total suspended solids 
(TSS). Many people use the terms turbidity and TSS interchangeably, 
which is incorrect. TSS are particles bigger than 2 µm suspended in a fluid 
that tend to settle out of suspension if left undisturbed by external forces. 
External forces that suspend sediments are water currents, wave energy, 
bioturbation, or anthropogenic mechanical forces such as from a dredge or 
propeller. Common particles that contribute to TSS are gravel, sand, silt, 
and large species of algae. TSS is typically measured by pouring a known 
amount of water sample through filter paper, usually a 2 µm filter, and 
weighing what is captured. The typical unit for TSS is mg/L. Turbidity, 
however, is the clarity of a liquid. Turbidity is typically expressed in 
nephelometric turbidity units (NTU), which is actually a qualitative value 
and not a quantitative one like TSS. While TSS plays a major factor, 
turbidity is also affected by colored dissolved organic material, inorganic 
compounds, clay, small algae, salt, and any other compounds that dissolve 
in water. TSS is usually considered the main cause of turbidity; however, 
water stained by tannins from leaves will have a very high NTU reading 
but be completely void of TSS. Turbidity is measured by the amount of 
light scattered at right angles when a light is shined into a fluid and 
therefore takes into account compounds that are dissolved in the water. As 
NTU increases, the fluid is considered cloudier and has higher light 
attenuation. Legal standards for drinking water in the United States is 
<1.0 NTU, and anything >50 NTU is completely opaque. 

Nutrients 

As discussed in section 3, SAV requires a certain amount of nutrients in 
the environment to thrive and takes up most from its substrate. SAV can 
thrive in relatively nutrient-poor environments, and nutrient overloading 
is a more common issue faced in the coastal environment (Koch 2001). 
Excess nutrient runoff from land into the water can cause major negative 
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impacts on SAV survival throughout the world (Orth and Moore 1983; 
Cambridge et al. 1986; Pulich and White 1991; Duarte et al. 2007; Lee et 
al. 2007; Short et al. 2007). Duarte (2002) listed light attenuation caused 
by eutrophication as the leading cause in declines of most coastal seagrass 
communities. Nutrient loading is specifically listed as a major threat to 
seagrass communities in the Gulf of Mexico (Beck, Lruczynski and 
Sheridan 2007), Chesapeake Bay (Chesapeake Bay Foundation 2000), and 
Long Island Sound (LISHRI 2015). Excess nutrients in the water, 
particularly phosphorus and nitrogen, can cause the overgrowth of 
phytoplankton. High concentrations of phytoplankton in the water column 
increase light attenuation, reducing light availability to SAV as previously 
discussed. The negative effects of increased nutrients can be exacerbated 
by additional epiphytic algae growth on blades or leaves, which further 
reduces light available for seagrasses to photosynthesize. 

Salinity 

Coastal and marine SAV can tolerate various levels of salinity, but typically 
prefer concentrations between 25 and 40 parts per thousand (ppt) 
(Eleuterius 1987; Koch et al. 2006a; Touchette 2007; Merino, Carter and 
Merino 2009; Collier et al. 2014) (Table 8). There are a number of 
freshwater SAV species, but the focus of this report is marine and coastal 
SAV, dominated by seagrasses. Seagrasses can exist in low-salinity 
environments but are usually outcompeted by species intolerant of 
hypersaline water (Touchette 2007). Marine seagrass physiology has 
evolved to handle the hyperionic and hyperosmotic stress of a saltwater 
environment (Mahajan and Tuteja 2005). Seagrasses create hyperosmotic 
fluid along their outer cell walls to stop desiccation with salt-secreting 
glands to remove salt from their tissue (Liphschitz and Waisel 1974) and 
by ion transport (Flowers, Troke and Yeo 1977). 

Seagrasses can survive episodes outside of their optimal salinity 
concentrations, but chronic hyper- or hyposalinity events can cause 
seagrass die-offs. Hypersalinity events are very rare compared to 
hyposalinity events. Hypersalinity usually occurs in enclosed bays that are 
starved of freshwater inputs because of use for municipal purposes 
(Fourquean and Robblee 1999). Hyposalinity episodes in coastal areas are 
typically caused by natural freshwater runoff from storm events or can be 
anthropogenically triggered by the use of flood-control structures (for 
example, Bonnet Carre Spillway, Louisiana) (Moncreiff 2007). 
Hyposalinity episodes are considered the biggest threat to the survival of 
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Halophila johnsonii (Torquemada, Durako and Lizaso 2005; Kahn and 
Durako 2008), which is the only marine plant protected under the 
endangered species act (Kenworthy 1997). Hyposalinity is thought to cause 
seagrass die-offs around the world (Eleuterius 1987; Furnas 2003; Lirman 
and Cropper 2003; Collier et al. 2014). Kahn and Durako (2006) found 
that the seedling tolerance to changes in salinity concentrations are less 
than those for mature plants. Seagrass species vary in their abilities to 
survive fluctuating salinities. In a mesocosm study using seagrass from 
Biscayne Bay, Florida, Lirman and Cropper (2003) found that Thalassia 
testudiumn and Syringodium filiforme survived but struggled when 
salinities dropped below 25 ppt, while Halodule wrightii flourished in 
salinities as low as 5 ppt. The increased tolerance to hyposalinity of 
Halodule wrightii may explain why it seems to be dominating areas with 
highly modified watersheds that experience more pulsed freshwater input. 
Species-specific salinity tolerance is often presented with salinity 
threshold values, but salinity tolerance is complex and also depends on the 
duration and intensity of salinity fluctuations. 

Salinity case study: Mississippi Sound 

Salinity levels in the Mississippi Sound fluctuate due to storm events that 
cause freshwater runoff (Eleuterius 1987). In the Mississippi Sound, 
Eleuterius and Miller (1976) reported that rainfall hindered seagrass 
growth and that seagrass growth was best during drought years. Prior to 
1987 there were four species of seagrasses in Mississippi Sound: T. 
testudinum, S. filiforme, Halophila engelmannii, and Halodule wrightii. 
Currently Halodule wrightii and R. maritima are the only seagrasses 
inhabiting the Mississippi Sound. The shift to a monotypic seagrass 
occurred by 1987 and is likely due to decreased salinities in Mississippi 
Sound because of the major modifications to the Mississippi River. Of the 
four species that occurred, Halodule wrightii, was the most tolerant to 
low-salinity environments (McMillan and Moseley 1967; McMahan 1968). 
R. maritima, a brackish water plant that can handle salinity of 0 ppt 
(Touchette 2007; Merino, Carter, and Merino 2009), started to expand 
into the Mississippi Sound when distribution of other seagrasses declined. 

The opening of the Bonnet Carrie spillway, a flood-control structure in 
southern Louisiana that empties Mississippi River water into the coastal 
zone, likely has numerous cascading effects on the seagrasses of 
Mississippi Sound (Figure 2). Between its construction in 1931 and 2020, 
the spillway has been opened 15 times, ranging in duration from 13 to 79 
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days (mean 40.6 days) to alleviate pressure on levees in New Orleans, 
Louisiana (USACE 2014c; USACE 2020). The spillway was opened three 
times in the 1970s, with the most notable release occurring in 1973, when 
the spillway was open for 75 days. In 1973, the water north of Petit Bois 
and Horn Island was fresh for over three months (Eleuterius 1987). 
Seagrasses in the Mississippi Sound flowered in April–June, coinciding 
with the releases of the spillway. Seagrasses flower for only a short period 
of time, and prolonged exposure to fresh water can cause flower failure or 
severe reductions in bloom time (Torquemada and Lizaso 2011; Collier et 
al. 2014). It is possible that these three releases through the spillway were 
the main driver for the decline in three species of seagrasses that no longer 
occur in Mississippi Sound (Eleuterius 1987). 

Figure 2. The location of the Bonnet Carrie Spillway in relation to the Mississippi Sound and 
other coastal water bodies. The direction of water movement from the Mississippi River into 
Lake Pontchartrain is indicated with a blue arrow (northeast). From there, water makes its 

way towards the coastal sounds and the Gulf of Mexico. 

 

Temperature 

Similar to terrestrial vegetation species, temperate to subtropical SAV 
productivity tends to vary seasonally, with high productivity in the spring 
and summer and low productivity during the winter and fall (Dunton 
1994; Lee, Park and Kim 2005). An overview by Lee, Park, and Kim (2007) 
documents that the optimal temperature range for photosynthesis is 12°C–
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26°C for temperate species and 23°C–32°C for tropical species (Table 9). 
It is hard to isolate the effects of temperature and light regime on seagrass 
growth, since both are important factors (Lee and Dunton 1996; Lee, Park 
and Kim 2007). 

As the global climate changes, ocean water temperature changes may 
impact coastal SAV. Ocean water temperatures are hypothesized to 
increase between 2.6°C and 4.2°C by 2100 (Collins et al. 2013). Water 
temperature is a primary driver of seagrass growth and life history (Lee, 
Park and Kim 2007), so elevating water temperatures are a concern for 
seagrass survival. Coastal SAV evolved when global water temperatures 
and carbon dioxide concentrations were higher (Beer and Koch 1996) 
relative to current levels, so some suggest climate change may help 
seagrasses (Orth et al. 2006). This conclusion is not a widely accepted 
opinion, however. 

Duarte (2002) suggested that increasing water temperatures would have 
negative impacts on seagrass survival. Numerous studies followed to 
corroborate that suggestion. Carlson and Madley (2007) stated that warm-
water discharge from power plants resulted in losses of seagrass in 
Biscayne Bay and St. Joseph Sound, Florida. A mesocosm study by Bintz et 
al. (2003) and a field study by Oviatt (2004) both suggested increasing 
summer water temperatures are a major driving factor for reduced Z. 
marina abundance in the northeast United States. The trend of reduced Z. 
marina abundance because of increasing water temperatures was also 
noted in several European countries (Rasmussen 1977). Z. muelleri 
experienced increased leaf loss and shoot mortality when exposed to water 
temperature 5°C above its optimal growth temperature of 27°C (York et al. 
2013). A strong correlation between flowering events associated with 
temperature stress, reduced vertical rhizome growth, and increased shoot 
mortality of P. oceanica meadows have been documented (Marba and 
Duarte 2010). These events have increased with warming in the 
Mediterranean Sea despite pristine environments void of problems from 
light attenuation (Marba and Duarte 1997; Diaz-Almela et al. 2006; Marba 
and Duarte 2010). 

Carbon dioxide concentration 

The drastic increase in fossil fuel use during the industrial revolution has 
led to an increase in atmospheric carbon dioxide by ~40%, and possibly 
300% by 2100 (Portner et al. 2014). The increase in atmospheric carbon 
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dioxide is causing the ocean pH to decrease (that is, become more acidic), 
affecting biochemical processes (Fabry et al. 2008). Seagrasses are 
photoautotrophs, and it is suggested that increases in partial pressure of 
carbon dioxide (pCO2) in the aquatic environment will increase 
photosynthetic rates of marine autotrophs (Mackey et al. 2015). 
Zimmerman et al. (1995, 1997) and Palacios and Zimmerman (2007) 
conducted 45 d and 1 y laboratory studies looking at the effects of elevated 
aqueous carbon dioxide concentration on Z. marina. Both studies showed 
that elevated carbon dioxide levels increase leaf photosynthetic rates, 
shoot density, leaf size, and leaf sugar content while decreasing light 
requirements to conduct the previously described processes. These studies 
go on to say that very low aqueous carbon dioxide concentrations may be a 
limiting factor to the growth of seagrass. Researchers suggest that direct 
injection of carbon dioxide into the ground of seagrass areas may be a 
useful technique for sequestering carbon dioxide (Mackey et al. 2015). A 
review by Koch et al. (2013) reported that over 85% of seagrasses use a C3 
pathway for photosynthesis,2 and an increase aqueous pCO2 will increase 
seagrass growth. However, Koch et al. (2013) stated the need to look at the 
response of elevated carbon dioxide along with increasing water 
temperatures. A study that looked at the combined effects of elevated 
carbon dioxide and water temperature at the time of this report was 
conducted by Repolho et al. (2017) on Z. noltii. When examining the 
combined effects, Z. noltii showed no signs of increased growth, and the 
combination had a net deleterious effect on growth and survival. This 
study suggests the increase in growth typically seen in seagrass due to 
increases in carbon dioxide availability is negated by elevated water 
temperatures, and the global trend may reflect the same. 

Tools for assessment 

TSS and turbidity 

TSS can be measured by pouring a known volume of water through 
preweighed filter paper and then weighing the filter paper to determine 
the weight of suspended solids in the water. New sonde technology allows 
TSS to be measured in the field. A number of instruments, like the YSI IQ 
Sensor Net ViSolid Probe and the laser in situ scattering transmissometer 
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(LISST) use optics and reflected light to determine the amount of 
suspended solids in the water sample. Turbidity can simply be measured 
using a Secchi disk. As the black and white disk is lowered, the depth at 
which the disk is no longer visible is recorded; this is known as the Secchi 
depth. Turbidity can also be measured with sondes that determine the 
amount of light refracted at right angles from a light source. Several 
probes are made that can measure turbidity in a liquid. By coupling 
turbidity measurements with sediment grab samples in the field, TSS can 
be determined without any additional sensors if it is assumed that the 
suspended material has similar characteristics as the sediment. Newly 
developed techniques calculate turbidity parameters from aerial 
photography or satellite imagery (Matthews 2011; Dogliotti et al. 2015). 

Photosynthetically active radiation 

Several companies have sondes with photo sensors to measure the amount 
of light energy of a particular wavelength reaching a certain depth of 
water. The most commonly used photo sensor is the LI-192 Underwater 
Quantum Sensor by LI-COR. 

Published relationships 

The relationship between environmental factors and seagrass productivity 
is critical for seagrass conservation and management. Seagrass growth 
dynamics relative to environmental factors vary among species because of 
unique physiological and morphological adaptations (Lee, Park and Kim 
2007). Correlations between optimal seagrass growth and abiotic 
environmental factors (including light penetration, nutrients, salinity, and 
temperature) are presented in Tables 5–9. 

Table 5. The colonization depth (Zc) in meters of some seagrasses found in North America. N 
is the number of published relationships for each species used to determine Zc information. 
Modified from Duarte 1991 and Duarte et al. 2007. *Introduced to the West Coast of the 

United States.  

Region Species N Mean Zc Standard 
error 

Minimum 
depth 

Maximum 
depth 

Temperate 
Ruppia maritima 2 0.9 — 0.8 1.0 

Zostera japonica* 1 0.9 — 0.9 0.9 

Z. marina 386 3.3 0.1 0.5 10.0 

Halodule wrightii 6 1.8 0.3 1.1 2.7 

Halophilia decipiens 2 26.8 — 24.3 29.3 
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Region Species N Mean Zc Standard 
error 

Minimum 
depth 

Maximum 
depth 

Subtropical 
to tropical 

Syringodium filiforme 6 1.8 0.3 1.1 2.7 

Thalassia testudinum 6 1.3 0.1 1.1 1.7 

Table 6. Minimal light requirements of seagrass studies conducted in North America. 
Variation in light requirements likely has to do with photo-acclimation to specific areas. 

Adapted from Lee, Park and Kim 2007. 

Region Species Latitude Minimum 
light (%) Reference 

Temperate Zostera marina 
41° N 
41° N 

12–13 
19 

Koch and Beer (1996) 
Dennison et al. (1993) 

Subtropical 
to tropical 

Halophila decipiens 
23° N 
17° N 

9 
4 

Dennison et al. (1993) 
Dennison et al. (1993) 

Halophila engelmanni 23° N 24 Dennison et al. (1993) 

Halodule wrightii 

27° N 
27° N 
27° N 
27° N 
27° N 
27° N 
28° N 

25°–30° N 

18 
15–20 
24–37 

20 
18 
20 
18 
17 

Dunton (1994) 
Burd and Dunton (2001) 
Kenworthy and Fonseca (1996) 
Steward et al. (2005) 
Dunton (1994) 
Czerny and Dunton (1995) 
Dunton (1994) 
Dennison et al. (1993) 

Syringodium filiforme 
23° N 

25°–30° N 
27° N 

19 
17–18 
24–37 

Dennison et al. (1993) 
Dennison et al. (1993) 
Kenworthy and Fonseca (1996) 

Thalassia testdinum 

18° N 
23° N 
25° N 
27° N 
27° N 

25°–30° N 

24 
24 
13 
20 

>14 
15 

Dennison et al. (1993) 
Dennison et al. (1993) 
Fourqurean and Zieman (1991) 
Czerny and Dunton (1995) 
Lee and Dunton (1997) 
Dennison et al. (1993) 

 
Table 7. Water column nutrient concentrations found in a SAV beds. Bolded numbers are 

study means. Table adapted from Lee, Park and Kim 2007. A dash signifies parameter was 
not evaluated (-). 

Region Plant Species  Latitude 
Water column (µM) 

Reference 
NH+

4 NO-
3 + NO-

2  PO3-
4 

Temperate Zostera marina 

37° N 3–20 — 0.5–1.6 Moore et al. (1996) 

43° N 3.21–8.26 — 0.50–0.74 Short et al. (1995) 

48° N 1.9 — — Williams and Ruckelshaus (1993) 

48o 32’11”N 0.05–1.69 24.3 0.37–2.46 Nelson and Waaland (1997) 



ERDC/EL SR-21-6 39 

 

Region Plant Species  Latitude 
Water column (µM) 

Reference 
NH+

4 NO-
3 + NO-

2  PO3-
4 

Subtropical 
to tropical Halodule wrightii 

24°–25°N 6.8–80.7 — — Powell et al. (1989) 

24° N 1.64 2.32 — Tomasko and Lapointe (1991) 

24°33′- 
24°51′ N 

11.64–53.07 
(22.79)  

— 0.14-1.27 
(0.40) Lapointe et al. (1994) 

24°–25° N 6.8–80.7 — — Powell et al. (1989) 

26° N 0–3.1 0-3.0 — Kaldy and Dunton (2000) 

26°09′ N 1.22 ±0.08 0.84±0.06 — Lee and Dunton (1996) 

27°49′ N 1.16 ±0.06 0.84±0.05 — Lee and Dunton (2000) 

29°8’ N 0.25–1.8 0.02-0.5 0-0.29 Heck et al. (2000) 

Table 8. Reported salinity tolerance in parts per thousand (ppt) for survival of selected 
seagrass species in the United States. Where upper or lower limits are not specified and up or 

up to terminology is used. Variation in tolerances likely has to do with the acclimation of a 
species in a certain area. 

Region Species Reported salinity 
tolerance (ppt) Sources 

Temperate 

Ruppia maritima 

0–60 

<35–70 

0–100 

0–35 

Phillips 1960 

Koch et al. 2007 

Kantrud 1991 

Strazisar 2013 

Zostera japonica 5 and up Kaldy and Shafer 2012 

Z. marina 6 and up Salo et al. 2014 

Subtropical 

to tropical 

Halophila johnsonii 

8 and up 

10 and up 

20–40 

Griffin and Durako 2012 

Kahn and Durako 2008 

Torquemada et al. 2005 

Halodule wrightii 

0-60 

Up to 70 

5–45 

Up to 72 

5–80 

Texas Parks and Wildlife 1999 

Koch et al. 2007 

Lirman and Cropper 2003 

McMillian and Mosley 1967 

McMahan 1968 

Syringodium 

filiforme 

4–45 

Up to 45 

Lirman and Cropper 2003 

McMillan and Mosley 1967 

Thalassia testdinum 

5–45 

20–40 

Up to 45 

36–70 

Lirman and Cropper 2003 

Zieman 1982 

McMillian and Mosley 1967 

Koch et al. 2007 
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Table 9. Optimum water temperatures for photosynthesis (p) and growth (g) for seagrasses 
according to studies conducted in North America. Table adapted from Lee, Park and Kim 

2007. 

Region Plant Species Latitude Range (°C) Optimal (°C) Reference 

Temperate Phyllospadix torreyi 
34°16′ N 10–23 23 (p) Drew (1979) 

38°20′ N 12–21 13 (g) Drysdale and Barbour (1975) 

Tropical/ 
Subtropical 

Ruppia maritima 
37°25′ N 1–28 28 (p) Wetzel and Penhale (1983) 

37°16′ N 8–30 23 (p) Evans et al. (1986) 

Zostera marina 

37°25′ N 1–28 22 (p) Wetzel and Penhale (1983) 

37°16′ N 8–30 19 (p) Evans et al. (1986) 

37° N 0–30 16 (g) Evans et al. (1996) 

34° N 15–29 22 (p) Penhale (1977) 

34°16′ N 4–21 21 (p) Drew (1979) 

40°31’5” N 0–20 16–20 (p) Dennison (1987) 

40°31’5” N 0–35 25–30 (p) Marsh et al. (1986) 

Halophila decipiens 28°08′44″ N 10–30 30 (p) Dawes et al. (1989) 

Halophila johnsonii 
25°55′ N 15–35 30 (p) Dawes et al. (1989) 

27°28′40″ N 10–30 25–30 (p) Ralph (1998) 

Halodule wrightii 
27°21′ N 12–30 30 (p) Dunton and Tomasko (1994) 

27°49′–28°15′ N 17–29 25-28 (p) Dunton (1996) 

Syringodium filiforme 

27° N 11.9–32.3 23–29 (g) Barber and Behrens (1985) 

28° N  28 (g) Gilbert and Clark (1981) 

27°32’2” N 9–32 32 (g) Fry and Virnstein (1988) 

Thalassia testudinum 

26°24' N 15–30 30 (g) Kaldy and Dunton (2000) 

27°49′ N 13–31 29 (g) 
29 (p) 

Lee and Dunton (1996) 
Herzka and Dunton (1997) 

27° N 11.9–32.3 23–31 (g) Barber and Behrens (1985) 

25° N 19.0–35.5 28–31 (g) Zieman (1975) 

26°50′ N 14–33 30 (g) Tomasko and Hall (1999) 

26°08′ N 15–31 27 (p) Herzka and Dunton (1997) 

26°08′05″ N 10–32 31 (p) Herzka and Dunton (1998) 
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6 Hydrologic Regime and Weather 

Factors affecting growth 

Water level and wave energy  

Seagrasses lack structural elements to support and protect themselves 
outside of water. Most seagrasses are excluded from the intertidal zone 
because of exposure to waves and desiccation (Koch and Beer 1996). 
Exceptions to this rule are the three Phyllospadix species that grow along 
the rocky West Coast of North America (Short et al. 2007). Of the species 
found on the US East Coast and Gulf of Mexico, Halodule wrightii is the 
most tolerant to above-water exposure (Yates, Morrison and Greening 
2011). Seagrass growth is also limited by high wave energy (Dan et al. 
1998; Robbins and Bell 2000). Wave energy usually forces seagrasses to 
inhabit water deeper than the wave’s mixing depth, which is half of the 
wavelength (Chambers 1987). The area affected by the mixing depth 
typically has continuous water and sediment movement, leading to high 
TSS levels, both of which hinder seagrass establishment (Koch 2001). 

Seagrasses have the ability to attenuate wave energy (Fonseca and Cahalan 
1992; Koch et al. 2006b) by forming meadows that reduce more energy 
than canopy-style seagrass (Verduin and Backhaus 2000). If the meadows 
are effective enough at reducing wave energy, seagrasses can spread to 
shallower waters because of a reduction in wave energy. As long as the 
leading edge of the seagrass bed remains in place, the area behind 
becomes easier and allows for more seagrass to establish (Koch 2001). 
Waves can sometimes benefit seagrasses by removing epiphytic growth 
that can cover the leaves, which reduces their photosynthetic ability. 
(Kendrick and Burt 1997; Koch 2001; Koch et al. 2006b). Wave energy 
also reduces self-shading by keeping the leaves moving back and forth. 
(Koch 2001). 

Kelly, Fonseca, and Whitfield (2001) generated a model to select areas for 
seagrass restoration efforts using a number of hydrologic factors. The 
amount of fetch, known as the relative exposure index, was found to be a 
major factor for restoration. Areas of high fetch were estimated to have 
low restoration chances, while areas leeward of islands, or other protective 
features, had a higher chance of restoration success. 
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Currents 

Current and wave energy exchanges the water around leaves, aiding in 
nutrient and carbon diffusion, which lead to better growth (Nikora, Goring 
and Biggs 2002). Similar to waves, current also rids the leaf surface area of 
epiphytic organisms. Areas that are too quiescent tend to be poor habitat 
for seagrasses (Koch 2001). For SAV survival, nutrients and gases must 
pass between the SAV external tissues and the surrounding water and 
sediment. The diffusive boundary layer acts as a barrier between the plant 
tissues and surrounding environment. Water current strength plays a 
significant role in the size of the diffusive boundary layer. Weak currents 
are associated with large diffusive boundary layers. Larger diffusive 
boundary layers make it harder for plants to uptake nutrients through the 
leaves from passing water (Fonseca and Kenworthy 1987). When water is 
stagnant around SAV surface tissue, the partial pressure of nutrients and 
gases is reduced, decreasing diffusion (Koch et al. 2006b). Water currents 
are usually 2 to 10 times slower in seagrass beds compared to adjacent 
bare areas, hypothesized to be due to the seagrass (Carter et al. 1988; 
Rybicki et al. 1997). While the current reduction is usually beneficial for 
establishing seagrass further down current, the leading seagrass area may 
reduce the current too much, making the diffusive boundary layer too 
great for seagrass growth. The current velocity required varies by species 
because of variation in leaf shape. The critical diffusive boundary layer 
distance for Cymodeca nodosa is 98 µm and 298 µm for T. testudinum 
(Koch 1994). In general, most seagrasses prefer sustained current 
velocities between 5 and 100 cm/s (Koch 2001). For example, in the 
Chesapeake Bay, seagrass species require a minimum sustained current of 
3–16 cm/s to survive, with a maximum of 50–180 cm/s (Chesapeake Bay 
Foundation 2000). 

Storms 

The impacts of storms on seagrass communities seem to be highly 
variable, with frequent weak storms causing larger impacts than 
infrequent strong storms. Large storm events initially appear to be very 
destructive to seagrasses because of removal of aboveground leaf material, 
covering of plants by shifting sediments, increased light attenuation, and 
uprooting of the plants (Preen, Long, and Coles 1995; Short and Neckles 
1999; Cabello-Pasini, Lara-Turrent and Zimmerman 2002; Michot et al. 
2002). Specific to Mississippi Sound, Eleuterius and Miller (1976) and 
Eleuterius (1987) described the destruction of 1400 ha of seagrass beds 
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due to Hurricane Camille in 1969. However, a more recent study by Carter 
et al. (2011) looking at historical aerial photos suggested Hurricane 
Camille was not as destructive as originally thought, as the grasses were 
able to recover after initial damages were incurred. 

Seagrasses seem to be adapted to withstand acute damage caused by 
strong storms such as hurricanes (Dawes et al. 1995; Franze 2002; Carter 
et al. 2011). Rasheed (2004) found multiple species of seagrass can use 
asexual reproduction to recolonize areas disturbed by experimental 
disturbance. Byron and Heck (2006) conducted seagrass surveys post 
Hurricane Ivan in 2004 and Hurricane Katrina in 2006 along coastal 
Alabama. Posthurricane surveys showed no change in seagrass coverage 
because of Katrina, and 82% of the seagrass beds were still established 
after Ivan. Michot et al. (2002) found no negative effects on seagrass 
coverage in Guatemala and Honduras from Hurricane Mitch in 1998. 

Climate change 

The direct effects due to wind, such as leaf blade damage and burial of 
aboveground biomass by sediment movement, may not be as detrimental 
to seagrasses as previously thought. Climate change with cascading effects 
of chronic freshwater and nutrient inputs from increased rain because 
warmer temperatures are more likely to be detrimental than acute burial 
or shifting sediment. As described in the hydrologic section, fresh water 
can hinder seagrass reproduction or cause death. Increases in the amount 
of routine storm freshwater runoff is a chronic problem for seagrasses, 
known as osmotic shock (IPCC 2013). Climate change may lead to higher 
frequency and increasing strength of storms, which may cause more 
flooding and nutrient loading throughout the US territories. The increase 
of fresh water into seagrass habitat will lower salinities and hinder the 
growth of true seagrasses (IPCC 2013). This lowered salinity will allow 
species typically found in brackish water to spread. 



ERDC/EL SR-21-6 44 

 

7 Summary and Discussion 

Geomorphology and bathymetry 

SAV habitats occur across a wide range of coastal environments whose 
water quality, sedimentology, hydrologic regime, and many other factors 
interplay with the geomorphology and bathymetry of the area. The basic 
requirements for SAV growth, outlined in this report, must be 
accommodated in each environment, limiting the types of coastal 
environments where SAV can thrive. These environments can be roughly 
categorized according to their geomorphological and bathymetric 
characteristics into back-barrier platforms and protected shoals; bays, 
lagoons, and sounds; estuaries; adjacent to rocky islands; and swash zone. 
The vast majority of coastal SAVs grow in protected areas, leaving only a 
few species tolerant of swash-zone conditions. 

Physical properties and sediment dynamics 

The primary sediment-dynamics controlling factors for SAV growth are 
erosion, resuspension, deposition and subsidence. Tide-dominated 
environments tend to show increased deposition in SAV beds, while wave-
dominated environments are more susceptible to erosion within SAV beds 
(Madsen et al. 2001). Most natural deposition and erosion do not 
negatively influence SAV growth, or if they do, the SAV is able to easily 
recover. In overall higher-energy environments, however, (for example, 
barrier island systems with large inlets), large erosion and deposition 
events have been observed to kill SAV. Anthropogenic erosion and 
deposition, including dredging, dredge material placement, recreation, 
and fishing, can also cause SAV death. 

Sedimentology 

The sedimentology of the substrate in which SAV is growing plays a variety 
of roles in SAV health. The primary influencing factors include grain size, 
organic matter content of the sediment, and nutrient content of the pore 
waters. These factors interact to influence SAV habitability. 

Finer-grained substrates reduce pore-water exchange within the water 
column, particularly when the sediment is clay rich. These sediments hold 
nutrients in the pore water more efficiently but can also foster reducing 
conditions, making the sediment unsuitable for SAV growth. A highly 
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compacted or very clay-rich substrate can be difficult for SAV roots to 
penetrate. 

Coarse-grained materials (typically sand) allow for increased pore-water 
exchange and remain more oxygenated beneath the sediment-water 
interface. With a very high rate of pore-water exchange, nutrients can 
become quickly depleted, and if the grain size is too course, SAV may have 
a hard time anchoring effectively. Coastal and marine SAV has been 
observed growing in substrates ranging from ~2%–50% fines, with 
different species tolerating various parts of that range best. 

Water quality 

The quality of the water in which SAV grows is one of the most important 
deciding factors for SAV habitat. In fact, most studies report that light 
limitation, related to water clarity, is the primary limiting factor (Orth and 
Moore 1983; Cambridge et al. 1986). Water clarity is affected by 
suspended particulate, both organic and inorganic, and is controlled by a 
variety of processes. 

Coastal and marine SAV does not require high nutrient concentrations to 
thrive and takes up of these most from the substrate (Koch 2001). 
Dissolved nutrient overloading from runoff produces very detrimental 
effects on coastal SAV communities (Orth and Moore 1983; Cambridge et 
al. 1986; Pulich and White 1991; Duarte et al. 2007; Lee, Park and Kim 
2007; Short et al. 2007). 

Salinity naturally fluctuates in the coastal environment, and coastal SAV is 
adapted to a certain level of variation. But extreme reductions in salinity 
can heavily damage seagrass SAV populations in particular (Furnas 2003; 
Lirman and Cropper 2003; Collier et al. 2014). The opening of the Bonnet 
Carre Spillway in Louisiana in 1973, for example, led to mass seagrass 
death and reduction in diversity (Eleuterius 1987; Moncreiff 2007). 

As the global climate changes, these environments will see continued 
increases in dissolved carbon dioxide concentrations as well as water 
temperatures. Increased dissolved carbon dioxide concentrations tends to 
increase SAV growth (Zimmerman et al. 1995, 1997; Palacios and 
Zimmerman 2007). Coupled with an increase in water temperature, 
however, the net effects will likely be deleterious (Repolho et al. 2017). 
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Hydrologic regime and weather 

Marine and coastal SAV require a minimum amount of water flow for 
circulation, to supply fresh nutrients and remove waste. If currents or 
waves become too strong, however, the SAV may be damaged. The ideal 
energy level varies between species and regions, but typical coastal SAV 
species require habitats deeper than strong wave orbitals, or protected 
from waves completely, with current velocities between 5 and 100 cm/s 
(Koch 2001). 

Occasional storm events causing larger than usual waves and higher 
current velocities can temporarily damage SAV, but they will often recover 
quickly. High-energy conditions can even remove harmful epiphytic algae 
from photosynthetic surfaces of the SAV. If severe storms become too 
frequent, or overall wave exposure is increased, permanent SAV loss is 
often observed. 

Discussion and conclusions 

This review provides a summary of the most important controlling factors 
for coastal and marine SAV habitats and how each of these ties into the 
system as a whole. It is widely reported that the main controlling factor for 
SAV habitats in the coastal zone is light limitation, influenced by the 
complex interaction of water quality, energy (waves and currents), 
sedimentology, and geomorphology. This complexity illustrates why all of 
these factors are important to consider when attempting to understand a 
particular habitat. Measuring light availability alone will not reveal the 
root cause of limitations or benefits, as it could be caused by a variety of 
factors. Many coastal projects, including engineering and restoration 
efforts, affect SAV habitat. Planning for all coastal projects conducted near 
or in SAV habitat should address how it will affect that habitat, and all 
potentially limiting factors described in this report must be considered. 

Of course, not every factor mentioned in this report is important in every 
system, so steps must be taken to narrow down and understand 
controlling factors in a given system. Consider first the specific areas 
where SAV is currently or was historically present in a particular location. 
Can any spatial patterns be recognized in the present or through time? 

Consider next the dominant characteristics of the given environment. Is it 
an open bay, a marshy estuary fringe, a back barrier, an open nearshore 
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environment, a rocky bay, or adjacent to islands? Each of these 
environments has a specific set of characteristics as it relates to SAV 
habitats, as discussed in section 1. Consider the limiting factors of these 
specific environments and their individual characteristics and decide 
whether they are impacting SAV in the area. Each environment’s unique 
hydrologic regime and controlling factors related to currents and waves 
may come into play. What causes the highest, potentially SAV-limiting 
energy in the area? Is it waves during storms, or the tides, storm surge, or 
possibly boat wakes? Various substrate types exist in differing 
environments, and each will see differing patterns of erosion and 
deposition or impacts due to sediment characteristics. Each may also face 
varying water-quality issues, from nutrient overload and other pollution 
issues, or salinity fluctuations. Human activities such as dredging, fishing, 
and recreational boating may also affect the environment. 

Bringing together current or historical patterns of SAV in the area and 
narrowing down the controlling factors is the first step to making the most 
important and effective decision when it comes to restoration, replanting, 
conservation, or mitigation during local projects. Planning for coastal 
engineering projects can benefit from a similar method. A basic 
understanding of the major limiting factors for SAV in that area, as well as 
a few small changes in planning, could possibly prevent mass SAV loss or 
unwanted SAV growth. 
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