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1 SUMMARY

In NAPLES project, we proposed qualitative and quantitative definitions of privacy suitable for business
processes, developed static analyses allowing to check whether a process satisfies a privacy definition,
and integrated the modeling tools and analyses into a single coherent tool. The tool was further used to
model and analyze processes by other performers of the Brandeis program, which the NAPLES project
was a part of.

Our proposed privacy definitions and analyses fall into three different categories. In the first category,
we have methods that add expressive annotations to the collaborative business process models, telling
which privacy-enhancing technologies are used by them and how they connect with each other. The
analyses accompanying the modeling methods find out, whether a dataset may become known to some
participant of the process, and if it may, then is it perhaps still protected by some privacy-enhancing
technology. The second category of analyses take into account the internal structure of the datasets, and
make use of precise descriptions of the operations that the tasks in the business process apply to the
datasets. The analyses report, which component of which input dataset may influence which component
of which output dataset, under which condition the influence is possible, and what kind of processing
must happen to the influencing information. These influences may be compared against the policies
the participants may have on their data. The third category of modeling tools and analyses allows the
leaks to be characterized quantitatively. Building upon the notions of differential privacy and guessing
advantage, we develop a rich language for stating quantitative privacy policies. Again considering the
operations performed by the tasks of the business process, our analyses give a numeric description of
the amount of information that reaches the output datasets from the inputs.

In this report, we give a detailed description of our modeling and analysis techniques, as well as
describe the experiments and evaluations we have done with them either on our own, or in cooperation
with other performers of DARPA’s Brandeis program. We also describe the Pleak tool, which gave a
unified interface to most of our analyzers. Finally, we describe a transition activity related to cyber
threat information sharing, which involved both the modeling of sharing processes, as well as their
implementation. In the implementation, we chose to apply secure multiparty computation; the effect of
this privacy-enhancing technology was analyzed with the help of Pleak.

1
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2 INTRODUCTION

This is the final report of the “Novel tools for Analyzing Privacy LEakageS (NAPLES)” project, which
ran from October 2015 till January 2021 with the funding from DARPA’s “Brandeis” program 1. The
program sought to develop the technical means to protect the private and proprietary information of
individuals and enterprises, thereby enabling safe and predictable sharing of data in which privacy is
preserved. In this report, we present a detailed account of the results achieved during the project.

2.1 Initial Goals of The Project

In NAPLES, we strove to create methods for analyzing and improving the privacy of enterprise business
processes (BP), and to package these methods as a tool. The tool was intended to be used by BP analysts,
developers and maintainers in order to understand the privacy implications of the business processes
used by their organizations. In order to come up with such methods, and to build such tool, we needed
to research, design and implement the following results and artifacts:
Framework of privacy claims We intended to propose a quantitative definition of privacy that is at the

same time composable, easily explainable, and allows its granularity to be tuned to the particular
BP and BP components we are analyzing.

Library of Privacy Enhancing Technologies (PETs) This library was intended to contain multiple
methods to enhance activities or other components of a business process with secure computing
and information release mechanisms involving data reorganization, sanitation or processing.

Program privacy analysis Given the operational description of a BP component in the form of a pro-
gram with clear semantics, we planned to develop techniques deriving a characterization of this
component in terms of its privacy behavior, or a conservative approximation of it.

Business process privacy analysis Given a business process described in the Business Process Model
and Notation (BPMN), and given a characterization of the privacy behaviors of the components
of the BP, this analysis will characterize the privacy behavior of the entire BP by exploiting the
composability of the proposed privacy definition. Furthermore, given the components available
in the PETs library and given a privacy policy, we intended to come up with ways to propose
semantics-preserving enhancements of the BP to achieve the policy in question. We also intended
to quantitatively characterize the (loss of) accuracy of BP components when enhanced with differ-
ent PETs and take into account trade-offs between accuracy and privacy when optimizing business
processes.

Toolbox We intended to package the analyses and optimizations in a graphical tool built on top of an
existing open-source BPMN tool used by practitioners. We were eyeing bpmn.io as the basis of
our toolset.

2.2 Modeling Collaborative Business Processes

A business process is a collection of tasks and activities consisting of employees, materials,
machines, systems, and methods that are being structured in such a way as to design, create,
and deliver a product or a service to the consumer [1].

1DARPA Brandeis—http://www.darpa.mil/program/brandeis

2
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Figure 1: Elements of the BPMN Notation

The product, its raw materials, and the side-effects of its production may also be digital, raising questions
about the privacy properties of the processes.

A suitable notation is needed to introduce rigor into discussions about business processes. Business
Process Model and Notation (BPMN) [2] has emerged as the standard operational description of busi-
ness processes. BPMN was originally developed to provide a notation that was easily understandable
by all business users, from technical analysts implementing an information system to business analysts
to business users who manage the processes. The BPMN notation allows one to capture processes
performed within an organization and across organizations. The latter type of process is called a col-
laborative process and is represented by a BPMN collaboration diagram (or BPMN collaboration for
short). A BPMN collaboration consists of a set of processes, each performed by an independent party
(e.g., buyer and seller). These processes are executed in parallel and synchronize via message exchanges
(dashed arcs). Each process in a BPMN collaboration is captured as a separate pool (denoted as a rect-
angle). A process consists of tasks (rounded rectangles), events (circles) and gateways (diamonds). A
task represents a logical unit of work. An event represents something triggered by the environment (e.g.,
a message). A gateway is used to capture a choice (XOR gateways, marked by a “×”) or the parallel
execution or synchronization of multiple branches (AND gateways, marked with a “+”). These three
types of elements (tasks, events, gateways) are connected via sequence flows (directed arcs). A sequence
flow indicates that the source element must be executed before the target element. To capture data ma-
nipulation, each task may be associated (via directed dotted arcs) to one or more input or output data
objects. The intended meaning is that when the task is executed, it reads the current state of each input
object, and when it completes it writes into the output data objects. These concepts are summarized in
Fig. 1.

Figure 2 shows a very simple business process at a telecommunications (telco) services provider.
The telco provider is represented by a pool. There is a separate pool below it, corresponding to a
contractor hired by the telco to provide services. To provide its services, the contractor needs to access
weekly “service summary reports” produced by the telco. Inside the telco’s pool, there are two roles
represented by the lanes labeled “Data Analyst 1” and “Data Analyst 2”. The process starts when a new
summary report is created (cf. the start event labeled “summary report required”). First, Data Analyst
1 performs a (user) task wherein a set of call records are accessed in order to prepare a call summary
table. This collection of call records (represented by a “collection” data object) may contain sensitive
data. If no privacy protection mechanism is in place, then the data analyst sees all the call records. As a
result of this task, a “Call summary table” is produced. Next, a script task is run that combines this “Call
summary table” with another collection of “Data connection records”, in order to produce a “Combined
report”. The combined report is checked by a Data Analyst 2, who may apply some modifications. The
process ends with an event denoting the fact that the combined report is sent out to the contractor.

2.3 NAPLES Toolbox

In NAPLES, we built Pleak — https://pleak.io — the Privacy LEAKage analysis tool. It integrates
the implementations of our modeling and analysis techniques into a graphical modeling and analysis
environment that is familiar to business process analysts. Pleak takes as input a description of a business
process in BPMN and allows users (analysts, developers) to define privacy properties of the BP compo-
nents. Given this input, the tool produces a report indicating how much information from its different
input data the BP leaks to each user and external application involved in the process.
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Figure 2: Example of a BPMN Process Model with Flows and Tasks

Pleak allows the models and analyses to be shared between different analysts. We considered Pleak
to have two main usage scenarios.

Privacy audit of an existing system. In this scenario, the stakeholders are System owner–has built
or otherwise acquired the System, Customer–the party who is interested in the audit results, can be the
same party as the System owner, Analyst–the party undertaking the risk analysis or privacy audit. They
would use Pleak as follows:

1. The Customer contracts the Analyst to analyze the System owned by the System owner.

2. The Analyst acquires details about the System from the System owner thorough documents, inter-
views or any other means.

3. The Analyst uses Pleak tools to model the System.

4. After modeling, the Analyst uses Pleak analytics and tools to answer the following questions.

4.1 Which stakeholders of the System will learn which private data elements?
4.2 To what extent wrt differential privacy does the leakage disclose private data?

5. The Analyst can specify undesired leakages and ask Pleak to suggest Privacy Enhancing Tech-
nologies to reduce or remove those leakages.

6. The Analyst collects all finds and presents them to the Customer.

Improving the privacy guarantees of a new IT system. In this scenario, the stakeholders are Cus-
tomer–has commissioned the building of the System, System developer–the party who is building the
system and wants to ensure that private data is processed, Analyst–member of the System developer
team who is responsible for privacy guarantees of the system They would use Pleak as follows:

1. The Customer contracts the System developer to build the System.

2. The System developer assigns the Analyst to support the development team with the privacy guar-
antees of the System.

3. The Analyst collaborates with the System developer team to jointly design the System.

4. The Analyst uses Pleak tools to model the System’s design.

5. After modeling, the Analyst uses Pleak analytics and tools to answer the following questions.
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5.1 Which stakeholders of the System would learn which private data elements?
5.2 To what extent wrt differential privacy would the leakage disclose private data?

6. The Analyst can specify undesired leakages and ask Pleak to suggest Privacy Enhancing Tech-
nologies to reduce or remove those leakages.

7. The Analyst collects all finds and works with the System developer team to improve the design.

8. The Analyst repeats the process with the improved system design until the desired privacy guar-
antees have been achieved.

We believe that a single tool integrating different analyzers, facilitating cooperation between ana-
lysts, and providing a unified user interface to analyses and modeling tools has been immensely helpful 
for its users among the different performers of Brandeis, and is currently helping the take-up of the re-
sults of NAPLES in follow-up projects, products, and services. We discuss the architecture of Pleak in 
Sec. 3.4 and describe its usage in Sec. 4.4.

2.4 Three Kinds of Analyses

In NAPLES, we have built a large number of privacy analyses and accompanying modeling tools sup-
porting business processes of different kinds and different complexity. We find that there is a natural 
taxonomy of these analyses. Namely, considering the information we have about the data objects in a 
business process, and about the opera-tions applied to them, the analyses fall into the following three 
categories.

Boolean analyses. These analyses consider each dataset as a whole, and report whether or not a given 
(intermediate or final) output of a process may reveal information about a given i nput. These analyses 
request information about the nature of the tasks and the flows in the process, and use i t to refine the 
nature of detected dependencies. The main kind of information that the analysis uses, concerns the usage 
of privacy-enhancing technologies at the tasks and the flows.

Qualitative analyses. These analyses explain how the outputs depend on inputs. If the data objects 
have structure, then the analysis result may describe, which components of the outputs depend on which 
components of the inputs. The explanation may state, that the dependency is present only if some pred-
icate evaluates to true. It may also state that the dependency is there, but only through some sanitization 
function. In order to deliver these results, the analysis has to know how the tasks manipulate the data. 
Information about the usage of privacy-enhancing technologies can also be useful for the analyses.

Quantitative analyses. These analyses characterize the amount of information that flows from a par-
ticular input to a particular output. We have considered a number of different measures, according to 
which the analysis is done, mostly related to differential privacy and guessing advantage. In order to 
provide such results, these analyses also need to know how the components of the process transform the 
data. Contrary to the previous kinds, these analyses may also derive useful inferences from the actual 
values of input data objects, onto which the business process is applied.

Table 1 summarizes the different analyzers we have integrated into Pleak. All of them, as well as the 
theory behind their construction, are covered in further sections of this report.

2.5 Secure Multiparty Computation in NAPLES

During the final year of NAPLES, the scope of the project was extended to use Pleak2 and Sharemind 
MPC3,4 technologies as a part of an ongoing project. This served two purposes:

2Pleak web page: https://Pleak.io/home
3Sharemind web page: https://sharemind.cyber.ee/
4Sharemind product explainer: https://www.youtube.com/watch?v=AVV35W-dehc
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Table 1: Summary of Analyzers

Boolean Qualitative Quantitative
Simple and
Extended
Disclosure

Leakage
Detection

BPMN
Leaks-
When

SQL
Leaks-
When

Global
Sensitiv-
ity

Combined
Sensitiv-
ity

Guessing
Advantage

Model
Type

Collaboration (multiple pools allowed) Data processing
workflow (single
process)

Data pro-
cessing
workflow
or Collabo-
ration

Model re-
strictions

Only mean-
ingful for
multiple
pools

Reasonable
for mod-
els with
branching

One start
event
onlya

No branching No branching, Final
query has a numeric
output (aggregation
query)

PETs
support

All stereo-
types

Secret shar-
ing, Encryp-
tion

Encryption,
Secure
Channel

Partial
supportb

Differential privacy

Script
language

Not used Pseudocode Postgre SQL

Input
data

Not used Required

Policy Not used Data shar-
ing policy

Not used Guessing
range

Attacker
knowl-
edge

Not used Private data
reconstruc-
tion

Not used Attacker’s prior
knowledge about the
data

aover all the pools
bBy integrating with the extended disclosure report

• Verify the usability of these technologies and learn what additional improvements may be required
to increase the usefulness and usability of the technologies.

• Use Pleak and Sharemind capabilities in a real-life project.

The real-life project in for transitioning Pleak and Sharemind is the Cyber PA (Project Agreement)
project5.

In general, it was decided to
• Test information sharing and processing in a privacy-preserving environment where the informa-

tion shared is not seen to the stakeholders, the processing of data is done in an encrypted form
and the output of the processing contains valuable information for all contributors without reveal-
ing confidential information. The chosen privacy-preserving technology was the aforementioned
Sharemind MPC.

• To use Pleak in order to model the processes of the Sharmind MPC prototype and additionally,
use the Pleak tool, in order to model the preliminary Cyber PA project processes.

2.5.1 Cyber Project Agreement (PA). The main goal of the Cyber PA project is to enable cyber threat
information sharing between defense forces of allied nations. As no one is alone in cyberspace and cyber
threats are becoming more frequent, complex, destructive and coercive, information sharing and creation
of joint cyber situational awareness is becoming increasingly important.

In order to find and notify partners of cyber threats one needs to be able to identify if and when
such an event has taken place. With the ever-increasing amount of (system) logs being produced daily
it is no longer feasible for a single individual / organization to be able to fully process and analyze all

5Cyber Project agreement press release: https://cyber.ee/news/2020/01-14/
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log entries to detect anomalies. Attacks may also be devised in a way that no single entity can detect
anomalies based solely on their individual logs. Furthermore, one can only find what they know to look
for. Meaning for successful threat identification from logs, event correlation methods need to be used
to bring together logs and threat identification markers from both government and public sector. Even
though the key focus is to initiate cyber threat information sharing between nations it would be highly
beneficial for national security if logs from critical organizations, like telecom provides, can also be used
for correlation.

There is good reason why cyber threat information sharing and joint log correlation are not yet ex-
tensively used. The information contained within logs and the markers to identify potentially unwanted
events are sensitive by nature. They may include personal or confidential information that cannot be
shared due to legal restrictions or in order to protect the organization / nation. Also, nations may not
wish to share with each other what sort of threats they are monitoring for. Security and privacy / confi-
dentiality are highly critical in order to enable such sharing and log correlation.

2.5.2 Sharemind Multiparty Computation (MPC). Sharemind (illustrated in Figure 3) is a privacy-
preserving database and analysis system that allows you to combine confidential data from several
sources and analyze it without ever seeing the data itself. It also allows data owners and interested
third parties to enforce data usage policies.

Figure 3: Sharemind Concept

Sharemind MPC is a practical implementation of secure multiparty computation technology with the
emphasis on performance and ease of use. Three independent Sharemind hosts run the Sharemind MPC
software. Data Owners share their data between the three Sharemind Hosts, resulting in a distributed
database. Analysts can query this database, but only with the approval of all Hosts who verify that the
query conforms to the data usage policy.

Sharemind MPC supports several different MPC schemes called protection domains, with the
shared3p protection domain being the most advanced one. It stands for 3-out-of-3 secret sharing with
passive security and uses additive secret sharing scheme, where a secret value s is secret shared as
follows:

s1 ← random(),

s2 ← random(),

s3 ← s − s1 − s2, (1)

such that s = s1 + s2 + s3. All these computations are done modulo the corresponding data type size,
e.g. modulo 264 for 64-bit (unsigned) integers. Note that this modulo computation happens automatically
for primitive data types like (u)int8, (u)int16, (u)int32 and (u)int64. More complex data types (e.g.
floating-point numbers) use structures of primitive data types.

As an example consider Figure 4, suppose we have two Data Owners with their secret values – their
ages 25 and 33 – and a third party – an Analyst – who wants to learn the sum of ages.
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Figure 4: Secret Sharing Example Calculation

In additive secret sharing, to secret share her age, the first user picks two random numbers modulo
100. Let these be 57 and 13. The third share is computed by subtracting the random values from the
secret value. 25 minus 57 minus 13 is -45, but modulo 100 it is the same as 55. The Data Owner
now distributes these three shares – 57, 13 and 55 – between the three Sharemind hosts over secure
authenticated and encrypted communication channels. None of the shares alone, nor any pair of these
shares give any information about the original secret value. However, note that by adding up all the three
shares, it is possible to reconstruct the original value. The second Data Owner acts similarly, he first
generates two random numbers – 44 and 57 – and then computes the third share by subtracting these
from the secret value 33. He distributes the shares among the Sharemind hosts. With additive secret
sharing, addition is a local operation so each Sharemind host can just locally sum together their shares
from the Data Owners. The first Sharemind host computes 57 plus 44 which is 101 but that is equal to 1
modulo 100. And so on. Next, each Sharemind host sends its partial result to the Analyst.

Finally, the Analyst reconstructs the computation result by adding up the individual received shares.
1 plus 70 plus 87 is equal to 158 that is equal to 58 modulo 100. And 58 is exactly 25 plus 33! Analyst
has learned the sum of two ages without him learning their individual secret values. Sharemind hosts
have not learned anything about the secret values not the computation result.

For even more information on Sharemind MPC please reference the Sharemind technical overview6

and Developer Zone7.

2.6 Collaborative Work

Being a part of the Brandeis program, we had a number of great collaborations with other performers.
The collaborations took place inside the Collaborative Research Teams (CRT), set up at the beginning
of the program. Our contributions to the CRTs have shaped the ways of how the technologies developed
by different projects are integrated. The collaborations, which we detail in Sec.4.5, were an explicit goal
of NAPLES, and we consider them significant results of the project.

We are grateful to DARPA and AFRL for the opportunity to perform this work, and to other per-
formers of Brandeis for the fruitful collaborations.

6Sharemind Privacy Ecosystem Technical Overview: https://repo.cyber.ee/sharemind/www/files/
technology/sharemind-technical-overview.pdf

7Sharemind Developer Zone: https://docs.sharemind.cyber.ee/2019.03/prologue
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3 METHODS, ASSUMPTIONS, AND
PROCEDURES

3.1 PE-BPMN

Privacy-Enhanced BPMN (PE-BPMN) notation is our extension of the BPMN modeling language to
capture details of privacy enhancing technologies. PE-BPMN was specified in [3, 4] and this section
gives an overview of the language extension as well as its implementation in Pleak.

3.1.1 Classification of Privacy Enhancing Technologies. We base our PET description on the PET
classification from [5], our look on it is given in Table 2 as this generalisation is more useful for the
privacy analysis. We identify different goals that usage of PET can have and group the technologies
from [5] based on their goals. Note that sometimes the same PET could be used to obtain many goals.
The overview of Table 2 lists some example technologies, the main body of the PET library considers
the technologies used in the Brandeis program.

Table 2: Classification of Privacy Enhancing Technologies

Goal Target Examples of technology
Communication
Protection

Secure Client-Server encryption, TLS, IPSec, End-to-End encryp-
tion, PGP, OTR

Anonymous Proxies and VPN, onion routing, mix-networks, broadcast
Data Protection Integrity Message authentication codes, signatures

Confidentiality Encryption, secret sharing
Entity Identity based Username and password, single-sign-on
Authentication Attribute based Credential used only once, zero-knowledge proofs
Privacy Aware
Computation

Confidential in-
puts

Homomorphic encryption, secure multiparty computation,
private information retrieval

Privacy adding Differential privacy, k-anonymity, cell suppression, noise
addition, aggregation, anonymization, dimensionality re-
duction

Human-Data
Interaction

Data usage
transparency

Information flow detection, logging, declarations about in-
formation usage

Intervenability Information granularity adjustment, access control

Secure communication means that the encrypted contents can travel between participants without ex-
ternal parties seeing or modifying them, e.g. providing both confidentiality and integrity. In anonymous
communication the interacting parties can not be deduced by an observer. The general goal achieved in
both cases is communication protection.

Data protection ensures integrity and confidentiality of the data either in transit or in storage. Hence,
protected data can not be accessed or modified by non-authorized parties. Confidential data may allow
confidentiality preserving computations that produce new confidential data.
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Entity Authentication is a procedure for proving that user corresponds to the claimed attributes. Iden-
tity authentication requires some identity provider to verify all accesses (e.g., based on a fixed account).
Attribute based methods deal with proving one’s membership to some group, without identifying herself.

Privacy-Aware Computations focus on the utility of private data. Computations on confidential
inputs allow one to securely process various operations without removing the protection mechanisms.
We assume the ideal case where such computations fully protect the privacy of the inputs (up to the
potentially public output). Privacy adding computations can add a layer of privacy to their outputs
instead of fully protecting the inputs.

Human-Data Interaction is a field that combines technical means and policies with user experience.
In essence, the users allowing some processing of their data should be knowledgeable about how and
why their data is used. In addition, they may be able to regulate the data processing. These inputs are
interleaved with security technologies that enforce the choices. Essentially, Pleak and all the analysis
described in this report enable more transparent data usage in processes that are modeled and analyzed.

Another recent systematic comparison of properties of PETs is given in [6] that could be used to
enhance the description of PETs and to build a decision tree. Our taxonomy combines the aim, data and
aspect ideas of [6]. However, [6] considers more technical aspects that would be useful to consider also
in the PETs data model. In addition, a different version of modeling privacy in data flows is considered
in [7] to better discuss General Data Protection Regulation (GDPR) impacts for an organization.

3.1.2 Privacy-Enhanced BPMN. Fig. 5 presents extensions of BPMN abstract syntax [2] with the
PET concepts.

Figure 5: Extension of the BPMN Abstract Syntax

The BPMN Data Flow is extended with Communication Protection. In common secure channels,
the message is hidden and can not be modified during transit. Thus, secure channels are straightforward
to model in the sense that the communication and privacy risks occur between different pools. We
introduce SecureChannel as a specialization of Communication Protection.

Most privacy related technologies result in specific tasks, thus BPMN Task is extended with abstract
PET-Task . Fig. 5 illustrates four specializations of PET-Task: Data Protection, Entity Authentica-
tion, Privacy-Aware Computation and Human-Data Interaction. The figure also illustrates examples of
syntax that we are using for concrete PETs.

Fig. 5 is not complete as other privacy technologies can be added from Table 2. However, it gives
an example to both single task and multi-task technologies as well as secure communication, making
extensions straightforward. We will consider concrete technologies in Sec. 3.1.3.
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Figure 6: PE-BPMN Generic and Concrete Stereotypes

Table 3: Stereotypes for PET Goals

Group Stereotype Parameter
Communication SecureChannel Privacy requirements
Data Protection ProtectConfidentiality Access specification, privacy requirements

OpenConfidentiality
Entity Authentication ProveAuthenticity

VerifyAuthenticity
Privacy aware computation PETComputation Computation script

3.1.2.1 Concrete Syntax. Extension of the BPMN concrete syntax to add PETs is done using stereo-
types with the general stereotypes given in Table 3 and their connection with some example concrete
stereotypes in Figure 6. The stereotype characterizes the changed type of the BPMN construct. Some
goals result in a series of tasks, for example data protection allows adding protection with Protect-
Confidentiality and removing it with OpenConfidentiality while others have one task. The parameter
describes the task, whereas the inputs and outputs should be clearly modeled as data objects or data
collections in BPMN.

Access specification can, for example, specify the decryption key or the sets of shares that qualify to
open the secret. Privacy requirements can specify security parameters or other properties of the scheme
that should be used. The computation script is the script or query that will be executed and could be used
by other analyzers in Pleak. The script fully characterizes the computations and dependency between
inputs and outputs.

We consider the concrete syntax for PETs in Sec. 3.1.3 using the group stereotypes as types of the
stereotype to specify which goal these stereotypes help to achieve.

3.1.3 Privacy Enhancing Technologies in PE-BPMN. This section summarizes various privacy tech-
nologies used in the Brandeis program. For each technology, we consider the participants and the tasks
together with their stereotypes. For each technology we also summarize the guarantees that it gives and
the assumptions that have to be satisfied for the guarantees to hold. The list of privacy stereotypes with
their main details can be found in Table 4.
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Table 4: Example Stereotypes

Stereotype General stereotype Input Output
SecureChannel SecureChannel data data
DPtask Privacy adding data data
SSsharing ProtectConfidentiality data shares
AddSSsharing SSsharing data additive shares
FunSSsharing SSsharing data function shares
PKencryption ProtectConfidentiality data, public key encrypted data
SKencryption ProtectConfidentiality data, secret key encrypted data
ABencryption ProtectConfidentiality data, public key, attributes encrypted data
SSreconstruction OpenConfidentiality shares data
AddSSreconstruction SSreconstruction additive shares data
FunSSreconstruction SSreconstruction function shares data
PKdecryption OpenConfidentiality encrypted data, secret key data
SKdecryption OpenConfidentiality encrypted data, secret key data
ABdecryption OpenConfidentiality encrypted data, secret key data
SScomputation PETComputation shares shares
AddSScomputation SScomputation additive shares additive shares
FunSScomputation SScomputation function shares additive shares
PKComputation PETComputation encrypted data encrypted data
SKComputation PETComputation encrypted data encrypted data
MPC PETComputation data data

3.1.3.1 Secure Multiparty Computation. Secure multiparty computation (SMC) is a mean to col-
laboratively compute without disclosing the private inputs to other participants in the computation. It
is commonly used to either outsource computations on private data or to jointly compute with private
inputs of many participants. A recent overview of common secure computation techniques can be found
in [8]. We have defined a stereotype MPC to denote generic secure multiparty computation, this can be
specified with the concrete methods described in the following.

3.1.3.2 Secret Sharing. Secret sharing introduced by [9, 10] splits private values among participants
so that some predefined groups of parties can collaboratively restore the secret. Secret sharing consists
of two major tasks: producing the shares (i.e., SSsharing) from a secret and to restoring the secret
from the shares (i.e., SSreconstruction). This part of secret sharing constitutes a data confidentiality
mechanism. Secret sharing is most useful if it is homomorphic and allows to compute on the shares (i.e.,
SScomputation) allowing then privacy aware computation on confidential inputs.

Different secret sharing schemes work on different initial data types and introduce specific assump-
tions. A secret sharing scheme is a (t, n)-threshold scheme if the data is shared among n participants and
any subset of t ≤ n or more participants is able to restore it. A threshold secret sharing scheme is correct
if t shares uniquely determine the secret and private if any set of t − 1 or less shares does not give any
information about the secret.

Assumptions:

• The sets of parties that can restore the secret are not colluding.

Guarantees:

• Share and any set of shares less than specified by the assumption does not leak information about
the shared secret.

• Only the threshold or qualified sets of parties can restore the secret.
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Figure 7: Secret Sharing Stereotypes and an Example of Input and Output Visualization in Pleak

• The secret can be restored from the qualified set of shares.

Figure 7 illustrates the secure computation stereotypes. SSSharing and SSReconstruction are sin-
gle task stereotypes, but SSComputation is a collaborative task done by a group of participants. Hence,
for this task we can form groups and give a computation script as an input. Note that all tasks in
a group share the script. The figure also illustrates how the inputs and outputs of the selected task
(SSComputation) are highlighted. The menu on the right is for specifying the group and script of the
computations for SSComputation task.

3.1.3.3 Additive Secret Sharing. Additive secret sharing (AddSS) is a simple (n, n) threshold secret
sharing scheme on finite rings. The secrets in AddSS are treated as elements of a finite ring and summing
all shares gives the secret. For a secret value x each participant Pi gets a randomly generated share xi

so that x =
∑

xi and all parties are needed to restore the secret. The AddSSsharing generates random
shares of the input x and AddSSreconstruction sums all shares of the same value together to restore the
share. Moreover, AddSS is homomorphic and the parties can collaborate to compute new values from
the secret shared inputs using tasks of type AddSScomputation that produces secret shared results.

AddSS inherits the assumptions and guarantees of a general perfect threshold secret sharing scheme.
Note that specific schemes used for AddSScomputation may raise more specific assumptions, for ex-
ample integrity protection mechanisms that have their own assumptions may be added to AddSS.

An example model for additive secret sharing can be found in https://pleak.io/app/#/view/
u2UaSnPGcAwB3yM9h6sG.
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3.1.3.4 Function Secret Sharing. Function secret sharing (FunSS) is a secret sharing scheme where
the inputs are functions as detailed in [11, 12, 13, 14]. The general idea is that an input function is secret
shared between participants and it is possible to collaboratively evaluate the function on public inputs.
It is a computationally secure (n, n)-theshold secret sharing scheme.

FunSS can be thought of as an additive secret sharing scheme for functions. In FunSS the secret
is a function f and the shares are also functions fi that the participants can evaluate. Moreover, if all
participants evaluate their functions fi on a common input x then fi(x) will be the additive shares of
f (x) =

∑
fi(x). The function is an input to FunSSsharing that produces the function shares. In theory,

it is possible to restore the function using FunSSreconstruction, but it is not commonly used as the
computation results are already AddSS shares and not FunSS shares.

The computation task of stereotype FunSScomputation take as input secret shared functions and
public values used to evaluate the function. The evaluation returns additive sharing. Follow-up compu-
tations can be carried out using AddSScomputation and the output can be revealed using AddSSrecon-
struction.

3.1.3.5 Garbled Circuits. Garbled circuits are a secure computation method for two parties. The
garbler encrypts a circuit and sends it to the evaluator. The evaluator has suitable keys to decrypt the
output of the circuit but can not get access to any other values in the circuit.

Essentially, the steps that either the garbler or evaluator has to carry out are asymmetric, hence
we have created the respective GCGarble and GCEvaluate stereotypes. In this case the garbling task
generates the circuit and the input encodings. The circuit can be sent to the evaluator however, oblivious
transfer is needed to transfer only the necessary encodings. This is illustrated on Figure 8 where the
GCGarble task has been selected. This task has two outputs that have distinct roles: the garbled circuit
and the input encodings. The script parameter fixes the actual meaning of the circuit. However, for
simplicity it is also possible to denote all this with GCcomputation stereotype assuming the computation
takes in parallel for both participants.

3.1.3.6 Oblivious Transfer. Oblivious transfer is a cryptographic protocol that allows the receiver
to receive one element of the sender elements so that the sender does not know which element was
received. In addition, it guarantees that the receiver can not learn information about the other elements
of the sender. We have created OTsend and OTreceive stereotypes for these cases. These can be either
drawn as two tasks executed in parallel or with a message flow from the sending to the receiving task.

3.1.3.7 Encryption. The modern study of encryption started with [15] and [16] lay the ground for
public key cryptography. In the general case, the encryption algorithms have three tasks: key generation,
encryption and decryption. However, some schemes also enable some computations on the encrypted
values. We discuss the meaning of secret key and public key encryption and illustrate some cases
where one can compute on the data using ciphertexts. For now we do not consider key generation and
distribution.

Assumptions:
• Correct key generation.

• Correct keys are used (the key distribution is secure).
Guarantees:
• Only parties holding the correct secret key can decrypt the ciphertext.

• Encrypted text does not leak its input.

– May leak some information (e.g length of the input).

3.1.3.8 Secret Key Encryption. Secret key encryption also known as symmetric encryption is an
encryption primitive where the encryption (SKencryption) and decryption (SKdecryption) key is the
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Figure 8: The Behavior of the Stereotypes in Garbled Circuit Based Secure Computation

same. For example AES is a symmetric encryption scheme. The secret key should remain private as
any party knowing it also can access the protected data. Symmetric schemes are generally more efficient
than asymmetric ones, but their use-cases are limited by the fact that the same key is used for both
operations. All parties that can encrypt data can also decrypt all data protected with the same key. In
some cases there can be some computations carried out on the encrypted data, these can be denoted by
SKcomputation.

3.1.3.9 Public Key Encryption. Public key encryption schemes, a.k.a. asymmetric encryption, use
a key pair or secret key and private key, where the latter can be freely distributed. Encryption
(PKencryption) requires a public key and produces a ciphertext that can be decrypted (PKdecryption)
with the respective secret key. Asymmetric encryption is useful in settings where many participants
should encrypt some data for processing and some other set of parties (that have the secret key) can
decrypt it. These two sets do not have to be the same as in the symmetric setting. In case the scheme has
homomorphic properties we can also compute some operation on the ciphertexts using PKcomputaton.
Public key encryption schemes are usually based on the assumption that some underlying computation
(e.g. factoring integers) is difficult. Hence, considering specific schemes can introduce new assumptions.

An example model featuring these stereotypes can be found in https://pleak.io/app/#/view/
BupEXriFLsPfVxBhJ1tr.

3.1.3.10 Homomorphic Encryption. Homomorphic encryption schemes can be both symmetric or
asymmetric, with the main addition that they can perform some computation. Fully homomorphic en-
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Table 5: PET Stereotypes for SGX Tasks

Stereotype Generic stereotype Inputs Outputs
SGXProtect ProtectConfidentiality data capsule
SGXComputation PETComputation capsule capsule or data
SGXAttestationEnclave ProveAuthentication measurement, nonce
SGXAttestationChallenge VerifyAuthentication challenge attestation outcome
SGXQuoting ProveAuthentication challenge, measurement quote
SGXQuoteVerification VerifyAuthentication quote, revocation list verification outcome

cryption [17] (FHE) enables to compute all arithmetic whereas somewhat homomorphic encryption
enables some more limited operations, for example, Paillier cryptosystem [18] allows addition of en-
crypted data. To stress the used computation scheme it is possible to use specific stereotypes, such as
FHEcomputation for computation on FHE scheme. Note that such computation expects the encrypted
inputs to be generated with a scheme that is a FHE scheme. The more general stereotypes SKcompu-
tation and PKcomputation can be used if the homomorphic scheme is not yet specified, on the other
hand we can also specify the encryption (FHEencryption) and decryption (FHEdecryption) to make the
models more explicit.

3.1.3.11 Attribute Based Encryption. Attribute based encryption is like public key encryption with
several private keys and attributes added. The public key defines all possible attributes and the secret
keys contain the attributes of the user. In every encryption operation the attributes that are allowed to
decrypt the resulting ciphertext are fixed.

The stereotypes for attribute based encryption reflect those of the public key encryption but allow
for multiple different secret keys and fixing attributes to the keys. Respectively we define stereotypes
ABencrypt and ABdecrypt for encryption and decryption tasks respectively. In addition for the keys we
define data stereotypes ABpublic and ABprivate. Each private key is joined with one public key where
public key defines all possible attributes and a private key fixes a subset of these attributes.

3.1.3.12 Software Guard Extension. Intel Software Guard Extension (SGX) introduced in in [19]
and [20] is a technology for secure computation with the help of special processor instructions. The
code is loaded into a secure enclave and executed on encrypted data. Our approach on SGX stereotypes
is summarized in Table 5.

Assumptions:

• Intel SGX Attestation Service is trusted.

• The computations are side-channel safe (otherwise the side-channels specify some leakage).

• SGX machines are attested.

Guarantees:

• All computations are carried out according to the code.

• All data is processed according to the script.

• Only the explicitly published outputs are leaked, all intermediate values are confidential.

• The attestation process guarantees that the attested machine is a SGX machine and establishes a
key for a secure channel with the enclave.

SGX Computation. SGX computation is a version of secure computation with the guarantees en-
forced by special purpose hardware instructions. The general idea is that the private data is processed
inside an enclave where it can be decrypted for processing, but the processing is protected by memory-
encryption.
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The inputs to the computation can be provided as both public values and encrypted with the public
key of the enclave. For private inputs, we use the SGXProtect stereotype to denote encryption with the
assumption that SGXcomputation stereotype can use the respective decryption key and encrypted inputs
to produce outputs without leaking the encrypted inputs to the party running the enclave.

The assumptions required for the security of SGX computation are as follows:
• The computation runs on SGX processor.

• The computation runs the expected algorithm.

• The encryption key is generated correctly.
All of these can be verified using the attestation process, hence adding attestation to the models can
leverage some assumptions that result from the use of SGXcomputation.

An example of the SGX computation combined with public key encryption can be seen in https:
//pleak.io/app/#/view/IYrBIt0hcGdZgDZGpUNV.

SGX Attestation. The attestation process is a cryptographic protocol outlined in [21] and [22] that
gives various guarantees. Firstly, it enables to check that the enclave is running the same software as
was initially loaded to the enclave. Secondly, it enables to verify that the code is indeed running in an
enclave of a processor with SGX capabilities. Finally, the process also establishes a secure commu-
nication channel between the attestation challenger and the enclave. The general process is the same
independently of the scenario and many different stakeholders of business processes can be in the role
or the attestation challenger or the enclave. We can use the SGXattestation stereotype on the challenger
side and the SGXquoting stereotype of the side of the enclave to abstract away the full process. These
two stereotypes require an introduction of a external Intel SGX attestation service stakeholder that has
the SGXquoteVerification stereotype.

The attestation has these main assumptions:
• Intel SGX processor design is secure.

• Intel attestation service is trusted and the revocation list is maintained properly.
It is possible to model the attestation process itself using the required PETs for reporting and signing

to go more into the details of the assumptions of the attestation.
The attestation is a version of authentication where the attestation challenger who executes SGXat-

testation type task gains guarantees about the enclave.

3.1.3.13 Protected Communication. Communication protection combines many tools like encryption
and authentication mechanisms. It can also accommodate anonymous communications, however this is
likely to introduce a larger context of other parties in the network. Hence, this category covers onion
routing and mixing networks as well as TLS or IPSec technologies. Network communication mostly
passes through many external parties that route the traffic, hence we consider all message flows to pass
through an external telecommunications provider that sees the network communication. At the moment
we only consider the two classes (secure and anonymous) and do not focus on the actual protection
technologies.

Secure Channel. We introduce one stereotype SecureChannel that specifies the message flow to be
secure. The understanding should be that the sender secures the message, it is transmitted through
the network without the possibility to either see the content or modify the integrity and the receiver is
able to remove the protection and use the sent element. In addition, many concrete technologies begin
with a protocol to agree on the communication parameters. However, we feel that in most processes
the possibility to denote flows as secure and to specify the parameters in which respect the security is
ensures is enough. It would be possible to remove this stereotype and introduce the respective joint
stereotypes for the sender, receiver and the telecommunication party.

Guarantees:
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Figure 9: Usage of SecureChannel Stereotype

• The transferred data is only revealed to the intended recipient.

• The data can not be modified while in transit.
The SecureChannel stereotype is illustrated on Figure 9. The stereotype itself appears next to the

data flow that denotes the network communication. The intended usage is that the input to the sending
task and the output of the receiving event are the same data object. The name of the transferred data
object can also be reflected on the name of the data flow to make it clearer. One participant holds the
data and performs a task of sending it, the receiving participant receives the same data as was sent. No
eavesdropper on the network learns the data.

3.1.4 PE-BPMN Implementation. Not all stereotypes can be added to all tasks, for example there has
to be suitable number of inputs and outputs. For some stereotypes, it can be that there are special roles
that the inputs or outputs have. For example, an encryption operation has two distinct inputs - the key
and the plaintext - that can be identified on the model. For some stereotypes the only restriction is that
there must be a certain number of inputs or outputs. Table 6 summarizes the implemented restrictions for
currently used stereotypes. It lists the number of expected inputs and outputs as well as parameters. In
case the inputs or outputs have special roles, then they are also named in the table and the user interface
allows to fix which data object has the specified role.

Table 6: Restrictions and Parameters of the Implemented Task Stereotypes

Stereotype Inputs Outputs Other parameters
ProtectConfidentiality 1: data 1: protected data
SGXProtect 1: data 1: enclave data group with SGX-

Computation
PKEncrypt 2: public key, data 1: ciphertext
SKEncrypt 2: secret key, data 1: ciphertext
ABencrypt 2: public key, data 1: ciphertext attributes of the

keys that can
decrypt

SSSharing 1: data 2 − . . .: shares number of shares,
threshold

AddSSSharing 1: data 2 − . . .: additive
shares

FunSSSharing 1: function 2: function shares
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OpenConfidentiality 1: protected data 1: data
PKDecrypt 2: private key, ciphertext 1: data
SKDecrypt 2: secret key, ciphertext 1: data
ABdecrypt 2: secret key, ciphertext 1: data
SSReconstruction 2 − . . .: shares 1: secret data
AddSSReconstruction 2 − . . .: additive shares 1: secret data
FunSSReconstruction 2: function shares 1: secret function
PETComputation 1 − . . .: protected data,

data
1: protected data or
data

script

SGXComputation 1− . . . : enclave data, data 1 − . . . : enclave
data or data

script, group with
SGXComputation,
group with SGX-
Protect, group
with SGXAttesta-
tionEnclave

PKComputation 1 − . . . : ciphertexts, data 1 : ciphertext script
SKComputation 1 − . . . : ciphertexts, data 1 : ciphertext script
MPC 0 − . . . : data (at least one

task in group has an input)
0 − 1: data (at least
one task in group
has an output)

script, grouped
with MPC

SSComputation 1 − . . . : shares, data 1: share script, grouped
with SSComputa-
tion

FunSSComputation 2: function share, evalua-
tion point

1: additive share grouped with Fun-
SSComputation

AddSSComputation 1 − . . . : additive shares,
data

1: additive share script, grouped
with AddSSCom-
putation

GCGarble 0: 2: garbled circuit,
input encodings

script, grouped
with GCEvaluate

GCEvaluate 2: garbled circuit, input
encodings

1: computation
output

grouped with GC-
Garble

OTSend 1: input data 0: grouped with
OTReceive

OTReceive 1: query 1: input grouped with OT-
Send

SGXAttestationEnclave 0-...: enclave measure-
ment

0: group with SGX-
AttestationChal-
lenge, group with
SGXComputation

SGXAttestationChallenge 0-...: challenge 1: attestation out-
come

group with SGXAt-
testationEnclave

SGXQuoting 2: challenge, measure-
ment

1: quote

SGXQuoteVerification

3.1.4.1 Type Checking. The stereotypes have specific integrity constraints that should be followed for
the privacy model to be syntactically correct. They require inputs and generate outputs that need to be
consistent to capture the meaning of the stereotyped activity. For instance, PKEncrypt requires an input
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of data in plaintext and a publicKey and results in a ciphertext, encryptedData. We expect that the
public key input to PKEncrypt is fixed as PKPublic. In addition, for many stereotypes we also need to
verify that the input is indeed of the type claimed on the model. e.g. that an input to PKDecrypt has
indeed come from PKEncrypt or PKComputation and is a ciphertext. Table 6 lists the input and output
types that the tasks expect and it can be used as a reference to see which sequences of stereotypes are
valid on the model. The label data can apply to any data object on the model meaning that there are
no restrictions on the inputs and the output is treated as having no protection mechanism. However, the
table does not list all restrictions that need to hold. For example, for PKDecrypt we also require that
the private key (of type PKPrivate) that is used to decrypt forms a key pair with the public key (of type
PKPublic) that was used to initially encrypt the data. For computations of PKComputation type we
expect that all ciphertext inputs correspond to encryptions using the same public key and the output is
then also considered to use the same key.

In short, it can be said that the protection mechanism (or protection type task) on the model limits the
correct processing of the protected data and can define parameters that need to be checked in computation
or opening phases. Table 7 lists the conditions that need to hold for the opening stereotypes to make
protected data public or for the computation stereotypes to be able to perform the computations.

3.1.4.2 Grouped Stereotypes. Stereotypes that belong to groups usually have restrictions to which
tasks there need to be in a group. Groups denote computations that somehow belong together. Mostly,
we group stereotypes that correspond to separate tasks of collaborative protocols. For example, MPC
tasks are grouped together.

For Intel SGX technology where we group all tasks carried out in a single enclave. For example,
tasks with SGXAttestationChallenge stereotype must come in pairs with a task with SGXAttestatio-
nEnclave stereotype, while this SGXAttestationEnclave stereotype task can also be in a group with
multiple SGXComputation tasks. We expect the SGXAttestationEnclave and SGXComputation to be
carried out by the same enclave if grouped together.

Table 8 summarizes the restrictions that apply to groups of different stereotypes. For tasks that need
to be executed in parallel we also require that they are executed by different stakeholders.

We are also covering minor BPMN standard checks for some stereotypes. For example, we confirm
the presence of a start event. If negative, we are unable to check parallelism (concerning reachability of
tasks) in models with gateways when we have no start event to begin the check from.

Validation results are reported as a list of errors (colored red) and warnings (colored orange) or as
a success message "Passed validation". While warnings are permitted, it is required that there are no
errors in the model to run the analysis outlined in the following.

3.1.5 PE-BPMN Privacy Analysis.

3.1.5.1 Simple Disclosure. Disclosure analysis summarizes who sees which data object and whether
or not they have access to the contents of the data. Simple disclosure report is a table where columns
are data objects from the process and rows are the stakeholders (lanes). Each cell is marked either V
(visible), H (hidden) or –. Marking – means that this stakeholder does not see this data object in the
process. On the other hand V means that the contents of this data are fully visible to the stakeholder.
H is the middle ground denoting that the participant has the data object, but it has a form of protection
on it (e.g. some type of ProtectConfidentiality or PETComputation taks produced it). For example, a
ciphertext will be denoted with H. This analysis is performed by traversing the model graph and tracking
the states of the data objects.

3.1.5.2 Data Dependency. Simple data dependency gives the data dependency matrix of the model.
The relations described there are either straightforward from the model data associations or result from
collaborative (grouped) tasks. Essentially the data dependency analysis gives an adjacency matrix for
the process from the viewpoint on the data in the process. We mark D (direct dependency) for cases
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Table 7: Conditions for Allowed Opening and Computation Stereotypes

Stereotype Success conditions
OpenConfidentiality input comes from ProtectConfidentiality or PETComputation
PKDecrypt ciphertext input comes from PKEncrypt or PKComputation, uses the

PKPrivate corresponding to the PKPublic used by the input
SKDecrypt ciphertext input comes from SKEncrypt or SKComputation, uses the

same secret key as the input
ABDecrypt ciphertext input comes from ABencrypt, uses a ABpublic corresponding

to the ABprivate key used for decryption and the decryption key has at
least one of the attributes fixed in the ABencrypt task

SSReconstruction all input shares correspond to the same secret shared value (outputs of
one SSSharing or one group of SSComputation), at least threshold
shares available

AddSSReconstruction all input shares correspond to the same secret shared value (outputs of
one AddSSSharing or one group of AddSSComputation or FunSS-
Computation), all shares available

FunSSReconstruction all input shares correspond to the same secret shared value (outputs of
one FunSSSharing), both shares available

SGXComputation enclave data comes from SGXProtect or as enclave data from SGX-
Computation in the same group

PKComputation ciphertext inputs come from PKEncrypt or PKComputation, all cipher-
text inputs correspond to the same PKPublic public key, the output cor-
responds to the same key

SKComputation ciphertext inputs come from SKEncrypt or SKComputation, all cipher-
text inputs correspond to the same secret key, the output corresponds to
the same key

SSComputation share inputs come from SSSharing or SSComputation tasks, all shared
inputs have the same threshold, the output has the same threshold as the
shared inputs

FunSSComputation function share input from FunSSSharing, output is two party additive
secret shared value

AddSSComputation additive share inputs from AddSSSharing or AddSSComputation
tasks, all additive share inputs have the same number of shares, output
is additive secret sharing for the same number of shares as the inputs

where data A is an input to a task that produces data B - meaning that B directly (through one task)
depends on A. If data C in turn depends on B then we mark I (indirect dependency) for the dependency
between A and C - C indirectly (through a path of more than one task) depends on A. This analysis is
performed by traversing the model graph.

3.1.5.3 Extended Disclosure. Extended disclosure combines simple disclosure and data dependency.
In addition to the visibility this allows to get a glimpse of the consequences of some data becoming
visible for some party. Essentially, for any marker V in the simple disclosure we look at the data
dependency to see which data this object depends on. Making this data visible to some party has a risk
of leaking something about the data that it depends on. Other layers of analysis, e.g. leaks-when and
sensitivity analysis can then be used to study this risk in more detail.

For any data object in the model each participant may have a subset of V, H, -, I and D annotations.
If there is V then it is clear that the participant has full access to the given data. Analogously when there
is only - or H then the participant does not have access to said data. However, a combination of -/H with
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Table 8: Restrictions for Stereotype Groups

Stereotype # tasks Restrictions
MPC 2 − . . . Parallel tasks, at least one input per group, at least

one output per group
SSComputation 2 − . . . Parallel tasks, at least one shared input, all tasks

have the same number of inputs and outputs, the
number of tasks is the number of shares in each
shared input values, the same data inputs for all
tasks, each task has one distinct share input for each
shared input

FunSSComputation 2 Parallel tasks, one shared input, the same evaluation
point input for both tasks

AddSSComputation 2 − . . . Parallel tasks, at least one shared input, all tasks
have the same number of inputs and outputs, the
number of tasks is the number of shares in each
shared input values, the same data inputs for all
tasks, each task has one distinct share input for each
shared input

SGXComputation, SGX-
Protect, SGXAttestationEn-
clave

1 − . . . All group tasks are on the same lane (same CPU ex-
ecutes them)

SGXAttestationChallenge,
SGXAttestationEnclave

2 Parallel tasks, both exist

OTSend, OTReceive 2 Parallel tasks, both exist, may have a message flow
from OTSend to OTReceive

GCComputation 2 Parallel tasks, at least one input per group, at least
one output per group

GCGarble, GCEvaluate 2 Both exist, on separate lanes, GCGarble garbled cir-
cuit output is the garbled circuit input to GCEval-
uate, GCGarble input encodings output is used to
derive encoded input for GCEvaluate

D and I means that while the participant does not have direct access to the data it does see something
that is derived from this data object. Hence, there is a possibility that something about this data leaks
to the said participant. These are the cases that should be studied further with leaks-when or sensitivity
analysis to discover which information about the data is actually leaked to the party.

3.1.5.4 Leakage Detection. Leakage detection [23] is used to analyze more complex PE-BPMN mod-
els where the disclosure tables are not sufficient to get a good overview of the process (e.g. the models
with a lot of branching). It is used to detect if some input data may end up in certain points of the model
- e.g. some task or participant. Leakage detection takes into account the possible executions of the pro-
cess over the different branching choices (but satisfying the synchronization rules of grouped tasks). For
example, this allows us to find if some party has many shares of secret shared value but no explicit task
to reconstruct this value. Analogously, we can discover if there are possible runs of the process where
some party is not explicitly required to have a ciphertext and a respective decryption key has them.

Each party is translated into a transition system, encoding which tasks are executed in which order,
and where are the choices governing the selection of the tasks to execute. The states of this transition
system are then extended with the data objects known to each party at the execution point corresponding
to this state. The transitions are extended with the data flows inside and between parties. Concretely,
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PE-BPMN models are transformed to a specific type of process algebraic specification language, namely
the micro Common Representation Language8 (mCRL for short). mCRL is a specification language that
extends the Algebra of Communicating Processes (ACP) [24] by adding important feature for modelling
of real systems like data, time and multi-actions [25, 26]. This language is also equipped with a toolset
that provides equivalence and model checking over the specification.

Our queries ask whether states with certain properties are reachable. The technical details of the
leakage analyzer can be found in [23]. Given the statement of a property expressing that certain data
objects together reveal a secret to a party not entitled to this secret (e.g. no explicit recovery of this
secret is on this model), we use the tools from the mCRL2 toolset to model-check this specification.
Model checking is supported by this property description (stated in the µ-calculus) for each of the prop-
erties. For different PETs supported in PE-BPMN, the properties we analyse capture different types
their misuses. We have found mCRL particularly well-suited for the purposes of model checking of
BPMN and PE-BPMN models, because it naturally captures the notion of “independent processes” that
communicate via message exchanges, which is the core of a PE-BPMN collaboration diagram.

The main goal of leakage detection is to indeed discover unintended leakages, especially since in
complex processes these could occur easily. However, in case any leakage is detected the user has to
decide if it is a real leakage or an error in the model. For example, a possible leakage to a party who
should indeed get the data could indicate either a missing OpenConfidentiality type stereotype or some
inefficiency on the model if the protection is removed later than possible.

3.2 Leaks-When Analysis

We call our qualitative analyses “Leaks-when analysis”, because they explain, what leaks and when.
Here “what” refers to the components of data objects that are inputs to the processes. “Leaks” refers
to the outputs of the process having dependency on the inputs. “When” means, that we characterize,
under which conditions this dependency manifests. To be applicable to leaks-when analyses, the tasks
of the business processes must have sufficiently precise descriptions of what operations they apply on
their inputs in order to produce their outputs.

3.2.1 SQL Workflows. In the context of the NAPLES project, a SQL workflow is a sequence of SQL
statements, intended to be executed against a database with a certain schema. Each SQL statement in
the workflow produces a new dataset with a certain schema, which is given a name, and which the
subsequent SQL statements can use as tables which have been added to the database. The dataset
produced by the last SQL statement in the workflow is the result of the entire workflow. The goal of
the leaks-when analysis is to characterize, how the contents of the database affects the result of the
workflow — which attributes of which tables become part of the result, in which manner, and under
which conditions.

Our analysis is based on precisely connecting the definitions and uses of various quantities, starting
from the attributes of the tables of the input database, going through the computing operations of each
of the SQL-statements, and ending in the attributes of the resulting dataset. We try to overestimate the
dependencies as little as possible. The internal representation that we use for the dependencies must
support the detection of simplification possibilities, such that spurious dependencies can be removed.

As the execution of SQL workflows is mostly data-oriented (as opposed to control-oriented, which
would be the case for more imperative-style specifications), we are looking for a graph-based represen-
tation, where each node corresponds to an input, to an output, or a simple computation. The arcs connect
the nodes producing a value with the nodes that use this value. The graph has to have a well-defined
semantics matching with the semantics of SQL workflows, giving the justification for a simplification
being allowed. Most of the simplification possibilities would be detected by looking at small subgraphs
of the whole graph, and replacing them with another small subgraph.

8www.mcrl2.org
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Q ::= t
| Q1 × · · · × Qk

| [Q]a→a′

| σ(Q; e)
| πa1,...,ak (Q)
| cola←e(Q)
| let t = Q1 in Q2

e ::= a
| ⊗(e1, . . . , ek)

Figure 10: Syntax of Queries

We have used such data dependency graphs before, to perform computationally sound analysis of
cryptographic key-exchange protocols [27, 28]. Our experience with this representation for crypto-
graphic protocols has been mixed. The focus on data dependencies was definitely helpful in detecting
where a game-based security definition (stating that two rather simple computations look the same to an
adversary) of a cryptographic primitive may be applied. On the other hand, the description of the “obvi-
ously secure” computation introduced control dependencies that we could not fully satisfactorily handle.
Nevertheless, for certain symmetric-key protocols we could show message secrecy — after applying the
security definition of symmetric encryption, and simplifying the resulting graph, the input message was
no longer used to construct protocol messages that were seen by the adversary.

In SQL workflows, we expect to have even less control dependencies, and finer data dependencies.
Hence we have extended our dependency graphs to argue about the computations in these workflows.

3.2.1.1 Databases, Schemas, and Queries. A relation schema is r(a1 : D1, . . . , an : Dn; Disr), where
r is relation name, a1, . . . , an are attribute names, D1, . . . ,Dn are sets, and Disr is a set of subsets of
the set of attributes {a1, . . . , an}. The last component indicates, which attributes or sets of them must be
unique in a relation satisfying this schema. An element of Disr describes a possible index for a table
satisfying the relation schema r. In our analysis, we require Disr to contain at least one set of attributes.

Let D[r] denote the set D1 × · · · × Dn. A relation R over the schema r is a subset of D[r], such that
for each {ai1 , . . . , aik } ∈ Disr and each (xi1 , . . . , xik ) ∈ Di1 × · · · × Dik there is at most one (y1, . . . , yn) ∈ R
satisfying yi1 = xi1 , . . . , yik = xik . Let Xr denote the set of all relations over the schema r. For x ∈ D[r],
let x[ai] denote the value of attribute ai on x.

A database schema is dbs = (t1 : r1, . . . , tm : rm), where t1, . . . , tm are table names and r1, . . . , rm are
relation schemas. A database over the schema is a tuple of relations D = (R1, . . . ,Rm), where Ri is over
ri. For a fixed dbs, let Y denote the set of all databases over the schema dbs, and let D[ti] denote the set
D[ri]. For a database Y ∈ Y, let Y.ti ⊆ D[r] denote its table ti.

Suppose that we have selected the primary keys for each table in the database. That means, for each
t : r in the database schema, we have selected indexr ∈ Disr. We can then think of a relation R over
the schema r(a1 : D1, . . . , an : Dn; Disr) as a set of partial functions fr1, . . . , f

r
n from the cartesian product∏

ai∈indexr Di to each of the sets D1, . . . ,Dn. All these partial functions are defined on the same domain.
If ai ∈ indexr, then the function fri must be a partial projection.

The syntax for workflows of simple database queries is given in Fig. 10. The workflow is executed
against a database with a certain schema dbs. The meaning of the syntax for queries Q is the following.

• The query t returns the table t. This table must exist in the current database.

• The query Q1 × · · · × Qk returns the Cartesian product of the results of the queries Q1, . . . ,Qk,
which are executed against the current database. We require that the names of the attributes in
Q1× · · ·×Qk are unique, i.e. the queries Q1, . . . ,Qk result in datasets which have non-intersecting
sets of attributes.

• [Q]a→a′ executes the query Q. Its result is a relation with a certain schema; this schema must
contain the attribute a. This attribute is then renamed to a′.
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• σ(Q; e) filters the result of the query Q with the expression e. The expression e, which must return
a Boolean value, is built up from attributes and arithmetic / relational / logical etc. operations ⊗.
We expect the expressions e to be well-typed, but will not discuss this here any more.

• πa1,...,ak (Q) projects the result of Q onto attributes a1, . . . , ak. The dataset returned by Q must have
these attributes in its schema.

• cola←e(Q) runs Q and then adds a new column (a new attribute) to the result. The name of the
attribute is a. Its value for each row is computed from the existing attributes of this row according
to the expression e.

• let t = Q1 in Q2 is used to build workflows. It executes the query Q1 against the current database
and gives the resulting dataset the name t. It will then execute the query Q2 against the database
the contains the current database, as well as the the table t.

We see that the available operations correspond to the steps in SELECT . . . FROM . . . WHERE . . .
queries. In the following sections, we will consider more operations, eventually arriving at a set where
we can express the aid distribution workflow from the Enterprise CRT.

3.2.1.2 Dependency Graphs. A dependency graph (DG) is a directed graph G = (V, E, s, t, . . .), where
s, t : E → V give the source and the target nodes of arcs. The DG also has the following additional
components:
• There are subsets of nodes I,O ⊆ V . The in-degree of any node in I and the out-degree of any

node in O is 0. The in-degree of any node in O is 1. These nodes represent the inputs coming to,
and the outputs produced by the DG.

• There is a set Op of possible operations. Each internal node v (i.e. v ∈ V\(I ∪ O)) has a label
λ(v) ∈ Op.

• For each internal node v, its incoming arcs are linearly ordered; let <v denote the ordering relation.
The number of incoming arcs of an internal node v is equal to the number of operands that the
operation λ(v) expects.

Let V be a set of values; the operations in Op consume and produce values. Given the semantics
~⊗� : V∗ → V of each operation ⊗ ∈ Op, the dependency graph G defines a mapping ~G� : VI → VO.
If G has no directed cycles, then this mapping is defined by assigning a value to each node of G, with
the values for input nodes given by the input to ~G�; the values of intermediate nodes v computed
by applying λ(v) to the values of direct ancestors of v; and the values of output nodes being equal to
the values of their direct ancestors. For dependency graphs with directed cycles, the semantics can be
defined using a fix-point construction [27], if there is a partial order on V with the least element ⊥, and
if the operations are monotonic. As we do not have cyclic dependency graphs here, we will not discuss
this any more.

A dependency graph may be infinite, with infinitely many inputs and outputs, as well as with nodes
having an infinite number of incoming edges. In the latter case, the operation in the node must make
sense for infinite number of inputs (e.g. it may be conjunction or disjunction of booleans). If G is infinite
then ~G� is still well-defined as long as for each output node vO there is a bound BO, such that any path
in the graph ending in vO has length at most BO.

The computations of an SQL workflow can naturally be expressed as infinite dependency graphs.
Given a table t with the schema r(a1 : D1, . . . , an : Dn) and its index indexr, we express its use in a
workflow by the input nodes vt

i,K for each attribute ai and each possible value K of the index attributes of
t. Additionally, the use of the table t is expressed by the input nodes vt

∃,K , denoting whether the row with
the index value K is present in the database. As the index attributes typically come from infinite sets
(e.g. integers), there are infinitely many possible values K. The input nodes vt

i,K and vt
∃,K are followed

by computation nodes for the expressions e occurring in the workflow. Again, these are replicated as
many times as there are possible values for index attributes in the relations that they work on. We end up
with a graph with output nodes w j,K′ and w∃,K′ for each possible value K′ of the index of the resulting
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Q indexQ
t

∏
ai∈indexr

Di, where r(a1 : D1, . . . , an : Dn) is the schema of t
Q1 × · · · × Qk indexQ1

× · · · × indexQk

[Q]a→a′ indexQ
σ(Q; e) indexQ
πa1,...,ak (Q) indexQ
cola←e(Q) indexQ
let t = Q1 in Q2 indexQ2

, where indext ← indexQ1

Figure 11: Computing the Index Set of the Query

dataset. The attributes of the index of the resulting dataset, and hence also the set from which the values
K′ come from, can be computed from the query as shown in Fig. 11.

We represent the infinite dependency graphs as finite summaries. The summary dependency graph
(SDG) has the same components (V, E, I,O, λ, <) as a DG. However, there is additional structure for the
nodes and the edges, as described below.
• There is a set of possible index sets S. The elements of S are typically the set of integers, the set

of strings, the unit set (a set with a single element). For handling a particular database schema,
S must contain all sets Di that are associated to some attribute in the index of some table in this
schema.

• Each node v ∈ V has the dimension dim(v) and input dimension
−−→
dim(v). They are both sets.

– In our representation, both dim(v) and
−−→
dim(v) are sets that can be expressed as polynomi-

als over S. A polynomial over a set of sets X is a set of the form
∑n

i=1
∏mi

j=1 Xi j, where
Xi j ∈ X, and

∑
denotes the non-intersecting union (or: sum) of sets. Hence there is a finite

representation for dim(v) and
−−→
dim(v).

• Each node v has a mapping δ(v) from
−−→
dim(v) to dim(v).

– In our representation, the mapping δ(v) is a canonical polynomial map. Let
−−→
dim(v) =∑n

i=1
∏mi

j=1 Xi j and dim(v) =
∑s

i=1
∏ti

j=1 Yi j. A canonical polynomial map is built up from
identity mappings between Xi j and Yi′ j′ (which must be the same set) as follows:
∗ A canonical mapping c :

∏m
j=1 X j →

∏t
j=1 Y j is defined by an injective mapping γ :

{1, . . . , t} → {1, . . . ,m} satisfying Xγ( j) = Y j for all j ∈ {1, . . . , t}. The mapping c is
given by

c((x1, . . . , xm)) = (xγ−1(1), . . . , xγ−1(t)) .

∗ A canonical mapping from
∏m

j=1 X j to
∑s

i=1
∏ti

j=1 Yi j consists of an index q ∈ {1, . . . , s}

and a canonical mapping of the previous kind from
∏m

j=1 X j to
∏tq

j=1 Yq j.

∗ A canonical mapping from
∑n

i=1
∏mi

j=1 Xi j to
∑s

i=1
∏ti

j=1 Yi j consists of n canonical map-
pings of the previous kind.

– If δ(v) is not the identity mapping, then the node v must have exactly one incoming arc.

• Each arc α ∈ E still has a single target node t(α). But an arc may have several source nodes, i.e.
s(α) ⊆ V .

• Each arc α ∈ E has a mapping δ(α) from
−−→
dim(t(α)) to

∑
v∈s(α) dim(v).

– In our representation, the mapping δ(α) is again a canonical polynomial map.

A summary dependency graph Gsum is expanded to a potentially infinite dependency graph G =

expand(Gsum) in the following manner:
• For each node v in the summary dependency graph, there are nodes {(v, x) | x ∈ dim(v)} in the

actual dependency graph. They all have the same operation λ(v).
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– We call the node (v, x) in the actual dependency graph the instance x of the node v in the
SDG.

• For each arc α going to a vertex v in the summary dependency graph, and for each element
x ∈
−−→
dim(v), there is an edge from the node δ(α)(x) to the node δ(v)(x). Note that the output of

δ(α)(x) is a pair of some node w ∈ s(α) and a value y ∈ dim(w).

– Let x ∈ dim(v). If δ(v) is the identity mapping and thus v ∈ Gsum may have several input
arcs, the ordering <(v,x) of the inputs of the vertex (v, x) ∈ G is inherited from v. The vertex
(v, x) has the same number of input arcs as the vertex v does.

– Otherwise, the vertices (v, x) ∈ G may have any number of inputs, perhaps an infinite num-
ber. In this case, λ(v) must be an associative and commutative operation, and make sense for
infinite number of inputs.

In our analysis, we translate an SQL workflow into a summary dependency graph. The semantics
of a summary dependency graph is the same as the semantics of the dependency graph resulting from
its expansion. This semantics can be related to the semantics of the SQL workflow in a manner that
shows their equivalence. We simplify the summary dependency graph, removing spurious dependencies,
while changing the semantics of the graph only in a manner that still relates it to the SQL workflow.
From the resulting graph, we can read out the actual dependencies of each output, including the actual
computation, as well as the conditions of outputting them.

3.2.1.3 Translating SQL Workflows to Internal Representation. The translation of a query Q to a
summary dependency graph works in syntax-directed manner. We first translate the database schema,
resulting in a partial summary dependency graph (PSDG) consisting of only input nodes. Beside the
PSDG, we also get a mapping from the attributes of tables to the nodes. This PSDG is given as the
input to the translation of Q. The result is another PSDG, which will be post-processed to add the output
nodes.

Let G be a PSDG, i.e. it may lack the output nodes. Consider a relation schema r with attributes
a1, . . . , an. A representation of r in G is a mapping R : {∃, a1, . . . , an} → V(G), such that dim(R(∃)) =

dim(R(a1)) = · · · = dim(R(an)), the output type of each R(ai) matches with the type of ai, and the output
type of R(∃) is boolean. We write dim(R) for dim(R(∃)). A representation of a database schema dbs in
G is a mapping from the contained relations into their representations in G.

Translating a database schema. The translation of a database schema dbs returns a PSDG Gdbs, as
well as a representation Rdbs of dbs in it. These are the following:
• Let t : r be a table declaration in dbs, where r is the relation schema r(a1 : D1, . . . , an : Dn; indexr),

with certain attributes belonging to the index. W.l.o.g. let a1, . . . , ah be the index attributes. The
graph G will contain nodes vt

∃
and vt

i for 1 ≤ i ≤ n. The input dimension and the dimension of all
nodes is I =

∏h
i=1 Di. All nodes are input nodes. During the execution, the instance (x1, . . . , xh)

of the node vt
i is supposed to carry the value of the attribute ai in the row of the table t that

corresponds to the index value (a1 = x1, . . . , ah = xh). The instance (x1, . . . , xh) of the node vt
∃

carries the value true iff the table t has a row with index value (a1 = x1, . . . , ah = xh).

• The representation Rdbs maps each table t to the mapping {∃ 7→ vt
∃
} ∪ {ai 7→ vt

i | 1 ≤ i ≤ |t|}.

Translating the query. The translation G of a query Q against a database with schema dbs takes as
input a PSDG G◦ and a representation Rdbs of dbs in it. It returns a new PSDG G• (which is obtained
from G◦ by adding zero or more nodes to it) and a representation of attr(Q) in G•, where attr(Q) is the
schema of the output relation of Q.

The translation G may call the translation E for expressions e. It takes as input a PSDG G◦ and a
representation R of a relation schema in G◦. This relation schema must contain all attributes used by e.
The translation E returns a new PSDG G• and a node ve ∈ V(G•). The translation E works as follows.
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• E~a�(G◦,R) returns G◦ and R(a).

• E~⊗(e1, . . . , ek)�(G◦,R) calls E~e1�, . . . ,E~ek� one after another. Let the output of E~ei� be Gi

and vi. Then the inputs to E~ei� are Gi−1 (with G0 ≡ G◦) and R. After obtaining Gk, add a new
node v to the graph. Its label is ⊗, and its dimension and input dimension are both dim(R). Also
add arcs α1, . . . , αk to the graph, going from nodes v1, . . . , vk to the node v. For all i, the mapping
δ(αi) is equal to the identity map on dim(R). Return the modified graph Gk and the vertex v.

The translation G works as follows.

• G~t�(G◦,Rdbs) returns G◦ and Rdbs(t).

• G~Q1 × · · · × Qk�(G◦,Rdbs) calls G~Q1�, . . . ,G~Qk� one after another. Let the output of G~Qi�

be Gi and RQ
i . Then the inputs to G~Qi� are Gi−1 (with G0 ≡ G◦) and Rdbs. After obtaining Gk

and RQ
1 , . . . ,R

Q
k , we add the following nodes and arcs to Gk:

– Let I =
∏k

i=1 dim(RQ
i ).

– Add a node v∃. The label of this node is “&” (boolean conjunction). Its dimension and input
dimension are both I.

– For each i ∈ {1, . . . , k} add an arc α∃,i from the node RQ
i (∃) to v∃. The mapping δ(α∃,i) is the

canonical projection from I to its i-th component dim(RQ
i ).

– For each i ∈ {1, . . . , k} and each attribute a j ∈ attr(Qi) add a node vi, j. The label of this node
is “ID” (the identity mapping). Its dimension and input dimension are both I.

– Also, add an arc αi, j from RQ
i (a j) to vi, j. The mapping δ(αi, j) is the canonical projection

from I to its i-th component dim(RQ
i ).

Let the output PSDG G• be the modified graph Gk. The output representation R maps ∃ to v∃ and
the attribute a j in attr(Qi) to vi, j.

• G~[Q]a→a′�(G◦,Rdbs) runs (G•,R) = G~Q�(G◦,Rdbs). It returns G• and R[a′ 7→ R(a)].

• G~σ(Q; e)�(G◦,Rdbs) runs (G′,R) = G~Q�(G◦,Rdbs) and (G′′, v?) = E~e�(G′,R). It adds a node
v∃ to G′′. The label of this node is “&” and both its dimension and input dimension are dim(R).
The node v∃ has two inputs, from R(∃) and from v?. The δ(·)-mappings of both respective arcs are
the identity mappings over dim(R). Let G• be the modified graph G′′. The translation returns G•
and R[∃ 7→ v∃].

• G~πa1,...,ak (Q)�(G◦,Rdbs) runs (G•,R) = G~Q�(G◦,Rdbs). It returns G• and R restricted to
{∃, a1, . . . , ak}.

• G~cola←e(Q)�(G◦,Rdbs) runs (G′,R) = G~Q�(G◦,Rdbs) and (G•, ve) = E~e�(G′,R). It returns G•
and R[a 7→ ve].

• G~let t = Q1 in Q2�(G◦,Rdbs) runs (G′,R0) = G~Q1�(G◦,Rdbs), followed by (G•,R) =

G~Q2�(G′,Rdbs[t 7→ R0]). It returns G• and R.

Adding output nodes. Let the query Q be translated by callingG~Q� on the translation of the database
schema. The result of G~Q� is a PSDG G and a representation R of attr(Q) in G. We add the following
nodes and arcs to G:

• For each ai ∈ attr(Q), add nodes vi and vO
i . For both of them, their dimension and input dimension

are equal to dim(R). Node vi is an internal node, while vO
i is an output node. There is an arc from

vi to vO
i ; its δ(·)-mapping is the identity mapping on dim(R). There are two arcs into vi, first from

R(∃) and second from R(ai). Their δ(·)-mappings are also the identity mappings on dim(R). The
operation of vi is named “Output”. The semantics of an “Output” operation is to return the second
argument, if the first argument is true, and to return NULL otherwise.
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3.2.1.4 Example. We consider a part of the Aid Distribution example of the Enterprise CRT. The
fragment below declares the tables port and ship, and an SQL workflow that
• selects the ports that a ship with the name shipname can reach before deadline;

• filters out the ports that the ship cannot fit into, returning only the identities of suitable ports;

• maps the port identities to their names.

1 CREATE TABLE ship (
2 ship_id bigserial PRIMARY KEY,
3 name text UNIQUE NOT NULL,
4 cargo bigint,
5 latitude DOUBLE PRECISION ,
6 longitude DOUBLE PRECISION ,
7 length bigint,
8 draft bigint,
9 maxspeed bigint

10 );
11
12 CREATE TABLE port (
13 port_id bigserial PRIMARY KEY,
14 name text NOT NULL,
15 latitude DOUBLE PRECISION ,
16 longitude DOUBLE PRECISION ,
17 offloadcapacity bigint,
18 offloadtime bigint,
19 harbordepth bigint,
20 available boolean
21 );
22
23 create function compute_reachable_ports(deadline BIGINT, shipname TEXT)
24 returns TABLE (port_id BIGINT, arrival BIGINT) as
25 $$
26 select port.port_id, distance(ship.longitude , ship.latitude ,
27 port.longitude , port.latitude) / ship.maxspeed as arrival
28 from port, ship
29 where arrival <= deadline
30 and ship.name = shipname;
31 $$
32 language SQL;
33
34 SELECT * INTO reachable_ports
35 FROM compute_reachable_ports(:deadline , :shipname);
36
37 create function compute_feasible_ports(shipname TEXT)
38 returns TABLE (port_id BIGINT) as
39 $$
40 select port.port_id
41 from reachable_ports , port, ship
42 where reachable_ports.port_id = port.port_id
43 and port.available = true
44 and port.harbordepth >= ship.draft
45 and port.offloadcapacity >= ship.cargo
46 and ship.name = shipname;
47 $$
48 language SQL;
49
50 select * into feasible_ports
51 from compute_feasible_ports(:shipname);
52
53 SELECT port.port_id, port.name
54 FROM feasible_ports , port
55 WHERE feasible_ports.port_id = port.port_id;

In our analysis, we cannot handle parametric queries. Hence we add a table parameters, which
will be joined with other tables in each SQL-statement of the workflow.

1 CREATE TABLE parameters (
2 pm_idx unit PRIMARY KEY,
3 shipname text NOT NULL,
4 deadline bigint
5 );

29
Approved for Public Release; Distribution Unlimited. 



As mentioned above, each table must have an index, hence we give the parameters-table the index
attribute pm_idx. Notably, the type of pm_idx is unit, hence there may be at most one row in this table.

The SQL workflow is translated into the query language given in Fig. 10. The translation of that
query, using the procedure given in Sec. 3.2.1.3 gives us the SDG depicted in Fig. 12, after we have
removed all dead nodes from it, and fused its identity operations.

Let us explain the details of the SDG and its visualization in Fig. 12. Rectangles with square corners
depict the nodes v of the graph. Top left indicates the operation λ(v) of the node, while top right gives
a unique identifier of the node. The rest of the depiction shows dim(v) (which in this example is always
equal to

−−→
dim(v)). Namely, in this example, dim(v) is the product of some of the sets from S, which has

elements “integer” and “unit”. The middle column lists the components of the product, the right column
lists the names of index columns which contributed this component of the product, and the left column
numbers the rows.

An arc α, where δ(α) is the identity mapping, is depicted as an arrow from the source to the target
node. If δ(α) is not identity, then it is depicted in the middle of that edge, inside a rectangle with rounded
corners. The right part of that rectangle lists dim(tα), and the left part dim(sα), with the numbers at the
source indicating the sequence number of the target dimension that they match. For certain nodes, where
the order of incoming arcs matters, the arcs have labels in the middle (or in the top part of the rounded
rectangle). For the node computing the geographic distance between two geographic coordinates, and
for other nodes doing arithmetic and relational operations, the label states the sequence number of the
argument. For an output node, whose arguments are the value to be output and the condition under which
it is output, the arc from the output value is unlabeled. The arc from the output condition is labeled with
“C”.

The input nodes in Fig. 12 are labeled. Namely, the node vt
∃

is labeled with “Exists t”. The node
vt

i for an attribute ai belonging to the index of the table t is labeled with “TakeDim ai”. If ai does not
belong to the index, then the node is labeled “Input t.ai”.

We can recognize the workflow from the SDG in Fig. 12. There are two outputs, port.port_id
and port.name. As they are taken from the table port at the last SQL query, they are directly passed
to the output nodes. The rest of the graph is involved in computing the condition when these out-
puts can be released (node 1244). It takes two inputs, one comparing the port_id attributes of tables
feasible_ports and port (node 1241) and the other one expressing the condition that the rows in both
tables exist (node 1238). The existence of the row in table port is expressed straightforwardly (node
19). A more involved condition is in place for checking that the row in the table feasible_ports exists
(node 177). Again, this condition consists of two parts, one expressing the WHERE-clause of the SQL
statement defining the feasible_ports table (node 171) and the other one expressing the requirement
for relevant rows in all tables joined at this SQL statement (reachable_ports, port, ship, but also
parameters, as the input parameters are used in this statement) to exist (node 154). We can continue
our description in the same manner. We see that there is a lot of redundancy, and a lot of it is due to the
definition of the workflow which see the joining of the same tables over and over again.

3.2.1.5 Simplifications on Internal Representation. We have implemented a number of simplifica-
tions of SDG, both structural and semantical. The current set of simplifications is selected based on the
needs of the (full) Aid Distribution scenario. A simplification operation, applied to a certain node or a
group of nodes, checks whether the local context of these nodes matches some pattern. If it does, then
these nodes are replaced with some other nodes that have the same effect semantically (or an effect that
is similar in the view of our task to find which inputs end up where, how, and when), but have simpler
structure. One simplification may enable others. We thus run the simplifications in the order that seems
to make the most sense; some simplifications (e.g. the removal of dead nodes) is run many times. In the
following, we will describe some simplifications that our analyzer currently runs.
Removal of dead nodes. A node that has no descendants may be removed, unless it is an output node.

Running this removal many times, we will remove all nodes that are not backwards reachable
from any output node.
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Input parameters.deadline 7
0 unit pm_idx

2

Input parameters.shipname 9
0 unit pm_idx

 

5 unit pm_idx ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Exists: parameters 10
0 unit pm_idx

 

5 unit pm_idx ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input port.available 11
0 integer port_id

 

3 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input port.harbordepth 12
0 integer port_id

2

3 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input port.latitude 13
0 integer port_id

3

2 integer port_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

Input port.longitude 14
0 integer port_id

4

2 integer port_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

Input port.name 15
0 integer port_id

 

6 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

Input port.offloadcapacity 16
0 integer port_id

2

3 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

TakeDim port_id 18
0 integer port_id

 

2 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

 

3 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

 

3 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

 

6 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

 

6 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

Exists: port 19
0 integer port_id

 

2 integer port_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

 

3 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

 

6 integer port_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

Input ship.cargo 20
0 integer ship_id

1

4 integer ship_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input ship.draft 21
0 integer ship_id

1

4 integer ship_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input ship.latitude 22
0 integer ship_id

1

1 integer ship_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

Input ship.longitude 24
0 integer ship_id

2

1 integer ship_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

Input(U) ship.name 25
0 integer ship_id

 

1 integer ship_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

 

4 integer ship_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input ship.speed 27
0 integer ship_id

2

1 integer ship_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

Exists: ship 28
0 integer ship_id

 

1 integer ship_id ←
0 unit pm_idx
1 integer ship_id
2 integer port_id

 

4 integer ship_id ←

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

and 80
0 unit pm_idx
1 integer ship_id
2 integer port_id

distance 84
0 unit pm_idx
1 integer ship_id
2 integer port_id

1

/ 89
0 unit pm_idx
1 integer ship_id
2 integer port_id

1

=? 92
0 unit pm_idx
1 integer ship_id
2 integer port_id

≤? 95
0 unit pm_idx
1 integer ship_id
2 integer port_id

and 98
0 unit pm_idx
1 integer ship_id
2 integer port_id

and 101
0 unit pm_idx
1 integer ship_id
2 integer port_id

and 154
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

≤? 159
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

≤? 162
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

=? 165
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

=? 168
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

and 171
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

and 177
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

and 1238
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

=? 1241
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

and 1244
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

C C

Output 1295
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

Output 1298
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx
6 integer port_id

Figure 12: Initial Summary Dependency Graph for Our Example (Without Dead or ID Nodes)
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Folding of identity operations. An ID node can be cut out of paths: if v is an ID node and α is the arc
leading to it, and β is any arc with the source v, then β may be replaced with the arc β ◦ α: we
define s(β ◦ α) = s(α), t(β ◦ α) = t(β) and δ(β ◦ α) = δ(α) ◦ δ(β), assuming that δ(v) is the identity
mapping (which is always the case in the SDGs that we construct). After all arcs leaving v have
been replaced, v is dead and can be removed by the previous simplification.

Folding the “&”-nodes. If v and v′ are both conjunctions, and there is an arc α from v′ to v, then we
add arcs from all predecessors of v′ to v (with the correct δ(·)-mapping) and remove the arc α. If
there were no other arcs leaving v′, then it is dead.

Joining nodes with identical computation. If there are two nodes with the same operation and the
same inputs, then these nodes can be turned to a single node. In our SDGs, the recognition of
these nodes is complicated by the need to determine if a suitable isomorphism between their
dimensions exists.

Reducing the dimension of a node. In our SDG-s, the dimensions of nodes are products of elements
of S. If for some node v in SDG, the predecessors of the nodes corresponding to v in the infinite
dependency graph do not depend on some component of the elements in dim(v), then this compo-
nent may be removed from dim(v). In Fig. 12, there are several nodes to which this simplification
would apply, starting from node 84, where the pm_idx component of its dimension is superfluous.

Joining components of dimensions. Consider node 168 in Fig. 12. It compares port.port_id and
reachable_ports.port_id in the function that defines the table feasible_ports. We see
that node 168 can return true only if the components no. 2 and 3 of its dimension are the same.
We can identify them and reduce the dimension of the node. This reduction works differently
from the previous simplification, and has to be propagated along the SDG in both directions.
Uniqueness constraints can also be used to join components of dimensions. In Fig. 12, we can
find out that components no. 1 and no. 4 (let us denote them x1 and x4) of the dimension of node
177 must be equal, if this node outputs true. There reason is, that node 92, which is an ancestor
of node 177, compares ship.name for the value x1 of ship_id against the parameter shipname.
At the same time, node 165, which is also an ancestor of node 177, compares ship.name for
the value x4 of ship_id against the same parameter. Both comparisions can return true only if
ship.name is the same for the values x1 and x4 of the index ship_id. But as ship.name is
unique, x1 and x4 must be the same.

Arithmetic simplifications. A conjunction with a single input, or a sum with a single input can be
turned to an ID node. A conjunction with a FALSE-input can be turned to FALSE-node (with no
inputs). A COALESCE-operation (occurs in the last step of the Aid Distribution scenario) can also
be simplified if we know that some of its arguments certainly are, or certainly are not NULL.

The application of these simplifications to the SDG depicted in Fig. 12 results in the graph depicted
in Fig. 13. It shows much more clearly, when the values are output.

3.2.1.6 Interpreting the Result. The dependencies and conditions are depicted in our final SDG, but
they are not given in terms of certain rows existing or not existing in the tables of the database. To
present the outcome, we have to map from the product of elements of S back into tables. In the graph
shown in Fig. 13 it is easy to see that ship_id corresponds to a row in the table ship and port_id to
a row in the table port. We can read that the attributes port_id and name of some row R in the table
port are released, IF there exists a row R′ in the table ship, SUCH THAT
• R′.cargo is less that R.offloadcapacity;

• R.available is true;

• The distance between the ship R′ and the port R, divided by R′.speed, is less than the parameter
deadline;

• R′.draft is less than R.harbordepth;
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Input parameters.deadline 7
 

2

Input parameters.shipname 9
 

Exists: parameters 10
 

Input port.harbordepth 12
0 port_id

2

Input port.latitude 13
0 port_id

3

1 port_id ← 0 ship_id
1 port_id

Input port.longitude 14
0 port_id

4

1 port_id ← 0 ship_id
1 port_id

Input port.offloadcapacity 16
0 port_id

2

Input ship.cargo 20
0 ship_id

1

1 ship_id ← 0 port_id
1 ship_id

Input ship.draft 21
0 ship_id

1

1 ship_id ← 0 port_id
1 ship_id

Input ship.latitude 22
0 ship_id

1

Input ship.longitude 24
0 ship_id

2

Input(U) ship.name 25
0 ship_id

Input ship.speed 27
0 ship_id

2

distance 84
0 ship_id
1 port_id

1

/ 89
0 ship_id
1 port_id

1

and 1432
0 ship_id
1 port_id

C C

Output 1478
0 ship_id
1 port_id

Output 1482
0 ship_id
1 port_id

Input port.available 1487
0 port_id

 

1 port_id ← 0 ship_id
1 port_id

Input port.name 1489
0 port_id

 

1 port_id ← 0 ship_id
1 port_id

TakeDim port_id 1491
0 port_id

 

1 port_id ← 0 ship_id
1 port_id

Exists: port 1493
0 port_id

 

1 port_id ← 0 ship_id
1 port_id

Exists: ship 1499
0 ship_id

≤? 1503
0 port_id
1 ship_id

 
1 port_id
0 ship_id

← 0 ship_id
1 port_id

≤? 1509
0 port_id
1 ship_id

 
1 port_id
0 ship_id

← 0 ship_id
1 port_id

=? 1521
0 ship_id

≤? 1527
0 ship_id
1 port_id

Figure 13: Final Summary Dependency Graph for Our Example

Q ::= . . . | Q1 ∪ Q2 | Q1 ∩ Q2

(a)

Q ::= . . . | Q1 ne Q2

(b)

Q ::= . . . | groupa1,...,ak

(a′1
⊗

1),...,(a′l ,
⊗

l)
(Q)

(c)

Figure 14: Syntax of Additional Operations in Queries

• R′.name is equal to the parameter shipname.

In general, the translation of attribute names back into table rows is less straightforward, if some table
has the index consisting of more than one component, or if several rows from the same table are involved.
In general, we track each dimension component from the place it is introduced (either at some Output
node, or at a node that has larger input dimension than its dimension) to input nodes. The input nodes
refer to a table, and to a particular row. From them, we find the involved rows and the equalities between
their index attributes.

3.2.1.7 Other Operations in Queries. The query language given in Fig. 10 allows for workflows with
simple SELECT . . . FROM . . . WHERE . . . queries. However, the Aid Distribution scenario contains
queries with more complex operations. Hence we will introduce them now, discussing their translation
into SDGs and any optimizations that are specific to them.

3.2.1.8 Set Operations. In certain workflows we have to perform unions or intersections or other set
operations with the results of the queries in the workflow. We thus extend our query language as shown
in Fig. 14a. In these set operations, we require Q1 and Q2 to have the same schema. In this case, the
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meaning of these operations is obvious. We extend the definition of G to translate these operations into
SDG as follows:
• G~Q1 ∪ Q2�(G◦,Rdbs) runs (G′,R′) = G~Q1�(G◦,Rdbs) and (G′′,R′′) = G~Q2�(G′,Rdbs). For

each attribute a ∈ attr(Q1) = attr(Q2) it will then add a node va to G′′, with the operation “ID”
and its dimension and input dimension both being equal to dim(R′) + dim(R′′). The mapping δ(va)
is the identity mapping. The node va has a single incoming arc αa, which has two sources — R′(a)
and R′′(a). The mapping δ(αa) is the identity mapping from

−−→
dim(va) to dim(R′(a)) + dim(R′′(a)).

We also add a node v∃ to the graph G′′ with the same dimension, input dimension and δ(·)-
mapping as described in the previous paragraph. The operation in this node is again “ID” (boolean
disjunction), and it again has a single incoming arc α∃ with two sources: R′(∃) and R′′(∃), with
the mapping δ(()α∃) again being the identity map.
Let the output PDSG G• be the graph G′′ with the added nodes and arcs. The output representation
R maps ∃ to v∃ and each attribute a to va.

• G~Q1 ∩ Q2�(G◦,Rdbs) runs (G′,R′) = G~σ(Q1 × [Q2]a:attr(Q2)→a′ ;
∧

a∈attr(Q1) a = a′)�(G◦,Rdbs)
first, while also keeping the representation R1 that was produced while G~Q1�(G◦,Rdbs) was run
as a subroutine. Here the write-up [Q2]a:attr(Q2)→a′ denotes that we have renamed all attributes a
of Q2 into their primed versions.
We add to G′ a node v∃ with the operation “

∨
” (boolean disjunction). We let dim(v∃) = dim(R1)

and
−−→
dim(v∃) = dim(R′). Recall that dim(R′) is equal to the Cartesian product of dim(R1) and the

dimension of the nodes resulting from the translation of the query Q2. The mapping δ(v∃) is the
natural projection to the first component of this product.

As dim(v∃) ,
−−→
dim(v∃), this node may have a single incoming arc. This arc comes from the node

R′(∃), its δ(·)-mapping is the identity mapping.
We return the graph G′ with the extra node and arc. As the output representation, we return
R1[∃ 7→ v∃].

In these translations we first see edges with several sources, as well as nodes whose dimension is different
from the input dimension. The disjunction node effectively indicates if there is any row in Q1×Q2 where
the Q2-part is equal to the attributes that the row in Q1 has.

There is an optimization related specifically to the edges introduced by the translation of unions into
SDGs.
Splitting the dimensions that are sums. Let v be a node in the SDG, its dimension can be expressed

as a polynomial over S. If this polynomial has k monomials, with k > 1, then we replace v with
nodes v1, . . . , vk, whose dimensions are equal to the monomials of dim(v). We do this replacement
in parallel for all nodes in the SDG. The edges can be adjusted accordingly. This change simplifies
the logic of following simplifications.

Outer joins. Our query language allows to express inner joins of datasets — σ(Q1 × Q2; e) is the
inner join of Q1 and Q2 over the boolean expression e. A left outer join additionally includes all rows
in Q1 that have no matching row in Q2 according to e; the Q2-attributes of such rows in the result of
the query are set to NULLs. Right outer join is defined symmetrically. To express outer joins, we have
added to our query language a construction depicted in Fig. 14b. The meaning of this construction is the
difference between the left outer join and the inner join of Q1 and Q2, with e serving as the condition.

The translation G~Q1 ne Q2�(G◦,Rdbs) is the following. We execute

(G′,R2) = G~Q1 × Q2�(G◦,Rdbs)

(G′′, ve) = E~e�(G2,R2) .

We also keep the representation R1 that was produced when G~Q1�(G◦,Rdbs) was run as a subroutine.
After that, we add the following nodes and arcs to G′′.
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• Node v1, operation “&”, with dimension and input dimension equal to dim(R2). Its inputs are ve

and R2(∃).

• Node v2, operation “
∨

”. Its dimension is equal to dim(R1) and its input dimension to dim(R2).
The mapping δ(v2) is the natural projection from the second to the first. The input to v2 is the node
v1.

• Node v3, operation “NOT”. Its dimension and input dimension are equal to dim(R1). Its input is
the node v2.

• Node v4, operation “&”. Its inputs are v3 and R1(∃).
For all arcs described above, their δ(·)-mapping is the identity mapping. The translation returns the
PSDG G′′ together with added nodes and arcs. As the output representation, it returns R1[∃ 7→ v4].

The operation Q1 ne Q2 can be used to construct left and right outer joins of Q1 and Q2 (the latter by
swapping the position of Q1 and Q2), as well as their full outer join. Indeed, if attr(Q2) = {a′1, . . . , a

′
k}

then their left outer join is expressed as

σ(Q1 × Q2; e) ∪ cola′1←NULL(cola′2←NULL(· · · cola′k←NULL(Q1 ne Q2) · · ·))

and the full outer join would see Q2 ne Q1, expanded with NULL columns, additionally added to it.

Aggregations. A SQL statement may have the GROUP BY component. The Aid Distribution scenario
does not explicitly contain such components, but we need them in Sec. 3.2.1.8 and hence introduce them
into our language as depicted in Fig. 14c. The operation depicted there requires attr(Q) to contain the
attributes a1, . . . , ak and a′1, . . . , a

′
l . These attributes are exactly those that are left after the grouping

query, with {a1, . . . , ak} forming the index of the result. To formally describe the semantics of the
grouping construct, let T be the dataset that is the outcome of the query Q and let T ′ be the expected
outcome of the grouping. Then
• T has attributes a1, . . . , ak, a′1, . . . , a

′
l ;

• Let (x1, . . . , xk) be a possible value for the attributes a1, . . . , ak. If T contains a row where the
values of the attributes a1, . . . , ak are x1, . . . , xk, then T ′ contains exactly one row where these
attributes have these values. Let us denote this row T ′[x1, . . . , xk]. If there are no rows in T where
the values of the attributes a1, . . . , ak are x1, . . . , xk, then T ′ also has no such rows.

• Let the row T ′[x1, . . . , xk] exist and let R1, . . . ,Rn be all rows in T , where the attributes a1, . . . , ak

have the values x1, . . . , xk. Then, for all j ∈ {1, . . . , l}, the value of the attribute a′j in the row
T [x1, . . . , xk] is computed as follows:

T [x1, . . . , xk](a′j) =

n⊗
j

i=1

Ri.a′j .

The translation G~groupa1,...,ak

(a′1
⊗

1),...,(a′l ,
⊗

l)
(Q)�(G◦,Rdbs) works as follows. It first executes (G′,R′) =

G~Q�(G◦,Rdbs). It will determine the types D1, . . . ,Dk of the attributes a1, . . . , ak of Q. These types
must be elements of S. The following nodes and arcs are then added to G′:
• Nodes vTD

1 , . . . , vTD
k . These are input nodes of the SDG. The dimension of vTD

i is Di. In the infinite
dependency graph, a node v corresponding to the value x ∈ Di and the node vTD

i , is expected to
carry the value x. Let I = D1 × · · · × Dk.

• Nodes v=
1 , . . . , v

=
k . The operation of these nodes is “=” (equality check). The dimension and input

dimension of these nodes is dim(R′) × I. The node v=
i has two inputs: vTD

i and R′(ai). The
δ(·)-mappings for the arcs connecting these nodes are the natural projections.

• Node v=. The operation of this node is “&”. Its dimension and input dimension are both dim(R′)×
I. Its inputs are the nodes v=

1 , . . . , v
=
k .
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• Node v∃. The operation of this node is “
∨

”. Its dimension is I and its input dimension is
dim(R′) × I. The mapping δ(w∃) is the natural projection. Node v∃ receives its input from v=.

• Nodes v f
1 , . . . , v

f
l . The operation of these node is “Output” (see the end of Sec. 3.2.1.3). Their

dimension and input dimension are dim(R′) × I. The inputs of the node v f
j are v= (for the first,

“conditioning” argument) and R′(a′j) (for the second, “value” argument). The δ(·)-mapping for the
arc connecting to the first input is the identity mapping, while for the arc connecting to the second
input is the natural projection from dim(R′) × I to dim(R′).

• Nodes v⊗1 , . . . , v
⊗
l . The operation of the node v⊗j is “

⊗
j”. The dimension of v⊗j is I, while its input

dimension is dim(R′) × I. The mapping δ(v⊗j ) is the natural projection. The input to the node v⊗j
is the node v f

j .

We see that the expansions of the nodes v⊗j in the infinite dependency graph perform the actual aggre-
gations of the values of the dataset resulting from the query Q. We have implicitly assumed that the
NULL-values among the inputs of the operations

⊗
j do not change their output value.

The translation returns the graph G′ together with the added nodes and arcs. The output representa-
tion R is the following:
• R(∃) = w∃;

• R(ai) = vTD
i for the attributes a1, . . . , ak;

• R(a′j) = v⊗j for the attributes a′1, . . . , a
′
l .

Sorting and sequence numbers. In our analysis, consider the outputs of the queries to be sets of rows.
As sorting the result of a query does not change that set, we have in general ignored it. However, SQL
dialects contain the function row_number() which returns the sequence number of the current row in
the dataset. More generally, the row number generation can be done after the dataset has been partitioned
according to the values of some other column(s). The row numbers of sorted datasets have been used in
the Aid Distribution scenario in significant manner.

We model the generation of row numbers in such way not through a separate construction in our
query language, but by defining specific operations and aggregation functions, such that their combina-
tion produces the necessary sequence numbers. Namely, we define an aggregation operation BAG. It
receives as its input any number of pairs, such that the first components of these pairs are non-repeating.
We assume that the number of non-NULL inputs is finite. The operation returns the list of these pairs,
sorted by their second component. We treat this list as a single value, i.e. it may be passed over the arcs
of a dependency graph.

We also define the (normal) operation SeqNo. It receives a list of pairs L and a value x. If x is among
the first components of the pairs in L, then SeqNo returns the position in which the pair containing x
occurs in L. If there are no such pairs, then SeqNo returns NULL. The addition of a column asn to the
result of the query Q, which contains the sequence number of the row when the result of Q is sorted by
the value of the column aord, and the sequence numbers are defined separately for each possible value of
the column aprt, is expressed as follows:

πattr(Q)(colasn←SeqNo(apair,aprt)(σ(Q × group
a′prt

(apair,BAG)(colapair←〈a′prt,aord〉([Q]aprt→a′prt
)); aprt = a′prt))) .

3.2.2 Analysis of Collaborative SQL Workflows. In processes with many parties, the SQL workflow
is executed collaboratively by them, with different parties running different SQL queries in the workflow,
constructing the results of these queries, and sending the tables to each other. Thus we define a SQL
collaboration workflow as a collaboration model in the standard BPMN notation in which each pool
corresponds to a SQL workflow, with incoming and outgoing messages carrying tables.

Each task in a SQL workflow is a query over a set of input tables from a database (the inputs of
the tasks) and produces new tables (the outputs of the task), which may later be used by subsequent
tasks in the workflow. The table (or set of tables) that are taken as input by the first SQL queries in the
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collaboration workflow are the inputs of the workflow. Conversely, the tables produced by the last SQL
queries in the collaboration workflow are the final output(s). We call the tables produced by intermediate
tasks in the collaboration workflow intermediate outputs.

As a running example, Fig. 15 presents an example SQL collaboration workflow adapted from an Aid
Distribution scenario, developed by the Enterprise CRT, in which a country facing a catastrophe, requests
aid from the international community. The situation requires distributing goods to the population via
maritime transportation. Henceforth, a SQL collaboration workflow is executed to identify ships in
nearby locations and to allocate berths to ships, such that ships can move people and goods from/to the
requesting country.
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Figure 15: Aid Distribution Scenario Captured as BPMN Collaboration Model

In the model, it is assumed that each participant maintains a local, private database, and that data
is exchanged between participants via message passing. Naturally, parts of the information used in
this collaboration are confidential (e.g. ship location and capacities) and the countries involved in the
collaboration seek to minimize the (private) data they expose to other stakeholders. Accordingly, an
analyst needs to determine: (i) who gets access to which input tables during the performance of the
process? (ii) what information (e.g. table columns or functions over columns) are disclosed? and (iii)
under what conditions this disclosure occurs? Our disclosure analysis technique supports this task by
determining what information is disclosed via each intermediate and final output of the collaboration
workflow, and under which conditions (i.e. for which table rows) this disclosure occurs.

3.2.2.1 SQL Collaboration Workflows. For the disclosure analysis, we assume that the overall com-
putation is distributed over a set of nodes, each of them under the responsibility of one of the participants
on the collaboration. In that context, it is assumed that each node maintains a local database and runs a
local workflow, which is composed of SQL statements that manipulates the local database. Moreover,
each one of the local workflows shares part of the local database with other nodes by message passing.
Therefore, we assume that each task in a collaboration workflow can be a data processing task or one
that serves to sending/receiving messages to other partners.

One example of the former is the task “Compute reachable ports” in the running example. Listing 3.1
presents the SQL script associated with such a task.

Listing 3.1: SQL Script Associated with Task “Compute reachable ports”
1 create function earliest_arrival(
2 ship_latitude double, ship_longitude double,
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3 port_latitude double, port_longitude double,
4 max_speed bigint) returns bigint as
5 $$
6 select ceil((point(ship_latitude , ship_longitude)
7 <@> point(port_latitude , port_longitude)) / max_speed)::bigint
8 $$
9 language SQL immutable returns null on null input;

10
11 select port.port_id as port_id,
12 earliest_arrival(ship.longitude , ship.latitude , port.longitude ,
13 port.latitude , ship.maxspeed) as arrival
14 into reachable_ports2
15 from ports2 as port, ships2 as ship, parameters as p
16 where earliest_arrival(ship.longitude , ship.latitude ,
17 port.longitude , port.latitude , ship.maxspeed) <= p.deadline;
18
19 select port.port_id as port_id,
20 ship.draft as draft,
21 ship.cargo as cargo
22 into ship_requirements2
23 from ports2 as port, ships2 as ship, parameters as p
24 where earliest_arrival(ship.longitude , ship.latitude ,
25 port.longitude , port.latitude , ship.maxspeed) <= p.deadline;

The syntax used in the script is that of PostgreSQL. In this example, the script includes a user
defined function (i.e. earliest_arrival) that computes the time for a ship to reach a port given their
coordinates and the ship’s speed. Each task can be associated with any number of user-defined functions
and at least one select-into statement that would store the outcome of the computation on a (temporary)
table, to be consistent with the intent specified in the conceptual model. In Listing 3.1, the select-into
statement defined in lines 11-17 takes as input tables ports2, ships2 and parameters (highlighted in
line 15) and stores its result in table reachable_ports2 (line 14). Similarly, the select-into statement
defined in lines 19-25 takes the same input tables and stores its result in table ship_requirements2
(line 22). Both statements, in turn, call the function earliest_arrival, which is defined in lines 1-9.

SQL collaboration workflows are composed of multiple SQL workflows, each associated with one
participant pool. Each one of those SQL workflows may include sophisticated constructs to captures
conditional branching and concurrency, as per the BPMN standard. The disclosure analysis is performed
over the whole SQL collaboration workflow. To that end, we map a SQL collaboration workflow into
a Petri net for analysis purposes. Petri nets is a well-known formalism for modeling and analysis of
concurrent systems.

The Leaks-When analysis of a SQL collaboration workflow proceeds in several stages as sketched in
Fig. 16. Assuming that a SQL collaboration workflow is provided, the first stage consists in translating
the BPMN collaboration into a Petri net. In the second stage, an unfolding of the Petri net is computed
which explicitly represents all the possible executions of the Petri net, a.k.a. runs. This unfolding is
acyclic, but it explicitly captures one iteration of every loop in the original model. Then, the technique
concatenates all the SQL statements attached to each one of the nodes in the SQL collaboration workflow
to generate a SQL script for each run. Finally, the technique generates a leaks-when report for each
output data object in the SQL collaboration workflow as requested by the analyst. Below we describe
each of the above stages in turn.

3.2.2.2 Mapping SQL Collaboration Workflows to Petri Nets. The disclosure analysis takes as input
models specified as BPMN collaborations that we need to translated into Petri nets. Fortunately, the
mapping of BPMN process models into Petri nets has been described in [29]. For completeness, we
include the transformation rules in Fig. 17.

Note that the transformation rules cover only the mapping of BPMN process models (SQL work-
flows). However, the mapping can be straightforwardly adapted to our context as follows. We first map
the SQL workflow from each one of the pools in the collaboration model. Then, we add a place for each
message exchange in the collaboration. Such a place will be connected with an arc with a source on
the transition that represents the message sending task in one of the SQL workflows and with a target in
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Figure 18: An example of the Mapping of a SQL Collaboration Workflow to Petri Nets

the place. Similarly, the place will be have an arc that stems from itself and targets the receiving task in
another pool. Fig. 18 shows side-by-side a sample SQL collaboration workflow and its corresponding
Petri net. The places representing message exchange are shown with a filling of color blue to help one
in their identification.

The transformation keeps the information of the mapping such that, given a task in the SQL collabo-
ration workflow it is possible to determine the transition in the Petri net and vice versa. It is worth noting
that the transformation covers only the control flow perspective of the collaboration. However, by using
the bidirectional mapping of BPMN tasks into Petri net transitions, it is possible to determine the input
data objects (e.g. “a1” in the case of task “B”) and also the output data objects (e.g. “b1” in the case of
task “C”) whenever required.

3.2.2.3 Computing the Set of Runs of a SQL Collaboration Workflow. In [30], we presented a
technique that can be used to compute the set of runs on SQL workflows without loops. We argued that
the extension of the technique to the case where the SQL workflow include loops can be achieved by
implementing and strategy for unrolling the loops to explicitly represent one iteration. Nonetheless, the
potential presence of concurrency and mutual exclusion in the SQL workflows requires a specialized
machinery. In fact, extending the technique from single SQL workflow to a collaboration, introduces
per se some difficulties, since execution of the SQL workflow on each one of the pools can evolve
independently, i.e. a SQL collaboration workflow describes naturally a system with concurrency. That
is the reason why here we chose to map the SQL collaboration workflow into a Petri net.

Once with a Petri net, we leverage existing work to compute the set of runs in the system. To
that end, we first apply the technique described in [31] to compute the unfolding of the Petri net. An
unfolding of the Petri net is another net that explicitly represents the computation specified by an input
Petri net. More specifically, an unfolding will incrementally add transitions and places to represent the
execution of the original Petri net. Henceforth, an unfolding of a Petri net is potentially infinite if the
input net has loops. However, techniques such as the one presented in [32] have been devised to truncate
the unfolding in a point where the behavior of the original Petri net is explicitly represented by a prefix
of the unfolding. In fact, the prefix introduced in [31], referred to as the complete prefix unfolding, is
suitable for tasks such as model checking. However, the complete prefix unfolding does not represent
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Figure 20: Sample Leaks-When Report

loops explicitly in the way we need. It is for this reason that we use the truncation criterion defined
in [32]. The unfolding generated using such truncation criterion for our running example is shown in
Fig. 19.

From the unfolding in Fig. 19, we can see that the SQL collaboration workflow has two runs. To help
in identifying the tasks involved in each one of the runs, we have colored them: the first run includes
all the tasks (transitions) filled in yellow, the second one includes all the tasks with borders in red. As
hinted by the labels in the unfolding, it is also possible to track back the transitions to the corresponding
tasks in the original SQL collaboration workflow. Indeed, we can keep such mapping in a data structure
as required.

For each one of the runs, we can straightforwardly derive a script by concatenating all the SQL
statements of the tasks and data objects in the SQL collaboration workflow. Since some of the tasks in
a run can be concurrent, a topological order can be used for deciding an order in the SQL statements
added to the SQL script. Each one of this scripts is then passed to the SQL workflow analysis presented
in Sec. 3.2.1.

The result of applying the SQL workflow analysis to the script given in Listing 3.1, considering the
release of port.port_id, is given in Fig. 20. It shows what is leaked (port.port_id), and when it is
leaked. The condition is a conjunction of several sub-conditions, related to the existence of ships with a
given name that fit into this port and can reach it before the given deadline.

3.2.3 Privacy Policies in SQL Collaboration Workflows. Different participants in a SQL collab-
oration workflow may have different privacy policies on data they own. We have thus extended our
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workflow analysis in order to specify and take into account such policies. Having such policies, it is
possible to speak about and report any eventual disclosure of sensitive data that is unexpected and/or
undesired. During the Leaks-When analysis, we run the policy compliance checking and highlight the
potential disclosures in the Leaks-When report with respect to selected party.

Consider the same Aid Distribution scenario in Fig. 15. The scenario implies an incremental dis-
closure of the sensitive information, such as coordinates of the marine ships, which are transporting the
goods provided by international community. The goal is to disclose certain data only when it becomes
allowed by the collaboration process constraints.

In the model Aid requesting country first shares the available ports and the deadline for the goods
delivery. Then Aid providing country checks what ships can reach the available ports by the given
deadline and shares the requirements for available ships to be able to allocate it to the ports. These
requirements are cargo and length of the ship. After that Aid requesting country selects feasible ports,
depending on the ports’ harbor depth and offload capacity, it sends this filtered list to Aid providing
country and then Aid providing country eventually can select the most fit ship for the most feasible port
(e.g. the closest) with right dimensions to allocate it to the free berth of the selected port. In the final
phase all data about the selected ship is disclosed to the Aid requesting country, including ship name,
coordinates, id, cargo, draft and maximum speed. All aforementioned disclosures are supposed to be
made via BPMN Message Flow.

3.2.3.1 Privacy Policies. Without privacy policies, the user / analyst has to manually discover the
potential process violations coming from the permissions of the parties, on the basis of the leaks-when
reports similar to the one in Fig. 20. If anything in the SQL workflow has been disclosed from one
BPMN Pool to another by BPMN Message Flow, user has to figure it out by him/herself. To hand over
more control and automation to the analyzer, we support the privacy policy extension.

Privacy Policy notation and binding. We implemented an extension to the SQL policy specification,
so the privacy policy is represented by the SQL grant statement and serves as an established constraint
for the data sharing during the process execution. In the collaboration SQL workflows we assume that
the concept of a party corresponds to the BPMN Pool. The parties to be used in the SQL grant statement
are extracted from the BPMN Pools’ names of the business process.

Since all of the disclosures in the SQL workflows are currently occurring through the select into
statements, the policy gives a permission for the selected party to run select into queries over the
specific attributes of the SQL table or the entire table. Such approach is equal to the ’read’ access right.
By default we assume that all of the SQL tables are prohibited for the read access.

As a starting point of building up the policy for specific party we can use the context menu of
the BPMN Pool and attach an SQL script. In the Aid Distribution scenario we acknowledge that the
’parameters’ table is fully accessible from the beginning of the process execution and to the end event.
We call such policy rules ’Global’ and attach them to the BPMN Pools. Fig. 21 demonstrates such a
Global privacy policy rule.

Since the names of the BPMN Pool may appear too diverse and contain the undesired symbols,
we assume that the inner representation of the party name is a subset of literal words in a lowercase
joined with an underscore. For instance, the ’1. Aid requesting country party’ must be mentioned as an
’aid_requesting_country’ in the policy rule.

In the Aid Distribution scenario it is not secure to disclose all of the sensitive information at once, that
is why an incremental approach has been chosen. This approach also implies that during the process
execution the permissions of the party may extend. Hence, additional policy rules can be attached
dynamically. To achieve this the process creator can select an output data object of a task and assign
an SQL script with the grant statement of a policy rule. By doing this, we infer that to produce the
selected output without violations a party is endowed with this additional policy rule which will hold
until the process end event. We call such a policy rule ’Local’ and assign it to the output data objects of
the BPMN Tasks. Fig. 22 demonstrates such a Local policy rule.
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Figure 21: Global Policy Rule

Figure 22: Local Policy Rule

Hence, in addition to the incremental disclosure of the sensitive attributes we implemented incre-
mental extension of the policy ruleset for the party during the process execution. Such rules are allocated
after some point of the process passed and hold until the process end.

Privacy Policy limitations. In order to be parsed and applied correctly, the privacy policy must use a
SQL ’grant’ script in specific manner demonstrated in the listing 3.2.

Listing 3.2: Example of the Privacy Policy Rule Using SQL ”grant” Statement
1 grant select(ship_id,
2 latitude ,
3 longitude
4 )
5 on ship_2
6 to aid_requesting_country;

In case of the specification of concrete SQL attributes the first attribute must be placed on the same
line with the ’select’ keyword following other attributes each on the new line. The syntax used in the
script is that of PostgreSQL. On the Fig. 23 we provide a formal representation of the privacy policy
syntax in the Backus-Naur form.

Modifications to the Leaks-When Analysis. In order to make the Leaks-When analysis work with
policies, we have adapted it as follows:
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privacyPolicy ::= privacyPolicyRule EOL

| privacyPolicyRule EOL privacyPolicy

privacyPolicyRule ::= grant select EOL on {tableName} EOL to {partyName}; EOL

| grant select({sqlAttributeName} sqlAttributesListTail EOL)EOL

on {tableName} EOL to {partyName}; EOL

| ””

sqlAttributesListTail ::= , EOL {sqlAttributeName} sqlAttributesListTail

| ””

Figure 23: Privacy Policy Syntax

1. The Leaks-When analysis is executed with respect to the party-holder of the selected output data
object.

2. The policy rules are aggregated from the BPMN Pool of the party-holder up to the selected data
object. To have the right ordering of the privacy policy rules we employ the Petri net generated
for the business process using techniques described in Sec. 3.2.2.2.

3. The Leaks-When report highlights potential disclosures with colors.
The Leaks-When analyzer uses the specification of the privacy policy rules to carry out the verifica-

tion over the SQL Collaboration workflow. If several data objects are selected, then the analyzer will still
execute role-wise analysis for each of the data objects. In the Leaks-When report the edges are colored
with a red color in case of ’Direct’ disclosure, when the attribute is referred explicitly in the ’select’
statement. Orange color is used for ’Indirect’ disclosure, when attribute is used in the calculations, over
the SQL aggregation functions or as a parameter of a user-defined function. In such case the attribute
still can be inferred employing differential privacy technique.

Fig. 24 demonstrates the Leaks-When report with the privacy policy highlights.
As we can see, all of the successors of the operation that might disclose the attribute are marked

orange up to the root ’filter’ operation. The attributes ’latitude’, ’longitude’ and ’maxspeed’ from the
SQL table ’ship_2’ are not directly used in the final select (a.k.a. Filter in the Leaks-When report). The
they are used in the calculation of the distance between the ’port_1’ and ’ship_2’, so there is a relation
which can be employed by the adversary.

3.2.3.2 Aid Distribution Scenario Extension with SQL Aggregation Functions. In the Aid Distri-
bution scenario during the first step of the workflow called ’Compute reachable ports’ we select a subset
of the ships that can reach the requested port on time according to the ’parameters’ SQL table. We send
the information about their arrival times and cargoes to the Aid requesting country. However, if the port
capacities are not big enough, some of the ships can be rejected because port cannot allocate so many of
the proposed ships. Hence most of the disclosed information about ships is excessive.

For instance, Aid providing country possesses 15 ships that are ready and sufficiently close to the
given port. However, the port can match as much as 5 slots available for allocation, while Aid providing
country is unaware about this limitation and still discloses arrival times of all of the 15 ships. These
arrival times are narrowing down the area where the ship can be present, especially if adversary party
tries to match arrival times of the ships with their cargos. In case of only one port adversary can infer
only the radius of the ship location, but using multiple queries with different ports it is possible to carry
out the triangulation and guess the location more precisely.

We can diminish this issue by inserting another interaction step in the beginning of the process.
Fig. 25 demonstrates this extension to the main model.
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Figure 24: Leaks-When Report with Applied Privacy Policy

The aforementioned process model is also different from the main Aid distribution model because
of presence of the SQL aggregation functions. The tasks ’Count the number of reachable ships for each
port’ and ’Count the sum cargo of reachable ships for each port’ are using aggregation functions and
does not disclose any single ship arrival date or cargo. After this step the Aid requesting country receives
only aggregated count of the ships and their aggregated cargo for each port. Henceforth, Aid requesting
country can match them with own port capabilities. After the task ’Count the number of available slots
for each port’ Aid providing country receives the capabilities of the ports and can now narrow down the
list of the ships required to satisfy maximum of the the port slots. On the other hand, the information
about currently available slots is also sensitive data, so if the number of available ships is smaller than
the number of slots, the potential adversary party will know only about the matched number of slots.

Listing 3.3 presents the SQL script assigned to the task ’Count the number of reachable ships for
each port’.

Listing 3.3: Task From Step 1
1 create or replace function aggr_count(portname TEXT)
2 returns TABLE(cnt INT8) as
3 $$
4 select count(ship_2.ship_id) as cnt
5 from ship_2, port_2, parameters
6 where port_2.name = parameters.portname
7 AND (point(ship_2.latitude, ship_2.longitude) <@>
8 point(port_2.latitude, port_2.longitude))
9 / ship_2.max_speed <= parameters.deadline

10 $$
11 language SQL IMMUTABLE returns NULL on NULL INPUT;
12
13 select p.name as name, res.cnt as cnt
14 into aggr_count_2
15 from port_2 as p cross join aggr_count(p.name) as res;

In this example, the script includes a user function aggr_count defined in lines 1-9 that computes
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Figure 25: Extension for Aid Distribution Scenario

the number of ships that can reach a given port by the given deadline having their coordinates and
maximum speed. Since every task must be associated with at least one select-into statement the task
writes the outcome of the computation to the temporary table aggr_count_2 in the lines 11-13.

Currently supported group operations are following:

1. count - returns a number of rows with a non-empty given attribute; count(*) computes a number
of rows with no respect to specific attribute, in current implementation takes an ’id’ attribute of
the SQL table.

2. sum - returns a sum of a given attribute of all rows.

3. avg - returns an average value of a given attribute of all rows.

4. max - returns a maximum value of a given attribute of all rows.

5. min - returns a minimum value of a given attribute of all rows.

Fig. 26 demonstrates the Leaks-When report for SQL count function.
On this graph we select a subset of the records from the ‘port_1’ SQL table, which match the given

‘portname’ from the parameters. Then we match each of the selected ports with all of the rows from
the ‘ship_2’ table and calculate the distance between the port and the ship. We divide each distance by
the respective ship ‘max_speed’ and filter out those pairs, whose travel time exceeds the given deadline
from the ‘parameters’ SQL table. The ‘Filter’ operation for the ‘ship_id’ attribute which precedes the
final ‘count’ aggregation function is a special way of handling ‘count(*)’. That is why it is marked with
red color - it started to be used internally, without user’s intention and policy rule. The operations related
to the ‘latitude’, ‘longitude’ and ‘max_speed’ attributes are marked with orange color, because they are
not directly disclosed. But they still can be guessed using multiple queries with the different ports input,
which stands for employing the differential privacy algorithms.

3.2.4 Analysis of BPMN. We have used BPMN to specify collaborative SQL workflows, and then
apply the leaks-when analysis to them. We would also like to analyze the business processes “directly”,
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Figure 26: Leaks-When Report for Aggregation Function with Privacy Policy Applied

considering each task as an operation on the data objects, from and to which there is data flow, consid-
ering the control flow and events the process may include, encoding the processes directly into SDGs,
and doing the leaks-when analysis on them. Below, we will describe this encoding, the analysis, and the
presentation of analysis results. We will see that the understandability of the analysis result very much
depends on how much the imperative, “control-oriented” features of BPMN have been used.

Once the to-be-analyzed computation has been converted to a SDG, the task of the analyzer is to
simplify it as much as possible. For SQL workflows, we have displayed the result of the simplification
rather directly to the user of the PLEAK tool, allowing the user to visually determine the actual depen-
dencies. With large SDGs, such display no longer serves a purpose. We have thus chosen to report to the
user, which of the inputs may flow to which of the outputs, and through which identified intermediate
nodes (that may represent some filterings or sanitations) it must pass.

3.2.4.1 Business Processes, Their Active Components, and Analysis. To explain what we mean by
the leaks-when analysis of a business process, let us consider the example process in Fig. 27. It is more
or less one of the processes that model the possible activities in RapidGather, developed in the Mobile
CRT of Brandeis.

The process has a number of tasks that read and write a number of datasets. Each dataset has one or
more data fields. In our example, we are going for simplicity and hence let each dataset to have just a
single field v. Each task that has a number of datasets as its inputs and outputs, computes the fields of
output datasets from the fields of input datasets, and nothing else. Each task that precedes an exclusive
gateway (in Fig. 27, the task labeled “Check for permission” in the “Mobile device” pool) computes a
boolean value that is used by the following gateway. Each task is annotated with the code that does the
computation, e.g. the specification of the code for task T71 is depicted in Fig. 28. Note that several tasks
could in principle write into the same dataset (although that is not the case in our example here).

In principle, the programming language in tasks could be quite complex, e.g. SQL, but currently
we have settled for a simple language that defines the fields of output datasets as expressions computed
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Figure 27: Example Process for Leaks-When Analysis of BPMN

Figure 28: The Code of a Task
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s process name
p pointer to subprocess
d dataset name

op arithmetic, logical, etc. operation

R running process
P inactive process
L process launcher
T task
E arithmetic, logical, etc. expression

R ::= 0 | T | R1 ; R2 | R1 ‖ R2 | E ? R : R | (P)∗s | L

P ::= p.d1, . . . , dk : R

L ::= p→↑↑ · · · ↑ s1s2 · · · sk

T ::= d1 ← E1; . . . ; dk ← Ek

E ::= d | p.d | op(E1, . . . , Ek)

Figure 29: Intermediate Calculus for Translating From BPMN to SDGs

from input datasets, with arbitrary names for the functions.
Fig. 27 contains three processes talking to each other. We consider each of them to be replicated,

i.e. they can be started many times. With many processes running, we want their message exchanges to
be organized. E.g. the message sent by the task “Communicate the decision” from the user should go
back to the same mobile device process that started the user process. In Sec. 3.2.4.5 we describe how
we recover this correspondence.

The leaks-when analysis also requires us to specify, what are the inputs and what are the outputs of
the process. Currently we are picking as inputs the datasets that are never written to, and as outputs the
datasets that are never read from.

3.2.4.2 An Intermediate Process Calculus.

Syntax. To make the translation from BPMN to SDGs conceptually simpler, we split it into two steps.
We thus define an intermediate representation, which still retains the imperative features of the BPMN,
but also does away with some other features, in particular the message flows between the pools. The
syntax of the intermediate process calculus is given in Fig. 29.

Here a running process R is either a process that has finished its work, a task T that does computa-
tions, or one process followed by another one, or two processes running in parallel, or a choice between
running two processes, depending on the outcome of the expression E. It can also be the making avail-
able of a pool of processes P, known under the name s, which can be subsequently launched by either
the process that follows this action, or by other processes running in parallel. Finally, a running process
may launch other processes. We note that our process calculus has retained the synchronization points
of BPMN — in a running process (R1|R2); R3, both R1 and R2 have to finish before R3 can start running.

An inactive process P consists of its body R, as well as the datasets d1, . . . , dk that are local to this
processes. When the process P is launched, then the process pointer p will point to the process that
launched it. This process pointer can be used to access the datasets of the launching process. A process
launcher L is a pair of the address of the to-be-launched process, and a new process pointer p. After
executing L, the pointer p points to the newly launched process. The address consists of a path through
the process tree, first going up, and then going down by following the names of the process pools.

The tasks update the values of the datasets d. We call them datasets, because they will correspond
to the datasets of BPMN, but in our calculus they are rather treated as variables, where the internal
structure of the values they contain is not relevant for the calculus. If the internal structure is important,
then the operations op have to reflect that, and the simplifying transformations of the analyzer have to
know about the identities these operations satisfy. A task can refer either to the datasets local to the
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current running process, or to datasets of other processes for which it has process pointers. Only local
datasets can be written to.

We see that the process pointers p are the mechanism for different subprocesses to communicate. In
this sense, they are similar to the channels used in various process calculi, e.g. π-calculus [33] or join-
calculus [34]. The use of pointers in our calculus is more restricted; this helps with the translation to
SDGs, as we can statically identify, which processes a pointer may point to. In the actual communication
of values between processes, the reader takes the active part. Again, this simplifies the translation into a
SDG. We have had good experience with similar constructions [35].

About the Semantics. Let us give a sketch (but not a full formalization) of the small-step operational
semantics of the calculus. The main notion of an operational semantics is that of the configuration,
representing the current state of the execution. Also, the semantics defines a relation on the set of
configurations, expressing the possible ways of a configuration making a single step and becoming the
next configuration.

A configuration is a tree of nodes. Each node contains a running process, as well as the pools of
activatable processes, the values of its datasets and the process pointers it has defined. Each process
pointer points to some other node in the tree. Initially, the tree has a single node, containing the topmost
process and the datasets that are local to it. If some node N contains a pool of activatable processes
(p.d1, . . . , dk : R)∗s, and some other node N′ wants to activate a process from this pool, then a new child
node N′′ of N is created, containing the running process R and the datasets d1, . . . , dk, with some default,
initial values. The node N′′ also contains the pointer p which points to N′. The arc from N to N′′ is
labeled with s. On the other hand, the process in node N′, which has just executed a process launcher,
now has a process pointer pointing to N′′.

A process in a node N can access the datasets in node N, as well as all datasets in its ancestor nodes.
Such access includes the ability to write into these datasets. Similarly, if the datasets in node N are read
through a pointer pointing to N, then one can also read all datasets in the ancestor nodes of N through
the same pointer.

If a process is about to execute a task, then it can always do it (as long as the process is syntactically
correct). It can access the datasets via the pointers it has, and can write to local datasets. The execution
of a process launcher ↑ · · · ↑ s1 · · · sk in a node N′ works as follows. We first find the node N′ that has a
pool of activatable processes (P)∗sk

. To find it, we walk upwards from the node N as many steps as there
are arrows in the process launcher. We will then walk downwards along the arcs labeled s1, . . . , sk−1,
reaching a node N. It is possible that some node has several outgoing arcs labeled with si; in this case,
we non-deterministically select one of them. If the node N contains a pool of processes with the name
sk, then a new node N′′ is created and the pointers are defined, as described above.

3.2.4.3 Translating the Process Calculus to SDGs. Compared to the conversion of SQL workflows to
SDGs, the main difficulty of translating from the calculus in Fig. 29 to SDGs is dealing with the datasets
that are written to in several places of the calculus. Another, independent complication is the translation
of the process starts and process pointers.

We will not give a full description on how a process is translated to a SDG. But we will describe the
main issues here.

3.2.4.4 Hierarchy of Processes. In the process calculus, each process may have replicated subpro-
cesses. All the possible instances of these processes have an address, consisting of an identifier for this
instance under the immediately containing process, as well as the full address of the containing process.
These addresses immediately map to the coordinates in a dependency graph, and the names of the sets
of processes become the names of the dimensions in the SDG. Given a full running process R, we can
say for each of its subprocesses and tasks, which set of dimensions they have.
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Execution and Timing. In a process, some parts may get executed and others may not. Also, the order
in which the parts are executed, matters. Hence, whenever we translate a process into SDG, the resulting
graph has two special nodes. These nodes have the same dimensions as the converted process. One of
them returns a boolean value, indicating whether this process instance ran till the end. The other returns
a timepoint (we model the timepoints as integers), indicating the time when this process finished. The
value of the first is computed from the results of the guards in the converted process, while the value of
the second one comes from the order of reads and writes of persistent datasets.

Pointers to Subprocesses. Each process launcher L inside a subprocess P with certain dimensions D
launches a subprocess P′ with different dimensions D′. We want to state that different instances of L
(they have different coordinates) launch different instances of P′. We thus define mappings AddrL from
the coordinates of P to the coordinates of P′. At the start of the process P′, the values from AddrL for
all possible coordinate values of L are checked (and also checked for any other process launchers L′ that
may launch P′) and the execution and timing nodes for the start of P′ are set up.

The mappings AddrL are treated as uninterpreted functions by our analysis. However, the analysis
takes into account that they are injective, and could thus simplify e.g. some conjunctions of equality
checks.

The mappings AddrL are used when converting the access of a dataset through a process pointer.
If the pointer p, coming from the launcher L, and inside a process with dimensions D is used to access
a dataset d′ in process P′ with dimensions D′, then we compare AddrL(c) against c′ for all possible
values of c′, where c is the tuple of coordinates of the current process instance, and c′ ranges over
possible tuples of coordinates in dimensions D′. We use the results to filter the dataset d′. A filtering
operation takes two inputs, the second of them boolean, and returns the first input if the second input was
true, and ⊥ otherwise. Note that the filtering results have the dimensions D‖D′, but for each value of the
coordinates of D, at most one of the filtering results is not ⊥. We will then use a merge-operation [27]
to select this non-⊥ result.

Persistent Datasets. We call a dataset persistent if it is written into by at least two different tasks. To
record the timepoints when a read or write is done, we again define for each reading or writing task T an
uninterpreted function MomentT . Again, this function takes a tuple of coordinates as its input, returns
a timepoint, and is injective. But to better argue about the ordering of reads and writes, as long as this
ordering can be derived from the structure of the process, the functions MomentT also take a second
argument — a timepoint. The output of the function is larger than the value of this second argument.
When converting the process, the second argument will be the maximum of the timepoints of preceding
reads and writes to persistent datasets.

When converting a writing to a persistent dataset, the SDG will just contain a node vw with the
MomentT -function. Also, the conversion will remember the node vg that generated the value that was
written. When reading a persistent dataset, the SDG will contain a node vr with the MomentT function.
The value of the vr node is compared against the values of all vw-nodes. The results of the comparisons
are used to filter the values from the vg-nodes. A merge-like operation is then used to select the value
with the largest timestamp from among the vg-nodes that were not filtered out.

3.2.4.5 Translating from BPMN to the Process Calculus. The conversion from actual process ex-
pressed in BPMN consists of first rewriting the process, removing from it a number of BPMN construc-
tions. These constructors mostly express exceptional behavior, or structure the conceptual steps of the
process. The second step of the conversion rewrites the message flows. A message flow that starts a
subprocess, becomes a process launcher. Also, at the receiving side of each message flow, we introduce
the the task copying the sent dataset to a local dataset.

For the first step, we have introduced the following transformations:
Single end events for subprocesses. For subprocesses with end events of multiple types (normal and

exceptional), introduce a dataset into which the type of the reached end event is written. This
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dataset can be read by the tasks following the subprocess. In this way, instead of one or more
boundary events of the subprocess, starting the processes that handle the exceptional outcomes,
there will be a check of the value of the introduced dataset, followed by an exclusive gateway.

Conditional gateways to exclusive ones. When the control reaches a conditional gateway, it stops and
waits for one of the events in the following branches to occur. The execution then continues along
the branch with the event that happened first. In the transformation, we introduce a dataset that
records which event happened first. The branches with the events write into this dataset and then
stop. The actual continuation of the process is moved to a separate branch, that starts with the
check of the value of this dataset, and then branches according to it.

Dissolve non-replicated subprocesses. This change is straightforward to make. We redirect the se-
quence flows going into the subprocess, making them go into the start event instead. Similarly,
the sequence flows from the subprocess are made to start from its end event instead. The plain
start and end events are then removed.

Tail-call optimization. If the last step of one subprocess is to send a message that invokes a new in-
stance of a different subprocess, then we merge these two processes.

In the second step, we have to trace how the message flows cross the hierarchy of subprocesses.
Based on this distance between the sending task and receiving event, and comparing it to the distances of
the message flows that started either this or other subprocesses, we decide which message flows belong
together. Such groups of message flows that belong together should have the same process pointers.
Then we perform the transformations described in the first paragraph of this section. When grouping the
message flows, we are actually creating channels, which the BPMN notation does not originally have.

3.2.4.6 New Transformations in SDGs. The introduction of the merge-nodes requires us to also in-
troduce simplifications of SDGs that either remove these nodes or move them to a place in SDGs where
they are not in the way of us deducing the validity of the facts that we wanted the leaks-when analysis
to verify. The simplifications allow the merge-nodes to be moved over the edges of the SDG, taking
into account that they behave as identities with certain further complexities. These transformations have
been described in [27].

3.2.4.7 Analysis of the Example Business Process. When converting the process in Fig. 27 into a
SDG, and simplifying it, we end up with the graph in Fig. 30. This figure is still pretty readable. We
see that the input photo_database may leak to the output result, but only after passing through the
operation filter_sanitize_photo. We can also deduce that in order for this output to be active, the
check is_photo_innocent must pass.

In general, we expect the resulting dependency graphs to be much more complex. Hence we deliver
the results of the leaks-when analysis in the form of stating for each input and each output, whether this
input may flow into this output. Moreover, if the flow is possible, then we state through which operations
it must flow, and which checks must pass. The list of these significant operations and checks will be
another input to the leaks-when analyzer.

3.3 Quantitative Analysis

A quantitative privacy analysis allows us to numerically characterize the privacy losses in a process.
Being more complex than the analyses described above, we generally apply them to simpler workflows.
The expressivity of the workflows that we mostly consider is similar to the workflows to which the
BPMN leaks-when analysis was applied (see Sec. 3.2.4.1). Such workflows take data objects as inputs,
and compute new data objects from them. The workflows may be composed either sequentially or in
parallel, where we combine the control structures of the two workflows, as well as let certain input and
output datasets of the first workflow to be certain outputs or inputs of the second. A workflow is made

52
Approved for Public Release; Distribution Unlimited. 



Exists: D42_photos_with_matches_photoID 169

0 Command Center

Input D42_photos_with_matches_photoID.v 171

0 Command Center

1

Exists: D72_photoID_photo_URI 196

0 Mobile device

Input D72_photoID_photo_URI.v 198

0 Mobile device

2

Exists: D71_photo_database 202

0 Mobile device

Input D71_photo_database.v 204

0 Mobile device

2

Exists: D2_privacy_policy 208

0 Mobile device

Input D2_privacy_policy.v 210

0 Mobile device

3

TakeDim Command Center 226

0 Command Center

1 1

TakeDim Mobile device 227

0 Mobile device

1 Mobile device <-
0 Command Center

1 Mobile device

11

Addr162(0) 228

0 Command Center

1 Command Center <-
0 Mobile device

1 Command Center

=? 230

0 Mobile device

1 Command Center

Addr163(0) 237

0 Command Center

=? 239

0 Command Center

1 Mobile device

TakeDim User 245

0 User

1 User <-
0 Mobile device

1 User

Addr164(0) 246

0 Mobile device

1 Mobile device <-
0 User

1 Mobile device

=? 248

0 User

1 Mobile device

C

Addr165(0) 255

0 Mobile device

=? 257

0 Mobile device

1 User

Exists: Command Center 268

0 Command Center

interesting_match 284

0 Command Center

1

1 Command Center <-
0 Mobile device

1 Command Center

and 350

0 Command Center

C

Out[leaked_D42.v] 356

0 Command Center

and 370

0 Mobile device

1 Command Center

C

ooor 373

0 Mobile device

1 Command Center
-> 1 Command Center

and 442

0 Command Center

C

and 475

0 Command Center

1 Mobile device

C

C

1 Command Center

0 Mobile device
<-

0 Mobile device

1 Command Center

2 Command Center

ooor 478

0 Command Center

1 Mobile device
-> 1 Mobile device

Merge(L) 624

0 Mobile device

1 Command Center
-> 0 Mobile device

any filter 665

0 User

1 Mobile device

Merge(L) 668

0 User

1 Mobile device
-> 1 Mobile device

1

and 674

0 User

1 Mobile device

C

ooor 677

0 User

1 Mobile device
-> 1 Mobile device

1C 723

2

=? 724

0 Mobile device

any filter 783

0 Mobile device

1 User

Merge(L) 786

0 Mobile device

1 User
-> 1 User

1

and 792

0 Mobile device

1 User

C C

ooor 795

0 Mobile device

1 User
-> 1 User

is_photo_innocent 841

0 User

Merge(L) 15202

0 Mobile device

1 Command Center

2 Command Center

->
0 Mobile device

1 Command Center

any filter 15204

0 Mobile device

1 Command Center

2 Command Center

Out[result.v] 15216

0 Command Center

1 Mobile device

2 Command Center

3 Command Center

find_URI 15224

0 Mobile device

1 Command Center

1

2

0 Mobile device

2 Command Center
<-

0 Mobile device

1 Command Center

2 Command Center

locate_photo 15227

0 Mobile device

1 Command Center

1

filter_sanitize_photo 15233

0 Mobile device

1 Command Center

2 Command Center

1

analyze_photo 15251

0 Mobile device

1 Command Center

2 Command Center

1 Mobile device

2 Command Center

3 Command Center

<-

0 Command Center

1 Mobile device

2 Command Center

3 Command Center

Figure 30: Final Dependency Graph for Our Example

53
Approved for Public Release; Distribution Unlimited. 



up of components; we want to analyse both the components, as well as the workflow as the composition
of components.

Below, we present a large number of different analyses, applied to slightly different formulations of
workflows, and to different definitions of privacy leaks. For each analysis, we define the precise shape
of the workflows it can be applied on. It is generally possible to convert between different kinds of
workflows we consider, although it may incur some loss in precision or expressivity.

3.3.1 Sensitivity and Differential Privacy.

3.3.1.1 Notation. We let N denote the set of natural numbers, R the set of real numbers and B =

{true, false} the set of booleans. Let R+ denote the set of non-negative real numbers, augmented with the
greatest element∞. For a, b ∈ R, a ≤ b, let [a, b] denote the set of real numbers x, such that a ≤ x ≤ b.

For values x and y, the Kronecker symbol δxy is equal to 1 if x = y, and to 0 otherwise.
The set of all subsets of the set X is denoted by P(X). If X is a partially ordered set and X′ ⊆ X,

then the upper closure and the lower closure of X′ are defined by ↑X′ = {x ∈ X | ∃x′ ∈ X′ : x ≥ x′}
and ↓X′ = {x ∈ X | ∃x′ ∈ X′ : x ≤ x′}. A subset X′ ⊆ X is upwards [resp. downwards] closed, if
X′ = ↑X′ [resp. X′ = ↓X′]. Let F (X) [resp. I(X)] denote the set of all upwards [resp. downwards]
closed non-empty subsets of X. It is natural to define the order on I(X) as subset inclusion, and the order
on F (X) as superset inclusion.

If X and Y are sets, then X + Y denotes their disjoint union. Formally, X + Y = {(1, x) | x ∈ X} ∪
{(2, y) | y ∈ Y}, but if there is no chance of confusing the membership of the elements of X + Y in X or Y ,
we will simply consider X and Y as subsets of X + Y . Similarly, if X is a set and n ∈ N, then nX denotes
the disjoint union of n copies of X, formally nX = {(i, x) | x ∈ X, i ∈ N, 1 ≤ i ≤ n}.

A (countably supported) probability distribution over the set X is a mapping χ : X → R satisfying
• χ(x) ≥ 0 for all x ∈ X;

• The set {x ∈ X | χ(x) > 0}, denoted χ, has at most countable cardinality;

•
∑

x∈X χ(x) = 1.
We denote the set of all countably supported probability distributions over the set X by D(X). Any
mapping f : X → Y can be lifted to D( f ) : D(X) → D(Y) by D( f )(χ)(y) =

∑
x∈X, f (x)=y χ(x) for all

χ ∈ D(X) and y ∈ Y . With such lifting, D(·) is an endofunctor on the category of sets. It can be
given the structure of a monad: the unit is the mapping η : X → D(X) defined by η(x)(y) = δxy. The
multiplication is the mapping µ : D(D(X)) → D(X) defined for each X ∈ D(D(X)) by µ(X)(x) =∑
χ∈D(X)X(χ) · χ(x). Due to the monad structure, we can define the Kleisli composition of mappings

f : X → D(Y) and g : Y → D(Z) by g ◦Kl f = µ ◦ D(g) ◦ f : X → D(Z). Operationally, such
composition works exactly as we imagine two probabilistic programs to be sequentially composed:
f gets an argument x and probabilistically outputs a result y, on which g is invoked and the result z
obtained, again probabilistically.

For f : X → D(Y) we also use the notation f : D(X)→ D(Y) to denote the lifting of f to probability
distributions. Formally, f = µ ◦ D( f ). The notions we have defined satisfy g ◦Kl f = g ◦ f .

Given a probability distribution ψ ∈ D(X × Y), we let ψ↓1 ∈ D(X) and ψ↓2 ∈ D(Y) denote its
projections to the first and second component, respectively. These are defined by ψ↓1(x) =

∑
y∈Y ψ(x, y)

for all x ∈ X and similarly for ψ↓2, where the sum is well-defined due to the support of ψ being countable.
In the other direction, given probability distributions χ ∈ D(X) and φ ∈ D(Y), we define the distribution
χ × φ ∈ D(X × Y) by setting (χ × φ)(x, y) = χ(x) · φ(y).

For a distribution ρ ∈ D(R), its average is defined by E[ρ] =
∑

r∈R r · ρ(r). Note that the sum
only has a countable number of non-zero summands due to the support of ρ being at most countable.
Nevertheless, the sum may diverge or be undefined. Defining the distribution ρ2 ∈ D(R+) as ρ2(x) =

ρ(
√

x) + ρ(−
√

x), the variance of ρ is defined by V[ρ] = E[ρ2] − E[ρ]2.
We are going to use multiset comprehensions to construct new probability distributions from existing

ones. The write-up {|E |C|} denotes the distribution of the values of the expression E, controlled by the
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list of conditions C. This list contains the definitions of values through two mechanisms: computation
and sampling from an already defined distribution, the latter denoted by x ← χ. All samplings in the
list of conditions are independent of each other; x, x′ ← χ is shorthand for x ← χ, x′ ← χ. E.g. the
distribution ρ2 above could be defined as {|x2 | x← ρ|}.

For S : Y → Z and X ⊆ Y , we let S |X denote the restriction of S (as a mapping) to the subset X.
We extend this notion to probability distributions: for D ∈ D(Y → Z), let D|X ∈ D(X → Z) denote the
probability distribution defined by D|X(S ′) =

∑
S :Y→Z,S |X=S ′ D(S ). In particular, for an element y ∈ Y ,

we let D|y ∈ D(Z) denote the distribution of the value of variable y in D.

3.3.1.2 Differential Privacy.

Definition 3.1 (Metric space). A metric space is a set X together with a metric dX on it. A mapping
dX : X × X → R+ is a metric if it satisfies the following conditions:
• for all x, y ∈ X: dX(x, y) = 0 iff x = y;

• for all x, y ∈ X, dX(x, y) = dX(y, x);

• for all x, y, z ∈ Z, dX(x, z) ≤ dX(x, y) + dX(y, z).

Let R be the set of possible database records and X = NR be the set of databases (i.e. a database
is a multiset of records). Let O be a set of possible outcomes and M : X → O a probabilistic map
(an information release mechanism). For r ∈ R let x1

r
∼ x2 denote that x1, x2 differ only by r, i.e.

x1(r) = x2(r) ± 1 and x1(r′) = x2(r′) for all r′ ∈ R\{r}. Two databases x1, x2 ∈ X are adjacent if x1
r
∼ x2

for some r ∈ R. Let dX be any metric on X.

Definition 3.2 (Differential privacy [36]). Let ε ∈ R. The mechanism M is ε-differentially private if
Pr[M(x1) ∈ S ] ≤ eε · Pr[M(x2) ∈ S ] for all S ⊆ O and all adjacent databases x1, x2 ∈ X.

Definition 3.3 (dX-privacy [37]). The mechanism M is dX-private if Pr[M(x1) ∈ S ] ≤ edX(x1,x2) ·

Pr[M(x2) ∈ S ] for all S ⊆ O and x1, x2 ∈ X.

Definition 3.4 (Personalised differential privacy [38]). Let E : R → R. The mechanism M is E-
differentially private if Pr[M(x1) ∈ S ] ≤ eE(r) · Pr[M(x2) ∈ S ] for all S ⊆ O, all r ∈ R and all databases
x1, x2 ∈ X satisfying x1

r
∼ x2.

Note that in Def. 3.3, the privacy level ε is implicitly part of dX as a scale factor. Def. 3.3 presents
a very general methodology to define the privacy of a mechanism, and Def. 3.4 gives a possible recipe
to instantiate it. Indeed, for any E : R → R there exists a metric dE, such that a mechanism M is E-
differentially private iff it is dE-private. A suitable construction of that metric is dE(x1, x2) =

∑
r∈R E(r) ·

|x1(r) − x2(r)| (for databases with finite support). We believe that the privacy definitions useful for the
construction of a privacy analyzer will be similar to Def. 3.4: the input objects x consist of components,
the distance between two objects is mostly determined by the components in which these objects differ,
and privacy is defined as in Def. 3.3. In Sec. 3.3.6 we give a very general methodology for defining such
distances.

Definition 3.5 (Sensitivity). Let X and Y be two metric spaces with distances dX and dY on them.
Let c ∈ R+. We say that a function f : X → Y is c-sensitive, if for all x1, x2 ∈ X, the inequality
dY ( f (x1), f (x2)) ≤ c · dX(x1, x2) holds.

Sensitivity is the main tool in arguing the differential privacy of various information release mech-
anisms. For mechanisms that first compute a “useful” function and then add noise to it, the differential
privacy of the resulting mechanism is the ratio of the sensitivity of that function and the magnitude of
the added noise. Differential privacy itself can also be seen as an instance of sensitivity. Indeed, define
the following distance ddp overD(Y):

ddp(χ, χ′) = inf{ε ∈ R+ | ∀y ∈ Y : e−εχ′(y) ≤ χ(y) ≤ eεχ′(y)}
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or, equivalently

ddp(χ, χ′) = sup
x∈X

∣∣∣∣∣ln χ(x)
χ′(x)

∣∣∣∣∣ .

Then a mechanismM from X to Y is dX-private iff it is 1-sensitive with respect to the distances dX on X
and ddp onD(Y).

The well-known composition theorems of differential privacy are instantiations of more general
results on sensitivity of composed mappings. We start with the simplest result for sensitivity.

Proposition 3.1. Let f : X → Y be c-sensitive with respect to the distances dX on X and dY on Y. Let
f ′ : Y → Z be c′-sensitive with respect to the distances dY on Y and dZ on Z. Then f ′ ◦ f : X → Z is
c · c′-sensitive with respect to the distances dX on X and dZ on Z.

Proof. Let x, x′ ∈ X. Then dZ( f ′( f (x)), f ′( f (x′))) ≤ c′ · dY ( f (x), f (x′)) ≤ c′ · c · dX(x, x′). �

This proposition can be generalized to multivariate mappings. Let i ∈ {1, . . . , n}. We say that a map-
ping f ′ : Y1×· · ·×Yn → Z is c′i-sensitive in its i-th argument, if for all tuples (y1, . . . , yi−1, yi+1, . . . , yn) ∈
Y1 × · · · × Yi−1 × Yi+1 × · · · × Yn, the univariate mapping f (y1, . . . , yi−1, ·, yi+1, . . . , yn) is c′i-sensitive.

Proposition 3.2. For i ∈ {1, . . . , n}, let fi : X → Yi be ci-sensitive with respect to the distances dX on
X and dYi on Yi. Let f ′ : Y1 × · · · × Yn → Z be c′i-sensitive with respect to the distances dYi on Yi and
dZ on Z (for all i ∈ {1, . . . , n}). Then the mapping g : X → Z, defined by g(x) = f ′( f1(x), . . . , fn(x)), is∑n

i=1 cic′i-sensitive with respect to the distances dX on X and dZ on Z.

Proof. Let x, x′ ∈ X. Let zi = f ′( f1(x), . . . , fi(x), fi+1(x′), . . . , fn(x′)). Then z0 = g(x′), zn = g(x)
and by Prop. 3.1, dZ(zi−1, zi) ≤ cic′i · dX(x, x′). The claim of the proposition follows from the triangle
inequality. �

Proposition 3.3 (Sequential composition for DP). Let f : X → Y be c-sensitive with respect to the
distances dX on X and dY on Y. Let a : Y → Z be 1-sensitive with respect to the distances dY on Y and
dZ on Z. Let g : X × Z → W be such that for all z ∈ Z, g(·, z) is c′-sensitive with respect to the distances
dX on X and dW on W. Also, for all x ∈ X, let g(x, ·) be 1-sensitive with respect to the distances dZ on
Z and dW on W. Then the function h : X → W, defined by h(x) = g(x, a( f (x))) is (c + c′)-sensitive with
respect to the distances dX on X and dW on W.

Proof. Let x, x′ ∈ X. Then

dW(h(x), h(x′)) = dW(g(x, a( f (x))), g(x′, a( f (x′)))) ≤

dW(g(x, a( f (x))), g(x, a( f (x′)))) + dW(g(x, a( f (x′))), g(x′, a( f (x′)))) ≤

c · dX(x, x′) + c′ · dX(x, x′) . �

In the setting of differential privacy, there is a dataset x ∈ X and information release mechanisms
M1 andM2, which are respectively ε1- and ε2-differentially private. Let the possible set of outcomes
ofMi be Mi. FirstM1 and thenM2 are invoked on x; the exact invocation ofM2 may depend on the
result ofM1. Finally, the result ofM2 is published. This result may include the result ofM1, because it
affected the invocation ofM2. Such composition ofM1 andM2 is shown to be (ε1 + ε2)-differentially
private.

Proposition 3.3 is applicable to this case in the following manner.

• The set X corresponds to the set X in the proposition.

• M1 is the mapping f in the proposition. The set D(M1) of probability distributions corresponds
to the set Y , with ddp overD(M1) taking the role of dY .
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• The mapping a in the proposition corresponds to any further processing done to the result ofM1
before using it to guide the workings of M2. This processing is assumed to be deterministic,
with the output in some set M′. But as M1 gave its output probabilistically, such processing
is also lifted to a mapping from D(M1) to D(M′). The set D(M′) corresponds to the set Z in
the proposition, with ddp taking the role of dZ . As no postprocessing can worsen the privacy
guarantees of a differentially private mechanism, the sensitivity of a is at most 1.

• The mapping f ′ in the proposition corresponds to the mechanism M2; its second argument is
the guidance it receives fromM1. The set D(M2) corresponds to the set W in the theorem, with
ddp taking the role of dW . Again, g(x, ·) is at most 1-sensitive, because postprocessing does not
weaken the privacy guarantees.

The set-up of the (ill-named) parallel composition is more complex. There are the same mechanisms
M1 andM2 applied to x ∈ X one after the other, with the invocation ofM2 depending on the result of
M1. Additionally, it is stated that M1 and M2 “consider only independent parts of the dataset x”. In
the original treatment, the “independent parts” were intended to be e.g. different columns of a database.
In general, however, a “part” of x ∈ X can be modeled as an equivalence relation over X. It relates two
elements of X if they are equal to each other in the considered “part”. An information release mechanism
makes use of only that “part” if it is equal on related elements. Hence we have equivalence relations
ρ1, ρ2, such thatMi(x) = Mi(x′) if x ρi x′. An additional condition states that the “parts” have to be
independent. This can be clearly interpreted as a condition involving the equivalence relations ρ1, ρ2 and
the distance on X. We state a suitable condition in Prop. 3.4 below; it is more general than what is used
in the argument of parallel composition for DP.

Proposition 3.4 (Parallel composition for DP). Let f : X → Y, a : Y → Z, g : X × Z → W have the
same sensitivities as in Prop. 3.3. Let ρ, σ be equivalence relations on X that are independent, i.e. for
any x, x′, there exist m ∈ N and x0, . . . , x2m ∈ X, such that

∑2m
i=1 dX(xi−1, xi) = dX(x, x′) and

x = x0 ρ x1 σ x2 · · · ρ x2m−1 σ x2m = x′ . (2)

For each x, x′ ∈ X and z ∈ Z, let x ρ x′ imply f (x) = f (x′), and x σ x′ imply g(x, z) = g(x′, z). Then the
function h : X → W, defined by h(x) = g(x, a( f (x))) is max{c, c′}-sensitive with respect to the distances
dX on X and dW on W.

Proof. Let x, x′ ∈ X. Let m and x0, . . . , x2m be as in (2). Then

dW(h(x), h(x′)) = dW(g(x, a( f (x))), g(x′, a( f (x′)))) ≤

 2m∑
i=1

dW(g(xi−1, a( f (xi−1))), g(xi, a( f (xi))))

 = m∑
i=1

dW(g(x2i−2, a( f (x2i−2))), g(x2i−1, a( f (x2i−1))))

 +

 m∑
i=1

dW(g(x2i−1, a( f (x2i−1))), g(x2i, a( f (x2i))))

 = m∑
i=1

dW(g(x2i−2, a( f (x2i−2))), g(x2i−1, a( f (x2i−2))))

 +

 m∑
i=1

dW(g(x2i, a( f (x2i−1))), g(x2i, a( f (x2i))))

 ≤ m∑
i=1

c′ · dX(x2i−2, x2i−1)

+

 m∑
i=1

c · dX(x2i−1, x2i)

 ≤ max{c, c′}·
2m∑
i=1

dX(xi−1, xi) = max{c, c′}·dX(x, x′) .

Here the equality between second and third row follows from

• (for left summand) x2i−2 ρ x2i−1 by (2). Hence f (x2i−1) = f (x2i−2).

• (for right summand) x2i−1 σ x2i by (2). Hence g(x2i−1, z) = g(x2i, z) for z = a( f (x2i−1)).

�
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3.3.2 Sensitivity of Data Processing Workflows. The sensitivity analysis for data processing work-
flows (DP-workflows) considers workflows made up of tasks and data objects. Tasks create and consume
data objects; each data object is created and consumed by a single task. Each task has a sensitivity, which
has already been determined. Our analysis will determine the sensitivity of the entire workflow.

3.3.2.1 DP-Workflows. More concretely, a DP-Workflow is a directed acyclic graph (DAG) where
each node represents either a data node or a (DP-)task, and the arcs go either from a data node to a task
node (input) or from a task node to a data node (output). Additionally, because there is no conditionally
branching or merging, no two tasks in the corresponding DP-Workflow can share the same output data
node (i.e. a data node is output of at most one task).

A data processing workflow consists of data nodes, processing nodes and data-flow arcs. A data-
flow arc connects a data node to a processing node or vice-versa. A data node without any incoming
arc is called a source data node. It corresponds to an object or collection of objects that are given as
input to the workflow. A data node without any outgoing arc is called an output node (i.e. it is data
produced by an execution of the workflow). A data node with both incoming and outgoing arcs is called
an intermediate node.

Figure 31 shows an example of a data processing workflow. Data nodes are represented as rounded
rectangles, while data nodes are rectangles with their top-right corner folded over.

A

B

C

D

x1

x2

x3

x4

x5

x6

x7

Figure 31: Example of a Data Processing Workflow (DP-Workflow)

Formally, a Data Processing Workflow W is a tuple (D, P, F), where D and P are two finite, disjoint
sets, and F is a relation on (D × P) ∪ (P × D). For convenience, we will refer to D ∪ P as the set of
nodes N. The elements of D are data nodes and the elements of P are processing nodes, that is, nodes
representing computations over some input data.

Given a node n ∈ N, we define •n = {m | (m, n) ∈ F} (the predecessors of n) and n• = {m | (n,m) ∈ F}
(the successors of n). A DP-Workflow W is said well-formed if it induces an acyclic, weakly connected
graph, with the following additional restrictions: every node d ∈ D has at most one successor and at
most one predecessor, i.e. | •d | ≤ 1 and | d• | ≤ 1, and every node p ∈ P has at least one predecessor
and at least one successor node, i.e. | • p | ≥ 1 and | p• | ≥ 1. In the following, we consider only well
formed DP-Workflows.

A privacy-enhanced DP-Workflow is a DP-Workflow annotated with differential privacy and sen-
sitivity values. Formally, a Privacy-enhanced DP-Workflow is a tuple (W,E,C), where W = (D, P, F)
is a DP-Workflow and E and C are mappings D × P × D → R+, associating a differential privacy and
sensitivity value (respectively) to an output produced by a processing node, relative to an input of this
processing node.

For example, a privacy-enhanced version of the DP-Workflow shown in Figure 31 is shown in Figure
32. In the figure, we use εA[x1, x3] = 0.2 to denote the tuple (x1, A, x3, 0.2) ∈ E, meaning that performing
A is ε-differential private with ε = 0.2, when processing x1 as input and producing x3. Similarly,
cA[x1, x3] = 0.4 is used to denoted the tuple (x1, A, x3, 0.4) ∈ C, which means that A takes as input x1
and produces x3 with a sensitivity of 0.4.
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εA[x1, x3] = 0.2
cA[x1, x3] = 0.4

εA[x1, x4] = 0.2
cA[x1, x4] = 0.4

εB[x2, x5] = 0.2
cB[x2, x5] = 0.4

εB[x3, x5] = 0.2
cB[x3, x5] = 0.4

εC[x4, x6] = 0.2
cC[x4, x6] = 0.4

εD[x5, x7] = 0.2
cD[x5, x7] = 0.4

εD[x6, x7] = 0.2
cD[x6, x7] = 0.4

Figure 32: Example of a Privacy-Enhanced DP-Workflow

3.3.2.2 Data Node-Based Analysis of DP-Workflows. We are interested in computing upper bounds 
of the information disclosed when data nodes are accessed by a user playing a given role, or sent out 
to an external party. In order to do so, we design an algorithm that computes the differential privacy 
and sensitivity values of every intermediate and output data node in a privacy enhanced DP-Workflow, 
relative to every source data node. Subsequently, we show how to aggregate the privacy and sensitivity 
values calculated in this way, in order to compute a bound of the information that each role or external 
party can extract from each source data node, given the data that are disclosed to them during one 
execution of the workflow.

The proposed algorithm is given below. The input of the algorithm is a privacy-enhanced DP-
workflow, while the output consists of two matrices, namely ddp and dc, of size |S | × |O| where S is the 
set of source data nodes in the workflow and O is the set of intermediate and output data nodes. A cell in 
ddp (respectively dc) gives a differential privacy bound (resp. sensitivity bound) of a given intermediate 
or output data node relative to a source data node. The main idea of the algorithm is to iterate over the 
processing nodes in the DP-Workflow in topological order (which requires that the DP-Workflow is 
well-formed and thus acyclic). At each step, we compute the value of ddp[s, o] and dc[s, o] for each 
output o of the current processing node p, using the previously computed values for the input data nodes 
of p, as well as the formulas for composing sensitivity values given in Propositions 3.1–3.4 and existing 
formulas for composition of ε−differentially private information release mechanisms.

Data: A well-formed DP-Workflow (W, S ), with W = (D, P, F)
Result: The matrices ddp and dc

foreach processing node p ∈ P in topological order do
foreach s ∈ D, o ∈ p• : |•s| = 0 ∧ (s, o) ∈ F+ do

if s ∈ •p then
ddp[s, o] = εp[s, o]
dc[s, o] = cp[s, o]

else
ddp[s, o] =

∑
i∈•p:(s,i)∈F+

min
(
ddp[s, i], dc[s, i] · εp[i, o]

)
dc[s, o] =

∑
i∈•p:(s,i)∈F+

(
dc[s, i] · cp[i, o]

)
end

end
end
return ddp, dc

Algorithm 1: Differential Privacy of a DP-Workflow

Example 3.1. We use the example in Figure 32 to illustrate the algorithm. To this end, we consider the
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topological order [A, B,C,D] of processing nodes9.
During the first iteration, in line 1 the algorithm sets p to the processing node A. In line 2, the

algorithm iteratively selects a source data node (i.e. s ∈ D : |• s| = 0) and one successor of p such that
the latter is reachable from the selected source node. The first iteration of the inner loop then processes
the pair s = x1 and o = x3. Since x1 is a direct predecessor of A the algorithm will perform lines 4-5.
As a result, we have that ddp[x1, x3] = εA[x1, x3] = 0.2 and dc[x1, x3] = cA[x1, x3] = 0.4. The second
iteration of the inner loop, in turn, will process the pair s = x1 and o = x4. The latter will result in
ddp[x1, x4] = εA[x1, x4] = 0.2 and dc[x1, x4] = cA[x1, x4] = 0.4. This will complete the first iteration
of the outer loop because none of the successors of A is reachable from x2. The following matrices
summarize the outcome of the first iteration:

x3 x4 x5 x6 x7

x1 εA[x1, x3] = 0.2 εA[x1, x4] = 0.2
x2

ddp

x3 x4 x5 x6 x7

x1 cA[x1, x3] = 0.4 cA[x1, x4] = 0.4
x2

dc

In the second iteration, the algorithm sets p to the processing node B (line 1). The inner loop first
computes the values for source node x1 and the only successor of B, that is x5. This time, the algorithm
executes lines 7-8, because x1 is not a direct predecessor of B. Note that x3 is the only direct predecessor
of B which is reachable from x1 and, as a result, there is only one term in the summation of line 7.
Therefore, in line 7 we have that ddp[x1, x5] = min(ddp[x1, x3], dc[x1, x3] · εB[x3, x5]) = min(0.2, 0.4 ·
0.2) = 0.08 and in line 8 dc[x1, x5] = dc[x1, x3] · cB[x3, x5] = 0.4 · 0.4 = 0.16. In the second iteration of
the inner loop, the algorithm computes the values associated to the source node x2 and the only successor
of b, that is x5. Since x2 is direct predecessor of B, the algorithm sets ddp[x2, x5] = εB[x2, x5] = 0.2 and
dc[x2, x5] = cB[x2, x5] = 0.4.

The third iteration selects p = C and proceeds in a similar way as for the second iteration. The
following matrices summarize the values computed at the end of this iteration.

x3 x4 x5 x6 x7

x1 0.2 0.2 0.08 0.08
x2 0.2

ddp

x3 x4 x5 x6 x7

x1 0.4 0.4 0.16 0.16
x2 0.4

dc

In the final iteration, the algorithm computes the values by selecting p to be the processing node D. In
the inner loop, the algorithm will first select the source node x1. Note that D has x7 as its only successor.
However, there are two direct predecessors of D, namely x5 and x6. Therefore the computation of ddp

involves the summation of the values that come from x5 and x6. Thus, we have that:

ddp[x1, x7] = min
(
ddp[x1, x5], dc[x1, x5] · εD[x5, x7]

)
+

min
(
ddp[x1, x6], dc[x1, x6] · εD[x6, x7]

)
= min (0.08, 0.16 · 0.2) + min (0.08, 0.16 · 0.2)

= 0.064

and

dc[x1, x7] = (dc[x1, x5] · cD[x5, x7]) + (dc[x1, x6] · cD[x6, x7])

= (0.16 · 0.4) + (0.16 · 0.4)

= 0.128

In the final iteration of the inner loop, the algorithm computes the values for s = x2 and
o = x5. In this case however, there is only one term in the summation. Therefore, ddp[x2, x7] =

min
(
ddp[x2, x5], dc[x2, x5] · εD[x5, x7]

)
= min (0.2, 0.4 · 0.2) = 0.08. Finally, dc[x2, x7] = dc[x2, x5] ·

cD[x5, x7] = 0.4 · 0.4 = 0.16.
The following matrices summarize the outcome of the algorithm.
9Note that there exists another topological order of the processing nodes of the example, namely [A,C, B,D]. Either one

would produce the same output matrices.
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x3 x4 x5 x6 x7

x1 0.2 0.2 0.08 0.08 0.064
x2 0.2 0.16

ddp

x3 x4 x5 x6 x7

x1 0.4 0.4 0.16 0.16 0.128
x2 0.4 0.08

dc

3.3.2.3 Role-Based Privacy Analysis of DP-Workflows. The disclosures identified in a PE-BPMN
process model can be encoded in a relation Disc ⊆ D × R, such that Disc(n, r) denotes the fact that
data node n is disclosed to role r. Given the matrices ddp and dc computer from a privacy-enhanced
DP-Workflow W and given the relation Disc capturing the disclosure of data nodes to roles, we can now
compute a differential privacy bound εr(s) of the information that a given role r can extract from a given
source data node s – i.e. how much a party playing a given role can learn about individual records of a
given input s of W:

εr(s) =
∑

(n,r) ∈ Disc : (s,n) ∈ F+

ddp[s, n] (3)

Example 3.2. Given the matrices computed in the previous example:

x3 x4 x5 x6 x7

x1 0.2 0.2 0.08 0.08 0.064
x2 0.2 0.16

ddp

x3 x4 x5 x6 x7

x1 0.4 0.4 0.16 0.16 0.128
x2 0.4 0.08

dc

we can compute the differential privacy guarantee with respect to data node x1 that can be made for
a party playing a role r that has access to both data nodes x5 and x6 in the DP-Workflow shown in
Figure 32:

εr(x1) = ddp[x1, x5] + ddp[x1, x6]

= 0.08 + 0.08 = 0.16

In the above equation and example we sum up the ε values calculated for each intermediate/output
data node that is disclosed to role r. This is a worst-case bound. If a role has access to two data nodes
n1 and n2 produced from a given source data node s via two different paths in the DP-Workflow (thus
implying at least partially different information release mechanisms), it would be possible to derive
a tighter bound – in the best case max(ddp[s, n1], ddp[s, n2]) instead of ddp[s, n1] + ddp[s, n2]. Such
refinements of the bound will be investigated in the next six-months iteration of the project.

3.3.3 Sensitivity and DP Analysis of Components. Above, we gave a sensitivity and differential
privacy analysis for workflows, making use of the already-computed values for sensitivity (and DP) for
individual processing nodes. As next, we present an analysis for the nodes, the operations of which have
been specified. In this presentation, the specification language is a simple programming language. The
language is geared towards constructing differentially private data transformers, containing primitive
operations for inserting noise generated according to useful distributions.

3.3.3.1 Programming Language. Let Var be the set of variables. The arithmetic expressions e,
boolean expressions b and programs s are defined by the grammar given in Fig. 33.

A state of the program maps variables to real numbers10, let State = Var → R be the set of all
program states. For x ∈ Var, v ∈ R and S ∈ State let S ′ = S [x 7→ v] denote a state that satisfies
S ′(x) = v and S ′(y) = S (y) for y ∈ Var\{x}.

10If the potential values really were real numbers, then the set of states would be non-countable and formally defining
probability distributions over them would be significantly more complicated. In our discussions we assume that R has been
discretized sufficiently well, such that there are only countably many values, but on the other hand, noise can be generated with
sufficient precision.
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We have simplified the language by leaving out looping constructs as well as data structures of
arbitrary size. The main reason for leaving them out is our lack of good analysis methods for them. But
we provide a partial solution in Sec. 3.3.3.6.

The semantics of a program s has the type ~s� : State → D(State). It’s definition is given in
Fig. 34 together with the semantices for arithmetic expressions — ~e� : State → D(R) — and boolean
expressions — ~b� : State → D(B). The definitions are straightforward due to the lack of possibilities
for the programs to diverge.

3.3.3.2 Abstract Interpretation. Abstract interpretation [39] is a general program analysis technique
consisting of defining an abstract semantics for the programming language that faithfully abstracts the
concrete semantics, and computing this semantics for the program we want to analyze. A good abstract
semantics clearly expresses the properties of the programs we are interested in. The computation of the
abstract semantics and the subsequent extraction of interesting properties should be more tractable than
similar computation and extraction for the concrete semantics. In our case, the concrete semantics is
probabilistic and we are interested in the distance ddp for certain probability distributions extracted from
the semantics of the program. We cannot think of any reasonable methods for extracting these distances
directly from the actual executions of the programs we study.

To use abstract interpretation, we have to define the abstract domain, and the transfer functions for
all possible program steps. Together, they form the abstract semantics of the language. The abstract
domain AState is a partially ordered set. Each element of AState corresponds to some concrete states,
i.e. elements ofD(State). The correspondence is given by a relation �⊆ AState×D(State); this relation
has to be specified together with AState. The order on AState is one of information: if A1, A2 ∈ AState,
D ∈ D(State) and A1 ≤ A2, then A1 � D implies A2 � D. This means that smaller elements of AState
convey more precise information about the concrete executions of the program; there is less uncertainty
in them. In typical analyses, the domain AState has the least element ⊥ and the greatest element >
satisfying ⊥ 2 D and > � D for all D ∈ D(State).

The transfer functions ~s�A have the type AState → AState. They must satisfy the following
condition:

∀A ∈ AState,D ∈ D(State) : A � D =⇒ ~s�A(A) � ~s�(D) . (4)

This condition means, that from a valid abstraction of the initial distribution of program states we must
obtain some valid abstraction of the final distribution of states.

We note that composing the transfer functions of subprograms is the obvious way to define the
transfer function for the sequential composition of programs. As the concrete semantics of composition
is defined in terms of ◦Kl, this also satisfies (4).

Abstract interpretation for information flow. As described, abstract interpretation is well-suited to
automatically derive properties satisfied by program states and distributions over them, e.g. the values of
variables in the final state of the program. Unfortunately, information flow is not such a trace property.
Instead of being defined over a single state or program execution, it is concerned with two different
executions that start from states related in particular way. If we are interested in the differential privacy
properties of the program, then we consider two executions from starting states with a certain distance

e ::= x
| n
| e1 + e2
| e1 · e2
| Lap()

b ::= e1 ≤ e2
| e1 = e2
| b1 ∧ b2
|¬b

s ::= x := e
| skip
| s1; s2
| if b then s1 else s2

Here x ∈ Var and n ∈ R.

Figure 33: Syntax of the Programming Language
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~x�(S ) = η(S (x))

~n�(S ) = η(n)

~e1 + e2�(S ) = {|v1 + v2 | v1 ← ~e1�(S ), v2 ← ~e2�(S )|}

~e1 · e2�(S ) = {|v1v2 | v1 ← ~e1�(S ), v2 ← ~e2�(S )|}

~Lap()�(S ) = Lap1

~e1 ≤ e2�(S ) = {|(v1 ≤ v2)? | v1 ← ~e1�(S ), v2 ← ~e2�(S )|}

~e1 = e2�(S ) = {|(v1 = v2)? | v1 ← ~e1�(S ), v2 ← ~e2�(S )|}

~b1 ∧ b2�(S ) = {|v1 ∧ v2 | v1 ← ~b1�(S ), v2 ← ~b2�(S )|}

~¬b�(S ) = {|¬v | v← ~b�(S )|}

~x := e�(S ) = {|S [x 7→ v] | v← ~e�(S )|}

~skip�(S ) = η(S )

~s1; s2�(S ) = (~s2� ◦Kl ~s1�)(S )

~if b then s1 elses2�(S ) = {|S ′′′ | v← ~b�(S ), S ′ ← ~s1�(S ), S ′′ ← ~s2�(S ), S ′′′ =

S ′, v
S ′′, ¬v

|}

Figure 34: Semantics of the Programming Language

apart, and ask whether the final distributions (or certain projections of them) have a not-too-large DP-
distance.

Nevertheless, information flow is still relatively easily reduced to trace properties [40]. Given a
program s, we consider the program s; s′, where s′ is again the program s, but with each variable x ∈ Var
replaced with a new variable x′ ∈ Var′. When we execute s; s′, we are effectively executing s twice, as
long as it does not diverge (we have excluded divergence by removing loops from our language). Hence
we can start s; s′ in a state where the values of the variables x and x′ are related in a certain manner, and
study the projections of the final distribution of states to variables in Var and to variables in Var′.

Composition of abstractions. The abstraction may be a multi-step construction. Perhaps the transfer
functions ~s�A are also too difficult to evaluate. We may then define another abstract domain AState[,
the relation �[⊆ AState[ × AState, the transfer functions ~s� f

Alat, and require them to abstractly inter-
pret AState and ~s�A. In this case AState[ and ~s�[A is also an abstract interpretation of the concrete
semantics through the relation �[ · �.

3.3.3.3 Analysing Straight-line Programs. For now, let us simplify the the programming language
even more, leaving out the if -statements as well. This gives us a program consisting entirely of assign-
ments.

Abstract Domain. Let Exp(V) be the set of all expressions e and b as defined in Fig. 33, where

• the variables occurring there come from the set V;

• the construction Lap() is excluded.

In other words, Exp(V) is the set of all deterministic expressions over the variables in V . Let ≈ be an
equivalence relation on Exp(V), defined by e ≈ e′ iff ~e�(S ) = ~e′�(S ) for all S : V → R (here false
is equated with 0 and true with 1). We define the abstract state of programs as AState = AState1 ×
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AState2 × AState3 × AState4, where AStatei = ASi(Var) and

AS1(V) = P(V)

AS2(V) = P(3V + P(V2)→ R)

AS3(V) = P((P(V))2)

AS4(V) = P(V × Exp(V))

for any set V whose elements we interpret as variables. We also denote AS(V) = AS1(V) × AS2(V) ×
AS3(V) × AS4(V).

Clearly, the abstract domain is too large for our program analysis to store its elements. We use this
abstract domain to specify transfer functions in a clear manner, but our program analysis is actually
going to implement a further abstraction of them, as discussed in Sec. 3.3.3.8.

In order to argue about the correctness of the transfer functions according to (4), we have to define
the relation �, stating which distributions of concrete states match an abstract state. We first state the
following abstraction function α2 : D(State)→ AState2:

α2(D) = { f : 3Var + P(Var2)→ R | S ∈ D, f ((1, x)) = S (x), f ((2, x)) = E[D|x], f ((3, x)) = V[D|x],

f ({(x1, y1), . . . , (xk, yk)}) = ddp({|(S (x1), . . . , S (xk)) | S ← D|},
{|(S (y1), . . . , S (yk)) | S ← D|})}

The elements f of α2(D) can and should be interpreted as points in a vector space over R, with the
number of dimensions of the space being 3 · |Var| + 2|Var|2 . The points describe the possible values of
variables in states distributed according to D, as well as important details of the distribution D itself:
the average and the variance of each variable. Also, the points record the DP-distances between various
projections of the current distribution of program states.

We also state the following abstraction function α3 : D(State)→ AState3:

α3(D) =
{
(X,Y) | X,Y ⊆ Var, {|(S |X , S |Y ) | S ← D|} = {|(S |X , S ′|Y ) | S , S ′ ← D|}

}
.

We see that α3(D) describes, which sets of variables are independent of each other in the distribution D.
Furthermore, the abstraction function α4 : D(State)→ AState4 is the following:

α4(D) = {(x, e) | x ∈ Var, e ∈ Exp(Var),∀S ∈ D : S (x) = ~e�(S )},

recording all relationships between the values of variables (of a special form) that hold for all states in
the support of D.

Let A1 ∈ AState1, A2 ∈ AState2, A3 ∈ AState3, A4 ∈ AState4 and D ∈ D(State). We define
(A1, A2, A3, A4) � D, if A1 � D, A2 � D, A3 � D and A4 � D, where

A1 � D ⇔ ∀x ∈ A1 : D|x is a Laplace distribution

A2 � D ⇔ α2(D) ⊆ A2

A3 � D ⇔ α3(D) ⊇ A3

A4 � D ⇔ α4(D) ⊇ A4 .

Transfer Functions. The transfer functions of the analysis map the abstract state before an assignment
x := e to the state after it. In order to simplify the presentation, we restrict the arithmetic expressions
in a way that obviously does not lessen the generality. Namely, we require that they contain a single
arithmetic expression, i.e. the assignment statements match the following grammar:

x := x′|x := n|x := x1 + x2|x := x1 · x2|x := Lap()|x := (x1 ≤ x2)?|x := (x1 = x2)? (5)

We demand that the variables in the right hand side of the assignments are different from x.
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We have added the boolean expressions, in order to use them in Sec. 3.3.3.4. The boolean expres-
sions are expected to return either 0 or 1. In this way, the conjunction and negation of expressions are
simply arithmetic operations.

The analysis of an assignment in (5) proceeds in two steps: killing the left hand side and generating
the right hand side. Let V be a set of variables, x ∈ V and V ′ = V\{x}. Let (A1, A2, A3, A4) ∈ AS(V).
The killing of x is a mapping from AS(V) to AS(V ′), defined as follows:

killx(A1, A2, A3, A4) =

(A1\{x}, { f |3V′+P((V′)2) | f ∈ A2}, {(X,Y) ∈ A3 | x < X ∪ Y}, {(y, e) ∈ V ′ × Exp(V ′) | (y, e) ∈ A4}) .

I.e. we remove all references to x from A1, A3 and A4. We also remove the dimensions of f ∈ A2 that
correspond to x.

The generation proceeds in the opposite direction, being a mapping from AS(V ′) to AS(V). Its
definition depends on the arithmetic expression we’re analyzing. The generation is performed in the
following steps:

1. the determination of variables distributed according to the Laplacian distribution;

2. the computation of values;

3. the computation of averages;

4. the computation of variances;

5. the recording of relationships between the values of variables;

6. the recording of independence relations between variables;

7. the closure of independence relations;

8. the closure of relationships between values;

9. the computation of differential privacy levels.
We now define these steps one after another.

Let A ∈ AS(V ′). Then gen1(A) returns the set A′1 ⊆ V , for which we know that they are distributed
according to the Laplacian distribution.

gen1
x:=x′(A) =

A1, ifx′ < A1

A1 ∪ {x}, ifx′ ∈ A1

gen1
x:=Lap()(A) = A1 ∪ {x}

gen1
x:=x1+x2

(A) =

A1 ∪ {x}, if∃y1, y2 : {x1, x2} = {y1, y2} ∧ y1 ∈ A1 ∧ ∀ f ∈ A2 : f ((3, y2)) = 0
A1, otherwise

gen1
x:=x1·x2

(A) = gen1
x:=x1+x2

(A)

gen1
x:=...(A) = A1

Let f : 3V ′ + P((V ′)2) → R be one of possible points in the abstract domain, recording the values
of variables and their distribution. Then gen2( f ), gen3( f ) and gen4( f ) give the set of possible values
of x after the assignment, the possible set of its average values, and the possible set of its variances in
the resulting distribution, respectively. The mappings gen3 and gen4 also take the entire abstract state as
another argument, allowing them to increase the precision of abstraction.

gen2
x:=x′( f ) = { f ((1, x′))}

gen2
x:=n( f ) = {n}

gen2
x:=x1⊗x2

( f ) = { f ((1, x1)) ⊗ f ((1, x2))}, where⊗ ∈ {+, ·,≤,=}

gen2
x:=Lap()( f ) = R
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gen3
x:=x′(A, f ) = { f ((2, x′))}

gen3
x:=n(A, f ) = {n}

gen3
x:=x1+x2

(A, f ) = { f ((2, x1)) + f ((2, x2))}

gen3
x:=x1·x2

(A, f ) =

{ f ((2, x1)) · f ((2, x2))}, if(x1, x2) ∈ A3

R, otherwise

gen3
x:=(x1cmpx2)?(A, f ) =


{1}, if∀ f ′ ∈ A2 : f ′((1, x1)) cmp f ′((1, x2))
{0}, if∀ f ′ ∈ A2 : ¬( f ′((1, x1)) cmp f ′((1, x2)))
[0, 1], otherwise

gen3
x:=Lap()(A, f ) = {0}

gen4
x:=x′(A, f ) = { f ((3, x′))}

gen4
x:=n(A, f ) = {0}

gen4
x:=x1+x2

(A, f ) =


{ f ((3, x1)) + f ((3, x2))}, if({x1}, {x2}) ∈ A3

[ f ((3, x1)) + f ((3, x2)) − R, f ((3, x1)) + f ((3, x2)) + R],
otherwise, whereR = 2

√
f ((3, x1)) · f ((3, x2))

gen4
x:=x1·x2

(A, f ) =


{ f ((3, x1)) · f ((2, x2))2 + f ((3, x2)) · f ((2, x1))2 + f ((3, x1)) · f ((3, x2))},

if({x1}, {x2}) ∈ A3

R, otherwise

gen4
x:=(x1cmpx2)?(A, f ) =


{0}, if∀ f ′ ∈ A2 : f ′((1, x1)) cmp f ′((1, x2))
{0}, if∀ f ′ ∈ A2 : ¬( f ′((1, x1)) cmp f ′((1, x2)))
R, otherwise

gen4
x:=Lap()(A, f ) = 1

The mapping gen5 adds the relationships between the newly defined variable x and the others. Here
A4 ⊆ V ′ × Exp(V ′).

gen5
x:=Lap()(A4) = A4

gen5
x:=x′(A4) = A4 ∪ {(x, x′), (x′, x)}

gen5
x:=n(A4) = A4 ∪ {(x, n)}

gen5
x:=x1⊗x2

(A4) = A4 ∪ {(x, x1 ⊗ x2)}

For defining gen6, adding the independence relations involving x, introduce the following notation.
Let X ⊆ V ′. Let Xx1,...,xk→x denote the set X∪{x}, if x1, . . . , xk ∈ X, and the set X otherwise. In particular,
if k = 0, then the introduced notation always denotes X ∪ {x}. Then

gen6
x:=Lap()(A3) = {(X ∪ {x},Y) | (X,Y) ∈ A3} ∪ {(X,Y ∪ {x}) | (X,Y) ∈ A3}

gen6
x:=x1⊗···⊗xk

(A3) = {(Xx1,...,xk→x,Yx1,...,xk→x) | (X,Y) ∈ A3}

Here the last row covers all deterministic operations, including assigning a constant to x.
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The closure of the independence relations is found in the following way. Given A3 ⊆ (P(V))2, let
A′3 ⊆ (P(V))2 be the least set satisfying the following conditions:

A3 ⊆ A′3
(X,Y) ∈ A′3 ⇒ (Y, X) ∈ A′3

(X,Y) ∈ A′3, X
′ ⊆ X,Y ′ ⊆ Y ⇒ (X′,Y ′) ∈ A′3

(X,Y) ∈ A′3, (X ∪ Y,Z) ∈ A′3 ⇒ (X,Y ∪ Z) ∈ A′3 .

Write A′3 = gen7(A3).
The closure of the relationships between values is found in the following way. Given A4 ⊆ V ×

Exp(V), let A′4 ⊆ V × Exp(V) be the least set satisfying the following conditions:

A4 ⊆ A′4
∀x ∈ V : (x, x) ∈ A′4

(x, e) ∈ A′4, e ≈ e′ ⇒ (x, e′) ∈ A′4
(x, e(x1, . . . , xk)) ∈ A′4,∀i : (x, ei) ∈ A′4 ⇒ (x, e(e1, . . . , ek)) ∈ A′4 .

In the last row, x1, . . . , xk are all variables occurring in e. Write A′4 = gen8(A4).
Last, we discuss the determination of DP-distances. Let f , f ′ : 3V +P(V2)→ R. We say that f ≤ f ′

if

• ∀x ∈ V, i ∈ {1, 2, 3} : f ((i, x)) = f ′((i, x));

• ∀Z ⊆ V2 : f (Z) ≤ f ′(Z).

Let A = (A1, A2, A3, A4) ∈ AS(V) and f ∈ A2. The closure of f in the context of A is the greatest
f ′ : 3V + P(V2)→ R satisfying the following conditions:

f ′ ≤ f

Z′ = {(y, x) | (x, y) ∈ Z} ⇒ f ′(Z) ≤ f ′(Z′)

x, y ∈ A1, f ′((3, x)) = f ′((3, y))⇒ f ′({(x, y)}) ≤ | f ′((2, x)) − f ′((2, y))|/
√

f ′((3, x))/2

({x1, . . . , xs}, {x′1, . . . , x
′
t }), ({y1, . . . , ys}, {y′1, . . . , y

′
t}) ∈ A3 ⇒

f ′({(x1, y1), . . . , (xs, ys), (x′1, y
′
1), . . . , (x′t , y

′
t)}) ≤ f ′({(x1, y1), . . . , (xs, ys)}) + f ′({x′1, y

′
1), . . . , (x′t , y

′
t)})

(x, e(x1, . . . , xk)), (x′, e(x′1, . . . , x
′
k)) ∈ A4 ⇒

f ′({(x1, x′1), . . . , (xk, x′k), (x, x′), (y1, y′1), . . . , (y`, y′`)}) ≤ f ′({(x1, x′1), . . . , (xk, x′k), (y1, y′1), . . . , (y`, y′`)})

Write f ′ = gen9(A, f ).
The defined pieces gen1, . . . , gen9 are combined into the generation function genx:=e. Given A◦ ∈

AS(V ′), we define A• = genx:=e(A) as follows:

1. Let A•1 = gen1
x:=e(A◦), A•3 = gen7(gen6

x:=e(A◦3)) and A′4 = gen8(gen5
x:=e(A◦4)).

2. For each f ∈ A◦2, let F f ∈ P(3V + P(V2)→ R) be the following set:

F f = { f ′ | f ′|3V′+P((V′)2) = f , f ((1, x)) ∈ gen2
x:=e( f ), f ((2, x)) ∈ gen3

x:=e(A◦, f ),

f ((3, x)) ∈ gen4
x:=e(A◦, f ), f (Z) = ∞ for allZ ∈ V2\(V ′)2} .

3. Let A′2 =
⋃

f∈A◦2
F f and A′ = (A•1, A

′
2, A

•
3, A

•
4).

4. Let A•2 = {gen9(A′, f ) | f ∈ A′2}. Return A• = (A•1, A
•
2, A

•
3, A

•
4).

The abstract semantics of x := e is genx:=e ◦ killx. We can show that it is a valid abstraction of the
concrete semantics.
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3.3.3.4 Analysing Branching Programs. Suppose now that our program also contains if-statements.
We analyze them by transforming them out again. Indeed, the program

if b then s1 else s2

has the same semantics as the program

(x′ := x; x′′ := x)x∈Var; s′1; s′′2 ; (x := b ? x′ : x′′)x∈Var

assuming that no program may diverge. I.e. we execute both branches s1 and s2 with renamed variables
(renaming x to x′ in s1; and x to x′′ in s2), and afterwards merge them back, using the ternary choice
operation. To complete the description of the analysis, we only have to provide the transfer function for
the statement executing the choice operation.

In order to define the transfer function corresponding to the choice operation, we extend the defini-
tions of geni-mappings. We define the first ones as follows:

gen1
x:=b?x′:x′′(A) = A1

gen2
x:=b?x′:x′′( f ) = { f ((1, b))? f ((1, x′)) : f ((1, x′′))}

gen3
x:=b?x′:x′′(A, f ) = [min{ f ((2, x′)), f ((2, x′′))},max{ f ((2, x′)), f ((2, x′′))}]

gen4
x:=b?x′:x′′ = R

The mappings gen5, . . . , gen8 stay the same. But we can add to the definition of the closure of f :
3V + P(V2)→ R (in the context of defining gen9) the following specific rule:

(x, b?x1 : x2), (x′, b′?x′1 : x′2) ∈ A4 ⇒

f ′({(b, b′), (x, x′), (y1, y′1), . . . , (y`, y′`)}) ≤ max{ f ′({(b, b′), (x1, x′1), (y1, y′1), . . . , (y`, y′`)}),

f ′({(b, b′), (x2, x′2), (y1, y′1), . . . , (y`, y′`)})}

With these additions to the mappings geni, the definition of the abstract semantics proceeds as in the
previous section.

3.3.3.5 Using the Analysis to Characterize a Task. Suppose that a task is specified by the program s,
and we want to find its differential privacy level with respect to the input variable x (which the analysis
does not change) and the output variable y. We form the program s; s′ and analyze it with respect to the
initial abstract state A◦, where
• A◦1 = ∅, i.e. we do not assume whether any variable is distributed according to a Laplacian

distribution in the initial state.

• A◦3 = ∅, i.e. we do not know of any independent sets of variables, either.

• A◦4 = {(y, y′) | y ∈ Var\{x}}, meaning that the initial values of the corresponding variables in s and
s′ are true.

• A◦2 similarly expresses the equality between the variables y and y′.
Let A• be the final state. The differential privacy of the task is conservatively approximated by the
mapping c : R+ → R+, where

c(v) = inf{ f ({(y, y′)}) | f ∈ A•2, | f (x) − f (x′)| ≥ v} .

Depending on the abstraction used for AS2, this mapping may be represented very succinctly (i.e.
supv c(v)/v is explicitly stored in the abstract domain), or it may be invokable as a black box, or it is
difficult to access at all. In the latter case, we may need to run the analysis once for each considered
distance v of the initial values of x and x′, learning the corresponding DP-distance of D|y and D|y′ .
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3.3.3.6 Language Extensions for SIMD Support. Our programming language has reduced expres-
sivity due to the lack of looping constructs. As next, we consider a construction that gives us some,
though not all of the functionality provided by the loops. Nevertheless, the construction is sufficient for
expressing many data processors; it is supported by the SecreC language for secure computations [41]
and used e.g. in specifying the Rmind privacy-preserving statistics suite [42] running on top of the
Sharemind secure multiparty computation platform [43].

We split the set of variables into two: Var = SVar ∪VVar, with SVar be the set of scalar variables
and VVar the set of vector variables. A scalar variable corresponds to variables in Sec. 3.3.3.1, it holds
a value of type R. A vector variable holds a value of type N → R with the restriction that only a finite
number of points in this vector are different from 0. In effect, this makes the set of allowed vector values
isomorphic to the set of finite sequences of elements of R not ending with 0.

Fig. 35 gives the extensions to the syntactic categories of our programming language. We introduce
two new syntactic categories: ẽ denotes arithmetic vector expressions and b̃ boolean vector expressions.
The possible values of the first of them are the same as the values of variables in VVar. The possible
values of boolean vector expressions are infinite sequences of booleans (of type N → B), where one of
the boolean values occurs only finitely many times.

The semantics of the new constructs is given in Fig. 36. The type of the semantics for vector ex-
pressions maps a program state to a distribution over vectors of appropriate type. But informally, the
meaning of new constructs is the following:
• The vectors of values can be operated pointwise.

• Single elements of the vectors may be selected or assigned.

• vec turns a scalar into a vector, where all elements are equal to that scalar. Actually, for arithmetic
vector expressions, vec takes also a second argument that determines, how many first elements of
the vector are equal to the scalar. The rest of the elements of the vector are still 0.

• There is an expression to generate random vectors, where each component is randomly distributed
according to the Laplacian distribution with mean 0 and variance 1. Again, the expression takes a
length argument.

• The vectors may be shifted, i.e. a number of elements (given as the second argument to the shift-
operation) at the start of the vectors can be dropped.

• The vectors can be aggregated, delivering a scalar value. We have included in our language some
of the most simple aggregation operations. This set may be extended, if necessary.

3.3.3.7 Analysis of SIMD Constructions.

Abstract Domain. We have to modify our abstract domain in order to take into account the unbounded
number of locations the program now handles. Previously, the number of the dimensions of the vector
space, the subsets of which formed our abstract domain, was finite. We would like to keep it this way.

e ::= . . .

| ẽ[e]
| sum(̃e)

ẽ ::= x̃
| ẽ1 + ẽ2
| ẽ1 · ẽ2
| vLap(e′)
| shift(̃e, e)
| vec(e1, e2)

b ::= . . .

| b̃[e]
| any(̃b)
| all(̃b)

b̃ ::= ẽ1 ≤ ẽ2
| ẽ1 = ẽ2

| b̃1 ∧ b̃2

| ¬b̃
| shift(̃b, e)
| vec(b)

s ::= . . .

| x̃ := ẽ
| x̃[e1] := e2

Here x̃ ∈ VVar.

Figure 35: Syntax of the SIMD Constructions in the Programming Language
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~̃e[e]�(S ) = {|̃v(i) | ṽ← ~̃e�(S ), i← ~e�(S )|}

~sum(̃e)�(S ) = {|

∞∑
i=0

ṽ(i) | ṽ← ~̃e�(S )|}

~x̃�(S ) = η(S (x̃))

~̃e1 + ẽ2�(S ) = {|i 7→ ṽ1(i) + ṽ2(i) | ṽ1 ← ~̃e1�(S ), ṽ2 ← ~̃e2�(S )|}

~̃e1 · ẽ2�(S ) = {|i 7→ ṽ1(i) + ṽ2(i) | ṽ1 ← ~̃e1�(S ), ṽ2 ← ~̃e2�(S )|}

~vLap(e′)�(S ) = {|i 7→ v′i | ` ← ~e′�(S ), v′1, . . . , v
′
` ← Lap1, v′`+1 = v′`+2 = · · · = 0|}

~shift(̃e, e)�(S ) = {|i 7→ ṽ(i + `) | ṽ← ~̃e�(S ), ` ← ~e�(S )|}

~vec(e1, e2)�(S ) = {|i 7→ v′i | v← ~e1�(S ), ` ← ~e2�(S ), v′1 = · · · = v′` = v, v′`+1 = v′`+2 = · · · = 0|}

~̃b[e]�(S ) = {|̃v(i) | ṽ← ~̃b�(S ), i← ~e�(S )|}

~any(̃b)�(S ) = {|

∞∨
i=0

ṽ(i) | ṽ← ~̃b�(S )|}

~all(̃b)�(S ) = {|

∞∧
i=0

ṽ(i) | ṽ← ~̃b�(S )|}

~̃e1 ≤ ẽ2�(S ) = {|i 7→ (̃v1(i) ≤ ṽ2(i))? | ṽ1 ← ~̃e1�(S ), ṽ2 ← ~̃e2�(S )|}

~̃e1 = ẽ2�(S ) = {|i 7→ (̃v1(i) = ṽ2(i))? | ṽ1 ← ~̃e1�(S ), ṽ2 ← ~̃e2�(S )|}

~̃b1 ∧ b̃2�(S ) = {|i 7→ ṽ1(i) ∧ ṽ2(i) | ṽ1 ← ~̃b1�(S ), ṽ2 ← ~̃b2�(S )|}

~¬b̃�(S ) = {|i 7→ ¬̃v(i) | ṽ← ~̃b�(S )|}

~shift(̃b, e)�(S ) = {|i 7→ ṽ(i + `) | ṽ← ~̃b�(S ), ` ← ~e�(S )|}

~vec(b)�(S ) = {|i 7→ v | v← ~b�(S )|}

~x̃ := ẽ�(S ) = {|S [x̃ 7→ ṽ] | ṽ← ~̃e�(S )|}

~x̃[e1] := e2�(S ) = {|S [x̃ 7→ S (x̃)[v1 7→ v2]] | v1 ← ~e1�(S ), v2 ← ~e2�(S )|}

Figure 36: Semantics of SIMD Constructions

We redefine our abstract domain constructor AS as follows. For a set of variables V , split into scalar
variables Vs and vector variables Vv, we define AS(V) = AS1(V) × AS2(V) × AS3(V) × AS4(V), where
the definitions of AS1, AS3 and AS4 stay the same, but

AS2(V) = P((3Vs + 4Vv + P(V2
s ∪ V2

v )→ R) × (2Vv + P(V2
v )→ N) × P(VVar)) .

I.e. AS2(V) gains a number of new dimensions. Comparing it to the previous definition of AS2, we
see that almost all new dimensions are actually integer-valued. We use these dimensions to range over
the indices or counts of vector variables, while the existing dimensions range over the values of the
elements of vectors pointed out by the integer-values dimensions. Additionally, the subset of vector
variables indicates which vectors are constant, i.e. have all elements in their non-zero initial segment
equal to each other.

For D ∈ D(State), we again define the abstraction α2(D) ∈ AState2. To specify it let us first define
the following probability distributions. Let Ls = [x1, . . . , xk] ∈ SVar∗ and Lv = [(̃y1, I1), . . . , (̃y`, I`)] ∈
(VVar × N∗)∗. For L = [l1, . . . , l|L|] ∈ N∗, and w̃ : N → R let w̃(L) denote the sequence of values
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w̃(l1), . . . , w̃(l|L|). Define

DLs,Lv = {|(S (x1), . . . , S (xk), S (̃y1)(I1), . . . , S (̃y`)(I`)) | S ← D|} .

The set α2(D) consists of all such pairs ( f , g,U) with f : 3SVar+4VVar+P(SVar2 ∪ VVar2)→ R,
g : 2VVar + VVar2 → N and U ⊆ VVar, where for some S ∈ D:
• f ((1, x)) = S (x) for x ∈ SVar;

• f ((2, x)) = E[D|x] for x ∈ SVar;

• f ((3, x)) = V[D|x] for x ∈ SVar;

• g((2, x̃)) is the length of the initial segment of potentially non-zero values in the vector S (x̃);

• g((1, x̃)) ranges over 0, . . . , g((2, x̃)) − 1;

• f ((1, x̃)) = S (x̃)(g((1, x̃)));

• f ((2, x̃)) is equal to the average of D|x[i], where i = g((1, x̃));

• f ((3, x̃)) is equal to the variance of D|x[i], where i = g((1, x̃));

• f ((4, x̃)) =
∑

i∈N S (x̃)(i);

• x̃ ∈ U, if S (x̃)(0) = S (x̃)(1) = · · · = S (x̃)(g((2, x̃)) − 1);

• g((x̃, ỹ) ranges over N;

• Let U = {(x1, y1), . . . , (xk, yk)} ⊆ SVar2 and V = {(x̃1, ỹ1), . . . , (x̃`, ỹ`)} ⊆ VVar2. Then f (U ∪ V)
is the supermum of all values

ddp(D[x1,...,xk],[(x̃1,I1),...,(x̃`,I`)],D[y),...,yk],[(̃y1,I1),...,(̃y`,I`)]),

where I1, . . . , I` ∈ N∗ range over all such sequences of indices, that |Ir | = g(x̃r, ỹr) for all r ∈
{1, . . . , `}.

Having defined that, the relation � that matches concrete and abstract states can be defined similarly to
Sec. 3.3.3.3. We have D � (A1, A2, A3, A4) if D � Ai for i ∈ {1, 2, 3, 4}. These relations are satisfied if

A1 � D ⇔ ∀x ∈ A1 : D|x is a Laplace distribution

A2 � D ⇔ α2(D) ⊆ A2

A3 � D ⇔ α3(D) ⊇ A3

A4 � D ⇔ α4(D) ⊇ A4 .

If x ∈ VVar and x ∈ A1, then D|x(i) has to be a Laplace distribution for each index i. The mappings α3
and α4 are defined as in Sec. 3.3.3.3, this time applying to the entire vectors.

Transfer Functions. The transfer functions for the statements involving SIMD operations are still
similar to the ones in Sec. 3.3.3.3. We will thus not give an explicit description of them, but rather
discuss them in informal manner. We assume again that each expression in the program contains a
single arithmetic / relational operation. There is no change in handling the AS3- and AS4-parts of the
abstract values: a variable at the left hand side of an assignment is deemed to depend on all variables on
the right hand side.

Pointwise operations. The operations x̃1 + x̃2, x̃1 · x̃2, etc. are readily supported by our abstraction,
introducing constraints like f ((1, x̃)) = f ((1, x̃1))+ f ((1, x̃2)) into an element ( f , g,U) ∈ A2, if g((1, x̃)) =

g((1, x̃1)) = g((1, x̃2)). If the values of g((1, ·)) are different for x̃, x̃1 and/or x̃2, then we obtain no
constraints here, unless the study of other elements of ( f , g,U) gives us any further relationships that
always hold.

For pointwise addition, we can also put f ((4, x̃)) = f ((4, x̃1))+ f ((4, x̃2)), i.e. the sum of all elements
of x̃ is equal to the sum of the sums of all elements x̃1 and x̃2. For multiplication, we use the constancy
indicator in U to decide whether we get any constraint on f ((4, x̃)). The constancy indicators of x̃1 and
x̃2 are used to decide on the constancy of x̃.
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Array element assignment. The operation x̃[x1] := x2 is interpreted as an arithmetic operation,
where the result is stored in x̃, and where the operands are x̃ (before killing it), x1 and x2. We keep
the same constraints for f ((1, x̃)), f ((2, x̃)) and f ((3, x̃)) as before, as long as g((1, x̃)) , f ((1, x1)). If
g((1, x̃)) = f ((1, x1)), then f ((1, x̃)) = f ((1, x2)). We also get the equalities f ((2, x̃)) = f ((2, x2)) and
f ((3, x̃)) = f ((3, x2)), if g((1, x̃)) = f ((1, x1)) and f ((3, x1)) = 0, i.e. the index x1 is non-probabilistic.

If g((1, x̃)) = f ((1, x1)), then we can also update the sum of the vector x̃: f ((4, x̃)) is added the
difference of current and previous f ((1, x̃)). Otherwise, there are no constraints for f ((4, x̃)).

Shifts. The assignment x̃1 = shift(x̃2, x3) introduces equalities between f ((1, x̃1)) and f ((1, x̃2)), if
g((1, x̃1)) + f ((1, x3)) = g((1, x̃2)).

Promotions to vector. The assignment x̃ = vec(x1, x2) introduces equalities between f ((1, x̃)) and
f ((1, x1)), as long as f ((1, x2)) > g((1, x̃)). Equalities for the second and third component follow if x2 is
constant (has 0 variance).

Summations. The fourth component — f ((4, x̃)) — has been introduced specifically to handle the
sums.

Differential privacy. Our operations are such that the DP-distance between the projections of the
concrete distribution D involving n elements of some vector x̃ is typically n times larger than the distance
between projections involving just a single element of x̃. We can compute these distances similarly to
gen9 in the previous paragraph. In operations involving the summation of the vector x̃, the value g((2, x̃))
is consulted to find out on how many elements of x̃ the sum depends on.

3.3.3.8 Abstracting the Set of Points. Our abstract domain is too large to be directly implemented,
especially AState2, the elements of which are sets of points in a many-dimensional vector space. By the
definition of �, it is safe to add extra points to these sets. Hence we may in our implementation consider
not all subsets of this vector space, but only certain ones, such that for each subset there is a considered
set that contains it.

A numeric lattice is a tractable abstraction of the set of subsets of Rn (or Nn). Each element a of
the lattice corresponds to a certain subset γ(a) ⊆ Rn, and a concrete subset R is safely abstracted by any
lattice element a for which R ⊆ γ(a). A numeric lattice comes with operations to drop a dimension (i.e.
to kill a variable) and to add a new dimension, with the new coordinate being somehow constrained by
the existing coordinates of the points (i.e. to generate a new value of a variable; the constraints that are
easily handled vary among different lattice constructions).

Numeric lattices are used in program analyses to keep track of the possible values that the variables
may take in the current program point. We are going to use them for abstracting AS2(V) for sets of
variables V .

A number of different constructions of numeric lattices for Rn and Nn have been proposed. For us,
the useful ones may be arithmetic intervals [39], linear equalities [44] and inequalities [45], perhaps
also linear congruences [46]. One may also combine different lattices, and the combination of intervals
and linear equalities is often found to be both sufficiently precise and efficient. When implementing our
analysis, we intend to start with this lattice and add more precision when necessary.

3.3.3.9 Abstracting Other Components of the Abstract State. The constructors AS1, AS3 and AS4
give us much more tractable abstract domains and we believe that in order to represent their elements,
no further abstraction is necessary. Indeed,

• we have AS1(V) = P(V). The elements of P(V) are simply subsets of V , where V is a rather
small, finite set. Any representation of sets will do for elements of AS1(V).
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• we have AS3(V) = P((P(V))2), with certain closure properties given by the mapping gen7. We
have had previous success [47, Chap. 5] in representing the elements of AS3(V) as binary decision
diagrams (BDD), using the isomorphism P((P(V))2) � B2V → B. Our experience shows that
thanks to the monotonicity properties, the BDDs do not grow too large and can be efficiently
stored in memory.

• we have AS4(V) = P(V × Exp(V)). The set Exp(V) is in general infinite. But according to the
definition of �, it is safe to drop pairs (x, e) from the abstraction of a distribution D. We thus expect
to store a finite, but useful subset of the actual fourth component of the abstract state.

3.3.4 Mutual Information in Workflows. We have proposed a method that takes the descriptions of
tasks in the form of the amount of Shannon’s mutual information between its inputs and outputs; and
returns the same for the entire workflow.

Our analysis works with the notions related to Shannon’s entropy. Different quantitative measures
of information flow may be most relevant in different situations, and Shannon’s entropy is often not the
best choice, particularly when the inputs to a system are distributed in a highly skewed manner. Still,
these notions enjoy some simple identities that make the analysis tractable.

3.3.4.1 Preliminaries of Information Theory. A random variable X takes values in some set X with
certain probabilities. For an element x ∈ X we let pX(x) denote the probability that the value of X is x. If
X and Y are two random variables over sets X and Y, respectively, then “X,Y” is also a random variable
taking values in the set X × Y. Two different random variables do not have to be independent — the
quantities pX,Y (x, y) and pX(x)·pY (y) may differ. Here pX,Y (x, y) denotes the probability Pr[X = x,Y = y].
We similarly introduce the notation pX,Y (x|y) for the conditional probability Pr[X = x|Y = y].

In the mutual information analysis we only consider discrete random variables, i.e. such variables
X, where pX(x) , 0 only for finitely many different x. For such random variable, its (Shannon) entropy
is defined by

H(X) = −
∑
x∈X

pX(x) log pX(x),

where the logarithm is in base 2, and where we define 0 · log 0 to be 0. The entropy of a random variable
is a possible measure for the amount of information conveyed through its value. The entropy of X may
be conditioned over another variable Y taking a particular value y, giving

H(X|Y = y) = −
∑
x∈X

pX,Y (x|y) log pX,Y (x|y)

H(X|Y) =
∑
y∈Y

pY (y) · H(X|Y = y),

where the latter is the conditional entropy of X given Y , describing how much extra information X gives
if we already know Y .

The conditional entropy and the (joint) entropy are related by the equality H(X,Y) = H(X)+H(Y |X).
Symmetrically, H(X,Y) = H(Y) + H(X|Y). Hence H(X) − H(X|Y) = H(Y) − H(Y |X). This quantity is
called the mutual information of X and Y and denoted I(X; Y). It can also be conditioned over another
random variable: I(X; Y |Z) = H(X|Z) − H(X|Y,Z).

Mutual information I(X; Y) characterizes the mutual dependence between two random variables X
and Y . If X characterizes the distribution of inputs to some process, and Y the corresponding distribution
of outputs, then I(X; Y) is the amount of information that flows through that process, from X to Y .
Fact. If X,Y,Z,W are random variables, then I(X; Y |Z,W) ≤ I(X,W; Y |Z). This follows easily from the
relationships between mutual information and (conditional) entropy [48, Sec. 2.4].

3.3.4.2 The Workflows that we Consider. A workflow consists of information processing compo-
nents, composed sequentially and/or in parallel. The components are connected by wires.
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Let Ports be a fixed infinite set, the elements of which are called ports. For each p ∈ Ports let V(p)
be the set of values that can be input or output through port p. For a set X, et D(X) denote the set of
probability distributions over X.

Definition 3.6. A component is a tuple M = (ipM, opM, fM), where ipM, opM ⊂ Ports are finite, ipM ∩

opM = ∅, and fM :
∏

p∈ipM
V(p)→ D(

∏
p∈opM

V(p)).

Definition 3.7. A workflow is a tuple WF = (M,W, s, t), where M is a finite set of components, W
is the finite set of wires, s :

∑
M∈M opM → W and t :

∑
M∈M ipM → W, satisfying the following

constraints:
• The mapping s is injective.

• For any two ports p1, p2 of the components of WF, if s(p1) = t(p2) = w or t(p1) = t(p2) = w, then
V(p1) = V(p2). We denote this set by V(w).

• There are no cycles in the directed graph having the tasks inM as vertices, where an arc from M1
to M2 exists iff there exist p1 ∈ opM1

and p2 ∈ ipM2
, such that s(p1) = t(p2).

We introduce the following workflow-related notions:
• The inputs or input wires of a component M are the wires in the set IM = t(ipM). Similarly, the

outputs of M are the wires in OM = s(opM).

• The listeners of a wire w are the components M satisfying w ∈ IM.

• A path in the workflow is an alternating list of wires and components, each wire followed by one
of its listeners and each component by one of its output wires.

• A wire w is a global input of the workflow, if s(p) , w for all output ports of all components in
the workflow. Denote the set of all global inputs by G.

Definition 3.8. Let WF = (M,W, s, t) be a workflow with global inputs G. Let InpDist ∈ D(G → V).
The run of WF starting from InpDist is a random variable of typeW→ V, sampled as follows:
• The values for all w ∈ G are sampled from the distribution InpDist;

• Each componentM for which all of its input wires are already mapped to values, applies fM to
the tuple of values at its input ports, probabilistically producing a tuple of values for its output
ports. These values are added to the mapping for the output wires of M.

• The previous item is repeated until all wires are mapped (this terminates because there are no
cycles in the workflow).

We identify wires and their corresponding random variables. Also each set of wires is identified
with a tuple of random variables (in some order of wires, fixed for the workflow) considered as a single
composite random variable. Thus we can write I(A;C) as the mutual information between the sets of
wiresA and C.

Lemma 3.5. Let A be the set of all input wires of a component M. Let B be subset of the output wires
of M. Let C be a subset of wires into which there is no path from M. Then I(B;C|A) = 0.

Proof. Follows from the definition of the run. �

For each set of wires X, let
• V(X) be the set of possible values of the wires X,

• d(X) be the distribution of the values on the wires X,

• D(X) be the set of all distributions over V(X),

• Const(X) be the set of all constant distributions (also called degenerate distributions or determin-
istic distributions) over V(X).
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For each value v, let Const(v) be the constant distribution of the value v.
As inputs to the analysis, each component may have a description about the known bounds on the

information flow from some subsets of its inputs to some subsets of its outputs. If there are no known
bounds then the flows can be infinite. Each wire may also have a bound on the size of the values sent
over that wire.

We are interested in I(S ; T ). This quantity is uniquely determined by the distribution d(G) of the
values of the global inputs G and the conditional distributions POM |IM=~a for all M and ~a (which together
induce the distribution of the values of all wires). We do not necessarily know these distributions exactly.
Instead, the input of our analyzer includes declarations that restrict the distribution d(G) to a subset of
D(G) and for all M, restrict the function f where f (~a) = POM |IM=~a, to a subset ofD(OM)V(IM).

S may be a proper subset of G. In this case, the global inputs G \ S are not considered sensitive.
Thus, we may assume that the adversary already knows the value of G \ S , i.e. its distribution may be
considered constant. Thus d(G \ S ) ∈ Const(G \ S ). Therefore, our goal is to compute an upper bound
on the value

max
d(S )∈DS

d(G\S )∈Const(G\S )

I(S ; T ) (6)

whereDS is the set of distributions into which the distribution of S is known to belong, according to the
sensitivity declarations that will be described in Sec. 3.3.4.4.

We compute an upper bound on I(S ; T ) using similar bounds for the individual components, i.e.
I(A,C) for each component M, for allA ⊆ IM,C ⊆ OM.

Let I = IM and C ⊆ OM. For eachA ⊆ I andD ⊆ D(A), let

qDM(A;C) = max
d(A)∈D

d(I\A)∈Const(I\A)

I(A;C) (7)

We take the maximum over all distributions that A may belong to because we do not know what the
actual distribution on A is and we want qDM(A;C) to be an upper bound on I(A;C). If we do not have
any knowledge about the distribution ofA then D = D(A). If we have already determined the possible
distributions of the inputs IM (as will be described in Sec. 3.3.4.4) then we can write qM(A;C) instead
of qDM(A;C).

The description of a component M should ideally contain the values qM(A;C) for all subsets of A
of the inputs of M and all subsets C of the outputs of M. Because it may be difficult to determine the
values qM(A;C), we may instead have upper bounds on these values. Also, we may not have the values
for allA and C.

The triangle equality does not hold for qM. Thus it is possible that

qM(A1;C) + qM(A2;C) < qM(A1 ∪A2;C)

or
qM(A;C1) + qM(A;C2) < qM(A;C1 ∪ C2)

Thus it does not in general suffice to give qM(A;C) only for one-element sets A and C, because no
bounds for larger sets of wires can be deduced from these.

Monotonicity does hold:

A′ ⊆ A ∧ C′ ⊆ C ⇒ qM(A′;C′) ≤ qM(A;C)

but it may not give the best upper bound on qM(A′;C′).

3.3.4.3 Differential Privacy. Because qM does not satisfy the triangle inequality, we may instead use
a different quantity that does satisfy the triangle inequality and that implies a bound on qM.
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Definition 3.9. Let P be a probability distribution overA. Denote by dP
M(A;C) the least value ε (which

may also be∞) such that for all value tuples ~a and ~a′ of the inputsA for which P(~a) > 0 and P(~a′) > 0,
for all value tuples ~b of the inputs IM \ A,

ddp(P
C|A=~a,IM\A=~b, PC|A=~a′,IM\A=~b) ≤ ε .

For any setD of probability distributions overA, let

dDM(A;C) = max
P∈D

dP
M(A;C)

We have the following connection between differential privacy and information flow.

Lemma 3.6. Let dDM(A;C) = ε. Then qDM(A;C) ≤ q bits, where

q = ε
(eε − 1)(1 − e−ε)

(eε − 1) + (1 − e−ε)
·

1
ln 2

(8)

Proof. The proof is similar to [49]. Let D(P ‖ Q) =
∑

a P(a) log(P(a)/Q(a)) be the Kullback-Leibler
divergence from Q to P.

We have ∀P ∈ D : P(~a) > 0 ∧ P(~a′) > 0. ∀~b. P
C|A=~a,IM\A=~b and P

C|A=~a′,IM\A=~b are ε-close. This
is analogous to the statement [49] that for all neighboring databases xn and x̃n, PY |Xn=xn and PY |Xn=x̃n are
ε-close. Both of these statements characterize ε-differential privacy.

Cuff and Yu [49] show that if P and Q are ε-close, then D(P ‖ Q) ≤ q bits and D(Q ‖ P) ≤ q
bits where q is as in (8). I.e. we have ∀P ∈ D : P(~a) > 0 ∧ P(~a′) > 0. ∀~b. D(P

C|A=~a,IM\A=~b ‖

P
C|A=~a′,IM\A=~b) ≤ q bits.

Consider any case where P ∈ D,A ∼ P, and IM \ A = ~b. Then, analogously to [49],

I(A;C) = EAD(P(C|A) ‖ P(C)) =

= EAD(P
C|A=~a,IM\A=~b ‖ EP(~a′)>0P

C|A=~a′,IM\A=~b) ≤

≤ EAEP(~a′)>0D(P
C|A=~a,IM\A=~b ‖ P

C|A=~a′,IM\A=~b) ≤ q bits

Because this holds for all considered cases, we have qDM(A;C) ≤ q bits. �

If we have already determined the possible distributions of the inputs IM (as will be described in
Sec. 3.3.4.4) then we can write dM(A;C) instead of dDM(A;C). Then dM satisfies triangle inequality for
inputs:

dM(A1;C) + dM(A2;C) ≥ dM(A1 ∪A2;C)

Thus the description of a component may give dM(A;C) only for the cases where A is a one-element
set, then we can use the triangle inequality to find an upper bound on dM(A;C) for the cases whereA is
a larger set, and then convert this to an upper bound on qM(A;C).

Note that dM may not satisfy triangle inequality for outputs. If the outputs C1 and C2 are calculated
from the input A (which is in some bounded range) by adding r and −r to them, respectively, where r
is a Laplace random value, then dM(A; C1) = dM(A; C2) is finite but dM(A; C1,C2) = ∞ because the
randomness in C1 and C2 can be canceled out, revealing the exact value of A.

Differential privacy is useful for bounding leakages of information from a certain provenance but
it may not always give the best bounds. For example, if we make in parallel 100 queries, each 0.1-
differentially private, then the combination is 10-differentially private. When converted to mutual in-
formation (using (8)), this gives 14.4 bits of leakage. On the other hand, each 0.1-differentially private
query separately, when converted to mutual information, leaks 0.0072 bits. Because results of the queries
are conditionally independent (conditioned on the inputs), the triangle inequality holds here for mutual
information, thus the 100 queries together leak only 0.72 bits, not 14.4 bits. Thus we get a much better
bound on the leakage. This gives motivation for combining differential privacy and mutual information
when bounding leakages.
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Note that, in (8), q ≈ ε2

2 ln 2 when ε is small. This is one of the reasons that we use Shannon entropy
instead of min-entropy. If we used min-entropy, we would get the bound q = ε

ln 2 [50], even when
ε is small. When the output C can have only 2 possible values then [50] gives an improved bound
q ≈ ε

2 ln 2 when ε is small. Now consider the example in the previous paragraph. Each 0.1-differentially
private query, when converted to min-entropy, leaks at most 0.0703 bits of min-entropy if the output is
binary, and 0.144 bits in the general case. The 100 queries together leak either 7.03 or 14.4 bits. Thus,
combining differential privacy with min-entropy during the whole analysis, we would get no or only a
small improvement over the bound (14.4 bits) that we get when using only differential privacy in the
analysis and converting the final result to min-entropy. On the other hand, as described in the previous
paragraph, combining differential privacy with Shannon entropy during the whole analysis improves the
bound 20 times compared to using only differential privacy in the analysis and converting the final result
to mutual information.

3.3.4.4 Inputs to the Analysis. Our information-flow analysis takes as input the graphical description
of the workflow — the names of tasks and ports, as well as the wires from one port to another. It takes as
input the subsets S and T of wires, stating which global inputs contain sensitive information, and which
wires are read by the adversary. It also takes as input the information flow behaviour of tasks. The latter
may be expressed in many different kinds, which we describe below.

Sensitivity. For each wire w, let distw be a distance (metric) on V(w). Let

β0(w) = max
a,a′∈supp d(w)

distw(a, a′) (9)

This is the diameter (according to distw) of the support of the distribution of w.
Our analysis can make use of declarations that the support of the distribution of a global input w

has diameter (according to distw) at most s. In this case, let β(w) = s. For those global inputs w for
which there is no such declaration, let β(w) = ∞. Then β(w) ≥ β0(w) for all global inputs w.

Our analysis can also make use of declarations that (M, A,C) (where A ∈ IM,C ∈ OM) has
c-sensitivity. This means that
• for all a, a′ ∈ V(A),b ∈ V(IM \ {A}), d, d′ ∈ V(C):

– if M may output d on C if it gets a on A and b on IM \ {A}
– and M may output d′ on C when it gets a′ on A and b on IM \ {A}
– then distC(d, d′) ≤ c · distA(a, a′).

In other words, if we change the input A by a certain distance then the output C can change by at most
c times that distance. The component M may have sensitivity declarations for several pairs of its inputs
and outputs. Denote c(A,C) = c if (M, A,C) has c-sensitivity and c(A,C) = ∞ if there does not exist c
such that (M, A,C) has c-sensitivity, or such c has not been given.

All sensitivity declarations involving a certain wire (either as an input or an output of a component,
or as a global input) must use the same distance distw on the values of that wire. If the values are
databases then distance may be e.g. the number of records differing in the two versions of the database.
If the values are scalars then the distance may be the absolute value of the difference of the two versions
of the value.

If we know β(A) and distA for all A ∈ A then we can find the set of distributions D used implicitly
in dM(A;C) and qM(A;C) to denote dDM(A;C) and qDM(A;C), respectively:

D = DA = {P | ∀A ∈ A, a, a′ ∈ supp P|A. distA(a, a′) ≤ β(A)} (10)

Differential privacy. Consider a component M and one of its inputs A. Let ddp be the differential-
privacy distance defined on the distributions of a subset of its outputs C.

Our analysis can make use of declarations that (M, A,C) has ε-differential privacy. This means
that for all a, a′, ~b:
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ddp(P
C|A=a,IM\{A}=~b

, P
C|A=a′,IM\{A}=~b

) ≤ ε · distA(a, a′). If such declaration exists for some M, A, and C,
then denote this value ε by ε(A,C). Put ε(A,C) = ∞, if no such declaration exists.

Our analysis can also make use of declarations that (M,A,C) has sensitivity-less ε-differential
privacy. This means that for all ~a, ~a′, ~b:
ddp(P

C|A=~a,IM\A=~b, PC|A=~a′,IM\A=~b) ≤ ε. If such declaration exists for some M, A, and C, then denote
this value ε by ε(A,C). Put ε(A,C) = ∞, if no such declaration exists.

Mutual information. Our analysis can make use of declarations that a component M leaks at most q
bits from a subset Ai of its inputs to a subset C j of its outputs, i.e. qD(Ai)

M (Ai,C j) ≤ q. This implies
qM(Ai,C j) ≤ q. These are the mutual information declarations for (M,Ai,C j), meaning that (M,Ai,C j)
has at most q bits of mutual information. Here the triangle inequality does not hold.

3.3.4.5 Analysis. The goal of our analysis is to conservatively estimate (i.e. upper-bound) (6). To
compute it, we make several passes over the description of the workflow. These passes result us in
finding qM(A,C) for each component M, for all subsets A of its inputs and all subsets C of its outputs.
We will then invoke a graph-theoretic algorithm that computes (6) from all qM(A,C). We describe the
computations below.

Computing β for all wires. In Sec. 3.3.4.4, we defined β(w) for all global inputs w and we showed
that it is an upper bound of β0(w) (9) in this case. For any other wire C (taken in topological order),
which belongs to OM for some component M, we can compute β(C) as

β(C) =
∑

A∈IM

β(A) · c(A,C)

It is easy to see, by induction and using the triangle inequality for distC , that β(w) ≥ β0(w) for all wires
w. If we know that β(w) = s then we know that the distribution of the values on w is such that any two
values with non-zero probability are at a distance at most s from each other.

Parallel composition of differential privacy. For each component M andA ⊆ IM,C ⊆ OM, let

γ(M,A,C) = min{ε(A,C),
∑
A∈A

min{ε(A,C) · β(A), ε(A,C)}} .

It is easy to see that ε(A,C) ≥ dD(A)
M (A,C), ε(A,C) ≥ dD(A)

M (A,C), ε(A,C) · β(A) ≥ dM(A,C). Now,
using the triangle inequality for ddp, we get that

γ(M,A,C) ≥ dM(A,C) = dDM(A,C), (11)

whereD is as in (10).

Bounding the mutual information through a component. Consider a component M. Let A be the
subset of its inputs and C the subset of its outputs that are on the path from the source to the sink.
Suppose we want to find a bound on how much information can flow through M from A to C, i.e. an
upper bound on qDM(A;C), where D is the set of distributions into which the actual distribution of A is
known to belong. D is determined by the sensitivity declarations, as described in Sec. 3.3.4.4. If there
are no sensitivity declarations about the wires inA thenD = D(A).

If we have a mutual-information declaration for (M,A,C) then we can use the bound from that
declaration. If we have a mutual-information declaration for (M,A′,C′) whereA ⊆ A′ and C ⊆ C′ then
by monotonicity we can also use that bound. If we get bounds from several declarations then we take
the minimum of those bounds.

If we have a differential-privacy declaration for (M,A,C) then we use that to find an upper bound
on dM(A,C). If we have differential-privacy declarations for (M, A,C) for each A ∈ A then we use (11)
to find an upper bound on dM(A,C). Then we convert the bound on dDM(A,C) to a bound on qDM(A,C)
using Lemma 3.6.
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Data: A set of components and directed wires between them, forming a directed acyclic graph
(DAG). Some wires have no beginning component, these are the global inputs. Some
wires may have no end component. S is a subset of global inputs. T is a subset of all
wires.

Result: Maximum information flow in the workflow
Find (e.g. using breadth-first search) all wires and components through which there is a path
from S to T .

Remove all other wires and components.
Set the capacity of each wire to be the maximum entropy of the data that can be sent over the
wire (e.g. the number of bits for fixed-length data).

foreach remaining component M do
Find its remaining input wires AM and its remaining output wires CM.
Find a bound on qM(AM; CM) as described in Sec. 3.3.4.4.
Replace the component M with vertices InM and OutM so that

the wires AM now enter InM, and
the wires CM now begin from OutM.

Add an edge wM from InM to OutM with capacity ϕ(wM) = qM(AM; CM).
end
Add a vertex Source from which the wires S begin.
Add a vertex Sink into which the wires T enter.
Find the maximum flow from Source to Sink.
Return the maximum flow.

Algorithm 2: Maximum Information Flow in a System

Maximum information flow in a workflow. After we have obtained the upper bounds on the mutual
information between the inputs and outputs of each component, we use Alg. 2 to find the maximum
information flow F in the whole workflow. This is an upper bound on the amount of information that an
adversary can leak from S to T . Based on the workflow, and the input and output wires, the algorithm
constructs a network (a directed graph, where each arc has been labeled with its capacity, together with
distinguished source and sink vertices), such that the maximum flow in this graph is the upper bound
that we seek. The following theorem states that F is indeed an upper bound to the amount of information
that can be leaked.

Theorem 3.7 (Correctness of Alg. 2). Suppose that Alg. 2 has been run, finding the maximum flow F in
a system. Assume that d(S ) ∈ DS and d(G \ S ) ∈ Const(G \ S ). Then I(S ; T ) ≤ F.

Proof. Let C be a minimum cut of the transformed graph in Alg. 2. The inputs and the outputs of a
component M in the transformed graph, are AM and CM, respectively. In this proof, the occurrences
of words like “edge”, “path”, etc. refer to the transformed graph, not the original graph. W.l.o.g. we
can assume that C contains all zero-capacity edges of the transformed graph (because adding edges with
zero capacity to the cut does not change the minimality of the cut). Let D be the set of edges outside C
from which there is a path to T that does not contain any of the edges in C. Let e1, . . . , es be the edges
in C ∪ D in a topological order. Each edge corresponds to either a wire or a component in the original
workflow. For each edge e, let

o(e) =

CM if e corresponds to a component M
{w} if e corresponds to a wire w

c(e) =


the capacity of M if e ∈ C and e corresponds to a component M
the capacity of w if e ∈ C and e corresponds to a wire w
0 if e ∈ D
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Then we prove by induction that for all i ≤ s,

I

S ;
i⋃

j=1

o(e j)

 ≤ i∑
j=1

c(e j)

The case i = 0 holds because I(S ; ∅) = 0.
Now suppose that

I

S ;
i⋃

j=1

o(e j)

 ≤ i∑
j=1

c(e j)

holds. Let Q =
⋃i

j=1 o(e j).
First consider the case where ei+1 ∈ D corresponds to a component M. Consider an edge e corre-

sponding to an input wire w of M. If e < C then the path obtained by adding e to the beginning of a
path from ei+1 to T that does not intersect C, is a path from e to T that does not intersect C, thus e ∈ D.
Thus e ∈ C ∪ D. Because there is path from e to ei+1, e must be earlier in the topological order, i.e.
e = ek for some k < i + 1. Because e corresponds to a wire w, o(ek) = w, also o(ek) ⊆ Q, thus w ∈ Q.
Thus AM ⊆ Q. Because of topological order, there is no path from M to Q \ AM. Thus by Lemma 3.5,
I(S ,Q \ AM; CM |AM) = 0. Also c(ei+1) = 0. Now

I

S ;
i+1⋃
j=1

o(e j)

 = I(S ; Q ∪CM) = I(S ; Q) + I(S ; CM |Q) ≤

≤ I(S ; Q) + I(S ,Q \ AM; CM |AM) = I(S ; Q) ≤
i∑

j=1

c(e j) =

i+1∑
j=1

c(e j)

Now consider the case where ei+1 ∈ C corresponds to a component M. Because of topological
order, there is no path from M to Q \ AM. Thus by Lemma 3.5, I(S ,Q \ AM; CM |AM) = 0. Also
c(ei+1) ≥ I(AM; CM). Now

I(S ; CM |Q) ≤ I(S ,Q; CM) ≤ I(S ,Q ∪ AM; CM) =

= I(AM; CM) + I(S ,Q \ AM; CM |AM) ≤ c(ei+1)

I

S ;
i+1⋃
j=1

o(e j)

 = I(S ; Q ∪CM) = I(S ; Q) + I(S ; CM |Q) ≤

≤

 i∑
j=1

c(e j)

 + c(ei+1) =

i+1∑
j=1

c(e j)

Now consider the case where ei+1 ∈ D corresponds to a wire w. Then there is a path from w to T
that does not intersect C. w cannot be a global input because otherwise there would be a path from S
to T that does not intersect C, thus it also would not contain zero-capacity edges, thus it would be an
augmenting path with positive capacity, contradicting the minimality of the cut C. Thus w is an output
of a component M. Consider an edge e corresponding to an input wire w of M. If e < C then the path
obtained by adding e to the beginning of a path from ei+1 to T that does not intersect C, is a path from e
to T that does not intersect C, thus e ∈ D. Thus e ∈ C ∪ D. Because there is path from e to ei+1, e must
be earlier in the topological order, i.e. e = ek for some k < i + 1. Now w ∈ o(ek) and o(ei+1) ⊆ o(ek) ⊆ Q.
Also c(ei+1) = 0. Thus

I

S ;
i+1⋃
j=1

o(e j)

 = I

S ;
i⋃

j=1

o(e j)

 ≤ i∑
j=1

c(e j) =

i+1∑
j=1

c(e j)
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Now consider the case where ei+1 ∈ C corresponds to a wire w. Then c(ei+1) ≥ H(w), the entropy of
the value on the wire. Thus

I(S ; w|Q) ≤ I(S ,Q; w) = H(w) + H(S ,Q) − H(S ,Q,w) ≤ H(w) ≤ c(ei+1)

I

S ;
i+1⋃
j=1

o(e j)

 = I(S ; Q,w) = I(S ; Q) + I(S ; w|Q) ≤

≤

 i∑
j=1

c(e j)

 + c(ei+1) =

i+1∑
j=1

c(e j)

We have thus proved the induction step for all cases. Now we can estimate I(S ; T ). Consider any
edge e corresponding to a wire in T . If e < C then there is a path from e to T that does not intersect C,
thus e ∈ D. Thus e ∈ C ∪ D. Thus T ⊆ C ∪ D =

⋃s
j=1 o(e j).

I(S ; T ) ≤ I(S ; C ∪ D) ≤
s∑

j=1

c(e j) = F

Here the second inequality holds by the result we proved by induction. The equality holds by the
maximum-flow-minimum-cut theorem (

∑s
j=1 c(e j) is the value of the minimum cut C). �

3.3.4.6 Completeness of Alg. 2. We can also show the completeness of Alg.2 in some sense, i.e. that
under certain conditions, certain (very strong) adversaries can bring the leakage arbitrarily close to the
bound F, with arbitrarily small (but positive) error probability.

Suppose that for each port p ∈ Ports, the set Ports also contains ports p(1), p(2), . . . with V(p(i)) =

V(p). For a set of ports P, let P(1..n) denote the set of ports {p(i) | p ∈ P, i ∈ {1, . . . , n}}. For a component
M, let M(n) be the component “executing n copies of M in parallel”. I.e. the input and output ports of
M(n) are ipM(n) = ip(1..n)

M , and opM(n) = op(1..n)
M . The function fM(n) takes the n copies of the inputs and

independently applies fM to each copy, resulting in n different sets of outputs.
Let M be a component and PI , PO subsets of its input and output ports. Let fI :

∏
p∈PI V(p) →

D(
∏

p∈PI V(p)) and fO :
∏

p∈PO V(p)→ D(
∏

p∈PO V(p)). Let aI ∈
∏

p∈ipM\PI V(p). Let the mapping fM

have the same type as fM, and be constructed by first applying fI to the values appearing on PI , then fM

to the results of fI and the values aI (i.e. the values on ports ipM\PI are ignored), and finally fO only
to the outputs of fM that would go to ports PO in M (other outputs pass beside fO). The augmentation
of M with PI , PO, fI , fO, aI is the component aug(PI , fI , aI; M; fO, PO) with the same input and output
ports as M, and with the function fM.

The augmentation of a component is used to “change the encoding” of its inputs and outputs. If the
mutual information between the inputs PI and outputs PO of M was q, then this is the bound also for the
mutual information between the same inputs and outputs of aug(PI , fI , aI; M; fO, PO).

Let WF = (M,W, s, t) be a workflow. For each component M ∈ M, let PM;I and PM;O be subsets
of ipM and opM, respectively. For each n, let Sn

M;I and Sn
M;O be mappings with the following types:

Sn
M;I :

∏
p∈P(1..n)

M;I
V(p)→ D(

∏
p∈P(1..n)

M;I
V(p))

Sn
M;O :

∏
p∈P(1..n)

M;O
V(p)→ D(

∏
p∈P(1..n)

M;O
V(p)) .

Also, let Sn
M;v ∈

∏
p∈ipM(n)\P

(1..n)
M;I

V(p). We consider S to be a function that maps a number n and a
component (name) M into a pair of mappings and a tuple of values. We call the tuple of subsets of ports
[(PM;I , PM;O)]M∈M the type of S. We call S a simulator for WF.

The workflow WF(n)
S

intuitively executes n copies of WF, where each component M(n) has been
augmented using S. Formally, WF(n)

S
= (Mn,Wn, s, t), where
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• Mn = {aug(PM;I ,S
n
M;I ,S

n
M;v; M(n);Sn

M;O, PM;O) |M ∈ M};

• Wn = {(w, i) |w ∈ W, i ∈ {1, . . . , n}};

• s(p(i)) = (s(p), i) and t(p(i)) = (t(p), i) for all output and input ports of the components inMn.

Theorem 3.8. Suppose that Alg. 2 has been run, finding the maximum flow F in the workflow WF. For
each component M, let DM be the set of allowed probability distributions of AM, as restricted by the
sensitivity declarations. If for each component M, the bound qM = qDM

M (AM; CM) found by the algorithm
is tight, i.e. there exists P ∈ DM such that if AM ∼ P then I(AM; CM) = qM, then for all ε > 0, there
exists a simulator S with type [(AM,CM)]M∈M, such that for each δ > 0, there exists n > 0 such that the
workflow WF(n)

S
can leak at least n(F − ε) bits of information with the error probability at most δ.

Proof. Consider a component M. The weight of the edge e corresponding to this component in the flow
graph is q0 = qDM(A;C). Let us run the maximum flow algorithm again with the weight of each edge
corresponding to a component reduced by ε0, i.e. q = q0 − ε0. Then the maximum flow in this modified
network is at least F − Kε0 where K is the number of components in the network and F is the flow in
the original network. The flow through the edge e determined by the maximum flow algorithm is f ≤ q.

Let d(A) ∈ D and d(I\A) ∈ Const(I\A) be such that maximize I(A;C) in (7). There are n copies
of the workflow executed in parallel. The simulator S consists of pre- and postprocessing tools for each
component M. There is a (single) preprocessor Sn

M;AM
before the n copies of M that takes the total of

n f bits (assumed to be from the uniform distribution) on the n copies of the wiresA destined to M and
encodes them into an n-tuple whose components are each from the distribution d(A) (not necessarily
independent). The tuple of constants Sn

M;v has been picked from the constant distribution d(I\A); these
are sent to the n copies of the wires I \ A destined to M. There is a (single) postprocessor Sn

M;CM
after

the n copies of M that takes the n-tuple from the n copies of C and decodes them into a total of n f bits.
By well-known results from information theory, the encoding/decoding (for using a channel with

capacity at least f + ε0 for n times) can be chosen in such a way that these N f bits are with probability
at least 1 − δ0 equal to the n f bits that were encoded by the simulator before the n copies of M. The
probability that for each component M, the bits sent to the encoder before M are equal to the the bits
received from the decoder after M, is at least 1 − Kδ0. Thus also the probability that the n(F − Kε0) bits
of the source are equal to the n(F −Kε0) bits of the sink, is at least 1−Kδ0 (with the variables quantified
as follows: ∀ε0∀δ0∃n). We can take ε = Kε0 and δ = Kδ0 and get that the augmented workflow can leak
n(F − ε) bits from the source to the sink with probability at least 1 − δ. �

3.3.5 Sensitivity for Components. Often, when studying some process and its semantics, expressed
as a function f : X → Y , the elements of X have a lot of structure. Indeed, they may be seen as data
structures with several components. When characterizing the sensitivity of f , we would like to do it with
respect to different components of its inputs, and say that a certain component affects the outcome of f
a lot, while some other component not at all or only a little. When X is a Cartesian product of several
sets, then these definitions are not that difficult to come by. But we are interested in a more general case,
where the different components are somehow less orthogonal of each other.

In this section, we define component sensitivity and study its composability. Throughout this section,
let (X, dX(·, ·)) be a metric space defined over a set X, with a metric dX(·, ·).

3.3.5.1 Definitions. We define a component as some equivalence relation on X. It is only important
that a component partitions the set X to a set of mutually disjoint sets X/ρ, called classes, and we will
not use the equivalence relations directly. For components ρ and σ of X, we use ρ u σ to denote the
coarsest component that is finer than ρ andσ, i.e. whose equivalence classes are all possible intersections
between classes of X/ρ and X/σ. For x ∈ X, we use [x]ρ to denote the class X′ ∈ X/ρ such that x ∈ X′,
which is defined uniquely, since the classes are disjoint. We denote [m] := {1, . . . ,m}.

Definition 3.10 (Component). A component ρ of the set X is an equivalence relation on the set X.
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Definition 3.11 (Component composition). Let ρ and σ be two components of X. The component ρuσ
is defined as X/(ρ u σ) := {Xρ ∩ Xσ | Xρ ∈ X/ρ, Xσ ∈ X/σ}.

We extend the distances between elements of X to distances between subsets of X. We use the
notation d̃X(·, ·) for the distance dX(·, ·) extended to subsets of X. Some natural ways to do it are the
max-distance and the Hausdorff distance.

Definition 3.12 (max-distance). Let X1, X2 ⊆ X. The max-distance between X1 and X2 is

d̃X(X1, X2) := max
x1∈X1,x2∈X2

dX(x1, x2) .

Definition 3.13 (Hausdorff distance). Let X1, X2 ⊆ X. The Hausdorff distance between X1 and X2 is

d̃X(X1, X2) := max{max
x1∈X1

min
x2∈X2

dX(x1, x2), max
x2∈X2

min
x1∈X1

dX(x1, x2)} .

Some particular metrics that we consider are `p vector norm and `∞ vector norm.

Definition 3.14 (norm and seminorm). A seminorm is a function ||·|| : V → R from a vector space V ,
satisfying the following axioms for all ~x, ~y ∈ V:
• ||~x|| ≥ 0;

• ||α~x|| = |α| · ||~x|| (implying that ||~0|| = 0);

• ||~x + ~y|| ≤ ||~x|| + ||~y|| (triangle inequality).
Additionally, if ||~x|| = 0 holds only if ~x = ~0, then ||·|| is a norm.

Some of the most useful norms in practice are `1 (i.e., sum), `2 (e.g. geographical distance), and `∞
(maximum). These are instances of `p-norms.

Definition 3.15 (`p-norm). Let Xi ⊆ R, p ∈ [1,∞]. The `p-norm of ~x ∈ X1 × · · · × Xn, denoted ||~x||p is
defined as

||~x||p =

 n∑
i=1

|xi|
p

1/p

.

For p = ∞, `∞ is defined as

||~x||∞ = lim
p→∞

 n∑
i=1

|xi|
p

1/p

=
n

max
i=1
|xi| .

We now introduce some new notions that will be used in this section. We already used [n] =

{1, . . . , n}. Let the friend of x ∈ X in the set X′ ⊆ X be an element x′ ∈ X′ that is the closest to x. If there
are several closest elements, let all of them be friends. It is possible that there is no closest element.

Definition 3.16 (friend in the set). Let X′ ⊆ X, x ∈ X. An element x′ ∈ X′ is called a friend of x in the
set X′, denoted x X′

∼ x′, if
x′ ∈ arg min

x′∈X′
dX(x, x′) .

Two subsets X1 and X2 of X are called friendly in a subset X′ if at least one friend of X1 in X′ belongs
to X2, and each element of X2 is a friend in X′ of some element of X1.

Definition 3.17 (friendly sets). Subsets X1, X2 ⊆ X are called friendly in X′, denoted X1
X′
∼ X2, if the

following conditions hold:

• ∀x1 ∈ X1 ∃x2 ∈ X2 : x1
X′
∼ x2;

• ∀x2 ∈ X2 ∃x1 ∈ X1 : x1
X′
∼ x2.
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We can now give an alternative definition for the Hausdorff distance, expressed through the notion
of friend. We will use this definition further in this section.

Definition 3.18 (Hausdorff distance (alternative)). Let X1, X2 ⊆ X. The Hausdorff distance between X1
and X2 is

d̃X(X1, X2) := max{ max
x1∈X1,x2∈X2,x1

X2
∼ x2

dX(x1, x2), max
x1∈X1,x2∈X2,x2

X1
∼ x1

dX(x1, x2)} .

The sensitivity (Def. 3.5) is a global characterization of the function f , describing its worst-case
behavior. For more detailed understanding of the behavior, we need some related quantity that is easier
to estimate in practice, and from which sensitivity can be derived. We define sensitivity of a function
w.r.t. component, which aims to describe sensitivity for inputs that come from two equivalence classes of
that component. Defining it for all possible pairs would end up in the original definition of sensitivity, so
we are trying to find the bounds only for some certain pairs of elements. Composition theorems allow us
to compute sensitivity of f w.r.t. finer components from sensitivities w.r.t. coarser components. Finally,
if we manage to achieve the finest possible component, where each element is in its own equivalence
class, it gives us a bound on the general sensitivity of f .

Since we do not know which information exactly will be known for some particular metric space
(X, dX(·, ·)), what will be the nature of its components, and which distances will be used, we propose
several possible definitions. In all definitions below, c ∈ R+.

Definition 3.19 (A-sensitivity w.r.t. component). Mapping f : X → Y is c A-sensitive w.r.t. the
component ρ if for all X1, X2 ∈ X/ρ we have

∀x1 ∈ X1, x2 ∈ X2 : x1
X2
∼ x2 =⇒ dY ( f (x1), f (x2)) ≤ c · dX(x1, x2) .

Definition 3.20 (B-sensitivity w.r.t. component). Mapping f : X → Y is c B-sensitive w.r.t. the
component ρ if for all X1, X2 ∈ X/ρ we have

∀x1 ∈ X1, x2 ∈ X2 : x1
X2
∼ x2 =⇒ dY ( f (x1), f (x2)) ≤ c · d̃X(X1, X2) .

Similar definitions can be used to estimate distances not between single elements, but between sub-
sets of the image of f . For X′ ⊆ X, we denote f (X′) := { f (x) | x ∈ X′}.

Definition 3.21 (C-sensitivity w.r.t. component). Mapping f : X → Y is c C-sensitive w.r.t. the
component ρ if for all X1, X2 ∈ X/ρ we have

∀X′1 ⊆ X1, X′2 ⊆ X2 : X′1
X2
∼ X′2 =⇒ d̃Y ( f (X′1), f (X′2)) ≤ c · d̃X(X′1, X

′
2) .

Definition 3.22 (D-sensitivity w.r.t. component). Mapping f : X → Y is c D-sensitive w.r.t. the
component ρ if for all X1, X2 ∈ X/ρ we have

∀X′1 ⊆ X1, X′2 ⊆ X2 : X′1
X2
∼ X′2 =⇒ d̃Y ( f (X′1), f (X′2)) ≤ c · d̃X(X1, X2) .

Remark 3.1. In some sets, min and max do not exist. If we want to use sup and inf instead of min and
max, we could take x′ ∈ arg minx′∈X′ dX(x, x′) instead of x′ ∈ arg minx′∈X′ dX(x, x′) in Definition 3.16,
where X′ is the closure of X′. However, it may happen that sup and inf of distances are not achievable
even in X′. We would also need to be careful since using closures may eliminate the assumption that
equivalence classes do not intersect. A nicer solution would be to define a δ-friend as x′ such that
dX(x, x′) − infx′∈X′ dX(x, x′) ≤ δ and ε-sensitivity, which gives an imprecise bound c · (dX(x, x′) + ε),
where ε depends on δ. In this work, we only consider the simpler definition.
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3.3.5.2 Properties of Components with Composable Sensitivity. In this section, we give some prop-
erties of components that will be needed to make the sensitivity w.r.t. them composable.

If ρ is a component of X, let us call x′ a ρ-friend of x if x
[x′]ρ
∼ x′. The components ρ and σ are

called adjacent if any two (ρ u σ)-friends x and x′ have at least one common friend that is ρ-friend of
x and σ-friend of x′, and that shares its ρ-class with x′ and its σ-class with x. This property allows us

to reduce x
[x′]ρuσ
∼ x′ to x

[x′]ρ
∼ x′′ and x′ [x]σ

∼ x′′, which can be analyzed by using known properties (e.g.
sensitivity) of the simpler components σ and ρ.

Definition 3.23 (adjacent components). The component pair (ρ, σ) of X is called adjacent if for all

x, x′ ∈ X, x
[x′]ρuσ
∼ x′, there exists x′′ ∈ X such that:

1. x
[x′]ρ
∼ x′′;

2. x′ [x]σ
∼ x′′.

Definition 3.20 and Definition 3.21 give us upper bounds of the form d̃X([x]ρ, [x′]ρ) for a sin-
gle component ρ. When we compose the components, we need that the upper bound would depend
only on d̃X([x]ρuσ, [x′]ρuσ), but this distance can be larger as well as smaller than d̃X([x]ρ, [x′]ρ) and
d̃X([x]σ, [x′]σ). If it is smaller, then the bounds for sensitivities w.r.t. ρ and σ do not provide a reason-
able estimation. Hence, we need one more constraint on the components, which ensures that the distance
between classes of finer components may only increase.

Definition 3.24 (expanding components). The component pair (ρ, σ) of X is called expanding if for all
x, x′ ∈ X, the following implications hold:

1. d̃X([x]ρ, [x′]ρ) ≤ d̃X([x]ρuσ, [x′]ρuσ);

2. d̃X([x]σ, [x′]σ) ≤ d̃X([x]ρuσ, [x′]ρuσ).

There is another property that can be useful for sensitivity compositions, that can be used as an
alternative for the expanding property. One property is neither stronger or weaker than the other one,
so we decide to use them both. While the new property looks more specific, its good aspect is that it
characterizes a single component, not a component pair. We call a component equidistant if, in any two
of its classes, all friend pairs have the same distance from each other.

Definition 3.25 (equidistant component). A component ρ of X is called equidistant if for all x, x′ ∈ X,

if x
[x′]ρ
∼ x′, we have

dX(x, x′) = d̃X([x]ρ, [x′]ρ) .

3.3.5.3 Sensitivity of Compositions. In this section, we first prove some auxiliary lemmas, and then
show which conditions need to be satisfied to make it possible to compose sensitivities w.r.t. different
components.

Lemma 3.9. For all x, x′ ∈ X, if x X1
∼ x′, then also x X2

∼ x′ for any X2 ⊆ X1 such that x′ ∈ X2.

Proof. Let x, x′ ∈ X be such that x X1
∼ x′. Take x′′ ∈ X2 such that x X2

∼ x′′. Since there are only less
possibilities to choose the minimum from a smaller set, minz∈X1 dX(x, z) ≤ minz∈X2 dX(x, z), and we have
dX(x, x′) ≤ dX(x, x′′). On the other hand, x′ ∈ X2, so it is a valid friend candidate for x in the set X2, and
it can be only closer to x than x′′ is. Hence, x X2

∼ x′. �

Corollary 3.10. Let ρ be a component of X. For all x, x′ ∈ X, if x
[x′]ρ
∼ x′, then also x

[x′]ρuσ
∼ x′ for any

component σ of X.

Proof. By definition of component intersection, [x′]ρuσ ⊆ [x′]ρ. The classes [x′]ρuσ and [x′]ρ have been
chosen in such a way that they both contain x′. Hence, we may apply Lemma 3.9. �
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Lemma 3.11. If d̃X(·, ·) is either Hausdorff distance or max-distance, then dX(x1, x2) ≤ d̃X(X1, X2) for
all X1, X2 ⊆ X, x1 ∈ X1, x2 ∈ X2, such that x1

X2
∼ x2.

Proof. Let d̃X(·, ·) be either Hausdorff distance or max-distance.
• For max-distance, d̃X(X1, X2) = maxx1∈X1,x2∈X2 dX(x1, x2), so dX(x1, x2) ≤ d̃X(X1, X2) holds for all

x1 ∈ X1, x2 ∈ X2.

• For Hausdorff distance, d̃X(X1, X2) = maxi∈{1,2}, j=3−i{max
xi∈Xi,x j∈X j,xi

X j
∼ x j

dX(xi, x j)}, and hence

dX(x1, x2) ≤ d̃X(X1, X2) holds for all x1 and x2 such that x1
X2
∼ x2. �

Let us henceforth assume that d̃X(·, ·) is either Hausdorff distance or max-distance. The distance
d̃Y (·, ·) can in general be arbitrary, and we will mention when some particular instantiation is needed.

Theorem 3.12. If d̃Y (·, ·) is Hausdorff distance, then A-sensitivity is equivalent to C- sensitivity, and
B-sensitivity is equivalent to D-sensitivity.

Proof. Let ρ be a component of X, and X1, X2 ∈ X/ρ. Let f : X → Y be cI I-sensitive, where I ∈
{A,B,C,D}.
⇐ Let x1 ∈ X1, x2 ∈ X2. At least for max-distance and Hausdorff distance, we have dX(x1, x2) =

d̃X({x1}, {x2}) and dY ( f (x1), f (x2)) = d̃Y ( f ({x1}), f ({x2})), Hence, we may always estimate
({x1}, {x2}) instead of (x1, x2). Thus cA ≤ cC and cB ≤ cD.

⇒ Let X′1
X2
∼ X′2. The A- and B-sensitivities give us bounds only for the elements that are friends in X2,

but d̃Y ( f (X′1), f (X′2)) may also depend on non-friends of X′1 and X′2, since they may become friends
after f is applied to them. We will show that the bounds cA and cB of A- and B-sensitivities are still
valid. Let P := {(x1, x2) | x1 ∈ X′1, x2 ∈ X′2, x1

X2
∼ x2}. We are able to apply A- and B-sensitivity to

all (x1, x2) ∈ P.

Since X′1
X2
∼ X′2, the first coordinates of pairs of P cover the entire set X′1, and the second coordi-

nates of P cover the entire set X′2, possibly with repetitions. By Lemma 3.9, for all (x1, x2) ∈ P,

we have x1
X′2
∼ x2, and hence, by Lemma 3.11, we have dX(x1, x2) ≤ d̃X(X′1, X

′
2). Applying

Lemma 3.11 directly to x1
X2
∼ x2, we also have dX(x1, x2) ≤ d̃X(X1, X2). There are now two cases

possible:

– If at least one (x1, x2) ∈ P is such, that d̃Y ( f (X′1), f (X′2)) ≤ dY ( f (x1), f (x2)), then we get a
valid bound d̃Y ( f (X′1), f (X′2)) ≤ dY ( f (x1), f (x2)) ≤ cA ·dX(x1, x2) ≤ cA · d̃X(X′1, X

′
2), implying

cC ≤ cA. Similarly, we have d̃Y ( f (X′1), f (X′2)) ≤ dY ( f (x1), f (x2)) ≤ cB · d̃X(X1, X2) with the
implication cD ≤ cB.

– Suppose that for all (x1, x2) ∈ P we have d̃Y ( f (X′1), f (X′2)) > dY ( f (x1), f (x2)). Assuming
that all maximums exist, and Hausdorff distance is used, let us take x1 and x2 such that

f (x1)
f (X′2)
∼ f (x2) and d̃Y ( f (X′1), f (X′2)) = dY ( f (x1), f (x2)). Since the first coordinates of

pairs of P cover the entire set X′1, there is x′2 ∈ X′2 such that (x1, x′2) ∈ P. By assumption,
d̃Y ( f (X′1), f (X′2)) > dY ( f (x1), f (x′2)), which implies dY ( f (x1), f (x2)) > dY ( f (x1), f (x′2)).

However, since f (x1)
f (X′2)
∼ f (x2), the element f (x′2) ∈ f (X′2) cannot be strictly closer to

f (x1) than f (x2) is, which is a contradiction. �

We note that the ⇒ implication does not hold in general if d̃Y (·, ·) max-distance, since x1 and
x2 that achieve d̃Y ( f (X′1), f (X′2)) = dY ( f (x1), f (x2)) are not necessarily friends, and the equality
d̃Y ( f (x1), f (x2)) > dY ( f (x1), f (x′2)) does not give any contradictions.

Example 3.3. A tiny counterexample would be X = Y = R, dX(x, y) = dY (x, y) = |x − y|, X′1 = {0, 11},
X′2 = {2, 9}, and f (x) := x mod 2. Since 0 is closer to 2, and 11 is closer to 9, using A- and B-
sensitivity, we could give bounds for dY ( f (0), f (2)) = dY (0, 0) and dY ( f (11), f (9)) = dY (1, 1) = 0, for
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which an arbitrarily small c is suitable. However, for max-distance we have d̃Y ( f ({0, 11}), f ({2, 9})) =

d̃Y ({0, 1}, {0, 1}) = 1, and d̃X({0, 11}, {2, 9}) ≤ 9 (whenever Hausdorff distance or max-distance is used
for dX(·, ·)), which allows only c ≥ 1

9 .

Theorem 3.13. Let (ρ, σ) be a adjacent component pair. Let the mapping f : X → Y be cρ and cσ
A-sensitive w.r.t. ρ and σ respectively. Then, f is (cρ + cσ) A-sensitive w.r.t ρ u σ.

Proof. Let x, x′ ∈ X be such that x
[x′]ρuσ
∼ x′. We need to show that dY ( f (x), f (x′)) ≤ (cρ + cσ) · dX(x, x′).

Since (ρ, σ) is a adjacent pair, there exists x′′ ∈ X such that x
[x′]ρ
∼ x′′ and x′ [x]σ

∼ x′′. Since x′′ ∈ [x′]ρ and

x′′ ∈ [x]σ, we have [x′′]ρ = [x′]ρ, [x′′]σ = [x]σ, and x
[x′′]ρ
∼ x′′, x′ [x′′]σ

∼ x′′, so we can apply A-sensitivity:

• dY ( f (x), f (x′′)) ≤ cρ · dX(x, x′′);

• dY ( f (x′′), f (x′)) ≤ cσ · dX(x′′, x′).

Since x
[x′]ρ
∼ x′′, the element x′ cannot be closer to x than x′′ is, so dX(x, x′′) ≤ dX(x, x′).

Since x′ [x]σ
∼ x′′, the element x cannot be closer to x′ than x′′ is, so dX(x′′, x′) ≤ dX(x, x′).

We now estimate dY ( f (x), f (x′)) from above, using the triangle inequality.

dY ( f (x), f (x′)) ≤ dY ( f (x), f (x′′)) + dY ( f (x′′), f (x′))

≤ cρ · dX(x, x′′) + cσ · dX(x′′, x′)

≤ cρ · dX(x, x′) + cσ · dX(x, x′)

= (cρ + cσ) · dX(x, x′) .

�

Corollary 3.14. Let (ρ, σ) be an adjacent pair of equidistant components. Let the mapping f : X → Y
be cρ and cσ B-sensitive w.r.t. ρ and σ respectively. Then, f is (cρ + cσ) B-sensitive w.r.t ρ u σ.

Proof. Let x, x′ ∈ X, x
[x′]ρuσ
∼ x′. Since ρ and σ are equidistant, B-sensitivity (Definition 3.20) implies

A-sensitivity (Definition 3.19), so f is cρ and cσ A-sensitive w.r.t. ρ and σ respectively. Applying
Theorem 3.13, we get dY ( f (x), f (x′)) ≤ (cρ + cσ) · dX(x, x′). By Lemma 3.11, dX(x, x′) ≤ d̃X([x]ρ, [x′]ρ),
and this gives us dY ( f (x), f (x′)) ≤ (cρ + cσ) · d̃X([x]ρ, [x′]ρ), which is the definition of B-sensitivity. �

Theorem 3.15. Let (ρ, σ) be an adjacent expanding component pair. Let the mapping f : X → Y be cρ
and cσ B-sensitive w.r.t. ρ and σ respectively. Then, f is (cρ + cσ) B-sensitive w.r.t ρ u σ.

Proof. Constructing x′′ from x and x′ as in the proof of Theorem 3.13, we we can apply B-sensitivity of
f to the pairs (x, x′′) and (x′′, x′) separately, getting the following inequalities:

• dY ( f (x), f (x′′)) ≤ cρ · d̃X([x]ρ, [x′′]ρ) = cρ · d̃X([x]ρ, [x′]ρ);

• dY ( f (x′′), f (x′)) ≤ cσ · d̃X([x′′]σ, [x′]σ) = cσ · d̃X([x]σ, [x′]σ).

Since ρ and σ are expanding, we have d̃X([x]ρ, [x′]ρ) ≤ d̃X([x]ρuσ, [x′]ρuσ) and d̃X([x]σ, [x′]σ) ≤
d̃X([x]ρuσ, [x′]ρuσ).

We now estimate dY ( f (x), f (x′)) from above, using the triangle inequality.

dY ( f (x), f (x′)) ≤ dY ( f (x), f (x′′)) + dY ( f (x′′), f (x′))

≤ cρ · d̃X([x]ρ, [x′]ρ) + cσ · d̃X([x]σ, [x′]σ)

≤ cρ · d̃X([x]ρuσ, [x′]ρuσ) + cσ · d̃X([x]ρuσ, [x′]ρuσ)

= (cρ + cσ) · d̃X([x]ρuσ, [x′]ρuσ) .

�

Theorem 3.16. Let (ρ, σ) be an adjacent component pair. Let the mapping f : X → Y be cρ and cσ
C-sensitive w.r.t. ρ and σ respectively. Then, f is (cρ + cσ) C-sensitive w.r.t ρ u σ.
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Proof. Let X1, X2 ∈ X/(ρ u σ). Let X′1 ⊆ X1 and X′2 ⊆ X2 be such that X′1
X2
∼ X′2. We need to show that

d̃Y ( f (X′1), f (X′2)) ≤ (cρ + cσ) · d̃X(X′1, X
′
2).

Since every class of X/(ρuσ) is an intersection of two classes of X/ρ and X/σ, for i ∈ {1, 2}, we can
write Xi = Xρ

i ∩Xσ
i , where Xρ

i ∈ X/ρ and Xσ
i ∈ X/σ. Hence, we can represent X′i ⊆ Xi as X′i = X′ρi ∩X′σi ,

where X′ρi ⊆ Xρ
i and X′σi ⊆ Xσ

i .

Let x ∈ X′1. Since X′1
X2
∼ X′2, there exists x′ ∈ X′2 such that x X2

∼ x′. Since X2 ∈ X/(ρ u σ), and (ρ, σ)

is an adjacent pair, there exists x′′ such that x
Xρ

2
∼ x′′ and x′

Xσ
1
∼ x′′. Let X′′ := {x′′ | x ∈ X′1} be the set of

all such x′′ that exist for all elements of X′1 (if there are several such elements for the same x, take all of
them, so that a suitable x′′ ∈ X′′ would exist for all x′ ∈ X′2).

Since X′′ is constructed in such a way that ∀x ∈ X′1 ∃x′′ ∈ X′′ : x
Xρ

2
∼ x′′, and there are no other

elements in X′′, we have X′1
Xρ

2
∼ X′′, so we can apply C-sensitivity of f to them. Similarly, since X′2 by

assumption contains only friends of X′1 and no other elements, we have ∀x′ ∈ X′2 ∃x′′ ∈ X′′ : x′
Xσ

1
∼ x′′,

and since there are no elements in X′′ for which such x′ does not exist, we have X′2
Xσ

1
∼ X′′, so we can

apply C-sensitivity of f :

• d̃Y ( f (X′1), f (X′′)) ≤ cρ · d̃X(X′1, X
′′);

• d̃Y ( f (X′′), f (X′2)) ≤ cσ · d̃X(X′′, X′2).

Consider any pair x ∈ X′1, x′′ ∈ X′′, such that x
Xρ

2
∼ x′′. Since x

Xρ
2
∼ x′′, no element x′ ∈ X′2 ⊆ Xρ

2 can be
closer to x than x′′ is, so dX(x, x′′) ≤ dX(x, x′) for all x′ ∈ X′2. This inequality holds for all pairs of friends
x ∈ X′1, x′′ ∈ X′′, and hence also for the pair that gives the maximal distance, so d̃X(X′1, X

′′) ≤ dX(x, x′).

On the other hand, it holds for all x′ ∈ X′2, and hence also for x′ such that x
X′2
∼ x′, and by Lemma 3.11

we have dX(x, x′) ≤ d̃X(X′1, X
′
2). Putting all together, we get d̃X(X′1, X

′′) ≤ d̃X(X′1, X
′
2). Similarly, we get

d̃X(X′′, X′2) ≤ d̃X(X′1, X
′
2).

We now estimate d̃Y ( f (X′1), f (X′2)) from above, using the triangle inequality.

d̃Y ( f (X′1), f (X′2)) ≤ d̃Y ( f (X′1), f (X′′)) + d̃Y ( f (X′′), f (X′2))

≤ cρ · d̃X(X′1, X
′′) + cσ · d̃X(X′′, X′2)

≤ cρ · d̃X(X′1, X
′
2) + cσ · d̃X(X′1, X

′
2)

= (cρ + cσ) · d̃X(X′1, X
′
2) .

�

Corollary 3.17. Let (ρ, σ) be an adjacent pair of equidistant components. Let the mapping f : X → Y
be cρ and cσ D-sensitive w.r.t. ρ and σ respectively. Then, f is (cρ + cσ) D-sensitive w.r.t ρ u σ.

Proof. Similarly to Corollary 3.14, since the components are equidistant, we have dX(x, x′) = d̃X(X1, X2)
for all x ∈ X1, x′ ∈ X2 such that x X2

∼ x′, and X1, X2 ∈ X/ρ or X1, X2 ∈ X/σ. Hence, also d̃X(X′1, X
′
2) =

d̃X(X1, X2) for X′1 ⊆ X1 and X′2 ⊆ X2 such that X′1
X2
∼ X′2, so C-sensitivity of ρ and σ implies their

D-sensitivity. Applying Theorem 3.16, we get d̃Y ( f (X′1), f (X′2)) ≤ (cρ + cσ) · d̃X(X′1, X
′
2). Since we have

X′1
X2
∼ X′2, every element x ∈ X′1 has a friend in X′2 that is also a friend in X2 and hence, by Lemma 3.11,

is at most d̃X(X1, X2) far away from it. This gives us d̃X(X′1, X
′
2) ≤ d̃X(X1, X2). �

Theorem 3.18. Let (ρ, σ) be an adjacent expanding component pair. Let the mapping f : X → Y be cρ
and cσ D-sensitive w.r.t. ρ and σ respectively. Then, f is (cρ + cσ) D-sensitive w.r.t ρ u σ.

Proof. Constructing X′′ from X′1 and X′2 as in the proof of Theorem 3.16, we we can apply C-sensitivity
of f to the pairs (X′1, X

′′) and (X′2, X
′′) separately, getting the following inequalities:

• d̃Y ( f (X′1), f (X′′)) ≤ cρ · d̃X(Xρ
1 , X

ρ
2);
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• d̃Y ( f (X′′), f (X′2)) ≤ cσ · d̃X(Xσ
1 , X

σ
2 ).

Since ρ and σ are expanding, we have d̃X(Xρ
1 , X

ρ
2) ≤ d̃X(Xρ

1 ∩ Xσ
1 , X

ρ
2 ∩ Xσ

2 ), and d̃X(Xσ
1 , X

σ
2 ) ≤

d̃X(Xρ
1 ∩ Xσ

1 , X
ρ
2 ∩ Xσ

2 ). By construction, d̃X(Xρ
1 ∩ Xσ

1 , X
ρ
2 ∩ Xσ

2 ) = d̃X(X1, X2).
We now estimate d̃Y ( f (X′1), f (X′2)) from above, using the triangle inequality.

d̃Y ( f (X′1), f (X′2)) ≤ d̃Y ( f (X′1), f (X′′)) + d̃Y ( f (X′′), f (X′2))

≤ cρ · d̃X(Xρ
1 , X

ρ
2) + cσ · d̃X(Xσ

1 , X
σ
2 )

≤ cρ · d̃X(X1, X2) + cσ · d̃X(X1, X2)

= (cρ + cσ) · d̃X(X1, X2) .

�

3.3.5.4 Example of Vectors with Independent Coordinates. We now consider metric spaces
(X, dX(·, ·)) and components ρ of certain form.
• X := X1 × · · · × Xn;

• dX(~x, ~x′) := ||~x − ~x′||p or dX(~x, ~x′) := ||~x − ~x′||∞;

• d̃X(X1, X2) is the Hausdorff distance;

• ρi is such that Xa ∈ X/ρi is defined as Xa := {(x1, . . . , xi−1, a, xi+1, . . . , xn) | x j ∈ X j}.
In this section, we will consider components of the form ρ :=

�
i∈I ρi. Since the norms `p and `∞ do

not depend on the ordering of the coordinates Xi, without loss of generality, let I = [m] for some m ≤ n.
Let the classes of X/

�
i∈[m] ρi be denoted by X(ai)i∈[m] = {(a1, . . . , am, xm+1, . . . , xn) | x j ∈ X j,m < j ≤ n}.

Lemma 3.19. Let ρ =
�

i∈[m] ρi; X(ai)i∈[m] , X(a′i )i∈[m] ∈ X/ρ. For ~x = (a1, . . . , am, xm+1, . . . , xn) ∈ X(ai)i∈[m] , if

~x′ = (a′1, . . . , a
′
m, xm+1, . . . , xn), then ~x

X(a′i )i∈[m]
∼ ~x′.

Proof. First, let us assume that `p norm is used. We get dX(~x, ~x′) = (
∑m

i=1 |a
′
i−ai|

p+
∑n

i=m+1 |xi−xi|
p)1/p =

(
∑m

i=1 |a
′
i − ai|

p)1/p. We cannot achieve a better bound since a′i are fixed, and taking x′i , xi in ~x′ may

only increase the absolute value. Hence, ~x′ minimizes dX(~x, ~x′) in X(a′i )i∈[m] , so ~x
X(a′i )i∈[m]
∼ ~x′.

Similarly, if `∞ norm is used, then dX(~x, ~x′) = max(maxm
i=1 |a

′
i −a′i |,maxn

i=m+1 |xi− xi|) = maxm
i=1 |a

′
i −

ai|, and taking x′i , xi in ~x′ may only increase the maximum. �

Proposition 3.20. Any component of the form ρ =
�

i∈[m] ρi is equidistant. In particular,
d̃X(X(ai)i∈[m] , X(a′i )i∈[m]) = (

∑m
i=1 |a

′
i − ai|

p)1/p for `p norm, and d̃X(X(ai)i∈[m] , X(a′i )i∈[m]) = maxm
i=1 |a

′
i − ai|

for `∞ norm.

Proof. Let X(ai)i∈[m] , X(a′i )i∈[m] ∈ X/ρ. For any element ~x = (a1, . . . , am, xm+1, . . . , xn) ∈ X(ai)i∈[m] , we can

take ~x′ = (a′1, . . . , a
′
m, xm+1, . . . , xn) ∈ X(a′i )i∈[m] . By Lemma 3.19, ~x

X(a′i )i∈[m]
∼ ~x′.

We have dX(~x, ~x′) = (
∑m

i=1 |a
′
i − ai|

p +
∑n

i=m+1 |xi − xi|
p)1/p = (

∑m
i=1 |a

′
i − ai|

p)1/p. Since such ~x′

exists for all ~x ∈ X(ai)i∈[m] , we also have max~x∈X(ai)i∈[m]
min~x′∈X(a′i )i∈[m]

dX(~x, ~x′) = (
∑m

i=1 |a
′
i − ai|

p)1/p. The

same holds if we swap X(ai)i∈[m] and X(a′i )i∈[m] . By definition of Hausdorff distance, d̃X(X(ai)i∈[m] , X(a′i )i∈[m]) =

(
∑m

i=1 |a
′
i − ai|

p)1/p.
Similarly, if `∞ norm is used, then max(maxm

i=1 |a
′
i − a′i |,maxn

i=m+1 |xi − xi|) = maxm
i=1 |a

′
i − ai| for all

~x ∈ X(ai)i∈[m] , so d̃X(X(ai)i∈[m] , X(a′i )i∈[m]) = maxm
i=1 |a

′
i − a′i |. �

Proposition 3.21. The components ρ :=
�

i∈[m] ρi and σ := ρm+1 are adjacent.

Proof. Let X(ai)i∈[m] , X(a′i )i∈[m] ∈ X/ρ, and let Xa, Xa′ ∈ X/σ. For any ~x = (a1, . . . , am, a, xm+2, . . . , xn) ∈
X(ai)i∈[m] ∩ Xa and ~x′ = (a′1, . . . , a

′
m, a

′, xm+2, . . . , xn) ∈ X(a′i )i∈[m] ∩ Xa′ , we can define ~x′′ ∈ X(a′i )i∈[m] ∩ Xa as

~x′′ = (a′1, . . . , a
′
m, a, xm+2, . . . , xn). By Lemma 3.19, we have ~x

X(a′i )i∈[m]
∼ ~x′′ and ~x Xa

∼ ~x′′. �
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Corollary 3.22. For all i ∈ [n], let ci be I-sensitivity of a function f w.r.t. the component ρi, for
I ∈ {A,B,C,D}. Then

∑
i∈I ci is the I-sensitivity of f w.r.t. the component

�
i∈I ρi for all I ⊆ [n].

Proof. Prop. 3.20 and Prop. 3.21 together give us the necessary preconditions for applying Theo-
rem 3.13, Corollary 3.14, Theorem 3.16, Corollary 3.17 for all variants of sensitivity definition. �

3.3.5.5 Example of Vectors with Linearly Dependent Coordinates. We consider metric spaces
(X̂, dX(·, ·)) of the same form as in Sec. 3.3.5.4, with the following additional conditions.
• ∀i, j : Xi = X j =: Z;

• There is a matrix A ∈ Zp×n for p ≤ n, and a vector ~b ∈ Zp such that, ∀~x ∈ X̂ : A~x = ~b.
Similarly to Sec. 3.3.5.4, we consider components of the form ρ̂ :=

�
i∈I ρ̂i, where ρ̂i is the analog

of ρi, defined over X̂. For equivalence classes, we will use the notation

X̂(ai)i∈[m] = {(a1, . . . , am, xm+1, . . . , xn) | x j ∈ X j,m < j ≤ n,A~x = ~b}

to discern them from the analogous classes of independent components.
Let ~x = ~x1| ~x2 denote that ~x is a concatenation of vectors ~x1 and ~x2. For matrices, A = A1|A2 denotes

concatenation of rows.

Lemma 3.23. Without loss of generality, let I = [m]. Let ρ̂ =
�

i∈[m] ρ̂i, and X̂(ai)i∈[m] , X̂(a′i )i∈[m] ∈ X̂/ρ̂. Let

~x ∈ X̂ be such that xi = ai for i ∈ [m], and A~x = ~b. Let ~x′ ∈ X̂ be such that ~x
X(a′i )i∈[m]
∼ ~x′.

Let A = A1|A2, where A1 are the first m columns and A2 are the rest. We can write ~x′ = ~x +~z, where
~z = ~z1|~z2, ~z1 = (~a′ − ~a), and ~z2 is an optimal solution to the task

minimize||~z2||, subject toA2 ~z2 = A1(~a − ~a′) .

Proof. In order to find the vector ~x′ that is the closest to ~x, we need to solve the following task:

minimize||~x′ − ~x||, subject toA~x′ = ~b .

We would like to get rid of x j that make this quantity dependent on the particular instance ~x. We may
introduce variables ~z := ~x′ − ~x. This gives us linear constraints A(~x + ~z) = ~b. Since by assumption
A~x = ~b, this is equivalent to A~z = ~0. We get the task

minimize||~z||, subject toA~z = ~0 .

We can rewrite A~z as (A1|A2)(~z1|~z2) = A1 ~z1 + A2 ~z2. For j ∈ [m], we have z j = (a′j − a j), so

A1 ~z1 = A1(~a′ − ~a). Substituting this value into the constraints, we get the statement of this lemma. �

Like in the case of independent components, we could first define sensitivity for each single compo-
nent, and then define their composition. However, it is no longer reasonable to define it for friends as in
Sec. 3.3.5.4: due to the constraints, the closest vectors may have very different entries, and we might be
unable to define sensitivity even for single components that we could use as building blocks. Moreover,
using the same definitions as in Sec. 3.3.5.4, we will not achieve the necessary preconditions for the
composition theorems, since dependent components are in general not adjacent.

Instead of defining new theory for dependent components, let us compute upper bounds directly
from the theory of independent components. We assume that we only know how to compute initial
sensitivity for independent components ρ j, i.e. we can give upper bounds only for dX( f (x), f (x′)) where
xi = x′i for all i , j. We use them to construct sensitivities for dependent components ρ̂ j. We will
derive the bounds not for friends, but for matches – the vectors that have maximal amount of similar
coordinates. Let dHam(~x, ~x′) denote the Hamming distance of ~x and ~x′, i.e. the number of their different
coordinates.
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Definition 3.26 (match in the set). Let X̂′ ⊆ X̂, ~x ∈ X̂. An element ~x′ ∈ X̂′ is called a match of ~x in the

set X̂′, denoted ~x
X̂′
≈ ~x′, if

~x′ ∈ arg min
~x′∈X̂′

dHam(~x, ~x′) .

Definition 3.27 (matching sets). Subsets X1, X2 ⊆ X are called matching in X′, denoted X1
X′
≈ X2, if the

following conditions hold:

• ∀ ~x1 ∈ X1 ∃ ~x2 ∈ X2 : ~x1
X′
≈ ~x2;

• ∀ ~x2 ∈ X2 ∃ ~x1 ∈ X1 : ~x1
X′
≈ ~x2;

The notions of a friend and a match (as well as friendly sets and matching sets) are equivalent for
vectors with independent components, but they are different in the case of dependent components.

Lemma 3.24. If ~x
X̂(ai)i∈[m]
≈ ~x′, then there are at least max(0, n − p − m) equal entries in ~x and ~x′.

Proof. Since ~x′ ∈ X̂(ai)i∈[m] , we already have x′i = ai for i ∈ [m], and it may happen that ai , xi for all
i ∈ [m], so in general we do not get equal entries from here. The linear equation system has degree of
freedom n − p, so even after m entries are fixed, if p + m < n, then there are at least n − p − m entries
whose value can be set to arbitrary, and x′j = x j can be taken without violating the constraints. The
remaining min(n − m, p) entries are uniquely determined by the constraints and the other entries. �

Proposition 3.25. Any component of the form ρ̂ =
�

i∈[m] ρ̂i is equidistant.

Proof. Let X̂(ai)i∈[m] , X̂(a′i )i∈[m] ∈ X̂/ρ̂. For any element ~x = (a1, . . . , am, xm+1, . . . , xn) ∈ X̂(ai)i∈[m] , we can

take ~x′ ∈ X̂ such that ~x
X̂(a′i )i∈[m]
∼ ~x′, using the construction of Lemma 3.23. As in the proof of Prop. 3.20, it

is only important that dX(~x, ~x′) depends only on the classes X̂(ai)i∈[m] , X̂(a′i )i∈[m] , and on the matrix A that is
fixed, so it can be expressed as some quantity g(A, (ai, a′i)i∈[m]) that does not depend on any other entries
of ~x and ~x′. Since such ~x′ exists for all ~x ∈ X̂(ai)i∈[m] , we also have max~x∈X̂(ai)i∈[m]

min~x′∈X̂(a′i )i∈[m]
dX(~x, ~x′) =

g(A, (ai, a′i)i∈[m]), and also max~x′∈X̂(a′i )i∈[m]
min~x∈X(ai)i∈[m]

= g(A, (ai, a′i)i∈[m]). By definition of the Hausdorff

distance, we get d̃X(X̂(ai)i∈[m] , X̂(a′i )i∈[m]) = g(A, (ai, a′i)i∈[m]). �

Proposition 3.26 (A-sensitivity w.r.t. component). Let mapping f : X → Y be ci A-sensitive w.r.t. the
component ρi for all i ∈ {1, . . . , n}. Let ρ̂ :=

�
i∈I ρ̂i. For all X̂1, X̂2 ∈ X̂/ρ̂ we have

∀ ~x1 ∈ X̂1, ~x2 ∈ X̂2 : ~x1
X̂2
≈ ~x2 =⇒ dY ( f ( ~x1), f ( ~x2)) ≤

p · max
i∈[n]\I

(ci) +
∑
i∈I

ci

 · dX( ~x1, ~x2) .

Proof. Since ~x1
X2
≈ ~x2, by Lemma 3.24, there are at least n − p − |I| equal entries in ~x1 and ~x2. There-

fore, ~x2 can be considered a friend of ~x1 in the set X(a′i )i∈I∪(x′j) j∈J (note that it is a class of vectors with
independent components), where J , such that J ∩ I = ∅, is the set of the remaining p entries that
are not necessarily equal and are not part of ~a′. We can now apply Corollary 3.22, getting sensitivity∑

i∈I∪J ci =
∑

i∈I ci +
∑

j∈J c j. In general, we do not know which J exactly will be taken for these
particular ~x and ~x′, but in any case |J| = min(n− |I|, p) ≤ p, and p ·maxi∈[n]\I(ci) is a valid upper bound
for

∑
j∈J c j. �

Corollary 3.27 (B-sensitivity w.r.t. component). Let mapping f : X → Y be ci B-sensitive w.r.t. the
component ρi for all i ∈ {1, . . . , n}. Let ρ̂ :=

�
i∈I ρ̂i. For all X̂1, X̂2 ∈ X̂/ρ̂ we have

∀ ~x1 ∈ X̂1, ~x2 ∈ X̂2 : ~x1
X̂2
≈ ~x2 ∧ ~x1

X̂2
∼ ~x2 =⇒ dY ( f ( ~x1), f ( ~x2)) ≤

p · max
i∈[n]\I

(ci) +
∑
i∈I

ci

 · d̃X(X̂1, X̂2) .
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Proof. As in the proof of Prop. 3.26, we have ~x1

X(ai)i∈I∪(x′j) j∈J
∼ ~x2. By Prop. 3.20, any composite compo-

nent
�

i∈I ρi is equidistant, so dX(~x, ~x′) = d̃X(X(ai)i∈I∪(x j) j∈J , X(a′i )i∈I∪(x′j) j∈J ), and we may apply Prop. 3.26,
getting the upper bound (p · maxi∈[n]\I(ci) +

∑
i∈I ci) · dX( ~x1, ~x2). Now, by Prop. 3.25, each composite

component ρ̂ :=
�

i∈I ρ̂i is also equidistant, and since ~x1
X̂2
∼ ~x2, we have dX( ~x1, ~x2) = d̃X(X̂1, X̂2). �

We note that the conditions ~x1
X̂2
≈ ~x2 and ~x1

X̂2
∼ ~x2 are in general not simultaneously satisfiable. It

may even happen than such ~x1 and ~x2 do not exist for some classes, since having similar coordinates
may be harmful for reducing the distance due to the constraints.

For C- and D-sensitivities, we could use the assumption ~X′1
X̂2
≈ ~X′2 instead of ~x1

X̂2
≈ ~x2. However,

when we reduce ~X′1
X̂2
≈ ~X′2 directly to ~X′1

X′
∼ ~X′2 for some set of vectors independent coordinates X′ ⊆ X,

it may happen that different pairs x1
X̂2
∼ x2 and x′1

X̂2
∼ x′2 have different similar components, and in the

worst case we will only be able to take X′ = X, which does not give any reasonable bounds. Adding
restrictions on X′1 and X′2, that similar components of different matching pairs should be located on the

same positions, would help. In this case, the condition ~X′1
X̂2
≈ ~X′2 ∧

~X′1
X̂2
∼ ~X′2 (needed for D-sensitivity)

would be even more difficult to achieve.

3.3.5.6 Adding Restrictions on Constraints. In this section, we see which results we can achieve if
we put some restrictions on A~x = ~b. Using Gaussian elimination, we may bring any underdetermined
full-rank system to the form A = A′|I, where I is an identity matrix, and A′ is some matrix of n − p
columns. Since I does not necessarily have to be on the right, and can be scattered among any p columns,
we may get different variants of A′. Let us consider the case when it is possible to obtain ||A′|| < 1, where
||A′|| is the induced matrix norm, i.e. ||A′|| = sup~x∈X̂

||A′~x||
||~x|| .

In this section, we consider `1 norm and subsets of components indexed by I ⊆ [n−p]. By properties
of the induced `1 norm, ||A|| := max j∈n

∑p
i=1 |ai j| for a p × n matrix A. Note that the norm of a matrix

does not change if we permute its columns in any way. Without loss of generality, we may assume
that I = [m] for m ≤ n − p, since the columns of A′ can be permuted arbitrarily without violating the
condition ||A′|| < 1.

Similarly to Sec. 3.3.5.5, we consider components of the form ρ̂ :=
�

i∈I ρ̂i, where ρ̂i is the analog
of ρi, defined over X̂. We use the same notation X̂(ai)i∈[m] for equivalence classes.

Lemma 3.28. Let I = [m], m ≤ n− p. Let ρ̂ =
�

i∈[m] ρ̂i, and X̂(ai)i∈[m] , X̂(a′i )i∈[m] ∈ X̂/ρ̂. Let ~x ∈ X̂ be such

that xi = ai for i ∈ [m], and A~x = ~b. Let ~x′ ∈ X̂ be such that ~x
X̂(a′i )i∈[m]
∼ ~x′, where distance is defined using

`1 norm. Let A = A1|A2, where A1 are the first m columns of A.
We can write ~x′ = ~x +~z, where ~z = ~z1|~z2, ~z1 = ~a′ − ~a, and ~z2 = ~0n−m−p|A1(~a − ~a′).

Proof. From Lemma 3.23, we get that ~x′ = ~x + ~z, where ~z = ~z1|~z2, ~z1 = (~a′ − ~a), and ~z2 is an optimal
solution to the task

minimize||~z2||, subject toA2 ~z2 = A1(~a − ~a′) . (12)

By assumption, we have A = A′|I, where A′ are the first n − p columns of A′, such that ||A′|| < 1.
Hence, we have A2 = A′′|I, where A′′ are the remaining n−m− p columns of A′ (if any). By definition
of the induced `1 norm, ||A|| := max j∈n

∑p
i=1 |ai j| for a p × n matrix A, so A′′ ≤ A′ since A′ has more

columns and, hence, more choices for the maximum. We propose that ~z2 = ~0n−m−p|A1(~a − ~a′), where
~0n−m−p is a vector of n − m − p zeroes, will be the optimal solution.

1. Substituting ~z2 with this value, we get A2 ~z2 = A′′ · ~0n−m−p + I · A1(~a − ~a′) = A1(~a − ~a′), so the
constraints are satisfied. In this case, ||z2|| = ||A1(~a − ~a′)||.

2. Let now ~z be an arbitrary vector that satisfies the constraints. We have ||A1(~a − ~a′)|| =

||A2 ~z2|| = ||A′′ ~z21 + I ~z22||. Using the triangle inequality and norm submultiplicativity, we get
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||A′′ ~z21 + I ~z22|| ≤ ||A′′ ~z21|| + ||I ~z22|| ≤ ||A′′|| · || ~z21|| + || ~z22|| ≤ || ~z21|| + || ~z22||. For `1 norm,
|| ~z21|| + || ~z22|| = || ~z21| ~z22|| = ||~z||.
Since we have a strict inequality ||A′′|| < 1, the last inequality in this chain is also strict whenever
|| ~z21|| , ~0, which holds for all ~z21 , ~0. In this way, any other solution is strictly worse than
~z2 = ~0n−m−p|A1(~a − ~a′). �

If we took ||A′|| ≤ 1 instead of ||A′|| < 1 in Lemma 3.28, we would still get that ~z2 =
~0n−m−p|A{m+1}(~a − ~a′) is an optimal solution, but there could possibly be some other optimal solutions
that are of different form. If solutions of different form were allowed, we would not always be able
construct a suitable mutual friend whose existence is required for the adjacent components.

Proposition 3.29. Let m ≤ n − p − 1. The components ρ̂ :=
�

i∈[m] ρ̂i and σ̂ := ρ̂m+1 are adjacent.

Proof. Let X̂(ai)i∈[m] , X̂(a′)i∈[m] ∈ X̂/ρ̂, and let X̂a, X̂a′ ∈ X̂/σ̂. Let ~x = (a1, . . . , am, a, xm+2, . . . , xn) ∈
X̂(a)i∈[m] ∩ X̂a and ~x′ = (a′1, . . . , a

′
m, a

′, xm+2, . . . , xn) ∈ X̂(a′)i∈[m] ∩ X̂a′m+1
. By definition of adjacent compo-

nents, their mutual friend should be some ~x′′ ∈ X̂(a′)i∈[m] ∩ X̂am+1 . Let ~a := (a1, . . . , am), ~a′ := (a′1, . . . , a
′
m),

~z := ~x′ − ~x. Denote ~a1 := A{1,...,m}(~a − ~a′), ~a2 := A{m+1}(a − a′), and A′ := A{m+2,...,n}.
The first m+1 coordinates of ~x′′ are in any case equal to (a′1, . . . , a

′
m, a), and we cannot choose them.

However, as far as m + 1 ≤ n− p, it is still possible to find x′′ ∈ X̂(a′)i∈[m] ∩ X̂am+1 that does not violate the
constraints (it is uniquely determined by constraints if m + 1 = n − p).

Let m + 1 ≤ n − p. By Lemma 3.28, the vector ~z is such, that ~z2 = ~0n−(m+1)−p|A{1,...,m+1}(~a|(a) −
~a′|(a′)) = ~0n−(m+1)−p|( ~a1 + ~a2). Let us now take ~x′′ = ~x + (~y1|~y2), where ~y2 = ~0n−(m+1)−p| ~a1. By

Lemma 3.28, ~x
X̂(a′)i∈[m]
∼ ~x′′. On the other hand, ||~z2 − ~y2|| = ~0n−(m+1)−p|( ~a1 + ~a2 − ~a1) = ~0n−(m+1)−p| ~a2.

Hence, by Lemma 3.28, also ~x′
X̂am+1
∼ ~x′′. �

Proposition 3.30. The components ρ̂ :=
�

i∈[m] ρ̂i and σ̂ := ρ̂m+1 are in general NOT expanding.

Proof. Let X̂(ai)i∈[m] , X̂(a′i )i∈[m] ∈ X̂/ρ̂, and let X̂a, X̂a′ ∈ X̂/σ̂. By Lemma 3.28, the distance between all
friends of the sets X̂(ai)i∈[m] and X̂(a′i )i∈[m] is ||A{1,...,m}(~a − ~a′)||. For the finer component ρ̂u σ̂, this distance
is ||A{m+1}(a − a′)||. In general, we do not know whether it is larger or smaller. It depends not only
on the constraints, but also on the particular classes that we consider, so we also cannot give sufficient
conditions for A that would make all components expanding. �

Similarly to vectors with independent components, the adjacent property allows us to apply A-
and C-sensitivity using Theorem 3.13 and Theorem 3.16. Although the components are not expanding,
since they are equidistant, we can also apply B- or D-sensitivity using Corollary 3.14 and Corollary 3.17.
However, the components are adjacent only as far as we compose up to n− p of them. After that, we may
no longer use the common friend since the corresponding component may be empty due to the violation
of constraints, and then we may only find the bounds as in Sec. 3.3.5.5.

3.3.5.7 Sensitivity of Function Composition. We want to know how sensitivity w.r.t. components
depends on function composition. Given functions f : X → Y and g : Y → Z, and a component ρ
of X and a component σ of Y , it may be too difficult to estimate the sensitivity of g ◦ f w.r.t. ρ if we
know only sensitivity of g w.r.t. σ, since f may map elements of X to very different classes of σ. If x
and x′ belong to different ρ-classes, it does not mean that f (x) and f (x′) belong to different σ classes,
unless we make σ dependent on ρ and f . Even in this case, we would require that f is injective to avoid
overlapping of σ classes. If we do not put any additional constraints on f , we will need to assume that
we know the general sensitivity of g (not w.r.t. some component).

Theorem 3.31. Let f : X → Y be c f sensitive w.r.t. component ρ. Let g : Y → Z be cg sensitive. Then,
the function composition g◦ f is c f · cg sensitive w.r.t. ρ, using any definition of sensitivity (A-,B-,C-,D-).
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Proof. We give the proof for different types of sensitivity of f . Let X1, X2 ∈ X/ρ.

1. Let x ∈ X1, x′ ∈ X2, x X2
∼ x′. If f is A-sensitive w.r.t. ρ, we have dY ( f (x), f (x′)) ≤ c f · dX(x, x′).

Since g is cg sensitive, we have dZ(g(y), g(y′)) ≤ cg · dY (y, y′) for all y, y′ ∈ Y , and hence also
for y = f (x), y′ = f (x′). Putting the two inequalities together, we get dZ(g f (x), g f (x′)) ≤ cg ·

dY ( f (x), f (x′)) ≤ cg · c f · dX(x, x′).

2. The proof is similar for B-sensitivity, using d̃X(X1, X2) instead of dX(x, x′).

3. If d̃Y (·, ·) is Hausdorff distance, then by Theorem 3.12, C-sensitivity is equivalent to A-sensitivity,
and the composition is reduced to composition of A-sensitivity. Let d̃Y (·, ·) be max-distance. Let
X′1 ⊆ X1, X′2 ⊆ X2 be two friendly sets. Denote Y1 := f (X′1), Y2 := f (X′2). Let y1 ∈ Y1 and y2 ∈ Y2

be such that g(y1) g(Y2)
∼ g(y2) and d̃Z(g(Y1), g(Y2)) = dZ(g(y1), g(y2)). Since g is cg sensitive, we

have d̃Z(g(Y1), g(Y2)) = dZ(g(y1), g(y2)) ≤ cg · dY (y1, y2).
Since d̃Y (·, ·) is max-distance, dY (y1, y2) ≤ d̃Y (Y1,Y2). Putting it together with d̃Y ( f (X′1), f (X′2)) ≤
c f · d̃X(X′1, X

′
2), we get d̃Z(g f (X′1), g f (X′2)) ≤ cg · c f · d̃X(X′1, X

′
2).

4. The proof is similar for D-sensitivity, using d̃X(X1, X2) instead of d̃X(X′1, X
′
2). �

3.3.6 Categorical View of Sensitivity and Distances. Sec. 3.3.5 shows the need to talk about sensi-
tivities of multivariate mappings with respect to a certain argument. We can foresee the need to argue
about sensitivities with respect to certain combinations of inputs, and even not knowing precisely which
sensitivities are needed in compositions. To keep track of the sensitivities of the workflow components
with respect to their different inputs and outputs, we have to add more structure to both distances and
sensitivities themselves.

3.3.6.1 Generalized Distances and Sensitivities.

Definition 3.28 (Set of distances). A set V with the following additional algebraic structure is a suitable
set of distances:
• V is a commutative monoid, i.e. there is an operation + : V × V → V and an element 0 ∈ V , such

that

– (u + v) + w = u + (v + w) for all u, v,w ∈ V;
– u + v = v + u for all u, v ∈ V;
– u + 0 = u for all u ∈ V .

• V is a partial order, i.e. there is a relation ≤⊆ V × V , such that

– u ≤ u for all u ∈ V;
– if u ≤ v and v ≤ u then u = v for all u, v ∈ V;
– u ≤ v and v ≤ w imply u ≤ w for all u, v,w ∈ V .

• Addition and order are compatible in the sense that 0 is the least element and all other elements
may be considered “positive”. Formally,

– 0 ≤ u for all u ∈ V;
– If u ≤ v then u + w ≤ v + w for all u, v,w ∈ V .

Obviously, R+ with addition and ordering satisfies this definition. For any n, the set of n-tuples Rn
+

also satisfies it, if both addition and ordering are defined componentwise. We expect to such distances
with several components to have a number of uses. We use the set of distances for generalizing the
notion of a metric space.

Definition 3.29 (Generalized metric space). A generalized metric space is a triple (X, dX ,VX), where X
is a set, VX is a set of distances, and the metric dX : X × X → VX satisfies
• for all x, y ∈ X, dX(x, y) = 0 iff x = y;
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• for all x, y ∈ X, dX(x, y) = dX(y, x);

• for all x, y, z ∈ Z, dX(x, z) ≤ dX(x, y) + dX(y, z).

We see that this definition coincides with Def. 3.1, except that we are using an arbitrary set of
distances VX instead of R+. The sensitivities of mappings are also generalized. In the following, let
VX

m
→ VY denote the set of order-preserving functions from VX to VY .

Definition 3.30 (Generalized sensitivity). Let (X, dX ,VX) and (Y, dY ,VY ) be generalized metric spaces.
Let f : X → Y and c : VX

m
→ VY . We say that the sensitivity of f is (at most) c if for all x, x′ ∈ X,

dY ( f (x), f (x′)) ≤ c(dX(x, x′)).

Def. 3.30 indeed generalizes Def. 3.5. Let c0 ∈ R+ be the (ordinary) sensitivity of some mapping
f : X → Y between (ordinary) metric spaces X and Y with distances dX and dY . If we consider them
as generalized metric spaces (X, dX ,R+) and (Y, dY ,R+), then the sensitivity of f is c : R+ → R+, where
c(v) = c0 · v for all v ∈ R+.

Proposition 3.1 can be generalized:

Proposition 3.32. Let (X, dX ,VX), (Y, dY ,VY ) and (Z, dZ ,VZ) be generalized metric spaces. Let f : X →
Y have the sensitivity c and f ′ : Y → Z the sensitivity c′. Then Then f ′ ◦ f : X → Z has sensitivity c′ ◦ c.

Proof. Let x, x′ ∈ X. Then

dZ( f ′( f (x)), f ′( f (x′))) ≤ c′(dY ( f (x), f (x′))) ≤ c′(c(dX(x, x′))) . �

In the next section we will see that the generalizations of both Prop. 3.3 and Prop. 3.4 are easy
consequences of Prop. 3.32.

For the rest of this section, we make the following notational convention. We will denote generalized
metric spaces with capital letters: X, Y , Z, etc. For a generalized metric space X, we let Carr(X) denote
the “carrier set”, i.e. the first component of X, SoD(X) the set of distances used in X, and dX the metric,
mapping pairs of elements of Carr(X) to SoD(X).

Before moving on to constructions of generalized metric spaces with more structure, let us mention
a quite trivial one. Let X and X′ be generalized metric spaces, such that Carr(X) = Carr(X′). Let X′′ be
defined by
• Carr(X′′) = Carr(X);

• SoD(X′′) = SoD(X) × SoD(X′), where addition and order are defined componentwise;

• dX′′(x1, x2) = (dX(x1, x2), dX′(x1, x2)).
Then X′′ is also a generalized metric space. Its metric captures the information present in the metrics of
both X and X′.

Generalized distances and metric spaces have been studied in the past, even though the goals have
been different. It turns out that any topology over a set arises from a generalized metric over it [51]. This
is not the case for ordinary metrics.

3.3.6.2 Limits of Generalized Metric Spaces. Limits in categories are certain unique (up to isomor-
phism) objects, through which certain arrows factorize. They generalize products, as well as inductive
datatypes. We start with perhaps the simplest construction of a more complex generalized metric space
from simpler ones.

Proposition 3.33. Let X and Y be generalized metric spaces. Then

X × Y := (Carr(X) × Carr(Y), dX×Y ,SoD(X) × SoD(Y))

is also a generalized metric space, where the ordering and addition on SoD(X) × SoD(Y) is defined
componentwise, and dX×Y ((x1, y1), (x2, y2)) = (dX(x1, x2), dY (y1, y2)) for all x1, x2 ∈ Carr(X) and y1, y2 ∈

Carr(Y).
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Proof. We have to verify that SoD(X) × SoD(Y) is a set of distances and dX×Y is a metric. Both checks
are trivial, following directly from the definitions. �

This simple way of building a product generalized metric space would not have been available if we
had considered only ordinary metrics. Proposition 3.33 presents the “correct” way of defining products
in the following sense. Consider the category GM, defined as follows:
• The objects of GM are generalized metric spaces.

• An arrow f from a generalized metric space X to a generalized metric space Y is a pair (k, c),
where k : Carr(X) → Carr(Y), c : SoD(X)

m
→ SoD(Y), and k is c-sensitive. We denote the

components of an arrow f = (k, c) by f[ f ] and c[ f ].
For each object, there exists an identity arrow: the identity map together with identity sensitivity. The
composition of arrows is defined componentwise; according to Prop. 3.32, this again gives us an arrow.
The category axioms are obviously satisfied.

Proposition 3.34. The category GM has products, they generalize the binary product construction given
in Prop. 3.33. In more details: for an index set I, and a set of generalized metric spaces (Xi)i∈I , there
exists a generalized metric space Y, together with arrows πi : Y → Xi for all i ∈ I, such that for any
generalized metric space Z together with arrows fi : Z → Xi there exists exactly one arrow g : Z → Y,
such that fi = πi ◦ g.

Proof. Let Carr(Y) =
∏

i∈I Carr(Xi), SoD(Y) =
∏

i∈I SoD(Xi) and dY ((xi)i∈I , (x′i)i∈I) = (dXi(xi, x′i))i∈I ,
where

∏
denotes the Cartesian product of sets. Define f[π j]((xi)i∈I) = x j and c[π j]((vi)i∈I) = v j, where

xi ∈ Carr(Xi) and vi ∈ SoD(Xi).
For the given generalized metric space Z and arrows fi, define f[g](z) = (f[ fi](z))i∈I ∈ Carr(Y) and

c[g](v) = (c[ fi](v))i∈I ∈ SoD(Y). Clearly, fi = πi ◦ g. For any other g′, some of these equalities must not
hold. Indeed, if there is some j ∈ I, such that for some z ∈ Carr(Z) we have f[g](z) and f[g′](z) differing
in j-th component, or for some v ∈ SoD(Z) we have c[g](v) and c[g′](v) differing in the j-th component,
then f j , π j ◦ g′. �

Typically, Y is denoted by
∏

i∈I Xi and g by 〈 fi〉i∈I . For arrows f : X → Y and f ′ : X′ → Y ′, one
denotes f × f ′ := 〈 f ◦ π1, f ′ ◦ π2〉 : X × X′ → Y × Y ′, where π1 : X × X′ → X and π2 : X × X′ → X′ are
given by the product construction.

We can now state the generalizations of Prop. 3.3 and Prop. 3.4.

Proposition 3.35. Let X,Y,Z,W be generalized metric spaces. Consider the arrows f : X → Y, a : Y →
Z, g : X × Z → W. Then there exists an arrow h : X → W with f[h](x) = f[g](x, f[a](f[ f ](x)) for all
x ∈ Carr(X) and c[h](v) = c[g](v, c[a](c[ f ](v))) for all v ∈ SoD(X).

Proof. Take h = g ◦ (idX × (a ◦ f )). �

Prop. 3.35 is specialized to Prop. 3.3 by taking SoD(X) = SoD(Y) = SoD(Z) = SoD(W) = R+,
c[ f ](v) = c · v, c[a](v) = v, and c[g](v, v′) = c′ · v + v′ for all v, v′ ∈ R+.

Prop. 3.4 does not simplify that much when going to generalized metric spaces. Nevertheless, we
can state it as follows. Given a partially ordered set V and a subset V ′ ⊆ V , we let UB{V ′} ⊆ V denote
the set of all upper bounds of V ′: elements that are greater or equal to all elements of V ′. A mapping c
between sets of distances is superadditive if c(v1 + v2) ≥ c(v1) + c(v2) for all v1, v2 in the domain of c.

Proposition 3.36. Let X,Y,Z,W, f , a, g be as in Prop. 3.35. Let ρ and σ be equivalence relations on X
that are independent. Let x ρ x′ imply f[ f ](x) = f[ f ](x′), and x σ x′ imply f[g](x, z) = f[g](x′, z) for all
x, x′ ∈ Carr(X) and z ∈ Carr(Z). Let c : SoD(X)

m
→ SoD(W) be any mapping that satisfies the following

conditions:
• for all v ∈ SoD(X), c(v) ∈ UB{c[g](v, 0), c[g](0, c[a](c[ f ](v)))};

• c is superadditive.
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Then there exists an arrow h : X → W with f[h](x) = f[g](x, f[a](f[ f ](x)) for all x ∈ Carr(X) and
c[h] = c.

Proof. Let x, x′ ∈ Carr(X). Let m and x0, . . . , x2m be given by the definition of independence of ρ and
σ. Similarly to the proof of Prop. 3.4, we get

dW(f[h](x), f[h](x′)) ≤ m∑
i=1

dW(f[g](x2i−2, f[a](f[ f ](x2i−2))), f[g](x2i−1, f[a](f[ f ](x2i−2))))

 + m∑
i=1

dW(f[g](x2i, f[a](f[ f ](x2i−1))), f[g](x2i, f[a](f[ f ](x2i))))

 .

Let vi = dX(xi−1, xi). We have

dW(f[g](x2i−2, f[a](f[ f ](x2i−2))), f[g](x2i−1, f[a](f[ f ](x2i−2)))) ≤ c[g](v2i−1, 0) ≤ c(v2i−1)

dW(f[g](x2i, f[a](f[ f ](x2i−1))), f[g](x2i, f[a](f[ f ](x2i)))) ≤ c[g](0, c[a](c[ f ](v2i))) ≤ c(v2i)

By superadditivity of c,

dW(f[h](x), f[h](x′)) ≤
2m∑
i=1

c(vi) ≤ c(
2m∑
i=1

vi) = c(dX(x, x′)) . �

Products are one kind of limits. In order to have canonical methods for constructing complex data
structures, we are interested also in the existence of other limits. In particular, we are interested in the
existence of equalizers, because they, together with products, allow to construct all other limits. But as
we see below, GM does not have equalizers.

Definition 3.31 (Equalizer). Let C be a category, X,Y two objects in it, and f1, f2 : X → Y two arrows
between these objects. An equalizer of f1, f2 is an object Z in C, together with an arrow g : Z → X,
such that f1 ◦ g = f2 ◦ g. Moreover, for any object Z′ and arrow g′ : Z′ → X, if f1 ◦ g′ = f2 ◦ g′, then
there exists a unique arrow h : Z′ → Z, such that g′ = g ◦ h.

Consider now the category GM, two generalized metric spaces X and Y , and two arrows f1, f2
between them. An equalizer g : Z → X has to “make equal” both f[ f1] and f[ f2], as well as c[ f1] and
c[ f2]. It also has to be the largest among those that “make them equal”.

In the category of sets, an equalizer is the subset of X where f1 and f2 agree. In GM, we must have
agreement in both Carr(X) and SoD(X). Hence we must have

Carr(Z) ⊆ {x ∈ Carr(X) | f[ f1](x) = f[ f2](x)}

SoD(Z) ⊆ {v ∈ SoD(X) | c[ f1](v) = c[ f2](v)} .

Also, SoD(Z) has to be closed with respect to addition.
The following example demonstrates two arrows (with the same domain and codomain) in GM that

have no equalizer.

Example 3.4. Consider the following generalized metric spaces X and Y , as well as arrows f1, f2 : X →
Y:
• Carr(X) = {11, 12, 2, 3} and Carr(Y) = {1, 2, 3};

• SoD(X) = {0, 1, 2, 3}, where ordering is defined by 0 ≤ 1 ≤ 2 ≤ 3 and addition is defined by
0 + v = v, and u + v = 3 if u , 0 , v;

• SoD(Y) = {0, A, B,C1,C2,D}, where 0 ≤ A ≤ B ≤ C1 ≤ D, B ≤ C2 ≤ D and the addition is given
by the table below.
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• dX and dY are given by the tables below.

• f[ f1] = f[ f2] = {11 7→ 1, 12 7→ 1, 2 7→ 2, 3 7→ 3}

• c[ f1] and c[ f2] are given in the tables below.

+ A B C1 C2 D
A B D D D D
B D D D D D

C1 D D D D D
C2 D D D D D
D D D D D D

dX 11 12 2 3
11 0 1 1 2
12 1 0 1 2
2 1 1 0 1
3 2 2 1 0

v 0 1 2 3
c[ f1](v) 0 A C1 D

dY 1 2 3
1 0 A B
2 A 0 A
3 B A 0

v 0 1 2 3
c[ f2](v) 0 A C2 D

If Z and g were an equalizer for f1, f2, then Carr(Z) ⊆ {11, 12, 2, 3} and SoD(Z) ⊆ {0, 1, 3}, while
both f[g] and c[g] are identity mappings. Taking Carr(Z) = {11, 12, 2} and SoD(Z) = {0, 1, 3} would
“make f1 and f2 equal”. Alternatively, taking Carr(Z) = {2, 3} and SoD(Z) = {0, 1, 3} would “make f1
and f2 equal”. But these two options are not isomorphic and there is no option that is larger than both of
them.

3.3.6.3 Colimits of Generalized Metric Spaces. Sums are dual for products, and necessary for defin-
ing more complex algebraic data structures. A natural definition for binary sums is given by the follow-
ing proposition.

Proposition 3.37. Let X and Y be generalized metric spaces. Define Z as follows:

• Carr(Z) = Carr(X) ] Carr(Y), where ] denotes the disjoint union, typically defined as A ] B =

({0} × A) ∪ ({1} × B).

• SoD(Z) = {0,∞} ] (SoD(X)\{0}) ] (SoD(Y)\{0}), with the order and addition defined as follows:

– 0 is the smallest and∞ the largest element. For v1, v2 ∈ SoD(X)\{0} [resp. SoD(Y)\{0}], the
ordering is the same as in SoD(X) [resp. SoD(Y)]. If v1 ∈ SoD(X)\{0} and v2 ∈ SoD(Y)\{0},
then v1 and v2 are incomparable.

– v + 0 = v and v +∞ = ∞ for all v ∈ SoD(Z). If v1 and v2 both belong to either SoD(X) or
SoD(Y), then they are added as in this set. If v1 ∈ SoD(X)\{0} and v2 ∈ SoD(Y)\{0}, then
v1 + v2 = ∞.

• For x1, x2 ∈ Carr(X), dZ(x1, x2) = dX(x1, x2). Similarly, dZ(y1, y2) = dY (y1, y2) for y1, y2 ∈

Carr(Y). If x ∈ Carr(X) and y ∈ Carr(Y), then dZ(x, y) = ∞.

Then Z is a generalized metric space.

Proof. Similarly to the proof of Prop. 3.33, we have to check that SoD(Z) is a set of distances and dZ is
a metric. Both checks are trivial. �

We denote Z by X + Y . Unfortunately, X + Y is not the coproduct of X and Y in the category GM.
For (Z, ι1, ι2), where ι1 : X → Z and ι2 : Y → Z, to be the coproduct of X and Y , there must exist a
unique arrow g : Z → W for any generalized metric space W and arrows f1 : X → W and f2 : Y → W,
such that f1 = g ◦ ι1 and f2 = g ◦ ι2. Our construction does not fix the value of c[g](∞) in any way,
or even guarantee its existence. Hence, depending on (W, f1, f2), the arrow g might not exist at all, or it
might not be unique.

We can get back the coproducts if we put extra restrictions on distances and sensitivities. Namely,
let GM∞

0 be a subcategory of GM containing only such objects and arrows, where

• the sets of distances contain the largest element (denoted∞);

• the sensitivities preserve both 0 and∞.
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Note that GM∞
0 is closed with respect to products. In GM∞

0 , we can define the set of distances of the
sum as the disjoint union of the sets of distances of the components, where we do not duplicate the
distances 0 and∞.

Having sums and products, we can define more complex data structures in GM∞
0 , automatically

obtaining a canonical set of distances for it. E.g. for a generalized metric space X we can define the
generalized metric space List(X) with the following underlying set and the following set of distances:
• Carr(List(X)) = Carr(X)∗;

• SoD(List(X)) = {0,∞} ]
(
SoD(X)∗\(0∗ ∪∞∗)

)
.

However, the resulting distance dList(X) is not particularly interesting. If two lists of elements of Carr(X)
have the same length n, then their distance is defined componentwise, being an element of SoD(X)n

(with 0n being identified with the least element 0). If the lists have different lengths, then their distance
is∞.

We saw that the category GM had no equalizers. Interestingly, it has coequalizers. The subcategory
GM∞

0 is closed with respect to the construction we give below, meaning that GM∞
0 has both coproducts

and colimits. Hence GM∞
0 is cocomplete — it has all colimits. It remains to be seen what implications

this has with respect to the existence of natural definitions of different kinds of algebraic data structures.

Definition 3.32 (Coequalizer). Let C be a category, X,Y two objects in it, and f1, f2 : X → Y two arrows
between these objects. A coequalizer of f1, f2 is an object Z in C, together with an arrow g : Y → Z,
such that g ◦ f1 = g ◦ f2. Moreover, for any object Z′ and arrow g′ : Y → Z′, if g′ ◦ f1 = g′ ◦ f2, then
there exists a unique arrow h : Z → Z′, such that g′ = h ◦ g.

In the category of sets, the equalizer is a factor set of Y , namely Z = Y/ρ, where ρ is the finest
equivalence relation that relates f (x), g(x) for all x ∈ X. In the category GM, a coequalizer needs to
make equal not only f[ f1] and f[ f2], but also c[ f1] and c[ f2]. To show how this is possible, let us discuss
congruences (i.e. structure-preserving equivalences) on sets of distances.

Definition 3.33 (Congruence on a set of distances). Let V be a set of distances. We say that σ ⊆ V × V
is a congruence on V , if
• σ is an equivalence relation, i.e. it is reflexive, symmetric and transitive;

• σ is a congruence on the commutative monoid (V,+, 0), i.e. x σ y and w σ z imply x + w σ y + z;

• σ preserves ordering, meaning that for any v0, v1, . . . , v2m satisfying

v0 ≤ v1 σ v2 ≤ v3 σ v4 ≤ · · · σ v2m = v0, (13)

the relations vi σ v j hold for any i, j ∈ {0, . . . , 2m}.

Proposition 3.38. Let V be a set of distances and σ a congruence on it. Let V/σ = {[v]σ | v ∈ V}, where
[v]σ = {u ∈ V | u σ v}. Define the following algebraic structure on V/σ:
• Addition: [u]σ + [v]σ = [u + v]σ;

• Ordering: [u]σ ≤ [v]σ iff there exist u0, v0, . . . , um, vm ∈ V, such that

u σ u0 ≤ v0 σ u1 ≤ v1 σ u2 ≤ v2 σ · · · ≤ vm σ v; (14)

Then V/σ is a set of distances.

Proof. We have to verify a number of things. First: V/σ is a commutative monoid. This follows from σ

being a congruence on (V,+, 0).
Second, V/σ is a partially ordered set. Reflexivity of ≤ is immediate. Transitivity is an easy con-

sequence of (14). Consider whether ≤ is antisymmetric. Suppose [u]σ ≤ [v]σ and [v]σ ≤ [u]σ. By the
definition of ordering, there exist u0, v0, . . . , um, vm and v′0, u

′
0, . . . , v

′
n, u
′
n, such that

u σ u0 ≤ v0 σ u1 ≤ v1 σ · · · ≤ vm σ v σ v′1 ≤ u′1 σ v′2 ≤ u′2 σ · · · ≤ u′n σ u .

99
Approved for Public Release; Distribution Unlimited. 



By the order-preservation of σ we obtain u σ v and hence [u]σ = [v]σ.
Third, addition and ordering are compatible. We have [0]σ ≤ [v]σ because 0 ≤ v. Suppose [u]σ ≤

[v]σ and w ∈ V . The relation (14), together with σ being a monoid congruence and the compatibility of
addition and ordering on V implies

u + w σ u0 + w ≤ v0 + w σ u1 + w ≤ v1 + w σ u2 + w ≤ v2 + w σ · · · ≤ vm + w σ v + w,

hence [u + w]σ ≤ [v + w]σ. �

For equivalences over sets, there exists the smallest equivalence relation that relates certain pairs
of values. It turns out that for congruences over distances, the situation is similar. Namely, if σi are
congruences on a set of distances V , where i ∈ I for some index set I, then σ =

⋂
i∈I σi is also a

congruence on V . Clearly, σ is an equivalence relation and a congruence on the commutative monoid
(V,+, 0). Also, if σ preserves ordering, i.e. (13) holds for σ, then it also holds for each σi, hence all
v j-s are related by each σi, hence they are also related by σ. Now, given pairs {(u j, v j)} j∈J , the smallest
congruence σ on V that satisfies u j σ v j for each j ∈ J, is simply the intersection of all congruences that
satisfy these requirements.

In the following, given U ⊆ V × V , let cl U denote the smallest equivalence relation (if V is an
arbitrary set) or the smallest congruence (if V is a set of distances) that contains U. We can now describe
the coequalizers.

Proposition 3.39. The categories GM and GM∞
0 have coequalizers.

Proof. Let X,Y be two generalized metric spaces and f1, f2 : X → Y two arrows. Define the equivalence
relations ρ over Carr(Y) and σ over SoD(Y) as follows:

ρ = cl {(f[ f1](x), f[ f2](x)) | x ∈ Carr(X)}

σ = cl
(
{(c[ f1](u), c[ f2](u)) | u ∈ SoD(X)} ∪ {(dY (y1, y2), dY (y′1, y

′
2)) | y1 ρ y′1, y2 ρ y′2}

)
. (15)

Construct a generalized metric space Z as follows:

Carr(Z) = Carr(Y)/ρ

SoD(Z) = SoD(Y)/σ

dZ([y1]ρ, [y2]ρ) = [dY (y1, y2)]σ .

The metric dZ is well-defined because dY (y1, y2) σ dY (y′1, y
′
2) whenever y1 ρ y′1 and y2 ρ y′2.

Let g : Y → Z be such, that f[g] is the natural projection from Carr(Y) to Carr(Y)/ρ, and c[g] is the
natural projection from SoD(Y) to SoD(Y)/σ. Then clearly g ◦ f1 = g ◦ f2 due to the definition of ρ and
σ.

Suppose that there is an arrow g′Y → Z′, such that g′ ◦ f1 = g′ ◦ f2. We can then factor it through g.
Define h : Z → Z′ as follows:

f[h]([y]ρ) = f[g′](y)

c[h]([v]σ) = c[g′](v) .

Then both f[h] and c[h] are well-defined. Indeed, if there exist y ρ y′, such that f[g′](y) , f[g′](y′), then
by definition of ρ there must exist y0, . . . , yn, such that y = y0, yn = y′ and for each i ∈ {1, . . . , n} there
exists some xi ∈ Carr(X), such that {yi−1, yi} = { f1(xi), f2(xi)}. For some i, f[g](yi−1) , f[g](yi) and hence
also f[g ◦ f1](xi) , f[g ◦ f2](xi).

Consider the kernel of c[g′]; it is a congruence on the set of distances SoD(Y). Clearly, it must
contain all pairs named in (15). Hence the kernel is a superset of σ and there are no v σ v′, such that
c[g′](v) , c[g′](v′).

For any other h′ : Z → Z′, we have h′ ◦ g , h ◦ g, because f[g] and c[g] are both onto. Hence h is
unique and Z, g are a coequalizer.

Finally note that in category GM∞
0 , the given construction gives us arrows that preserve the distances

0 and∞. Hence we get coequalizers also in GM∞
0 . �
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3.3.6.4 Earth Mover’s Distance for Probability Distributions. To analyze workflows, we have to
understand two things: what happens with distances and sensitivities when we form products, and what
happens with then when we form probability distributions. Products have been discussed previously, let
us now discuss probabilities.

Let A be an (ordinary) metric space with dA being the metric on it. Intuitively, the distance dA is
generalized to distributions D(A) by first thinking about a probability distribution as “dirt” piled over
A, with the probability of any particular a ∈ A showing how much dirt has been put on top of it. The
distance between two probability distributions indicates the minimum effort it takes to turn the first pile
into the second by moving the dirt around on top of elements of A. Formally:

Proposition 3.40 (Earth mover’s distance). Let dA : A × A → R+ be a metric on the set A. Define
d̂A : D(A) ×D(A)→ R+ as follows:

d̂A(χ1, χ2) = inf{
∑

a1,a2∈A

ψ(a1, a2) · dA(a1, a2) |ψ ∈ χ1 � χ2} . (16)

Then d̂A is a metric onD(A).

Here ψ can be seen as the “plan for moving the dirt from” in order to make one pile similar to the
other one.

Proof. We have to show that d̂A satisfies the axioms of the metric. First, if χ1 = χ2 then d̂A(χ1, χ2) = 0,
because then the distribution

ψ(a1, a2) =

χ(a1), ifa1 = a2

0, ifa1 , a2

belongs to χ1�χ2 and all summands in the sum in (16) are 0. Vice versa, if χ1 , χ2 then any ψ ∈ χ1�χ2
must put non-zero weight on some pair (a1, a2), where a1 , a2.

Second, d̂A is obviously symmetric, because dA is symmetric.
Third, d̂A satisfies the triangle inequality. For any ψ ∈ D(A × A), let D(ψ) =

∑
a1,a2 ψ(a1, a2) ·

dA(a1, a2), where the summation is over all pairs of elements of A. We have defined d̂A(χ1, χ2) as the
infimum of D(ψ) over all ψ ∈ χ1 � χ2. Let now χ1, χ2, χ3 ∈ D(A). Let ψ1 ∈ χ1 � χ2 and ψ2 ∈ χ2 � χ3.
Define ψ3 ∈ D(A × A) by ψ3(a1, a3) =

∑
a2∈A ψ1(a1, a2) · ψ2(a2, a3)/χ2(a2). Then ψ3 is a probability

distribution. Indeed, ψ3(a1, a3) ≥ 0 for all a1, a3 ∈ A and

∑
a1,a3

ψ3(a1, a3) =
∑

a1,a2,a3

ψ1(a1, a2) · ψ2(a2, a3)
χ2(a2)

=
∑
a1,a2

ψ1(a1, a2)
χ2(a2)

·
∑
a3

ψ2(a2, a3) =

∑
a1,a2

ψ1(a1, a2)
χ2(a2)

· χ2(a2) =
∑
a1,a2

ψ1(a1, a2) = 1 .

Moreover we have∑
a1

ψ3(a1, a3) =
∑
a1,a2

ψ1(a1, a2) · ψ2(a2, a3)
χ2(a2)

=
∑
a2

ψ2(a2, a3)
χ2(a2)

·
∑
a1

ψ1(a1, a2) =
∑
a2

ψ2(a2, a3) = χ3(a3)

and similarly
∑

a3 ψ3(a1, a3) = χ1(a3). Hence ψ3 ∈ χ1 � χ3 and d̂A(χ1, χ3) ≤ D(ψ3). The latter can be
bounded as

D(ψ3) =
∑

a1,a2,a3

ψ1(a1, a2) · ψ2(a2, a3)
χ2(a2)

· dA(a1, a3) ≤

∑
a1,a2,a3

ψ1(a1, a2) · ψ2(a2, a3)
χ2(a2)

· dA(a1, a2) +
∑

a1,a2,a3

ψ1(a1, a2) · ψ2(a2, a3)
χ2(a2)

· dA(a2, a3)
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Here the first sum is equal to∑
a1,a2

ψ1(a1, a2)
χ2(a2)

· dA(a1, a2) ·
∑
a3

ψ2(a2, a3) =
∑
a1,a2

ψ1(a1, a2) · dA(a1, a2) = D(ψ1)

and similarly the second sum is equal to D(ψ2). We have D(ψ3) ≤ D(ψ1) + D(ψ2) and by taking the
infima of all three D(· · · )-s, we obtain the triangle inequality for d̂A. �

It is possible to generalize earth mover’s distance to generalized metric spaces, but only if the sets
of distances have some extra structure. We need to be able to multiply the distances with non-negative
real numbers; this multiplication has to satisfy certain axioms, similar to axioms of vector spaces.

Definition 3.34 (Distances with multiples). Let V be a set of distances. We say that V has multiples,
if there exists an operation · : R+ × V → V , satisfying the following equalities for all a, b ∈ R+ and
u, v ∈ V:

a · (b · v) = (ab) · v a · (u + v) = a · u + a · v

0 · v = 0 (a + b) · v = a · v + b · v

1 · v = v u ≤ v⇒ a · u ≤ a · v .

Note that the axioms also imply a ·v ≤ b ·v if a ≤ b. Indeed, we have a ·v = a ·v+0 ≤ a ·v+(b−a) ·v =

b · v.
For a partially ordered set V , let F (V) denote the set of all upwards closed subsets of V . I.e. U ⊆ V

is an element of F (V) if u ∈ U and u ≤ v imply v ∈ U for all u, v ∈ V . For an arbitrary U ⊆ V we let ↑U
denote the upwards closure of U, i.e. the smallest upwards closed set that contains U as a subset.

If V is a set of distances, then we can also define the structure of a set of distances on F (V). Namely,
for U1,U2 ∈ F (V), we define
• U1 + U2 = ↑{v1 + v2 | v1 ∈ U1, v2 ∈ U2};

• U1 ≤ U2 iff U2 ⊆ U1;

• 0F (V) = ↑{0} = V .
It is straightforward to verify that the axioms of a set of distances (Def. 3.28) hold. Also, if V has
multiplies, then F (V) has multiplies, too, defined simply by a · U = ↑{c · v | v ∈ U}.

Proposition 3.41 (Generalized earth mover’s distance). Let X be a generalized metric space, such that
SoD(X) has multiples. Then Y, defined as follows, is also a generalized metric space.
• Carr(Y) = D(Carr(X));

• SoD(Y) = F (SoD(X));

• dY (χ1, χ2) = ↑{
∑

x,x′∈Carr(X) ψ(x, x′) · dX(x, x′) |ψ ∈ χ1 � χ2} for all χ1, χ2 ∈ D(Carr(X)).

Proof. We have to verify that the axioms of generalized metric spaces hold. This verification is similar
to the proof of Prop. 3.40. �

The notion that we have defined is indeed a generalization of earth mover’s distance. We get it back
if we require SoD(X) = R+. Note that F (R+) � R+.

In the rest of this section (Sec. 3.3.6.4) we are going to study how the Kleisli composition ◦Kl
interacts with sensitivities. For this purpose, we introduce the following notation:
• X,Y,Z are three sets;

• VX ,VY ,VZ are three sets of distances with multiples;

• dX , dY , dZ are generalized metrics on X, Y , Z, respectively, ranging over VX ,VY ,VZ;

• dD(Y) : D(Y) × D(Y) → F (VY ) and dD(Z) : D(Z) × D(Z) → F (VZ) are the generalized earth
mover’s distances built from dY and dZ .
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First we consider how the lifting of a mapping with D(·) affects its sensitivity. If c : VY
m
→ VZ

then we say that c is concave if
∑∞

i=1 λic(vi) ≤ c
(∑∞

i=1 λivi
)

for all λ1, λ2, . . . ∈ R+ and v1, v2, . . . ∈ VY

satisfying
∑∞

i=1 λi = 1. Note that concavity generalizes superadditivity.

Proposition 3.42. Let f : Y → Z be a mapping between two metric spaces and c : VY
m
→ VZ its

sensitivity, such that c is concave. Then the sensitivity of the mapping D( f ) : D(Y) → D(Z) is F (c) :
F (VY )→ F (VZ).

Before giving the proof, let us recall the meaning ofD( f ) and F (c). These mappings are given by

D( f )(χ) = {z 7→
∑

y∈ f −1(z)

χ)(y) | z ∈ Z}

F (c)(U) = ↑{c(v) | v ∈ U} .

Proof. Let χ, χ′ ∈ D(Y). Then

dD(Z)(D( f )(χ),D( f )(χ′)) = ↑{
∑

z,z′∈Z

ψ(z, z′) · dZ(z, z′) |ψ ∈ D( f )(χ) �D( f )(χ′)} =

↑{
∑

y,y′∈Y

ψ̄(y, y′) · dZ( f (y), f (y′)) | ψ̄ ∈ χ � χ′} ≤ ↑{
∑

y,y′∈Y

ψ̄(y, y′) · c(dY (y, y′)) | ψ̄ ∈ χ � χ′} ≤

↑{c
( ∑
y,y′∈Y

ψ̄(y, y′) · dY (y, y′)
)
| ψ̄ ∈ χ � χ′} = ↑{c(v) | v ∈ dD(Y)(χ, χ′)} = F (c)(dD(Y)(χ, χ′)) . �

We continue with studying the sensitivity of g ◦Kl f , where f : X → D(Y) and g : Y → D(Z). By
definition, g ◦Kl f = µ ◦D(g) ◦ f , where µ : D(D(Z))→ D(Z) is the monadic multiplication defined by

µ(Φ) = {z 7→
∑

χ∈D(Z)

Φ(χ) · χ(z) | z ∈ Z} .

Note that F (·) is also a monad and its monadic multiplication is
⋃

: F (F (V))→ F (V).

Proposition 3.43. The sensitivity of µ : D(D(Z))→ D(Z) is
⋃

: F (F (VZ))→ F (VZ).

Proof. Let Φ,Φ′ ∈ D(D(Z)). We have⋃
dD(D(Z))(Φ,Φ′) =

⋃
↑{

∑
χ,χ′∈D(Z)

Ψ(χ, χ′) · dD(Z)(χ, χ′) |Ψ ∈ Φ � Φ′} =⋃
↑{

∑
χ,χ′∈D(Z)

↑{
∑

z,z′∈Z

Ψ(χ, χ′) · ψ(z, z′) · dZ(z, z′) |ψ ∈ χ � χ′} |Ψ ∈ Φ � Φ′} (17)

and
dD(Z)(µ(Φ), µ(Φ′)) = ↑{

∑
z,z′∈Z

ψ(z, z′) · dZ(z, z′) |ψ ∈ µ(Φ) � µ(Φ′)} . (18)

Consider what it means for some v ∈ VZ to be an element of (17). There must exist some Ψ ∈ Φ � Φ′,
such that

v ∈
∑

χ,χ′∈D(Z)

↑{
∑

z,z′∈Z

Ψ(χ, χ′) · ψ(z, z′) · dZ(z, z′) |ψ ∈ χ � χ′} . (19)

This happens if for each χ, χ′ ∈ D(Z), we can pick an element from the set in (19), such that they sum
up into something less than or equal to v. Picking an element from this set is equivalent to picking a
suitable ψ. Hence we have that v is an element of (17), if there exists F : D(Z)2 → D(Z × Z), such that
F(χ, χ′) is an element of χ � χ′ for all χ, χ′ ∈ D(Z) and

v ≥
∑

χ,χ′∈D(Z)

∑
z,z′∈Z

Ψ(χ, χ′) · F(χ, χ′)(z, z′) · dZ(z, z′) (20)
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Given such Ψ and F, define ψ ∈ D(Z × Z) as follows:

ψ(z, z′) =
∑

χ,χ′∈D(Z)

Ψ(χ, χ′) · F(χ, χ′)(z, z′) .

This is indeed a probability distribution, as we can easily verify:∑
z,z′∈Z

ψ(z, z′) =
∑

χ,χ′∈D(Z)

Ψ(χ, χ′) ·
∑

z,z′∈Z

F(χ, χ′)(z, z′) =
∑

χ,χ′∈D(Z)

Ψ(χ, χ′) · 1 = 1 .

Consider now the first projection of ψ. Let z ∈ Z.∑
z′∈Z

ψ(z, z′) =
∑

χ,χ′∈D(Z)

Ψ(χ, χ′) ·
∑
z′∈Z

F(χ, χ′)(z, z′) =
∑

χ,χ′∈D(Z)

Ψ(χ, χ′) ·χ(z) =
∑

χ∈D(Z)

Φ(χ) ·χ(z) = µ(Φ)(z)

and symmetrically, the second projection of ψ is equal to µ(Φ′). Hence ψ ∈ µ(Φ) � µ(Φ′). Comparing
(18) and (20), we conclude that v is an element of (18).

Thus
⋃

dD(D(Z))(Φ,Φ′) ⊆ dD(Z)(µ(Φ), µ(Φ′)), i.e. dD(Z)(µ(Φ), µ(Φ′)) ≤
⋃

dD(D(Z))(Φ,Φ′) according
to the ordering on F (VZ). �

As a simple corollary of Prop. 3.32, Prop. 3.42 and Prop. 3.43 we now get:

Proposition 3.44. Let f : X → D(Y) and g : Y → D(Z) have sensitivities c : VX
m
→ F (VY ) and

c′ : VY
m
→ F (VZ), respectively, where c′ is concave. Then the sensitivity of g ◦Kl f is c′ ◦Kl c.

Proof. According to the propositions proved before, the sensitivity of g ◦Kl f is
⋃
◦F (c′) ◦ c, which is

the Kleisli composition of c and c′. �

We are left to investigate how the concavity and Kleisli composition interact.

Proposition 3.45. If c : VX
m
→ F (VY ) and c′ : VY

m
→ F (VZ) are concave, then c′ ◦Kl c : VX

m
→ F (VZ) is

also concave.

Proof. Indeed, let v1, v2, . . . ∈ VX , λ1, λ2, . . . ∈ R+,
∑∞

i=1 λi = 1. Denote C = c(
∑∞

i=1 λivi) and C′ =∑∞
i=1 λic(vi). By concavity of c, we have C ≥ C′ or C ⊆ C′. We get (recall that “⊆” is “≥”)

(c′ ◦Kl c)
( ∞∑

i=1

λivi
)

=
⋃
u∈C

c′(u) ⊆
⋃
u∈C′

c′(u) =
⋃

u1∈c(v1)

⋃
u2∈c(v2)

· · · c′
( ∞∑

i=1

λiui
)
⊆

⋃
u1∈c(v1)

⋃
u2∈c(v2)

· · ·

∞∑
i=1

λic′(ui) =

∞∑
i=1

λi

⋃
ui∈c(vi)

c′(ui) =

∞∑
i=1

λi(c′ ◦Kl c)(vi) . �

3.3.6.5 Set-of-Sets Distance for Probability Distributions. The simple statements of the results in
Sec. 3.3.6.4 show that earth mover’s distance is a natural extension of generalized metrics and sensi-
tivities to probability distributions. Unfortunately, the metrics (over probability distributions) relevant
for differential privacy are not earth mover’s distances. Intuitively, the earth mover’s distance character-
izes the “average” distance between two probability distributions, while differential privacy is concerned
with the “worst-case” distance.

For a partially ordered set V , let I(V) denote the set of all its downwards closed non-empty subsets.
For a probability distribution χ ∈ D(X), let supp χ ⊆ X denote its support, i.e. supp χ = {x ∈ X | χ(x) >
0}. If f : X → D(Y) is a mapping, then let f : D(X) → D(Y) denote its lifting to D(X); formally,
f = µ ◦ D( f ). The following proposition gives a suitable lifting of an arbitrary generalized metric to
probability distributions and its relation to differential privacy.
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Proposition 3.46 (Set-of-sets distance). Let (X, dX ,VX) be a generalized metric space. Then
(D(X), dD(X),F (I(VX))) is also a generalized metric space, where

dD(X)(χ1, χ2) = ↑{↓{dX(x, x′) | (x, x′) ∈ suppψ} |ψ ∈ χ1 � χ2}

for all χ1, χ2 ∈ D(X). Moreover, if f is a mapping from a generalized metric space (X, dX ,VX) to an
(ordinary) metric space (D(Y), ddp,R+) with the sensitivity ε : VX

m
→ R+, then the sensitivity of f is

E(V) = min
U∈V

max
v∈U

ε(v)

for allV ∈ F (I(VX)).

We see that compared to Prop. 3.41, we are now taking the set of all distances, instead of finding their
linear combination. Downwards closure corresponds to the ordering of such subsets for the purposes of
computing the sensitivity — we are only interested in the maximal elements of each such set. Similarly
to F (V), the set I(V) can also be given the structure of a set of distances, if V has it: addition is again
defined pointwise and 0I(V) = {0}. A bit differently, the ordering ≤ for I(V) coincides with the subset
relation ⊆.

Proof. It is straightforward to verify that dD(X) is a generalized metric; the proof follows along the lines
of the proof of Prop. 3.40. For investigating the sensitivity of f , let χ, χ′ ∈ D(X), ψ ∈ χ � χ′ and y ∈ Y .
Then

Pr[ f (χ) = y] =
∑
x∈X

χ(x) · Pr[ f (x) = y] =
∑

x,x′∈X

ψ(x, x′) · Pr[ f (x) = y] ≤∑
x,x′∈X

ψ(x, x′) · eε(dX(x,x′))Pr[ f (x′) = y] ≤
∑

x,x′∈X

ψ(x, x′) · emaxx∈suppψ(·,x′) ε(dX(x,x′))Pr[ f (x′) = y] =∑
x′∈X

χ′(x′) · emaxx∈suppψ(·,x′) ε(dX(x,x′))Pr[ f (x′) = y] ≤ emaxx,x′∈suppψ ε(dX(x,x′)) ·
∑
x′∈X

χ′(x′) · Pr[ f (x′) = y] =

emaxx,x′∈suppψ ε(dX(x,x′)) · Pr[ f (χ′) = y],

where suppψ(·, x′) denotes the set of all x ∈ X, such that ψ(x, x′) > 0. We obtain

ddp( f (χ), f (χ′)) = max
y∈Y

∣∣∣∣∣∣ln Pr[ f (χ′) = y]

Pr[ f (χ) = y]

∣∣∣∣∣∣ ≤ min
ψ∈χ�χ′

max
x,x′∈suppψ

ε(dX(x, x′)) = min
U∈dD(X)(χ,χ′)

max
v∈U

ε(v) . �

We can again show that the operations with probability distribution monad are matched in the set-of-
sets monad. There are analogues to Prop. 3.42, Prop. 3.43 and Prop. 3.44. Let X, Y , Z, VX , VY , VZ , dX ,
dY , dZ be as in Sec. 3.3.6.4. Let dD(Y) : D(Y)×D(Y)→ F (I(VY )) and dD(Z) : D(Z)×D(Z)→ F (I(VZ))
be set-of-sets distances onD(Y) andD(Z).

Proposition 3.47. Let f : Y → Z be a mapping between two metric spaces and c : VY
m
→ VZ its

sensitivity. Then the sensitivity of the mappingD( f ) : D(Y)→ D(Z) is F (I(c)).

Let U ∈ F (I(VY )). By definition,

F (I(c))(U) = ↑{↓{c(v) | v ∈ v} | v ∈ U} .

Proof. Let χ, χ′ ∈ D(Y). Then

dD(Z)(D( f )(χ),D( f )(χ′)) = ↑{↓{dZ(z, z′) | (z, z′) ∈ suppψ} |ψ ∈ D( f )(χ) �D( f )(χ′)} =

↑{↓{dZ( f (y), f (y′)) | (y, y′) ∈ suppψ◦} |ψ◦ ∈ χ � χ′} ≤ ↑{↓{c(dY (y, y′)) | (y, y′) ∈ suppψ◦} |ψ◦ ∈ χ � χ′} =

F (I(c))(↑{↓{dY (y, y′) | (y, y′) ∈ suppψ◦} |ψ◦ ∈ χ � χ′}) = F (I(c))(dD(Y)(χ, χ′)) . �
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Before studying the sensitivity of µ : D(D(Z)) → D(Z), let us discuss, what is the monadic multi-
plication for F (I(·)). It must map from F (I(F (I(VZ)))) to F (I(VZ)). For an arbitrary partially ordered
set V , consider the mapping δV : I(F (V))→ F (I(V)), defined as follows:

δV ({U1,U2, . . .}) = ↑{↓{v1, v2, . . .} | v1 ∈ U1, v2 ∈ U2, . . .}

Here U1,U2, . . . ∈ F (V). As the argument of δV is downwards closed, we have that if some Ui is an
element of this argument, then all supersets of Ui are also elements. We can think of the argument of
δV as a formal “maximum of minima”. The result of δV is a formal “minimum of maxima” that has the
same value. I.e. the elements of V are considered as uninterpreted values. We take the minimum of each
Ui; it is natural to consider the sets Ui upwards closed, because the minimum is not affected by extra
larger elements. We then take the maximum of all minima to obtain the argument to δV . In the result
of δV , we first take the maxima; these are taken over sets consisting of a single element from each Ui.
Finally, we take the minimum of the maxima of all such sets.

The monadic multiplication M : F (I(F (I(VZ))))→ F (I(VZ)) is

M = F (
⋃

) ◦
⋃
◦F (δI(VZ )) . (21)

Let us explain that construction. We have F (δI(VZ )) : F (I(F (I(VZ)))) → F (F (I(I(VZ)))), i.e. the
first step in the construction of M “swaps the two middle layers”. The following

⋃
collapses the two

F (·)-layers into one, and the final F (
⋃

) does the same with the two I(·)-layers.

Proposition 3.48. The sensitivity of µ : D(D(Z))→ D(Z) is M : F (I(F (I(VZ))))→ F (I(VZ)).

Proof. Let F be the following set of functions f : D(Z) ×D(Z)→ D(Z × Z):

F = { f : D(Z) ×D(Z)→ D(Z × Z) | ∀(χ, χ′) : f (χ, χ′) ∈ χ � χ′} .

Let Φ,Φ′ ∈ D(D(Z)). We have

M(dD(D(Z))(Φ,Φ′)) = M(↑{↓{dD(Z)(χ, χ′) | (χ, χ′) ∈ supp Ψ} |Ψ ∈ Φ � Φ′}) =

M(↑{↓{↑{↓{dZ(z, z′) | (z, z′) ∈ suppψ} |ψ ∈ χ � χ′} | (χ, χ′) ∈ supp Ψ} |Ψ ∈ Φ � Φ′}) =

(F (
⋃

) ◦
⋃

)
(
↑{↑{↓{↓{dZ(z, z′) | (z, z′) ∈ supp f (χ, χ′)} | (χ, χ′) ∈ supp Ψ} | f ∈ F} |Ψ ∈ Φ � Φ′}

)
=

↑{↓{dZ(z, z′) | (χ, χ′) ∈ supp Ψ, (z, z′) ∈ supp f (χ, χ′)} | f ∈ F,Ψ ∈ Φ � Φ′} (22)

and
dD(Z)(µ(Φ), µ(Φ′)) = ↑{↓{dZ(z, z′) | (z, z′) ∈ suppψ} |ψ ∈ µ(Φ) � µ(Φ′)} . (23)

Consider what it means for some U ∈ I(VZ) to be an element of (22). There must exist Ψ ∈ Φ �Φ′ and
f ∈ F so, that

↓{dZ(z, z′) | (χ, χ′) ∈ supp Ψ, (z, z′) ∈ supp f (χ, χ′)} ⊆ U . (24)

Let ψ ∈ D(Z × Z) be the following probability distribution:

ψ(z, z′) =
∑

χ,χ′∈D(Z)

Ψ(χ, χ′) · f (χ, χ′)(z, z′) . (25)

This is indeed a probability distribution, one can verify it in the same way as in the proof of Prop. 3.43.
We can continue in the same way is in the proof of Prop. 3.43 and find that ψ ∈ µ(Φ) � µ(Φ′).

We have
suppψ ⊆

⋃
(χ,χ′)∈supp Ψ

supp f (χ, χ′) . (26)

Indeed, let (z, z′) ∈ supp(ψ). By (25), there exist (χ, χ′) ∈ supp Ψ, such that f (χ, χ′)(z, z′) > 0. This is
exactly what is required by the right hand side of (26).
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Applying dZ to both sides of (26) and taking the downwards closure, we obtain

↓{dZ(z, z′) | (z, z′) ∈ suppψ} ⊆ ↓{dZ(z, z′) | (χ, χ′) ∈ supp Ψ, (z, z′) ∈ supp f (χ, χ′)} .

Together with (23) and (24), this implies that U is an element of (23). Thus M(dD(D(Z))(Φ,Φ′)) ⊆
dD(Z)(µ(Φ), µ(Φ′)), i.e. dD(Z)(µ(Φ), µ(Φ′)) ≤ M(

⋃
dD(D(Z))(Φ,Φ′)) according to the ordering on

F (I(VZ)). �

An immediate corollary is

Proposition 3.49. Let f : X → D(Y) and g : Y → D(Z) have sensitivities c : VX
m
→ F (I(VY )) and

c′ : VY
m
→ F (I(VZ)), respectively. Then the sensitivity of g ◦Kl f is c′ ◦Kl c.

Proof. Same as Prop. 3.44. �

3.3.6.6 Normal Distances. The distance defined in Prop. 3.46 is useful if we have a mapping toD(Y),
where we are interested in the distance ddp. This typically happens at the last stages of a workflow.
In other positions, we have a component that implements some mapping f : X → D(Y) with the
sensitivity c for some generalized metrics on X andD(Y). The sensitivity of lifted mapping f : D(X)→
D(Y) is somehow related to c; the exact relationship depends on the generalized metric we consider on
D(X). To analyze a workflow, we need to compose f in parallel with an identity function (actually:
the monadic unit) ηZ : Z → D(Z), and find the sensitivity of f × ηZ : D(X × Z) → D(Y × Z). Given
these sensitivities, Prop. 3.32 allows us to find the sensitivity of the entire workflow. We can find this
sensitivity if the distances satisfy some mild conditions.

Definition 3.35 (Normal metric). Let dD(X) be a generalized metric on D(X), using the set of distances
VD(X). We say that dD(X) is a normal metric, if there exists a set of distances V[

D(X) and a mapping
d[
D(X) : D(X × X)→ V[

D(X), such that

VD(X) = F (V[
D(X))

dD(X)(χ, χ′) = ↑{d[
D(X)(ψ) |ψ ∈ χ � χ′}

d[D(X)(ψ3) ≤ d[
D(X)(ψ1) + d[

D(X)(ψ2),

where the last inequality holds for all ψ1, ψ2 ∈ D(X × X) satisfying ψ1↓2 = ψ2↓1 =: φ and ψ3 is defined
by ψ3(x1, x3) =

∑
x2∈X ψ1(x1, x2)ψ2(x2, x3)/φ(x2).

If dD(X) is a normal metric then we say that (D(X), dD(X),VD(X)) is a normal metric space.

Clearly, earth mover’s distance (Prop 3.41) is a normal distance. Also, the differential privacy
distance ddp is normal. Indeed, for any set X, define d[dp : D(X × X) → R+ simply by d[dp(ψ) =

ddp(ψ↓1, ψ↓2). The codomain of ddp is R+ � F (R+) and ddp(χ, χ′) = infψ∈χ�χ′ d[dp(ψ).

Proposition 3.50 (Product of normal metric spaces). Let (D(X), dD(X),F (V[
D(X))) and

(D(Y), dD(Y),F (V[
D(Y))) be normal metric spaces. Then (D(X × Y), dD(X×Y),F (V[

D(X) × V[
D(Y))) is

also a normal metric space, where

d[
D(X×Y)(ψ) = (d[

D(X)(ψ↓1,3), d[
D(Y)(ψ↓2,4)) .

Here d[
D(X×Y) : D(X × Y × X × Y) → V[

D(X) × V[
D(Y). I.e. the argument of d[

D(X×Y) is a probability
distribution over quadruples ψ. In the definition, we project it once to its first and third component
(giving an element of D(X × X)), and once to its second and fourth component (giving an element of
D(Y × Y)).

Proof. It is straightforward to verify that dD(X×Y) satisfies the axioms of a generalized metric. �
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For the purposes of the proof of the next proposition, let us define how to apply the function f :
X → D(Z) to a probability distribution φ ∈ D(X × X). There is no single way to apply it, and as a result
we obtain a set of probability distributionsA f (φ) ⊆ D(Z × Z). The elements of this set are obtained by
selecting a probability distribution ψx,x′ ∈ f (x) � f (x′) for each pair x, x′ ∈ X, and then summing them
up according to φ. Formally,

A f (φ) =
{
{(z, z′) 7→

∑
x,x′∈X

φ(x, x′) · ψx,x′(z, z′) | z, z′ ∈ Z} | x, x′ ∈ X, ψx,x′ ∈ f (x) � f (x′)
}
.

Suppose χ, χ′ ∈ D(X) and φ ∈ χ � χ′. Then A f (φ) ⊆ f (χ) � f (χ′). The opposite also holds: if
ψ ∈ f (χ) � f (χ′), then there exists some φ ∈ χ � φ′, such that ψ ∈ A f (φ). To see this, consider the
function g : X → D(X × Z), defined for all x, x′ ∈ X and z ∈ Z by

Pr[g(x) = (x′, z)] =

Pr[ f (x) = z], ifx = x′

0, otherwise.

Clearly, for each ψ ∈ f (χ)� f (χ′) ⊆ D(Z × Z) there exists some ψ◦ ∈ g(χ)�g(χ′) ⊆ D(X × Z × X × Z)),
such that ψ = ψ◦↓2,4. Now take φ = ψ◦↓1,3.

Proposition 3.51 (Parallel composition in normal metric spaces). Let (X, dX ,VX) be a generalized metric
space. Let (D(Y), dD(Y),F (VY )) and (D(Z), dD(Z),F (VZ)) be normal metric spaces. Let f : X → D(Z)
have sensitivity c : VX

m
→ F (VZ). Let (D(X), dD(X),F (V ′X)) be a normal metric space. Let the sensitivity

of f : D(X)→ D(Z) be c(U) =
⋃

v∈U C(v) for U ∈ F (V ′X) and C : V ′X → F (VZ). Then the sensitivity of
f × ηY : D(X × Y)→ D(Z × Y) is

c′(V) =
⋃

(v,u)∈V

C(v) × ↑{u}

for anyV ∈ F (V ′X × VY ).

Proof. Let φ, φ′ ∈ D(X × Y) and (v, u) ∈ dD(X×Y)(φ, φ′). It is sufficient for us to show that (v#, u#) ∈
dD(Z×Y)( f × ηY (φ), f × ηY (φ′)) for any v# ∈ C(v) and u# ≥ u. We are thus looking for a ψ# ∈ f × ηY (φ)�
f × ηY (φ′), such that (v#, u#) ≥ d[

D(Z×Y)(ψ
#) ∈ VZ × VY .

Consider the set of probability distributions
⋃
{A f (ρ) | ρ ∈ φ↓1 � φ

′↓1}. It contains all distributions
ρ# ∈ D(Z × Z) that are used to define dD(Z)( f (φ↓1), f (φ′↓1)). It hence also contains a distribution ρ#,
such that v# ∈ d[

D(Z)(ρ
#).

We can similarly consider the set of probability distributions
⋃
{A f×ηY (ψ) |ψ ∈ φ � φ′}. The distri-

butions ρ# are obtained from these distributions ψ# by projecting onto the first and third components. At
the same time, the distributions in φ↓2 � φ

′↓2 are obtained from the distributions ψ# by projecting onto
the second and fourth components. There exists a distribution ψ# in this set, such that (↓1,3ψ

#) = ρ# and
d[
D(Y)(ψ

#↓2,4) = u. This is the distribution ψ# that we were looking for. �

3.3.6.7 Distances and Sensitivities for Streams of Data. For a set X let S(X) denote the set of streams
over X, i.e. the set of infinite sequences over X. If we define the lifting of a mapping f : X → Y to
S( f ) : S(X) → S(Y) pointwise, then S(·) is a functor. If (X, dX ,VX) is a generalized metric space,
then (S(X), dS(X),S(VX)) is also a generalized metric space, where dS(X) is defined pointwise (i.e. both
arguments of dS(X) are assumed to move at the same pace).

A stream x ∈ S(X) can be decomposed to its head — an element of X —, and its tail — a stream
over X again. We write x = x : x′ to denote that x is the head of x and x′ is the tail of x.

If f : X → D(Y) is ε-differentially private, then the differential privacy level of S( f ) : S(X) →
S(D(Y)) ⊂∼ D(S(Y)) depends on how we assume the adversary to differentiate between different streams
of values from Y . However, it is natural to assume that the level of distinction between S( f )(x1) and
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S( f )(x2) is defined solely in terms of the distances between the corresponding elements in the resulting
streams. This justifies using S(VX) as the set of distances for S(X).

A (synchronous) stream processor, transforming a stream x ∈ S(X) to y ∈ S(Y) consists of a set of
states S , the initial state s0 ∈ S , and a mapping f : S × X → S × Y . The stream processor works by
reading the next element of x, applying f to it and the current state, receiving back the next element of y
and the next state. We call it synchronous because it produces exactly one element of y for each element
of x that it reads. This restriction is natural because we think of the streams we are working with to be
indexed by time moments. Formally, given S , s0 and f , we define f̃ [s0] : S(X)→ S(Y) by

f̃ [s0](x : x) = let (y, s1) = f (s0, x) in y : f̃ [s1](x) .

If (X, dX ,VX) and (Y, dY ,VY ) are generalized metric spaces, then we can also define the structure of
a generalized metric space on their Cartesian product. It results in (X × Y, dX×Y ,VX × VY ), where the
ordering and addition on VX × VY is defined pointwise, and dX×Y simply applies both dX and dY . If the
sensitivity of the mapping f defining a stream processor is c f : VS × VX → VS × VY , then the sensitivity
of f̃ [s0] is simply c̃ f

[0].
In practice, it will be more likely that the type of our stream processors is f : S ×X → D(S × Y), i.e.

the stream processor is probabilistic and defines a function f̃ [s0] : S(X) → D(S(Y)). If this is the case,
and the sensitivity of f is given by the mapping c f : VS × VX → F (I(VS × VY )), then the sensitivity c′

of f̃ [s0] is the following. Define the mapping c# : VS × S(VX) → F (I(S(VY ))) through the following
co-inductive construction. In order to compute c#(w0, x : x),

1. let X = c(w0, x) ∈ F (I(VS × VY ));

2. let X = F (I(g))(X) ∈ F (I(VY × F (I(S(VY ))))), where g : VS × VY → VY × F (I(S(VY ))) is
defined by g(vs, vy) = (vy, c#(vs, x));

3. let Y = F (I(h))(X) ∈ F (I(F (I(S(VY ))))), where h : VY × F (I(S(VY ))) → F (I(S(VY ))) is
defined by h(vy,Y) = F (I(vy : ·))(Y), i.e. h prepends vy to all streams in Y;

4. return µ(Y), where µ is the monad multiplication for F (I(·)).
Then c′ = c#(0, ·). The construction of c# is well-founded because it is recursively applied only to
components of its arguments.

If c is sufficiently simple (e.g. it is guaranteed to return only finitely generated sets of finitely
generated sets), then the construction of c′ can be executed. In this case, we have a means to analyse
workflows processing streams, where each stream processor f only has state with finitely many variables
taking values in R. The size of the entire stream, however, is not bounded.

3.3.7 Derivative Sensitivity for Row Multiplicities. In this section, we will study the following prob-
lem. Let X = (Rn, d) be a metric space, with d being the `1-distance (Definition 3.15). Given a function
f : X → R, and the desired level of differential privacy (DP), find a noise distribution η : X → D(R),
such that the probabilistic mapping g(~x) := f (~x) + η(~x) has that level of DP, and η does not add overly
much noise.

In Sec. 3.3.1.2, we discussed that the noise magnitude depends on function sensitivity, i.e. how
much a change in the function input affects the function output. There exist different flavours of function
sensitivity. The global sensitivity is defined for all inputs in the function domain.

Definition 3.36 (global sensitivity). For f : X → Y , the global sensitivity of f is

GS f = max
x,x′∈X

dY ( f (x), f (x′))
dX(x, x′)

.

Note that Def. 3.36 is equivalent to Def. 3.5.
Since noise is always added to the output of a query that is applied to a particular state of the database,

and some state may require less noise than the other, the noise magnitude may depend on the data to
which the function is applied. The local sensitivity of a function depends on the actual data instance.
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Definition 3.37 (local sensitivity). For f : X → Y , an integer-valued metric dX : X ×X → N, and x ∈ X,
the local sensitivity of f at x is

LS f (x) = max
x′∈X:dX(x,x′)=1

dY ( f (x), f (x′)) .

In this work, we choose local smoothened sensitivity [52] as a suitable basis for choosing the mag-
nitude of the noise. We apply smoothening not to the local sensitivity (although that would work, too),
but to its analogue for continuous functions, which we define here and call derivative sensitivity.

Derivative sensitivity has to be applied to the semantics of SQL queries. Hence we define a contin-
uous semantics for it, which matches the natural one if applied to databases where records have integer
multiplicities. We also show how to compute the smoothened derivative sensitivity of a SQL query.

Let us recall some notions from Sec. 3.3.1. For a set X, let D(X) denote the set of all probability
distributions over it. An element χ ∈ D(X) is a mapping from X to [0, 1], and we use the notation χ(x)
to denote the probability weight that χ assigns to x ∈ X. For distributions χ, χ′ ∈ D(X), their differential
privacy distance (or DP-distance) is defined by

ddp(χ, χ′) = sup
x∈X

∣∣∣∣∣ ln χ(x)
ln χ′(x)

∣∣∣∣∣ .

Given a mapping f from one metric space (X, dX) to another metric space (Y, dY ), we say that the
sensitivity of f is (at most) c ∈ R+, if for all x, x′ ∈ X, the inequality dY ( f (x), f (x′)) ≤ c · dX(x, x′) holds.
A mapping f : X → D(Y) (where X is a metric space) is ε-differentially private, if it is ε-sensitive from
(X, dX) to (D(Y), ddp).

In Section 3.3.6, we studied the possibility of distances being not non-negative real numbers, but
something more general. One relevant example is the set F (R+ × R+), the set of all upwards closed
sets of pairs of non-negative real numbers. The upwards closedness means that if Z ∈ F (R+ × R+),
(ε, δ) ∈ Z, ε′ ≥ ε, and δ′ ≥ δ, then (ε′, δ′) ∈ Z as well. One can define ordering and addition on the
elements of F (R+ × R+), allowing its elements to be treated as distances and the triangle inequalities to
be stated.

This example is significant in defining (ε, δ)-differential privacy. Let us recall the definition of the
latter.

Definition 3.38 ([36]). Let X be a metric space and f : X → D(Y). The mapping f is (ε, δ)-differentially
private if for all Y ′ ⊆ Y , and for all x, x′, where dX(x, x′) = 1, the following inequality holds:

Pr[ f (x) ∈ Y ′] ≤ eεPr[ f (x′) ∈ Y ′] + δ . (27)

First, if χ, χ′ ∈ D(X), then we define the distance

dDP(χ, χ′) =
⋂

X′⊆X

{
(ε, δ)

Pr[x ∈ X′ | x← χ] ≤ eε
(
Pr[x ∈ X′ | x← χ′] + δ

)
Pr[x ∈ X′ | x← χ′] ≤ eε

(
Pr[x ∈ X′ | x← χ] + δ

) }
(28)

Clearly, dDP(χ, χ′) ∈ F (R+ × R+). Now, a mapping f : X → D(Y) from a metric space X is (ε, δ)-
differentially private, if it is ↑{(ε, δ)}-sensitive for the distance dDP being used onD(Y).

Let us also state how ordering and addition on F (R+ × R+) is defined. Let Z1,Z2 ∈ F (R+ × R+).
We have Z1 ≤ Z2 iff Z2 ⊆ Z1. In this way, the entire set R+ × R+ is the least element, corresponding to
two distributions being equal. Indeed, this equality is expressed by (0, 0) ∈ R+ × R+. Such definition of
ordering is the standard one. The addition is also standard:

Z1 + Z2 = {(ε1 + ε2, δ1 + δ2) | (ε1, δ1) ∈ Z1, (ε2, δ2) ∈ Z2} .

If Z1 and Z2 are upwards closed, then so is Z1 + Z2 due to the continuousness of R. It is also easy to see
that the operation + is associative, commutative, has the zero element R+ × R+ and is compatible with
ordering (meaning that Z1 ≤ Z2 implies Z1 + Z3 ≤ Z2 + Z3 for any Z3).

The following proposition shows that dDP satisfies the triangle inequality.
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Proposition 3.52. Let χ1, χ2, χ3 ∈ D(X). Then dDP(χ1, χ3) ≤ dDP(χ1, χ2) + dDP(χ2, χ3).

Proof. Let (ε1, δ1) ∈ dDP(χ1, χ2) and (ε2, δ2) ∈ dDP(χ2, χ3). According to the definition of +, the pair
(ε1 + ε2, δ1 + δ2) is a member of dDP(χ1, χ2) + dDP(χ2, χ3). We have to show that it is also a member of
dDP(χ1, χ3) according to (28). Let X′ ⊆ X. Then

Pr[x ∈ X′ | x← χ1] ≤ eε1
(
Pr[x ∈ X′ | x← χ2] + δ1

)
≤ eε1

(
(eε2

(
Pr[x ∈ X′ | x← χ3] + δ2

)
+ δ1

)
=

eε1+ε2Pr[x ∈ X′ | x← χ3] + eε1+ε2δ2 + eε1δ1 ≤ eε1+ε2
(
Pr[x ∈ X′ | x← χ3] + δ2 + δ1

)
as necessary. �

Let us show the relationship between dDP and (ε, δ)-differential privacy. Note that Definition 3.38 is
symmetric with respect to x and x′, because their role may be swapped.

The formula (27) differs from (28) in one important aspect. Namely, in (28), the quantity δ is
multiplied with eε , while in (27), it is not. While the difference of the factor eε seems small in first
glance, it is not if we start considering “group privacy”, i.e. distances (in X) different from 1. Let
dX(x, x′) = L. If f : X → D(Y) is ↑{(ε, δ)}-sensitive with respect to the distance dDP on D(Y), then we
know that (Lε, Lδ) ∈ dDP( f (x), f (x′)). But if f is (ε, δ)-differentially private, then we only get

Pr[ f (x) ∈ Y ′] ≤ eLεPr[ f (x′) ∈ Y ′] +
eLε − 1
eε − 1

δ

from Definition 3.38.
It is not difficult to show that if we do not multiply δ with eε , then dDP is no longer a distance; in

particular, it would not satisfy the triangle inequality. For example, let us pick

χ1 = Ber(0.01) χ2 = Ber(0.03) χ3 = Ber(0.07) ε = ln 2 δ = 0.01 .

Here Ber(p) is the Bernoulli distribution. It returns 1 with probability p and 0 with probability 1 − p.
We have (ε, δ) ∈ dDP(χ1, χ2) and also (ε, δ) ∈ dDP(χ2, χ3), but not (2ε, 2δ) ∈ dDP(χ1, χ3). Indeed,

Pr[x = 1 | x← χ2] = 0.03 = 2 · 0.01 + 0.01 = eε · Pr[x = 1 | x← χ1] + δ

Pr[x = 1 | x← χ3] = 0.07 = 2 · 0.03 + 0.01 = eε · Pr[x = 1 | x← χ2] + δ

Pr[x = 1 | x← χ3] = 0.07 > 4 · 0.01 + 0.02 = e2ε · Pr[x = 1 | x← χ1] + 2δ .

3.3.7.1 Sensitivity for Continuous Functions. For differentiable functions, the notions of sensitivity
and derivatives are very tightly related.

Definition 3.39. Let f : X → R. The derivative sensitivity of f is the following mapping from X to R+,
where R+ denotes the set of all non-negative real numbers:

DS f (~x) = max
i

∣∣∣∣∣ ∂ f
∂xi

(~x)
∣∣∣∣∣ .

Here xi denotes the i-th component of the vector of variables ~x.
For these functions, the derivative sensitivity can be used to obtain results very similar to [52], where

local sensitivity was used instead. As we discuss below, derivative sensitivity is usually simpler to use,
as long as the mapping f is differentiable.

Definition 3.40 ([52]). Let p : X → R and β ∈ R. The mapping p is β-smooth, if p(~x) ≤ eβ·d(~x,~x′) · p(~x′)
for all ~x, ~x′ ∈ X.
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As we see below, crucial in selecting the amount of noise to be added to f (~x) is the knowledge of a
β-smooth upper bound on the derivative sensitivity of f . We let c denote such a bound. We consider the
same noise distributions as in [52]. For a parameter γ ∈ R+, γ > 1, the generalized Cauchy distribution
GenCauchy(γ) ∈ D(R) is given by the proportionality

GenCauchy(γ)(x) ∝
1

1 + |x|γ

(“usual” Cauchy distribution is obtained for γ = 2). Noise distributed by generalized Cauchy distribu-
tion, weighed by a smooth upper bound on the derivative sensitivity of f , allows us to achieve ε-DP.

Theorem 3.53. Let γ, b, β ∈ R+, γ > 1. Let ε = (γ + 1)(b + β). Let η be a random variable distributed
according to GenCauchy(γ). Let c be a β-smooth upper bound on DS f for a function f : X → R. Then
g(~x) : f (~x) +

c(~x)
b · η is ε-differentially private.

Proof. Let η ∼ GenCauchy(γ). The generalized Cauchy distribution is relatively stable under shifts and
stretchings, satisfying the following inequalities for all a1, a2, c1, c2 ∈ R, which we state here without
proof [52]:

ddp(a1 + c1 · η, a2 + c1 · η) ≤ (γ + 1) ·
∣∣∣∣∣a2 − a1

c1

∣∣∣∣∣
ddp(c1 · η, c2 · η) ≤ (γ + 1) ·

∣∣∣∣∣ln c2

c1

∣∣∣∣∣ .

The combination of these two inequalities gives

ddp(a1 + c1 · η, a2 + c2 · η) ≤ (γ + 1) ·
(
|a2 − a1|

max{|c1|, |c2|}
+

∣∣∣∣∣ln c2

c1

∣∣∣∣∣) . (29)

Let ~x, ~x′ ∈ X. Suppose that they differ only in the i0-th coordinate. W.l.o.g. assume that x′i0 ≥ xi0 .
Denote L = x′i0 − xi0 . We have to show that ddp(g(~x′), g(~x)) ≤ εL = (γ + 1)(b + β)L.

We can substitute the definition of g into the left side of the desired inequality above, and using the
inequality (29) and the definition of smoothness, obtain

ddp(g(~x), g(~x′)) = ddp( f (~x) +
c(~x)

b
· η, f (~x′) +

c(~x′)
b
· η) ≤

(γ + 1) ·
(
b ·
| f (~x′) − f (~x)|
|c(~x)|

+

∣∣∣∣∣∣ln c(~x′)
c(~x)

∣∣∣∣∣∣
)
≤ (γ + 1) ·

(
b ·
| f (~x′) − f (~x)|
|c(~x)|

+ βL
)

Unfortunately, we cannot directly bound | f (~x′) − f (~x)|/|c(~x)| with L. Instead, if we let ~y[v] denote
the tuple ~x, where the i0-th component is replaced with v, then we can only claim (using the mean value
theorem), that there exists some v0 in the segment (xi0 , x

′
i0

) satisfying

| f (~x′) − f (~x)| =

∣∣∣∣∣∣ ∂ f
∂xi0

(~y[v0])

∣∣∣∣∣∣ · (x′i0 − xi0) ≤ |c(~y[v0])| · L,

where the last inequality is due to c being an upper bound on the derivative sensitivity of f . However, by
using this claim many times, we obtain the necessary inequality as follows. Let n ∈ N be arbitrary. Let
v0 = xi0 , vn = x′i0 and vi =

(
(n − i) · xi0 + i · x′i0

)
/n, i.e. the values v0, . . . , vn are evenly distributed from

xi0 to x′i0 . Again, the mean value theorem implies that there exist t1, . . . , tn with vi−1 ≤ ti ≤ vi, satisfying

| f (~y[vi]) − f (~y[vi−1])| =

∣∣∣∣∣∣ ∂ f
∂xi0

(~y[ti])

∣∣∣∣∣∣ · (vi − vi−1) ≤ |c(~y[ti])| ·
L
n
≤ eβL/n · |c(~y[vi−1])| ·

L
n
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for all i ∈ {1, . . . , n}. Here the last inequality follows from the β-smoothness of c. We can use these
claims together with the triangle inequality and obtain

ddp(g(~x), g(~x′)) ≤
n∑

i=1

ddp(g(~y[vi−1]), g(~y[vi])) =

n∑
i=1

ddp( f (~y[vi−1])+
c(~y[vi−1])

b
·η, f (~y[vi])+

c(~y[vi])
b
·η) ≤

(γ+ 1)
n∑

i=1

(
b ·
| f (~y[vi]) − f (~y[vi−1])|

|c(~y[vi−1])|
+
βL
n

)
≤ (γ+ 1)

n∑
i=1

(
b · eβL/n ·

L
n

+
βL
n

)
= (γ+ 1)(beβL/n + β)L .

This inequality holds for any n ∈ N. If n → ∞ then eβL/n → 1 and we obtain the inequality that we had
to show.

If ~x and ~x′ differ in more than one coordinate, then we can transform ~x to ~x′ by changing one
coordinate at a time, and using the triangle inequality. �

Generalized Cauchy distributions have heavy tails, meaning that using the mechanism of Theo-
rem 3.53 will in general introduce a lot of noise. Less noise is possible if we resort to (ε, δ)-DP. In
this case, we may add noise from the usual Laplacian distribution, which has light tails. The following
theorem makes use of the distribution Lap(1) ∈ D(R), defined by Lap(1)(x) ∝ e−|x|. We first have to
state the results about the self-similarity of Lap(1) under shifting and stretching.

Lemma 3.54. Let η ∼ Lap(1). Let a1, a2 ∈ R, c1, c2 ∈ R+, c1 ≤ c2. Define β = ln(c2/c1) and let ε ≥ β.
Let δ ≥ e−ε−(ε+β)/(eβ−1). Then the following holds.(

|a2 − a1|

c1
, 0

)
∈ dDP(a1 + c1 · η, a2 + c1 · η)

(ε, δ) ∈ dDP(c1 · η, c2 · η) .

Proof. The probability density functions (PDF) and the cumulative density functions (CDF) of the dis-
tributions named above are the following:

PDFc1·η(x) =
1

2c1
e−|x|/c1 PDFa1+c1·η(x) =

1
2c1

e−|x−a1 |/c1

PDFc2·η(x) =
1

2c2
e−|x|/c2 PDFa2+c1·η(x) =

1
2c1

e−|x−a2 |/c1

and

CDFc1·η(x) =

ex/c1/2, ifx < 0
1 − e−x/c1/2, ifx ≥ 0

CDFc2·η(x) =

ex/c2/2, ifx < 0
1 − e−x/c2/2, ifx ≥ 0

The first claim of the lemma is shown by

max
x∈R

∣∣∣∣∣∣ln PDFa1+c1·η(x)
PDFa2+c1·η(x)

∣∣∣∣∣∣ = max
x∈R

∣∣∣∣∣∣ln e−|x−a1 |/c1

e−|x−a2 |/c1

∣∣∣∣∣∣ ≤ ln e|a1−a2 |/c1 =
|a2 − a1|

c1
,

showing that |a2−a1 |
c1
≥ ddp(a1 + c1 · η, a2 + c1 · η). To show the second claim, consider the following

function f :

f (x) =

∣∣∣∣∣∣ln PDFc1·η(x)
PDFc2·η(x)

∣∣∣∣∣∣ .
We are interested in the set of x-s that satisfy f (x) ≤ ε. We have

f (x) =

∣∣∣∣∣∣ln
(
c2

c1
· e|x|/c2−|x|/c1

)∣∣∣∣∣∣ =

∣∣∣∣∣β − c2 − c1

c1c2
|x|

∣∣∣∣∣ .
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The condition f (x) ≤ ε is equivalent to

|x| ≤ (ε + β)
c1c2

c2 − c1
. (30)

To obtain the distance ↑{(ε, δ)}, it is sufficient to take δ equal to e−ε times the probability that either x,
when sampled according to either c2 · η or c1 · η, does not satisfy (30). This probability is larger for c2 · η

because c2 ≥ c1. Let us compute this probability.

Pr[x < 0 ∧ f (x) > ε | x← c2 · η] =
1
2

e(ε+β) c1
c2−c1 =

1
2

e(ε+β) 1
eβ−1 .

The probability that we are looking for is twice the quantity above. Multiplying it with e−ε gives us the
statement of the lemma. �

The next lemma provides a more coarse, but simpler upper bound for the DP-distance between
stretched versions of the Laplace distribution.

Lemma 3.55. Let η ∼ Lap(1). Let c1, c2 ∈ R+, c1 ≤ c2. Define β = ln(c2/c1). Let ε ≥ β. Let k = 1 + ε/β.
Then (ε, e−k) ∈ dDP(c1 · η, c2 · η).

Proof. Let δ = e−ε−
ε+β

eβ−1 . By the previous lemma, (ε, δ) ∈ dDP(c1 · η, c2 · η). We will now show that
e−k ≥ δ.

Indeed,

δ ≤ e−k ⇔ e−ε−
ε+β

eβ−1 ≤ e−k ⇔ −ε −
ε + β

eβ − 1
≤ −k ⇔ (k − 1)β +

kβ
eβ − 1

≥ k ⇔
1

eβ − 1
≥

1
β
−

k − 1
k
⇐

1
eβ − 1

≥
1
β
−

1
2
⇔

1
β
≤

1
2

+
1

eβ − 1
⇔ β ≥

2(eβ − 1)
eβ + 1

⇔ β +
4

eβ + 1
≥ 2,

where the “⇐” claim holds because k ≥ 2. Consider now the function f (x) = x + 4/(ex + 1). We have
f (0) = 2. Also, f is a monotone function. Hence the claim β + 4/(eβ + 1) ≥ 2 holds. �

We can now proceed to state the differential privacy theorem for the added Laplace noise. We start
with a technical notion that we use in the proof, and which can also be used to state the additional
conditions when we get a tighter bound for the (ε, δ)-differential privacy of the noised function.

Definition 3.41. A path in X is a continuous function h : [0, 1] → X. The path h is shortest, if for all
x1, x2, x3 ∈ [0, 1], x1 ≤ x2 ≤ x3, the equality dX(h(x1), h(x3)) = dX(h(x1), h(x2)) + dX(h(x2), h(x3)) holds.

Theorem 3.56. Let b, β, ε ∈ R+, b > 0, b + β ≤ ε. Define k = 1 + (ε − b)/β. Let δ = e−k. Let η
be a random variable distributed according to Lap(1). Let c be a β-smooth upper bound on DS f for a
function f : X → R. Define g(~x) := f (~x) +

c(~x)
b · η. Then

• for any ~x1, ~x2 ∈ X, (ε · L, 2δ) ∈ dDP(g(~x1), g(~x2)), where L = dX(~x1, ~x2);

• (in particular,) g is (ε, 2eεδ)-differentially private.
If, additionally for any two points ~x1, ~x2 ∈ X there exists a shortest path h in X, such that c is monotonic
along that path, then the factor “2” in previous statements can be removed..

Proof. Let b, β, ε be as in the statement of the theorem. Let η ∼ Lap(1) and ~x1, ~x2 ∈ X. Let L =

dX(~x1, ~x2). Let h be a shortest path from ~x1 to ~x2. Let ~xµ be a point on the path h, such that c(~xµ) =

maxt∈[0,1] c(h(t)). Let L1 = dX(~x1, ~xµ) and L2 = dX(~xµ, ~x2). Note that L = L1 + L2. Define the following
probability distributions:

χ1 = f (~x1) +
c(~x1)

b
· η χ2 = f (~x1) +

c(~xµ)
b
· η

χ3 = f (~x2) +
c(~xµ)

b
· η χ4 = f (~x2) +

c(~x2)
b
· η .
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We want to show that (εL, 2δ) ∈ dDP(χ1, χ4).
By Lemma 3.54, (b · | f (~x2) − f (~x1)|/c(~xµ), 0) ∈ dDP(χ2, χ3). The difference between f (~x2) and f (~x1)

can be upper-bounded as follows:

| f (~x2) − f (~x1)| =
∣∣∣∣∣∫

h
f ′(h) ds

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ 1

0
f ′(h(t))‖h′(t)‖ dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ 1

0
c(h(t))‖h′(t)‖ dt

∣∣∣∣∣∣ ≤∫ 1

0
c(~xµ)‖h′(t)‖ dt = c(~xµ) · dX(h(1) − h(0)) = L · c(~xµ),

hence (bL, 0) ∈ dDP(χ2, χ3). Note that, in
∫

h f ′(h) ds, the integral is over the path h, and the derivative
f ′ is w.r.t. distance dX along the path h. This derivative exists for a differentiable f , which follows from
the definition of DS f . More generally, if X is a Banach space, its existence of follows from the existence
of the Fréchet derivative of f (we will discuss Banach spaces and Fréchet derivatives in more details in
Sec. 3.3.8.2). The ds is an infinitesimal distance (according to dX) along the path h, and the h in f ′(h)
denotes the point on the path h.

We will now compare χ1 and χ2. We use the previous lemma with the following instantiations:

Quantity in Lemma 3.55 Instantiation
c1 c(~x1)
c2 c(~xµ)
β ln(c(~xµ)/c(~x1))
ε (ε − b)L1
k 1 + (ε − b)L1/ ln(c(~xµ)/c(~x1))

Lemma 3.55 required that ε ≥ β. This condition is translated to

(ε − b)L1 ≥ ln
c(~xµ)
c(~x1)

.

Let us verify that it holds:

ln
c(~xµ)
c(~x1))

≤ β · dX(~x1, ~xµ) ≤ βL1 ≤ (ε − b)L1 � .

We also lower-bound the value of k from Lemma 3.55, in order to simplify its expression:

1 +
(ε − b)L1

ln c(~xµ)
c(~x1))

≥ 1 +
(ε − b)L1

βL1
= k .

We obtain
((ε − b)L1, e−k) ∈ dDP(χ1, χ2) .

Similarly, we can obtain
((ε − b)L2, e−k) ∈ dDP(χ3, χ4) .

Using the triangle inequality, we can combine dDP(χi, χi+1) for i ∈ {1, 2, 3}:

(εL, 2e−k) ∈ dDP(χ1, χ4)

as required. If dX(~x1, ~x2) = 1, then (ε, 2e−k) ∈ dDP(g(~x1), g(~x2)), i.e. g is (ε, 2δ)-differentially private.
If c is monotone along the path h, then the point ~xµ coincides with either ~x1 or ~x2. W.l.o.g.

assume ~xµ = ~x1. Then χ1 = χ2 and (0, 0) ∈ dDP(χ1, χ2). The triangle inequality now gives
(εL, e−k) ∈ dDP(χ1, χ4). �

Even though we obtained a result about the (ε, δ)-differential privacy level of g, the guarantee given
by Theorem 3.56 is of a rather different kind. Indeed, it gives a reasonable “group privacy” also when
the arguments to f are far apart.
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E ::= T | πS (E) | σθ(E) | E × E | E ∪ E | E ∩ E | E − E | ρS→S ′(E) | Dis(E)

θ ::= 0 | 1 | P(~s) | θ ∧ θ | ¬θ

Here E ∈ RExp, θ ∈ BExp, T ∈ R, S , S ′ ∈ N∗, and |S | = |S ′|, P ∈ P, ~s ∈ N∗.

Figure 37: Syntax of Relational Algebra

3.3.7.2 Continuous Semantics for Relational Algebra Queries. SQL is used to specify queries
against relational databases, i.e. databases made up of several tables, where each table is a multiset
of records of certain type. We are going to apply the theory described above to the differential privacy
of SQL queries. For this to be possible, we need to give a semantics for SQL that is based on the mul-
tiplicities of records being real numbers. When applied to “normal” databases, i.e. to databases where
each row in each table has an integer multiplicity, then our semantics will coincide with the standard
semantics of SQL.

The semantics of SQL queries has recently been studied in [53], where its expressivity has been
shown to be the same as a relational algebra fragment. The fragment consists of a following components:

Names. These are used to name the columns of tables/relations. Let N be the set of all names. This set
is assumed to be countably infinite.

Values. These inhabit the cells in relations. To simplify the treatment, all values are taken to have the
same type. Let C be the set of all values.

Basic relations. These are the names of the tables in the database. Let R be the (finite) set of these
names.

Predicate symbols. These are used to state boolean conditions on top of values. Let P be the set of
these symbols. We assume that a symbol for equality checking is an element of P.

On top of these sets, the syntax of relational algebra is built. The syntax defines two categories: relational
algebra expressions (the set RExp) and boolean expressions (the set BExp) given in Fig. 37. Given a set
X, we let X∗ denote all sequences of the elements of X. We also let X∗, ⊂ X∗ denote all such sequences
where all elements are different. If Y ∈ X∗,, then we may also interpret Y as a subset of X, consisting of
all elements that occur in it.

We see that a relational algebra expression can be a table in the database, a projection, a filter, a
combination of results of two expressions (cartesian product, union, intersection, difference), renaming
of columns. Finally, if E is an expression then Dis(E) is also an expression, corresponding to the removal
of repeated rows from the result of E. It corresponds to the SELECT DISTINCT keyword in SQL.

The semantics of relational algebra is defined as follows. For each predicate symbol P ∈ P, let
there be an associated semantic function ~P� : C∗ → B, where B = {0, 1}. Let there be a mapping
` : R → N∗,, giving the schema of each basic relation. For a schema S ∈ N∗,, the set of relations
matching S is

Rels(S ) = {r : (S → C)→ R+ | |supp r| < ∞},

where supp r ⊆ (S → C) denotes the support of r — the set of all such tuples X : S → C where
r(X) , 0. We see that r gives the multiplicity of each possible row in a table with schema S , and
the multiplicities can be fractional numbers. A database D maps each table name T ∈ R to a relation
DT ∈ Rels(`(T )).

We extend the schema ` to all relational algebra expressions in the manner given in Figure 38. In this
extension, the type τ(θ) ⊂ N of a boolean expression θ is the set of all names that occur in it. We consider
a relational algebra expression E syntactically valid only if `(E) is defined, and define the semantics only
for syntactically valid expressions.

To define the semantics of removing repeated rows, we have to explain what happens with their
multiplicity. We do not have to fix this in a unique manner, but can choose the behavior of the DISTINCT-
keyword in a way that is most beneficial to our analysis, given that it behaves in the traditional way on
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`(πS (E)) = S undefined, ifS * `(E)

`(σθ(E)) = `(E) undefined, ifτ(θ) * `(E)

`(E1 × E2) = `(E1)‖`(E2) undefined, if`(E1) ∩ `(E2) , ∅

`(E1 ∪ E2) = `(E1) undefined, if`(E1) , `(E2)

`(E1 ∩ E2) = `(E1) undefined, if`(E1) , `(E2)

`(E1 − E2) = `(E1) undefined, if`(E1) , `(E2)

`(ρS→S ′(E)) = S ′ undefined, if`(E) , S

`(Dis(E)) = `(E)

Figure 38: Schemas of Relational Expressions

~0�(r) = 0

~1�(r) = 1

~P(s1, . . . , sk)�(r) = ~P�(r(s1), . . . , r(sk))

~θ1 ∧ θ2�(r) = min{~θ1�(r), ~θ2�(r)}

~¬θ�(r) = 1 − ~θ�(r)

Figure 39: Semantics of Boolean Expressions

~T�D(r) = DT (r)

~πS (E)�D(r) =
∑

r′:`(E)→C
∀s∈S :r(s)=r′(s)

~E�D(r′)

~σθ(E)�D(r) = ~E�D(r) · ~θ�(r)

~E1 × E2�D(r) = ~E1�D(r|`(E1)) · ~E2�D(r|`(E2))

~E1 ∪ E2�D(r) = ~E1�D(r) + ~E2�D(r)

~E1 ∩ E2�D(r) = min{~E1�D(r), ~E2�D(r)}

~E1 − E2�D(r) = max{0, ~E1�D(r) − ~E2�D(r)}

~ρs1···sk→s′1···s
′
k
(E)�D(r) = ~E�D({∀i : si 7→ r(s′i)})

~Dis(E)�D(r) = Sgm(~E�D(r))

Figure 40: Semantics of Expressions of Relational Algebra

integral multiplicities. Hence we state that there is a function Sgm : R+ → R+, which is continuous,
differentiable, and monotonic. Moreover, it satisfies Sgm(0) = 0 and Sgm(x) = 1 for all x ≥ 1.

The semantics ~θ� of a boolean expression θ is a mapping from a row (with the type S → C, where
S ⊇ τ(θ)) to a boolean value. It is given in Figure 39.

The semantics ~E�D (relative to a database D) of a relational algebra expression E is a relation in
Rels(`(E)), i.e. a mapping from rows to their multiplicities, where a row r has the type `(E) → C. It is
given in Figure 40.

The purpose of adding the noise to the result of a query E is to hide small changes in the database
that is the subject of the query. Hence the semantics of E has to be seen as a function that takes a
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database as an input. We have

~E� :
∏
T∈R

Rels(`(T ))→ Rels(`(E)),

where the domain of this function is the type of databases. The notation ~E�D means the application of
the function ~E� to the database D. We consider ~E� as a multivariate function (also returning many
values), with each variable taking values in R+. A variable corresponds to a possible row in one of the
tables, i.e. it is identified by

1. the name of the table T ∈ R;
2. the values in the row: r : `(T )→ C.

Let xT ;r be the variable that corresponds to the potential row r in the table T . When describing a
database, the value of xT ;r is the multiplicity of the row r in the table T .

SQL rewriting. There may be a number of different ways to extend an integral semantics of a SQL
query to a fractional one. All these fractional extensions are equally valid as the basis for computing the
magnitude of noise to be added to the query result in order to obtain a certain level of differential privacy.
They may lead to the selection of different amounts of noise, or its addition in different places, resulting
in different accuracy, but the privacy guarantee remains, because all different fractional semantics agree
on integral points.

A database engine typically rewrites SQL queries in order to make their execution more efficient.
The engine aims to preserve the integral semantics of the query, but does not care about the fractional
semantics. Hence the fractional semantics may change during rewriting. Nevertheless, the discussion in
the previous paragraph shows that the privacy analysis performed on the initial query remains valid also
for the rewritten query. Our extension of the semantics hence does not bring about a need to change the
query execution strategies of database engines.

3.3.7.3 Smooth Derivative Sensitivity for Relational Algebra Queries. A relational algebra expres-
sion returns relations, but our noise addition mechanisms naturally work with functions that return a nu-
meric value. We note that this restriction is similar to other differential privacy mechanisms for database
queries, e.g. PINQ [54]. These numbers could be the values of particular cells in the returned relation,
or some summary of the relation. Inspired by the SQL-statements turning up in scenarios investigated
by Brandeis CRTs, we focus on counting the rows of a relation. Let

CountE(D) = ~π∅(E)�D(∅)

be the number of rows in the result of the query E (as a function of the database instance D). Let the
derivative sensitivity of this be

DSCE(D) = DSCountE (D)

Our methods for finding smooth derivative sensitivity of CountE-queries cannot currently handle all
of the relational algebra specified in Figure 37, but they can cover expressions E corresponding to the
SQL-queries of the form

SELECT A1,...,Ak FROM T1,...,Tn WHERE condition (31)

where condition may be any boolean expression in Figure 37 and where the tables may appear in the list
T1,...,Tn several times.

Finding the derivative. As defined previously, Let xT ;r is the multiplicity of the row r in the table T
of the database D. Considering different cases of E, we find the derivative of the count function with
respect to xT ;r. The simplest case is, when E is just a table. Then

∂

∂xT ;r
(CountT ′(D)) =

1, ifT = T ′

0, ifT , T ′ .
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The derivative of the count of the projection, renaming, and filtering operations are trivial to induc-
tively specify:

∂

∂xT ;r
(CountπS (E)(D)) =

∂

∂xT ;r
(CountE(D))

∂

∂xT ;r
(Countρs1 ···sk→s′1 ···s

′
k
(E)(D)) =

∂

∂xT ;r
(CountE(D)) .

To compute the derivative of the count of a filtering operation, we extend the definition of ~θ� so
that it can also be applied to rows that do not contain all the columns referenced in θ. In this case, the
unbound variables are assumed to be existentially quantified, i.e.

~θ�(r) = sup
r′ extends r

~θ�(r′),

where r′ : τ(θ) → C ranges over all possible rows that define the attributes used by θ. The derivative of
the count of the filtering is the derivative of the count of the original expression, moderated by the truth
value of θ on the row r.

∂

∂xT ;r
(Countσθ(T )(D)) =

∂

∂xT ;r
(CountT (D)) · ~θ�(r) .

The derivative of the count of a Cartesian product is defined as the derivative of a product function:
∂

∂xT ;r
(CountE1×E2(D)) =

∂

∂xT ;r
(CountE1(D)) · CountE2(D) +

∂

∂xT ;r
(CountE2(D)) · CountE1(D)

We are interested in the case where filtering is applied to the product (and projection is applied
afterwards, but its derivative was trivial). In this case, the derivative can be upper-bounded as follows:

∂

∂xT ;r
(Countσθ(E1×E2)(D)) ≤

∂

∂xT ;r
(Countσθ(E1)×σθ(E2)(D)) =

∂

∂xT ;r
(Countσθ(E1)(D)) · Countσθ(E2)(D) +

∂

∂xT ;r
(Countσθ(E2)(D)) · Countσθ(E1)(D) ≤

∂

∂xT ;r
(CountE1(D)) · Countσθ(E2)(D) +

∂

∂xT ;r
(CountE2(D)) · Countσθ(E1)(D)

If the Cartesian product is applied to any number of expressions E j, we get

∂

∂xT ;r
(Count∏ j E j(D)) =

∑
i

∂

∂xT ;r
(CountEi(D)) · Count∏ j,i E j(D),

which can be upper-bounded as

∂

∂xT ;r
(Countσθ(

∏
j E j)(D)) ≤∑

i

∂

∂xT ;r
(Countσθ(Ei)(D)) · Countσθ(

∏
j,i E j)(D) ≤

∑
i

∂

∂xT ;r
(CountEi(D)) · Countσθ(

∏
j,i E j)(D) (32)

If each subquery Ei is a table (Ei = Ti) and all Ti are distinct then only one of the summands can be
nonzero—the one where T = Ti. If the Ti are not distinct then there would be one summand for each
copy of the table T :

∂

∂xT ;r
(Countσθ(

∏
j T j)(D)) ≤∑

i: Ti=T

∂

∂xT ;r
(CountTi(D)) · Countσθ[r/Ti](

∏
j,i T j)(D) =

∑
i: Ti=T

Countσθ[r/Ti](
∏

j,i T j)(D) .

Here we can be more precise than in the computation (32). As we know that r corresponds to a row in
the relational algebra expression Ti, we can specialize the filter θ, making the references to the columns
of Ti to be equal to the values of the attributes in r. We denote the specialization with θ[r/Ti]. It does
not quite fit the syntax in Figure 37, but its semantics can be straightforwardly defined.
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Finding the derivative sensitivity. Now the derivative sensitivity is found by taking the maximum of
all the derivatives (which are non-negative for the current case, so it is not necessary to take the absolute
value).

DSCσθ(
∏

j T j)(D) = max
T,r

∂

∂xT ;r
(Countσθ(

∏
j T j)(D))

DSCσθ(
∏

j T j)(D) ≤ max
T,r

∑
i: Ti=T

Countσθ[r/Ti](
∏

j,i T j)(D)

Patterns. Above we showed how to compute an upper bound of Countσθ[r/Ti](
∏

j,i T j)(D) for each pos-
sible row r separately. However, the number of possible rows may be very large or even infinite,
making this approach impractical. To make it more practical, we split the space of possible input
rows into “equivalence classes” such that for each row r in an equivalence class X, the derivative
Countσθ[r/Ti](

∏
j,i T j)(D) is the same. Sometimes, we may use an upper bound instead of the actual deriva-

tive and require only the upper bounds to be the same within an equivalence class. This reduces the
number of equivalence classes. Each equivalence class can contain rows from only one table.

When computing an upper bound of

DSCσθ(
∏

j T j)(D) ≤ max
T,r

∑
i: Ti=T

Countσθ[r/Ti](
∏

j,i T j)(D)

the quantity Countσθ[r/Ti](
∏

j,i T j)(D) will then depend on both r and i instead of only i (which would make
the number of different variants finite). The number of possible r can be very large. This is where the
equivalence classes become useful. Suppose that θ = θ1 ∧ . . . ∧ θn and some of the θk represent an
equality constraint that equates two columns (these are often used for joining two tables). We take the
transitive closure T of this set of equality constraints. When going through the elements r̃ of

∏
j,i T j,

we use T to determine which cells of r are equal to some of the cells of r̃. These cells can be bound to
concrete values in the expression θ. The values in other cells of r should range over all elements of C;
instead of enumerating all their possible values, we existentially quantify these cells.

Such r is represented as a pattern p ∈ `(T )→ C∪ {∗}, where some cells have concrete values but the
rest (which are existentially quantified) are represented as ∗. For fixed i, the cells where the ∗ occur are
the same for all obtained patterns. Thus the subsets of C`(Ti) represented by different obtained patterns
are disjoint and we can just count the number of times each pattern is obtained. If the tables Ti are all
different then number of summands in

max
T,r

∑
i: Ti=T

Countσθ(
∏

j,i T j)(D)

is 1 and we can simply take the maximum of the counts of the patterns.
However, if the number of summands is greater than 1 then the ∗ do not necessarily occur in the

same places in all the patterns. Then we need to unify the patterns. For example, if from one summand
we obtain a pattern

(∗, 100, ∗)

with count 5 and from another summand the pattern

(1000, ∗, ∗)

with count 10, then we unify the two patterns and get

(1000, 100, ∗)

with count 5 + 10 = 15. In general, we must unify many such patterns. Then we must consider the
unifications of all the subsets of patterns because the unification of a larger subset might not match
anything. To find all those unifications, we use a divide-and-conquer approach, splitting the set of

120
Approved for Public Release; Distribution Unlimited. 



patterns in half, unifying (and sorting) each half recursively, and then merging the results, similarly to
merge sort.

After unification, we have a set of pairs (p, d), each denoting that for all rows r matched by the
pattern p but not by a more specific pattern in the obtained pattern set, there is an upper bound for the
derivative:

∂

∂xT ;r
(Countσθ(

∏
j T j)(D)) ≤ d .

Also, each row r for which the derivative is nonzero, is matched by at least one obtained pattern, exactly
one of these patterns is the most specific (the one that is the unification of all obtained patterns matching
r) and this has the maximum d among the matching patterns.

Now, to compute an upper bound of DSCσθ(
∏

j T j)(D), we simply have to take the maximum of the
obtained d:

DSCσθ(
∏

j T j)(D) ≤ max
p

d = max
p

∑
i: R(p)⊆C`(Ti)

Countσθ[p/Ti](
∏

j,i T j)(D)

Here p ranges over the set of obtained patterns, R(p) is the set of rows matched by the pattern p. The
summation here is the one performed during the unification of patterns, each summand denotes the count
of one of the original patterns before unification. θ[p/Ti] denotes that the columns of Ti (except those
for which there is ∗ in the pattern) in θ there are bound to the values in p (i.e. replaced by constants).

Let us now describe in more details how pattern unification works.

Unification of patterns. Let us consider a table T used in the query. It may be used more than once,
i.e. T = Ti may hold for more than one i. Let I = {i | T = Ti}. The set of possible rows in T is R = C`(T ).
This is the set of rows whose addition or removal is considered when determining the sensitivity of a
query (as opposed to the set of rows DT in the table T in the actual database D). The set of possible
patterns is P = (C∪{∗})`(T )∪{⊥}. We have added the null pattern ⊥ that does not match any row. The set
of rows matched by a pattern p ∈ P, is ρ(p) = {r ∈ R | ∀s ∈ `(T ). p(s) = r(s) ∨ p(s) = ∗} if p , ⊥, and
ρ(⊥) = ∅. The set of rows matched by a pattern set P ⊆ P is

⋃
p∈P ρ(p). The intersection of two patterns

p1,p2 ∈ P is a pattern p1 ∩ p2 ∈ P such that ρ(p1) ∩ ρ(p2) = ρ(p1 ∩ p2). It is easy to see that p1 ∩ p2
exists and is unique. A set of patterns P ⊆ P is disjoint if ∀p1,p2 ∈ P. p1 , p2 ⇒ ρ(p1) ∩ ρ(p2) = ∅.

Consider a fixed i ∈ I. Before, we went through σθ′i (
∏

j,i T j) and obtained a disjoint set of patterns
Pi with a count (multiplicity) for each pattern. Let us call a set of patterns with a (possibly fractional)
multiplicity (in R+) for each pattern, where the multiplicity M(p) of a pattern p is monotonically de-
creasing in the set of matched rows of the pattern (ρ(p1) ⊆ ρ(p2) ⇒ M(p1) ≥ M(p2)), a pattern map.
We would like to take the union

⋃
i∈I Pi but this is not necessarily disjoint. Thus a row may be matched

by more than one pattern, making it difficult to find the represented row(s) with the highest multiplicity.
We need a more general class of pattern sets which can represent

⋃
i∈I ρ(Pi) but each row would

be represented by only one pattern in the set. Let P be a pattern set and let a row r be represented by
the most specific pattern p ∈ P that matches r, i.e. ρ(p) ⊆ ρ(p′) for all p′ ∈ P that match r. Then
ρ(p) =

⋂
{ρ(p′) | p′ ∈ P, r ∈ ρ(p′)} and p =

⋂
{p′ | p′ ∈ P, r ∈ ρ(p′)}. Thus p is unique. To ensure that p

exists, we require that P be closed under intersection. We call such a P a closed pattern set. A disjoint
pattern set can be converted to a closed pattern set by adding the null pattern.

Suppose now that we have two closed pattern sets P1, P2 ∈ P. How do we find a closed pattern set
P ∈ P such that ρ(P) = ρ(P1) ∪ ρ(P2)? The naive method is to compute P as P1 ∪ P2 ∪ {p1 ∩ p2 | p1 ∈

P1,p2 ∈ P2}. This has complexity Ω(|P1| · |P2|). We will instead use a method similar to the merge of
merge sort, having complexity O(|P1|+ |P2|+ |P|) if the length of patterns |`(T )| is considered constant (it
may be exponential in `(T ), at most O(3`(T )), due to the three recursive MergeCPS calls when computing
B1, B2, B3; but `(T ) is usually small in practice and the worst case is probably not reached very easily,
unless B1 = B2 = B3). |P| is also Θ(|P1| · |P2|) in the worst case but often is much less in practice.
This method assumes that P1 and P2 are input lexicographically sorted (⊥ is considered as the smallest
element, and ∗ is larger than any element of C). Then P is also output lexicographically sorted. Let >
be the largest element of P, i.e. > = (∗, . . . , ∗). Then P∪ {>} = {p1 ∩ p2 | p1 ∈ P1 ∪ {>},p2 ∈ P2 ∪ {>}}.
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• function MergeCPS(P1, P2):

– Input: P1 and P2 are lexicographically sorted lists (without repetitions) of patterns, which
are also closed pattern sets when viewed as sets with added ⊥. All patterns in P1 and P2
must have the same length.

– Output: A lexicographically sorted list (without repetitions) of patterns P, which is also a
closed pattern set when viewed as a set with added ⊥. Also P = {p1 ∩ p2 | p1 ∈ P1,p2 ∈ P2}

holds when P, P1, P2 are viewed as sets.
– If P1 or P2 (or both) is an empty list then return an empty list.
– If the length of the patterns in the input is zero then return a list containing only the empty

pattern (the pattern () with length zero).
– Let A be the sorted list of elements that occur as the first component of some pattern in P1

or P2. Always include ∗ in A even if does not occur as the first component of any pattern.
– For all i ∈ {1, 2}, a ∈ A, let Pia be the lexicographically sorted (possibly empty) list of the

patterns in Pi that begin with a, with the first component (a) removed.
– Let Q∗ = MergeCPS(P1∗, P2∗).
– For all a ∈ A \ {∗}, let Qa = SimpleMerge(B1, B2, B3), where B1 = MergeCPS(P1a, P2a),

B2 = MergeCPS(P1∗, P2a), B3 = MergeCPS(P1a, P2∗).
– For all a ∈ A, let Q′a be the list obtained from Qa by prepending a to each pattern of Qa.
– Let P be the concatenation of the lists Q′a over a ∈ A in ordered by a.
– Return P.

• function SimpleMerge(B1, B2, B3) merges three sorted lists (without repetitions) and removes
the repetitions of elements.

Algorithm 3: Merging closed pattern sets

Algorithm 3 computes {p1 ∩ p2 | p1 ∈ P1,p2 ∈ P2}, i.e. it merges closed pattern sets. We actually
needed to merge pattern maps, i.e. for each pattern p = p1 ∩ p2 in the merged pattern set we also
need to compute the multiplicity M(p) = M(p1) + M(p2). It is easy to see that the monotonicity of
the multiplicity is maintained by the merge (because p = p1 ∩ p2 ∧ p′ = p′1 ∩ p′2 ∧ ρ(p) ⊆ ρ(p′) ⇒
ρ(p1) ⊆ ρ(p′1)∧ρ(p2) ⊆ ρ(p′2)). The monotonicity ensures that the most specific pattern which represents
a row gives the maximum multiplicity. To compute the multiplicities, we need to slightly augment
Algorithm 3. In SimpleMerge, when merging two equal patterns, we retain the copy with the maximum
multiplicity (i.e. the one obtained from the most specific patterns). In MergeCPS, multiplicities are
added when merging patterns with length zero. Elsewhere, multiplicity is always attached to each pattern
and it is not changed when the first component of a pattern is removed or added back.

Now we can merge two closed pattern maps. If we need to merge more than two (i.e. |I| > 2), we
split the set of pattern maps in half, merge each half recursively and then merge the results, similarly
to merge sort. The initial pattern maps need to be lexicographically sorted. If they are not then we can
consider each pattern (with multiplicity) in the pattern maps as a separate pattern map and merge the
many small pattern maps recursively. This is the approach taken in the implementation.

Smoothing the derivative sensitivity. After computing the derivative sensitivity, we need to find a
smooth upper bound of this. We smoothe Countσθ[p/Ti](

∏
j,i T j)(D) separately for each p, i. This gives us

a smooth upper bound for the whole expression because the smoothing distributes over maximum and
sum. In the following, we write simply θ instead of θ[p/Ti]. Let

A(k)(D) = max
d(D,D′)=k

Countσθ(
∏

j,i T j)(D
′) . (33)

This is similar to the sensitivity at distance k from [52]. In our case, k need not be an integer. We
can actually generalize d(D,D′) even more. Let us assume that the difference in rows for one table can
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be more significant than the different of rows in another tables. That is, we can assign a weight Gi to the
table Ti, so that

d((T1,T2, . . . ,Tm), (T ′1,T
′
2, . . . ,T

′
m)) =

m∑
i=1

Gi

∑
x∈Xi

|Ti(x) − T ′i (x)| ,

Gi > 0 .

Putting Gi = 1 for all i, we get a standard definition of sensitivity at distance k. In this section, we
will only need Gi = 1. The more general result will be needed in Section 3.3.9.

Because Countσθ(
∏

j,i T j) is monotonically increasing, we may consider only those D′ that are ob-
tained by adding rows to D. Note that

Countσθ(
∏

j,i T j)(D) ≤ Count∏ j,i σθ(T j)(D) =
∏
j,i

Countσθ(T j)(D) .

Suppose we add k j rows to T j for all j, so that
∑

j G jk j = k. Then

Countσθ(
∏

j,i T j)(D
′) ≤

∏
j,i

Countσθ(T j)(D
′) ≤

∏
j,i

(Countσθ(T j)(D) + k j) .

We can get a better bound by noting that every extra row counted in Countσθ(
∏

j,i T j)(D
′) compared to

Countσθ(
∏

j,i T j)(D) is also an extra row in Count∏ j,i σθ(T j)(D
′) compared to Count∏ j,i σθ(T j)(D). Thus

Countσθ(
∏

j,i T j)(D
′) − Countσθ(

∏
j,i T j)(D) ≤ Count∏ j,i σθ(T j)(D

′) − Count∏ j,i σθ(T j)(D) =

=
∏
j,i

Countσθ(T j)(D
′) −

∏
j,i

Countσθ(T j)(D) ≤
∏
j,i

(Countσθ(T j)(D) + k j) −
∏
j,i

Countσθ(T j)(D)

Countσθ(
∏

j,i T j)(D
′) ≤ Countσθ(

∏
j,i T j)(D) +

∏
j,i

(Countσθ(T j)(D) + k j) −
∏
j,i

Countσθ(T j)(D) .

We already described how to compute Countσθ(
∏

j,i T j)(D). Now we show how to compute the maximum
value of

N =
∏
j,i

(Countσθ(T j)(D) + k j) −
∏
j,i

Countσθ(T j)(D) .

Let n j = Countσθ(T j)(D). Then

N =
∏
j,i

(n j + k j) −
∏
j,i

n j .

We want to find max∑
G jk j=k N. Note that

∂N
∂km

=
∏

j<{i,m}

(n j + k j) =
1

nm + km

∏
j,i

(n j + k j)

∂N
∂(Gmkm)

=
1

Gm(nm + km)

∏
j,i

(n j + k j) .

The derivative is largest for the m for which Gm(nm + km) is smallest. Let us call the product of Gm and
the number of rows in table Tm the modified count of table Tm. Thus we should add rows to the table
with the smallest modified count first. After the modified count of this table reaches the modified count
of the table with the second smallest modified count, we continue by adding rows to those two tables
simultaneously (keeping their modified counts equal), until they reach the modified count of the third
smallest table, and so on, until the whole budget of k units of d-distance (where one unit can be used to
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change the modified count of a table by 1) has been distributed. This algorithm allows finding an upper
bound

A(k) = Countσθ(
∏

j,i T j)(D) +
∏
j,i

(n j + k j) −
∏
j,i

n j

of A(k)(D), but we are interested in finding the smooth upper bound

max
k

e−kβA(k) .

Consider first the logarithm of the argument of max:

L = −kβ + ln A(k)

and the derivative of the logarithm

∂L
∂k

= −β +
1

A(k)
·
∂(A(k))
∂k

.

The derivative of A(k) is

∂(A(k))
∂k

=
∂N

∂(Gmkm)
=

1
Gm(nm + km)

∏
j,i

(n j + k j)

where m = argmin j(G j(n j + k j)). Also

A(k) =
∏
j,i

(n j + k j) −C

where C =
∏

j,i n j − Countσθ(
∏

j,i T j)(D) ≥ 0. Now

∂L
∂k

= −β +
1

Gm(nm + km)
·

∏
j,i(n j + k j)∏

j,i(n j + k j) −C
= −β +

1
Gm(nm + km)

·

(
1 +

C∏
j,i(n j + k j) −C

)
The quantity 1

Gm(nm+km) is decreasing in k when k > 0. Also, because C ≥ 0 and when k > 0, C <∏
j,i(n j + k j), the quantity 1 + C∏

j,i(n j+k j)−C is positive and monotonically decreasing in k when k > 0.

Thus also ∂L
∂k is decreasing in k when k ∈ (0,∞). Note also that limk→∞

∂L
∂k (k) = −β. Thus L is either

decreasing in (0,∞), or increasing in (0, s] and decreasing in [s,∞) for some s. Because L is continuous,
we get that L is either decreasing in [0,∞), or increasing in [0, s] and decreasing in [s,∞) for some s.
The maximum that we want to find is obtained with k = 0 in the first case, and with k = s in the second
case. We know how to compute ∂L

∂k (k). First try to compute ∂L
∂k (0). If it is not defined (a division by zero

occurs) then limk→0+
∂L
∂k (k) = +∞ and we have the second case. Otherwise if ∂L

∂k (0) ≤ 0 then we have
the first case, and if ∂L

∂k (0) > 0 then we have the second case. In the first case, we have the result. In the
second case, we use binary search to find s, which is the value of k where ∂L

∂k (k) changes from positive
to negative.

Let the θ now again denote a general boolean expression, not θ[p/Ti]. Now we have found the
k = s that maximizes L and thus also eL = e−kβA(k). This maximum of eL is a β-smooth upper bound of
Countσθ[p/Ti](

∏
j,i T j)(D). We compute these upper bounds for each p, i and take the sum and the maximum

to get a β-smooth upper bound of DSCσθ(
∏

j T j)(D).
Now we know how to compute a β-smooth upper bound of the derivative sensitivity of queries of

the form σθ(
∏

j T j). We can slightly generalize it to include a projection and renaming of columns at
the top level, as these do not change the count or its derivatives. Thus we can compute a β-smooth upper
bound of the derivative sensitivity of a query of the form ρs1···sk→s′1···s

′
k
(πS (σθ(

∏
j T j))) which is the same

as that of the query σθ(
∏

j T j).
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3.3.8 Derivative Sensitivity for Components. Sensitivity w.r.t. component has been defined in
Def. 3.19-3.22 of Sec. 3.3.5. These definitions are given in terms of global sensitivity, i.e. sensitivity that
does not depend on the actual input. In this section, we extend the notion of sensitivity w.r.t. component
to local and derivative. We mostly deal with A-sensitivity, and a bit with B-sensitivity (Def. 3.19-3.20).
It is more difficult to give intuitive meaning to differential privacy using C- and D-sensitivity (Def. 3.21-
3.22), and we have shown in Theorem 3.12 that they equal to A- and B-sensitivities using Hausdorff
distances that we will consider in this section.

3.3.8.1 Differential Privacy and Local Sensitivity w.r.t. Component. We want a definition that
guarantees indistinguishability for data instances x and x′ that differ in component ρ by a certain amount,
but are otherwise as similar as possible. The definitions of A-B-C-D-sensitivities w.r.t. components are
aimed to match this definition and provide means of achieving it.

In Sec. 3.3.5, for an element x ∈ X, we called an element x′ ∈ X′ that is the closest to x a friend of x

in the set X′ (Definition 3.16), denoted x X′
∼ x′. Let us use a shorthand notation x

ρ
∼ x′ for x

[x′]ρ
∼ x′. Using

x
ρ
∼ x′ to express the property “x and x′ as similar as possible while ρ is fixed”, we get the following

definitions of differential privacy w.r.t. component.

Definition 3.42 (differential A-privacy w.r.t. component). Let X be a metric space, and f : X → D(Y).
The mapping f is ε-differentially A-private w.r.t. component ρ if for all Y ′ ⊆ Y and for all x, x′ ∈ X such
that x

ρ
∼ x′ and dX(x, x′) = 1, the following inequality holds:

Pr[ f (x) ∈ Y ′] ≤ eεPr[ f (x′) ∈ Y ′] .

Definition 3.43 (differential B-privacy w.r.t. component). Let X be a metric space, and f : X → D(Y).
The mapping f is ε-differentially B-private w.r.t. component ρ if for all Y ′ ⊆ Y and for all x, x′ ∈ X such
that x

ρ
∼ x′ and dX([x]ρ, [x′]ρ) = 1, the following inequality holds:

Pr[ f (x) ∈ Y ′] ≤ eεPr[ f (x′) ∈ Y ′] .

The definition of (ε, δ)-differential privacy would be analogous. Both Def. 3.42 and Def. 3.43 are suitable
for cases where the data owner is interested in concealing changes in particular rows and columns of his
datatables. For example, it could be the case where the table is shared by several owners, and one
owner knows only some particular rows or columns in the database, and wants to protect his own data
independently of the values belonging to the other data owners. While Def. 3.42 allows us to compute
more precise bounds for the added noise, Def. 3.43 is better for capturing the change in a particular
class ρ, and corresponds to our intuition of hiding a particular component. If we are dealing with
components that are vector coordinates, and the distance corresponds to `p-norm, we actually have
dX([x]ρ, [x′]ρ) = dX(x, x′).

Local sensitivity w.r.t. component. The difference from the global sensitivity is that the local sensi-
tivity may depend on the input. Similarly to global sensitivity w.r.t. component (Definitions 3.19-3.22),
we list four slightly different definitions of local sensitivity w.r.t. component, now allowing sensitivity
to depend on the function input.

Definition 3.44 (local A-B-C-D- sensitivity w.r.t. component). Let c : P(X)→ R+, where P(X) denotes
the powerset of X. Mapping f : X → Y is called locally c-sensitive w.r.t. the component ρ if for all
X1, X2 ∈ X/ρ we have

A- ∀x1 ∈ X1, x2 ∈ X2 : x1
X2
∼ x2 =⇒ dY ( f (x1), f (x2)) ≤ c(X1) · dX(x1, x2);

B- ∀x1 ∈ X1, x2 ∈ X2 : x1
X2
∼ x2 =⇒ dY ( f (x1), f (x2)) ≤ c(X1) · d̃X(X1, X2);

C- ∀X′1 ⊆ X1, X′2 ⊆ X2 : X′1
X2
∼ X′2 =⇒ d̃Y ( f (X′1), f (X′2)) ≤ c(X1) · d̃X(X′1, X

′
2);

D- ∀X′1 ⊆ X1, X′2 ⊆ X2 : X′1
X2
∼ X′2 =⇒ d̃Y ( f (X′1), f (X′2)) ≤ c(X1) · d̃X(X1, X2).
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Alternatively, we could define c : X → R+ on particular points x1 ∈ X1. Such definition would give
more precise bounds since c(x) needs to give a suitable bound only for x, and not necessarily for all
other elements of [x]ρ. On the other hand, c([x]ρ) is more useful if some data is missing and only the
ρ-class of the input is known, e.g. in the case of shared database.

The proofs of local sensitivities w.r.t. composed components are analogous to those of global sen-
sitivity. As an example, we show the composition proof local A-sensitivity, and the other types of local
sensitivities are analogous. We see that another reason for taking c([x]ρ) is composability.

Theorem 3.57. Let (ρ, σ) be an adjacent component pair (Def. 3.23). Let the mapping f : X → Y be cρ
and cσ locally A-sensitive w.r.t. ρ and σ respectively. Then, f is (cρ + cσ) locally A-sensitive w.r.t ρuσ.

Proof. Let x, x′ ∈ X be such that x
[x′]ρuσ
∼ x′. We need to show that dY ( f (x), f (x′)) ≤ (cρ + cσ)([x]ρuσ) ·

dX(x, x′). Since (ρ, σ) is a adjacent pair, there exists x′′ ∈ X such that x
[x′]ρ
∼ x′′ and x′ [x]σ

∼ x′′. Since

x′′ ∈ [x′]ρ and x′′ ∈ [x]σ, we have [x′′]ρ = [x′]ρ, [x′′]σ = [x]σ, and x
[x′′]ρ
∼ x′′, x′ [x′′]σ

∼ x′′, so we can
apply A-sensitivity.

• dY ( f (x), f (x′′)) ≤ cρ([x̂]ρ) · dX(x, x′′) for x̂ ∈ {x, x′′};

• dY ( f (x′′), f (x′)) ≤ cσ([x̄]σ) · dX(x′′, x′) for x̄ ∈ {x′, x′′}.

Since x
[x′]ρ
∼ x′′, the element x′ cannot be closer to x than x′′ is, so dX(x, x′′) ≤ dX(x, x′).

Since x′ [x]σ
∼ x′′, the element x cannot be closer to x′ than x′′ is, so dX(x′′, x′) ≤ dX(x, x′).

We now estimate dY ( f (x), f (x′)) from above, using the triangle inequality. The tricky part is that the
definition of local sensitivity does not allow to use cσ([x]σ) as a multiplier for dX(x′′, x′), and cρ([x′]ρ)
as a multiplier for dX(x′′, x). However, we would like to get new sensitivity cρσ that would depend
either only on x, or only on x′. Since the intermediate point x′′ shares its σ-class with x, we have
cσ([x′′]σ) = cσ([x]σ). Taking x̂ := x and x̄ := x′′ gives us

dY ( f (x), f (x′)) ≤ dY ( f (x), f (x′′)) + dY ( f (x′′), f (x′))

≤ cρ([x]ρ) · dX(x, x′′) + cσ([x′′]σ) · dX(x′′, x′)

≤ cρ([x]ρ) · dX(x, x′) + cσ([x′′]σ) · dX(x, x′)

= cρ([x]ρ) · dX(x, x′) + cσ([x]σ) · dX(x, x′)

= (cρ + cσ)([x]ρuσ) · dX(x, x′) .

Here the function addition is defined as (cρ+cσ)([x]ρuσ) := cρ([x]ρ)+cσ([x]σ). The definition is correct,
since the classes [x]ρ and [x]σ are uniquely determined by [x]ρuσ. �

Sensitivity w.r.t. basis change. Let us now assume that the distances in X are `p-norms, and their
generalization to sets is a Hamming distance – we want that the vector distances would be subadditive
w.r.t. distances of their coordinates.

Let X = (X1, . . . , Xn) be a set of vectors ~x = (x1, . . . , xn), where the coordinates xi are independent.
Suppose that we know the sensitivity ci of some function f : X → Y w.r.t. each component ρi, which is
the i-th coordinate of ~x. We want to find the sensitivities of the same function w.r.t. some other set of
components ~z = (z1, . . . , zm), such that xi is uniquely determined by z1, . . . , zm for all i ∈ [n]. We may
think that the vector ~z represents m equivalence classes of ~x w.r.t. m different components, such that the
m classes uniquely determine ~x. Let g : Z → X be such that ~x = g(~z). We are interested in sensitivity of
the function f ◦ g w.r.t. the component σi that corresponds to the i-th coordinate of ~z.

First of all, we may take Theorem 3.31 and extend it to local sensitivity.

Theorem 3.58. Let g : Z → X be locally cg sensitive w.r.t. component σ. Let f : X → Y be locally c f

sensitive. Then, the function composition f ◦ g is λZ′.cg(Z′) · c f (sup{c f (g(z))|z ∈ Z′}) sensitive w.r.t. σ,
using any definition of sensitivity (A-,B-,C-,D-).
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Proof. If global sensitivity was considered as in Theorem 3.31, we would get global sensitivity cg · c f in
all four cases. For local sensitivity, this value would also depend on the particular input. First, assume
that only cg is local, and c f is global. For z ∈ Z, we would directly get cg([z]σ)·c f (A- and B- sensitivity).
We would also get cg(Z′) · c f for a subset of a class Z′ ∈ Z/σ (C- and D- sensitivity).

We may actually obtain a better bound than the global sensitivity c f , since g(z) does not take arbitrary
values, and the set of possible inputs for f is constrained. Knowing that z ∈ Z′, the set of possible inputs
for c f is {g(z)|z ∈ Z′}. We take sup of c f applied to this set. �

A similar bound can be obtained if we treat g as a set functions g1, . . . , gm, each gi mapping z to a
particular equivalence class of x. This is stated in the next theorem.

Theorem 3.59. Let ρ1, . . . , ρn be pairwise adjacent equidistant components of a set X, such that X/ρ1 ×

· · · × X/ρn ∼ X, and h : X/ρ1 × · · · × X/ρn → X is the corresponding natural isomorphism. Let
f : X → Y, and let ci be the local sensitivity of f w.r.t. ρi for all i ∈ [n]. Let Z be a set, and let
gi : Z → X/ρi be functions that satisfy ∀x ∈ X ∃z ∈ Z ∀i ∈ [n] : [x]ρi = gi(z). Let σ1, . . . , σm be
pairwise adjacent equidistant components of Z, and ci

j the sensitivity of gi w.r.t. σ j. Let g : Z → X
be defined as g(z) := h(g1(z), . . . , gn(z)). The sensitivity of the function f ◦ g w.r.t. the component σ j is
c(Z′) =

∑n
i=1 sup{ci(gi(z))|z ∈ Z′} · ci

j(Z
′).

Proof. Let local sensitivity w.r.t. component be defined as in Def. 3.44. Since the components ρi and
σi are equidistant, A- and B-sensitivity are equivalent, so without loss of generality, let us consider
A-sensitivity. We have

x
[x′]ρi
∼ x′ =⇒ dY ( f (x), f (x′)) ≤ ci([x]ρi) · dX(x, x′) .

Since the components ρi are pairwise adjacent, for any pair x, x′ ∈ X, there is a sequence of n + 1
elements xi starting with x1 = x and ending with xn+1 = x′, where [xi]ρi = [x]ρi , [xi+1]ρi = [x′]ρi , and

xi [x′]ρi
∼ xi+1 for all i ∈ [n]. Using triangle inequality, for all x, x′ ∈ X, we get

dY ( f (x), f (x′)) ≤
n∑

i=1

dY ( f (xi), f (xi+1)) ≤
n∑

i=1

ci([xi]ρi) · dX(xi, xi+1) .

Since the components ρi are equidistant, and xi [x′]ρi
∼ xi+1, we have dX(xi, xi+1) = d̃X([x]ρi , [x′]ρi) for

all i ∈ [n]. On the other hand, there exist z, z′ ∈ Z such that gi(z) = [x]ρi and gi(z′) = [x′]ρi for all i ∈ [n].
Together, this gives us

dY ( f (x), f (x′)) ≤
n∑

i=1

ci([x]ρi) · dX(xi, xi+1)

=

n∑
i=1

ci([x]ρi) · d̃X([x]ρi , [x′]ρi)

=

n∑
i=1

ci([x]ρi) · d̃X(gi(z), gi(z′)) .

To proceed further, we need to know the sensitivities of functions gi w.r.t. distances d̃X(gi(z), gi(z′)).

Since we estimate the local sensitivity of f ◦ g w.r.t. the component σ j, we assume z
[z′]σ j
∼ z′. Let

ci
j be the local sensitivity of gi w.r.t. σ j. By definition of local sensitivity w.r.t. component, we have
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d̃X(gi(z), gi(z′)) ≤ ci
j([z]σ j) · dZ(z, z′). We get

dY ( f (x), f (x′)) ≤
n∑

i=1

ci([x]ρi) · d̃X(gi(z), gi(z′))

≤

n∑
i=1

ci([x]ρi) · c
i
j([z]σ j) · dZ(z, z′)

≤

n∑
i=1

ci(gi(z)) · ci
j([z]σ j) · dZ(z, z′) .

By definition, g(z) = h(g1(z), . . . , gn(z)) = h([x]ρ1 , . . . , [x]ρn), and since h is the natural isomorphism,
we have h([x]ρ1 , . . . , [x]ρn) = x. Hence, we may substitute x = g(z), x′ = g(z′), and get

dY ( f g(z), f g(z′)) ≤
n∑

i=1

ci(gi(z)) · ci
j([z]σ j) · dZ(z, z′) .

This still does not look like local sensitivity w.r.t. component, since ci(gi(z)) depends on z, not [z]σ j .
The bound is nevertheless valid and can be used to compute noise for differential privacy, but it is not
composable. To make it composable, we may define a valid upper bound ĉi(Z′) = sup{ci(gi(z)) | z ∈ Z′}
for Z′ ∈ Z/σ j, that now depends only on the σ j-class of z. The sensitivity of f ◦ g w.r.t. the component
σ j will then be the function c(Z′) =

∑n
i=1 ĉi(Z′) · ci

j(Z
′). �

The same derivation could be applied to global sensitivity. In that case, the sensitivity would be a
constant, and we would get

dY ( f g(z), f g(z′)) ≤

 n∑
i=1

ci · ci
j

 · dZ(z, z′) .

Example 3.5. The function g may express transition to polar coordinates: (x1, x2) :=

(
√

z2
1 + z2

2, arctan x1
x2

). We have c1
1 = c1

2 = 1, and the functions c2
1, c2

1 are more complicated. If we
apply to the radius some function f whose sensitivity c f we already know, we may compute how the
output actually depends on the particular coordinates. For If we have f (x1, x2) = 2 · x1, then c1 = 2 and
c2 = 0. In this case, we do not need to estimate c2

1 and c2
1 since they are not used by f . We get that the

sensitivity w.r.t. coordinate z j is c1 · c1
j = 2. This means that, if we shift the value of z1 or z2 by k, then

the final output will differ in at most 2k. Indeed, we cannot achieve better results for z1 in this particular
case. If z2 = 0, then we have y = z1, so z1 affects the output as well as y.

Derivative sensitivity w.r.t. component. If we define a multivariate function f : X1 × · · · × Xn → R

for some X1, . . . , Xn, intuitively, we would like the partial derivative d f~x
dXi

(assuming that it is defined
in Xi and exists on the point ~x) to be related to the derivative sensitivity w.r.t. component Xi, since
this value describes how the function output changes with Xi. This is motivated by Definition 3.39 of
derivative sensitivity for row multiplicities, where Xi = R for all i. Like Definition 3.39, it depends on
~x ∈ (X1, . . . , Xn), and, hence, on the other components X j for j , i.

In some cases, when only the equivalence class of ~x is known, we may want that the other compo-
nents should remain “invisible”. This can be necessary e.g. in the case where the party who chooses a
suitable ε for differential privacy sees only some part of the database. An upper bound that depends only
on xi ∈ Xi would be sup~z∈(X1,...,Xn):(zi=xi) ||

d f~z
dXi
||, defined as ∞ if the supremum does not exist. We see that

we would get a more precise bound having an entire vector ~x, and in practice it may be more reasonable
to compute d f~x

dXi
for an actual database ~x using privacy-preserving computation methods.
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Complementary components. Let us now consider univariate f : X → R (the space X can be multi-
dimensional as well). We want to define sensitivity w.r.t. some abstract component ρ of X. If we want to
apply the notion of derivative w.r.t. [x]ρ, we first need to rewrite the function f in such a way that, instead
of one variable x ∈ X, it takes at least two variables, one of which is [x]ρ, and the other one contains
all information that is sufficient to reconstruct x and evaluate f on it. Since we only have ρ, we need to
define the other component (let us denote in ρ) ourselves. It should always be possible to reconstruct x
from [x]ρ and [x]ρ, and on the other hand, both [x]ρ and [x]ρ should be necessary to reconstruct x, so
that sensitivity w.r.t. ρ would not be 0. Taking into account these two properties, we get the following
definition.

Definition 3.45 (complementary component). Let ρ be a component of X. The complementary compo-
nent of ρ, denoted ρ, is the component of X that satisfies X/(ρ u ρ) ∼ X and X/(ρ t ρ) ∼ {X}.

In this definition, ρ u ρ is the finest possible component (each element in its own class), and ρ t ρ is
the coarsest possible (all elements are in the same class). The component ρ that satisfies this definition
is in general not unique.

Example 3.6. Let X = {a, b, c}, and (a, b) ∈ ρ, but (b, c), (a, c) < ρ. The two possible candidates for ρ
are:
• σ1 such that (a, c) ∈ σ1, (a, b), (b, c) < σ1;

• σ2 such that (b, c) ∈ σ2, (a, b), (a, c) < σ2.
The complementary component ρ is not unique even for the simple case of vectors with `p norms. If

we have ~x = (x1, x2), and ρ is such that [~x]ρ = x1, then we may choose [~x]ρ = x2 as well as [~x]ρ = x1 +x2.
In the second case, any function will first need to compute x2 = (x1 + x2) − x1. The choice of ρ does not
affect the actual sensitivity w.r.t. ρ in any way, but formally, the derivatives are different. The problem
is that [~x]ρ = x1 + x2 changes with x1, while for [~x]ρ = x2 it remains the same.

We see that the definition of sensitivity w.r.t. ρ is ambiguous, dependent on the particular choice of
ρ. The choice of ρ should depend on the distance that defines the relation x

ρ
∼ x′, describing what we

actually want to hide. In Example 3.6, x
ρ
∼ x′ holds for dX((x1, x2), (x′1, x2)) =

∣∣∣x1 − x′1
∣∣∣, and in general

not for dX((x1, x1 + x2), (x′1, x
′
1 + x2)) = 2

∣∣∣x1 − x′1
∣∣∣. We want that the definition of ρ would be somehow

related to the distance dX(·, ·). We may remove the property X/(ρ t ρ) ∼ {X} if we replace it with an
alternative property that prevents X/ρ ⊆ X/ρ.

Definition 3.46 (orthogonal complement). Let ρ be a component of X. The orthogonal complement of
ρ, denoted ρ, is a component of X that satisfies the following properties:
• X/(ρ u ρ) ∼ X;

• x
ρ
∼ x′ =⇒ [x]ρ = [x′]ρ.

The orthogonal complement does not exist in general. It does not exist for the components on the
set X = {a, b, c} considered in Example 3.6. Moreover, the orthogonal complement is still not unique.
However, if there are several orthogonal complements, any of them would give a valid bound for x and
x′ that satisfy x

ρ
∼ x′.

The finest orthogonal complement can be constructed from ρ as follows. First, define x ρ x′ and
x′ ρ x for all x

ρ
∼ x′, and then extend the relation to transitive closure. The component ρ definitely

cannot be finer, since all relations x ρ x′ are necessary for a component to be an orthogonal complement,
so if X/(ρ u ρ) ∼ X does not hold, then the orthogonal complement does not exist.

Definition 3.47. Let ρ be a component of X. The minimal orthogonal complement of ρ, denoted ρ, is
the component of X that is defined as follows:
• x ρ x for x ∈ X;

• x ρ x′, x′ ρ x for all x
ρ
∼ x′;
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• x ρ x′ ∧ x′ ρ x′′ =⇒ x′ ρ x′′ for all x, x′, x′′ ∈ X.

The definition is correct since ρ is by construction an equivalence relation. We need to show that it
is an orthogonal complement.

Conjecture 3.60. The minimal orthogonal complement ρ of ρ is an orthogonal complement of ρ when-
ever X/(ρ u ρ) ∼ X.

Proof. The condition X/(ρ u ρ) ∼ X is an assumption. Since x ρ x′ and x′ ρ x are defined for all x
ρ
∼ x′,

we have x
ρ
∼ x′ =⇒ [x]ρ = [x′]ρ. �

We use the notion of minimal orthogonal complement to define derivative sensitivity w.r.t. component.

Definition 3.48 (A-derivative sensitivity w.r.t. component). Let f : X → R. Let ρ be a component of X.
Let σ := ρ be the minimal orthogonal complement of ρ, and ψ the isomorphism X/(ρ u σ) → X. The
derivative sensitivity w.r.t. component ρ is the following mapping from X to R+:

DSρf (x) = ||
d( f ◦ ψ)([x]ρ,[x]σ)

dρ
|| .

Definition 3.49 (B-derivative sensitivity w.r.t. component). Let f : X → R. Let ρ be a component of X.
Let σ := ρ be the minimal orthogonal complement of ρ, and ψ the isomorphism X/(ρ u σ) → X. The
derivative sensitivity w.r.t. component ρ is the following mapping from X/ρ to R+:

D̂S
ρ
f (X

ρ) = sup
x∈Xρ
||

d( f ◦ ψ)([x]ρ,[x]σ)

dρ
|| .

Intuitively, A- and B-derivative sensitivity w.r.t. component ρ can be used to make a function f A-
and B-differentially private w.r.t. ρ, using e.g. the same construction as in Theorem 3.53. For this, we
need to define more formally what the derivatives w.r.t. [x]ρ are. We can use Theorem 3.53 directly
only if the set X/ρ is isomorphic to R. Alternatively, we can generalize Theorem 3.53. We will do it in
Sec. 3.3.8.2 where we provide more concrete definitions of components and derivative sensitivity w.r.t.
them.

Complementary components that depend on the inputs. As discussed in Example 3.6, the minimal
orthogonal complement of ρ on X = {a, b, c,}, where (a, b) ∈ ρ, (b, c) < ρ, (a, c) < ρ does not exist. The
problem is that the two candidate components σ1 and σ2 are only partially suitable. For a

ρ
∼ c, we have

[a]σ1 = [c]σ1 , and for b
ρ
∼ c, we have [b]σ2 = [c]σ2 , but neither σ1 nor σ2 satisfies both. In practice, we

could find separately the sensitivity for a
ρ
∼ c and b

ρ
∼ c using different definitions of ρ, and then find an

upper bound that satisfies both.
The construction of such set of components is always possible. For all x, x′ ∈ X satisfying x

ρ
∼ x′,

define a unique component ρx,x′ such that y ρx,x′ y′ ⇐⇒ (x = y ∧ x′ = y′) ∨ (x = y′ ∧ x′ = y). Each
ρx,x′ puts together only elements that have been in different components of ρ, so we have ∀i ∈ X × X :
X/(ρ u ρi) ∼ X and x

ρ
∼ x′ =⇒ !∃ i ∈ X × X : [x]ρi

= [x′]ρi
.

Definition 3.50. Let ρ be a component of X. The minimal orthogonal complement set of ρ, denoted
(ρi)i∈X×X , is a set of components of X defined as follows:

• x ρi x for x ∈ X, i ∈ X × X;

• x ρx,x′ x′ and x′ ρx,x′ x for all x
ρ
∼ x′;

• x ρi x′ ∧ x′ ρi x′′ =⇒ x′ ρi x′′ for all x, x′, x′′ ∈ X, i ∈ X × X.

We can now give a generalization of Definition 3.49.
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Definition 3.51 (B-derivative sensitivity w.r.t. component (generalization)). Let f : X → R. Let ρ be a
component of X. Let (σi)i∈X×X be the minimal orthogonal complement set of ρ, and ψi for i ∈ X × X the
isomorphism X/(ρ u σi) → X. The derivative sensitivity w.r.t. component ρ is the following mapping
from X/ρ to R+:

D̃Sρf (X
ρ) = sup

i∈X×X,x∈Xρ
||

d( f ◦ ψi)([x]ρ,[x]σ)

dρ
|| .

While Definition 3.51 looks complicated, the idea is still the same as for generalization of A-
sensitivity to B-sensitivity. Namely, given [x]ρ, we compute A-sensitivity for all possible z ∈ X such
that [z]ρ = [x]ρ (each z may have its own complementary component σz), and take the worst-case (i.e.
largest) derivative sensitivity over z ∈ X.

3.3.8.2 Derivative Sensitivity for Banach Spaces. If we want to use derivative sensitivity w.r.t. com-
ponents in practice, it is not sufficient just to have the definitions. We also need a way to efficiently
compute the derivative sensitivity, and convert it to a differential privacy mechanism. In this section, we
show how it can be done for Banach spaces.

Banach spaces. First, we recall some basics of Banach space theory. Banach spaces do not allow
arbitrary metrics and instead require norms but many useful metrics can also be viewed as norms. We
will further denote vectors by ~x, and norms by ||·||N , where N specifies the particular norm. Formal
definition of a norms and a seminorm is given in Definition 3.14.

Definition 3.52 (Banach space). A Banach space is a vector space with a norm that is complete (i.e.
each converging sequence has a limit).

Banach spaces combine vector spaces with distances, which are necessary for defining differential
privacy. The completeness property allows us to define derivatives. Using the norm of a Banach space,
we may generalize the notion of continuous function from real numbers to Banach spaces.

Definition 3.53 (Continuous function in Banach space). Let V and W be Banach spaces, and U ⊂ V an
open subset of V . A function f : U → W is called continuous if

∀ε > 0 : ∃δ > 0 : ||x − x′||V ≤ δ⇒ || f (x) − f (x′)||W ≤ ε.

The notion of the derivative of a function can be also extended to Banach spaces.

Definition 3.54 (Fréchet derivative). Let V and W be Banach spaces, and U ⊂ V an open subset of V .
A function f : U → W is called Fréchet differentiable at x ∈ U if there exists a bounded linear operator
d fx : V → W such that limh→0

|| f (x+h)− f (x)−d fx(h)||W
||h||V

= 0. Such operator d fx is called Fréchet derivative of
f at the point x.

The mean value theorem can be generalized to Banach spaces (to a certain extent).

Theorem 3.61 (Mean value theorem ([55], Chapter XII)). Let V and W be Banach spaces, and U ⊂ V
an open subset of V. Let f : U → W, and let x, x′ ∈ U. Assume that f is defined and is continuous at
each point (1 − t)x + tx′ for 0 ≤ t ≤ 1, and differentiable for 0 < t < 1. Then there exists t∗ ∈ (0, 1) such
that

|| f (x) − f (x′)||W ≤ ||d fz||V→W ||x − x′||V

for z = (1 − t∗)x + t∗x′, where ||·||V→W denotes the norm of operator that maps from V to W.
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Derivative sensitivity in Banach spaces. Recall that, for row multiplicities, we defined derivative
sensitivity as DS f (~x) = maxi

∣∣∣∣ ∂ f
∂xi

(~x)
∣∣∣∣, where xi denotes the i-th component of the vector of variables ~x

(Definition 3.39). We extend it to the case where X is any Banach space:

Definition 3.55. Let X be (an open convex subset of) a Banach space. Let f : X → R. Let f be Fréchet
differentiable at each point of X. The derivative sensitivity of f is the following mapping from X to R+,
where R+ denotes the set of all non-negative real numbers:

DS f (~x) = ‖d f~x‖ .

where d f~x is the Fréchet derivative of f at ~x and ‖d f~x‖ is the operator norm of d f~x.

We generalize the results of Sec. 3.3.7 from R to Banach spaces. First, we extend the definition of
smoothness to the case where X is any Banach space:

Definition 3.56. Let p : X → R and β ∈ R. The mapping p is β-smooth, if p(~x) ≤ eβ·‖~x
′−~x‖ · p(~x′) for all

~x, ~x′ ∈ X.

We provide generalizations of Theorem 3.53 and Theorem 3.56 to the case where X is a Banach space:

Theorem 3.62. Let γ, b, β ∈ R+, γ > 1. Let ε = (γ + 1)(b + β). Let η be a random variable distributed
according to GenCauchy(γ). Let c be a β-smooth upper bound on DS f for a function f : X → R. Then
g(~x) : f (~x) +

c(~x)
b · η is ε-differentially private.

Theorem 3.63. Let b, β, ε ∈ R+, b > 0, b + β ≤ ε. Define k = 1 + (ε − b)/β. Let δ = e−k. Let η
be a random variable distributed according to Lap(1). Let c be a β-smooth upper bound on DS f for a
function f : X → R, where X is Banach space and dX is the distance corresponding to the norm of X.
Define g(~x) := f (~x) +

c(~x)
b · η. Then

• for any ~x1, ~x2 ∈ X, (ε · L, 2δ) ∈ dDP(g(~x1), g(~x2)), where L = dX(~x1, ~x2);

• (in particular,) g is (ε, 2eεδ)-differentially private.
If, additionally for any two points ~x1, ~x2 ∈ X there exists a shortest path h in X, such that c is monotonic
along that path, then the factor “2” in previous statements can be removed.

The proofs of these theorems is analogous to the proofs of Theorem 3.53 and Theorem 3.56, so we
do not repeat them here. The only difference is that we are using Definition 3.56 for smoothness, Def-
inition 3.54 for differentiability, and the mean value theorem for Banach spaces and Fréchet derivative
(Theorem 3.61).

The derivative sensitivity of Definition 3.55 depends on the actual input ~x and hence corresponds to
A-sensitivity w.r.t. component (Definition 3.48). It can be generalized to B-sensitivity (Definition 3.49)
in a straightforward way by taking supz∈X,[~z]ρ=[~x]ρ(DS f (~z)). The partitioning ρ defines the norm ||·|| of the
underlying Banach space. While we cannot construct a Banach space for any possible ρ, we can do it
for certain classes of ρ.

From components to Banach spaces. Formally, a component is an equivalence relation ρ on a set X.
This relation can be viewed as a partitioning of X to disjoint subsets. For these subsets, we can define
a distance induced by the distance dX(·, ·) on X. In our practical applications, the Hausdorff distance
seems to be the most reasonable choice, since it gives an upper bound on the distance between the
closest elements of two subsets, and it the context of databases it would mean that we are considering
some change in one particular column, letting all other columns be as similar as possible (ideally, they
should remain the same, but it is not always possible).

Let ρ1, . . . , ρn be such that X/(ρ1u· · ·uρn) ∼ X. In order to apply derivative sensitivity, we need that
the partitionings X/ρi would form some Banach spaces, not necessarily over real numbers. The norm in
this Banach space should correspond to the distance d̃X(·, ·) defined on elements of X/ρi.
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One possibility is to embed a metric space to a Banach space using Kuratowski embedding. For
any metric space (M, d), denoting by Cb(M) the Banach space of all bounded continuous real-valued
functions on M with the supremum norm, we can take the map Φ : M → Cb(M) defined by Φ(x)(y) :=
d(x, y) − d(x0, y) for some fixed x0 ∈ M. This map transforms elements of M to elements of the Banach
space Cb(M), and it is an isometry. In our case M := X/ρ, and the distance is d̃X(·, ·). The functions
f : X/ρ → P(R) should now be transformed to analogous functions f̂ : Cb(X/ρ) → P(R) as f̂ (X) :=
f (Φ−1(X)). We may take a more elaborated isometry Φ if it is possible.

Example 3.7. Let X be a set of vectors of length n, equipped with `p-norm. Let ρi be defined in a way
x ρi x′ ⇐⇒ xi = x′i . For all X1, X2 ∈ X/ρi, we have d̃X(X1, X2) = max

~x
X2
∼ ~x′

(dX(~x, ~x′)) =
∣∣∣xi − x′i

∣∣∣,
where xi and x′i do not depend on the choice of ~x ∈ X1 and ~x′ ∈ X2. Fixing ~x0 := [~0]ρi , we get
Φ(X1)(X2) := d̃X(X1, X2) − d̃X([~0]ρi , X2) =

∣∣∣xi − x′i
∣∣∣ − ∣∣∣0 − x′i

∣∣∣. Here each function Φ(X1) is in one-to-one
correspondence with a real number xi, which is the same for all ~x ∈ X1. A simpler way to define an
isometry would be Ψ : X/ρi → R as Ψ([x]ρi) = xi, which is defined correctly since xi is the same for all
elements of [x]ρi . This function is an isometry w.r.t. the distance |·| of R since d̃X([~x]ρi , [~x′]ρi) =

∣∣∣xi − x′i
∣∣∣

for all ~x, ~x′ ∈ X.

Coming up with an isometry Φ for a given component ρ and operating with smooth derivatives in
resulting Banach space can be difficult in practice. Let us provide a simpler way of constructing Banach
spaces, which is well suitable for databases. The following three lemmas give us the basic combina-
tors for statements about derivative sensitivity, reducing the task of finding the derivative sensitivity of
a particular function with respect to a particular norm on its domain, to a series of tasks from basic
calculus.

Lemma 3.64. Let f : Rn → R, and let Rn be equipped with the norm `p. Then ‖d f~x‖ is the `q-norm of
the gradient vector ∇ f (~x), where q =

p
p−1 (if p = 1 then q = ∞ and vice versa).

Proof. Let ∇ f (~x) = (ai)n
i=1. Assuming ai , 0 for all i (otherwise remove the indices i for which ai = 0

from the summations containing ai):

|d f~x(~y)| = |∇ f (~x) · ~y| ≤
n∑

i=1

|ai||yi|

=
∑
|ai|

p
p−1 ·

|yi|

|ai|
1

p−1

≤

(∑
|ai|

p
p−1

)  ∑
|yi|

p∑
|ai|

p
p−1


1
p

=

(∑
|ai|

p
p−1

) p−1
p (∑

|yi|
p
) 1

p

= ‖∇ f (~x)‖q · ‖~y‖p

for all ~y ∈ X. The second inequality used here is the weighted power means inequality with exponents 1
and p. Equality is achievable (and not only for ~y = 0): for example, by taking yi = |ai|

1
p−1 . Thus ‖∇ f (~x)‖q

is the smallest value of c such that for all ~y, |d f~x(~y)| ≤ c · ‖~y‖p, i.e. it is the operator norm ‖d f~x‖.
The cases p = 1 and p = ∞ can be achieved as limits of the general case. �

The `q-norm is the dual norm of the `p-norm; we denote q by dual(p).

Lemma 3.65. Let f : Rn → R have the derivative sensitivity g with respect to the norm N. Let a · N
denote the scaling of the output of the norm N by a ∈ R+. Then f has the derivative sensitivity g/a with
respect to a · N.
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Proof. The derivative sensitivity of f at ~x is the operator norm of a particular linear operator d f~x. It is
equal to the minimal possible c, such that for all vectors ~y, the absolute value of of d f~x(~y) ∈ R is at most
c times larger than the norm ‖~y‖N . If we replace N with a · N, then the norm ‖~y‖a·N is increased by a
times. Hence we may now reduce c by a times and still have the inequality. �

Lemma 3.66. (a) Let (V1, ‖ ‖V1) and (V2, ‖ ‖V2) be Banach spaces. Let V = V1 × V2. Let for all
(v1, v2) ∈ V,

‖(v1, v2)‖V = ‖(‖v1‖V1 , ‖v2‖V2)‖p

Then (V, ‖ ‖V ) is a Banach space.
(b) Suppose furthermore that a function f : V → R is differentiable at each point of V. Fix a point
v = (v1, v2) ∈ V. Let g : V1 → R be such that g(x1) = f (x1, v2) and h : V2 → R be such that
h(x2) = f (v1, x2). Let c1 = DSg(v1) and c2 = DSh(v2). Then DS f (v) = ‖(c1, c2)‖q where ‖ ‖q is the dual
norm of ‖ ‖p.

Proof. (a) We first prove that (V, ‖ ‖V ) is a normed vector space. We prove only the triangle inequality.
The rest of the properties of norm are easy to check.

‖(v1, v2) + (v′1, v
′
2)‖V = ‖(v1 + v′1, v2 + v′2)‖V = ‖(‖v1 + v′1‖V1 , ‖v2 + v′2‖V2)‖p ≤

≤ ‖(‖v1‖V1 + ‖v′1‖V1 , ‖v2‖V2 + ‖v′2‖V2)‖p ≤

≤ ‖(‖v1‖V1 , ‖v2‖V2)‖p + ‖(‖v′1‖V1 , ‖v
′
2‖V2)‖p =

= ‖(v1, v2)‖V + ‖(v′1, v
′
2)‖V

The first inequality uses the triangle inequalities of ‖ ‖V1 and ‖ ‖V2 and the monotonicity of ‖ ‖p in
the absolute values of the coordinates of its argument vector. The second inequality uses the triangle
inequality of ‖ ‖p.

Thus (V, ‖ ‖V ) is a normed vector space. We now prove that it is a Banach space. Consider a Cauchy
sequence {xn} in V . Then

∀ε > 0. ∃N ∈ N. ∀m, n > N. ‖xm − xn‖V < ε

Let xn = (yn, zn) where yn ∈ V1 and zn ∈ V2. Note that

‖ym − yn‖V1 = ‖(ym − yn, 0)‖V ≤ ‖(ym − yn, zm − zn)‖V = ‖xm − xn‖V

Thus
∀ε > 0. ∃N ∈ N. ∀m, n > N. ‖ym − yn‖V1 < ε

i.e. {yn} is a Cauchy sequence in V1. Because V1 is a Banach space, there exists y ∈ V1 such that

lim
n→∞
‖yn − y‖V1 = 0

Similarly, we get that there exists z ∈ V2 such that

lim
n→∞
‖zn − z‖V2 = 0

Let x = (y, z). Note that

‖xn − x‖V = ‖(yn − y, zn − z)‖V = ‖(‖yn − y‖V1 , ‖zn − z‖V2)‖p

Then, because ‖ ‖p is continuous,

lim
n→∞
‖xn − x‖V = ‖( lim

n→∞
‖yn − y‖V1 , lim

n→∞
‖zn − z‖V2)‖p = ‖(0, 0)‖p = 0

Thus V is a Banach space.
(b)

c1 = ‖dgv1‖
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c2 = ‖dhv2‖

Note that

lim
x1→0V1

|g(v1 + x1) − g(v1) − d fv(x1, 0)|
‖x1‖V1

=

= lim
x1→0V1

| f (v1 + x1, v2) − f (v1, v2) − d fv(x1, 0)|
‖(x1, 0)‖V

=

= lim
(x1,0)→0V

| f (v + (x1, 0)) − f (v) − d fv(x1, 0)|
‖(x1, 0)‖V

=

= lim
x→0V

| f (v + x) − f (v) − d fv(x)|
‖x‖V

= 0

The last equality holds by the definition of Fréchet derivative. The equality before that holds because
the limit on the right-hand side exists. Then, again by the definition of Fréchet derivative, we get
that the linear map that maps x1 to d fv(x1, 0), is dgv1 . Thus d fv(x1, 0) = dgv1(x1). Similarly, we get
d fv(0, x2) = dhv2(x2). Now

|d fv(x1, x2)| = |d fv(x1, 0) + d fv(0, x2)| =

= |dgv1(x1) + dhv2(x2)| ≤ |dgv1(x1)| + |dhv2(x2)| ≤

≤ c1‖x1‖V1 + c2‖x2‖V2 ≤ ‖(c1, c2)‖q · ‖(‖x1‖V1 , ‖x2‖V2)‖p =

= ‖(c1, c2)‖q · ‖(x1, x2)‖V

The last inequality follows from the weighted power means inequality, similarly to the proof of
Lemma 3.64. Equality is also achievable: because c1 = ‖dgv1‖ and c2 = ‖dhv2‖, there exist x1 and
x2 that achieve equality in the second inequality. Then scale x1 and x2 by constants such that ‖x1‖V1 and
‖x2‖V2 (which scale by the same constants) achieve equality in the third inequality. To achieve equality
in the first inequality, we may further need to multiply x1 and/or x2 by −1. Thus ‖d fv‖ = ‖(c1, c2)‖q. �

The following example demonstrates how the Lemmata 3.64, 3.65, 3.66 can be used to construct a
suitable norm and compute derivative sensitivity in the corresponding Banach space.

Example 3.8. Consider the example of computing differentially privately the time that a ship takes to
reach the port. This time can be expressed as

f (x, y, v) =

√
x2 + y2

v

f : R3 → R

where (x, y) are the coordinates of the ship (with the port at (0, 0)) and v is the speed of the ship. For
differential privacy, we need to define distances on R3 and R. Because we want to use Fréchet derivatives
to compute the sensitivities, we instead define norms, which then also induce distances. ForR it is natural
to use the absolute value norm but for R3 there are more choices.

First, let us consider the `1-distance ||∆x,∆y,∆v||1 = |∆x| + |∆y| + |∆v|. Then moving the ship by
geographical distance s in a direction parallel or perpendicular to its velocity, changes the whole input
by `1-distance s. But moving the ship in any other direction changes the whole input by `1-distance
more than s. This is unnatural. We would like the change not to depend on the direction.

Consider the `2-distance ||∆x,∆y,∆v||2 =

√
|∆x|2 + |∆y|2 + |∆v|2. Then moving the ship by geo-

graphical distance s always changes the whole input by `2-distance s, regardless of direction. If we
change the speed of the ship by u (either up or down) then the whole input changes by `2-distance u.
If we simultaneously move the ship by distance s and change its speed by u however, and numerically
s = u (ignoring the units) then the whole input changes by `2-distance

√
2 · s instead of the more natural

2s.
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Thus it is better to combine `1- and `2-distances. We first combine the change in the coordinates of
the ship using `1-norm, then combine the result with the change in speed using `2-norm. Thus

‖(∆x,∆y,∆v)‖ = ‖(‖(∆x,∆y)‖2,∆v)‖1 =

√
(∆x)2 + (∆y)2 + |∆v|

This still has a problem. Suppose that x = y = 2000 km, v = 20 km/h. Then changing v to 10 km/h
changes the whole input by the same distance as changing y to 2010 km. But the former change seems
much more important in most cases than the latter. Thus we scale the geographical change and the speed
change by different constants before combining them:

‖(∆x,∆y,∆v)‖ = a
√

(∆x)2 + (∆y)2 + b|∆v| = ‖(‖(a∆x, a∆y)‖2, b∆v)‖1

This norm should now be good enough.
Let us now compute the derivatives. We first compute ordinary partial derivatives, i.e. with respect

to the absolute value norm.
∂ f
∂x

=
2x

2v
√

x2 + y2
=

x

v
√

x2 + y2

∂ f
∂y

=
2y

2v
√

x2 + y2
=

y

v
√

x2 + y2

∂ f
∂v

= −

√
x2 + y2

v2

Now we compute the derivatives w.r.t. the scaled one-dimensional norms, i.e. x is considered not as an
element of the Banach space (R, | |) but as an element of the Banach space (R, ‖ ‖x) where ‖∆x‖x = a|∆x|.
The operator norm of the Fréchet derivative in (R, ‖ ‖x) (which is also the derivative sensitivity) is then

DS f y,v(x) = ‖d f y,v
x ‖ =

∣∣∣∣∣ ∂ f
a∂x

∣∣∣∣∣ =
|x|

a|v|
√

x2 + y2

where f y,v is the one-variable function defined by f y,v(x) = f (x, y, v), i.e. y and v are considered as
constants. Similarly, we compute

DS f x,v(y) = ‖d f x,v
y ‖ =

∣∣∣∣∣ ∂ f
a∂y

∣∣∣∣∣ =
|y|

a|v|
√

x2 + y2

DS f x,y(v) = ‖d f x,y
v ‖ =

∣∣∣∣∣ ∂ f
b∂v

∣∣∣∣∣ =

√
x2 + y2

bv2

where f x,v and f x,y are the one-variable functions defined by f x,v(y) = f (x, y, v) and f x,y(v) = f (x, y, v).
Now we use Lemma 3.66 to combine the Banach spaces (R, ‖ ‖x) and (R, ‖ ‖y) into the Banach space

(R2, ‖ ‖xy) where
‖(∆x,∆y)‖xy = ‖(‖∆x‖x, ‖∆y‖y)‖2 = ‖(a∆x, a∆y)‖2

We get

‖d f v
(x,y)‖ = DS f v(x, y) = ‖(DS f y,v(x),DS f x,v(y))‖2 =

√
2

a|v|

Now we again use Lemma 3.66 to combine the Banach spaces (R2, ‖ ‖xy) and (R, ‖ ‖v) into the Banach
space (R2, ‖ ‖xyv) where

‖(∆x,∆y,∆v)‖xyz = a
√

(∆x)2 + (∆y)2 + b|∆v| = ‖(‖(a∆x, a∆y)‖2, b∆v)‖1

We get

‖d f(x,y,v)‖ = DS f (x, y, v) = ‖(DS f v(x, y),DS f x,y(v))‖∞ = max

 √2
a|v|

,

√
x2 + y2

bv2
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Thus we have found not only the derivative sensitivity of f (DS f ) but also its derivative sensitivities
w.r.t. components (DS f y,v ,DS f x,v ,DS f x,y ,DS f v). The sensitivities w.r.t. components depend on other
components but this is not a problem because when computing f (x, y, v) differentially privately, even
w.r.t. a component, we need to use all of x, y, v anyway, so why not use all this information for computing
the noise level too.

Database as a Banach space. Let us have a database with a number of tables. The schema for each
table is fixed. We see that database as a point in some Banach space (thus the distance between databases
is the norm of their difference), where each cell in each table corresponds to a dimension of that space.
As dimensions of Banach spaces are fixed (indeed, they are vector spaces Rn with some extra structure),
the number of rows in each table is also fixed, and each row can be seen to have a public identity
(similarly to [56]). In this work, we consider the following composite norms and seminorms as possible
norms for databases:

Definition 3.57 (composite seminorm). Let ||·||N be a seminorm of the vector space Rn. It is a composite
seminorm if one of the following holds for all ~x = (x1, . . . , xn) ∈ Rn:

• There exists i ∈ [n], such that ||~x||N = |xi|. Such seminorm uses the variable xi.

• There exists a composite seminorm ||·||M and a ∈ R+, such that ||~x||N = a · ||~x||M. The seminorm
||·||N uses the same variables as ||·||M.

• There exist composite seminorms ||·||M1 , . . . , ||·||Mk and p ∈ [1,∞], s.t. ||~x||N = ||||~x||M1 , . . . , ||~x||Mk ||p.
The seminorm ||·||N uses the union of the variables used by all ||·||Mi .

Let vars(N) be the set of variables used by ||·||N .

We normally define the norms for rows of each table using the constructions allowed in Def. 3.57.
We then state that the norm of the table is some `p-norm of the vector of the norms of its rows (last
item of Def. 3.57) and the norm of the database is some `p-norm of the vector of the norms of its tables
(in this work, we usually assume that it is `1-norm). Note that the notion of seminorm is used only for
building blocks of composite `p-norms, and a seminorm constructed as in Def. 3.57 becomes a norm
if vars(N) = {x1, . . . , xn}. Lemmata 3.64, 3.65, 3.66 cover all cases considered in Definition 3.57, thus
providing a way to compute derivative sensitivity w.r.t. a composite norm.

In order to compute derivative sensitivity w.r.t. a database, we need to take into account that the
query operates on a cross product of tables. The cells of this cross product table are correlated in a
certain way, so computing derivative sensitivity for the database is more complicated than computing it
for a single table. Let us show how this can be handled.

Suppose we have a database of n tables. Thus we can have a Banach space for each table with a
certain norm. Let Ti = Rni

i be the Banach space for the ith table, where ni is the number of rows in the ith

table and Ri is the Banach space for its row.
The input contains a tuple of n tables, which is an element of D = T1 × · · · × Tn. We can make D a

Banach space by combining the norms of Ti using the `1-norm.
To make a query on the database we want to join those n tables. Consider an input (t1, . . . , tn) ∈ D.

Let t = t1× · · ·× tn be the cross product of tables. First, let us assume that the n joined tables are distinct,
i.e. no table is used more than once. Each row of the cross product is an element of R = R1 × · · · × Rn,
thus t is an element of T = RN where N = n1 · · · nn.

The query contains an aggregating function f : T → R. We can consider t ∈ T as one large table
whose number of rows is the product of the numbers of rows of tables ti ∈ Ti and number of columns is
the sum of the numbers of columns of tables ti ∈ Ti. We know how to compute the derivative sensitivity
of f w.r.t. the components of t specified by a subset of rows and a subset of columns of t.

Suppose we want to compute the derivative sensitivity of f w.r.t. a row r of ti. We can compute the
sensitivity w.r.t. the following component of t: the subset of rows is the set of rows affected by r, i.e.
tr = t1 × · · · × ti−1 × {r} × ti+1 × · · · × tn, the subset of columns is the set of columns corresponding to
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table ti. Because changing r by distance d changes each row of tr by distance d, we must combine the
rows of tr by `∞-distance to ensure that tr also changes by distance d.

Suppose we now want to compute the sensitivity of f w.r.t. a subset s of rows of ti. Then the subset
of rows affected by s, is ts = t1 × · · · × ti−1 × s × ti+1 × · · · × tn. Each row in ts is affected by exactly
one row in s. Let s = r1, . . . , rk and let ts =

⋃k
j=1 tr j where tr j is the subset of rows affected by r j. The

tr j are disjoint. Let tr j = {u j1, . . . , u jm j}. Then the norm for u jm is the same as the norm for r j, with the
additional columns having zero norm, i.e. not included into the norm. The norm for tr j is computed by
combining the norms for u jm using `∞-norm. The norm for ts is then computed by combining the norms
for tr j using the norm that combined the norms of the rows of ti, i.e. `pi . If s is the entire set of all rows
of ti, we get derivative sensitivity w.r.t. the table ti.

We have shown how to compute the derivative sensitivity w.r.t. each table t1, . . . , tn separately. If
each table is used only once, since the norm of the database is defined as the `1-norm of tables, by
Lemma 3.64 we need to take the maximum of corresponding derivative sensitivities. If some table
is used multiple times, these copies should be combined using `∞-norm, so we have to sum up the
derivative sensitivities of these copies.

3.3.8.3 Smoothing. To achieve differential privacy, we need to find a smooth upper bound on the
derivative sensitivity. When differential privacy is required only w.r.t. a component then the sensitivity
w.r.t. to the component only needs to be smoothed for changes in that component (changes in other
components are allowed to change the smooth upper bound without smoothness restriction). After a
smooth upper bound has been found, we can use Theorem 3.62 to compute f differentially privately.

Suppose we have a function f : Rn → R and we want to find its β-smooth upper bound.

A differentiable function f : R→ R is β-smooth if
∣∣∣∣ f ′(x)

f (x)

∣∣∣∣ ≤ β.

If DS f exists then f : X → R is β-smooth if DS f (x)
| f (x)| ≤ β.

We will now show how to compute β-smooth bounds on f and DS f for certain functions f . First, let
us state and prove some helpful lemmas.

Lemma 3.67 (a part of Lemma 2.3 of [52]). Let f : X → R. For β > 0, a β-smooth upper bound on f is

g f ,β = max
x′∈X

( f (x) · e−β·d(x,x′)) .

Lemma 3.68. Let Xi for i ∈ {1, . . . , n} be Banach spaces, fi : Xi → R. Let x = (x1, . . . , xn), and let
f (x1, . . . , xn) = ‖ f1(x1), . . . , fn(xn)‖p. Then ∂ f

∂xi
(x) =

∂ fi
∂xi

(xi) ·
(

fi(xi)
f (x)

)p−1
≤

∂ fi
∂xi

(xi).

Proof. Let yi = fi(xi) and y = (y1, . . . , yn). We have

∂ f
∂xi

(x) =
∂ f
∂yi

(y) ·
∂ fi
∂xi

(xi) =

(
yi

‖y‖p

)p−1

·
∂ fi
∂xi

(xi) .

Since yi
‖y‖p

=
fi(xi)
f (x) =

fi(xi)
||( fi(xi))n

i=1 ||p
, we have fi(xi)

f (x) ≤ 1, and hence also
(

fi(xi)
f (x)

)p−1
≤ 1, getting ∂ f

∂xi
(x) ≤

∂ fi
∂xi

(xi). �

Lemma 3.69. Let Xi for i ∈ {1, . . . , n} be Banach spaces. Let x = (x1, . . . , xn), and let f (x) =

‖ f1(x), . . . , fn(x)‖p. Then ∂ f
∂xi

(x) =
∑n

j=1

( f j(x)
f (x)

)p−1
·
∂ f j
∂xi

(x). This can be upper bounded as:

1.
∑n

j=1
∂ f j
∂xi

(x);

2. maxn
j=1

f (x)
f j(x) ·

∂ f j
∂xi

(x).
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Proof. Let y j = f j(x), z =
∑n

j=1 yp
j . We have

∂ f
∂xi

(x) =
∂ f
∂z

(z) ·
n∑

j=1

(
∂ f j(x)p

∂y j
(y j) ·

∂ f j

∂xi
(x)

)

=

n∑
j=1

(
y j

||y||p

)p−1

·
∂ f j

∂xi
(x)

=

n∑
j=1

(
f j(x)
f (x)

)p−1

·
∂ f j

∂xi
(x) .

As in the proof of Lemma 3.68,
(

y j
‖y‖p

)p−1
=

( f j(x)
f (x)

)p−1
≤ 1. We get ∂ f

∂xi
(x) ≤

∑n
j=1

∂ f j
∂xi

(x). We can proceed
with the inequality in another way.

n∑
j=1

(
f j(x)
f (x)

)p−1

·
∂ f j

∂xi
(x) =

∑n
j=1 f j(x)p−1 ·

∂ f j
∂xi

(x)

f (x)p−1

=

∑n
j=1 f j(x)p ·

∂ f j
∂xi

(x) · 1
f j(x)

f (x)p−1

≤
n

max
j=1

(
1

f j(x)
·
∂ f j

∂xi
(x)

)
·

∑n
j=1 f j(x)p

f (x)p−1

=
n

max
j=1

(
1

f j(x)
·
∂ f j

∂xi
(x)

)
·

f (x)p

f (x)p−1

=
n

max
j=1

(
f (x)
f j(x)

·
∂ f j

∂xi
(x)

)
. �

Lemma 3.70. Let f (x) : R→ R be β f -smooth, and let g(x) : R→ R be βg-smooth.

1. If f (x), g(x) > 0, then f (x) + g(x) is max(β f , βg)-smooth;

2. f (x) · g(x) is β f + βg-smooth;

3. f (x) / g(x) is β f + βg-smooth.

Proof. We have:

1.
∣∣∣∣ ( f (x)+g(x))′

f (x)+g(x)

∣∣∣∣ =
| f ′(x)+g′(x)|
| f (x)|+|g(x)| ≤

| f ′(x)|+|g′(x)|
| f (x)|+|g(x)|

≤ max
(∣∣∣∣ f ′(x)

f (x)

∣∣∣∣ , ∣∣∣∣g′(x)
g(x)

∣∣∣∣) ≤ max(β f , βg).

2.
∣∣∣∣ ( f (x)·g(x))′

f (x)·g(x)

∣∣∣∣ =
∣∣∣∣ f ′(x)·g(x)+ f (x)·g′(x)

f (x)·g(x)

∣∣∣∣
≤

∣∣∣∣ f ′(x)
f (x)

∣∣∣∣ +
∣∣∣∣g′(x)

g(x)

∣∣∣∣ ≤ β f + βg.

3.
∣∣∣∣ ( f (x)/g(x))′

f (x)/g(x)

∣∣∣∣ =
∣∣∣∣ f ′(x)·g(x)− f (x)·g′(x)

g(x)2 ·
g(x)
f (x)

∣∣∣∣
=

∣∣∣∣ f ′(x)
f (x) −

g′(x)
g(x)

∣∣∣∣ ≤ ∣∣∣∣ f ′(x)
f (x)

∣∣∣∣ +
∣∣∣∣ g′(x)

g(x)

∣∣∣∣ ≤ β f + βg.

�

Lemma 3.71. Let Xi for i ∈ {1, . . . , n} be Banach spaces, and let X =
∏n

i=1 Xi. Let fi : Xi → R be βi-
smooth. Then, f (x1, . . . , xn) = ‖ f1(x1), . . . , fn(xn)‖p is ||(βi)n

i=1||p-smooth as well as maxn
i=1(βi)-smooth,

where the norm of X is the `dual(p)-combination of the norms of all Xi.
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Proof. Let X =
∏n

i=1 Xi and x = (x1, . . . , xn). Let β = maxi βi. By Lemma 3.68, an upper bound on
∂ f
∂xi

(x) is ci(x) = f ′i (xi). We have

|ci(x)| =
∣∣∣ f ′i (xi)

∣∣∣ ≤ DS fi(xi) = | fi(xi)| ·
DS fi(xi)
| fi(xi)|

≤ | fi(xi)| · βi .

By Lemma 3.64 and Lemma 3.66, the derivative sensitivity of f in (X, ` p
p−1

) is

DS f (x) = ‖(c1(x), . . . , cn(x))‖p

Using inequality | fi(xi)| ≤ | f (x)|, we get

DS f (x)
| f (x)|

≤

∥∥∥(| fi(xi)| · βi)n
i=1

∥∥∥
p

| f (x)|
≤
| f (x)| ·

∥∥∥(βi)n
i=1

∥∥∥
p

| f (x)|
≤ ||(βi)n

i=1||p .

On the other hand, using inequality βi ≤ β, we get

DS f (x)
| f (x)|

≤

∥∥∥(| fi(xi)| · β)n
i=1

∥∥∥
p

| f (x)|
≤
β ·

∥∥∥(| fi(xi)|)n
i=1

∥∥∥
p

| f (x)|
= β �

Lemma 3.72. Let Xi for i ∈ {1, . . . , n} be Banach spaces, X =
∏n

i=1 Xi. Let fi : X → R be β j
i -smooth for

X j. Let x = (x1, . . . , xn). Then, f (x) = ‖ f1(x), . . . , fn(x)‖p is ||(max j β
j
i )n

i=1||p-smooth.

Proof. Let X =
∏n

i=1 Xi and x = (x1, . . . , xn). By Lemma 3.69, an upper bound on ∂ f
∂xi

(x) is ci(x) =

maxn
j

f (x)
f j(x) ·

∂ f j
∂xi

(x). We have

|ci(x)| =

∣∣∣∣∣∣max
j

f (x)
f j(x)

·
∂ f j

∂xi
(x)

∣∣∣∣∣∣ ≤ | f (x)| ·
n

max
j

∣∣∣∣∣∣∂ f j

∂xi
(x) ·

1
f j(x)

∣∣∣∣∣∣ ≤ | f (x)| ·max
j
β

j
i .

By Lemma 3.64 and Lemma 3.66, the derivative sensitivity of f in (X, `dual(p)) is

DS f (x) = ‖(c1(x), . . . , cn(x))‖p

We get

DS f (x)
| f (x)|

≤

| f (x)| ·
∥∥∥∥(max j β

j
i

)n

i=1

∥∥∥∥
p

| f (x)|
≤ ||(max

j
β

j
i )n

i=1||p.

�

We are now ready to find smooth upper bounds for certain functions.
Power function. Let f (x) = xr, r ∈ R+, x > 0. We have

f ′(x)
f (x)

=
rxr−1

xr =
r
x

;
∣∣∣∣∣ rx

∣∣∣∣∣ ≤ β⇔ x ≥
|r|
β

.

For x ≤ r
β , the function f ′(x) achieves its maximum at the point r

β . By Lemma 3.67, a β-smooth upper
bound on f is

UB f (x) =

xr if x ≥ r
β

eβx−r
(

r
β

)r
otherwise

If r ≥ 1, we may also find a smooth upper bound on the derivative sensitivity DS f of f . We have

DS f (x) = | f ′(x)| = |r|xr−1 .

A β-smooth upper bound on DS f is

UBDS f (x) =

rxr−1 if x ≥ r−1
β

reβx−(r−1)
(

r−1
β

)r−1
otherwise

Exponent. Let f (x) = erx, r ∈ R, x ∈ R. We have DS f (x) = | f ′(x)| = |r|erx, hence:
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•

∣∣∣∣ f ′(x)
f (x)

∣∣∣∣ = rerx

erx = r ;
∣∣∣∣ f ′′(x)

f (x)

∣∣∣∣ = r2erx

rerx = r.

Thus both f and DS f are β-smooth if |r| ≤ β.
Sigmoid. Consider the (sigmoid) functionσ(x) = eαx

eαx+1 . This function can be viewed as a continuous
approximation of the indicator function IR+

: R→ {0, 1}, which is less precise for values close to 0, and
the error decreases when α increases. We have:
• σ′(x) = αeαx

(eαx+1)2 ; σ′′(x) =
α2eαx(eαx−1)

(eαx+1)3 ;

•

∣∣∣∣σ′(x)
σ(x)

∣∣∣∣ =
∣∣∣α · 1

eαx+1

∣∣∣ ≤ α;
∣∣∣∣σ′′(x)
σ′(x)

∣∣∣∣ =
∣∣∣α · eαx−1

eαx+1

∣∣∣ ≤ α.

Thus both σ(x) and DS σ(x) = |σ′(x)| are α-smooth. If we want less DP noise, we should decrease α,
which in turn makes the sigmoid itself less precise, so there is a tradeoff.

Tauoid. Consider the function τ(x) = 2
e−αx+eαx (let us call it a tauoid). This function can be viewed

as a continuous approximation of the indicator function I{0} : R → {0, 1}, which works similarly to a
sigmoid. We have:

τ′(x) = −
2α(eαx − e−αx)
(e−αx + eαx)2

=
2α(e−αx − eαx)
(e−αx + eαx)2 =

2αeαx(1 − e2αx)
(1 + e2αx)2∣∣∣∣∣τ′(x)

τ(x)

∣∣∣∣∣ =
|α| · |e−αx − eαx|

e−αx + eαx ≤ |α|

|τ′(x)| ≤
2|α|eαx

1 + e2αx =
2|α|

e−αx + eαx

= |α|τ(x) =: UBDSτ(x)

UB′DSτ(x) = |α|τ′(x)∣∣∣∣∣∣UB′DSτ(x)

UBDSτ(x)

∣∣∣∣∣∣ =

∣∣∣∣∣τ′(x)
τ(x)

∣∣∣∣∣ ≤ |α| .
Thus both τ itself and UBDSτ , an upper bound on its derivative sensitivity, are α-smooth.

An `p-norm. Consider the function f (x) = ‖x‖p =
(∑

xp
i

)1/p
, x ∈ Rn, x = (x1, . . . , xn). We have

∂ f
∂xi

(x) =
pxp−1

i

p
(∑

xp
i

)(p−1)/p =

 xp
i∑
xp

i

(p−1)/p

.

By Lemma 3.64, the derivative sensitivity of f in (Rn, `p) is

DS f (x) =

∑ xp
i∑
xp

i


p−1

p

= 1 .

This is constant and thus β-smooth for all β. The function f itself is β-smooth if 1
‖x‖p
≤ β, i.e. if ‖x‖p ≥ 1

β .
By Lemma 3.67, a β-smooth upper bound on f is

UB f (x) =

‖x‖p if ‖x‖p ≥ 1
β

eβ‖x‖p−1

β otherwise

This also holds for p = ∞.
The `∞-norm. Let f (x) = ‖x‖∞ = maxi |xi|. We have

∂ f
∂xi

(x) =


1 if i = argmax j

∣∣∣x j
∣∣∣

undefined if argmax j

∣∣∣x j
∣∣∣ is not unique

0 otherwise
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The derivative sensitivity of f in (Rn, `∞) is

DS f (x) =

1 if argmax j

∣∣∣x j
∣∣∣ is unique

undefined if argmax j

∣∣∣x j
∣∣∣ is not unique

Because we are interested in upper bounds on the derivative sensitivity, we define

DS f (x0) := lim sup
x→x0

DS f (x) = 1

for those x0 for which DS f (x0) is undefined. Thus DS f (x) = 1, which is constant and β-smooth for all
β. The smooth upper bound on the function f itself can be found similarly to the `p-norm case.

The following constructions are considered in Fig. 41.
Product. Let f :

∏n
i=1 Xi → R, f (x1, . . . , xn) =

∏n
i=1 fi(xi) where Xi are Banach spaces. Let

X =
∏n

i=1 Xi and x = (x1, . . . , xn). First, suppose that variables xi are independent. We have ∂ f
∂xi

(x) =∏n
i, j=1 f j(x j) · f ′i (xi), and

∣∣∣∣ ∂ f
∂xi

(x) · 1
f (x)

∣∣∣∣ =
∣∣∣∣ f ′i (xi)

fi(xi)

∣∣∣∣, hence:

• If
∣∣∣∣ f ′i (xi)

fi(xi)

∣∣∣∣ ≤ β, then f is β-smooth w.r.t. xi.

• By Lemmas 3.64 and 3.66,

||d fx|| = ||

 n∏
i, j=1

f j(x j) · f ′i (xi)


n

i=1

|| p
p−1

in (X, `p), so we have ||d fx ||

| f (x)| =
||d fx ||

|
∏n

i=1 fi(xi)|
= ||

(
f ′i (xi)
fi(xi)

)n

i=1
|| p

p−1
≤ ||(βi)n

i=1|| p
p−1

, where βi is the smooth-

ness of fi. Hence, if fi is β-smooth w.r.t. xi for all i, then f is β-smooth in (X, `1) and nβ-smooth
in (X, `∞).

The derivative sensitivity of f w.r.t. xi is ci(x) = DS fi(xi) ·
∣∣∣∣ f (x)

fi(xi)

∣∣∣∣. The derivative sensitivity of f in (X, `p)

is, by Lemma 3.66, DS f (x) = ‖(c1(x), . . . , cn(x))‖ p
p−1

=

∥∥∥∥∥(DS fi (xi)
| fi(xi)|

)n

i=1

∥∥∥∥∥ p
p−1

· | f (x)| .

We have ci(x) = DS fi(xi) ·
∣∣∣∣ f (x)

fi(xi)

∣∣∣∣ = DS fi(xi) ·
∏

j,i

∣∣∣ f j(x j)
∣∣∣. Since

∏
j,i

∣∣∣ f j(x j)
∣∣∣ does not depend on xi

and DS fi(xi) ≥ 0, by Lemma 3.70, if DS fi is β-smooth in Xi then ci(x) is also β-smooth in Xi. Similarly,
if f j(x j) is β-smooth, then ci(x) is also β-smooth in X j. Hence, if fi and DS fi are β-smooth for all i, by
Lemma 3.72, DS f is β-smooth in (X, `1) and nβ-smooth in (X, `∞). If DS fi are not all β-smooth then we
can use their β-smooth upper bounds when computing ci. Then we get a β-smooth upper bound on DS f

instead of the actual DS f .
We may also consider the case where the variables xi are fully dependent, i.e. equal (the case where

they are partially dependent is currently not considered). Consider a function f (x) = g(x) · h(x) where
g, h : X → R+ and X is a Banach space. We have

DS f (x) = g(x) · DSh(x) + h(x) · DSg(x) .

By Lemma 3.70, if g is βg-smooth, h is βh-smooth, DSg is βg′-smooth, and DSh is βh′-smooth, then DS f

is max(βg + βh′ , βh + βg′)-smooth. The function f itself is (βg + βh)-smooth.
Sum. Let f :

∏n
i=1 Xi → R, f (x1, . . . , xn) =

∑n
i=1 fi(xi) where Xi are Banach spaces. Let X =

∏n
i=1 Xi

and x = (x1, . . . , xn). First, suppose that the variables xi are independent. The derivative sensitivity of
f w.r.t. xi is DS fi(xi). By Lemmas 3.64 and 3.66, the derivative sensitivity of f in (X, `p) is DS f (x) =

‖DS f1(x1), . . . ,DS fn(xn)‖ p
p−1

.

• Let fi ≥ 0 for all i ∈ {1, . . . , n} (or fi ≤ 0 for all i ∈ {1, . . . , n}) and βi-smooth w.r.t. Xi. Now
we have | f (x)| =

∑n
i=1 | fi(xi)| = ||| fi(xi)|ni=1||1. By Lemma 3.71, f (x) is β := maxi(βi)-sensitive in

(X, `p). We do not get a good bound in the case when fi may have different signs, since then fi(x)
may cancel each other out and make f (x) arbitrarily small even if | fi(x)| are large.
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• Let DS fi be βi-smooth for i ∈ {1, . . . , n}. By Lemma 3.71, DS f is ||(βi)n
i=1||

p
p−1

-smooth in (X, `p),
and if all DS fi are β-smooth, then DS f is also β-smooth.

Consider the case where xi are equal: f (x) =
∑n

i=1 gi(x) where gi : X → R and X is a Banach space.
Then

DS f (x) =

n∑
i=1

DSgi(x)

By Lemma 3.70, if all DSgi are β-smooth then DS f is β-smooth. If all gi are non-negative and β-smooth
then f is β-smooth.

Min / max. Let f :
∏n

i=1 Xi → R, f (x1, . . . , xn) = minn
i=1 fi(xi) where Xi are Banach spaces (the

case with max instead of min is similar). Let X =
∏n

i=1 Xi and x = (x1, . . . , xn). Let the variables xi be
independent.

If for all i, fi is β-smooth in Xi then f is β-smooth in (X, `p). The same holds with max or sum (with
non-negative fi) or `p′-norm instead of min.

The derivative sensitivity of f w.r.t. xi is DS fi(xi) if i = argmin fi(xi) and 0 otherwise. The derivative
sensitivity of f in (X, `p) is DS f (x) = DS fi(xi) where i = argmin fi(xi). In general, DS f is discontinuous
at points where argmin fi(xi) is not unique.

A possible valid β-smooth (in (X, `p)) upper bound on DS f is max ci(xi) where ci is a β-smooth upper
bound on DS fi .

Norm scaling. Let f : X → R in the Banach space (X, ||·||). Scaling the norm by a scales the
derivative f ′(x) by 1

a while keeping the value of f (x) the same. Hence, if f is β-smooth in (X, ||·||) then
it is β

a -smooth in (X, a · ||·||).
Let c(x) be a β-smooth upper bound on the derivative sensitivity of f at x in (X, ||·||). Then c(x)

a is a
β
a -smooth upper bound on the derivative sensitivity of f at x in (X, a · ||·||) by Lemma 3.65.

Sensitivity w.r.t. a larger norm. Let f : X → R in the Banach space (X, ||·||N). Let ||·||M � ||·||N .
If f is β-smooth in (X, ||·||N), then f (x) ≤ eβ||x−x′ ||N · f (x′) ≤ eβ||x−x′ ||M · f (x′) for all x, x′ ∈ X, so f is

also β-smooth in (X, ||·||M). The same holds about any function that is β-smooth in (X, ||·||N), including a
β-smooth upper bound on the derivative sensitivity of f .

Let us show that the derivative sensitivity of f w.r.t. ||·||N is a valid upper bound on the derivative
sensitivity of f w.r.t. ||·||M. First, note that ||·||dual(N) � ||·||dual(M). Indeed, by definition of a dual norm,
||T ||dual(M) = sup{T (x) | ||x||M ≤ 1} for an operator T from the dual space X → R of X. Since ||x||N ≤
||x||M, we have ∀x : {T (x) | ||x||N ≤ 1} ⊇ {T (x) | ||x||M ≤ 1}. Hence, ||T ||dual(N) = sup{T (x) | ||x||N ≤ 1} ≥
sup{T (x) | ||x||M ≤ 1} = ||T ||dual(M).

By definition, we have DS f (x) = ||d fx||dual(N), where d fx is the Fréchet derivative of f at x. Since
||·||dual(N) � ||·||dual(M), we have ||d fx||dual(N) ≥ ||d fx||dual(M).

Composition with a real function. Let f (x) = h(g(x)), x ∈ X where g : X → R, h : R→ R and X is
a Banach space.

DS f (x) = |h′(g(x))| · DSg(x)

DS f (x)
| f (x)|

=
|h′(g(x))|
|h(g(x))|

· DSg(x)

Suppose that h is βh-smooth and DSg(x) ≤ B for all x. Then f is βhB-smooth. We have

DSDS f (x) = |h′′(g(x))|(DSg(x))2 + |h′(g(x))| · DSDSg(x) ,

DSDS f (x)

DS f (x)
=
|h′′(g(x))|
|h′(g(x))|

· DSg(x) +
DSDSg(x)

DSg(x)
.

By Lemma 3.70, if h′ is βh′-smooth, DSg is βg′-smooth, and DSg(x) ≤ B for all x then DS f is (βh′B+βg′)-
smooth.
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Example 3.9. Consider an example of computing differentially privately the time it takes for the next
ship to reach the port. This time can be expressed as

f (x1, y1, v1, . . . , xn, yn, vn) =
n

min
i=1

√
x2

i + y2
i

vi

f : R3n → R

where (xi, yi) are the coordinates of the ith ship (with the port at (0, 0)) and vi is its speed.
Note that vi is in the power −1 and we do not know how to find the smooth derivative sensitivity of the

function fv,i(vi) = v−1
i (we only know how to do it for power functions with exponent ≥ 1). Let us define

wi = ζ ln vi. The coefficient ζ is used to control the distance by which the whole input vector changes if
ln vi is changed by 1. Similarly, we add a coefficient to the geographical coordinates: si = αxi, ti = αyi.
Then we consider (s1, t1,w1, . . . , sn, tn,wn) as an element of the Banach space (R3n, ‖ ‖) where

‖(s1, t1,w1, . . . , sn, tn,wn)‖ = ‖(‖(‖(s1, t1)‖2,w1)‖1, . . . , ‖(‖(sn, tn)‖2,wn)‖1)‖p

Then vi = ewi/ζ , xi =
si
α , yi =

ti
α and

g(s1, t1,w1, . . . , sn, tn,wn) =
1
α

n
min
i=1

√
s2

i + t2
i

ewi/ζ

Now the derivative sensitivity of gw,i(wi) = e−wi/ζ is

DSgw,i(wi) =
1
ζ

e−wi/ζ

which is 1
ζ -smooth. The function gw,i itself is also 1

ζ -smooth.

The derivative sensitivity of gst,i(si, ti) =

√
s2

i + t2
i in (R2, `2) is

DSgst,i(si, ti) = 1

which is β-smooth for all β. The function gst,i is 1
ζ -smooth if 1√

s2
i +t2i
≤ 1

ζ , i.e. if
√

s2
i + t2

i ≥ ζ. A
1
ζ -smooth upper bound on gst,i is

ĝst,i(si, ti) =


√

s2
i + t2

i if
√

s2
i + t2

i ≥ ζ

ζe

√
s2
i +t2i
ζ −1 otherwise

An upper bound on the derivative sensitivity of gi(si, ti,wi) =

√
s2

i +t2i
ewi/ζ

is

cgi(si, ti,wi) =
∥∥∥(DSgst,i(si, ti) · gw,i(wi),DSgw,i(wi) · ĝst,i(si, ti))

∥∥∥
∞

=

=

∥∥∥∥∥∥
(
1 · e−wi/ζ ,

1
ζ

e−wi/ζ · ĝst,i(si, ti)
)∥∥∥∥∥∥
∞

=
max

(
1, ĝst,i(si,ti)

ζ

)
ewi/ζ

and it is 1
ζ -smooth because DSgw,i(wi), DSgst,i , gw,i(wi), and ĝst,i(si, ti)) are 1

ζ -smooth.
A 1

ζ -smooth upper bound on DSg is

c(u) =
1
α

max
i

cgi(si, ti,wi) =
1
α

max
i

max
(
1, ĝst,i(si,ti))

ζ

)
ewi/ζ
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where u = (s1, t1,w1, . . . , sn, tn,wn).
Now we can use Theorem 3.62 to compute an ε-differentially private version of g:

h(u) = g(u) +
c(u)

b
· η

ε = (γ + 1)(b +
1
ζ

)

γ > 1, b > 0, η ∼ GenCauchy(γ)

To compute an ε-differentially private version of f , we first transform (x1, y1, v1, . . . , xn, yn, vn) into u
and then compute h(u).

Smooth derivative sensitivity w.r.t. multiple tables. To achieve differential privacy, we need a β-
smooth upper bound on derivative sensitivity. For this, we first compute an upper bound on the sensitivity
w.r.t. a single table that is β-smooth w.r.t. all the necessary tables. We compute this for each necessary
table and then take the maximum. Maximum preserves β-smoothness and because we are using `1-norm,
we get an upper bound on the sensitivity w.r.t. all needed tables. It remains to show how to ensure that
the upper bound on derivative sensitivity is β-smooth w.r.t. all the necessary tables (and not only the
table w.r.t. which the sensitivity was computed).

To compute an upper bound on the sensitivity w.r.t. a single table that is β-smooth w.r.t. all the
tables, we force the sensitivity w.r.t. the other tables to zero. If the other tables are not sensitive (i.e.
do not contain any attributes included in the database norm), we use the exact values of subexpressions
instead of their smooth upper bounds. For the other tables that are sensitive (i.e. contain at least one
attribute included in the database norm), we still compute β-smooth upper bounds on the values of
subexpressions (but their derivative sensitivities are 0).

If a table is used more than once then we compute the derivative sensitivity w.r.t. each copy of the
table separately and add the result together because changing a row in the table is equivalent to changing
a row in each copy of the table. A problem occurs with smoothing. If the sensitivity w.r.t. one copy is β-
smooth w.r.t. each copy separately then changing a row in one copy by distance d changes the sensitivity
by up to eβd times. Changing it in all m copies changes the sensitivity by up to emβd times. Thus the
sensitivity w.r.t. the initial table (instead of one of its copies) is mβ-smooth instead of β-smooth.

To achieve β-smoothness w.r.t. each initial table, we require the sensitivities to be (for all i) β
mi

-
smooth w.r.t. each copy of table i where mi is the number of times the table i is used. Our analysis does
not directly support different values of β for different (copies of) tables, thus we need to scale the β at
appropriate points during the analysis. Scaling at the end is not optimal because then we would achieve
β
m -smoothness w.r.t. each copy of each table, where m = maxi mi, even for those tables that are used
less than m times. Thus we scale at the beginning (at leaf nodes) but this requires also using a scaled
norm for global sensitivity because global sensitivity is used for computing smooth sensitivity at some
intermediate nodes (compose versions of exponent ex, sigmoid eax

eax+1 , and tauoid 2
eax+e−ax ).

In the analyses where we also need a non-scaled global sensitivity (e.g. used for smoothing the
combined sensitivity described in Sec. 3.3.9), we just compute the global sensitivity twice w.r.t. two
different norms.

Optimizing smoothness parameter. Theorem 3.62 tells how to use derivative sensitivity to achieve
differential privacy in a Banach space. We prove a stronger version of this theorem that allows us to
choose the best value of β (the one giving the smallest noise level) according to the actual input, instead
of having to guess it in advance.

Theorem 3.73. Let γ, b, β ∈ R+, γ > 1. Let f : X → R where X is a Banach space. Let I be a (possibly
infinite) set of indices. For all I ∈ I, let ε = (γ+ 1)(bI + βI) and cI be a βI-smooth upper bound on DS f .
Let η be a random variable distributed according to GenCauchy(γ). Then g(~x) = f (~x) + h(~x) · η, where
h(~x) = minI∈I

cI (~x)
bI

(provided that the minimum exists), is ε-differentially private.
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Proof. Let ~x, ~x′ ∈ X. Denote L = ‖~x′ − ~x‖. We have to show that ddp(g(~x), g(~x′)) ≤ εL.
Let n ∈ N be arbitrary. Let ~v0 = ~x, ~vn = ~x′, and ~vi = n−i

n ·~x+ i
n ·~x
′. Consider i ∈ {1, . . . , n}. There exist

I, J ∈ I such that h(~vi−1) =
cI (~vi−1)

bI
and h(~vi) =

cJ(~vi)
bJ

. Note that cI (~vi−1)
bI
≤

cJ(~vi−1)
bJ

and cI (~vi)
bI
≥

cJ(~vi)
bJ

. Because
cI and cJ are continuous, there exists a point ~u on the (closed) segment connecting ~vi−1 to ~vi where
cI (~u)

bI
=

cJ(~u)
bJ

. Let K,M ∈ {I, J} be such that βK = max(βI , βJ), βM = min(βI , βJ), and {K,M} = {I, J}.
Then ∣∣∣∣∣∣ln h(~vi)

h(~vi−1)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ln h(~vi)

h(~u)

∣∣∣∣∣∣ +

∣∣∣∣∣∣ln h(~u)
h(~vi−1)

∣∣∣∣∣∣ ≤ βJ‖~vi − ~u‖ + βI‖~u − ~vi−1‖ ≤ βK L/n .

The mean value theorem for Banach spaces and Fréchet derivative gives

| f (~vi) − f (~vi−1)| ≤ ‖d f~ti‖ · ‖~vi − ~vi−1‖ ≤ cK(~ti) ·
L
n
≤ eβK L/n · cK(~vi−1) ·

L
n

for some point ~ti on the segment connecting ~vi−1 to ~vi. Here we also used the fact that cK is an upper
bound on DS f .

If h(~vi−1) =
cK (~vi−1)

bK
then cK(~vi−1) = bK · h(~vi−1). Otherwise

h(~vi−1) =
cM(~vi−1)

bM
≥

e−βM‖~u−~vi−1‖cM(~u)
bM

=
e−βM‖~u−~vi−1‖cK(~u)

bK
≥

e−βM‖~u−~vi−1‖e−βK‖~vi−1−~u‖cK( ~vi−1)
bK

=
e−(βI+βJ)L/ncK( ~vi−1)

bK
.

In both cases, cK( ~vi−1) ≤ e(βI+βJ)L/n · bK · h(~vi−1). Thus

| f (~vi) − f (~vi−1)| ≤ e(βI+βJ+βK )L/n · bK · h(~vi−1) ·
L
n

and

ddp(g(~vi−1), g(~vi)) = ddp( f (~vi−1) + h(~vi−1) · η, f (~vi) + h(~vi) · η) ≤ (γ + 1)
(
| f (~vi) − f (~vi−1)|
|h(~vi−1)|

+
βK L

n

)
≤

(γ+1)
(
bK · e(βI+βJ+βK )L/n ·

L
n

+
βK L

n

)
= (γ+1)(bKe(βI+βJ+βK )L/n +βK)L/n ≤ (γ+1)(bKe3βL/n +βK)L/n

where β = supI∈I βI . This supremum exists because for all I ∈ I, βI = ε
γ+1 − bI ≤

ε
γ+1 . Now

ddp(g(~x), g(~x′)) ≤
n∑

i=1

ddp(g(~vi−1), g(~vi)) ≤ L/n · (γ + 1)
n∑

i=1

max
K∈I

bKe3βL/n + βK ≤

L/n · (γ + 1)
n∑

i=1

max
K∈I

e3βL/n(bK + βK) = L/n · e3βL/n
n∑

i=1

max
K∈I

(γ + 1)(bK + βK) =

L/n · e3βL/n
n∑

i=1

max
K∈I

ε = e3βL/nεL .

This inequality holds for any n ∈ N. If n→ ∞ then e3βL/n → 1 and we obtain the inequality that we had
to show. �

3.3.8.4 Derivative Sensitivity of SQL Queries. We now describe how the theory of derivative sensi-
tivity for Banach spaces can be applied to SQL queries, computing the smooth upper bounds of their
derivative sensitivities, such that an appropriate amount of noise may be added to turn them differentially
private. Our theory deals with functions that return a numeric value, so the query should return a single
output. We do not support DISTINCT queries, as we do not know how to continuously approximate
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Continuous function Approximated condition name
eαx

eαx + 1
x ≥ 0 sigmoid

2
e−αx + eαx x = 0 tauoid

Table 9: Continuous Approximations of Step Functions

efficiently a function that removes repeating elements from a list of arguments. We consider queries of
the form

SELECT aggr expr FROM t1 AS s1,...,tn AS sn

WHERE condition ,

where:

• expr is an expression over table columns, computed as a continuous function.

• condition is a boolean expression over predicates P(x) ∈ {x < 0, x = 0}, where x is an expression
of the same form as expr. Since all functions have to be continuous, these predicates are computed
using continuous approximations to the step functions, listed in Table. 9.

• aggr is one of the operations SUM, COUNT, MIN, MAX.

GROUP BY queries can be simulated by generating for each group a separate query, with a filter
selecting that particular group. Hence, we can group either by a public or a discrete attribute to get a
finite number of groups.

Continuous approximation of an SQL query. We assume that the expression under SELECT state-
ment is an application of a continuous function to the database. Hence, for a query without a filter, we
can directly apply results of Section 3.3.8.3 to find a smooth upper bound on derivative sensitivity,

A filter that does not depend on sensitive data can be applied directly to the cross product of the
input tables, and we may then proceed with the query without a filter.

A filter that does depend on sensitive data is treated as a part of the query. We treat this filter as a
continuous function, applied in such a way that the discarded rows would be ignored by the aggregating
function. We combine sigmoids and tauoids to obtain the approximated value of the indicator σ(xi) ∈
{0, 1}, denoting whether the row xi satisfies the filter.

Hence, if the filter depends on sensitive data, we have the following set-up:

• There is a set of rows {x1, . . . , xm}.

• There is a function fi applied to the row xi, returning a real number. For different rows, this
function may be different, e.g. it may be determined by the public cells of the row.

• There is a filtering function σi applied to the row xi. It returns a real number. It approximates a
boolean condition, i.e. its values are mostly near 0 and 1.

• There is an aggregation function applied to a subset of the values f1(x1), . . . , fm(xm). Only such
i ∈ {1, . . . ,m} are selected, where the condition holds.

To convert the SQL query into a continuous function, the functions fi and σi are combined as follows,
depending on the aggregation function:

• SUM. The values 0 do not affect the sum, hence we compute the result as
∑m

i=1 fi(xi) · σi(xi).

• COUNT: The values of fi do not affect the result. We compute the result as
∑m

i=1 σ(xi), counting
all entries for which σi(xi) = 1. The sensitivity of such query only depends on the sensitivity of
σ.
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Table 10: Upper Bounds for Uni- and Multivariate functions

f (x) cond.s g, s.t. h, s.t.
f ≤ g ∼|·| β DS f ≤

′
|·|

h ∼ β

xr r ≥ 1
x > 0

 xr if x ≥ r
β

pwr
β(x) oth.

 rxr−1 if x ≥ r−1
β

r · pwr−1
β (x) oth.

f (x) cond.s g, s.t. h, s.t.
f ≤ g ∼|·| β DS f ≤

′
|·|

h ∼ β
erx |r| ≤ β erx |r|erx

c c ∈ R c 0
eαx

eαx+1 β ≥ α eαx

eαx+1
αeαx

(eαx+1)2

eαx

eαx+1 β < α 1 αeβx

(eβx+1)2

2eαx

1+e2αx β ≥ α 2eαx

1+e2αx
2|α|eαx

1+e2αx

f (~x) g, s.t. f ≤ g ∼`p β h, s.t. DS f ≤
′
`p

h ∼ β

‖~x‖p

 ‖~x‖p if ‖~x‖p ≥ 1
β

pw1
β(‖~x‖p) oth.

1

Here pwr
β(x) =

(
r
β

)r
· eβx−r

• MIN, MAX: If σi(xi) is 0, then we need to replace the actual value fi(xi) with some large [resp.
small] value that would not affect the result of MIN [resp. MAX]. Our conversion of the SQL
query proceeds by first defining ∆ := MAX( f (x1), . . . , f (xn)) −MIN( f (x1), . . . , f (xn)), and then
computing the result by applying MIN to the values fi(xi) + (1 − σi(xi)) · ∆. MAX is computed
similarly, changing the first “+” into a “−”.

If we know that the compared values are integers and hence d(x, x′) ≥ 1 for x , x′, we can do better
than using sigmoids or tauoids from Table 9, defining precise functions:
• x > y ⇐⇒ min(1,max(0, x − y)).

• x = y ⇐⇒ 1 −min(1,max(0, |x − y|)).
An advantage of these functions is that they do not lose precision due to addition and multiplication.

For real numbers, we may bound the precision and assume e.g. that d(x, x′) ≥ 1/k for some k ≥ 1,
which allows to use similar functions. The sensitivity of such comparisons will be k times larger than
for integers.

Inferring derivative sensitivities. Let the write-up DS f ≤
′
N h ∼ β mean that h is a β-smooth upper

bound on the derivative sensitivity of f , according to the norm ‖ · ‖N on the domain of f . For compo-
sitions, we also need the upper bounds for the (absolute values of) functions f themselves; let f ∼N β

denote that f is β-smooth, and f ≤ g ∼N β denote that g is a β-smooth upper bound of | f |, again ac-
cording to the norm ‖ · ‖N on the domain of f . Table 10 lists the smooth upper bounds of some simple
uni- and multivariate functions and their derivative sensitivities (using absolute value as the norm on R).
This table is a summary of Sec. 3.3.8.3 where these upper bounds are proved. For composite functions,
the rules for computing the β-smooth upper bounds are given in Fig. 41.

Query norm vs user-defined norm. The facts and rules in Table 10 and Fig. 41 are in principle
sufficient to compute the smooth upper bounds of derivative sensitivity of functions resulting from SQL
queries with respect to all composite `p-norms. Still, when we naïvely apply them, we end up finding
the sensitivity for a particular norm that is somehow “natural” for the function. In practice, it may
happen that we actually need sensitivity w.r.t. some different norm, because the data owner specified
so. For example, we know how to compute the sensitivity w.r.t. the norm ||x1, x2||1, but are interested in
differential privacy w.r.t. ||x1, x2||2.
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∀i : DS fi ≤
′
N hi ∼ β

DS∑
i ci fi ≤

′
N

∑
i cihi ∼ β

(+D)

∀i : fi ≤ gi ∼N β∑
i ci fi ≤

∑
i cigi ∼N β

(+S )

fi ≤ gi ∼N βi

f1 · f2 ≤ g1 · g2 ∼N β1 + β2
(∗S )

DS f ≤
′
N g ∼ β N � M

DS f ≤
′
M g ∼ β

(�D)

f ∼N β

f ∼a·N β/a
(NS )

f2 ∼|·| β ∀~x : DS f1(~x) ≤ B
f2 ◦ f1 ∼N βB

(◦S )

DS fi ≤
′
Ni

hi ∼ βi ∀i, j : vars(Ni) ⊥ vars(N j) ∀i, j : fi · f j ≥ 0
DS∑k

i=1 fi ≤
′
`p(N1,...,Nk) ‖h1, . . . , hk‖dual(p) ∼ ‖β1, . . . , βk‖dual(p)

(+⊥D)

fi ≤ gi ∼N βi DS fi ≤
′
N hi ∼ β

′
i

DS f1· f2 ≤
′
N g1 · h2 + g2 · h1 ∼ max(β1 + β′2, β

′
1 + β2)

(∗D)

fi ≤ gi ∼Ni β DS fi ≤
′
Ni

hi ∼ β vars(N1) ⊥ vars(N2)
DS f1· f2 ≤

′
N1+N2

g1 · h2 + g2 · h1 ∼ β
(∗⊥D)

fi ≤ gi ∼Ni β vars( f1) ⊥ vars( f2)
f1 · f2 ≤ g1 · g2 ∼N1+N2 β

(∗⊥S )

DS f ≤
′
N g ∼ β ∀~x : ḡ(~x) = g(~x)/a

DS f ≤
′
a·N ḡ ∼ β/a

(ND)

DS f1 ≤
′
N h1 ∼ β1 ∀~x : h1(~x) ≤ B f ′2 ∼|·| β2

DS f2◦ f1 ≤
′
N | f

′
2 ◦ f1| · h1 ∼ β2B + β1

(◦D)

DS fi ≤
′
Ni

hi ∼ β ∀i, j : vars(Ni) ⊥ vars(N j)
DSmin{ fi,..., fk} ≤

′
`p(N1,...,Nk) max{h1, . . . , hk} ∼ β

(min⊥D)

fi ≤ gi ∼Ni β ∀i, j : vars(Ni) ⊥ vars(N j)
min{ f1, . . . , fk} ≤ min{g1, . . . , gk} ∼`p(N1,...,Nk) β

(min⊥S )

Figure 41: Upper Bounds for Composite Functions

Let the query norm (denoted Nqr) be the norm for which we can compute derivative sensitivity. Let
the user-defined norm (denoted Ndb) be the norm for which we want to compute derivative sensitivity.

Let N � M, denote that ||~x||N ≤ ||~x||M for all ~x. If Nqr � Ndb, then the rule (�D) allows us to use
the computed DS f for Nqr also with the norm Ndb. But if Nqr � Ndb, then we cannot directly use the
sensitivity w.r.t. Nqr.

According to rule (ND), if a the upper bound to the derivative sensitivity of the function f is β-smooth
according to Nqr, then, its 1

α -times scaled version is β
α -smooth in according to the norm α · Nqr for any

α > 0. We compute sensitivity w.r.t. such norm α · Nqr, that α · Nqr � Ndb. The sensitivity becomes
β
α -smooth instead of β-smooth, which affects the amount of noise required to achieve differential privacy.

Lemma 3.74. Let ~x = (x1, . . . , xk) ∈ Rk, ~y = (y1, . . . , yn) ∈ Rn, ~z = (z1, . . . , zm) ∈ Rm. If p ≥ q ≥ 1, then

1. ||||~x||q, ||~y||q, z1, . . . , zm||p ≤ ||||~x|~y||q, z1, . . . , zm||p;

2. ||||~x||p, ||~y||p, z1, . . . , zm||q ≥ ||||~x|~y||p, z1, . . . , zm||q;

where ~x|~y denotes concatenation. If p = q, then the inequalities become equalities.

Proof. Since p, q ≥ 1, we may raise both sides of equations to the powers p or q. The main inequalities
that we use in the proof are an + bn ≤ (a + b)n for n ≥ 1, and an + bn ≥ (a + b)n for n ≤ 1.

||||~x||q, ||~y||q, z1, . . . , zm||
p
p =

 k∑
i=1

xq
i


p
q

+

 n∑
i=1

yq
i


p
q

+

m∑
i=1

zp
i

≤

 k∑
i=1

xq
i +

n∑
i=1

yq
i


p
q

+

m∑
i=1

zp
i

= ||~x|~y||pq +

m∑
i=1

zp
i = ||||~x|~y||q, z1, . . . , zm||

p
p .
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||||~x||p, ||~y||p, z1, . . . , zm||
q
q =

 k∑
i=1

xp
i


q
p

+

 n∑
i=1

yp
i


q
p

+

m∑
i=1

zq
i

≥

 k∑
i=1

xp
i +

n∑
i=1

yp
i


q
p

+

m∑
i=1

zq
i

= ||~x|~y||qp +

m∑
i=1

zq
i = ||||~x|~y||p, z1, . . . , zm||

q
q .

If p = q, then all inequalities in these derivations are equalities. �

Lemma 3.75. Let N be a composite `p-norm over ~x = (x1, . . . , xn). Let composite seminorms N′ and
V1, . . . ,Vm be such, that N = N′(V1, . . . ,Vm), and for all i ∈ [n] let Wi be a seminorm such that Vi � Wi.
Then, N′(V1, . . . ,Vm) � N′(W1, . . . ,Wm).

Proof. Let N = N′(V1, . . . ,Vm). The relation Vi � Wi implies ||x1, . . . , xn||Vi ≤ ||x1, . . . , xn||Wi for all
x1, . . . , xn ∈ R

n. Define a new norm M = N′(W1, . . . ,Wm). By definition of a composite `p-norm, we
have the three cases for N′.

• If N′ = |x j| for some j ∈ [n], then m = 0, and hence ||x1, . . . , xn||N = ||x1, . . . , xn||M = |x j|.

• If N′ = αz, then m = 1, and we have ||x1, . . . , xn||N = α||x1, . . . , xn||V1 , and ||x1, . . . , xn||M =

α||x1, . . . , xn||W1 , so N � M.

• If N′ = ||z1, . . . , zm||p, then ||x1, . . . , xn||N = ||||x1, . . . , xn||V1 , . . . , ||x1, . . . , xn||Vm ||p ≤

||||x1, . . . , xn||W1 , . . . , ||x1, . . . , xn||Wm ||p = ||x1, . . . , xn||M, so N � M.

In any case, we get N � M, which is equivalent to N′(V1, . . . ,Vm) � N′(W1, . . . ,Wm). �

Lemma 3.76. For all x ∈ R, (α1, . . . , αk) ∈ Rk, (y1, . . . , ym) ∈ Rm: ||α1x, . . . , αkx, y1, . . . , ym||p =

||
p
√∑k

i=1 α
p
i x, y1, . . . , ym||p.

Proof. Since an `p-norm is defined for p ≥ 1, we may raise both sides of equation to the power p. We
use the definition of `p-norm and rewrite the term.

||α1x, . . . , αkx, y1, . . . , ym||
p
p

=

k∑
i=1

(αix)p +

m∑
i=1

yp
i

=

 k∑
i=1

α
p
i

 xp +

m∑
i=1

yp
i

= ||
p

√√√ k∑
i=1

α
p
i x, y1, . . . , ym||

p
p .

�

Lemma 3.77. Let ~x = (x1, . . . , xn) ∈ Rn. Let N be a composite `p-norm, defined over variables ~x. There
exist 0 ≤ αi, βi ∈ R for i ∈ [n], such that ||α1x1, . . . , αnxn||p ≤ ||x1, . . . , xn||N ≤ ||β1x1, . . . , βnxn||q, where:

• p is the largest `p-norm constructor in N;

• q is the smallest `p-norm constructor in N.
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Proof. Without loss of generality, we assume that all scalings in N are applied directly to the variables,
as we can always apply the equality α||~x|| = ||α~x|| to push all scalings as deep as possible, directly in
front of variables. Let the variable xi occur ki times in N, and let αi j be the scaling of the j-th occurrence
of xi. We define αi and βi of Lemma 3.77 as follows.

• αi = p
√∑ki

j=1 αi j.

• βi = q
√∑ki

j=1 αi j.

We prove the first inequality, and the proof would be analogous for the second one. Let N =

||M1, . . . ,Mk||r. Since p is the largest `p-norm used as a term constructor of N, we have ||M1, . . . ,Mk||r �

||M1, . . . ,Mk||p. Repeat the same procedure with all M1, . . . ,Mk recursively, substituting all instances of
`r with `p. By Lemma 3.75, each step of the transformation keeps the resulting norm smaller (or equal).
Finally, we are left with a composite `p-norm N′ that only contains ||·||p for the same p ≥ 1 as a term
constructor. We can now apply Lemma 3.74 and get a norm of the form N′ = ||α11x1, . . . , αnkn xn||p, such
that N′ � N.

Some variables xi used by N′ may repeat if they were repeating in N before. We may now use
Lemma 3.76 to merge repeating variables into one, rewriting

||α11x1, . . . ,

ki︷             ︸︸             ︷
αi1xi, . . . , αiki xi, . . . , αnkn xn||p = ||α11x1, . . . ,

p

√√√√ ki∑
j=1

αi jxi, . . . , αnkn xn||p.

After doing it for all i ∈ [n], we get a norm N′′ = ||α1x1, . . . , αnxn||p, which satisfies N′′ � N. �

We show that a suitable α always exists for a composite `p-norm (Def. 3.57) if Ndb uses all the
variables x1, . . . , xn. This assumption is reasonable: any variable that Ndb does not use is not treated as
sensitive, so we may treat it as a constant when computing the sensitivity, reducing the total number of
variables. We can find α as follows.

1. Use Lemma 3.77 to get ai, bi ≥ 0, p, q > 0 satisfying the conditions ||a1x1, . . . , anxn||q ≥

||x1, . . . , xn||Nqr and ||b1x1, . . . , bnxn||p ≤ ||x1, . . . , xn||Ndb . We have
a · ||x1, . . . , xn||p ≥ ||a1x1, . . . , anxn||p for a = maxi ai, and b · ||x1, . . . , xn||p ≤ ||b1x1, . . . , bnxn||p for
b = mini bi.
We get a · ||x1, . . . , xn||p ≥ ||x1, . . . , xn||Nqr . Since Ndb uses all variables x1, . . . , xn, we have bi , 0
for all i, and hence b , 0. This allows to write ||x1, . . . , xn||p ≤

1
b · ||x1, . . . , xn||Ndb .

2. If p ≤ q, we have a · ||x1, . . . , xn||q ≤ a · ||x1, . . . , xn||p. If p > q, we can use equivalence of `p-norms
that gives us a · ||x1, . . . , xn||q ≤ n1/q−1/p · a · ||x1, . . . , xn||p. Let c = (p ≤ q) ? 1 : n1/q−1/p.

3. We have now come up with scalings a, b, c that satisfy c · a · ||x1, . . . , xn||p ≥ ||x1, . . . , xn||Nqr ,
and ||x1, . . . , xn||p ≤

1
b · ||x1, . . . , xn||Ndb . Putting these inequalities together, we get c · a · 1

b ·

||x1, . . . , xn||Ndb ≥ ||x1, . . . , xn||Nqr . By construction, we always have c > 0. It is possible that a = 0
only in the case if ai = 0 for all i, i.e. the query uses no sensitive variables, which is not the case.
Take α = b

c·a .

If Nqr = N′(V1, . . . ,Vm) and Ndb = N′(W1, . . . ,Wm) for some composite seminorms N′, Vi, Wi, then
it suffices to apply the aforementioned procedure only to such i ∈ [m], where Vi � Wi. Let αi be such,
that αi · Vi � Wi. By Lemma 3.75, we get N′(α1 · V1, . . . , αm · Vm) � N′(W1, . . . ,Wm). We can now take
α = mini αi.

3.3.8.5 Privacy vs Utility. The more noise is added to the output, the better privacy guarantees we
get. However, the utility of the released differentially private output decreases. One needs to find the
balance between privacy and utility. In general, utility is a quite application-specific measure, and one
application may require better output accuracy than another one.
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A possible generic solution of estimating utility is to give an upper bound on the noise magnitude.
Since widely used additive noise distributions (Laplace, Cauchy, Gaussian) are unbounded, instead of
fixing a strict upper bound, we can only define a range within which the noise stays with a sufficiently
high confidence.

We note that there also exist DP mechanisms with nice bounded distributions like truncated
Laplace [57]. However, they only provide (ε, δ)-DP for δ > 0. Such mechanisms can be used in the
cases where the error bound should hold for sure, but the privacy bound is more relaxed, and leakage is
allowed with a reasonable probability that depends on δ.

Probabilistic upper bound on noise magnitude. The noise magnitude depends linearly on the quan-
tity λ := c(t)

b , where c(t) is the derivative sensitivity at point t (t is the actual data) and b a parameter that
depends on ε and β, e.g. b = ( εγ − β) for Cauchy distribution GenCauchy(γ). The noise that is eventually
added to a numeric output is λ · η, where η is sampled from Cauchy distribution. The value λ itself does
not give user any intuition how large that noise is. Instead, we would like to get an upper bound on the
added noise. Unfortunately, both Laplace and Cauchy distributions are unbounded, and such an upper
bound does not exist. However, we can still report a value λ such that error stays below λ with a certain
probability (confidence). Knowing that x ∼

√
2
π ·

1
1+|x|4

, we can compute

∫ 1

−1

√
2
π
·

1
1 + |x|4

dx ≈ 0.78 ,

thus fixing the probability that noise stays below λ =
c(t)
b to a constant p = 0.78. We would like to make

our result more flexible and let the user choose p. Denoting PDF of noise distribution by fη(x), we need
to find a such that ∫ a

−a
fη(x) dx = p .

For Laplace distribution, the equation
∫ a
−a

ε
2 · e

−|x|εdx = p reduces to 1 − e−aε = p, from which we get
a =

− ln(1−p)
ε . Unfortunately, there is no nice solution for Cauchy noise. However, since

∫ a
−a fη(x) dx =

2 ·
∫ a

0 fη(x) dx, and fη(x) is monotone in [0,∞), we can use window binary search to find a for non-scaled
Cauchy distribution. Now, in order to get probability p for x = λη, we just need to take aλ instead of a,
as we have

p =

∫ a

−a
fη(x) dx =

∫ a

−a
fη(λx) d(λx) =

∫ aλ

−aλ

1
λ
· fη(λx) dx .

An upper bound on noise magnitude can be a fair estimate on its own, but it is not suitable for
comparing different SQL queries. The badness of a depends on the query, its result, and its further use
by the recipient of the query result. For example, the additive noise ±5 would almost have no effect on
the actual count y = 1000, but it would be destructive for y = 10. For a single real output y, we can
define relative error as a

|y| (which is reasonable as far as y , 0). For a vector of outputs ~y, we still want

to have one number that characterizes the error. We propose to define the error as ||~a||2
||~y||2

, where ~a is the
vector of errors.

Precision loss due to continuous approximation. We proposed to use sigmoids eαx

eαx+1 as continuous
approximations of indicator functions x > 0 to implement filtering. Using sigmoids instead of the
original filters causes a precision loss, as we use the value eαx

eαx+1 instead of 0 or 1. The difference is
1

eα|x|+1 , which goes to 0 when |x| → ∞. The larger α is, the faster the difference goes to 0, and thus the
smaller the precision loss. Unfortunately, we cannot increase α indefinitely to decrease the precision
loss. If we want to achieve ε-differential privacy then the ε, together with the structure of the query,
determines a value α0 such that ε-differential privacy can only be achieved if α < α0.

Suppose we have a SUM query using `1-norm to join row norms, and input rows are chosen from a
certain distribution that does not change when input size (n, the number of rows) changes, which would
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be a quite common scenario. Then the query result is roughly proportional in n, and the sensitivity (and
thus the added noise) is roughly constant. Thus the relative error from added noise goes to 0 as n→ ∞.
The relative error from sigmoids, however, is roughly constant as n→ ∞.

The larger n gets, the larger the error from sigmoids becomes relative to the error from added noise.
We would like to decrease the former even if this increases the latter. We saw that we cannot increase α
to achieve this. Instead, we use so-called precise sigmoids, keeping α constant but increasing the second
parameter a as n increases.

Precise sigmoid. To get a higher precision than that of an ordinary sigmoid but still maintain α-
smoothness, we use an extra parameter a in addition to α. We use the sigmoid σ(x) = eax

eax+1 but instead
of its actual sensitivity σ′(x), we use c(x) = aeαx

(eαx+1)2 , which is an α-smooth upper bound on σ′(x). The
smooth sensitivity is a

α times higher than that of the original sigmoid, but the difference from the precise
filter value (0 or 1) is eax+1

eαx+1 times smaller. If the probability density function of x is roughly constant
near x = 0 then, for all y ∈ (0, 1), the probability that the difference from the precise filter value is larger
than y is

Pr(
1

eax + 1
> y) = Pr(eax <

1
y
− 1) = Pr(x <

1
a

ln(
1
y
− 1)) ≈

≈
α

a
Pr(x <

1
α

ln(
1
y
− 1)) =

α

a
Pr(

1
eαx + 1

> y)

i.e. a
α times smaller than in the original sigmoid.
Then, assuming the probability density function of the input is roughly constant near the pivot point

of the filter, the relative error from sigmoids will be roughly a
α times smaller and the relative error from

added noise will be roughly a
α times larger.

Suppose that with an ordinary sigmoid the relative error from the sigmoid is k times larger than that
from added noise. Then we can take a = α

√
k to make the two sources of error roughly equal and get the

smallest amount of total noise. For the kind of queries considered above, k is roughly proportional to n,
thus a would have to be roughly proportional to

√
n. The total error would then be inversely proportional

to
√

n.
If more than one sigmoid is used then the total error would still be inversely proportional to

√
n. If

no sigmoids are used then the total error would be inversely proportional to n.
We can get similar results for tauoids 2

e−αx+eαx , used as continuous approximation of equality x = 0.
Here we can allow nonzero probability at the pivot point, but near the pivot point (excluding the pivot
point itself) the probability density function must still be roughly constant.

If the filtered values are integers then we do not have to use sigmoids and tauoids but instead use the
precise functions x > y ⇐⇒ min(1,max(0, x − y)) and x = y ⇐⇒ 1 − min(1,max(0, |x − y|)). Then
the only error is from adding noise and it would be inversely proportional to n.

Utility loss vs privacy loss. In the previous paragraphs, we considered how precision improves asymp-
totically when the number of rows n → ∞. Now we consider how precision depends on the required
privacy level. Let us define utility loss as the total relative error. Let us define privacy loss as the
differential-privacy ε.

First consider the case without sigmoids. The relative error from noise is En =
c(x)

b f (x) . Here c
is a β-smooth upper bound on DS f , thus it is monotonically decreasing in β. By default, we have
b = β = ε

2(γ+1) . Thus En =
2(γ+1)c(x)
ε f (x) and c is also monotonically decreasing in ε. So if we increase ε by

a factor of k > 1 then En decreases by a factor of at least k.
The global sensitivity can be defined as GS f = maxx DS f (x). Note that the product of utility loss

and privacy loss, En · ε, is monotonically decreasing in ε and

lim
ε→0

En · ε =
2(γ + 1)c(x)

f (x)
· GS f ,

lim
ε→∞

En · ε =
2(γ + 1)c(x)

f (x)
· DS f (x) .

153
Approved for Public Release; Distribution Unlimited. 



Thus En · ε goes from 2(γ+1)c(x)
f (x) · GS f to 2(γ+1)c(x)

f (x) · DS f (x) as ε goes from 0 to ∞. Thus the larger ε is,
the bigger the advantage of using smooth derivative sensitivity instead of global sensitivity.

Now consider the case that uses sigmoids. We optimize the tradeoff between sigmoid precision and
added noise. The total relative error is E = 2En and we get similar results for E · ε as above for En · ε.

3.3.9 Combining Derivative Sensitivity for Row Multiplicities and Components. In Sec. 3.3.7, we
showed how to compute smooth derivative sensitivity for relational algebra queries, where the derivatives
are w.r.t. the multiplicities of rows in input tables. The distance between two databases is the number of
rows we have to add to or remove from the first database to transform it into the second database. The
shortcoming of this approach is that if the databases differ by only a small change in one row then the
distance is the same as when they differ by a large change in that row (in both cases we need to remove
one row and add another).

In Sec. 3.3.8, we showed how to compute smooth derivative sensitivity in Banach spaces, where
the derivatives are Fréchet derivatives w.r.t. the values of rows in input tables. The distance between
two databases quantifies the amount of changes we have to make to the values of the rows in the first
database to transform it into the second database. This removes the shortcoming of the first approach
but introduces another: the number of rows in the tables of the two databases must now be the same.

We would like to combine the two approaches, allowing to add and remove rows to/from the database
and also make changes to individual rows so that small changes correspond to small distances.

Because in this section we will use two different kinds of derivative sensitivity (w.r.t. row multi-
plicities and w.r.t. components), let us call the derivative sensitivity w.r.t. components (i.e. in Banach
spaces) Banach sensitivity or Banach derivative sensitivity. In ambiguous cases, we call the derivative
sensitivity w.r.t. row multiplicities also adding/removing rows sensitivity.

3.3.9.1 Generalization of Derivative Sensitivity.

Extending the definitions. First, let us extend the notion of derivative sensitivity. We will need the
following lemma.

Lemma 3.78. Let X be a convex subset of a Banach space with norm ‖ ‖, f : X → R a function,
c : X → R+ a β-smooth upper bound on the derivative sensitivity (in the sense of Def. 3.55) of f . Then

| f (x′) − f (x)| ≤ eβ‖x
′−x‖c(x)‖x′ − x‖

Proof. Let x, x′ ∈ X. By the Mean Value Theorem for Banach spaces, there exists λ ∈ (0, 1) such that

f (x′) − f (x) = d f(1−λ)x+λx′(x′ − x)

Then
| f (x′) − f (x)| ≤ ‖d f(1−λ)x+λx′‖ · ‖x′ − x‖ = DS f ((1 − λ)x + λx′) · ‖x′ − x‖

Because c is an upper bound of DS f ,

DS f ((1 − λ)x + λx′) ≤ c((1 − λ)x + λx′)

Because c is β-smooth and ‖((1 − λ)x + λx′) − x‖ = λ‖x′ − x‖,

c((1 − λ)x + λx′) ≤ eβλ‖x
′−x‖c(x) ≤ eβ‖x

′−x‖c(x)

Thus
| f (x′) − f (x)| ≤ eβ‖x

′−x‖c(x)‖x′ − x‖

�
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We have the following definition, which generalizes Definition 3.39 and Definition 3.55 to an arbi-
trary metric space instead of a Banach space:

Definition 3.58. Let (X, d) be a metric space. Let f : X → R. The derivative sensitivity of f is the
following mapping from X to R+, where R+ denotes the set of all non-negative real numbers:

DS f (x) = lim sup
x′: d(x,x′)→0

| f (x) − f (x′)|
d(x, x′)

Note that because the argument of lim sup is a real-valued expression, the lim sup always exists (but
may be infinite).

It is easy to see that if the derivative sensitivity in the sense of Def. 3.39 or Def. 3.55 exists then it is
also the derivative sensitivity in the sense of Def. 3.58. The converse does not necessarily hold because
Def. 3.39 and Def. 3.55 require the existence of an (ordinary or Fréchet) derivative but in Def. 3.58,
the derivative sensitivity is always defined. This is similar to using the upper derivative instead of the
ordinary derivative.

Lemma 3.79. Let (X, d) be a metric space. Let f : X → R. If the derivative sensitivity of f is finite then
f is continuous.

Proof. Let x ∈ X.

lim sup
x′: d(x,x′)→0

| f (x) − f (x′)| ≤
 lim sup

x′: d(x,x′)→0
d(x, x′)

  lim sup
x′: d(x,x′)→0

| f (x) − f (x′)|
d(x, x′)

 = 0

Because | f (x) − f (x′)| is non-negative, it follows that

lim
x′: d(x,x′)→0

| f (x) − f (x′)| = 0

�

We also extend the definition of smoothness to the case where X is any metric space:

Definition 3.59. Let p : X → R and β ∈ R. The mapping p is β-smooth, if p(x) ≤ eβ·d(x,x) · p(x′) for all
x, x′ ∈ X.

Combining the two analyses. Let
X = X1 × · · · × Xm

f : X → R

The filter predicate
F : X → B

The query
Q : (X1 → R+) × · · · × (Xm → R+)→ R

Elements of Xi → R+ are generalized multisets where multiplicities need not be integers.

Q(T1, . . . ,Tm) =
∑
{| f (x) | x ∈ T1 × · · · × Tm, F(x)|}

Let
c1 : (X1 → R+) × · · · × (Xm → R+)→ R

be a β-smooth upper bound on the derivative sensitivity (in the sense of Def. 3.39 and thus also in the
sense of Def. 3.55) of Q w.r.t. the (scaled by a factor of G ∈ R+) distance d1:

d1((T1,T2, . . . ,Tm), (T ′1,T2, . . . ,Tm)) = G
∑
x∈X1

|T1(x) − T ′1(x)|
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(i.e. d1(Y,Y ′) is G times the number of rows needed to add to or remove from the table T1 of Y to obtain
Y ′). Note that X is a convex subset of a Banach space with the norm corresponding to d1. Also note
that we are only considering changes in the table T1, the other tables are considered to be fixed. This is
because we currently only know how to compute the combined sensitivity w.r.t. each table separately,
and w.l.o.g. we can assume that the table w.r.t. which we are computing the sensitivity, is T1.

Let X1 be an open convex subset of a Banach space and d0 the distance corresponding to the norm
of that Banach space. We use d0 to define a distance d2 between some pairs of two databases Y and Y ′

that differ by at most one row in table T1 (and are equal in all other tables):

d2(Y,Y ′) = d0(r, r′)

where r is a row in table T1 of Y and r′ is a row in table T1 of Y ′ such that removing r from Y and r′ from
Y ′ results in the same database, and r and r′ may differ only in the columns considered sensitive in the
analysis that uses d2. For all other pairs of databases Y and Y ′, let d2(Y,Y ′) = ∞. Thus d2 is an extended
distance. Note that the relation {(Y,Y ′) | d2(Y,Y ′) < ∞} is an equivalence relation whose equivalence
classes are open convex subsets of Banach spaces with norm corresponding to the distance d2.

Let
c0 : (X1 → R+) × · · · × (Xm → R+)→ R

be a β-smooth upper bound on the derivative sensitivity (in the sense of Def. 3.55) of Q w.r.t. the distance
d2.

We combine the two distances d1 and d2 using a form of edit distance. Suppose that we want to
find the combined distance between databases Y and Y ′. Then we may transform Y into Y ′ through
intermediary databases Y = Y1,Y2, . . . ,Yn−1,Yn = Y ′ such that

∑n−1
i=1 dki(Yi,Yi+1) where ki ∈ {1, 2}, is

minimized over the choice of n, Yi and ki. This minimum (actually infimum, if n → ∞) can be taken as
the combined distance d(Y,Y ′):

Definition 3.60. Let d1 and d2 be extended distances on the set X. The combined distance of d1 and d2
is d where for all Y,Y ′ ∈ X,

d(Y,Y ′) = inf
n∈N

Y1 ,...,Yn∈X
k1 ,...,kn∈{1,2}

n−1∑
i=1

dki(Yi,Yi+1) (34)

(34) is equivalent to

∀ε > 0. ∃n,Y1, . . . ,Yn, k1, . . . , kn. d(Y,Y ′) ≤
n−1∑
i=1

dki(Yi,Yi+1) < d(Y,Y ′) + ε (35)

It is easy to see that the triangle inequality holds for d.

Lemma 3.80. The combined distance d of two extended distances d1 and d2 is an extended distance. If
one of d1 and d2 is a distance then also d is a distance.

As d1 is a distance and d2 is an extended distance, their combined distance d is a distance.
We would like to combine the smooth sensitivities c1 and c0 to obtain a smooth sensitivity of Q w.r.t.

the combined distance d. Intuitively, we would take max(c1, c0) as the combined sensitivity. This would
work if c1 and c0 were smooth w.r.t. d but they are smooth only w.r.t. d1 and d2, respectively.

To make c1 smooth w.r.t. d2, we restrict the analysis that computes c1 so that c1 will not depend on
the columns considered sensitive in the analysis that computes c2. This may increase c1 somewhat but
it seems not much in practice.

To make c0 smooth w.r.t. d1, we also compute the global maximum of the sensitivity of f , which
does not depend on the input database:

c3 = max
x∈X

DS f (x)
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and the sensitivity c4(Y) of the COUNT query corresponding to Q w.r.t. distance d1. Then adding/remov-
ing/exchanging δ (an infinitesimal number of) rows in T1 will add/remove/exchange at most δc4(Y) rows
in the filtered cross product. Changing the value of those δ rows using distance d2 will have sensitivity
at most δc3c4(Y).

If Q uses T1 only once then c4(Y) does not depend on the rows in T1 and then adding/remov-
ing/exchanging 1 row in T1 will add/remove/exchange at most c4(Y) rows in the filtered cross product.
Changing the value of this 1 row using distance d2 will have sensitivity at most c3c4(Y). As adding/re-
moving/exchanging 1 row corresponds to d1-distance G, the sensitivity of Q w.r.t. d2 at d1-distance G
from Y is at most c3c4(Y). If this sensitivity is actually reached then the upper bound on the sensitivity
of Q w.r.t. d2 at Y must be at least e−βGc3c4(Y)) to maintain smoothness w.r.t. d1.

This motivates us to take
c2(Y) = max(c0(Y), e−βGc3c4(Y))

as the upper bound on the sensitivity of Q w.r.t. d2. We want that c2 would be smooth w.r.t. d1.
Suppose that Q uses T1 only once and row multiplicities are restricted to be integers. In this case, the

d1-distances are all multiples of G (thus cannot be between 0 and G) and sensitivity at any d1-distance
from Y is at most c3c4(Y). Note that c4 here is technically local sensitivity but it is in this case equal to
the derivative sensitivity. Thus c2 is smooth w.r.t. d1.

Suppose that Q uses T1 more than once and row multiplicities are still restricted to be integers. In
this case, the d1-distances are still all multiples of G (thus cannot be between 0 and G) and sensitivity
at any d1-distance from Y is at most c3c4(Y) where now c4 is the smooth local sensitivity of the COUNT
query corresponding to Q w.r.t. distance d1. Thus c2 is smooth w.r.t. d1.

Now, if c2 is smooth w.r.t. d1, we have that c = max(c1, c2) is β-smooth w.r.t. d1 and also w.r.t. d2.

Lemma 3.81. Let f : X → R. Let d1 and d2 be extended distances on X and d their combined distance.
Let f be β-smooth w.r.t. d1 and also w.r.t. d2. Then f is also β-smooth w.r.t. d.

Proof. We prove the statement for distances. It is easy to generalize it to extended distances.
We prove by induction over n that if Y = Y1,Y2, . . . ,Yn−1,Yn = Y ′ where ki ∈ {1, 2} and dki(Yi,Yi+1) <

∞ then
f (Y ′) ≤ eβ

∑n−1
i=1 dki (Yi,Yi+1) f (Y)

The proof is given by the following line:

f (Yn) ≤ eβdkn−1 (Yn−1,Yn) f (Yn−1) ≤ eβdkn−1 (Yn−1,Yn)eβ
∑n−2

i=1 dki (Yi,Yi+1) f (Y) = eβ
∑n−1

i=1 dki (Yi,Yi+1) f (Y)

where the first inequality follows from the smoothness of f w.r.t. dk−1 and the second from the induction
hypothesis. The induction base (n = 1) is trivial.

Now we use (35) and get that for all ε > 0, there exist n,Y1, . . . ,Yn, k1, . . . , kn such that

n−1∑
i=1

dki(Yi,Yi+1) < d(Y,Y ′) + ε

Then
f (Y ′) < eβ(d(Y,Y′)+ε) f (Y)

This holds for all ε > 0, thus

f (Y ′) ≤ inf
ε>0

eβ(d(Y,Y′)+ε) f (Y) = eβd(Y,Y′) f (Y)

Similarly, we get
f (Y) ≤ eβd(Y,Y′) f (Y ′)

Thus f is β-smooth w.r.t. d. �
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Thus c is β-smooth w.r.t. d.
We know that c is an upper bound on the derivative sensitivity of Q w.r.t. d1 and also w.r.t. d2.

Lemma 3.82. Let Q : X → R. Let d1 and d2 be extended distances on X such that for all i ∈ {1, 2},
x ∈ X, the set {x′ | di(x, x′) < ∞} is a convex subset of a Banach space. Let d be the combined distance
of d1 and d2. Let c be a β-smooth w.r.t. d upper bound on the derivative sensitivity of Q w.r.t. d1 and
also w.r.t. d2. Then it is also an upper bound on the derivative sensitivity of Q w.r.t. d.

Proof. Let Y be arbitrary. Let ε > 0 be arbitrary. Let

ε1 = min(1,
√

1 +
ε

c(Y)
− 1)

δ = ε2 =
1

8β
ln

(
1 +

ε

c(Y)

)
Then

ε1δ ≤ ε2

Let Y ′ be such that d(Y,Y ′) < δ. Now we use (35), taking ε = ε1d(Y,Y ′), and get n,Y1, . . . ,Yn, k1, . . . , kn

such that
n−1∑
i=1

dki(Yi,Yi+1) < d(Y,Y ′) + ε1d(Y,Y ′)

Then also
∀i. dki(Yi,Yi+1) < d(Y,Y ′) + ε1d(Y,Y ′) < δ + ε1δ ≤ δ + ε2

and from (34),

∀i. d(Y,Yi) ≤
i−1∑
j=1

dk j(Y j,Y j+1) < d(Y,Y ′) + ε1d(Y,Y ′) ≤ δ + ε2

Using Lemma 3.78 and that cki is β-smooth over dki ,

|Q(Y)−Q(Y ′)| ≤
n−1∑
i=1

|Q(Yi)−Q(Yi+1)| ≤
n−1∑
i=1

eβdki (Yi,Yi+1)cki(Yi)dki(Yi,Yi+1) ≤ eβ(δ+ε2)
n−1∑
i=1

cki(Yi)dki(Yi,Yi+1)

Using that cki is β-smooth over d,
cki(Yi) ≤ eβd(Y,Yi)cki(Y)

|Q(Y) − Q(Y ′)| ≤ eβ(δ+ε2)
n−1∑
i=1

eβd(Y,Yi)cki(Y)dki(Yi,Yi+1) ≤ e2β(δ+ε2)
n−1∑
i=1

cki(Y)dki(Yi,Yi+1)

|Q(Y) − Q(Y ′)| ≤ e2β(δ+ε2)c(Y)
n−1∑
i=1

dki(Yi,Yi+1) < e2β(δ+ε2)c(Y)(d(Y,Y ′) + ε1d(Y,Y ′))

|Q(Y) − Q(Y ′)| < e2β(δ+ε2)(1 + ε1)c(Y)d(Y,Y ′)

e2β(δ+ε2)(1 + ε1) ≤ 1 +
ε

c(Y)

|Q(Y) − Q(Y ′)| <
(
1 +

ε

c(Y)

)
c(Y)d(Y,Y ′) = (c(Y) + ε)d(Y,Y ′)

|Q(Y) − Q(Y ′)|
d(Y,Y ′)

< c(Y) + ε

We have proved that

∀Y. ∀ε > 0. ∃δ > 0. ∀Y ′. d(Y,Y ′) < δ⇒
|Q(Y) − Q(Y ′)|

d(Y,Y ′)
< c(Y) + ε
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∀Y. lim sup
Y′: d(Y,Y′)→0

|Q(Y) − Q(Y ′)|
d(Y,Y ′)

≤ c(Y)

Thus c is an upper bound on the derivative sensitivity of Q w.r.t. d. �

Thus c is an upper bound on the derivative sensitivity of Q w.r.t. d.
Combining Lemmas 3.81 and 3.82 easily gives us the following theorem:

Theorem 3.83. Let Q : X → R. Let d1 and d2 be extended distances on X such that for all i ∈ {1, 2},
x ∈ X, the set {x′ | di(x, x′) < ∞} is a convex subset of a Banach space. Let c be a β-smooth w.r.t. d1 and
also w.r.t. d2, upper bound on the derivative sensitivity of Q w.r.t. d1 and also w.r.t. d2. Then c is also a
β-smooth w.r.t. d upper bound on the derivative sensitivity of Q w.r.t. d.

Thus c is a β-smooth upper bound on the derivative sensitivity of Q w.r.t. d.

3.3.9.2 From Combined Derivative Sensitivity to Differential Privacy. Let Q : (X1 → R+) × · · · ×
(Xm → R+)→ R be a query. Suppose that we have two sensitivities:

c1 : (X1 → R+) × · · · × (Xm → R+)→ R

is a β-smooth upper bound on the derivative sensitivity of Q w.r.t. the distance d1, and

c0 : (X1 → R+) × · · · × (Xm → R+)→ R

is a β-smooth upper bound on the derivative sensitivity of Q w.r.t. the distance d2.
We showed that if we have a function c that is smooth w.r.t. both initial distances and is an upper

bound on the derivative sensitivity w.r.t. both initial distances, then it is also a smooth upper bound on
the derivative sensitivity w.r.t. the combined distance.

To get differential privacy w.r.t. d0 and c0, we use Theorem 3.62. To extend the differential privacy
to d2 and c0, we use the following lemma:

Lemma 3.84. Let d be an extended distance on X. Suppose that for all x ∈ X, g : X′ → D(R) is
ε-differentially private w.r.t. d restricted to the set X′, where X′ = {x′ | di(x, x′) < ∞}. Then g is also
ε-differentially private w.r.t. d.

Proof. Let x, x′ ∈ X. We have to show that ddp(g(x), g(x′)) ≤ ε · d(x, x′). If d(x, x′) < ∞ then x′ ∈
{x′ | di(x, x′) < ∞} and thus ddp(g(x), g(x′)) ≤ ε · d(x, x′). If d(x, x′) = ∞ then ddp(g(x), g(x′)) ≤ ∞ =

ε · d(x, x′). �

To get differential privacy w.r.t. d1 and c1, we use the Theorem 3.53. If instead of derivative
adding/removing rows sensitivity, we had a smooth upper bound on the local adding/removing rows
sensitivity then we could use (but currently are not using) the following lemma instead of Theorem 3.53:

Lemma 3.85. Let f : X → R. Let d be an integer-valued distance on X such that for all x, x′ ∈ X, there
exist x0, . . . , xn ∈ X where n = d(x, x′), such that x0 = x, xn = x′ and for i = 0, . . . , n − 1, d(xi, xi+1) = 1.
Let γ, b, β ∈ R+, γ > 1. Let ε = (γ + 1)(b + β). Let η be a random variable distributed according to
GenCauchy(γ). Let c be a β-smooth upper bound on the local sensitivity of f . Then g(x) : f (x) +

c(x)
b · η

is ε-differentially private.

Proof. Let x, x′ ∈ X. Then there exist x0, . . . , xn ∈ X where n = d(x, x′), such that x0 = x, xn = x′ and
for i = 0, . . . , n − 1, d(xi, xi+1) = 1.

ddp(g(x), g(x′)) ≤
n−1∑
i=0

ddp(g(xi), g(xi+1)) ≤ (γ + 1) ·
(
b ·
| f (xi+1) − f (xi)|

c(x)
+ βd(xi, xi+1)

)

ddp(g(x), g(x′)) ≤
n−1∑
i=0

(γ + 1) · (b · d(xi, xi+1) + β · d(xi, xi+1))
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ddp(g(x), g(x′)) ≤
n−1∑
i=0

(γ + 1)(b + β) · d(xi, xi+1) = (γ + 1)(b + β) · n = (γ + 1)(b + β) · d(x, x′) .

�

Now we prove a theorem that allows combining differential privacy w.r.t. two different distances.

Theorem 3.86. Let d1 and d2 be extended distances on X. Let d be the combined distance of d1 and
d2. Suppose that g : X → D(R) is ε-differentially private w.r.t. d1 and also w.r.t. d2. Then g is also
ε-differentially private w.r.t. d.

Proof. Let x, x′ ∈ X. We have to show that ddp(g(x), g(x′)) ≤ ε · d(x, x′).
Let ε > 0 be arbitrary. From (35),

∃n, x1, . . . , xn, k1, . . . , kn.

n−1∑
i=1

dki(xi, xi+1) < d(x, x′) + ε .

Because g is ε-differentially private w.r.t. dki ,

ddp(g(xi), g(xi+1) ≤ ε · dki(xi, xi+1) .

By the triangle inequality for ddp,

ddp(g(x), g(x′)) ≤
n−1∑
i=1

ddp(g(xi), g(xi+1)) ≤ ε ·
n−1∑
i=1

dki(xi, xi+1)

ddp(g(x), g(x′)) < ε(d(x, x′) + ε) .

Because this holds for all ε > 0, we have

ddp(g(x), g(x′)) ≤ ε · d(x, x′) .

�

To use Theorem 3.86, we need a single g to be differentially private w.r.t. both d1 and d2. The g is
determined by the c, and so far we have differential privacy w.r.t. d1 for c1 and w.r.t. d2 for c0. We need
differential privacy w.r.t. d1 and d2 for a single c. The theorems we used so far would still hold if c1
and c0 are replaced by a β-smooth upper bound on both. We will show how to find such a smooth upper
bound in Sec. 3.3.9.3.

3.3.9.3 Smoothing. To use the theorems of Sec. 3.3.9.2 for obtaining differential privacy, we need a
function c that is smooth w.r.t. both initial distances and is an upper bound on the derivative sensitivity
w.r.t. both initial distances.

We already have c1 smooth w.r.t. d1 and c0 smooth w.r.t. d2. We need to cross-smoothe c1 w.r.t. d2
and c0 w.r.t. d1, i.e. make sensitivity w.r.t. each initial distance smooth w.r.t. the other initial distance.

First, we consider how to make sensitivity w.r.t. one initial distance in one table smooth w.r.t. the
other initial distance in the same table.

Let f be the function that corresponds to the query Q. In Sec. 3.3.9.1, we proposed taking

c2(Y) = max(c0(Y), e−βGc3c4(Y))

as the upper bound on the sensitivity of Q w.r.t. d2, where c3 = maxx∈X DS f (x) and c4(Y) is the sensitivity
of the COUNT query corresponding to Q w.r.t. distance d1.

We have made c2 smooth w.r.t. d1 but c2 is defined only for databases Y with integer row mul-
tiplicities, unlike c1, which was defined for databases Y with real-valued row multiplicities. This is
not a problem since the actual databases used in practice have only integer row multiplicities and we
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need differential privacy only for those. The fractional multiplicities are only used to make c1 easier to
compute.

We still have another problem. With c = max(c1, c2) we have c (unlike c1) defined only for integer
row multiplicities and we cannot use Theorem 3.53 which requires it to be defined for real-valued row
multiplicities. We use the following modification of Theorem 3.53 to get differential privacy for c and
d1:

Theorem 3.87. Let X = (Rn, d) be a metric space, with d being the `1-distance. Let

DS f (~x) = max
i

∣∣∣∣∣ ∂ f
∂xi

(~x)
∣∣∣∣∣ .

Let γ, b, β ∈ R+, γ > 1. Let ε = (γ + 1)(b + β). Let η be a random variable distributed according
to GenCauchy(γ). Let c = max(c1, c2) where c1 is a β-smooth upper bound on DS f for a function
f : X → R and c2 is β-smooth for inputs with integer row multiplicities. Then g(~x) : f (~x) +

c(~x)
b · η is

ε-differentially private for inputs with integer row multiplicities (a finite number of which are nonzero).

Proof. Let ~x, ~x′ ∈ X and let all their coordinates be integers. Suppose that they differ only in the i0-th
coordinate. W.l.o.g. assume that x′i0 ≥ xi0 . Denote L = x′i0 − xi0 . We have to show that ddp(g(~x′), g(~x)) ≤
εL = (γ + 1)(b + β)L.

We extend c2 to inputs on the segment connecting ~x and ~x′, where the i0-th coordinate can be real-
valued (the rest must still be integer-valued, we do not know whether such extension is possible for more
than one coordinate at a time).

c2(~x[n + r]) := c2(~x[n])1−r · c2(~x[n + 1])r for n ∈ N, r ∈ (0, 1)

It is easy to see (using the smoothness of c2 for integer multiplicities) that this extended c2 is β-smooth
on the segment connecting ~x and ~x′. Then also c = max(c1, c2) using this extended c2 is a β-smooth
upper bound on DS f on the segment connecting ~x and ~x′.

Now we can use Theorem 3.53 to get ddp(g(~x′), g(~x)) ≤ (γ + 1)(b + β)L since its proof only uses c
on the segment connecting ~x and ~x′.

If ~x and ~x′ differ in more than one coordinate, then we can transform ~x to ~x′ by changing one
coordinate at a time, and using the triangle inequality. �

Getting differential privacy for c and d2 is easier. As noted in Sec. 3.3.9.1, to make c1 smooth
w.r.t. d2, we restrict the analysis that computes c1 so that c1 will not depend on the columns considered
sensitive in the analysis that computes c2. The same restriction makes c4 smooth w.r.t. d2. Also c0 is
smooth w.r.t. d2. Thus also c will be smooth w.r.t. d2 and we can use Theorem 3.62 and Lemma 3.84 to
obtain differential privacy for c and d2.

Now we use Theorem 3.86 to get differential privacy for c and d. Note that, even though we use
fractional row multiplicities in some parts of the analysis to make computations easier, the differential
privacy we obtain in the end is only proved for integer multiplicities, i.e. the query is restricted to

Q : (X1 → N) × · · · × (Xm → N)→ R .

As we noted before, this is sufficient in practice.

Allowing G to depend on the table. Suppose that instead of

d1((T1,T2, . . . ,Tm), (T ′1,T
′
2, . . . ,T

′
m)) = G

m∑
i=1

∑
x∈Xi

|Ti(x) − T ′i (x)|

we have

d1((T1,T2, . . . ,Tm), (T ′1,T
′
2, . . . ,T

′
m)) =

m∑
i=1

Gi

∑
x∈Xi

|Ti(x) − T ′i (x)|
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where Gi is the distance between two databases that differ by one row in table Ti and are equal in the
other tables.

If some of the tables are used more than once in the query then, because we first compute sensitivity
separately w.r.t. each copy of a multiply-used table, we must divide Gi by the number of times the table
Ti is used, so that when we add one row to each copy of Ti the total distance is still Gi.

Combined sensitivity w.r.t. one table. Derivative sensitivity can be smoothed exactly in the same
way as it was done in the paragraph “Smoothing the derivative sensitivity” of Sec. 3.3.7.3. So far, we
discovered that we also need smooth local sensitivity (c4) in addition to smooth derivative sensitivity
(c1). An upper bound on the local sensitivity can be found by taking the supremum of the derivative sen-
sitivities at distances in the range [0, 1] because we can add/remove one row in infinitesimal increments
and during this process, the derivative sensitivity never exceeds this upper bound.

As we noted before, the derivative sensitivity is monotonically increasing in the row multiplicities,
thus we can find this upper bound by just considering adding 1 row to the database, thus taking the
derivative sensitivity at distance 1.

Because we are computing the smooth sensitivity w.r.t. (one copy of) one table at a time, we add
the 1 row to each of the copies of Ti (the table w.r.t. which we are currently computing the sensitivity).
When computing A(k), the sensitivity at distance k defined in (33), this added 1 row does not count
towards the distance budget k. Thus

A(k) = Countσθ(
∏

j,i T j)(D) +
∏
j,i

(n j + ` j + k j) −
∏
j,i

n j

where ` j is 1 if T j is a copy of the table Ti, and 0 otherwise. Then the derivative of A(k) is

∂(A(k))
∂k

=
1

Gm(nm + `m + km)

∏
j,i

(n j + ` j + k j)

and
∂L
∂k

= −β +
1

Gm(nm + `m + km)
·

(
1 +

C∏
j,i(n j + ` j + k j) −C

)
.

The rest of the argument is similar to the paragraph “Smoothing the derivative sensitivity” of Sec. 3.3.7.3.

Combined Sensitivity w.r.t. Multiple Tables. Let us consider how to make sensitivity w.r.t. one
initial distance in one table smooth w.r.t. the other initial distance in other tables. First, let us assume
that each table can be used at most once in a query.

With only one table, Banach sensitivity c0 is smoothed w.r.t. adding/removing rows as

c2(Y) = max(c0(Y), e−βGc3c4(Y)) .

With multiple tables, the Banach sensitivity c0i w.r.t. the ith table is smoothed w.r.t. adding/removing
rows in the ith table as

c2i(Y) = max(c0i(Y), c3i max
j

(e−βG jc4 j(Y))) .

The Banach sensitivity c0i w.r.t. the ith table is smoothed w.r.t. adding/removing rows in all tables as

c2i(Y) = max(c0i(Y), e−βGic3ic4i(Y),max
j,i

(e−βG j(c0i(Y) + c3ic4 j(Y)))) .

Adding one row to table j adds at most c4 j(Y) rows to the joined table. Each of those rows may be
affected by the same row r in table i. The total Banach sensitivity of those added rows is at most
c3ic4 j(Y). In addition, the joined table may already contain some rows affected by r, with total Banach
sensitivity at most c0i(Y). Thus the total Banach sensitivity of rows affected by r, after adding one row
to table j, is at most c0i(Y) + c3ic4 j(Y). Because this sensitivity is at distance G j, we have to multiply it
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by e−βG j . If i = j then the term c0i(Y) is not needed because then the new rows are affected by the row
added to table i and thus cannot be affected by an existing row of table i.

If Gi = ∞ then c3i = 0,
e−βG j(c0i(Y) + c3ic4 j(Y)) ≤ c0i(Y) ,

and as c0i(Y) is already included in c(Y), we can ignore the term e−βG j(c0i(Y) + c3ic4 j(Y)). If G j = ∞

then we can also ignore that term, as it is zero.

Combined sensitivity w.r.t. tables used more than once. So far, each table was assumed to be used
at most once. We will now lift this restriction.

Let II be the set of indices of table-copies corresponding to table I. The Banach sensitivity w.r.t.
table I is at most the sum of the sensitivities w.r.t. each copy of I:

C0I =
∑
i∈II

c0i .

If table I is used only once (II = {i}) then

C2I(Y) = max(c0i(Y), e−βGic3ic4i(Y),max
J,I

(e−βGJ (c0i(Y) + c3iC4J(Y))))

Adding one row to table J adds at most C4J(Y) =
∑

j∈IJ c4 j(Y) rows to the joined table.
If table I is used more than once then

C2I(Y) = max(C0I(Y),

e−βGI max(C3IC4I(Y),C0I(Y) + (C3I −min
i∈II

c3i)C4I(Y)),

max
J,I

(e−βGJ (C0I(Y) + C3IC4J(Y)))) .

Adding one row to table J adds at most C4J(Y) =
∑

j∈IJ c4 j(Y) rows to the joined table. Each of those
rows may be affected by the same row r in table I. The total Banach sensitivity of those added rows is
at most C3IC4J(Y). In addition, the joined table may already contain some rows affected by r, with total
Banach sensitivity at most C0I(Y). Thus the total Banach sensitivity of rows affected by r, after adding
one row to table J, is at most C0I(Y) + C3IC4J(Y). Because this sensitivity is at distance GJ , we have to
multiply it by e−βGJ .

If I = J then we have two cases. If r is the added row then the term C0I(Y) is not needed because
r cannot be an existing row of table i (multiple copies of the same row are counted as separate rows).
Thus we get the term C3IC4I(Y). If r is an existing row then it can affect each new row in the joined
table through at most |II | − 1 copies of table I, as at most one copy must provide the row newly added to
table I. Thus the sensitivity of each new row in the joined table w.r.t. row r is at most C3I −mini∈II c3i.
Thus we get the term C0I(Y) + (C3I −mini∈II c3i)C4I(Y).

3.3.9.4 Asymptotic Behavior.

Noise level. Suppose we have a sequence of databases Y1,Y2, . . . such that the number of rows in
Yn goes to infinity if n → ∞. The result of a query Q on Yn is Q(Yn). The magnitude of the added
noise is proportional to c(Yn)

b where c(Yn) is a β-smooth upper bound on the combined sensitivity where
ε = (γ + 1)(b + β) and γ > 1 is a constant (by default γ = 4). If also ε and β are constant (independent
of n) then b is constant and the magnitude of the added noise is proportional to c(Yn). The magnitude of
the relative error is then proportional to c(Yn)

Q(Yn) .

We would like limn→∞
c(Yn)
Q(Yn) = 0. One way to achieve this is when c(Yn) is bounded and Q(Yn)→ ∞.

We are considering SUM queries of the form

Q(Y) =
∑
r∈

∏
Y

σ(r)

f (r)
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where
∏

Y is the cross product of the tables in Y , σ is a predicate on rows, and f is a function from rows
to real numbers. In the sequence Y1,Y2, . . ., the number of rows in the database goes to infinity. Because
the number of tables in the database is constant, there is at least one table t in which the number of rows
goes to infinity. If there is at least one row in each of the other tables then the number of rows in

∏
Y

goes to infinity. Suppose that f (r) ≥ 0 for all r. If f (r) = 0 then we may take σ(r) = 0 thus we may
assume f (r) > 0 for all r such that σ(r) = 1.

Suppose that we add rows to the table t and the rows are chosen from a probability distribution such
the probability that the chosen row can be combined with one row from each of the other tables to a tuple
r such that σ(r) = 1, is positive. Then, as the number of added rows goes to infinity, also the number of
rows in

∏
Y that satisfy σ, goes to infinity. If there exist ε, δ > 0 such that Pr[ f (r) ≥ δ] ≥ ε, then also

Q(Yn) goes to infinity.
Now consider c(Yn). We have

c(Y) = max
i

max(c1i(Y), c2i(Y))) ,

c2i(Y) = max(c0i(Y), e−βGic3ic4i(Y),max
j,i

(e−βG j(c0i(Y) + c3ic4 j(Y)))) .

Because c0i(Y) ≤ c3ic4i(Y), e−βGic3ic4i(Y) ≤ c3ic4i(Y), and e−βG j(c0i(Y) + c3ic4 j(Y)) ≤ 2c3ic4i(Y), we
have

c2i(Y) ≤ 2c3ic4i(Y) .

Note also that
c1i(Y) ≤ S · c4i(Y)

where S is the maximum possible value of f (r) over all possible r. Thus

c(Y) ≤ max(S , 2 max
i

c3i) ·max
i

c4i(Y) .

Suppose that we add an infinite number of rows only to table i and the database contains more than
one table. Then there is a row in table j , i that is joined with an infinite number of rows from table
i. Thus c4 j(Yn) → ∞. Thus we must require that an infinite number of rows be added to each of the
private tables. Those tables that contain only a limited number of rows would usually be public anyway.
If the number of rows with which a row of a private table is joined, is bounded then c4 j(Yn) (and thus
also c(Yn)) is bounded.

Suppose that there are two private tables and the number of rows in each goes to infinity at a different
speed. If the number of rows r with non-infinitesimal value of f (r) in the joined table grows faster than
the number of rows in the larger input table then limn→∞

c(Yn)
Q(Yn) = 0 because c(Yn) can only grow as fast as

the larger input table. If the maximum number of rows with which a row of an input table is joined (and
thus c(Yn)), grows slower than the number of rows r with non-infinitesimal value of f (r) in the joined
table then we also get limn→∞

c(Yn)
Q(Yn) = 0.

Suppose that there are n private tables and the number of rows in each goes to infinity at a different
speed. If the number of rows r with non-infinitesimal value of f (r) in the joined table grows faster than
the maximum number of rows in a join of n − 1 input tables (maximized over the choice of the n − 1
tables out of n) then limn→∞

c(Yn)
Q(Yn) = 0 because c(Yn) can only grow as fast as a join of n− 1 input tables.

Suppose that there are two private tables and the number of rows in each goes to infinity as Θ(n).
Suppose that the two tables are joined by their primary keys. Suppose that the primary key columns are
considered private in the Banach analyzer. Then the number of rows in the joined table will be Θ(n2)
but only Θ(n) of them will pass the filter. The maximum number of rows with which each row is joined
is Θ(n) but only one of these rows will pass the filter. We do not get limn→∞

c(Yn)
Q(Yn) = 0 because both

c(Yn) = Θ(n) and Q(Yn) = Θ(n). Suppose that we instead consider the primary key columns public in the
Banach analyzer and handle their privacy in the local sensitivity analyzer (i.e. changing the primary key
of a row is considered as exchanging the whole row). Unlike the Banach analyzer, the local sensitivity
analyzer can apply the filters and thus there will be only Θ(n) rows in the joined tables and the maximum
number of rows with which each row is joined, will be 1. Thus we will get limn→∞

c(Yn)
Q(Yn) = 0.
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Local vs global Banach sensitivity. Consider the smoothing of the Banach sensitivity:

c2(Y) = max(c0(Y), e−βGc3c4(Y)) .

Here c3c4(Y) is the global Banach sensitivity. We mean global for the changes considered by the Banach
analyzer. It may still change when rows are added or removed. Note that c2(Y) can be better than the
global Banach sensitivity only by a factor of e−βG. If we consider adding or removing one row to be one
unit of change then G = 1. Also β < ε

5 where ε corresponds to this unit change. Thus the local Banach
sensitivity cannot be better than the global by more than a factor of e−

ε
5 . In practice, usually ε ≤ 1 thus

the factor will be less than e0.2 ≈ 1.2214.
Thus local Banach sensitivity will have significant advantage over global Banach sensitivity only if

the unit change is not adding or removing a row but a much smaller change inside a row. In this case,
the attacker’s advantage in guessing whether a certain row is included in the input is much larger than
guessing whether a certain small change is applied to a certain input row. The term e−βGc3c4(Y) is so
large because c0(Y) can be increased to c3c4(Y) by adding just one row to Y .

3.3.10 Computing Attacker Advantage in Guessing Some Value. In Sections 3.3.7, 3.3.8, 3.3.9, we
showed how to achieve ε- (and (ε, δ)-) differential privacy (DP). The question is what is the appropriate
value of ε, since there is no common agreement on a “sufficiently small” ε, and its goodness depends on
the query as well as the data. In this section, we show how to compute ε that corresponds to ε′, which is
defined as the adversary’s advantage in probability of guessing some specific property of the output.

We are using the attacker model of [58], where the attacker advantage is defined as the difference
between its prior and posterior beliefs on the property that he is guessing. While [58] is based on
Laplace noise distribution, the main DP mechanism of Section 3.3.8 is based on generalized Cauchy
distribution, for which it is more difficult to compute precise bounds. Hence, we derive more general
bounds, which can be derived directly from the definition of differential privacy, without relying on the
specific privacy mechanism. We use some more general ideas from [59] that relate differential privacy
to guessing probability.

Let x ∈ X be the input. The attacker has a goal g : X → {0, 1}∗, which defines the information that
he wants to learn about x. There is a function e : X → {0, 1}∗ defining the information that the attacker
already knows about x. We want to know how the distribution of g(X) changes after the attacker in
addition gets the outputM f (x) of a (differentially private) queryM f : X → Y .

The security definition is related to the difference between posterior (with observationM f (x)) and
prior (without observationM f (x)) probabilities of guessing g(X) = g(x), assuming that the extra infor-
mation e(x) is included as a condition of both prior and posterior probabilities.

Definition 3.61. [Guessing advantage (discrete)] Let x ∈ X be the data instance,M f (x) the observation,
g the attacker goal, and e the extra information. We say that advantage of guessing g(x) is at most ε′ if,
for any algorithm A, ∣∣∣Pr[A(M f (x), e(x)) = g(x) | Y] − Pr[A(e(x)) = g(x) | Y]

∣∣∣ ≤ ε′
where Y = (M f (X) =M f (x)) ∧ (e(X) = e(x)).

For continuous data, the probability mass of each single point may be 0. It is possible that
Pr[g(X) = g(x)] = 0 for all x, so Def. 3.61 does not make any sense. Indeed, in practice it can be
equally bad if the attacker learns some geographical location "precisely" or "close enough", so we need
to introduce the notion of precision. The attacker wants to come up with a point x′ such that d(x, x′) ≤ r
for a sufficiently small r.

Definition 3.62. [Guessing advantage (continuous)] Let x ∈ X be the data instance, M f (x) the obser-
vation, g the attacker goal, and e the extra information. Let B(x, r) = {x′|d(x, x′) ≤ r}. We say that
advantage of guessing g(x) with precision r is at most ε′ if, for any algorithm A,∣∣∣Pr[A(M f (x), e(x)) ∈ B(g(x), r) | Y] − Pr[A(e(x)) ∈ B(g(x), r) | Y]

∣∣∣ ≤ ε′
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where Y = (M f (X) =M f (x)) ∧ (e(X) = e(x)).

Depending on y :=M f (x), the attacker either wins or loses, so these definitions assume a distribution
over y. For example, a mechanism that flips the input bit x ∈ {0, 1} with probability 1

1+e−ε/2 (i.e. exponen-
tial mechanism) satisfies ε-DP, but the attacker makes a correct guess in the cases where “the bit is not
flipped” since the bit is always “less likely flipped than not”. For this particular mechanism we know
that the probability of flipping is exactly 1

1+e−ε/2 , and hence guessing advantage is 1
1+e−ε/2 −

1
2 = 1−e−ε/2

2·(1+e−ε/2) .
However, we cannot compute it from a general definition of DP mechanism, since the definition of DP
universally quantifies over all y and does not distinguish between “good” and ‘bad” y. Another approach
is to estimate attacker’s confidence in his guess, as it was done in [58], which can be done for an
arbitrary y and is more related to DP guarantees.

We consider an attacker who knows the distribution of inputs, i.e. attacker’s prior belief is
equivalent to the actual distribution of inputs. If he only gets the extra knowledge e(x), he es-
timates the probability weight of "sufficiently correct answers" B(g(x), r) as Prpre[B(g(x), r)] :=
Pr[X ∈ B(g(x), r) | e(X) = e(x)], i.e. the prior probability. If he gets in addition the output M f (x),
the confidence is Prpost[B(g(x), r)] := Prpre[B(g(x), r) | M f (X) =M f (x), e(X) = e(x)], i.e. the posterior
probability.

As in Section 3.3.8, we assume that a database is an element of a Banach space X = (X1, . . . , Xn).
In general, n is the total number of variables defining the database. While it seems the most intuitive to
think that each Xi corresponds to some cell of a table in the database, it is possible that Xi in turn denotes
a subspace of variables, i.e. a row or a column.

Let f : X → Y be a query. Let the noised query M f be differentially private variant of f . Let
X = (X1, . . . , Xn), and let Xi be the component that the attacker wants to guess (e.g. a subset of table
columns). Let us constrain Def. 3.62 and take g(x) = xk and e(x) = (x1, . . . , xk−1, xk+1, . . . , xn).

Definition 3.63. [Guessing advantage w.r.t. component] Let x = (x1, . . . , xn) ∈ (X1, . . . , Xn) be the data
instance,M f (x) the observation. We say that advantage of guessing xk with precision rk is at most ε′ if∣∣∣∣∣∣∣Pr[B(xk, rk) | M f (X) =M f (x),

∧
i,k

(Xi = xi)] − Pr[B(xk, rk) |
∧
i,k

(Xi = xi)]

∣∣∣∣∣∣∣ ≤ ε′ ,
where B(xk, rk) = {x′k|d(xk, x′k) ≤ r}.

Formally, there is a collection S = {S k | k ∈ [|S|]} of sets of sensitive attributes that the attacker
wants to guess. Each S k ∈ S is of the form S k = {(xk1 , rk1), . . . , (xknk

, rknk
)}, denoting the set of variables

xi that are not allowed to be disclosed to the attacker with precision at least ri. All the attributes of S k

define one disclosure, i.e., the attacker needs to guess all xi in order to win.
Since a data table in general contains more than one record, xk corresponds to an entire database

column. If we take d(xk, x′k) = ||xk − x′k||1, we will compute the worst-case guessing advantage among
all table records, assuming that the records are independent from each other. If we take d(xk, x′k) =

||xk − x′k||∞, we will get a stronger result that holds even for correlated records.

3.3.10.1 Guessing a Single Attribute. Let the posterior belief of the adversary be expressed by the
probability distribution Prpost[·]. Let the initial distribution of X be Prpre[·], and fX the corresponding
probability density function (PDF), i.e. Prpre[X′] =

∫
X′ fX(x)dx for X′ ⊆ X. Let fY be the PDF of the

outputs of fY . Note that existence of fX and fY is required for the further analysis. We want to compute an
upper bound on Prpost[X′] for the set of “sufficiently correct guesses” is defined as X′ = {x′ | d(t, x′) ≤ r}
for a given precision radius r, where t is the true input.

We have Prpost[X′] := Pr[x ∈ X′ | M f (x) = y], where y is the output that the attacker observed. Let∫
A denote a Lebesgue integral over a subset A of some metric space. Similarly to [58], we rewrite the
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posterior probability as

Prpost[X′] =

∫
X′

fX(x′ | M f (x′) = y) dx′

=

∫
X′

fY (y |x′) fX(x′)
fY (y)

dx′ =

∫
X′ fY (y |x′) fX(x′) dx′∫

X fY (y |x) fX(x) dx

=

∫
X′ fY (y |x′) fX(x′) dx′∫

X′ fY (y |x) fX(x) dx +
∫

X\X′ fY (y |x) fX(x) dx

=
1

1 +

∫
X\X′ fY (y|x) fX(x)dx∫
X′ fY (y|x′) fX(x′)dx′

.

Let us assume that R := supx∈X d(x, x′) exists. Differential privacy gives us Pr[M f (x′)∈Y]
Pr[M f (x)∈Y] ≤ eε·R for all

Y , and hence also fY (y|x′)
fY (y|x) ≤ eε·R. We get

Prpost[X′] ≤
1

1 + e−εR · Prpre[X\X′]
Prpre[X′]

.

Hence, if we want Prpost[X′] ≤ Prpre[X′] + ε′, we need to take

ε ≤ εlb :=
− ln

(
Prpre[X′]

Prpre[X\X′] · (
1

ε′+Prpre[X′] − 1)
)

R
.

So far, we have shown that Prpost[X′] ≤ Prpre[X′]+ε′. To satisfy Def. 3.63, we also need Prpost[X′] ≥
Prpre[X′]− ε′, or Prpost[X \ X′]) ≤ Prpre[X \ X′] + ε′, to show that the distribution has not changed much
in overall compared to prior. The derivation of ε for the lower bound is analogous to the upper bound.
Substituting Prpre[X′] with Prpre[X \ X′], we get a bound

ε ≤ εub :=
− ln

(
Prpre[X\X′]

Prpre[X′] · (
1

ε′+Prpre[X\X′] − 1)
)

R
.

To satisfy
∣∣∣Prpost[X′] − Prpre[X′]

∣∣∣ ≤ ε′, we eventually need to take

ε = min(εlb, εub) .

Note that, if p ≤ 1 − p, then εlb ≤ εub, and if 1 − p ≤ p, then εub ≤ εlb. Hence, we do not need to
compute both bounds.

The problem of this approach is that R can be very large in practice, or even not exist. Note that
we are essentially trying to prove that the elements of X′ are “sufficiently indistinguishable” from the
elements of X \ X′. In practice, it may be sufficient to take just a subset of X̂′ ⊆ X \ X′ and show that it
is difficult to distinguish X′ and X̂′. We have

Prpost[X′] =
1

1 +

∫
X\X′ fY (y|x) fX(x)dx∫
X′ fY (y|x′) fX(x′)dx′

≤
1

1 +

∫
X̂′ fY (y|x) fX(x)dx∫

X′ fY (y|x′) fX(x′)dx′

for any X̂′ ⊆ X \ X′. Let X̂′a := {x | d(x, x′) ≤ a} \ X′ for some a ∈ R. We get

ε ≤
− ln

(
Prpre[X′]
Prpre[X̂′a]

· ( 1
ε′+Prpre[X′] − 1)

)
a

. (36)
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If R := supx∈X,x′∈X′ d(x, x′) does not exist, then we may instead take a such that
Pr[x | ∀x′ ∈ X′ : d(x, x′) ≤ a] ≈ 1, which is useful e.g. when the input comes from normal distribu-
tion. It is possible that there are better candidates for a. We do not have a generic approach for finding
an optimal a. In practice, if there is R such that Pr[x | ∀x′ ∈ X′ : d(x, x′) ≤ R] ≈ 1, since computing ε
from a is a cheap operation, we may sample several different values of a from the interval (0,R], and
take one for which ε is the largest, i.e. noise is the smallest.

It remains to show how the values Prpre[X′] and Prpre[X̂′a] are actually computed. Let g be a function
such that g(z) := Prpre[x | d(x, t) ≤ z]. The input t is implicitly included into description of g. We have
Prpre[X′] = g(r) and Prpre[X̂′a] = g(a) − g(r). Let us investigate some special cases of g(z). We also see
whether we are able to make any reasonable analysis if prior probabilities are not known in advance, and
we look more precisely at discrete datasets.

Uniform distribution. Given a radius r and an upper bound R on d(x, x′), it is easy to compute
Prpre[X′] = 2r

R . For a < R, we can as well take g(a) = 2a
R . This is true of we can perfectly fit X̂′a

into X. The problem is that the input t may be located not in the “center” of the space X, but some-
where in the corner, as shown in Figure 42. It may happen that we cannot come up with a set X̂′a with
probability weight 2(a−r)

R that would satisfy d(x, x′) ≤ a for all x ∈ X̂′a and x′ ∈ X′, and need to include
more distant points into X̂′a. We may have distance up to d(x, x′) ≤ 2a for x′ ∈ X′, x ∈ X̂′a, which means
that 2 will go to the exponent of e. To avoid the change in exponent, we can just take a′ := 2a, getting
Prpre[X′] = 2r

R and g(a′) = a′
R .

a

X′X

Figure 42: Bad Location of X′

Distributions with well-defined cumulative distribution func-
tion (CDF). We can estimate noise for normally distributed in-
puts, and in general for data with well-defined CDF F(x). Namely,
since we define g(z) = {x|d(x, t) ≤ z}, then by definition of CDF we
get X′ = F(x + z) − F(x − z).

If we are not given an upper bound R on X, then we can still
derive some R based on the distribution. If the distribution has bell
shape, it does not make sense to consider elements that are too far
from the center. For example, for normal distribution N(µ, σ2) we
can take R = µ + 3 ·

√
2σ, which covers erf3 ≈ 0.9999779 of the

input space.

The worst prior probability. Even if the input distribution is unknown, we can still define Prpre[X′]
in such a way that the maximum noise will be needed, so that our analysis would be valid for any
possible prior. This value is non-trivial, e.g. although p = 1.0 increases posterior probability the most,
the advantage would be 0. We want to find p that maximizes

ε =: h(p) =
− ln

(
p

1−p · (
1

ε′+p − 1)
)

R
.

We can do it by using common calculus. We have

dh
dp

(p) =

(
1

(p + ε′) − (p + ε′)2 −
1

(1 − p) − (1 − p)2

)
·

1
R
,

and we have dh
dp (p) = 0 for p = 1−ε′

2 .
Is it reasonable to try out a < R if the input distribution is unknown? In general, if we have no

additional knowledge, we only know that g(R) = 1. Alternatively, if we do know that g(a) = q for some
q, then we can take q − p instead of 1 − p. For example, even if we do not know details of the input
distribution, if it is known that most of the data stays within some R′ < R, and Prpre[x | d(t, x) ≤ R′] = q,
it can be useful to give take a := R′.
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The question is how to choose the worst-case p. Substituting 1 − p with g(a) − p, we get

dh
dp

(p) =

(
1

(p + ε′) − (p + ε′)2 −
1

(q − p) − (q − p)2

)
·

1
R
,

and we have dh
dp (p) = 0 for p =

ε′(1−ε′)+q(1−q)
2(ε′+q−1) . This is in general different from the q = 1 case. However,

note that in practice it is fine to consider only the case q = 1. If we have found p that minimizes ε in
the case a = R, this ε is in any case sufficient. The aim of taking a < R is only to check whether it is
possible to come up with a better ε. Hence, we can always take p = 1−ε′

2 .

A discrete set of prior probabilities. Suppose that the possible value of x may come from the set of
values {x1, . . . , xn} with probabilities {p1, . . . , pn} respectively (

∑n
i=1 pi = 1). Here x is not necessarily

a single attribute, and the set {p1, . . . , pn} may be computed from all possible combinations of several
attributes, which in this case are allowed to be correlated.

If we have access to the actual data, then we may just look at the actual t and take p = pk such that
t = xk, which guarantees that the analysis will be linear w.r.t, the number of table rows. Without having
access to the actual data (which may happen if global sensitivity is used to enforce DP), we would need
to make a theoretical estimate. We need to take the worst pk to ensure that each row is protected. If
n ≤ ∞, we can do it for each pk one by one, but it is not computationally reasonable. Instead, we may
start directly from pk that leaks the most. In the previous paragraph we have shown that the worst case
is p′ = 1

1+e−ε/2 . This value itself may be missing from {p1, . . . , pn}. However, since the function h(p) has
exactly one local maximum at p′ and is monotone at (−∞, p′] and [p′,∞), the values pl and pr that are
closest to p′ from left and right respectively are the worst cases. It suffices to compute ε only for these
two values, and take the smallest one.

3.3.10.2 Guessing Each Sensitive Attribute. Let us compute the ε for a single set S k ∈ S, where
S k = {(t1, r1), . . . , (tn, rn)}. Assume that there is an upper bound Ri on each dimension. The univariate
case can be generalized to multivariate, treating X = (X1, . . . , Xn) as a single vector variable, taking ~t =

(t1, . . . , tn), ~r = (r1, . . . , rn), ~R = (R1, . . . ,Rn). For this, we need to clarify how the distance in X should
be defined. If it is an `p norm of underlying dimensions, we will have d(t, x) = ||t1 − x1, . . . , tn − xn||p.
According to our intuition, the attacker wins if he guesses correctly a point from the rectangle [t1 −
r1, t1 + r1] × · · · × [tn − rn, tn + rn]. Hence, in general we take p = ∞. In some cases, we may as well
be interested in other value of p, e.g. if t1 and t2 are coordinates of geographic location, then p = 2
corresponds more to our intuition.

In Sec. 3.3.10.1, the numbers r and a are single numbers, and not vectors. In general, we should take
R = ||~R||p, r = ||~r||p and a = ||~a||p. However, it is not clear how to come up with ~a in the first place. First
of all, let us scale all dimensions to get r := ri = r j for all i, j, which allows us to define a single r. E.g.
take r = 1 and scale all Ri accordingly. We can now optimize a based on this r. Still, as the scaled Ri can
be different, the same value a might not fit into every dimension. Optimizing a multivariate function by
trying out all ai ∈ {r + k

N · (Ri − r) | k ∈ {1, . . . ,N}} is too expensive. Hence, we first sample r < a ≤ R,
which we will use for distance. We will need particular ai to compute the probability weights g(ai), and
we take ai = min(a,Ri).

In Sec. 3.3.10.1, we have shown how to compute g(zi) for one-dimensional zi. Assuming that the
variables are independent, we can compute g(z) =

∏
i g(zi) for an AND-event. If the variables are not

independent, then there will be some special way of defining g(z), which depends on the distribution. The
relations between variables can make only certain combinations of (a1, . . . , an) possible. However, since
ai are only used in g(ai) anyway, it suffices to work with a only. Thus, a subspace of correlated variables
would be no different from the univariate case, and the probability distribution over that subspace should
be given in advance.

The discussion above can be summarized into Theorem 3.88.
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Theorem 3.88. Let X = (X1, . . . , Xn), where Xi are pairwise independent, and Ri = maxxi,x′i∈Xi d(xi, x′i).
Let (t1, . . . , tn) be the actual data, and let X′ = {~x ∈ X | d(ti, xi) ≤ ri}. Let gi(z) := Prpre[xi | d(xi, ti) ≤ z].
LetM f be an ε-DP mechanism w.r.t. norm ||x1, . . . , xn||∞. To bound the guessing advantage of X′ by ε′,
we need to take

ε ≤
− ln

( ∏n
i=1 gi(ri)∏n

i=1 gi(ai)−
∏n

i=1 gi(ri)
· ( 1

ε′+
∏n

i=1 gi(ri)
− 1)

)
a

.

where ai is a freely chosen value satisfying ri < ai ≤ Ri, and a = ||a1, . . . , an||∞.

3.3.10.3 Guessing Either Sensitive Attribute. There are two ways to define guessing advantage for
entire S = {S k | k ∈ [|S|]}:

1. Each S k ∈ S is protected independently. E.g. if we have two uniformly distributed binary
variables, then advantage ε′ = 10% means that the probability of guessing increases from
50% to 60% for any of these variables. For each S k ∈ S, we need to satisfy Def. 3.63 with
Xk = {x |

∧
j xi j ≤ ri j}. The suitable εk can be found as described in Section 3.3.10.1. Each εk is

converted to noise magnitude λk, which tells how much Cauchy noise should be scaled. To protect
each S k, we take noise magnitude λ = maxk(λk).

2. Alternatively, we can estimate the probability that the attacker guesses at least one S k. This
poses a different question for an OR condition, and the prior probability gets completely different
meaning. E.g. if we have two uniformly distributed binary variables, we will have 75% of correct
and 25% of incorrect guesses, and ε′ = 10% means that the probability of guessing at least one
of these two increases from 75% to 85%. This approach assumes X j = {x|

∨
k
∧

j xi j ≤ ri j} in
Def. 3.63. In this section, we show how to deal with this variant.

It is easier to estimate approximation of an AND of conditions, since the set X′ is bounded by ri at
the coordinate X′i , and d(x, x′) ≤ r = ||r1, . . . , rn||p for all x, x′ ∈ X. However, if the attacker wants to
guess an OR of conditions, then he may guess xi correctly even if some other variable x j is as far from
the actual value t j as possible, and we may only claim that d(x, x′) ≤ R = ||R1, . . . ,Rn||∞. A comparison
of AND and OR sets is depicted in Figure 43a.

If we take ai = Ri for all i, then the only difference of an OR-event from an AND-event is the
construction of Prpre[X′]. We have Prpre[X′] =

∏n
i=1 g(ai) −

∏n
i=1 g(ai − ri).

Let us see what happens if we want to use ai < Ri. Now the problem is that we may have d(~x, ~x′) > a
for ~x, ~x′ ∈ X′, as the distances inside X′ are not bounded by r. We need to approach it differently.

Let g~t′(z) = Pr[{x | d(x1, t′1) ≤ z ∨ · · · ∨ d(xn, t′n) ≤ z}] for ~t′ ∈ X. Let ~t = (t1, . . . , tn) be the actual
datapoint.

We split both X′ and X̂′ into the same number of blocks. The idea is that each block X′k of X′ would
have a sufficiently close unique neighbor block X̂′k in X̂′. Let ~a = (a1, . . . , an), and a = 2||a1, . . . , an||∞.
First, we define

X′0 := {~x|
n∧

i=1

xi ∈ B(ti, ai) ∧

 n∨
i=1

xi ∈ B(ti, ri)

}
and

X̂′0 := {~x|
n∧

i=1

xi ∈ B(ti, ai)} \ X′0 .

We also define

X`
k = {~x|xk ∈ B(ti, ri) ∧

n∧
i=1

xi ∈ B(ti + 2`i · ai, ai)}

and

X̂`
k = {~x|

n∧
i=1

xi ∈ B(ti + 2`i · ai, ai)} \ X̂′0
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xi − ti ≤ ri

x j − t j ≤ r jr j

ri

(ti, t j)

(a) The Area of Correctly Guessing AND
and OR of Two Approximations

x j − t j ≤ r j

xi − ti ≤ ri

a

a
(ti, t j)

X′0

X̂′0 X̂′0

X̂′0 X̂′0

X′1

X′2

X′4

X′3

X̂′3

X̂′3

X̂′2

X̂′1

X̂′4

X̂′2

X̂′1

X̂′4

(b) Splitting X′ and X̂′ Into Easily Comparable Blocks

for ` ∈ L ⊆ Zn and k ∈ [n], where L depends on the size of the total space X. All blocks are pairwise
disjoint, and X′0 ∪

⋃
`,k X′`k = X′. An example of splitting into blocks is given in Figure 43b.

The constructed pairs enjoy the following important properties:

1. For all ~x′ ∈ X′0, ~x ∈ X̂′0 (and also ~x′ ∈ X`
k , ~x ∈ X̂`

k), we have d(~x, ~x′) ≤ a;

2. We have
Prpost[X′0]

Prpost[X̂′0]
=

g~t(a1,...,an)−g~t((a1−1,...,an−1)))
g~t((a1−1,...,an−1)) =: α0;

3. For all k ∈ [n], ` ∈ L, we have
Prpost[X`

k]

Prpost[X̂`k]
=

g~t′ (a1,...,rk ,...,an)
g~t′ (a1,...,ak ,...,an)−g~t′ (a1,...,rk ,...,an) , where ~t′ = (t1 + 2`1 ·

a1, . . . , tk, . . . , tn+2`n ·an). Assuming that the variables are independent, this equals
gtk (rk)

gtk (ak)−gtk (rk) =:
αk.

We will now analyze
Prpost[X′0]
Prpost[X̂′0]

. By property (1), d(~x, ~x′) ≤ a, so ε-DP gives fY (y |~x′) ≤ eaε · fY (y |~x).
We have

Prpost[X′0]

Prpost[X̂′0]
=

∫
X′0

fY (y |~x′) · fX(~x′) d~x′∫
X̂′0

fY (y |~x) · fX(~x) d~x

≤ eaε ·

∫
X′0

fX(~x′) d~x′∫
X̂′0

fX(~x) d~x
= eaε ·

Prpre[X′0]

Prpre[X̂′0]
= eaε · α0 .

Similarly, for k ∈ [n], ` ∈ L, we have

Prpost[X`
k]

Prpost[X̂`
k]
≤ eaε ·

Prpre[X`
k]

Prpre[X̂`
k]

= eaε · αk .

Let α = maxk∈{0,1,...,n} αk. We get

Prpost[X′]

Prpost[X̂′]
=

Prpost[X′0] +
∑

k∈[n],`∈L Prpost[X`
k]

Prpost[X̂′0] +
∑

k∈[n],`∈L Prpost[X̂`
k]

≤
eaε · α · Prpost[X̂′0] +

∑
k∈[n],`∈L eaε · α · Prpost[X̂`

k]

Prpost[X̂′0] +
∑

k∈[n],`∈L Prpost[X̂`
k]

= eaε · α .

The final result depends on l = argmaxk∈[n]αk.
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1. Let l = 0. By property (2), we have
Prpre[X′0]

Prpre[X̂′0]
=

g~t(a1,...,an)−g~t((a1−1,...,an−1)))
g~t((a1−1,...,an−1)) . Applying Equation 36,

we get some ε0.

2. Let l = k , 0. By property (3), we have
Prpre[X`

k]

Prpre[X̂`
k]

=
gtk (rk)

gtk (ak)−gtk (rk) for any ` ∈ L. Applying

Equation 36, we get some εk.

We take ε = mink∈{0,1,...,n}(εk). This shows that, in addition to protecting each dimension separately,
we also need to take care of the a1 × · · · × an block surrounding the actual input ~t. We emphasize that it
holds only for independent variables, as otherwise we cannot treat different εk values independently.

The discussion above can be summarized into Theorem 3.89.

Theorem 3.89. Let X = (X1, . . . , Xn), where Xi are pairwise independent, and Ri = maxxi,x′i∈Xi d(xi, x′i).
Let (t1, . . . , tn) be the actual data, and let X′ = {~x ∈ X |

∨n
i=1 d(ti, xi) ≤ ri}. Let gi(z) :=

maxti∈X′i Prpre[xi | d(xi, ti) ≤ z]. Let M f be an ε-DP mechanism w.r.t. norm ||x1, . . . , xn||∞. To bound
the guessing advantage of X′ by ε′, we need to take ε = mink∈{0,1,...,n}(εk), where

ε0 =

− ln
(∏n

i=1 g(ai)−
∏n

i=1 g(ai−1)∏n
i=1 g(ai−1) · ( 1

ε′+
∏n

i=1 g(ai)−
∏n

i=1 g(ai−1) − 1)
)

a
;

εk =

− ln
(

gtk (rk)
gtk (ak)−gtk (rk) · (

1
ε′+gtk (rk) − 1)

)
a

;

where ai is a freely chosen value satisfying ri ≤ ai ≤ Ri, and a = ||a1, . . . , an||∞.

3.3.10.4 Queries with Multiple Outputs. The results of Sec 3.3.10.2 and Sec. 3.3.10.3 do not depend
on the definition of the output f (X). They only tell which ε is needed to satisfy the desired guessing
advantage, and our task is to come up with a DP mechanism achieving this ε. The noise should be
distributed among multiple outputs in such a way that their composition would be ε-DP. For this, we can
use the standard notions of parallel and sequential composition.

Theorem 3.90 (Sequential composition [60]). Let f (x) = ( f1(x) ∈ R, . . . , fm(x) ∈ R). Let DP mechanism
be such that, for all i ∈ [m], we have Pr[M fi(x) ∈ Y] ≤ eεi · Pr[M fi(x′) ∈ Y] for all subsets Y ⊆ R. Then,

Pr[M f (x) ∈ Y] ≤ e
∑m

i=1 εi · Pr[M f (x′) ∈ Y]

for all subsets Y ⊆ Rm.

Parallel composition of DP says that we can take max(εi) instead of sum if the variables used by dif-
ferent queries are independent. Roughly speaking, the independence of inputs ensures that the condition
d(t, t′) = 1 affects at most one of the outputs. We can generalize this result using the notion of `p-norms.

Theorem 3.91. Let f (x1, . . . , xn) = ( f1(x1) ∈ R, . . . , fm(xm) ∈ R). Let the distance d(x, x′) for x, x′ ∈
Rm be defined as an `p-norm. Let a privacy mechanism M fi be εi-differentially-private. Then, the
mechanismM f = (M f1 , . . . ,M fm) is `q(ε1, . . . , εm)-differentially-private, where `q is the dual norm of
`p.

Proof. Let d(x, x′) ≤ 1, and let Y = (Y1, . . . ,Yn) ⊆ Rm be arbitrary. We have x = (x1, . . . , xn) and x′ =

(x′1, . . . , x
′
n). For an `p-norm, denoting di := d(xi, x′i) for all i ∈ [m], we have d(x, x′) = ||d1, . . . , dm||p.

For each i, we have Pr[M fi(xi) ∈ Yi] ≤ ediεi · Pr[M fi(x′) ∈ Yi]. By Theorem 3.90, Pr[M f (x) ∈ Y] ≤
e
∑m

i=1 diεi · Pr[M f (x′) ∈ Y], so the mechanismM f is
∑m

i=1 diεi-differentially-private. By definition of the
dual norm, ||ε1, . . . , εm||q = sup{

∑m
i=1 εizi | ||z||p ≤ 1}. Since (d1, . . . , dm) is one candidate for z in this

expression, we have
∑m

i=1 diεi ≤ ||ε1, . . . , εm||q. � �

172
Approved for Public Release; Distribution Unlimited. 



The most intuitive instantiations for Theorem 3.91 are the cases of `1 and `∞ norms, where d(x, x′)
is an integer value, such as the number of rows. These will give us parallel and sequential compositions.
In the case of `1-norm, d(x, x′) = 1 means that exactly one of the inputs xi will change by 1, so it is
sufficient to take maxi εi to protect from one change. In the case of `∞-norm, d(x, x′) = 1 means that
each input xi may change by 1, so we need to protect all the outputs at once, getting

∑
i εi.

We can use Theorem 3.91 to find appropriate partitionings to εi, which are not unique, and the
partitioning may be optimized in such a way that the error would be minimal, i.e. reserve larger εi for
more sensitive fi. Finding the optimal partitioning is a possible direction for future research. If the
queries are similar (e.g. groups of a GROUP BY query), then the best option is to assign the same value
to all εi.

3.3.10.5 Examples.

Discrete data. Assume that we have a data table cat. Each cat can be male or female, and has one of
the five main colors. We want to count all female tabby cats.

SELECT COUNT(*) FROM cat WHERE gender=‘F’ AND color=‘tabby’;

Define the distance between two databases as 1 iff the gender or the color are different. Such distance is
subsumed standard DP metric, as every tabby female is viewed as an included record, and every other
combination as excluded ,and sensitivity of a COUNT query w.r.t. this metric is 1, similarly to sensitivity
of a COUNT query w.r.t. standard DP metric. Hence, the query could be executed with obtained ε in
PINQ system.

We need to define some prior or the distributions of genders and colors. Let gender be distributed
uniformly, and let colors be distributed as

{red : 0.2,white : 0.1, tabby : 0.25, black : 0.4, tortoise : 0.05} .

First, assume that the attacker wins if he guesses both gender and color. Combining the two sensitive
attributes together, we get the probabilities of AND-events

{(red ∧ M) : 0.1, (white ∧ M) : 0.05, (tabby ∧ M) : 0.125, (black ∧ M) : 0.2,

(red ∧ F) : 0.1, (white ∧ F) : 0.05, (tabby ∧ F) : 0.125, (black ∧ F) : 0.2,

(tortoise ∧ M) : 0.025, (tortoise ∧ F) : 0.025} .

We want to bound guessing advantage by ε′ = 0.1. As shown in Sec. 3.3.10.1, the worst-case prior
would be p = 1−0.1

2 = 0.45. The closest to the worst case are (black ∧ M) and (black ∧ F) with p = 0.2.
We have p ≤ 1 − p, so it suffices to take

ε ≤
− ln

(
0.2
0.8 · (

1
0.1+0.2 − 1)

)
1

= − ln
(
0.2
0.8
·

0.7
0.3

)
≈ 0.539 .

Let us now assume that the attacker wins if he guesses either gender or color. This is equivalent to
‘not guessing both in a wrong way’. We can write the set of possible correct answers as

{(red ∨ M) : 0.6, (white ∧ M) : 0.55, (tabby ∧ M) : 0.625, (black ∧ M) : 0.7,

(red ∧ F) : 0.6, (white ∧ F) : 0.55, (tabby ∧ F) : 0.625, (black ∧ F) : 0.7,

(tortoise ∧ M) : 0.525, (tortoise ∧ F) : 0.525} .

The closest to the worst prior are (tortoise ∧ M) and (tortoise ∧ F) with p = 0.525. We have p ≤ 1 − p,
so it suffices to take

ε ≤
− ln

(
0.475
0.525 · (

1
0.1+0.475 − 1)

)
1

= − ln
(
0.475
0.425

·
0.425
0.575

)
≈ 0.402 .

As sensitivity of COUNT query w.r.t. proposed metric is 1, using Laplace mechanism (described
e.g. in [36]), it would be sufficient to add Laplace noise with scaling parameter λ = 1/0.539 ≈ 1.86 for
the AND-event, and 1/0.402 ≈ 2.49 for the OR-event.
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Continuous data with univariate approximation. Assume that we have a data table employee. Each
of the employees has some fixed salary, and we want to find the total employer expenses.

SELECT SUM(salary) FROM employee;

Assume that the attacker wins if he guesses someone’s salary with precision of r = 100 currency units.
For prior, let us assume that the salary of each employee is distributed normally according to N(µ =

2000, σ2 = 55556) (so σ ≈ 235.7), i.e. Pr[x ∈ (1000, 3000)] ≈ erf3 ≈ 0.99998. Using definition of CDF

for normal distribution, Pr[|x − t| ≤ r] =
erf t+r−µ

σ
√

2
−erf t−r−µ

σ
√

2
2 =

erf t−1900
333 −erf t−2100

333
2 . Since there is no particular t

available, we consider the worst case.
If we want to bound guessing advantage by ε′ = 0.1, the worst-case prior would be p = 1−0.1

2 = 0.45.
The prior closest to this value is achieved for t = µ = 2000 for p ≈ 0.42. Let us now take a = 200. We
have q = erfa/(σ ·

√
2) ≈ 0.6. Hence,

ε ≤
− ln

(
0.42

0.6−0.42 · (
1

0.1+0.42 − 1)
)

200
=

0.767
200

≈ 0.0038 .

While ε = 0.0038 seems extremely small, note that such ε would ensure a very strong definition of
differential privacy, where neighbour tables are defined as being a = 200 units apart. Alternatively, we
could rescale the entire space e.g. by a = 200, getting ε = 0.767. Such ε ensures differential privacy for
neighbor databases defined as differing in 1 unit. Since each currency unit contributes 1 unit to the sum,
the sensitivity of the query w.r.t. latter distance is 1. Laplace noise with scaling 1/ε ≈ 1.3 is sufficient to
ensure the guessing advantage below 0.1, and the noise level is comparable to the cat example. We see
that dividing ε by 200 is fine since we are just working with different magnitudes. Also, such a SUM
query would have larger output than a COUNT query (for a similar number of rows), so the noise would
have less impact than in the cat example.

Continuous data with multivariate approximation. Assume that we have a data table ship. Each
ship has some geographic location and certain maximum speed. At some moment, the ships start sailing
with their maximum speed towards the port located at the point (0, 0). We want to know when the first
ship arrives at the port. Using the operator <@> for geographical distance, which is essentially `2-norm,
the query looks like

SELECT MIN((POINT(ship.x,ship.y)<@>(0,0))/ship.speed) FROM ship;

Assume that the attacker wins if he guesses some ship’s location with precision of r = 10 units w.r.t.
`2-norm. Let the prior be defined as the distribution of distances from the point (0, 0), which is N(µ =

0, σ2 = 1250) (so σ ≈ 35.4), i.e. Pr[(x, y) ∈ (−150, 150)] ≈ erf3 ≈ 0.99998. Note that the variables x
and y do not need to be independent, as we work with their joint distribution directly.

Let (tx, ty) be the actual location of a ship. Unlike the salary example, we can find only a lower
bound

Pr[||(x, y) − (tx, ty)||2 ≤ r] ≥ Pr[(||((x, y) − (0, 0)||2 + ||(tx, ty) − (0, 0)||2 ≤ r)]

=
erf ||(x,y)||2+r−||(tx,ty)||2−µ

σ
√

2
− erf ||(x,y)||2−r+||(tx,ty)||2−µ

σ
√

2

2

=
erf ||(x,y)||2−||(tx,ty)||2+10

50 − erf ||(x,y)||2+||(tx,ty)||2−10
50

2
.

Bounding guessing advantage by ε′ = 0.1, the worst-case prior would be p = 1−0.1
2 = 0.45. For the

lower bound considered above, the prior closest to this value is achieved for (tx, ty) = (0.0) for p ≈ 0.22.
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Note that in this case inequality becomes an equality, so p cannot be larger. Let us now take a = 20. We
have q = erfa/(σ ·

√
2) ≈ 0.43. Hence,

ε ≤
− ln

(
0.22

0.43−0.22 · (
1

0.1+0.22 − 1)
)

10
=

1.25
20
≈ 0.063 .

Similarly to the salary example, such ε ensures differential privacy where neighbor tables are defined
as being a = 20 units apart. Scaling the space by by a = 20, we get ε = 1.25. Let us see how much
one distance unit contributes to the final result. If the ship speed is v, then changing its location by 1
will change the arrival time by 1

v . This will not affect the minimum if that ship was not among the first
ones, but in the worst case the query output will also change by 1

v as well. Let v be the minimal speed of
a ship, e.g. v = 1, so that the query sensitivity would be 1 similarly to the previous examples. Laplace
noise with scaling 1/ε ≈ 0.8 is sufficient to ensure the guessing advantage below 0.1.

3.3.10.6 Approximated Guessing Advantage. So far, we have shown how to convert ε of a DP mech-
anism to an upper bound ε′ on guessing advantage. We would like to extend our results to a (ε, δ)-DP
mechanism. It turns out that, for δ > 0, we cannot guarantee privacy for an arbitrary observed out-
put y ∈ Y . However we can compute a bound on guessing advantage ε′ that holds with sufficiently high
probability δ′, similarly to (ε, δ)-DP definition. In overall, we get that the guessing advantage is bounded
by ε′ with probability δ′, and it is bounded by 1 with probability 1 − δ′. That is, in average the guessing
advantage is bounded by ε′ · δ′ + (1 − δ′) = 1 + (ε′ − 1) · δ′, giving us a single number. While providing
an bound for average case is weaker than providing it for any case, we consider it acceptable since the
choice of y ∈ Y is random and is not controlled by the attacker.

Given an (ε′, δ′) requirement on GA, we need to find an appropriate (ε, δ) for DP and generate the
noise accordingly. The input can be given in terms of average guessing advantage ∆ = 1 + (ε′ − 1) · δ′,
which gives freedom in choosing ε′ and δ′. We show that, as far as we can choose ε and δ ourselves, for
some noise distributions (like Laplace) we can get δ′ = 0, which simplifies the solution and allows us to
continue using the old definition of GA.

While intuitively (ε, δ)-DP means that pure ε-DP is satisfied except some bad y ∈ Y comes into play,
this “bad” event probability is not necessarily δ. There are different ways to define (ε, δ)-DP, discussed
e.g. in [61]. We give transformations between DP and GA for the two main definitions.

Definition 3.64 (Approximate DP [61]). LetM f : X → Y be a probabilistic mechanism. We sayM f is
(ε, δ) differentially private if for all sets S ⊆ Y and x0, x1 ∈ X we have

Pr[M f (x0) ∈ S ] ≤ eε·d(x0,x1) · Pr[M f (x1) ∈ S ] + δ .

Definition 3.65 (Probabilistic DP [61]). Let M f : X → Y be a probabilistic mechanism. We say
M f is (ε, δ)-probabilistically differentially private if for all x0, x1 ∈ X there are sets S δ

0, S
δ
1 ⊆ Y with

Pr[M f (x0) ∈ S δ
0] ≤ δ and Pr[M f (x1) ∈ S δ

1] ≤ δ s.t. for all sets S ⊆ Y the following holds:
• Pr[M f (x0) ∈ S \ S δ

0] ≤ eε·d(x0,x1) · Pr[M f (x1) ∈ S \ S δ
0] ;

• Pr[M f (x1) ∈ S \ S δ
1] ≤ eε·d(x0,x1) · Pr[M f (x0) ∈ S \ S δ

1] .

It is easier to achieve (ε, δ)-GA for Definition 3.65. Let y ∈ Y be such that fY (y|x) ≤ fY (y|x′) ·eε·d(x,x′)

for all x, x′. By Definition 3.65, this happens for at least 1− δ of values y ∈ Y , so we now use the same δ
in GA and DP definitions. For those y, we compute ε in the same way as we did it for ε-DP. The desired
guessing advantage is achieved with probability 1 − δ.

Definition 3.64 does not give a direct conversion to probability of failure. However, a good thing
is that many standard mechanisms that satisfy Definition 3.64 (Gaussian [62], truncated Laplace [57])
also satisfy fY (y|x) ≤ fY (y|x′) · eε·d(x,x′) with probability 1 − δ, treating y as a random variable for fixed
x, x′. The question is whether we can get the same set of “good” values y for all x′ ∈ X. The set of
“bad” values y comes from the tails of these distributions, and the set of “good” values of y obtained
for particular (x, x′) such that d( f (x), f (x′)) is the maximum possible distance between any two outputs,
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will also be “good” for any closer x and x′. However, for n outputs, we cannot just apply sequential
composition of DP δ values, but instead can only take (1−δ)n, i.e. probability that (y1, . . . , yn) is a vector
of “all good” values.

Theorem 3.63 of Section 3.3.8, describes how to use derivative sensitivity to sample Laplace noise
to achieve (ε, δ)−DP. However, we cannot claim that fY (y|x) ≤ fY (y|x′) · eε·d(x,x′) holds with probability
at least 1 − δ. Let us try to analyze the Laplace distribution directly, as in [58].

Analysis based on global sensitivity. Let λ be the scaling parameter of Laplace distribution. We have
fY (y|x)
fY (y|x′) ≤ e

d( f (x), f (x′))
λ ≤ e

K
λ , where K = maxx,x′∈X | f (x) − f (x′)| is the maximum possible difference be-

tween outputs. On the other hand,for a generic (ε, 0)-DP mechanism, we would get eε·R. The appropriate
scaling λ of Laplace distribution will thus be λ ≥ K

ε·R , where ε would be DP parameter required to satisfy
δ′-GA if (ε, 0)-DP was used. The quantity K can now be estimated in different ways. A valid upper
bound is GS f · R, where R = maxx,x′∈X d(x, x′), but it can be quite rough. For example, if f (x) = x2 for
x ∈ [0, 10], we get GS f = maxx,x′∈[0,10],|x−x′ |=1

∣∣∣x2 − x′2
∣∣∣ = 19, but 190 = 19 · 10 is almost 2 times larger

than the actual bound K = maxx,x′∈[0,10]
∣∣∣x2 − x′2

∣∣∣ = 100. In Section 3.3.11, we discuss other methods
for approximating K.

Analysis based on derivative sensitivity. In some cases, global sensitivity does not give a reasonable
noise magnitude. Let us estimate K = maxx,x′∈X | f (x) − f (x′)| using derivative sensitivity. By mean
value theorem (Theorem 3.61), there exists t∗ ∈ (0, 1) such that | f (x) − f (x′)| ≤ ||d fz||||x − x′|| for z =

(1 − t∗)x + t∗x′. Let now cβ be a β-smooth upper bound on DS f . We have∣∣∣ f (x) − f (x′)
∣∣∣ ≤ cβ(z)||x − x′|| ,

and by β-smoothness of cβ, ∣∣∣ f (x) − f (x′)
∣∣∣ ≤ cβ(x) · eβ·||x−z||||x − x′|| ,

which gives K ≤ cβ(x) · eβ·R · R.
Using Theorem 3.63, we can convert the obtained noise magnitude λ to suitable ε and δ for differen-

tial privacy. Theorem 3.63 allows some flexibility when choosing these parameters, and the partitioning
to ε and δ that corresponds to the same scaling λ will not be unique.

3.3.10.7 Attackers with Partial Knowledge. So far, we considered the worst case of DP, where the
attacker already knows the values of all other records except the one he is trying to guess. The proposed
upper bound on posterior guessing probability ranges from 0 to 1 regardless of the value of the true
output (i.e. without noise). Alternatively, we could assume an attacker who knows less. For example,
if the attacker sees the output of a count query, even without noise he may be unable to infer whether
some particular row is in the table, if he does not know anything about the other rows. This would allow
to achieve smaller bounds on guessing advantage.

In this section, since we reserve the notation f for probability density functions, we denote the query
function by q.

Let the conditional probability of having the input x ∈ X after observing the output z ∈ Z := q(X)
(without noise) be characterized by a probability density function fX(x|z). Assume that we know how
to compute fX(x|z). In general, this is already a non-trivial task that depends on the function and the
distribution of X, and is not directly composable. A simple example is a count-query where each row is
equally likely present in the table, and there are up to m available rows. In this case, we have fX(x|z) = z

m
for all x ∈ X.

Let fZ be the probability density function over true outputs z. We may express the probability of
guessing the input x from the output y as

fX(x|y) =

∫
z∈Z

fX(x|z, y) fZ(z|y)dz .
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Since the likelihood of x depends directly on z, and y is just a noisy version of z, we have fX(x|z, y) =

fX(x|z). We can compute fZ(z|y) using Bayesian inference as fZ(z|y) =
fY (y|z)· fZ (z)

fY (y) , where fY (y|z) is defined
by the particular noise distribution, and fY (y) =

∫
z∈Z fZ(z) · fY (y|z) dz. This gives

fX(x|y) =

∫
z∈Z fX(x|z) fY (y|z) fZ(z)dz∫

z∈Z fY (y|z) fZ(z)dz
. (37)

While integration over Z is difficult and we do not know how to do it in general, for discrete Z we
can do it by replacing

∫
z∈Z with

∑
z∈Z .

Computation of fZ(z) is another non-trivial task that depends on the computed function. For a count-
query over a table which is known to contain up to m records, and the i-th row is present in the table
with probability pi, we have fZ(z) =

∑
I⊆[m]

∏
i∈I pi ·

∏
i<I(1− pi) · [q(I) = z], where [q(I) = z] ∈ {0, 1}

is defined as 1 iff q(T ) = z for T such that exactly the records indexed by I are in the table T . If each
row is equally likely present in the table (with probability p), we have fZ(z) =

(
m
z

)
· pz · (1 − p)m−z.

Finally, we need the quantity fY (y|z), which depends on the particular privacy mechanism in use.
Ideally, we want to compute a bound that would purely be implied by definition of DP, without going
into details of distribution fY (y|z). Intuitively, we want that this bound would depend on q(x), and the
attacker is not able to learn more about x than it would from the true output q(x). We will see whether it
is always possible.

Limitations of using general DP definition. Let us show that we do not get an upper bound fX(x|q(x))
if we are given only the definition of DP without specifying anything about the used DP mechanism.
The main reason is that DP only tells us something about the distribution of noisy outputs Y, but nothing
about the distribution of true outputs Cr, which may be completely different algebraic structures. The
next example shows a DP mechanism in which probability of guessing x does not depend on q at all.
Let X be the random variable corresponding to the true input x.

Proposition 3.92. LetMq : X → R be defined asMq(x) = a for some constant a ∈ R. The following is
true aboutMq:

1. Mq is ε-differentially private for any ε;

2. Pr[q(x) = z|Mq(x) = y] = Pr[q(x) = z] for all y ∈ Y, z ∈ q(X).

Proof. For all x, x ∈ X, we have

Pr[Mq(x) ∈ Y |X = x] = Pr[a ∈ Y]

= Pr[Mq(x′) ∈ Y |X = x′]

≤ Pr[Mq(x′) ∈ Y |X = x′] · eε ||x−x′ ||

for any ε > 0, so Mq is ε-differentially private for any ε. Similarly, Pr[q(x) = z|Mq(x) = y] =

Pr[q(x) = z|a] = Pr[q(x) = z]. �

Indeed, the example of Proposition 3.92 would not be very useful for utility, sinceMq is a constant.
However, the pure definition of DP does not say anything about the utility. We show that, even if we
add notion of utility, it will still be not enough. In the next example, utility increases as noise magnitude
decreases, but the upper bound on probability of guessing x still does not depend on q(x).

Proposition 3.93. Let X = {0, 1}. LetMq : X → R be defined asMq(x) = x + η, where η← Lap( 1
ε ) for

some ε > 0. The following is true aboutMq:

1. Mq is ε-differentially private;

2. there exists ε such that Pr[X = x|Y =Mq(x)] > Pr[X = x|Cr = q(x)] for all x ∈ X.
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Proof. We can viewMq as applying Laplace mechanism to an identity function q′(x) = x, which can in
turn be viewed as a COUNT query applied to a table that contains either 0 or 1 rows. Since we know that
adding noise sampled from Lap( 1

ε ) is ε-private w.r.t. a COUNT query, we have Pr[Mq(x) ∈ Y |X = x] =

Pr[Mq′(x) ∈ Y |X = x] ≤ Pr[Mq′(x) ∈ Y |X = x′] · eε ||x−x′ || = Pr[Mq(x) ∈ Y |X = x′] · eε ||x−x′ ||, so Mq is
ε-differentially private.

The second property follows from the fact that the noisy output does not depend on q(x) at all. More
formally, instantiating (37) with identity function, we get

Pr[X = x|Y =Mq(x)] =

∫
x′∈X fX(x|x′) fY (y|x′) fX(x′)dx′∫

x∈X′ fY (y|x′) fX(x′)dx

=
fX(x|x) fY (y|x) fX(x) + fX(x|x′) fY (y|x′) fX(x′)

fY (y|x′) fX(x′) + fY (y|x) fX(x)

=
fY (y|x) fX(x)

fY (y|x′) fX(x′) + fY (y|x) fX(x)
=

1
fY (y|x′) fX(x′)
fY (y|x) fX(x) + 1

=
1

e−ε(|y−x|−|y−x′ |) ·
1− fX(x)

fX(x) + 1
=

1

e−ε · 1− fX(x)
fX(x) + 1

.

We can take ε as large as we want to make the result arbitrarily close to 1, so Pr[X = x|Cr = q(x)] would
not be a valid upper bound on guessing probability, unless q itself is an identity function. �

In the example of Proposition 3.93, we have not lost the utility, and the noisy answer does contain
whole information about x. However, now it may contain too much information about x, and we can no
longer claim that it leaks at most as much as q(x). We see that we need to define an additional property,
which has to be satisfied by a large class of standard DP mechanisms that we want to apply.

DP mechanisms with special properties. We give a more constrained definition of a DP mechanism
that allows to bound posterior guessing probability with fX(x|q(x)). Let Cg be the guess about q(X) that
the attacker makes after observingMq(x) (to distinguish it from the actual true output Cr).

Definition 3.66. An ε-DP mechanismMq is called output-bounded if for all x ∈ X′:

lim
ε→∞

fZ(Cg = q(x)|X = x) = 1 .

Intuitively, Def. 3.66 says that, the less noise the given DP mechanism gives, the more likely attacker
thinks that the true output should be q(x). Examples of such mechanisms would be any additive noise
with a bell-shaped distribution, such as Cauchy, Laplace, Gaussian distributions. The limit corresponds
to narrowing the bell curve.

We are also interested in the limit ε → 0. It turns out that DP definition is enough. Let us first prove
a small lemma that we will use later.

Lemma 3.94. LetMq be any ε-differentially private mechanism. For all x, x′ ∈ X we have

fZ(Cg = z|X = x) ≤ fZ(Cg = z|X = x′) · eε||x−x′ || .

Proof. Note that the value x is not observed directly by the attacker. Instead, he sees a noised value y
that in turn depends on x. We can write it out as

fZ(Cg = z|X = x) =

∫
y∈Y

fZ(Cg = z|Y = y,X = x) fY (y|X = x)dy .

The attacker only sees Y and does not use X directly, so fZ(Cg = z|Y = y,X = x) = fZ(Cg = z|Y =

y) = fZ(Cg = z|Y = y,X = x′) for any input x′. The definition of DP gives us fY (y|X = x) ≤ fY (y|X =

x′) · eε||x−x′ ||. We can write
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fZ(Cg = z|X = x) ≤
∫

y∈Y
fZ(Cg = z|Y = y,X = x′) fY (y|X = x′) · eε ||x−x′ ||dy

=

∫
y∈Y

fZ(Cg = z|Y = y) fY (y|X = x′) · eε ||x−x′ ||dy

= fZ(Cg = z|X = x′) · eε||x−x′ || .

�

It is now straightforward to prove the following proposition.

Proposition 3.95. Let Mq be any ε-differentially private mechanism. Let Cg be the guess about q(x)
that the attacker makes after observingMq(x). We have

lim
ε→0

fZ(Cg = q(x)|X = x) = fZ(Cg = q(x)) .

Proof. By Lemma 3.94, we know that fZ(Cg = z|X = x) ≤ fZ(Cg = z|X = x′) · eε||x−x′ || for all x, x′ ∈ X.
We have limε→0 eε||x−x′ || = 1, so limε→0 fZ(Cg = q(x)|X = x) = fZ(Cg = q(x)|X = x′). Since it holds for
all x, x′ ∈ X, the variable Cg does not depend on the choice of x, and we have limε→0 fZ(Cg = q(x)|X =

x) = fZ(Cg = q(x)). �

We want to show that an output-bounded privacy mechanism gives us the desired limits for posterior
guessing advantage.

If we are not given a particular y ∈ Y and want to know how successful the attacker is in average,
we need to compute fX(x|c) =

∫
Y fX(x|y) · fY (y|c)dy. This integration is complicated, as we do not even

have a closed form for fX(x|y). We want to simplify this computation instead of integrating over Y .
Choosing y = c gives us a fair comparison with the solution that uses no privacy mechanisms, as it

compares how well the secret can be guessed from seemingly similar output. This works well for DP,
but with other privacy mechanisms it is possible that c < Mq(X). Another important property of y = c
is that it gives the highest value for fY (y|c), so it can be viewed as the most probable outcome, and it is
also the noised value that we get in average. However, average noise does not necessarily give us the
average posterior guessing probability. We now generalize our previous results to three different levels
of guessing: PY (x, y,A) based on particular noisy output y, PC(x, c,A) based on particular true output
c, and PP(x,A) for an average distribution of outputs, where A is auxiliary knowledge that the attacker
may possess.

Posterior for a particular noisy output instance. Following the idea of estimating the likelihood of
x from all possible values of true outputs z, we can write out attacker’s posterior guessing probability as

PY (x, y,A) := fX(x|Y = y,A)

=

∫
C

fX(x|y,Cg = z,A) · fZ(z|y,A) dz .

After the attacker has selected a true output z according to the noisy output y, it makes its guess
purely from z and the additional knowledge A, so fX(x|Y = y,Cg = z,A) = fX(x|Cg = z,A). To esti-
mate fZ(z|Y = y,A), the attacker takes into account the likelihood of the noise that would turn z into
y, as well as the probability of z itself. It can be done using Bayesian inference as fZ(z|Y = y,A) =
fY (y|Cg=z,A)· fZ (z | A)

fY (y | A) . Since A only contains knowledge about the data, and not the distribution, we have
fY (y|Cg = z,A) = fY (y|Cg = z), which can be computed from the noise function and the point z. Let its
PDF be denoted fYC(y, z) := fY (y|Cg = z). The quantity fZ(z |A) can be computed from prior probabil-
ities, taking into account the additional knowledge. From these two quantities, we can in turn compute
fY (y |A) =

∫
C fY (y|Cg = z) fZ(z |A)dz. We get

PY (x, y,A) =

∫
C fX(x|Cg = z,A) · fYC(y, z) fZ(z | A) dz∫

C fYC(y, z) fZ(z | A) dz
. (38)
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Posterior for a particular true output instance. Fixing particular y ∈ Y may make the attacker seem
too successful or too unlucky, depending on the y ∈ Y that we have got. Knowing a particular distribution
on Y , we may estimate how much the attacker may guess in average for a particular output c := q(x) ∈ C.

PC(x, c,A) := fX(x|Cr = c,A)

=

∫
Y

fX(x|y,Cr = c,A) fY (y|Cr = c,A) dy

=

∫
Y

fX(x|y,A) fY (y|Cr = c,A) dy

=

∫
Y

PY (x, y,A) · fY (y|Cr = c,A) dy .

The quantity fY (y|Cr = c,A) = fY (y|Cr = c), which is the likelihood of turning c into y, can be
computed from the noise function, similarly to fY (y|Cg = z). We get

PC(x, c,A) =

∫
Y

PY (x, y,A) · fYC(y, c) dy . (39)

In practice, we may want privacy for any possible outcome y ∈ Y . Differential privacy holds for all
y ∈ Y by definition, so we wonder if we get similar guarantees for guessing advantage. Given c, we can
be interested in the worst y that helps in guessing input the most. Such worst-case y should not depend
on the particular input x, as in general we can always come up with y for which the true x is the most
possible, making the attacker’s guessing advantage seem too good, so we would need to find average
over possible inputs x, or use some other approach. We propose that taking average over fY (y | c) gives
a more reasonable result.

Posterior for a particular prior. Applying our analysis to a particular testing set still gives us results
that depend on the data. If we know the distribution of data, we can estimate the posterior probabilities
not for the particular counts, but in average. We will still assume a fixed total number m of users. Let
fC(·) be the PDF of actual outputs, and let C := Z be the set of possible true outputs. Note that it
is possible that fC(·) , fZ(·), as fZ(·) describes attacker’s knowledge about the input, which may be
different. We have

PP(x,A) := fX(x | X = x,A)

=

∫
C

fX(x|Cr = c,A) fC(c|x)dc

=

∫
C

PC(x, c,A) · fC(c|x) dc

=

∫
C

(∫
Y

PY (x, y,A) · fYC(y, c) dy
)

fC(c|x) dc

=

∫
Y

PY (x, y,A) ·
(∫

C
fYC(y, c) fC(c|x) dc

)
dy .

Since fC(c|x) =
fX(x|Cr=c)· fC(c)

fX(x) , we get

PP(x,A) =

∫
Y

PY (x, y,A) ·

∫
C fX(x|c) fYC(y, c) fC(c) dc

fX(x)
dy , (40)

which we may as well express through PC(x, c,A) as

PP(x,A) =

∫
C

PC(x, c,A) ·
fX(x|c) · fC(c)

fX(x)
dc . (41)
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Let us instantiate the latter quantity to the case when there is no privacy mechanism in use. If the
attacker sees that the outcome is c, the probability of x being there is fX(x | c,A). We need to iterate
through all possible outcomes c on condition that X = x, getting

fX(x | A) =
1

fX(x)
·

∫
C

fX(x |Cr = c,A) fX(x |Cr = c) fC(c) dc (42)

If A = ∅, then fX(x |Cr = c,A) = fX(x |Cr = c), and this probability is very close to the prior. If we
did not have the condition X = x, then it would be exactly the prior. In general, this result shows that
posterior will in average not be far from prior, at least as far as the attacker is not given any additional
knowledge. This would mean that DP does not make much sense against such weak attacker. However,
the initial idea of DP is to protect the data against attackers who already know something. In our
experiments, we compute advantage of different attackers with different additional knowledge.

Limits. Intuitively, we want that the posterior guessing probability converged to fX(x) as ε → 0, and
to fX(x|Cg = q(x)) as ε → ∞. We will prove that the same holds for PY (x, y,A), PC(x, c,A), PP(x,A).

Theorem 3.96. Let an output-bounded ε-DP mechanism be in use. We have

1. limε→0 PY (x, y,A) = fX(x | A),
limε→∞ PY (x, y,A) = fX(x | Cg = y,A).

2. limε→0 PC(x, c,A) = fX(x | A),
limε→∞ PY (x, c,A) = fX(x | Cg = c,A).

3. limε→0 PP(x,A) = fX(x | A),
limε→∞ PP(x,A) = 1

fX(x) ·
∫

C fX(x |Cr = c,A) fX(x |Cr = c) fC(c) dc.

Proof. First of all, as the privacy mechanism is output-bounded, we have the following limits.

• limε→∞ fY (y | Cg = c) = 1, and limε→0 fY (y | Cg = z) = 0 for z , c.

• limε→0 fY (y | Cg = z) = fY (y) for all y, z.

The first one is a property of output-bounded mechanism, and it follows directly from Defini-
tion 3.66. The second property holds for any differentially private mechanism, as follows from Proposi-
tion 3.95.

We prove theorem statements one by one. Take the definition of PY (x, y,A) from Equation 38.

lim
ε→0

PY (x, y,A) = lim
ε→0

∫
C fX(x|Cg = z,A) · fYC(y, z) fZ(z | A) dz∫

C fYC(y, z) fZ(z | A) dz

=

∫
C fX(x|Cg = z,A) · fY (y) · fZ(z | A) dz∫

C fY (y) · fZ(z | A) dz
= fX(x | A) .

lim
ε→∞

PY (x, y,A) = lim
ε→∞

∫
C fX(x|Cg = z,A) · fYC(y, z) fZ(z | A) dz∫

C fYC(y, z) fZ(z | A) dz

=
fX(x|Cg = y,A) · fYC(y, y) fZ(y | A)

fYC(y, y) fZ(y | A)
= fX(x|Cg = y,A) .

Take the definition of PC(x, c,A) from Equation 39. We make use of the proven limits for PY (x, y,A).
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lim
ε→0

PC(x, c,A) = lim
ε→0

∫
Y

PY (x, y,A) · fYC(y, c) dy

= fX(x | A) ·
∫

Y
fYC(y, c) dy

= fX(x | A) .

lim
ε→∞

PC(x, c,A) = lim
ε→∞

∫
Y

PY (x, y,A) · fYC(y, c) dy

=

∫
Y

fX(x|Cg = y,A) fYC(y, c) dy

= fX(x|Cg = c,A) .

Take the definition of PP(x,A) from Equation 41. We make use of the proven limits for PY (x, c,A).

lim
ε→0

PP(x,A) =

∫
C

PC(x, c,A) ·
fX(x|c) · fC(c)

fX(x)
dc

= fX(x | A)
∫

C

fX(x|c) · fC(c)
fX(x)

dc

= fX(x | A) .

lim
ε→∞

PP(x,A) =

∫
C

PC(x, c,A) ·
fX(x|c) · fC(c)

fX(x)
dc

=

∫
C

fX(x|Cg = c,A)
fX(x|c) · fC(c)

fX(x)
dc

=
1

fX(x)
·

∫
C

fX(x |Cr = c,A) fX(x |Cr = c) fC(c) dc .

�

Composability. Even if estimation distribution is easy for a single output, it can be much more difficult
for several outputs. We want to get composability results for the upper bounds on posterior probability
obtained for a single attacker.

Since PC(x, c,A) and PP(x,A) depend on PY (x, y,A), and the issue of analyzing several timepoints
is integration through all possible values of z, we will only analyze composability of PY (x, y,A).

Let c = (c1, . . . , cn) be the true output. First of all, since we want to bound attacker’s inference
probability by fX(x|c), we need to take into account at least all elements of c on which fX(x|c) depends,
and we cannot estimate it only based on fX(x|c j) for some particular j ∈ [n]. Hence, we need to constrain
ourselves to the situations c = ca, cb, where fX(x|c) = fX(x|ca). E.g. for a counting histogram, when the
attacker wants to guess the group a particular individual belongs to, we have fX(x|c1, . . . , cn) =

c j
m , where

c j is the true group to which the input belongs. Indeed, the value m does depend on the other counts as
well, but we treat m as a public parameter that makes ci correlated.

Parallel composition for independent ca, cb is similar to the one of DP.

Theorem 3.97. Let C = Ca × Cb. Let fZ(za, zb |A) = fZa(za |A) · fZb(zb |A) for all za ∈ Ca, zb ∈ Cb. We
have

PY (x, y,A) =

∫
Ca

fX(x|z,A) · fYCa(y, z) fZa(z | A) dz∫
Ca

fYCa(y, z) fZa(z | A) dz
. (43)
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Proof. For shortness of notation, let us remove the additional knowledge A from all conditional proba-
bilities and make it implicit. This will not affect the proofs, as A is found in the premises of all theorems.
By definition of PY (x, y,A) (Equation 38), we have

PY (x, y,A) =

∫
C fX(x|z) fYC(y, z) fZ(z) dz∫

C fYC(y, z) fZ(z) dz

=

∫
Ca

∫
Cb

fX(x|za) fY (ya, yb|za, zb) fZ(za, zb) dza dzb∫
Ca

∫
Cb

fY (ya, yb|za, zb) fZ(za, zb) dza dzb

Assuming that the noise distribution depends only on a single output (as in the case of Laplace noise),
we get fY (ya, yb|za, zb) = fYa(ya|za) · fYb(yb|zb).

For independent variables, fZ(za, zb) = fZa(za) fZb(zb). This allows to split both the numerator and
the denominator into a product of two independent integrals, and we get

PY (x, y,A) =

∫
Ca

∫
Cb

fX(x|za) fYa(ya|za) fYb(yb|zb) fZa(za) fZb(zb) dza dzb∫
Ca

∫
Cb

fYa(ya|za) fYb(yb|zb) fZa(za) fZb(zb) dza dzb

=

∫
Ca

fX(x|za) fYa(ya|za) fZa(za) dza ·
∫

Cb
fYb(yb|zb) fZb(zb) dzb∫

Ca
fYa(ya|za) fZa(za) dza ·

∫
Cb

fYb(yb|zb) fZb(zb) dzb

=

∫
Ca

fX(x|z) fYCa(y, z) fZa(z) dz∫
Ca

fYCa(y, z) fZa(z) dz
.

�

It is more complicated with sequential composition. At another extreme, ci may be completely
correlated, giving fZb(g(za)|Cg

a = za) = 1 for a deterministic function g. In a particular case where
g(z) = z, we get something similar to sequential composition of DP. This basically allows to use the
same z instead of za and zb, so that integration over zb can be avoided. This can be useful to analyze
queries applied multiple times to the same data.

Theorem 3.98. Let C = Ca ×Cb, where Ca = Cb. Let fZb(za|C
g
a = za,A) = 1 for all za ∈ Ca. We have

PY (x, y,A) =

∫
Ca

fX(x|z,A) · fYCa(ya, yb, z) fZa(z | A) dz∫
Ca

fYCa(ya, yb, z) fZa(z | A) dz
. (44)

where fYCa(ya, yb, z) := fYCa(ya, z) · fYCa(yb, z)

Proof. As fZb(za|C
g
a = za) = 1 for all za ∈ Ca, we can write fZ(za, zb) = fZa(za) and only integrate over

Ca. We are left with

PY (x, y,A) =

∫
Ca

fX(x|za) fY (ya, yb|za, za) fZ(za) dza∫
Ca

fY (ya, yb|za, za) fZ(za) dza

=

∫
Ca

fX(x|z,A) · fYCa(ya, yb, z) fZa(z) dz∫
Ca

fYCa(ya, yb, z) fZa(z) dz
.

�

Finally, it is possible that the outputs are strongly correlated, but g(z) , z. Let us prove a small
lemma first.
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Lemma 3.99. Let Mq be any ε-differentially private mechanism. Let z, z′ ∈ q(X). Let R =

maxx∈q−1(z),x′∈q−1(z′) ||x − x′||. For all y, y′ ∈ Mq(X) we have

fY (y|z) ≤ fY (y|z′) · eεR .

Proof. We have z = q(x) and z′ = q(x′) for some x, x ∈ X. Since q(x) can be computed from x, we have
fY (y|q(x), x) = fY (y|x). Let q−1(z) := {x | q(x) = z}. Denote Xz := q−1(z) and Xz′ := q−1(z′). We have

fY (y|z)
fY (y|z′)

=

∫
x∈Xz

fY (y|x, z) fX(x | z) dx∫
x′∈Xz′

fY (y|x′, z′) fX(x′ | z′) dx′

=

∫
x∈Xz

fY (y|x) fX(x | z) dx∫
x′∈Xz′

fY (y|x′) fX(x′ | z′) dx′

=

∫
x∈Xz

fY (y|x) fX(x | z)∫
x′∈Xz′

fY (y|x′) fX(x′ | z′) dx′
dx

≤

∫
x∈Xz

eε||x−x′ ||∫
x′∈Xz′

fX(x′ | z′) dx′
fX(x | z) dx

≤ eεR
∫

x∈Xz
fX(x | z) dx∫

x′∈Xz′
fX(x′ | z′) dx′

= eεR .

�

For g(z) , z, the estimation is more difficult, as we want to get a general upper bound for all possible
definitions of g. One idea is to apply the worst case bound to the Zb part.

Theorem 3.100. Let C = Ca ×Cb, fZb(g(za)|Cg
a = za,A) = 1 for a deterministic function g. We have

PY (x, y,A) ≤ max
za∈Za,zb∈Zb

(
fYCb(yb, za)
fYCb(yb, zb)

)
·

∫
Ca

fX(x|z,A) · fYCa(ya, z) fZa(z | A) dz∫
Ca

fYCa(ya, z) fZa(z | A) dz
.

Proof. Let g be a deterministic function such that fZb(g(za)|Cg
a = za,A) = 1. We have

PY (x, y,A) =

∫
Ca

fX(x|za) · fYa(ya|za) fYb(yb|g(za)) fZa(za) dza∫
Ca

fYa(ya|za) fYb(yb|zb) fZa(za) dza
.

Differently from the previous case, we cannot compute the quantity more precisely unless we know
g. We rewrite the expression as

PY (x, y,A) =

∫
Ca

fX(x|z) · fYa(ya|z) · fZa(z) ·
1∫

Ca
fYa(ya|za)

fYb (yb |zb)
fYb (yb |g(z)) fZa(za) dza

dz .

A trivial upper bound on
fYb (yb |g(z))

fYb (yb |z) is maxza∈Za,zb∈Zb

fYb (yb |za)
fYb (yb |zb) . This upper bound is independent of the

integration variables and can be taken out of integration. �

We can instantiate Theorem 3.100 on an ε-DP mechanism.

Corollary 3.101. Let C = C1 × · · · ×Cn. Let an ε-DP mechanism w.r.t. norm ||·|| be applied to each C j.
Let maxx,x′∈X ||x − x′|| = m. We have

PY (x, y,A) ≤ eε·m(n−1) ·

∫
C1

fX(x|z,A) · fYC1(y1, z) fZ1(z | A) dz∫
C1

fYC1(ya, z) fZ1(z | A) dz
.
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constr ::= exact

| total int

| set {string}

| range double double

| totalUnif int

| setUnif {string}

| rangeUnif double double

| setPrior {( string , float )}

| rangePrior float {( float , float )}

| normal double double

Figure 44: Possible Constraints on Table Attributes

Proof. By assumption of Corollary 3.101, we are dealing with an ε-DP mechanism. by Lemma 3.99, we
have

fYb (yb |g(z))
fYb (yb |z) ≤ eε ·maxx,x′ ||x − x′|| ≤ eε ·m(n−1). The claim now follows directly from Theorem 3.100.

�

3.3.11 Propagation of Constraints on Attributes. In both sensitivity and guessing advantage analy-
ses, we make use of the bounding ranges from which the values may come. While the upper bound on
derivative sensitivity may be infinite for X = R, it can be much smaller for a bounded subset X ⊂ R. The
user had to provide possible bounding ranges on the inputs himself. For small models, such approach
is sufficient. However, in large models, one might want to compute sensitivity and guessing advantage
w.r.t. some intermediate table, e.g. a receiving party may want to know how much leaks about the data
that has already gone through some preprocessing. Knowing ranges of intermediate tables can also be
useful for composition. While the user can set bounding ranges only on the direct input tables, we need
automated constraint derivation to determine the ranges of attributes of intermediate tables as well.

The list of possible constrains on table attributes is given in Figure 44. We see that the constraints
can be split to two main types: discrete and numeric.

We consider SQL queries of the form

SELECT a1 AS b1,...,ak AS bk FROM t1 AS s1,...,tn AS sn WHERE condition

GROUP BY a1,...,ak-1 .

3.3.11.1 Numeric Attributes. The numeric constraints of Figure 44 allow to define just an interval
[a, b] for some a ≤ b ∈ R, as well as some distribution on that interval, which is currently just a
concatenation of a finite number of uniformly distributed intervals. Propagation of distributions is much
more complicated than propagating numbers. In our analyses, defining a range without a particular
distribution gives a safe noise overestimation, so first of all we may concentrate on propagating ranges
without maintaining the distribution.

First of all, we discuss how to compute output ranges for real functions f : R → R. These would
correspond to the computation under SELECT statement. In general, overestimated ranges give us higher
function sensitivity and result in larger noise, so it is safe to make an overestimation of the actual range.
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Interval arithmetic. An obvious solution to function output range estimation is to use interval arith-
metic. We need to define operations between intervals. For example some basic arithmetic operations
might be defined as

[a, b] + [c, d] = [a + b, c + d]

−[a, b] = [−b,−a]

[a, b] × [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]

These operations can then be composed to find the output range for more complex expressions.
Since not all such functions yield the exact output range we can divide the input interval into smaller
subintervals to produce more precise results, as described e.g. in [63, p. 306].

When using interval arithmetic to evaluate functions where the same variable appears multiple times,
it tends to give us very wide output intervals to the point where the result is completely useless. This
happens because we assume that all the variables in the function are independent [64, p. 36]. Let us look
for alternative methods that solve this problem.

Affine arithmetic. An alternative to interval arithmetic is the affine arithmetic. Using affine arithmetic
we can write the intervals in the affine form

x̂ = x0 + ε1x1 + ε2x2 + . . . + εnxn

where εi ∈ [−1, 1], i ∈ [1 . . . n]. For example, if n = 1, then x0 can be viewed as the central point of the
interval, and sliding εi ∈ [−1, 1] gives the values [x0 − x1, x0 + x1]. If two affine representations use the
same εi, it means that these two variables are correlated.

Let us look at the function f (x) = x − x. Assuming x ∈ [0, 3], we can find the output range of the
function using interval arithmetic:

[0, 3] − [0, 3] = [0, 3] + (−[0, 3])

= [0, 3] + [−3, 0]

= [−3, 3]

It turns out that interval arithmetic does not give us the exact answer [0, 0], but instead gives us a much
wider interval. Now let us find the output range using affine arithmetic:

(1.5 + 0.5ε1) − (1.5 + 0.5ε1) = (1.5 − 1.5) + (0.5 − 0.5)ε1

= 0 + 0ε1 = 0

We get the exact result because every occurrence of variable x has the term x1ε1, which cancel out after
the subtraction. If we wanted to write different variables instead we would write

x̂ = x0 + x1ε1

ŷ = y0 + y1ε2

Converting between intervals and affine forms. We can convert any affine form x̂ = x0 + x1ε1 + . . .+

xnεn to an interval as follows:

x = [x0 − r, x0 + r], where r =

n∑
i=1

|xi|.

It should however be kept in mind that by converting to interval form, we lose the information about the
dependencies between variables. We can also get the affine form of the interval [a, b]

x̂ =
a + b

2
+

b − a
2

ε1 ,
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as described in [64, p.47-49].
When doing this conversion, each different variable should have its own epsilon symbol. Libaffa, a

C++ implementation of affine arithmetic uses a map data structure for mapping between variable names
and corresponding coefficients [65]. In Haskell it can be defined like this:

data AAF a = AAF a (Map String a) a

In this definition the first field represents the 0-th term. The map binds variable names with correspond-
ing terms. All non-affine operations such as multiplication and square root add new terms after each
operation (i.e. error terms) and to keep the code simple, we collect all these terms into a single error
term, which is what the last field in the AAF structure is for.

Non-affine functions. Some functions do not give us an exact affine answer. For example consider
multiplying two affine forms x̂ = x0 + x1ε1 + . . . + xnεn and ŷ = y0 + y1ε1 + . . . + ynεn. We would end up
with an affine part

ẑa = x0y0 + (x0y1 + y0x1)ε1 + . . . + (x0yn + y0xn)εn

and a non-affine part
z∗ = (x1ε1 + . . . + xnεn)(y1ε1 + . . . + ynεn)

Since we want an affine approximation of the result, we have to add a new term to the affine part to
approximate the non-affine part

ẑ = ẑa + (x1 + . . . + xn)(y1 + . . . + yn)εn+1 ,

as described in [64, p.70].
In practice it makes sense to collect all such terms of subsequent operations into a single term as

we did in the Haskell implementation example. This makes sure that the affine forms do not grow
unnecessarily large. It can even be reasonable to have more than one error term to reduce error when
multiplying or raising the affine forms to some power [64, p. 81].

Min-range approximation. We can generalize non-affine functions in a more general way. Let us
consider some binary non-affine function f (x̂, ŷ). We can approximate this function by finding some
good values for the coefficients α, β, ζ ∈ R in

f a = αx̂ + βŷ + ζ

Computationally one of the best methods is to use the min-range approximation. We find the coefficients
in such a way that the resulting range of the function is as narrow as possible. An example of min-range
approximation of a log function is given in Figure 45, where the input range [a, b] gives an output range
[c, d], and all function values stay inside the blue skewed rectangle. Even though this method is not
optimal in terms of minimizing the error, it is easier to implement and has a smaller overshoot than
Chebyshev approximation, which aims to minimize the maximum error [64, p. 56,64-65].

Fixing the values of variables. Let us look at a case where we need to find the output range of a
function when we know the range of one variable, and a set of exact values for a second variable. We
have affine forms x̂ = x0 + x1ε1 and ŷ = y0 +y2ε2 representing the respective variables. Once we evaluate
the function using these affine forms, we end up with a new affine form

ẑ = z0 + z1ε1 + z2ε2 + z3ε3 .

The noise symbols ε1 and ε2 correspond to the variables x and y respectively. If we later want to fix y to
some value a we can substitute ε2 = a

y which gives us

ẑ′ = z0 + z1ε1 + z2
a
y

+ z3ε3 .
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Figure 45: Min-Range Approximation for the log Function

This means we only have to find ẑ once and then do a relatively cheap computation to fix the values
afterwards. It is also possible to fix the value to some subrange of [y0 − y2, y0 + y2]. This approach is
very useful when we have a large number of similar computations, like applying the same function to n
rows of an input table. It can also be applied in cases where a variable is represented as a discrete set of
possible values rather than a range.

Subdividing input ranges. When estimating the output range of an expression given some input
range, it is possible to get more accurate results by dividing the input range into smaller subdivisions.
Each of these subdivisions can then be evaluated separately which results in smaller zonotopes that fol-
low the function more closely [63, p. 306-307]. An example of dividing input range [a, b] into smaller
subranges for a log function is given in Figure 46. We see that the function values are now covered by
the blue skewed rectangles much more tightly. When we later want to fix the input to some specific
value or range, we only have to do that in the input subdivisions that contain the new value.

Distributions with unbounded domain. In practice, some data attributes may not have nice upper and
lower bounds. One possible realistic distribution is the normal distribution N(µ, σ2). Since the range of
normally distributed inputs is unbounded, it seems that knowing that the data is distributed normally will
not provide good bounds on the function output. However, the values still remain within a certain range
with high probability. If the distribution has bell shape, it does not make sense to consider elements that
are too far from the center. For N(µ, σ2) we can take R = µ+ 3 ·

√
2σ, which covers erf(3) ≈ 0.9999779

of the input space. We can then assume that our inputs are coming from the range [µ − R, µ + R]. In
general, we can let η be a parameter and find ξ such that erf(ξ) = 1 − 2−η. E.g. we have ξ ≈ 5.1 for
η = 40.

This approach can be generalized to any distribution with well-defined cumulative density function
(CDF) F(x). The probability weight of the range [µ − R, µ + R] can be found by definition of CDF as
F(µ + R) − F(µ − R).

3.3.11.2 Filters and Groups. So far, we have shown how to compute the ranges of values computed
under the SELECT statement, and how to optimize the computation of range w.r.t. the number of rows
in the input table. We now want to learn how these ranges change after some grouping and/or filtering is
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Figure 46: Subdividing the Input Range Gives More Accurate Results

applied. Similarly to the sensitivity analysis, we consider a finite number m of possible groups, so that a
single GROUP BY query can be viewed as m instances of query with an additional filter that selects the
group.

It remains to show how to handle the filters. It is easy to apply a public filter, as we can discard the
mismatching row directly. It is more difficult with a filter that contains private values, for which we may
only use ranges. Similarly to sensitivity analysis, a filter can be viewed as a function σ(x) ∈ {0, 1}, and
if we know that an aggregation is applied afterwards, we can leave e.g. σ(x) for COUNT queries and
σ(x) · f (x) for SUM queries. It is more complicated for queries without aggregations, as some ranges
may allow for both positive and negative filtering, so we even do not know whether the row belongs to
the result or not. There are three main possible ways to go:

1. Allow leaking additional information and use exact value to determine whether to leave the row.

2. Leave only those rows that definitely satisfy the filter.

3. Remove only those rows that definitely do not satisfy the filter.

In general, in derivative sensitivity analysis we expect that the number of rows is public, so if we use
the resulting table in sensitivity or guessing advantage analysis directly, then we will do it on assumption
that the attacker has learned the total number of rows, which is fine, as we assume that the DP attacker
is given "all the records except the one he is trying to guess" anyway.

The other two approaches would give an attacker a lower and an upper bound on the number of rows
in the table. This range would have a potential application to combined sensitivity analysis, but we have
not considered it so far. If the output is not used in the analysis immediately, but is applied in some
subsequent query, then the third approach leaves the greatest variety of possible rows and gives a valid
range of possible values, so this is what we need for computing overestimated ranges. If the following
query is an aggregation, then for all these rows we will have σ(x) ∈ {0, 1}, which can be treated as an
ordinary interval.

We let the analyzer decide which approach is the most suitable. This depends on the type of the
analyzed query.

• Plain SELECT-query. The range of an output attribute is defined as the union of all intervals.
Hence, a safe overapproximation would be to leave all rows for which we are not sure whether
they will be filtered out or not. We apply the method (2).
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• Aggregation query. The range of an output attribute depends on the aggregation type.

– COUNT. We get the smallest possible count clb by leaving only those rows that definitely
pass the filter, i.e. method (3). We get the largest possible count cub by leaving only those
rows that definitely pass the filter, i.e. method (2). We define the range of a COUNT query
output as [clb, cub].

– SUM. If we know in advance that the summed values are non-negative, then we can find the
sum range similarly to the COUNT, computing the sum slb over lower bounds of ranges of
the rows left by method (3), and sub over upper bounds of ranges of the rows left by method
(2). If the summed values can be negative, we need to include all negative lower bounds
into slb, and all positive upper bounds into sub. Finally, we define the range of a SUM query
output as [slb, sub].

– MIN/MAX. For MIN, we compute the minimum mlb over lower bounds of ranges of the
rows left by (2), and the minimum mub over lower bounds of ranges of the rows left by
(3).For MAX, we compute the maximum mlb over upper bounds of ranges of the rows left
by (3), and the maximum mub over upper bounds of ranges of the rows left by (2). We define
the range of a MIN/MAX query output as [mlb,mub].

3.3.11.3 Discrete Attributes. So far, our analyzers are using discrete attributes only for comparison.
one of the following may happen to a discrete attribute x:

• copied to the output table as it is (in plain SELECT-queries, or when grouping by x);

• used in a comparison-based filter.

In these cases, a discrete attribute is handled similarly to a numeric attribute. Instead of a range, we
define a data structure set, which contains a (possibly overestimated) set of values S from which this
attribute may come. We allow a universal set, which is analogous to the interval [−∞,∞], and an empty
set.

When a row is being filtered, we check whether it is possible to pass the filter given the ranges of
attributes that we have. We mark whether it always passes the filter, never passes the filter, or both
outcomes are possible. For each attribute, we constrain the output range based on the filter, possibly
leaving an overapproximation if it cannot be easily extracted. E.g., if a filter involves a combination of
different attributes that are not separated by AND, e.g. x + y ≤ 5, then this dependency is not included
into the resulting constraints.

If the row contains any discrete attributes, the analysis is analogous. For each s ∈ S , we check
whether s passes the filter or not. If s is compared with a constant, this check is trivial. If s is compared
to another attribute s′ ∈ S ′, then we can set output ranges of both attributes to S ∩ S ′. Similarly to
numeric attributes, dependency of different attributes is not included into the resulting constraints.

3.3.12 Differential Privacy for Time Series. So far, we have studied the case where a query is ex-
ecuted only once. Even if we have enough budget to execute more than one query, those queries are
executed on the same database, which does not change in the meantime. Now we consider the case
where the database changes over time and we execute the same query at several points in time. Thus
we will get a time series. We would like to release the result of the query at each of the time points in a
way that all the released values together are still differentially private w.r.t. all the inputs (over all time
points).

A naive approach of obtaining differential privacy for time series is to simply split the privacy budget
ε between the n time points, releasing the query result at each time point ε

n -differentially privately. This
makes the noise n times larger than when executing the query only once. In practice, the input database
usually does not change very fast over time, thus the query results at different time points should also be
correlated. Then we can use an approach that is used outside the differential privacy world to smoothe
the noisy time series of measurements obtained from sensors, namely Kalman filters, which we consider
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in Sec. 3.3.12.1. We also obtain a new method for generating the differential privacy noise using smooth
derivative sensitivity, where we get to know the exact noise level of the released value.

Note that in the current section, we often use the phrase “local/derivative sensitivity” because most
of the discussed methods apply to both local sensitivity (where the distance over inputs is integer-valued)
and derivative sensitivity (where the distance over inputs is real-valued). Even when we use the phrase
“derivative sensitivity”, it is often applicable to local sensitivity as well.

Similarly to Sec. 3.3.9, because in this section we will use two different kinds of derivative sensitivity
(w.r.t. row multiplicities and w.r.t. components), we call the derivative sensitivity w.r.t. components (i.e.
in Banach spaces), Banach sensitivity or Banach derivative sensitivity.

3.3.12.1 Kalman Filters. Differential privacy can be achieved for time series using global sensitivity.
This has been done in [66] using a Kalman filter. In this section, we discuss how to use Kalman filters
with local or derivative sensitivity. We also obtain a new method for generating the differential privacy
noise using smooth derivative sensitivity. It can be used with a slightly smaller budget than the old
method and we get to know the exact noise level of the released value. If the budget is not very small
and we do not need to learn the exact noise level, the old method still gives about e times better accuracy.

Kalman filters. Kalman filters can be used to take a series of noisy measurements at different time
points (e.g. GPS data) and make it less noisy. To produce an estimate at the current time point, we use
not only the noisy measurement at the current time point but also those at previous time points. If the
underlying value does not change too fast then the previous measurements are additional estimates of
the current value, although less precise. Thus we have several (at least partially) independent estimates
of the current value, with different precision. Then we take their weighted average (with more precise
estimates having higher weight) to get an estimate that is more precise than any of the initial estimates.

Kalman filters work in real time, i.e. the current estimate does not depend on future measurements.
Also they can be implemented in constant memory, i.e. it is not necessary to save all the previous mea-
surements. Also, execution time per measurement does not increase with the number of measurements.

Kalman filters for differential privacy. Kalman filters seem suitable for differential privacy because
differentially private queries produce noisy estimates of the query result, similarly to noisy measure-
ments from sensors. The difference is that measurements from sensors usually have Gaussian noise but
differential privacy uses Laplace noise or generalized Cauchy noise (although Gaussian noise is also
possible at the expense of higher noise levels and achieving only (ε, δ)-DP instead of ε-DP).

To use a Kalman filter, we need to estimate how much the underlying value has changed from the
previous time point. This is assumed to be normally distributed. We also need to estimate the noise level
of the measurement. When global sensitivity is used for differential privacy, this noise level is constant
and public. With local/derivative sensitivity, we need to take extra steps to determine it, which we will
discuss later.

The two sources of error must be independent, and also independent of these in previous time peri-
ods. The noise levels are used to compute the weights of different measurements in computing the more
accurate estimate. If the noise level estimates are incorrect or the noises are not independent then it is
not guaranteed anymore that the estimate is more accurate than the measurements. Differential privacy
is still guaranteed because transformations do not weaken differential privacy.

Revealing the noise level for derivative sensitivity. When global sensitivity is used for differential
privacy, this noise level is constant and public. With local/derivative sensitivity, we need to take extra
steps to determine it.

One way is to use a part of the privacy budget to reveal the β-smooth derivative (or local) sensitivity
differentially privately. β-smoothness guarantees that the logarithm of this sensitivity has global sensi-
tivity at most β. Thus we can use global sensitivity to reveal this logarithm differentially privately. The
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problem with this approach is that we only reveal an approximation of the noise level used for revealing
the query result, not the exact noise level, thus the Kalman filter will be less accurate.

Another way is to first use a part of the privacy budget to reveal a noise level differentially privately
(actually we reveal the logarithm of the noise level as in the previous approach, to avoid the chance of
the noise level becoming negative after adding noise) and then generate Laplace noise with exactly this
noise level to reveal the query result. Then we can use the exact noise level in the Kalman filter. The
problem is how to find this appropriate noise level. If we reveal the logarithm of the actual β-smooth
sensitivity then the added noise may be negative and the revealed noise level thus too low to achieve
differential privacy for the query result.

Instead, we add another term to the logarithm, so that after adding noise, the revealed noise level
will be with probability 1 − δ enough to achieve ε-differential privacy for the query result. Since this δ
does not depend on the input distribution, we will get (ε, δ)-differential privacy. The revealed noise level
is

M · en·k+Lap(k)

where
• n · k is the added term to make n · k + Lap(k) non-negative with probability 1 − δ;

• M = c/b is the computed noise level;

• c is the β-smooth sensitivity;

• δ = 1
2 · e

−n;

• k = β/a;

• ε = a + b;
The privacy budget ε is split into a and b, where a is used for revealing the noise level and b is used for
revealing the query result using this noise level.

The median noise level depends on how the budget is split. Let us find the value of a for which the
median noise level is minimal. The logarithm of the median noise level is

nβ
a
− ln(ε − a) + ln c

The minimum is achieved when the derivative w.r.t. a is 0, i.e.

−
nβ
a2 +

1
ε − a

= 0

ε − a =
a2

nβ

a2 + anβ − εnβ = 0

(a + nβ/2)2 = n2β2/4 + εnβ

a = −nβ/2 +

√
n2β2/4 + εnβ

We can try this out in Haskell:

let f nb eps = let a = -nb/2 + sqrt(nb^2/4 + eps*nb); b = eps-a in (exp(nb/a)/b, a)
let g nb eps = (1/(eps-nb), nb)
let h eps nb = (f nb eps, g nb eps, fst(f nb eps)/fst(g nb eps))
Prelude> h 1 0.01
((1.2276273246518064,9.512492197250393e-2),(1.0101010101010102,1.0e-2),1.2153510514052883)
Prelude> h 1 0.1
((1.9839324650212786,0.27015621187164246),(1.1111111111111112,0.1),1.7855392185191508)
Prelude> h 1 0.4
((4.418001576289371,0.46332495807108004),(1.6666666666666667,0.4),2.650800945773623)
Prelude> h 1 0.5
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((5.43656365691809,0.5),(2.0,0.5),2.718281828459045)
Prelude> h 1 0.6
((6.600169279739,0.5306623862918074),(2.5,0.6),2.6400677118956)
Prelude> h 1 0.9
((11.20422267584516,0.6000000000000001),(10.000000000000002,0.9),1.120422267584516)
Prelude> h 1 0.95
((12.170092683730568,0.6092624221100721),(19.999999999999982,0.95),0.6085046341865289)
Prelude> h 1 1
((13.203179065212284,0.6180339887498949),(Infinity,1.0),0.0)
Prelude> h 1 2
((57.34058739617453,0.7320508075688772),(-1.0,2.0),-57.34058739617453)
Prelude> h 1 3
((212.31841055007064,0.7912878474779199),(-0.5,3.0),-424.6368211001413)
Prelude> h 1 4
((728.6360040835475,0.8284271247461903),(-0.3333333333333333,4.0),-2185.9080122506425)
Prelude> h 1 10
((656034.405125172,0.9160797830996161),(-0.1111111111111111,10.0),-5904309.646126548)
Prelude> h 1 20
((2.7664644276074154e10,0.9544511501033224),(-5.263157894736842e-2,20.0),-5.2562824124540894e11)

We see that the overhead of revealing the noise level is largest when nβ = ε/2, then the noise
increases e times if the total budget is not increased compared to the case where noise level is not
revealed. If nβ approaches ε then the new method even starts to use less noise than the previous method,
even though it releases more information. If nβ ≥ ε then the previous method would require infinite
noise level and cannot be used at all. The new method can be used but as nβ

ε exceeds 1, the noise level
starts to increase exponentially in nβ

ε and soon becomes impractical. Nevertheless, we may be able to use
this method practically with a few times smaller budget than the old method. This is possible because
the new method uses Laplace noise whose level is determined by an exponent of another Laplace noise.
This combined noise distribution has a bit heavier tails than the ordinary Laplace distribution.

3.3.12.2 Local/Derivative vs Global Sensitivity in Kalman Filters. Because Kalman filters require
splitting the budget between the released values and local/derivative sensitivity cannot be practically
used with very small budgets per released value, we discuss why we need local/derivative sensitivity at
all. We propose a modified version of global sensitivity that often has a reasonable magnitude when the
actual global sensitivity is infinite or very large. This can be used in the simpler methods of achieving
DP using global sensitivity. We will see that there are still cases where derivative sensitivity is needed.

We may question why we want to use local/derivative sensitivity instead of the more standard global
sensitivity. The main reason is because global sensitivity may be infinite or very large. However, we can
often use something similar to global sensitivity that has a more reasonable magnitude and can still be
used with the simpler methods that achieve differential privacy using global sensitivity, with a slight loss
in privacy. We try to find an example where even this modified global sensitivity is not good enough and
we really have to use the more complicated methods of local/derivative sensitivity.

(1 − δ)-global sensitivity. If the actual global sensitivity is infinite or very large then we may instead
use a value that is with probability at least (1− δ) an upper bound on the local (or derivative) sensitivity.
Then we get ε-differential privacy with probability at least (1 − δ). This is similar to but not the same as
(ε, δ)-differential privacy because it depends on the actual input distribution but (ε, δ)-differential privacy
holds for any input distribution.

Derivative sensitivity vs (1 − δ)-global sensitivity. If the actual global sensitivity is infinite or very
large then we have a choice between using either derivative sensitivity or (1− δ)-global sensitivity. With
derivative sensitivity we get classical (ε, δ)-differential privacy, with (1 − δ)-global sensitivity we get
something similar but not the same.
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To use (1 − δ)-global sensitivity, we need to know something about the input distribution. If we do
not know the exact input distribution then at least we need to find some values δ and c such that with
probability at least 1 − δ, the input is such that the derivative sensitivity at that input point is at most c.

To use derivative sensitivity, we do not need to know anything about the input distribution. Instead,
we need to use a value of β and find a β-smooth upper bound on the derivative sensitivity. The noise
level depends on β and on the actual input, choosing the best β can be difficult.

Also, derivative sensitivity requires a higher noise level for the same sensitivity than global or (1−δ)-
global sensitivity. It is about 2 times higher if we do not need to reveal the noise level and 2e times higher
if we do. Thus we need the median (over an input distribution) β-smooth derivative sensitivity to be at
least 2e times smaller than its (1 − δ)-quantile for derivative sensitivity to be advantageous over (1 − δ)-
global sensitivity.

Thus the derivative sensitivity must vary over a quite large range over the possible inputs. If the
query uses only one table and uses it only once and the norm used for combining row norms is `1 then
there are some inputs from which the large range of sensitivity can be achieved by changing only one
row. Thus β is high and derivative sensitivity cannot be practically used with small budgets.

So let us use the table twice:

SELECT count(*) FROM t as t1, t as t2 WHERE t1.groupId = t2.groupId

Let each row belong to a different individual and each individual belong to one group, denoted by the
field groupId in the row. If an individual of row i belongs to a group with m members then the derivative
sensitivity w.r.t. row i is 2m and is 1

m -smooth at this point. The total sensitivity of the query is determined
by the largest groups thus we can make β quite small, as long as the largest groups are big enough with
high probability.

With a small β, we can use a Kalman filter with derivative sensitivity (using the method from
Sec. 3.3.12.1 that also reveals the noise level). The smaller the β, the larger the number of time points
we can reveal before the budget is exhausted. If we need to reveal an even longer time series (e.g. an
infinite time series) then the budget needs to regenerate over time. If β is smaller then it does not need
to regenerate as fast as for a larger β.

3.3.12.3 An Alternative to Kalman Filter. Instead of releasing the query result at each time point, we
may release the change in the query result from the previous time point (in addition to the query result
at the first time point of the series). The changes in non-overlapping time periods are likely to be less
correlated than the query results at the end of these time periods. Thus each released change does not
leak too much about other released changes, which allows reusing some of the budget.

In this section, we assume that the changes are completely independent, thus the whole budget can
be reused at each time point. There is still some overhead over the single execution because we are
interested in the query results at different time points and each of these must be computed from several
released change values. This overhead can be made polylogarithmic, which is much better than the
Ω(
√

n) overhead of the Kalman filter. The disadvantage is that this approach assumes that the changes
in non-overlapping time periods are independent (i.e. the sets of input rows that they depend on are
disjoint, or if we need user-level privacy instead of event-level, then the sets of users on whose inputs
they depend on must be disjoint). Otherwise the privacy is not guaranteed, although accuracy is. On the
other hand, with Kalman filters, privacy is guaranteed but accuracy depends on the input distribution.
As privacy is usually more important than accuracy, we can use the Kalman filter in the general case but
there is a class of queries (considered in the following sections) for which our approach works as well.

We use an algorithm similar to one in [67]. The difference is that they release the results of the
query at each time point while we release the changes in the query result over certain time periods. The
noises they add to each released value, are, however, not independent and are generated in roughly the
same way as in our algorithm, which allows keeping the overhead polylogarithmic is both their and our
algorithm. Their algorithm also achieves pan-privacy, a stronger version of differential privacy where
the attacker can not only see the released outputs but can also look at the internal state of the mechanism
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at one point in time that the attacker chooses. Our algorithm can also be modified to achieve pan-privacy,
at the expense of increasing the noise level

√
2 times.

Suppose that changes in the query result during non-overlapping time periods are independent and
normally distributed. This is also assumed for Kalman filter. Kalman filter reveals the whole query
result at each time point. Those values are not independent and thus we have to split the privacy budget
between them, leaving a very small budget for each time point.

Suppose that we instead reveal the change in the query result between every two successive time
points, in addition to the query result at the first time point. Those revealed values are mutually inde-
pendent. Then it is possible that making a same change of same magnitude in the change of query result
at many time points is not more important than making it in only one time point, i.e. we could use the
`∞ norm instead of the `1 norm. Then we can reuse the same budget for each time period that does not
overlap with the time periods for which budget has already been used. Note that the `∞ may not always
be allowed and then we still need to use the Kalman filter.

Suppose that it is allowed and we use the simplest method of using the whole budget ε to reveal the
change in query result between each two successive time points. Let those changes be x1, x2, . . . , xn and
let the query result at the first time point be r0. Then we can reconstruct the time series as ri = r0+

∑i
j=1 x j

where ri is the query result at time point i. The noise level of the elements will be O(
√

n).
We can do better. Instead of using the whole budget ε to reveal each xi, we use only ε/s for this

(where s = log2 n), then use ε/s to reveal each x2i−1 + x2i, the same amount to reveal each x4i−3 + x4i−2 +

x4i−1 + x4i, and so on. I.e. for each k = 0, 1 . . . , s−1, we use ε/s to reveal each
∑2k

j=1 x2k(i−1)+ j. Then each
ri can be reconstructed as a sum of r0 and m revealed values corresponding to changes in periods whose
lengths are different powers of two, and m is the number of bits that are 1 in the binary representation of
i. The noise level of the ri will be O(

√
log2 n).

If we use derivative sensitivity then using only ε/ log2 n for each query may be a problem because
the noise level starts to increase very fast once the budget goes below a certain value. The old method
of using derivative sensitivity can even not be used at all. Thus we generalize the current method to use
a-ary representation instead of binary. Then we need ε/ loga n budget for each query while the noise
level increases to O(

√
(a − 1) loga n).

If the output is a linear function of input and we use the ordinary absolute value norm for each row
(this norm is separate from the norm used to combine rows) then the derivative sensitivity is constant
and has no advantage over global sensitivity. To make it have an advantage, we may instead use the
square root norm (changing the square root of an input row by 1 corresponds to distance 1).

So far we assumed that changes in the query result during non-overlapping time periods are indepen-
dent and normally distributed. We can actually remove this restriction if we are satisfied with event-level
privacy instead of user-level privacy. Then each row corresponds to an event. In the following sections,
we show how to achieve differential privacy on event level.

3.3.12.4 Sensitivity w.r.t. Changes Inside Rows. In this section, we show how DP can be achieved
using derivative sensitivity w.r.t. component (Sec. 3.3.8.2), i.e. Banach sensitivity. Note that, while
Banach sensitivity requires that the number of rows in each table is fixed, we still allow to add and
remove rows from timepoint to timepoint, but we only treat the content of the rows as private, and and
do not attempt to conceal the fact that a row has been added or removed. We will discuss how to do the
latter in Sec. 3.3.12.5.

Queries with a single table. We start from a simple case where the query applies a function on each
event and sums the results of the functions from all events. The result contributed by each event must
not depend on other events. Thus the class of queries that we can compute is the SQL SUM queries on
a single table without self-joins:

SELECT SUM( f (a1, . . . , an)) FROM t
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We can also allow filters because these can be embedded in the function f (multiplying the original f
by a function that returns 1 for rows satisfying the filter and 0 for other rows):

SELECT SUM( f (a1, . . . , an)) FROM t WHERE p(a1, . . . , an)

where ai are the attributes (columns) of table t. In this section, we will further assume that any filter is
already included in the function f .

At each time point, the query is evaluated on those rows that are already in the table, i.e. those events
that have already occurred. Over time, rows can only be added to the table, never removed or changed.

Note that the times when rows arrive are not private, only the content of the rows is. This is not a
problem if the rows arrive at regular intervals, but if the intervals are irregular then they are leaked.

Let us first compute the sensitivity w.r.t. a row (a1, . . . , as) added at time point i. We compute a
β-smooth upper bound on DS f (a1, . . . , as). Let it be ci. We also compute the change at time point i,
which is xi = f (a1, . . . , as). Let the total number of time points be n. Then we can use ε1 = ε

log2 n for
revealing xi. The noise level Li will then be computed according to the values of ε1, ci, β, and the noise
distribution that we want to use (generalized Cauchy with parameter γ achieving ε-DP, Laplace with
δ1 = δ

eε log2 n achieving (ε, δ)-DP). Then we generate noise Ni with level Li, add it to xi, and reveal the
sum xi + Ni.

In addition to revealing the noisy versions of single changes xi, we also need to reveal some sums of
changes in consecutive time periods, e.g. x2i−1 + x2i or x4i−3 + x4i−2 + x4i−1 + x4i.

For all k such that i is divisible by 2k, we need to reveal the noisy version of

2k∑
j=1

xi−2k+ j

The noise level that we have to use, is
2k

max
j=1

Li−2k+ j

because it has to be enough to hide all the xi−2k+ j. The value of xi affects at most log2 n revealed values.
The noise level Li potentially affects (if it happens to be the maximum) the same log2 n revealed values.
Changing row i by distance d changes each revealed value affected by xi, by DP-distance at most ε

log2 n ·d,
thus the whole output time series is changed by DP-distance at most ε · d. Thus we get ε-DP.

Using public tables. Suppose now that in addition to the single table t, the query can use some other
tables t1, . . . , tm but these tables are all public and constant.

SELECT SUM( f (a1, . . . , aS )) FROM t, t1, . . . , tm WHERE p(a1, . . . , aS )

Let the columns a1, . . . , as be from table t and as+1, . . . , aS from the public tables.
Let us compute the change xi in the query result when a row (a1, . . . , as) is added to table t at time

point i. The row (a1, . . . , as) is joined with rows from the public tables getting (0 or more) rows of the
form (a1, . . . , as, . . . , aS ) where the a1, . . . , as are the same for all obtained rows but as+1, . . . , aS may be
different. We apply the filter p so that only rows satisfying p remain. Then we apply f to each row and
sum the results. The obtained sum xi is uniquely determined by a1, . . . , as, i.e. there exists a function g
that computes this sum g(a1, . . . , as). Thus the query can still be expressed in the form

SELECT SUM(g(a1, . . . , as)) FROM t

using only the table t.
It may be inconvenient to express the function g in SQL. Thus we may still compute it as described

above. Let us now compute the sensitivity w.r.t. the row i. We still take the 0 or more rows of the form
(a1, . . . , as, . . . , aS ) where the a1, . . . , as are the same for all of them. We apply the filter p, which we
assume to use only public columns, private filters should be included in the function f . For each row
(a1, . . . , as, . . . , aS ), we compute the sensitivity of f (a1, . . . , as, . . . , aS ) w.r.t. (a1, . . . , as). Then we sum
the sensitivities and obtain ci, the sensitivity w.r.t. row i. Once we have the ci (and xi) for all i, we
proceed as in the single table case.
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Using private tables with joins by user ID. Suppose now that in addition to the single table t, the
query can use some other private tables t1, . . . , tm (these tables may be used more than once, unlike
table t) but these must be joined to the table t using the user ID column which should be included for
all private tables and denotes the provenance of the row. Also, the user ID of each row added to table
t must be different. Rows are still added only to table t, other private tables are constant (actually we
can change the rows belonging to those users who are not in table t yet, as these do not affect the query
result; as soon as a row from that user is added to table t, the rows of that user cannot change anymore).

Then we can join the row added at time i to other tables and obtain 0 or more rows, all of which
contain private data only from the same provenance as the added row. We can compute the sensitivity
of the function f applied to each obtained row w.r.t. each used row in the original tables (note that a
row in the original tables is not necessarily used in all obtained rows; when it is not used the respective
sensitivity is 0). Then sum the sensitivities over obtained rows to get the total sensitivity of xi w.r.t. each
used row in the original tables (if that used row is from a table used more than once then the sensitivities
w.r.t. each copy of the row must be summed). Then these sensitivities are combined according to the
norm of the Banach space (the Banach space is over all of the private tables, the norms of individual
tables may be combined e.g. by `1-norm) to obtain ci.

Because the user ID of each row added to table t is different and the rows joined to it have the same
user ID, the budget does not have to be split between different added rows as each row uses data from a
different provenance.

Adding more than one row from the same user. So far at most one row was added from each user
into table t. Now consider the case where more than one row is added from the same user.

If those rows are added at the same time then we can compute their sensitivities w.r.t. each input row
and combine them according to the norm of the Banach space. The noise is added to the total change in
query result from adding all the rows, not to the change from each added row separately.

If the rows are not added at the same time, then the noise must be added to each change separately
and we need to somehow split the budget between the changes. If we know that the user adds rows to
table t at most m times then we can use 1/m part of the initial budget for each time, making noise m
times higher.

If there is no upper bound on the number of times but we estimate it to be at most m with high
probability then we can use 1/m part of the initial budget for each time and after the mth time we can
exclude any further rows added from that user.

Personalized differential privacy. So far, rows of different users could not be joined because then a
row could affect the change in query result not only at the time when it is added but also at some later
time points. Its privacy budget would be used at all these time points. To keep track of the budgets of all
rows, we use personalized differential privacy. Then, at each time point or period we find the rows that
are joined to some row added at that time, and update their budgets.

In addition to joining rows of different users, we can now also add rows to multiple tables and use
those tables more than once. We can now also add rows to public tables, which also consumes some of
the budget of the private rows added earlier to which the public rows are joined.

To allow a user to own more than one row (possibly in different tables) using a single budget, we add
provenances to the personalized differential privacy, i.e. each row has a provenance and each provenance
has a budget.

Removing and changing rows. So far rows could only be added. Personalized differential privacy
also allows removing and changing them. Each row can now have addition time and removal time
(the latter must be later than the former, otherwise the row will never be added). Query result will be
changed and budget will be consumed at both of those times. If we want a row not to be removed at all
then we may set the removal time very large (larger than the end of the time period for which we want
differentially private updates of the query result).
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To change a row, we will have a separate row for each version of the row, one will be removed and
another added at the same time point, and both will have the same provenance. Because the addition and
removal occur at the same time point, the budget will be consumed only once.

When revealing query result changes in longer time periods (of power-of-two length), we can ignore
those rows (or row versions) that are added after the period starts but removed again before the period
ends. Those rows will not affect the revealed value or its noise level and their budget is not consumed.
Similarly, if a row is changed multiple times during the period, the budget will still be consumed only
once.

3.3.12.5 Sensitivity w.r.t. Changes Inside Rows and Row Multiplicities. Banach analysis assumes
that the join graph (which rows are joined with which) is public, only the content of the rows is private.
This is the case both for single-query and for time-series analysis. For the time-series analysis, we
also have times when rows are added/removed/changed, and these are also considered public. For the
single-query analysis, we used combined sensitivity to make the join graph private.

To adapt combined sensitivity to the time-series analysis, we apply the combined sensitivity analysis
separately for each time period (of power-of-two length) for which query change is revealed. This makes
both the join graph and the times of changes private. But the personalized privacy budgets also depend
on the join graph and change times, thus the budgets must become private as well. So we cannot reveal
the amount of budget used anymore without adding noise to it and using more budget.

Leaks through the noise level. Unlike non-combined Banach sensitivity, with combined sensitivity it
is possible that the noise level of a revealed value depends on a certain row but the value itself (before
adding noise) does not. Budget must be used also in those cases, making the amount of budget needed
much higher than for non-combined sensitivity. If the row r is in the database in the time period [t1, t2]
then at any time point t ∈ [t1, t2], the sensitivity w.r.t. adding to another table a row r′, depends on
whether r can be joined with r′, i.e. on the join key of r. Thus the budget of r is used at every time point
in [t1, t2].

The total amount of budget needed for a row r is approximately (s + m log2 n)ε where s is the total
number of time points when (a version of) r is in the table, m is the number of versions of r (if the same
version is removed and later added again then it is considered a new version), n is the total number of
analyzed time points, ε is the budget used for a single query at a time point.

The noise level is log2 n times higher than the naive method (which computes the query result sepa-
rately at each time point, using nε budget in total) because the query result at each time point is computed
as a sum of up to log2 n values. Thus we may actually use only nε/ log2 n budget for the naive method
to get the same noise level.

Using global sensitivity. To avoid noise levels depending on input rows, we can use global sensitivity
instead of local. We combine global Banach sensitivity and global adding/removing rows sensitivity.
The latter requires knowing in advance how many times each row can be used in total over all time
points. This may be possible for real-time analysis if there are some restrictions on the input distribution,
or for batch analysis, i.e. we are releasing the time series only after all the time points have passed.

With global sensitivity, we can use the same noise level for all revealed values as for the single
query of the non-time-series analysis. Then the DP-distance corresponding to a change in input is at
most log2 n times higher than for the single query. The rows of the joined table are distributed between
different time points but they are the same as for the single query. The sum of the changes in the query
result over the time points is equal to the result of the single query. The DP-distance depends on the
sum of absolute values of query changes. Let L be the maximum possible absolute value contribution
of a row (of the joined table) to the query result. Then the total sensitivity (across all time points) w.r.t.
adding/removing (all uses of) a row would be ML log2 n, where M is the maximum number of times a
row can be used (if this is exceeded then DP is not guaranteed).
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Thus we are now using a fixed amount ε1 of budget per row use, not per time point. If a row r is
joined with m other rows at a certain time point t then r uses mε1 budget at time point t. If the global
Banach sensitivity w.r.t. a row use is K then w.r.t. all uses of a row it is MK log2 n. Combined global
sensitivity is then

C = max
(

ML log2 n
G

,MK log2 n
)

= M log2 n ·max
( L
G
,K

)
where G is the distance corresponding to adding/removing a row. The noise level for each released value
is

M log2 n ·max
(

L
G ,K

)
ε

where ε is the total budget. As L and K are computed in the Banach analyzer and M,G, n, ε are also
available there, the local sensitivity analyzer is not needed for this kind of combined sensitivity analysis.

We may also compute a separate global sensitivity for each table t (considering only changes inside
table t):

Ct = M log2 n ·max
(

L
Gt
,Kt

)
where Gt is the distance corresponding to adding/removing a row in table t and Kt is the global Banach
sensitivity w.r.t. a row use in table t. The noise level must be the same as for a single global sensitivity.
The amount of budget needed for each row use in table t in a time period, is then

Ct

C
·

ε

M log2 n

Combining with local Banach sensitivity. It seems that we can also combine the global adding/re-
moving rows sensitivity with local Banach sensitivity. So far, in the Banach analyzer, the local Banach
sensitivity was computed for all uses of a row combined. To achieve this, for each row r in an input table
(or table copy for multiply used tables), the rows in the joined table that depend on r (let the number of
such rows be m), have their norms combined using the `∞ norm instead of the original norm, because
making a change with distance d in row r corresponds to making the change (with the same distance d)
in m rows of the joined table. To make those m changes of distance d have the total distance equal to the
original distance d, we must use the `∞ norm to join them.

Now we need to compute the local Banach sensitivity per row use, i.e. for a single row in the joined
table, as is already done for the global Banach sensitivity K. Here those m changes of distance d are
allowed to have the total distance up to md because the allocated budget is multiplied by the number of
times a row is used, i.e. m. Thus we use the `1 norm to combine the m rows in the joined table that
depend on r.

For smoothing the sensitivity, we must take into account that the local Banach sensitivity can jump
to the global one with an addition/removal of a single row. Thus the β-smooth Banach sensitivity κ w.r.t.
a single row use can vary between e−βGK and K. The local Banach sensitivity can be computed for each
time period separately. Because only M uses of a row can contribute to the query result, the amount of
budget allowed for each time period is ε0 = ε

M log2 n where ε is the total budget. This amount is actually
available for each use of a row in a time period, instead of all uses (similarly to the L above being for a
row in the joined table, which corresponds to a single use of a row).

ε0 also limits the possible values of β. Let ε = εb + εβ, where εb is the part of ε used to hide the query
result and εβ is the part of ε used to hide the noise level. Then

β =
εβ

(γ + 1)M log2 n

b =
εb

(γ + 1)M log2 n
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Thus β will usually be very small, making it difficult to get an advantage over global sensitivity, unless
G is very high. Adding/removing all uses of a row can cause the noise level of up to M log2 n released
values to change. Thus the β-smooth Banach sensitivity κ w.r.t. a single row use can actually only be
allowed to vary between e−βGK and K.

Thus the noise level for a released value for a time period with smooth Banach sensitivity κ ∈

[e−βGK,K], is
max

(
L
G , κ

)
b

=
(γ + 1)M log2 n ·max

(
L
G , κ

)
εb

which can be up to (ε/εb)(γ + 1) times higher than with global Banach sensitivity. If κ may be smaller
than e−βGK (it cannot be larger than K) then the noise level would be

(γ + 1)M log2 n ·max
{

L
G , κ, e

−βGK
}

εb

Compared to the combined sensitivity without time series, the noise level is about log2 n times higher
(this is for released values; for actual time series elements, it is (log2 n)1.5 times) but it can be even more
because the row that has the maximum κ may be used less than M times and the non-time-series noise
level will then be less than Mκ/ε1. Even larger increase in the noise level can be caused by the term

e−βGK = e−
εβG

(γ+1)M log2 n K

which would be
e−

εβG
γ+1

without time series. Thus G would have to be M log2 n times higher than for non-time-series analysis to
be able to get the same advantage over global sensitivity. It can also be difficult to guess a good value of
M, and a non-optimal M can further reduce accuracy.

If a table is used more than once then the G above does not need to be divided by the number of
times the table is used.

Adding or removing a row r can change the noise level of those time periods where r is used, from
e−βGK to K, a factor of eβG. This changes the distribution of each affected released value by DP-distance
(γ + 1)βG. The number of released values affected by adding or removing r, is M log2 n. Thus the total
DP-distance by which the output distribution changes, is

(γ + 1)βG · M log2 n = εβG

We have implemented the method for both global and local Banach sensitivity. It only works cor-
rectly if the upper bound M cannot be exceeded. If it is exceeded then DP is not guaranteed.

3.3.12.6 Budget Renewal. If we want to release more than one value and want all the released values
together to be B-differentially private then our privacy budget is B. A simple budget management algo-
rithm would start from budget B and reduce it by the amount of budget used each time a new value is
released, and checking that the budget would not go below zero. If each released value does not depend
on all input rows or its sensitivity w.r.t. different input rows is different then we may benefit from more
sophisticated budget management techniques, two of which are discussed in this section.

We discuss how to take advantage of the independence of changes even when we release query
results and not changes. This approach can be used improve the accuracy of the Kalman filter. However,
as in Sec. 3.3.12.3, we lose the privacy guarantee if the changes are not actually independent. The
approach takes the independence into account then tracking the privacy budget. The part of budget used
for releasing the parts of the values released in the past that are independent of values released in the
future, is returned to the user and can be reused in the future. This only ensures differential privacy of
each value at the moment when it is released. Values released in the future may weaken the privacy. To
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ensure that privacy continues into future, we must in addition to tracking the amount of used budget,
track the amount of remaining budget. The part of budget that will be used for releasing the parts of the
values released in the future that are independent of values released in the past, is added to the remaining
budget, but not above the initial budget. Every time the budget is used, the remaining budget must not go
below zero and used budget must not go above the initial budget. This ensures differential privacy over
the whole time period. The privacy budget seems to renew over time and this is due to the independence
in the changes, not because the data subjects agree to give up some privacy over time.

For long time series, the amount of privacy budget needed to release them differentially privately
with a given accuracy (noise level) grows by the number of time points n, either polylogarithmically (as
in Sec. 3.3.12.3) or faster (Θ(

√
n) to Θ(n) for the Kalman filter). In this section, we try to find some

motivation for why the budget could renew.

Two-element time series. Let

X,Y ∼ N(0, 1) and independent

Z =
X + Y
√

2
Then

Z ∼ N(0, 1)

The random values X and Z can be viewed as two successive elements of a time series. The distribution
of Z depends only on the value of X. Thus the time series is a Markov chain. Let

W = X
√

2 − Z

Then
X =

Z + W
√

2

W =
X − Y
√

2

W ∼ N(0, 1)

Lemma 3.102. W is independent of Z.

Proof.

fX(x) =
1
√

2π
e−x2/2

fY (y) =
1
√

2π
e−y2/2

fX+Y (u) =

∫ ∞

−∞

fX(x) fY (u − x)dx =

∫ ∞

−∞

1
2π

e−x2/2e−(u−x)2/2dx

=

∫ ∞

−∞

1
2π

e−(x2+u2−2ux+x2)/2dx

= e−u2/4
∫ ∞

−∞

1
2π

e−(u2/2−2ux+2x2)/2dx

= e−u2/4
∫ ∞

−∞

1
2π

e−(u2/2−2ux+2x2)/2dx

= e−u2/4
∫ ∞

−∞

1
2π

e−(u2/4−ux+x2)dx
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= e−u2/4
∫ ∞

−∞

1
2π

e−(x− u
2 )2

dx

= e−u2/4
∫ ∞

−∞

1
2π

e−(
x− u

2
1/
√

2
)2/2dx

=
1
√

2π
e−u2/4

∫ ∞

−∞

1
√

2π
e−(

x− u
2

1/
√

2
)2/2dx

=
1

√
2 ·
√

2π
e−u2/4

∫ ∞

−∞

1

(1/
√

2)
√

2π
e−(

x− u
2

1/
√

2
)2/2dx

=
1

√
2 ·
√

2π
e−u2/4dx

=
1

√
2 ·
√

2π
e−(u/

√
2)2/2dx

fX+Y,X−Y (u, v)du dv = fX(
u + v

2
) fY (

u − v
2

)dx dy

du dv =
1
2

dx dy

fX+Y,X−Y (u, v) =
1
2

fX(
u + v

2
) fY (

u − v
2

)

=
1
2
·

1
√

2π
e−( u+v

2 )2/2 ·
1
√

2π
e−( u−v

2 )2/2

=
1

4π
e−( u+v

2 )2/2−( u−v
2 )2/2

=
1

4π
e−(u+v)2/8−(u−v)2/8

=
1

4π
e−(2u2+2v2)/8

=
1

4π
e−(u2+v2)/4

=
1

√
2 ·
√

2π
e−(u/

√
2)2/2 ·

1
√

2 ·
√

2π
e−(v/

√
2)2/2

= fX+Y (u) fX−Y (v)

This proves that X + Y and X − Y are independent. Thus also Z and W are independent. �

Thus the reverse of the time series is also a Markov chain with the same distribution.
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n-element time series. We can now describe the whole time series X1, . . . , Xn:

X1 ∼ N(0, 1)

Yi ∼ N(0, 1) for all i = 1, . . . , n

X1 and all Yi are mutually independent.

Xi+1 =
Xi + Yi
√

2

Then we have
Xi ∼ N(0, 1)

From the results above we also have
Xn ∼ N(0, 1)

Wi ∼ N(0, 1) for all i = 1, . . . , n

Xn and all Wi are mutually independent.

Xi−1 =
Xi + Wi
√

2

Differential privacy. Suppose we add Laplace noise with level Li to each Xi and reveal the noisy
result:

Ni ∼ Lap(Li)

Ri = Xi + Ni

Then Ri is 1
Li

-differentially private w.r.t. Xi. Let εi = 1
Li

. Then we may say that the amount of budget
used at time point i is εi.

However, the Xi are not independent and thus the other R j may also leak information about Xi.
Suppose that j > i. Then

R j = X j + N j = X j−1(
√

2)−1 + Y j−1(
√

2)−1 + N j

= X j−2(
√

2)−2 + Y j−2(
√

2)−2 + Y j−1(
√

2)−1 + N j = . . .

= X j−k(
√

2)−k + Y j−k(
√

2)−k + . . . + Y j−m(
√

2)−m + . . . + Y j−1(
√

2)−1 + N j = . . .

= Xi(
√

2)i− j + N j +

j−i∑
m=1

Y j−m(
√

2)−m

Note that Xi(
√

2)i− j is (
√

2)i− j-sensitive w.r.t. Xi, thus Xi(
√

2)i− j + N j is (
√

2)i− j

L j
-differentially private

w.r.t. Xi. Because
∑ j−i

m=1 Y j−m(
√

2)−m is independent of Xi and N j, adding it does not weaken differential

privacy, thus R j is also (
√

2)i− j

L j
-differentially private w.r.t. Xi.

If j < i then we get

R j = Xi(
√

2) j−i + N j +

i− j∑
m=1

W j+m(
√

2)−m

and R j is (
√

2) j−i

L j
-differentially private w.r.t. Xi.

Thus for all j, R j is (
√

2)−|i− j|

L j
-differentially private w.r.t. Xi. We may also express it as (

√
2)−|i− j|ε j-

differentially private w.r.t. Xi. The whole noisy time series (R1, . . . ,Rn) is
∑n

j=1(
√

2)−|i− j|ε j-differentially
private w.r.t. Xi.
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Thus the total amount of budget used is not
∑n

j=1 ε j but only

B =

n∑
j=1

(
√

2)−|i− j|ε j

We may say that the budget renews to some extent. If j < i then the budget used at time point j
contributes

√
2 times less to the total used budget than the same amount of budget used at time point

j + 1. The total amount of budget used by time j can be defined as

E j =

j∑
k=1

(
√

2)k− jεk

Then E j+1 =
E j
√

2
+ ε j+1. Thus the amount of budget used is divided by

√
2 between time points j and

j + 1, which can be viewed as budget renewal. This renewal works until time point i, when Ei becomes
equal to the sum of the first i terms of B.

Let us now consider what happens after time point i. If j > i then the budget used at time point j
contributes

√
2 times less to the total used budget than the same amount of budget used at time point

j − 1. The total amount of budget used from time j on can be defined as

F j =

n∑
k= j

(
√

2) j−kεk

This amount of budget must be available at time point j before using the ε j at that time point. Then
F j = (F j−1 − ε j−1)

√
2. Thus the amount of budget available for future use is multiplied by

√
2 between

time points j − 1 and j. This is also a kind of budget renewal but slightly different from the one that
occurs before time point i. At time point i, Fi is equal to the sum of the last n − i + 1 terms of B.

Altogether,
B = Ei + Fi − εi

The εi is subtracted because it is included in both Ei and F j but only once in B. Thus we can use the
described kinds of budget renewal using the following budget tracking algorithm:
• Let E0 = 0.

• For each time point j = 1, . . . , i − 1:

– Let ε j be the amount of budget used at time point j.

– Let E j =
E j−1
√

2
+ ε j.

– If E j > (
√

2)i− jB then fail.
– Reveal R j.

• For time point j = i:

– Let ε j be the amount of budget used at time point j.

– Let E j =
E j−1
√

2
+ ε j.

– If E j > B then fail.
– Let F j+1 = (B − E j)

√
2.

– Reveal R j.

• For each time point j = i + 1, . . . , n:

– Let ε j be the amount of budget used at time point j.
– Let F j+1 = (F j − ε j)

√
2.

– If F j+1 < 0 then fail.
– Reveal R j.

If this algorithm does not fail then the revealed values together are B-differentially private w.r.t. Xi. If it
does fail then the revealed values before the fail together are B-differentially private w.r.t. Xi.
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Differential privacy w.r.t. all Xi. The above algorithm only guarantees differential privacy w.r.t. Xi

for a single i. Suppose we want that for all i, the revealed values together are B-differentially private
w.r.t. Xi. One way to achieve this is to run n instances of the above algorithm in parallel, one instance
(thread i) for each i to achieve differential privacy w.r.t. Xi. The threads (instances) are synchronized at
each "Reveal R j" statement, which is executed only when none of the threads has failed by that point.

Let us try to combine this into a sequential algorithm. Note that for all j, ε j is the same in all threads.
Thus also E j is the same in all threads where it is defined. The check E j > (

√
2)i− jB is performed in

threads i ≥ j. To check if at least one of the threads fails here, we may check E j > B.
Now consider F j, which is not necessarily the same in all threads. It is, however, updated by the

monotonic rule
F j+1 = (F j − ε j)

√
2

thus if we have the F j that is the minimum F j among the threads where it is defined then F j+1 will also
be the minimum among those threads. At each time point j there is one thread (thread j) where an F
value is defined for the first time. To take this into account, the minimum F j+1 is computed as follows:

F j+1 = min(F j − ε j, B − E j) ·
√

2

Once we have the minimum F j+1, we can check F j+1 < 0 to test whether at least one of the threads fails
at that check. Note that this check is only executed when E j ≤ B thus it can be replaced with

F j − ε j < 0

We get the following algorithm:
• Let E0 = 0, F1 = B.
• For each time point j = 1, . . . , n:

– Let ε j be the amount of budget used at time point j.
– Let E j =

E j−1
√

2
+ ε j.

– If E j > B then fail.
– If F j − ε j < 0 then fail.
– Reveal R j.
– Let F j+1 = min(F j − ε j, B − E j) ·

√
2.

Let us write it in the imperative style, where the values of variables can change:
• Let E := 0, F := B.
• For each time point j = 1, . . . , n:

– Let E := E√
2
.

– Let ε be the amount of budget used at time point j.
– Let E := E + ε.
– Let F := F − ε.
– If E > B then fail.
– If F < 0 then fail.
– Reveal R j.
– Let F := min(F, B − E).
– Let F := F

√
2.

This shows most clearly how the budget renewal works. Between any two successive time points, the
used budget E is divided by

√
2 and the available budget F is multiplied by

√
2.

If, before the renewal, E + F > B, the F is reduced until E + F = B. This ensures that the total
budget (already used + available for future use) is never larger than B at any time.

The used budget by itself must not become larger than B and the available budget must not become
negative. This sets the restrictions on how much budget can be used at any given time point. Note that
this does not show the optimal use of the budget to get the best accuracy. It only ensures differential
privacy.

205
Approved for Public Release; Distribution Unlimited. 



Optimizing the accuracy. Let us try to get the best accuracy within the given limits. Before each
renewal, we must have E + F ≤ B, so let us assume that E + F = B to have the largest renewal potential.
The E+F renews to E√

2
+F
√

2. If we want to get back to the previous E and F, we can use ε = (1− 1√
2
)E

and (
√

2 − 1)F ≥ ε. We get
3ε ≤ (

√
2 − 1)(E + F) = (

√
2 − 1)B

ε ≤

√
2 − 1
3

B

Thus we can use up to
√

2−1
3 B or about 13.8% of the whole budget at each time point of an infinite time

series. For a finite time series, we can use a bit more if we use up the budget over the finite time, so that
in the end we have E = B and F = 0.

Generalizations. We have investigated the case where the time series we want to reveal is a Markov
chain (also in the opposite direction) whose elements are all from the standard normal distribution and
the underlying value changes over time with a specific speed. It seems possible to generalize our re-
sults to the case where the elements of the time series are from other normal distributions and different
elements may be from different normal distributions, and where the underlying value may change at
different speeds.

Distance for differential privacy. Above we showed how to get differential privacy w.r.t. each Xi. We
however assumed a certain distribution of (X1, . . . , Xn) but differential privacy should be independent of
the input distribution. Thus the input there was not actually (X1, . . . , Xn) but (W2, . . . ,Wi, Xi,Yi, . . . ,Yn−1)
when considering differential privacy w.r.t. Xi.

Thus the input is different for each Xi but each of these inputs (and also (X1, . . . , Xn)) uniquely
determines all the others. We would like to use only (X1, . . . , Xn) as the input an achieve the same
results. Thus we need to define a distance on the (X1, . . . , Xn). Let hi be the function that converts
(X1, . . . , Xn) to the corresponding (W2, . . . ,Wi, Xi,Yi, . . . ,Yn−1):

hi(X1, . . . , Xn) = (W2, . . . ,Wi, Xi,Yi, . . . ,Yn−1)

where
Y j = X j+1

√
2 − X j

W j = X j−1
√

2 − X j

Let Hi be the inverse of this function:

Hi(W2, . . . ,Wi, Xi,Yi, . . . ,Yn−1) = (X1, . . . , Xn)

where

X j+1 =
X j + Y j
√

2
for j = i, i + 1, . . . , n − 1

X j−1 =
X j + W j
√

2
for j = i, i − 1, . . . , 2

Another way to express X j here is

X j = Xi(
√

2)i− j +

j−i∑
m=1

Y j−m(
√

2)−m if j > i

X j = Xi(
√

2) j−i +

i− j∑
m=1

W j+m(
√

2)−m if j < i
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Then the distance d on the (X1, . . . , Xn) must satisfy

d(Hi(W2, . . . ,Wi, Xi,Yi, . . . ,Yn−1),Hi(W2, . . . ,Wi, Xi + c,Yi, . . . ,Yn−1)) = |c|

since here we modify Xi by |c| and recompute the Xi where i , j.
Let gi,c be the following function:

gi,c(W2, . . . ,Wi, Xi,Yi, . . . ,Yn−1) = (W2, . . . ,Wi, Xi + c,Yi, . . . ,Yn−1)

Note that
(H ◦ gi,c ◦ h)(X1, . . . , Xn) = (X′1, . . . , X

′
n)

where
X′j = X j +

c

(
√

2)|i− j|

This describes a change in (X1, . . . , Xn) corresponding to distance |c|. We may actually allow

|X j − X′j| ≤
c

(
√

2)|i− j|

without increasing the distance |c| because reducing the change in X j or reversing the direction of the
change does not increase the DP-distance change in the distribution of the released output R j.

We have defined the distance d for only some pairs of values. To make it complete, we take the
transitive closure. Then using the budget tracking algorithm described earlier, we can guarantee B-
differential privacy w.r.t. distance d (if the algorithm does not fail).

3.3.12.7 Enforcing Budget Limits. In this section, we will see in which cases the budget limits can be
enforced by excluding the rows whose budget becomes exhausted (as opposed to some known restric-
tions on the input distribution guaranteeing an upper bound on the amount of budget used). We will also
consider the case where budgets can be increased over time.

Banach sensitivity with enforced budget limits. When using only Banach sensitivity (sensitivity
w.r.t. changes inside rows), the budgets are public because changes inside rows do not change the
amount of budget used. (The amount of budget used depends on the join keys but changing the join key
is considered as exchanging the whole row instead of as a change inside the row.) Thus we can exclude
rows whose budget is exhausted and still retain DP. The excluded rows also do not need to be taken into
account when computing the sensitivity.

Adding/removing rows sensitivity with enforced budget limits. So far we could only compute
(without revealing) the amount of budget used but could not guarantee that a given limit is not exceeded.

Let us use the following mechanism. Consider the query that counts the number of rows in the table
(let this be the joined table) obtained by joining the N tables together in the way described above. To
compute this query differentially privately, we use a personalized budget εi for each ri. Let ε0 be the
amount of budget needed for each use of ri. Thus ri can be used bεi/ε0c times.

Consider a row R in the joined table. Let the rows from which it is composed be rs1 , . . . , rsN where
τsi = i. Sort the list (s1, . . . , sN) in decreasing order to get (s′1, . . . , s

′
N), which we call the timestamp of

R. We use the lexicographic order on timestamps to order rows of the joined table by time. The first
component of the timestamp is the time point when a row of the joined table is used, the rest of the
components are used to order rows used at the same time point.

We sort the rows of the joined table in increasing order of timestamps. Then we go through the rows
is this order. For each row R, we check if all the component rows of R have at least ε0 budget left. If yes,
we include R in the query result and decrease the budget of each component row by ε0. If no, we do not
include R in the query result and do not change budgets.

However, this mechanism cannot work for the most general class of queries because we have the
following counterexample:

207
Approved for Public Release; Distribution Unlimited. 



SELECT * FROM t1, t2 WHERE t2.id = t1.id OR t2.id = t1.id + 1

Each of the id columns is a primary key of its table but due to the OR in the condition, each row of
either table can be joined to up to 2 rows of the other table. Suppose that each table contains rows with
id = 1, 2, . . . , k and each row has budget for only one use. Then the joined rows that are included, are
the ones with t2.id = t1.id. If we now remove from the second table the row with id = 1 then
the joined rows that are included, will be the ones with t2.id = t1.id + 1, i.e. the ones previously
excluded. Thus k−1 rows become included and k rows become excluded, for a total sensitivity of 2k−1.
The necessary DP noise makes the differentially private result useless.

Let us try if the mechanism can achieve DP for some special cases where the query is restricted in
some way.

1 : n Joins. Let there be N tables numbered 1, . . . ,N. Let r1, . . . be rows that are added to the tables in
that order, i.e. ri is added at time point i. Let τi be the number of the table into which ri is added. The
N tables are joined together so that for each i, tables i and i + 1 are joined with 1 : n join, each row of
table i + 1 can be joined with only one row of table i but a row of table i can be joined with any number
of rows of table i + 1. Let rρ(i) be the unique row of table τi − 1 to which ri can be joined. If τi = 1 then
let ρ(i) = 0.

Now let us consider what is the sensitivity of the query result computed with the mechanism pro-
posed in the previous paragraph w.r.t. removing a row rk. Removing rk removes all uses of rk in the
joined table that where included in the query result. Consider one such use, i.e. a row R in the joined
table.

Lemma 3.103. Removing R cannot cause more than one other row to become included (unless budgets
can be increased over time).

Proof. Let the rows from which R is composed be rs1 , . . . , rsN where τsi = i. If we remove R then each
rsi will have budget for one extra use. Suppose that this causes a row R′ to be included in the query. Let
the rows from which it is composed be rs′1 , . . . , rs′N where τs′i = i. Because R′ was included only after
R was removed, there must be some rs′m which obtained the budget that was previously used by R, i.e.
s′m = sm. We also have s′m−1 = ρ(s′m) = ρ(sm) = sm−1. Similarly we get s′j = s j for all j = m,m−1, . . . , 1.
Also R′ must have a later timestamp than R, otherwise R′ would have been included previously instead
of R.

Suppose that in addition to R′, there is another row R′′ included when R is removed. W.l.o.g. let the
timestamp of R′′ be later than that of R′ (they both must be later than R). Let the rows from which R′′ is
composed be rs′′1 , . . . , rs′′N where τs′′i = i. Similarly to above we get that for some ` ≥ 1, we get s′′j = s j

for all j = `, ` − 1, . . . , 1.
Consider the case ` ≤ m. Then s′′` = s` = s′`. Excluding R allowed R′′ to be included because it

obtained the budget for rs′′
`

from R. But R′ also consumes the budget for rs′′
`

= rs′
`

and because R′ has
an earlier timestamp than R′′, this budget released from R never reaches R′′. Thus removing R cannot
cause R′′ to become included.

Now consider the case ` > m. Then s′′m = sm = s′m. Excluding R allowed R′′ to be included because
it obtained the budget for rs′′

`
from R. This budget is not consumed by R′. But R′ consumes the budget

for rs′m = rs′′m and because R′ has an earlier timestamp than R′′, this budget released from R never reaches
R′′. Thus removing R cannot cause R′′ to become included, unless some extra budget is added for rs′′m
between the timestamps of R′ and R′′ and it is not allowed to use this budget to include rows of the
joined table that were previously excluded.

Thus removing R can cause at most one row to become included. �

If the extra budget cannot be used for previous rows then up to T rows can become included. Indeed,
the budget released from each of the T component rows of R can be used by at most one of the rows that
become included, as each row use needs the same amount, ε0.
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Lemma 3.104. Removing R cannot cause any other rows to become excluded (unless budgets can be
increased over time).

Proof. Suppose that there is a row R′′ that becomes excluded when R is removed and R′ is included.
The timestamp of R′′ must be later than R′ because excluding R cannot use up the budgets needed by
R′′, only including R′ can. Let the rows from which R′′ is composed be rs′′1 , . . . , rs′′N where τs′′i = i. Then
R′ must have used up the budget of rs′′

`
for some `. Thus s′` = s′′` and similarly to above we get that

s′′j = s′j for all j = `, ` − 1, . . . , 1.
Consider the case ` ≤ m. Then s` = s′` = s′′` . Thus the budget of rs` was previously used by R and

after removing R by R′, thus removing R cannot affect the budget of rs` available for R′′, thus it cannot
cause R′′ to become excluded.

Now consider the case ` > m. Then sm = s′m = s′′m. The budget of rsm was previously used by R
and after removing R by R′, thus removing R cannot affect the budget of rsm available for R′′. If there is
not enough budget of rsm to include R′′ after removing R, then there was not enough budget also before
removing R, thus removing R cannot cause R′′ to become excluded. �

Thus we can achieve DP for queries that use only 1 : n joins.

Increasing budgets. So far, budgets were not increased over time. The whole budget was available
from the beginning. Note that budgets cannot be decreased over time because they are private and we
do not know if there is enough budget left to take away. Let us now consider increasing budgets over
time, i.e. between any two consecutive time points, we can add a non-negative number to each budget
(the number may be different for different budgets). Also, the initial budgets (before the first time point)
are non-negative.

So far we have only considered how many rows can become included or excluded but we have not
counted the rows that change their inclusion time. If budgets are not changed or extra budgets cannot
be used for rows excluded earlier then rows can be included only at the time they become available for
inclusion (i.e. the last of its components is added to the database). Thus inclusion times cannot change
in this case.

However, if extra budget can be used for previously excluded rows then removing R can change
inclusion times of other rows. For example, suppose R1, . . . ,Rk are in increasing order of timestamps
and all contain the row r. Initially r has budget for only one use and R uses it up. For each i = 2, . . . , k,
we increase the budget of r by one use between right before the timestamp of Ri (but strictly after that
of Ri−1). Thus for each i = 1, . . . , k − 1, the row Ri will be included at the timestamp of Ri+1 and the row
Rk will be excluded. Now, if we remove R, the released budget can be used to include Rk. However, this
is not the only change, the rows R1, . . . ,Rk−1 were previously included and remain included but their
inclusion times change—now each Ri will be included at its own timestamp instead of that of Ri+1.

Thus we cannot allow using the extra budget for previously excluded rows in the joined table, i.e.
for previously excluded uses of rows in the original tables. Note that the extra budget can still be used
for new uses of the rows in the original tables whose previous uses were excluded. Specifically, the
extra budget can be used for those and only those rows of the joined table for which at least one of its
components (rows of the original tables) was added later than the extra budget.

Let us find the sensitivity of the query result w.r.t. removing a row use R when budgets can be
increased. Lemma 3.103 becomes weaker:

Lemma 3.105. If budgets can be increased then removing R cannot cause more than T other rows to
become included.

Proof. The budget ε0 released from each of the T component rows of R can be used by at most one of
the rows that become included, as the latter uses up the same amount, ε0. �

Lemma 3.104 still holds:
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Lemma 3.106. If budgets can be increased then removing R cannot cause any other rows to become
excluded.

Proof. We use the proof of Lemma 3.104 but there are up to T possible choices for R′ in the proof. At
least one of them must have used up the budget of rs′′

`
for some `. Choose one of those as R′. �

Thus the sensitivity increases from 2 to T + 1 when budgets can be increased.

Combining with global Banach sensitivity. So far we got DP w.r.t. adding/removing rows for 1 : n
joins for COUNT queries. Now let us combine it with global Banach sensitivity and use SUM queries.
This is similar to using global sensitivity in Sec. 3.3.12.5.

First consider the case when budgets are not increased. Let L be the maximum possible absolute
value contribution of a row (of the joined table) to the query result. Then the total sensitivity (across all
time points) w.r.t. adding/removing (all uses of) a row would be 2LM log2 n, where M is the maximum
number of times a row can be used (if this is exceeded then some row uses are excluded). The factor 2 is
sensitivity of the respective COUNT query w.r.t. adding/removing rows. If the global Banach sensitivity
w.r.t. a row use is K then w.r.t. all uses of a row it is MK log2 n. Combined global sensitivity is then

C = max
(
2LM log2 n

G
,MK log2 n

)
= M log2 n ·max

(
2L
G
,K

)
where G is the distance corresponding to adding/removing a row. The noise level for each released value
is

M log2 n ·max
(

2L
G ,K

)
ε

where ε is the total budget.
Now consider the case where budgets are increased. Then the sensitivity of the respective COUNT

query will be T + 1. Thus the factor 2 in 2L will become T + 1. The noise level for each released value
will be

M log2 n ·max
(

(T+1)L
G ,K

)
ε

Combining with local Banach sensitivity. We can also combine with local Banach sensitivity. This
is similar to combining global and Banach sensitivity in Sec. 3.3.12.5. Let ε = εb + εβ, where εb is the
part of ε used to hide the query result and εβ is the part of ε used to hide the noise level. Then

β =
εβ

(γ + 1)M log2 n

b =
εb

(γ + 1)M log2 n

Let κ be β-smooth Banach sensitivity w.r.t. a single row use. The noise level for each released value will
be

(γ + 1)M log2 n ·max
{

2L
G , κ, e

−βGK
}

εb

if budgets are constant and

(γ + 1)M log2 n ·max
{

(T+1)L
G , κ, e−βGK

}
εb

if budgets can be increased.
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3.3.13 Model-Checking Sensitivity of SQL Queries. Consider again SQL workflows, consisting of
tables and queries, as defined in Sec. 3.2.1.1. We have proposed a model-checking based approach to
determine the sensitivity of such workflows, which, differently from previous approaches can provide
precise bounds in certain cases.

3.3.13.1 Non-GROUP BY Queries. The SQL workflows are made up of queries. We consider two
types of queries here — those with out GROUP BY, and those containing it. The first kind of the queries
is defined as follows.

A database query Q = (J, F, P) (join—filter—project) over the database schema dbs consists of the
components named below. Let us use the notation defined in Sec. 3.2.1.1.
• J ∈ {t1, . . . , tm}∗, where Z∗ denotes the set of all sequences of elements of the set Z. Let |J| be the

length of J and J[i] the i-th component of J. Let D[J] denote the Cartesian product D[J[1]] ×
· · · × D[J[|J|]]. For b ∈ D[J], let b[i] denote the sequence of the elements of b corresponding to
the table J[i].

• F is a predicate on the set D[J].

• P is a sequence of functions p1, . . . , pr, where pi : D[J]→ Xi. The set Xi may be any set (it is the
set of possible values in the ith column of the result table).

The application of a query Q = (J, F, P) to a database Y ∈ Y proceeds as follows:
1. Let A =

∏|J|
i=1 Y.J[i]. Note that A is a multiset over D[J].

2. Let B ⊆ A be the multiset of all elements of A that satisfy F.

3. Output the multiset {|(p1(b), . . . , pr(b)) | b ∈ B|}.
Such kind of queries cover the SQL-queries containing JOIN-s and WHERE-clauses, where certain

attributes of the joined tables are selected into the result. The set of projections P cover the computations
over the attributes. Assuming that the predicate F and the functions p1, . . . , pr can be specified in SQL,
the query Q corresponds to the following SQL query:

SELECT ~p1�, . . . , ~pr� FROM J[1], . . . , J[|J|] WHERE ~F�

where ~z� denotes the syntactic object (i.e. SQL expression) with semantics z.
The queries described here have the following distributivity properties, which are easy to check if

one considers how a particular row may have ended up in the result of the query.

Lemma 3.107. Let dbs = (t1 : r1, . . . , tm : rm) be a database schema, Q = (J, F, P) a query over dbs,
and Y a database over dbs. Let i ∈ {1, . . . ,m} and R1 and R2 be relations over ri. Let R′1 be the result of
Q on Y[ti 7→ R1] and R′2 be the result of Q on Y[ti 7→ R2]. Let R′ be the result of Q on Y[ti 7→ R1 ∪ R2].

(a) If J contains ti only once, then R′ = R′1 ∪ R′2 and R′ \ R′1 = R′2.

(b) Suppose that R1 ∩R2 = ∅. Let i1, . . . , ik be the positions of ti in J. Let FR2
i j

be a predicate on D[J],

returning true on a row r iff r[i j] ∈ R2. Let Q′ be the query (J, F ∧
∨k

j=1 FR2
i j
, P). Then the result

of Q′ on Y[ti 7→ R1 ∪ R2] is R′ \ R′1.

Proof. Part (a). Let ti = J[ j]. Then by the description of application of queries above (and using the fact
that for all k , j, J[k] , ti), we have
R′1 = {|(p1(b), . . . , pr(b)) | b ∈

∏ j−1
k=1 Y.J[k] × R1 ×

∏|J|
k= j+1 Y.J[k], F(b)|},

R′2 = {|(p1(b), . . . , pr(b)) | b ∈
∏ j−1

k=1 Y.J[k] × R2 ×
∏|J|

k= j+1 Y.J[k], F(b)|},

R′ = {|(p1(b), . . . , pr(b)) | b ∈
∏ j−1

k=1 Y.J[k] × (R1 ∪ R2) ×
∏|J|

k= j+1 Y.J[k], F(b)|}. Thus R′ = R′1 ∪ R′2 and
(because we are using multisets, not sets) R′ \ R′1 = R′2.
Part (b). W.l.o.g. (as reordering elements of a tuple is a set isomorphism) we can assume that
i1 = 1, . . . , ik = k. Then the result of Q′ on Y[ti 7→ R1 ∪R2] is R′′ = {|(p1(b), . . . , pr(b)) | b ∈ (R1 ∪R2)k ×∏|J|

j=k+1 Y.J[ j], F(b)∧
∨k

j=1(b[ j] ∈ R2)|}. Because for j = 1, . . . , k, we have b[ j] ∈ R1∪R2, and R1∩R2 = ∅,
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the condition
∨k

j=1(b[ j] ∈ R2) = ¬
∧k

j=1(b[ j] < R2) = ¬
∧k

j=1(b[ j] ∈ R1) = ((b[1], . . . , b[k]) < Rk
1). Thus

R′′ = {|(p1(b), . . . , pr(b)) | b ∈ ((R1 ∪ R2)k \ Rk
1) ×

∏|J|
j=k+1 Y.J[ j], F(b)|} =

{|(p1(b), . . . , pr(b)) | b ∈ (R1 ∪ R2)k ×
∏|J|

j=k+1 Y.J[ j], F(b)|} \ {|(p1(b), . . . , pr(b)) | b ∈ Rk
1 ×∏|J|

j=k+1 Y.J[ j], F(b)|} = R′ \ R′1. �

Set semantics. When evaluating the queries in set semantics, a relation R over the schema r is a subset
of D[r] instead of a multiset over D[r], and the multiset constructor in Step 3 of Sec. 3.3.13.1 is replaced
with set constructor, i.e. duplicates are removed. We actually only require the output relation to be a set,
the input relations can still be multisets.

3.3.13.2 GROUP BY Queries. A GROUP BY query Q = (J, F,G, PG, PA) (join—filter—group—
project groups—aggregate) consists of the following components:
• J and F are the same as for non-GROUP BY queries.

• G is similar to the P for non-GROUP BY queries. It is a sequence of functions g1, . . . , gr, where
gi : D[J] → Xi. The set Xi is arbitrary. Typically each gi selects an attribute from D[J]. Let
X = X1 × · · · × Xr.

• PG is a sequence of functions p1, . . . , pr′ , where pi : X → Yi. The set Yi is arbitrary. Hence, if
each gi selected an attribute from D[J] then each pi is a function of those attributes.

• PA is a sequence of functions h1, . . . , hs, where hi : (D[J]→ N)→ Zi. The set Zi is arbitrary.
The application of a query Q = (J, F,G, PG, PA) to a database Y ∈ Y proceeds as follows:

1. Let A =
∏|J|

i=1 Y.J[i]. Note that A is a multiset over D[J].

2. Let B ⊆ A be the multiset of all elements of A that satisfy F.

3. Let C = {(g1(b), . . . , gr(b)) | b ∈ B} be the set of group keys.

4. Let D = {(c, {|b ∈ B | (g1(b), . . . , gr(b)) = c|}) | c ∈ C} be the set of groups.

5. Output the multiset
{|(p1(c), . . . , pr′(c), h1(E), . . . , hs(E)) | (c, E) ∈ D|}.

Assuming that the predicate F and the functions g1, . . . , gr,

p1, . . . , pr′ , h1, . . . , hs can be specified in SQL, the query Q corresponds to the following SQL query:

SELECT ~p1�, . . . , ~pr′�, ~h1�, . . . , ~hs� FROM J[1], . . . , J[|J|]

WHERE ~F� GROUP BY ~g1�, . . . , ~gr� .

Note that ~hi� are the aggregations of attributes, e.g. SUM, COUNT, MAX etc.

3.3.13.3 Queries Combined using Set Operations. If Q1 and Q2 are supported queries over set se-
mantics then we can also support queries Q1 ∪ Q2, Q1 ∩ Q2, and Q1 \ Q2. If the results of queries Q1
and Q2 are R1 and R2, respectively, then the results of the queries Q1 ∪ Q2, Q1 ∩ Q2, and Q1 \ Q2 are
R1 ∪ R2, R1 ∩ R2, and R1 \ R2, respectively. Set operations can be combined any number of times but
only at the top level, e.g. Q1 \ ((Q2 ∪ Q3) ∩ Q4).

3.3.13.4 Sensitivity of queries without GROUP BY. Consider the queries described in Sec. 3.3.13.1.
Note that we defined these queries to use multiset semantics, not set semantics.

In this analysis, we consider the “canonical” distance over databases, meaning that for datasets
R,R′ over the same schema we define their distance as the cardinality of their symmetric difference
(R\R′)∪ (R′\R). For databases over the same schema we define their distance as the sum of the distances
of the corresponding tables.
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To find the sensitivity of a query Q = (J, F, P) against a database schema dbs = (t1 : r1, . . . , tm : rm)
with respect to the table ti, we will find the derivative query Qti[y] of Q with respect to ti. The derivative
query is parameterized with a possible row y of the table ti. The result of Qti[y] on a database Y is the
multiset difference of the result of Q on Y and the result of Q on Y[ti 7→ Y.ti \ {y}] (database Y with one
copy of row y removed from the table ti). We will then find the maximum number of rows that may be
returned by Qti[y] on Y , maximized over all possible y and Y . This is the sensitivity of Q with respect to
the table ti.

Let us first consider the case where Disr j , ∅ for all j. In this case the input tables cannot contain
repeated rows, i.e. these multisets are actually sets. Due to the distributivity properties (Lemma 3.107)
of the query Q = (J, F, P), it is very simple to find its derivatives. Let i1, . . . , ik be the positions that
contain ti in J. Then

Qti[y] = (J, F ∧
k∨

j=1

F{y}i j
, P),

where F{y}i j
is defined as in Lemma 3.107. Note that we used removals instead of additions to define the

derivative query to ensure that the removed row y is included in the input of the derivative. Otherwise it
would not be possible to express the derivative as a query in the sense of Sec. 3.3.13.1 (it would have to
return a nonempty output on an empty input table).

Let N ∈ N. The question of whether Qti[y] may return at least N rows can be phrased as a quantifier-
free formula Φ in the manner we describe below. If this formula is satisfiable, then the answer to
the query may contain at least N rows for some y. By varying N and checking for satisfiability of
resulting formulas, we will find the value where it is no longer satisfiable. Satisfiability is modulo
theories we commonly associate with the domains D1, . . . ,Dn, where the attributes in the tables are
picked from. Hence the theories may include Booleans, integers, reals and strings. The first three are
well-supported by existing SMT solvers. We can also handle queries over string data, as long as the
operations performed with them are supported by SMT solvers.

Note that because we are using multiset semantics, each combination of rows of input tables that
satisfies F, produces exactly one output row, repeated output rows are not removed. Thus the formula
will not depend on P.

The formula Φ
dbs,ti
Q,N has three major parts: the variables, the functions (function variables), and the

constraints. The conjunction of the constraints is the actual formula. Each variable and each function
is described with its type, i.e. the set of values from which it can take values. The SMT solver tries to
assign to each variable and function a value of its given type, such that the constraints become satisfied.
The variables are the following:
• For each n ∈ {1, . . . ,N}, j ∈ {1, . . . , |J|}, and k ∈ {1, . . . ,m}, where r(a1 : D1, . . . , am : Dm; Disr)

is the relation schema of the table J[ j]: a variable x[n, j, k] taking values in the set Dk. These
variables enumerate the attributes of N rows from D[J].

• For each k ∈ {1, . . . ,m}, where r(a1 : D1, . . . , am : Dm; Disr) is the relation schema of the table ti:
a variable y[k], taking values in the set Dk.

The functions are the following:
• For all i ∈ {1, . . . ,M}, where dbs = (t1 : r1, . . . , tM : rM), all minimal I = {i1, . . . , ik} such that
{ai1 , . . . , aik } ∈ Disr, and all ` ∈ {1, . . . ,m}\I, where r(a1 : D1, . . . , am : Dm; Disr) is the relation
schema of the table ti: a function f [i, I, `] : Di1 × · · ·Dik → D`.

• A function g : D[J]→ Z.
The constraints of the formula, referring to the variables and functions above, are the following.
• For each n ∈ {1, . . . ,N}: the tuple of variables x[n, ·, ·] must satisfy the predicate F.

• For each n ∈ {1, . . . ,N}, the following disjunction over all j ∈ {1, . . . , |J|}, where J[ j] = ti, must
hold:

– Each element of the disjunction is a conjunction of the statements y[k] = x[n, j, k] over all
k ∈ {1, . . . ,m}, where r(a1 : D1, . . . , am : Dm; Disr) is the relation schema of the table ti.
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• For all i ∈ {1, . . . , M}, where dbs = (t1 : r1, . . . , tM : rM), for all minimal I = {i1, . . . , ik} such that
{ai1 , . . . ,

aik } ∈ Disr, and all ` ∈ {1, . . . ,m}\I, where r(a1 : D1, . . . , am : Dm; Disr) is the relation
schema of the table ti, for all n ∈ {1, . . . ,N}, j ∈ {1, . . . , |J|} with J[ j] = i, the equality
x[n, j, `] = f [i, I, `](x[n, j, i1], . . . ,
x[n, j, ik]) must hold. Such equalities express the distinctness requirement in the relation schemas.

• The values g(x[1, ·, ·]), . . . , g(x[N, ·, ·]) must be distinct, meaning that we actually get N different
rows. Using the Z3 SMT solver, this constraint can be expressed through the distinct-predicate.

The discussions above have sketched the proof of the following lemma.

Lemma 3.108. Let dbs = (t1 : r1, . . . , tm : rm) be a database schema such that Disr j , ∅ for all j,
Q = (J, F, P) a query over it, ti a table in this schema and N ∈ N. Then Φ

dbs,ti
Q,N is satisfiable iff the

sensitivity of Q with respect to the table ti is at least N.

Proof. Let i1, . . . , ik be the positions that contain ti in J.
The if part. Suppose that the sensitivity of Q w.r.t. table ti is at least N. Then there exists a database

Y over dbs and a row y ∈ D[ti], such that Qti[y] = (J, F ∧
∨k

j=1 F{y}i j
, P) returns at least N rows on Y .

Each of those rows is obtained from an element of D[J] satisfying F ∧
∨k

j=1 F{y}i j
, using functions in P.

These elements are all distinct because the input tables cannot contain repeated elements. Take N of
these distinct elements of D[J] and use them as valuations for the variables x[1, ·, ·], . . . , x[N, ·, ·]. Then
for all n ∈ {1, . . . ,N}, the tuple of variables x[n, ·, ·] satisfies the predicate F. Thus the first constraint of
Φ

dbs,ti
Q,N is satisfied.

The function g can be defined as g(x[n, ·, ·]) = n for all n ∈ {1, . . . ,N} and arbitrarily on other
arguments. The definition is correct because the tuples x[n, ·, ·] are distinct for distinct n. Then also the
fourth constraint of Φ

dbs,ti
Q,N is satisfied.

Use the row y as the valuation of the variables y[·]. Then for all n ∈ {1, . . . ,N}, the tuple b = x[n, ·, ·]
satisfies F{y}i j

for at least one j. Then b[i j] ∈ {y}, i.e. x[n, i j, ·] = y[·]. Thus the second constraint of Φ
dbs,ti
Q,N

is satisfied.
Suppose that {a j1 , . . . , a jk } ∈ Disr, where r(a1 : D1, . . . , am : Dm; Disr) is the relation schema

of the table ti. Then by Sec. 3.2.1.1, for each (x j1 , . . . , x jk ) ∈ D j1 × · · · × D jk , there is at most one
(y1, . . . , ym) ∈ D[ti] satisfying y j1 = x j1 , . . . , y jk = x jk . Let I = { j1, . . . , jk} and for all ` ∈ {1, . . . ,m} \ I,
let f [i, I, `](x j1 , . . . , x jk ) = y` if y` exists and arbitrary otherwise. This gives a valuation of f [·, ·, ·] such
that the third constraint of Φ

dbs,ti
Q,N is satisfied.

The only if part. Suppose that there exists a valuation of x[·, ·, ·], y[·], f [·, ·, ·], g such that Φ
dbs,ti
Q,N is

satisfied. We construct a database Y such that for all i ∈ {1, . . . ,m}, Y.ti = {x[n, j, ·] | n ∈ {1, . . . ,N}, j ∈
{1, . . . , |J|}, J[ j] = ti}. Note that here we use the set constructor, i.e. repeated elements are removed. The
third constraint of Φ

dbs,ti
Q,N guarantees that Y is a database over dbs. Let y = y[·]. The first two constraints

of Φ
dbs,ti
Q,N guarantee that for each n ∈ {1, . . . ,N}, the tuple x[n, ·, ·] produces (using functions in P) a row

in the result of Qti[y] = (J, F ∧
∨k

j=1 F{y}i j
, P) on Y . The fourth constraint guarantees that those N rows

are separate elements of the multiset (although some may be equal to each other). Thus Qti[y] returns at
least N rows on Y , hence the sensitivity of Q w.r.t. table ti is at least N. �

3.3.13.5 Repeated Rows. Now consider the case where the input tables may contain repeated rows.
We prove the following generalization of Lemma 3.108.

Theorem 3.109. Let dbs = (t1 : r1, . . . , tm : rm) be a database schema, Q a query over it, ti a table in
this schema (w.r.t. which we want to estimate the sensitivity of Q) and N ∈ N. Then there are four cases:
(1) Disr j , ∅ for all j
(2) Disr j , ∅ for all j , i, Disri = ∅, and ti occurs only once in J
(3) Disr j , ∅ for all j , i, Disri = ∅, and ti occurs more than once in J
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(4) Disr j = ∅ for some j , i
In cases (1) and (2), Φ

dbs,ti
Q,N is satisfiable iff the sensitivity of Q with respect to the table ti is at least N.

In cases (3) and (4), Φ
dbs,ti
Q,N is satisfiable iff the sensitivity of Q with respect to the table ti is ∞ and not

satisfiable iff the sensitivity of Q with respect to the table ti is 0.

Proof. We first consider the sensitivity of Q (w.r.t. ti) over the database schema dbs′ = (t1 : r′1, . . . , tm :
r′m) where r′j = r j(a1 : D1, . . . , am : Dm; Disr j) if Disr j , ∅ and r′j = r′j(a1 : D1, . . . , am :
Dm; {{a1, . . . , am}}) if Disr j = ∅. The schema dbs′ forbids repeated rows but is otherwise the same as
dbs. If the sensitivity of Q over dbs′ is 0 then the predicate F is false for all possible inputs and thus the
result of the query Q (over both dbs′ and dbs) is empty for all possible inputs. Thus the sensitivity of Q
over dbs is also 0.

Now suppose that the sensitivity of Q over dbs′ is at least 1. Then there exists a database Y over dbs′

and a row y ∈ Xri such that adding y to Y.ti adds at least 1 row to the result of Q. Let c be a one of the
rows added to the result and b ∈ D[J] the combination of rows of input tables that produces c.

If Disr j = ∅ for some j , i then we can let Y.t j contain m ∈ N copies of b[`] where J[`] = t j,
which will cause adding y to Y.ti to produce at least m added copies of c in the result. Because m may be
arbitrarily large, the sensitivity of Q over dbs is infinite.

If Disri = ∅ and ti occurs more than once in J (i.e. k ≥ 2, where i1, . . . , ik are the positions that
contain ti in J) then at least one of b[i1], . . . , b[ik] must be equal to y. Let ` be such that b[i`] = y. Let
s ∈ {i1, . . . , ik} \ {i`}. Then we can let Y.ti contain m ∈ N copies of b[s] (which may or may not be equal
to y), which will cause adding y to Y.ti to produce at least m added copies of c in the result. Because m
may be arbitrarily large, the sensitivity of Q over dbs is infinite.

If Disr j , ∅ for all j , i, Disri = ∅, and ti occurs only once in J then we can use part (a) of
Lemma 3.107 to get that the result of Qti[y] over dbs on database Y where y ∈ Y.ti, is equal to the result
of Q over dbs on database Y ′ = Y[ti 7→ {y}]. The database Y ′ does not contain repeated rows in any
table, thus the result is the same over dbs′ and is also equal to the result of Qti[y] over dbs′. Thus the
sensitivity of Q (w.r.t. ti) over dbs is equal to the sensitivity of Q over dbs′. �

3.3.13.6 Tables Used More than Once. The description of the computation of the sensitivity of a
query in Sec. 3.3.13.4 allows using an input table more than once in the join. This is not the only way
this feature can be implemented in the analyzer. Instead, the analyzer can compute the sensitivities of
the query as if all the tables were different. Then it can add the sensitivities w.r.t. each copy of the table
together to obtain the sensitivity w.r.t. the original table, similarly to the partial derivatives of compound
multi-variable functions.

This implementation choice has the advantage that because the sensitivities w.r.t. each copy of a
table may be lower than w.r.t. the original table, the SMT solver is more likely to terminate within
reasonable time (see Sec. 4.3.6).

The disadvantage is that this version of the analysis is not as precise. The actual sensitivity may be
lower than the obtained result (it cannot be higher because the computed sensitivities are global, i.e. they
do not depend on the actual value of the input database).

3.3.13.7 Sensitivity of Queries with Set Semantics. We define the sensitivity of a query Q over set
semantics w.r.t. table ti as the maximum number of rows in the derivative Qti{y}(Y), maximized over
all possible y and Y , where Qti{y}(Y) is the set difference of the result of Q on Y and the result of Q on
Y[ti 7→ Y.ti \ {y}] (database Y with the row y (if it exists) removed from the table ti).

To find the sensitivity of a query in set semantics (SELECT DISTINCT in SQL) we modify the
formula Φ

dbs,ti
Q,N as follows. Let the modified formula be Ψ

dbs,ti
Q,N . In set semantics, repeated rows in the

output are removed. Thus the formula will now depend on P. Instead of requiring the distinctness of the
combinations of rows of input tables, we require the distinctness of the rows in the answer of the query.
The following variables are added:
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• For each n ∈ {1, . . . ,N} and k ∈ {1, . . . , r}, where r is the length of P: a variable z[n, k], taking
values in the set Xk, which is the range of the mapping pk.

The following constraints are added:
• For each n ∈ {1, . . . ,N} and k ∈ {1, . . . , r}: the equality z[n, k] = pk(x[n, ·, ·]) must hold, where

pk is the k-th mapping in P. These constraints state that the outputs of the query are computed
according to P.

The function g is replaced with the following:
• Function g : X1 × · · · × Xr → Z, where Xi is the range of the mapping pi.

The distinctness constraint is replaced:
• The values g(z[1, 1], . . . , z[1, r]), . . . , g(z[N, 1], . . . ,

z[N, r]) must be distinct. This expresses the distinctness of the rows in the answer to the query.
In set semantics, we get the following weaker analogue of Theorem 3.109 that sometimes holds only in
one direction.

Theorem 3.110. Let dbs = (t1 : r1, . . . , tm : rm) be a database schema, Q a query over it, ti a table in
this schema and N ∈ N. (a) If the sensitivity of Q (with set semantics) with respect to table ti is at least
N, then Ψ

dbs,ti
Q,N is satisfiable. (b) If ti occurs only once in J and Ψ

dbs,ti
Q,N is satisfiable, then the sensitivity

of Q with respect to the table ti is at least N.

Proof. Let i1, . . . , ik be the positions that contain ti in J.
Part (a). Suppose that the sensitivity of Q = (J, F, P) w.r.t. table ti is at least N. Then there exists

a database Y over dbs and a row y ∈ D[ti], such that R \ R1 where R is the result (over set semantics)
of Q on Y and R1 is the result (over set semantics) of Q on Y[ti 7→ Y.ti \ {y}], contains at least N rows.
Let R′ and R′1 be the results of Q on Y and Y[ti 7→ Y.ti \ {y}], respectively, over multiset semantics. Then
R \ R1 contains a row r iff R′ contains r at least once and R′1 does not contain r. Because R \ R1 is a
set, its elements (rows) are distinct. It contains at least N distinct rows. Consider one of those rows r.
Then R′ \R′1 (the result of Qti[y] = (J, F ∧

∨k
j=1 F{y}i j

, P) on Y over multiset semantics) contains r at least
once. Thus Qti[y] returns at least N distinct rows on Y . Each of those distinct rows is obtained from an
element of D[J] satisfying F ∧

∨k
j=1 F{y}i j

, using functions in P. Take N of these elements of D[J] and
use them as valuations for the variables x[1, ·, ·], . . . , x[N, ·, ·]. Then for all n ∈ {1, . . . ,N}, the tuple of
variables x[n, ·, ·] satisfies the predicate F. Thus the first constraint of Φ

dbs,ti
Q,N (also a constraint of Ψ

dbs,ti
Q,N )

is satisfied.
Take the N elements of R \ R1 obtained (using functions in P) from the ones taken from D[J], and

use as valuations for the variables z[·, ·]. Then also the constraint added to Ψ
dbs,ti
Q,N is satisfied.

The function g can be defined as g(z[n, ·]) = n for all n ∈ {1, . . . ,N} and arbitrarily on other ar-
guments. The definition is correct because the tuples z[n, ·] are distinct for distinct n. Then also the
distinctness constraint of Ψ

dbs,ti
Q,N is satisfied.

The second and the third constraint of Φ
dbs,ti
Q,N are handled the same as in the proof of Lemma 3.108

(last two paragraphs of the if part).
Part (b). Suppose that ti occurs only once in J and that there exists a valuation of

x[·, ·, ·], y[·], z[·, ·], f [·, ·, ·], g such that Ψ
dbs,ti
Q,N is satisfied. We construct a database Y such that for all

i ∈ {1, . . . ,m}, Y.ti = {x[n, j, ·] | n ∈ {1, . . . ,N}, j ∈ {1, . . . , |J|}, J[ j] = ti}. Note that here we use the
set constructor, i.e. repeated elements are removed. The third constraint of Φ

dbs,ti
Q,N guarantees that Y is a

database over dbs. Let y = y[·]. The first two constraints of Φ
dbs,ti
Q,N and the added constraint of Ψ

dbs,ti
Q,N guar-

antee that for each n ∈ {1, . . . ,N}, the tuple z[n, ·] is a row in the result of Qti[y] = (J, F ∧
∨k

j=1 F{y}i j
, P)

on Y . Because ti occurs only once in J, we have k = 1 and
∨k

j=1 F{y}i j
= F{y}i1

. This predicate is equivalent
to using from the table ti only the element y. Thus z[n, ·] is a row in the result of Q on Y[ti 7→ {y}], which
is equal to the set difference of the result of Q on Y[ti 7→ {y}] and the (empty) result of Q on Y[ti 7→ ∅].
The distinctness constraint of Ψ

dbs,ti
Q,N guarantees that those N rows are distinct. Hence the sensitivity of

Q w.r.t. table ti is at least N. �
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If ti occurs many times in J, then the satisfiability of Ψ
dbs,ti
Q,N does not imply the sensitivity N of Q,

because some of the N rows that would be added to the output when adding one row r to the table
ti, could still be constructible if all rows not used in the construction of those N rows, and also r, are
removed from the database. In this case, the number of added rows will be less than N.

3.3.13.8 Sensitivity of GROUP BY Queries. To find the sensitivity of a query Q = (J, F,G, PG, PA)
against a database schema dbs = (t1 : r1, . . . , tm : rm) with respect to the table ti, we will still find
the derivative query Qti[y] of Q with respect to ti. The result of Qti[y] on a database Y is the multiset
difference R1 \R2 where R1 is the result of Q on Y and R2 is the result of Q on Y[ti 7→ Y.ti \ {y}] (database
Y with one copy of row y removed from the table ti). Unlike in Sec. 3.3.13.4, R2 is not necessarily a
subset of R1 because removing y from Y may not only remove groups but also change them. The set
R1 \ R2 contains both the removed and the changed groups, hence we can still measure its size to find
the sensitivity of Q.

We will then find the maximum number of rows that may be returned by Qti[y], maximized over all
possible y. This is the sensitivity of Q with respect to the table ti.

To find an upper bound on the sensitivity of Q, we find an upper bound on the sensitivity of the
query Q′ = (J, F,G) considered as a non-GROUP BY query, over set semantics because the same group
cannot be used in multiple rows of the output. Note that the formula in Sec. 3.3.13.7 considers N rows
in the output that can be constructed using a row r after r is added to an input table. Some of these N
rows (let this subset be S ) may have been constructible even before r was added to the input table. To
get a precise result, the rows in S should have been excluded but we could not express this in an SMT
formula. For GROUP BY queries, we must actually not exclude the rows in S because these represent
the keys of groups that were already in the result but are potentially modified when r is added. The
rest of the N rows represent the keys of new groups created by the addition of r. Thus we must use the
method in Sec. 3.3.13.7 to find this upper bound instead of the exact sensitivity of Q′. Then this is an
upper bound on the sensitivity of Q.

We get the following theorem:

Theorem 3.111. Let dbs = (t1 : r1, . . . , tm : rm) be a database schema, Q = (J, F,G, PG, PA) a GROUP
BY query over it, ti a table in this schema and N ∈ N. Let Q′ = (J, F,G). Then there are two cases:
(1) ti occurs only once in J
(2) ti occurs more than once in J
In case (1), Ψ

dbs,ti
Q′,N is satisfiable iff the sensitivity of Q with respect to the table ti is at least N. In case (2),

if the sensitivity of Q over set semantics with respect to the table ti is at least N then Ψ
dbs,ti
Q′,N is satisfiable.

Proof. Case (1). The result of the derivative Q′ti[y] on the database Y[ti 7→ {y}] contains the keys of the
groups added to the result of Q when Y[ti 7→ ∅] is replaced with Y[ti 7→ {y}]. These are also the keys
of the groups that are potentially changed in or added to the result of Q when Y is replaced with Y[ti 7→
Y.ti∪{y}]. The number of these keys is an upper bound on the number of rows in Qti{y}(Y[ti 7→ Y.ti∪{y}]).
This upper bound is achievable, e.g. when Y.ti = ∅. Thus the sensitivity of Q w.r.t. ti is the maximum
number of rows in the derivative Q′ti{y}(Y

′′) over databases Y ′′ where Y ′′.ti = {y}. Because for all Y ′′ for
which y ∈ Y ′′.ti, the derivative Q′ti{y}(Y

′′) is monotonically decreasing in Y ′′.ti, and for all Y ′′ for which
y < Y ′′.ti, the derivative Q′ti{y}(Y

′′) is empty, the sensitivity of Q w.r.t. ti is the maximum number of rows
in the derivative Q′ti{y}(Y

′′) over all databases Y ′′, i.e. the sensitivity of Q′ over set semantics w.r.t. ti.
Thus the sensitivity of Q w.r.t. table ti is at least N iff the sensitivity of Q′ w.r.t. ti (over set semantics)

is at least N. By Theorem 3.110, the sensitivity of Q′ w.r.t. ti (over set semantics) is at least N iff Ψ
dbs,ti
Q′,N

is satisfiable.
Case (2). Suppose that the sensitivity of Q over set semantics with respect to the table ti is at least N

but Ψ
dbs,ti
Q′,N is not satisfiable. By Theorem 3.110, then the sensitivity of Q′ (with set semantics) w.r.t. table

ti is less than N. From the discussion before the statement of the current theorem (Theorem 3.111), we
get that this upper bound also applies to the sensitivity of Q, i.e. the sensitivity of Q over set semantics
w.r.t. the table ti is less than N. Contradiction. �
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Aggregation queries. An aggregation query can be seen as a GROUP BY query Q = (J, F,G, PG, PA)
with G = ∅ and PG = ∅. These always return exactly 1 row, thus 1 can be taken as the upper bound on
the sensitivity. Only if the query with the aggregation operators removed (i.e. replacing SUM(e) with e,
etc.) has sensitivity 0 then also the aggregating query has sensitivity 0.

3.3.13.9 Finding the Sensitivity of a Workflow. Let dbs be a database schema and 〈ti : ri =

Qi〉
k
i=1; Qk+1 a workflow over it. Let t be a table in dbs. We find an upper bound on the sensitivity

of the workflow w.r.t. the table t similarly to the analysis presented in Sec. 3.3.2, using the composition
properties of sensitivity. The computation of sensitivities considers each query Q1, . . . ,Qk+1 one by one.
Namely,
• suppose that we have already found upper bounds c j, where 1 ≤ j ≤ k, for the sensitivity of the

workflow 〈ti : ri = Qi〉
j−1
i=1 ; Q j with respect to the table t;

• let c′ be an upper bound on the sensitivity of the query Qk+1 with respect to the table t, and c′i an
upper bound on the sensitivity of the query Qk+1 with respect to the table ti.

– Note that Qk+1 is a query over dbs ∪ {t1 7→ r1, . . . ,

tk 7→ rk}.

Then c′ +
∑k

i=1 cic′i is an upper bound on the sensitivity of 〈ti : ri = Qi〉
k
i=1; Qk+1 w.r.t. t. This statement

follows directly from Prop. 3.2.

Set operations. The sensitivity of the combinations of queries with set operations is found by making
this set operation an element of the workflow. If ⊗ is a set operation (union, intersection, or difference),
then we rewrite the query Q1 ⊗Q2 as 〈t1 : r = Q1, t2 : r = Q2〉t1 ⊗ t2, where r is the schema of the output
of both Q1 and Q2. We find the sensitivity of this workflow w.r.t. the input table we are interested in,
considering that the sensitivity of t1 ⊗ t2 is 1 w.r.t. both t1 and t2. Such rewriting is also applicable inside
a larger workflow.

3.3.13.10 Finding Uniqueness Constraints on the Result Table. The schema r(a1 : D1, . . . , an :
Dn; Disr) of each input table (relation) includes the set of uniqueness constraints Disr ⊆ P({a1, . . . , an})
on the relation r. When analyzing a query, we would also like to determine such constraints on the
output table of the query, in order to use them at the next steps of the workflow.

Let r(a1 : D1, . . . , an : Dn; Disr) now denote the schema of the output relation. Suppose we want to
check whether {ai1 , . . . , aik } ∈ Disr. This can be checked similarly to determining the sensitivity of the
query. Depending on whether a query Q removes repeated rows from the output or not, we use either the
formula in Sec. 3.3.13.7 or Sec. 3.3.13.4, respectively, as the base formula. This formula allows us to
check whether Q can return at least N rows with the restriction that for each component corresponding
to a certain input table ti, this component must be the same for all N rows of the joined and filtered table
used to produce the N output rows. This restriction is encoded in the formula using the variables y[k]
and the constraints on these variables.

Currently, we want to check whether Q can return at least N = 2 rows with the restriction that for
each component in the set {ai1 , . . . , aik }, this component is the same for all N output rows. This restriction
can be encoded by replacing the variables y[k] in the previous formula with the following:
• For each j ∈ {1, . . . , k}, where r(a1 : D1, . . . , am : Dm; Disr) is the relation schema of the output

table: a variable y[ j], taking values in the set Di j . Note that Disr is not yet known at this point but
we are not using it here. The rest of the schema of r can be determined using type derivation.

The constraints on these variables are replaced with the following:
• For each n ∈ {1, . . . ,N}, the following conjunction must hold:

– a conjunction of the statements y[ j] = z[n, i j] over all j ∈ {1, . . . , k}.

These constraints use the z variables, which were defined in Sec. 3.3.13.7. If we used the formula from
Sec. 3.3.13.4 as the base formula, we must add the z variables and the constraints on them (except the
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Figure 47: Pleak Architecture

one distinctness constraint) from Sec. 3.3.13.7 to the formula. The resulting formula is satisfiable iff
{ai1 , . . . , aik } < Disr.

For GROUP BY queries Q = (J, F,G, PG, PA), if PG selects the same expressions as G (i.e. if G is a
sequence of functions g1, . . . , gr and PG is a sequence of functions p1, . . . , pr such that pi(x1, . . . , xr) =

xi) then we can compute uniqueness constraints for the query Q′ = (J, F,G). These are also uniqueness
constraints for the query Q because these determine which sets of attributes uniquely determine the
group key and the group key uniquely determines the whole result row.

For queries combined using set operations, we combine uniqueness constraints as follows:
• {ai1 , . . . , aik } is a uniqueness constraint for Q1 ∩ Q2 if it is a uniqueness constraint for Q1 or Q2.

• {ai1 , . . . , aik } is a uniqueness constraint for Q1 \ Q2 if it is a uniqueness constraint for Q1.

• We cannot derive any uniqueness constraints for Q1 ∪ Q2 from those for Q1 and Q2 because even
if there is at most one (y1, . . . , yn) ∈ R satisfying yi1 = xi1 , . . . , yik = xik in the result of Q1 and at
most one in the result of Q2, the ones are not necessarily equal, thus there may be two such rows
in the result of Q1 ∪ Q2.

3.4 Pleak Architecture

Pleak [68] is a web-based tool11 to give an interface to all of the analysis designed in the NAPLES
project. The Pleak tool contains three editors that serve as an interface to respective analyzers as il-
lustrated in Figure 4712. These editors combine the analysis that take the common inputs or they are
integrated together to support each other. The editors are used to define the inputs needed for the analy-
sis tools (e.g., the PE-BPMN editor supports adding of the stereotypes and other editors allow to specify
the SQL scripts for these stereotyped tasks).

The PE-BPMN & Leaks-When Editor are joint because Leaks-When analysis has some support for
the stereotypes defined in the PE-BPMN editor. For example, the extended simple disclosure analysis
can be used to simplify leaks-when output in order to get Simple Leaks-When results. In addition both
analyzers work with collaboration models.

The Sensitivities Editor is focused on working with the data processing workflows that have ag-
gregation queries. Moreover, this editor allows user to input data tables that are not considered in the
PE-BPMN or Leaks-When analysis.

The Guessing Advantage Editor is similar to Sensitivities Editor, but different analysis interface.
While the data added to the model remains the same (as in the Sensitivities Editor), the analysis itself

11running in pleak.io
12This structure is also reflected in our source code in https://github.com/pleak-tools
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takes different input parameters. Moreover, Guessing Advantage Editor also supports collaboration
models in addition to the data processing workflows.

Pleak uses the Model storage for storing, managing, and sharing model information. It stores the
model and associated metadata of the model as well as provides an interface to work with the models.
For instance, the model contents (in the XML format) is stored in the files. The meta information (such
as author, timestamp and similar, and it is stored as records in the database.

3.5 Secure Multiparty Computation in NAPLES

3.5.1 Work Approach. Taking into consideration the goals of the NAPLES Extension and Cyber PA
projects it was decided that the best approach to benefit the Cyber PA project and achieve NAPLES
Extension goals (described in Sec. 2.5) would be to:

Test information sharing and processing in a privacy-preserving environment where the information
shared is not seen to the stakeholders, the processing of data is done in an encrypted form and the
output of the processing contains valuable information for all contributors without revealing confidential
information.

On a high-level the work in this track can be divided into two bigger work items:
1. At first analysis was carried out in order to detail the exact use case being worked on and record

the preliminary design of the prototype solution into an analysis document. Pleak technology and
capabilities were used as a part of analysis and documenting.

2. Followed by prototype implementation, which is based on the preliminary analysis. Prototype
implementaton specifics and an overview of the prototype usefulness for the Cyber PA project
were then included in the analysis documentation created in first step.

The following chapters will provide an overview of the two high level work items.

3.5.2 Solution Analysis and Design. Currently most event logs are text messages intended for humans
to read. Because of the programming patterns behind event log generation, log messages tend to have
implicit structure which can be parsed using natural language processing parsing methods, like regular
expressions etc. Implicit structure can be extracted manually by writing respective grammar by human
or automatically using some pattern recognition algorithm. State of the art for now is writing those
patterns manually. Log entries are parsed to structured form, consisting of set of key-value pairs. Keys
are explicitly defined with pattern matching language and values are filled in during pattern matching.
When event log entries are parsed to structured form, it is possible to find correlations between different
log entries. For this work we defined correlation as a fact that two parsed log entries have at least one
pair of key-value pairs that share the same value.

However, the problem of logs correlation is not one that has an easy solution. If a generic all-
purpose system was possible it would have already been created and the problem of logs correlation
would already have been solved.

• System logs are mainly recorded in some human readable form, requiring text processing. The
format of different system logs may differ completely. Meaning a successful solution should be
devised so that input data processing is as flexible as possible and new logs can be incorporated
easily without needing extensive configurations to the solution.

• System logs hold a lot of sensitive information. Not only the log contents, but also the information
on what logs and where are being generated from. In order to enable the combining and processing
of logs from multiple mistrusting parties it is crucial the parties are not able to learn each other’s
secrets.

• At least to some extent, any approach would still require maintenance and configurations. As
systems and logs will evolve over time any correlation approach will need to keep up with these
changes. Additionally, new technologies and advancements may result in new types of events the
correlation system should be looking for.
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• The huge amount of log entries for processing has both positive and negative effects. With more
entries the chances that suspicious activities are included in the dataset being processed are higher.
Additionally, combining logs from different sources may help identify patterns that would not be
visible otherwise. On the other side, the increased number of logs involved may also obscure that
suspicious activity has taken place.

• Complexity of the analysis carried out and the amount of data requires a lot of processing power
and therefore takes time to complete. If the results of the correlation are meant to be used to
counter active attacks then processing should be as fast as possible. Even though logs correlation
also allows for root cause analysis, the main benefit of such a system would still be the capability
to respond to ongoing attacks and minimize impact. There is a fine line between how detailed
the correlation can be, how fast results are achieved and how trustworthy are the identified threat
situation.

For the purpose of this project it was decided to prototype a privacy preserving log correlation engine
for several mistrusting parties using the approaches and considering the problems described above. We
will correlate the event logs in privacy-preserving environment to detect joint events taking place. This
gives organizations ability to make clear distinction between mundane, possibly confidential every-day
events and unusual, possibly harmful events which should be analyzed further. This methodology should
be useful even without following information sharing and joint analysis, therefore it should increase the
will and likelihood for enterprises to join the Cyber PA information gathering network.

The selected use case and approach allows to validate the Pleak and Sharemind technologies and pro-
vides a useful prototype, together with learings, to the Cyber PA project, where the NAPLES Extension
work can be incorporated to the final solution, if suitable.

3.5.3 Prototype Implementation. The goal of the prototype implementation of the event logs corre-
lation use case is to:

• experiment with privacy-preserving event correlation;

• hand over the prototype implementation (together with analysis) to the Cyber PA project for en-
hancements and potential incorporation to Cyber PA Solution;

• provide preliminary overview of prototype implementation related learnings and assessment of
suitability to Cyber PA framework (within analysis document).

Main requirements considered for the log correlations approach and prototype implementation were:

• Format for log normalization should be as simple as possible. As the use case assumes collabo-
ration from several mistrusting parties, we assume that efforts to minimize required collaboration
tasks, will pay off as increased will to collaborate at all. Normalization approach chosen was an
unordered set of key-value pairs, where the key is statically named in the pattern matching rule
and value is filled with that rule.

• The event correlation algorithm:

– needs to be plain and obvious for auditing purposes (without significant training in mathe-
matics and informatics).

– should run both conventionally and in privacy-preserving settings without modifications.
– should be fast and simple to ensure sufficient performance in privacy-preserving settings.

Due to strict restrictions on using real-life data it was decided that as a part of this project log
parsing will not be carried out and a test data generator will be implemented, that will generate an
already structured dummy dataset for the event correlation algorithm. In essence the data generator
is a synthetic generator for random chains of structured log entries of random timestamps, keys and
values. Parameters for the test data generator (including the random sets of timestamps, keys and values
etc) were chosen so that the probabilistic outputs provide a wide coverage for testing the correlation
algorithm.
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The event correlation algorithm was first implemented in Python (non privacy-preserving) and then
ported to Sharemind MPC (privacy-preserving version). This aligns with the processes proposed as a
part of the use case analysis and approach.
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4 RESULTS AND DISCUSSIONS

4.1 PE-BPMN

Support for PE-BPMN stereotypes and analysis has been implemented in JavaScript and is running in
the browser. Hence we are not discussing the performance, instead this section focuses on an example
of PE-BPMN model and analysis. We have demonstrated that the analysis is feasible for quite complex
models, which is unsurprising because the used graph traversal methods are quite efficient. In addition
to example scenarios, we discuss possible future directions for PE-BPMN notation and analysis. To
showcase PE-BPMN analysis we use two scenarios from Mobile CRT. The first is using the general
MPC stereotype while the second shows which additional details can be seen in the analysis if instead
of the generic stereotypes we use the concrete function and additive secret sharing methods for secure
computation and include all their details in the process as well as in the analysis.

4.1.1 Applying PE-BPMN Analysis to RapidGather. Mobile CRT creates an application called
RapidGather [69] to use mobile phones to detect and respond to crisis situations. In addition, they
are exploring other uses where the private data from mobile phones can be used to the benefit of the
mobile device user such as agreeing on a meeting location without disclosing your current location or
finding a free time in peoples calendar.

4.1.1.1 Stakeholders and Components. The stakeholders in the various processes for Mobile CRT
either repeat or have close resemblances between the processes. Hence, this section summarizes the
main stakeholders and serves as an introduction to the concrete processes in the following sections.

Mobile Device. The mobile device is an end-user device with common hardware and capabilities but
running PE Android (privacy enhanced Android) [69]. PE Android is a Mobile CRT specific operating
system that manages data access with an architecture that supports PAL modules to that manage data
protection independently of the application that requests the data.

The main components of a mobile device are RapidGather application, PE Android layer and the
PAL modules specific to different input data and privacy enhancign technologies. For example, SplitLo-
cation PAL module takes a mobile device location as an input and produces two secret shares for further
processing using PULSAR technologies.

Command Center. Command Center is the interface for law enforcement to use the data collected
from the phones. More specifically, it has a query interface that allows to make the queries and then
technical components to handle these queries with respect to the privacy technologies needed to process
the queries. More concretely, the interface allows access to the query server that manages the correct
way to perform the queries. Similarly to the PAL modules in the phone it has plugins for various
privacy technologies and concrete setups to send the queries and receive the answers and apply privacy
technologies as necessary for these actions.

Technology Specific Servers. Different privacy enhancing technologies or approaches use their own
servers. For example, PULSAR servers to manage secure multiparty computation or PRESNA servers
to do crisis detection. In some cases these servers could be maintained by the command center, but the
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Figure 48: Rendezvous Scenario with MPC Stereotype in PE-BPMN

PULSAR servers for SMC need to be hosted by independent stakeholders. In addition, Helio servers
require Intel SGX enabled processors.

4.1.1.2 Aid Tent and Rendezvous. Aid tent and Rendezvous scenarios are quite similar to each other
and therefore this document considers them together. In short, the goal of both is to find a closest
meetingpoint. For aid tent a mobile device user wants to find a suitable location for emergency aid and
there is a manager of aid tents that knows which tents are available at any time. In rendezvous there
could be multiple entities managing the potential meeting locations, for example the mobile devices
correspond to agents on the field and the managers are different law enforcement and rescue agencies
that are collaborating on a mission.

Analysis. Both scenarios are built using secure multiparty computation to find the meetingpoint with-
out disclosing any additional information to either parties. The private data is the location of the mobile
device user and the overall state of the potential meetingpoints. In addition, the underlying assumptions
are that the parties performing secure computation are not collaborating, however, this is easily satisfied
as all parties with any private data in these scenarios are participating in the computations.

The rendezvous scenario is a multiparty scenario and can be seen in Fig. 48 and https://pleak.
io/app/#/view/qoWJrlU769B9p-JV4vIl. Aid tent is almost the same, but only has two parties doing
the computations as seen in https://pleak.io/app/#/view/AzdL8qKe_jxT_2JnegUi. Here we
also only give the simple disclosure report (see Table 11) and simple data dependency information (see
Table 12) about the rendezvous variation. In addition, we demonstrate how these are joined in the
extended disclosure table in Table 13. The aid tent case is very similar, but only has one data object for
the tent status and locations instead of the three in the given tables.
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Table 11: Simple Disclosure Report for the Rendezvous Usecase

meeting mobile suggested tent status and locations
details location meetingpoint A B C

PE Android V V - - - -
PULSAR PAL module V V V - - -
RapidGather - - V - - -
Tent Manager A - - - V - -
Tent Manager B - - - - V -
Tent Manager C - - - - - V
Shared over V - - - - -

Table 12: Simple Data Dependency for the Rendezvous Usecase

meeting mobile suggested tent status and locations
details location meetingpoint A B C

meeting details * - - - - -
mobile location - * - - - -
suggested meetingpoint D D * D D D
tent status and locations A - - - * - -
tent status and locations B - - - - * -
tent status and locations C - - - - - *

Table 13: Extended Disclosure Report for the Rendezvous Usecase

meeting mobile suggested tent status and locations
details location meetingpoint A B C

PE Android V O - - - -
PULSAR PAL module V O V -, D -, D -, D
RapidGather -, D -, D V -, D -, D -, D
Tent Manager A - - - O - -
Tent Manager B - - - - O -
Tent Manager C - - - - - O
Shared over - - - - - -

From these analysis results we can also see that the processes using only generic secure multiparty
computation stereotype are very simple by nature. Each party has access to their inputs and only the
dedicated parties learn the output. In addition, the output of a secure multiparty computation activity
depends on the inputs from all participants in the computation.

A more detailed version of this process can be found in https://pleak.io/pe-bpmn-editor/
viewer/SE2R2wr1S49b_rbaHLhp/ and its analysis results can be seen in Pleak and are discussed in
Section 4.5.

4.1.1.3 Crisis Discovery. The crisis discovery scenario uses mobile phone call data to detect if there
is a potential crisis occurring. At its simplest, it may just detect if there is a recent emergency call.
However, more interesting calling patterns have been discovered for crisis behavior and could be used
to get better accuracy. The goal after all is to detect a significant crisis not necessarily single emergency
calls. For example, there are known patterns how people calling behavior will change from the regular
events when a crisis is at hand. At the moment our analysis only considers the simplest case where an
emergency call is detected.

In short, the data from mobile phone is collected periodically and aggregated based on a city block
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Table 14: Simple Disclosure Report for Crisis Detection
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Command Center - - - - - - - - V - -
Mobile device - - - - - V H H - - -
PRESNA server V - - - - - - - V V V
STEALTH Query
Server

V - - H H - - - - V V

STEALTH server 1 - H - H - - H - - V V
STEALTH server 2 - - H - H - - H - V V
Shared over V - - H H - H H V V V

of location. The aggregated data with applied differential privacy is used by the PRESNA service to
figure out if a crisis has occurred and if so, then where is the crisis location.

The mobile device generates secret shares of its call data and sends these to the PULSAR servers.
The PULSAR system aggregates the call data from all users and answers queries from the PRESNA
server. In addition, PULSAR system is responsible for applying differential privacy to the aggregation
outputs. The PRESNA system runs the crisis detection algorithm on the privatized aggregated data
and reports any potential crisis to the command center. The private data in this case is the call data
from individual mobile devices. Note that the PULSAR system used here is the same as in the aid tent
scenario but it is modeled and analyzed with more details.

The PE-BPMN model for this scenario is available at https://pleak.io/app/#/view/2eT_
Ui356l7w3Qm-a6zE and on Fig. 49. The following Table 14 and Table 15 show the simple disclo-
sure report and data dependency matrix for this process.

It can be seen that all shares are hiding the input data. However, PE-BPMN editor does not denote
that the privatized city block data is a result from a differentially private computation and it just gets a
visibility marker V in the disclosure table. From the data dependency matrix we can see that the final
output detection output depends on all the values computed during the process and all the inputs. Note
that the shares are seen in this analysis thanks to considering more details and the technology specific
stereotypes instead of the generic secure computation.

4.1.2 Current State and Future Developments of PE-BPMN. Overall we have applied PE-BPMN
in various scenarios throughout the Brandeis programme, some further examples of these are covered in
Sec. 4.5. In addition, the scenarios considered were the driving force for the design and implementation
choices of PE-BPMN. Hence, we have shown that such analysis is feasible in practice and applicable to
various scenarios.

Although PE-BPMN at its current state is usable for various cases there are also many details that
could be improved or added. Most notably, it might be helpful to add data stereotypes corresponding
to all ProtectConfidentiality type task stereotypes that could be used if in fact the input of the process
is already protected and for reasonable scope we do not want to add the party doing it to the process at
hand. We also started with only allowing one input for PETComputation stereotypes because it matched
better with the rest of the analyzers of Pleak. However, in future it would allow for more flexibility of
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Figure 49: Crisis Detection Process with Different Parties

227
Approved for Public Release; Distribution Unlimited. 



Table 15: Data Dependency Matrix for Crisis Detection

pr
i v

at
iz

ed
ci

ty
bl

oc
k

da
ta

ag
gr

e g
at

ed
da

ta
1

ag
gr

eg
at

ed
da

ta
2

ag
gr

e g
at

ed
pr

iv
at

iz
ed

da
ta

1

ag
gr

eg
at

ed
pr

iv
at

iz
ed

da
ta

2

ca
ll

da
ta

ca
ll

sh
ar

e
1

ca
ll

sh
ar

e
2

de
te

ct
io

n
ou

tp
ut

,c
ri

si
s

da
ta

no
is

e
sc

al
e

tim
e

pa
ra

m
et

er
s

priv. city block data * I I D D I I I - I I
aggregated data 1 - * - - - I D - - I D
aggregated data 2 - - * - - I - D - I D
agg. priv. data 1 - D - * - I I - - D I
agg. priv. data 2 - - D - * I - I - D I
call data - - - - - * - - - - -
call share 1 - - - - - D * - - - -
call share 2 - - - - - D - * - - -
detection output D I I I I I I I * I I
noise scale - - - - - - - - - * -
time parameters - - - - - - - - - - *

usage to raise that restriction and instead allow the user to specify types of the computation outputs.
Furthermore, it would be beneficial to allow analysing models with collapsed pools. This would give
an easy way to analyse your process and the data that is sent out without having to model the receiving
side.

4.2 Leaks-When Analysis

The leaks-when analyzer, which we described in Sec. 3.2, has been implemented in OCaml, using the
OCamlgraph library13 for certain transversals of SDGs. The analyzer forms a part of the leaks-when
analysis tool, which itself is available as a part of the Pleak tool. The source code of our analyzer back-
end is available in GitHub14. The implemented and integrated analyses work for collaborative SQL
workflows, SQL workflows with policies, and for collaborative business processes specified in BPMN,
where the tasks of the process have been annotated with simple expressions defining the values of the
fields of the datasets that they write into. The values of the fields are also the basis of choosing the flow
of the execution at an exclusive gateway.

Both the SQL workflow analysis and the BPMN analysis have been extensively used in NAPLES to
study various example processes from other performers in the Brandeis program.

4.2.1 Integration of the Collaborative SQL Workflow Analyzer. The SQL workflow analyzer first
combines the SQL statements in the tasks of the business process into SQL workflows, generating several
workflows if necessary (see Sec. 3.2.2.3). This component of the analyzer is implemented in Javascript
and available in GitHub15. This component also implements a Web application that provides a REST
endpoint to invoke the Leaks-When analyzer. The Pleak-sql-editor component of Pleak.io uses this
REST endpoint to submit SQL workflows for analysis by the Leaks-When analyzer.

13http://ocamlgraph.lri.fr/
14https://github.com/pleak-tools/pleak-leaks-when-analysis
15https://github.com/Pleak-tools/Pleak-leaks-when-ast-transformation
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The analyzer accepts a large subset of SQL, with a syntax specific to PostgreSQL. This means that
the tool supports a subset of syntax of SQL3, with partial support to some extensions to SQL3 for
geographical data, more specifically, to support the computation of distance between two geographical
entities based in their coordinates. However, there are also some constraints on the supported syntax,
from which the most important ones include:

• The select clause does not support the “*”. Instead, the statement must explicitly enumerate the
list of attributes that are projected.

• All the tables in the from clause must be associated with aliases. All the attributes in the list of
projected attributes must also have an associated alias. Moreover, any reference to attributes must
be qualified with the alias of the table, except in the case of the order by clause where attributes
must be referred by the alias given in the select clause.

The integration of the front-end and back-end of the analyzer is somewhat peculiar, but the chosen
way makes the integration very simple. Namely, the back-end of the analyzer takes no inputs. Instead,
the analysis is applied to a workflow defined at compile time in the source file RAInput.ml of the
analyzer back-end. Hence the analyzed workflow is expressed as an OCaml expression belonging to a
variant type, the structure of which is very similar to the structure of our queries and expressions given
in Fig. 10 and Fig. 14. In order to execute the analyzer on different workflows, the front-end of the
analyzer performs the following steps:

• It translates the SQL workflow into our query language, and replaces the file RAInput.ml in the
source of our analyzer back-end.

• It recompiles the back-end. We have structured the code of the back-end so, that only the code
in the (very short) topmost source file depends on RAInput.ml. Hence the object code has to
be re-generated only for RAInput.ml (and the topmost source file), and not for the parts of the
analyzer that generate and simplify the SDG or read the result out of it. This takes very little time.

• It executes our back-end. The outputs of the back-end are placed in certain files, where the name
of the folder is given as a command-line parameter.

• It reads the files and displays them to the user.

4.3 Quantitative Analysis

4.3.1 Sensitivity and DP Analysis of Components. We have implemented the analysis described in
Sec. 3.3.3. The analysis considers two runs of the analyzed program, with two different versions of the
input. For each variable x, let ~x�1 denote the value of x in the first run and ~x�2 the value of x in the
second run. When considering two runs, information flow properties can be stated as trace properties
that can be checked by program analysis. As the language is imperative, the values may change during
execution, thus the denoted values are taken at the “current” point, which will be clear from context.

First, the analysis constructs the initial abstract state using the inputs. Then the analysis goes through
the program statements in order and updates the abstract state when processing each statement. After
that, it uses the abstract state to compute the required distances for output. The abstract state includes
the following for each x, where x is a scalar variable or an element of a vector variable:

• (The known bound on) the possible range of x, of the expectation of x, and of the variance of x.
For this, the Box domain of the APRON library [70] is used. It stores an n-dimensional (possibly
infinite in some dimensions) hypercube where n is 3 times the number of variables (3 dimensions
for each variable: the variable itself, its expectation, and its variance). The library is also used
to compute the range of a variable assigned to, using the stored ranges of the variables occurring
in the assigned expression. The APRON library was originally chosen because it supported a
polyhedra domain that we initially used. Unfortunately, the performance was not very good with
the polyhedra library:
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number of variables running time (seconds)
100 1.040
200 7.319
400 56.459

We later switched to the Box domain, which had much better performance:

number of variables running time (seconds)
4000 0.126

10000 0.473
20000 1.009

The Box domain may give worse bounds than the polyhedra domain but in practice, it did not
seem to be much worse. Hence we will focus only on the version with the Box domain.

• An upper bound on the scalar distance of x, which we define as |~x�1 − ~x�2|, i.e. how much the
value of x may differ in the two runs. Note that if the possible range of x is [a, b] then the scalar
distance of x can be at most b − a.

• Whether the variable has a Laplace distribution.

For each vector variable v, it includes:

• An upper bound on the vector distance of v, which is the number of elements that must be changed
in ~v�1 to transform it into ~v�2.

• An integer k identifying the vector distance group such that for all vectors w in the same group
the upper bound d on the vector distance is the same and also the d elements that are possibly
changed when transforming ~w�1 to ~w�2 can be chosen to be the same for all w.

In addition, the abstract state includes some less important information, e.g. to avoid recomputing and
thus improve performance.

4.3.1.1 Implementation. We have implemented the analysis. The analysis considers two runs of the
analyzed program, with two different versions of the input. There may be constraints on the allowed
range of the input variables and how much the two versions of the input variables may differ. The
analysis determines how much (the distributions of) the two versions of some other variables computed
in the program differ.

Building and installation. The analyser has been implemented in OCaml. The source of the analyser
is available at https://github.com/pleak-tools/pleak-program-analysis.git. The analyzer
requires the OCaml version of the APRON library. Assuming that OCaml has been installed in the
directory /usr/lib/ocaml and APRON in the directory /usr/lib/ocaml/apron, the analyzer can
be built by invoking the following commands at the root directory of the repository:

ocamlyacc myparser.mly
ocamllex lexer.mll
ocamlopt -cc "g++" -I /usr/lib/ocaml/apron -o transfer_functions_intervals \

/usr/lib/ocaml/bigarray.cmxa \
/usr/lib/ocaml/apron/gmp.cmxa \
/usr/lib/ocaml/apron/apron.cmxa \
/usr/lib/ocaml/apron/boxMPQ.cmxa \
syntax.mli \
myparser.mli \
myparser.ml \
lexer.ml \
transfer_functions_intervals.ml
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The source directory of the analyser contains a makefile which may be invoked to execute the building
commands. This has been tested on Ubuntu 16.04, where APRON can be installed using the command

apt install libapron-ocaml-dev

Use. The analyzer is executed by running

./transfer_functions_intervals input.txt

where the file input.txt contains three parts.
The first part (the header) describes constraints on the input variables of the analyzed program. It

consists of the following types of declarations, each in a separate line:

• AddVarInterval x r1 r2
Specifies that the input variable x (or the elements of it if x is a vector) is in the range [r1, r2].

• AddScalarDist x d
Specifies that the input variable x (or the elements of it if x is a vector) differs by at most d in the
two versions of the input.

• AddVecDist x1 . . . xk d
Specifies that the input variables xi are vectors and when each xi is considered as the ith column
of a matrix X then X differs by at most d rows in the two versions of the input.

The second part contains the analyzed program itself, consisting of statements separated by line
breaks. Extra empty lines are allowed. Each statement is of one of the following forms:

• x := e, denoting that the value of the expression e is assigned to the variable x,

• beginning with the line Repeat e, followed by a list of statements separated by line breaks,
followed by the line End, denoting a loop where the list of statements inside the loop is executed
n times, where n is the value of the expression e before the loop.

Allowed expressions e are as follows:

e ::= x | r | e1 + e2 | e1 * e2 | e1 <= e2 | e1 = e2 | e1 ? e2 : e3 | Sum e1 | Input() | Laplace()

denoting variables, constants, addition, multiplication, comparison, equality testing, if-then-else, sum of
vector elements, input values, and Laplace noise (with standard deviation 1) generation, respectively.

The third part (the footer) describes the output that we want to get from the analyzer. It consists of
the following types of declarations, each in a separate line:

• PrintVecDist x1 . . . xk

Specifies that the variables xi are vectors and when each xi is considered as the ith column of a
matrix X then X differs by at most d rows in the two versions of the input, for some d. We want
the analyzer to find and output that d.

• PrintDiffPrivDist x1 . . . xk

Specifies that the variables xi are scalars and we want the analyzer to find and output an upper
bound on the differential-privacy distance between the two versions of the tuple (x1, . . . , xk). It
may also be used when some of the xi are vectors. In this case, the upper bound should hold for
any element of xi used instead of xi in the tuple, i.e. the tuple still consists of k scalars.

Comments can be included in the input file using the character # that starts a comment lasting until
the end of the line.

The directory containing the source code of the analyzer also contains some sample input files
example*.txt.

4.3.2 Mutual Information in Workflows.
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4.3.2.1 Component Types. Here is a (non-exhaustive) list of component types that can be expressed
in the system that we described in Sec. 3.3.4. Diagrams of the components are shown on the left and the
corresponding declarations read by our analyzer are shown on the right.
Database aggregator

A
a1 a2

y1

comp A a1 a2 -> y1 ;
leak sens 20.0 a1 -> y1 ;
leak sens 50.0 a2 -> y1 ;

The declarations mean that (A, a1, y1) has 20.0-sensitivity and (A, a2, y1) has 50.0-sensitivity.
The inputs (here a1 and a2 but in general 1 or more inputs) are database tables and the component

aggregates them to a scalar value y1. E.g. y1 may be the linear correlation coefficient of a1 and a2. If
there is only one input table (e.g. a1) then y1 may be e.g. the mean, median, or standard deviation of a1.

The distance defined on any of its inputs ai is the number of records by which the two database
tables differ. The distance defined on its output y1 is the absolute value of the difference between the
two scalar values.

For each input ai, the component has sensitivity c(ai, y1). E.g. if y1 is the mean of ai and each value
in ai is in the range [L,R] then c(ai, y1) = R−L

n , where n is the number of values (records) in ai.
Database linker

A
a1 a2

b1

comp A a1 a2 -> b1 ;
leak sens 3 a1 -> b1 ;
leak sens 1 a2 -> b1 ;

The declarations mean that (A, a1, b1) has 3-sensitivity and (A, a2, b1) has 1-sensitivity.
The database tables a1 and a2 are linked by a column in each table. Let us call this column the

provenance column and the possible values in this column the provenances. The table a1 must have at
most one record with each provenance but a2 may contain up to r records with each provenance. Then
the sensitivities are: c(a1, b1) = r and c(a2, b1) = 1. This can be generalized to the case of linking more
than 2 tables, of which only one may have non-unique provenances.

The output of a database linker may be used as an input of a database aggregator.
Scalar combiner

A
x1 x2

y1

comp A x1 x2 -> y1 ;
leak sens 1.0 x1 -> y1 ;
leak sens 1.0 x2 -> y1 ;

Here (A, x1, y1) has 1.0-sensitivity and (A, x2, y1) has 1.0-sensitivity. The inputs (2 or more of them,
here x1 and x2) are scalars. They are combined to calculate the output y1 (also a scalar).

This can be used to combine outputs of database aggregators. E.g. if x1 and x2 are the lower and
upper quartile, respectively, of a database table then y1 may be the difference x2 − x1. In this case
c(x1, y1) = c(x2, y1) = 1.
Laplace randomizer

A
x1

y1

comp A x1 -> y1 ;
leak dpr 0.01 x1 -> y1 ;

The declarations mean that (A, x1, y1) has 0.01-differential privacy.
The input x1 is a scalar value and the output y1 is calculated by adding Laplace noise from Lap(λ)

to x1. Here 1
λ = ε(x1, y1) = 0.01. If x1 has sensitivity β0(x1) = c with respect to the global inputs then

γ(A, x1, y1) = c
λ .

This can be combined with a database aggregator or scalar combiner to make their result differen-
tially private.
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Laplace randomizer without sensitivity

A
x1

y1

comp A x1 -> y1 ;
leak dp 2.0 x1 -> y1 ;

Here (A, x1, y1) has sensitivity-less 2.0-differential privacy, with the keyword leak dp instead of
leak dpr indicating that sensitivity is not used.

The input x1 is a scalar value and the output y1 is calculated by adding Laplace noise from Lap(λ)
to x1. The input does not need to have any sensitivity bound derived from sensitivity declarations. If it
does have such a bound, it is ignored. Instead, we assume that x1 is in a certain range [L,R] and if it is
not there (by some mistake) then it is clipped into that range. Then we add Laplace noise from Lap(λ)
to x1. The result y1 is R−L

λ -differentially private. E.g. we may assume that x1 is a result of computing a
linear correlation coefficient, being in the range [−1, 1], and take λ = 1. Then the result is 2-differentially
private, i.e. γ(A, x1, y1) = 2.
Secret sharing

A
x1

y1 y2 y3

comp A x1 -> y1 y2 y3 ;
leak mi 0.0 x1 -> y1 y2 ;
leak mi 0.0 x1 -> y1 y3 ;
leak mi 0.0 x1 -> y2 y3 ;
leak mi 64.0 x1 -> y1 y2 y3 ;

The declarations mean that (A, x1, {y1, y2}) has at most 0.0 bits of mutual information,
(A, x1, {y1, y3}) has at most 0.0 bits of mutual information, (A, x1, {y2, y3}) has at most 0.0 bits of mutual
information, (A, x1, {y1, y2, y3}) has at most 64.0 bits of mutual information.

Here we secret share x1 into three shares y1, y2, y3. In the case of additive secret sharing, we would
have y1 ⊕ y2 ⊕ y3 = x1, where ⊕ is addition modulo 2k, where k is the bit length of each of the four
values.

Here we have information-theoretical bounds on the flows. E.g. q(x1; y1, y2) = q(x1; y1, y3) =

q(x1; y2, y3) = 0 but q(x1; y1, y2, y3) = k.
We can also express other kinds of secret sharing.

4.3.2.2 Implementation. We have implemented (in C++) Alg. 2. The maximum flow from Source
to Sink is computed using Edmonds-Karp algorithm. The implementation reads the description of the
system, transforms it to a flow network, and finds the maximum flow in this graph. If the system has V
components and E wires then the generated directed graph has at most 2V + 2 nodes and at most E + V
edges. Thus the complexity is O(VE2). It can be improved by using a faster maximum-flow algorithm.

We have also implemented the idea in Sec. 3.3.4.3. We apply the triangle inequality for the inputs and
get a bound on dM(A;C). We convert it to a bound on qM(A;C). We get another bound on qM(A;C)
using only the known bounds on qM and monotonicity (triangle inequality cannot be applied here).
Either or both of the two bounds may also be infinite (i.e. no bound can be derived). Then we take the
minimum of the two bounds.

4.3.2.3 Example. Fig. 50 shows an example of a system with components A, B,C,D and wires
x1, x2, x3, x4, x5, x6, x7. The corresponding input file describing this system is shown in Fig. 51. This
file is read by our implementation.

The file describes the leakages using differential-privacy epsilons, which are shown as 0.2 for each
single input and single output of each component. For the component A, we also give the leakage from
{x1} to {x3, x4} because the triangle inequality cannot be used for outputs. The triangle inequality does
hold for inputs and it is used to find the leakages involving more than one input of the same component.
For example, consider component B. Its leak from x2 to x5 is 0.2, and from x3 to x5 is also 0.2. Then
its leak from (x2, x3) to x5 is dB({x2, x3}; {x5}) = 0.4. Then we convert these into upper bounds for the
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A

B C

D

x1

x2
x3 x4

x5 x6

x7

Figure 50: An Example System for Mutual In-
formation Analysis

input x1 x2 ;
output x7 ;
comp A x1 -> x3 x4 ;
leak dp 0.2 x1 -> x3 ;
leak dp 0.2 x1 -> x4 ;
leak dp 0.4 x1 -> x3 x4 ;
comp B x2 x3 -> x5 ;
leak dp 0.2 x2 -> x5 ;
leak dp 0.2 x3 -> x5 ;
comp C x4 -> x6 ;
leak dp 0.2 x4 -> x6 ;
comp D x5 x6 -> x7 ;
leak dp 0.2 x5 -> x7 ;
leak dp 0.2 x6 -> x7 ;
check x1 -> x7 ;
check x2 -> x7 ;
check x1 x2 -> x7 ;

Figure 51: Input File Describing the System
in Fig. 50

Source

InA

OutA

InB InC

OutB OutC

InD

OutD

Sink

x1

x2 0.114

x3
x4

0.114 0.029

x5
x6

0.114

x7

Figure 52: Flow Network From {x1, x2} to {x7}
Corresponding to the System in Fig. 50

Source

InA

OutA

InB InC

OutB OutC

InD

OutD

Sink

x1

0.114

x3
x4

0.029 0.029

x5
x6

0.114

x7

Figure 53: Flow Network From {x1} to {x7}
Corresponding to the System in Fig. 50
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mutual-information-based leakages:

qB({x2, x3}; {x5}) ≤ 0.114

qB({x2}; {x5}) ≤ 0.029

qB({x3}; {x5}) ≤ 0.029

As we see, the triangle inequality does not hold for qB.
Then a flow network for a subset of the global inputs and outputs is generated for the system. The

result for the input subset {x1, x2} and the output subset {x7} is shown in Fig. 52. The wires with finite
capacity have their capacity shown next to them, instead of their name. The direction of the edges is
downwards. We find the maximum flow from Source to Sink, which is 0.114.

Considering the input subset {x1} and the output subset {x7}, we get the flow network in Fig. 53. The
capacity of the edge from InB to OutB is now 0.029 instead of 0.114, Reducing the maximum flow from
Source to Sink to 0.058.

We also find the maximum flow from the input subset {x2} to the output subset {x7}, getting 0.029.
Thus the triangle inequality also does not hold for the global system, as 0.029 + 0.058 < 0.114.

4.3.3 Derivative Sensitivity w.r.t. Components. The analysis of Sec. 3.3.8 has been implemented
in Haskell and is available on GitHub16. As an input, it takes an SQL query, a database schema, and
a description of the norm w.r.t. which we want to achieve differential privacy. We assume that each
table contains a row ID of unique keys. For each table X, we expect a table named X_sensRows that
contains the same column ID of keys, and another column sensitive of boolean values that tell for each
row whether it is sensitive or not.

The analyzer computes another query (as a string) that describes the way in which derivative sen-
sitivity should be computed. This new query represents the function c(x) such that the additive noise
would be c(x)

b · η for η ← GenCauchy(γ), according to Theorem 3.62. In our analyzer, γ = 4 is fixed,
and b = ε/(γ + 1) − β, where ε is the desired differential privacy level, and β the smoothness parameter,
which is provided as an additional input. The resulting query is fed to a database engine to evaluate the
sensitivity on particular data.

4.3.3.1 Evaluation. We performed evaluation on 4 x Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz
laptop, Ubuntu 16.04.4 LTS, using PostgreSQL 9.5.14.

We have taken the queries of TPC-H set [71] for benchmarking. Most of these queries contain
GROUP BY constructions with too many possible groups. We have simplified these queries, adding a
filtering that chooses one particular group.

Another challenge comes from the filters. If some filter is “public” (i.e. does not depend on sensitive
data), it is easier to apply it beforehand, so that the remaining table with “private” filters (that do depend
on sensitive data and hence cannot be applied directly) would be as small as possible. While it is easy
to do with a pure AND combination of filters, in practice public and private filters can be mixed, e.g.
related by OR. We had to manually rewrite the filters in such a way that public filters would be easily
extractable as separate members of an AND combination.

We generated TPC-H data with scale factors (SF) 0.1, 0.5, 1.0, denoting how much data is generated
for the sample database. For 1.0, the size of the largest table is ca 6 million rows. The table schema,
together with numbers of rows for different tables, is given in Sec. 4.3.3.2. To define the database metric,
we have considered integer, decimal, and date columns as sensitive, assigning to them different weights,
described more precisely in Sec. 4.3.3.3. All rows are considered sensitive. Row norms have been
combined using `1-norm, which ensures differential privacy w.r.t. unit change in sensitive attribute of
one row.

We adjusted (as described above) the queries Q1 (splitting a single query with 5 aggregations to 5
separate queries), Q2 (splitting it to 2 queries with MIN and MAX respectively), Q3-Q11, Q12 (splitting

16https://github.com/pleak-tools/pleak-sql-analysis/tree/master/banach
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2 aggregations to 2 queries), Q16, Q17, Q19 of the TPC-H dataset to our analyzer. The queries that have
been eventually fed to the analyzer are listed in Sec. 4.3.3.4. We treat date as an integer, i.e. the number
of days passed from the date 1980-01-01. In Sec. 4.3.3.5, we present more evaluation results, where we
treat date as a floating point number, so that sigmoids can be used for filtering.

We fix ε = 1. For derivative sensitivity experiments, we take sigmoid precision α = 5 and smooth-
ness β = 0.1. This choice gives b = 0.1, and the additive noise with 78% probability is below 10 · c(x),
where the value 78% comes from analyzing distribution GenCauchy(4) (as discussed in Sec. 3.3.8.5).
Too large value of β makes b (and hence the noise) larger, and too small β makes the sensitivity larger,
so β is a parameter that can in general be optimized.

Time. The time benchmarks are given in Table 16. Let x be the database instance. For each scale factor
SF, we report the execution time ti of the initial query qi(x), time tm of the modified query qm(x) (i.e.
in which filtering is replaced with continuous approximation), and time ts of the sensitivity-computing
query qs(x). The time spent to generate the queries qm and qs is negligible (below 20ms), and it does not
depend on the database size, so we do not report it. We also do not report the execution time of sampling
the noise, as it does not depend on the database size either.

The total time overhead of computing noisy output based on derivative sensitivity is tm + ts: since
the sensitivity has been computed for qm, the noise should also be added to qm(x), and not to qi(x). We
estimate the total time overhead for global sensitivity as ti, as it is sufficient to execute qi(x), and the
computation of global sensitivity does not depend on the database size.

We see that in general tm and ts are larger than ti. This overhead comes from filtering. While in qi

the database engine may immediately drop all rows that do not satisfy the filter, in qm and qs we need
to compute the approximated output and the sensitivity of each row. In overall, the time overhead of qm

and qs compared to qi (and hence of derivative sensitivity compared to global sensitivity) depends on
the ratio of “number of rows before filtering” and “number of rows after filtering”.

Precision. The precision benchmarks are given in Table 17. For each scale factor SF, we report the
output qi(x) of the initial query, and qs(x) of the sensitivity-computing query. We report the output
qm(x) of the modified query only if it is different from qi(x). The relative error has been computed
as |(qm(x)±ξ)−qi(x)|

qi(x) · 100, where ξ =
c(x)

b =
qs(x)

ε/(γ+1)−β = 10 · qs(x). The additive noise stays below ξ

with probability 78% (as discussed above), so the relative error stays below reported value also with
probability 78%.

The last two columns of Table 17 demonstrate the global sensitivity of queries, which is the same
for all SF values, as it does not depend on data. The left column shows global sensitivity w.r.t. the
same metric as the derivative sensitivity (we call it non-standard), and the right column w.r.t the row
difference metric (we call it standard). We compare these with derivative sensitivity.
Global sensitivity w.r.t. non-standard metric. In the first case, we compute the global sensitivity w.r.t.
the same metric as the derivative sensitivity. Even using the same metric, we cannot compare global
(GS) and derivative sensitivity (DS) directly without taking into account particular noise generating
mechanisms. However, in our results we have either GS=∞ or GS=DS. If GS=∞, then the noise would
be ∞ as well for any noise generating mechanism. If GS=DS, then we expect the noise of GS to be
lower, as e.g. employing the same Cauchy mechanism that we use for derivative sensitivity with β ≈ 0
gives 10 times less noise than with β = 0.1 for the same sensitivity. In our benchmarks, DS gives
advantage over GS in the following main cases.

1. When a sensitive attribute x1 is multiplied by another attribute x2, and there are no bounds on x2,
we get GS=∞, as |(x1 ± 1) · x2 − x1 · x2| = |x2|.

2. The norms of rows are combined into a table norm using `1-norm. Hence, d(t, t′) = 1 covers not
only the case where the norm of one row changes by 1, but also the case where each row changes
a little. In an extreme case, all rows of t are already very close to the filtering bound, and the
filtering function returns ≈ 1 for all rows in t, and ≈ 0 for all rows in t′. This makes no difference
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Table 16: Time Benchmarks (ms) for the Initial Query (ti), Modified Query (tm), and the Sensitivity
Query (ts). K Denotes ·103

SF = 0.1 SF = 0.5 SF = 1.0
ti tm ts ti tm ts ti tm ts

Q1_1 152.8 534.59 763.19 731.11 3.17K 4.08K 1.5K 5.6K 8.01K
Q1_2 151.8 559.58 1.04K 1.47K 4.02K 5.86K 1.62K 6.59K 11.92K
Q1_3 168.08 590.1 2.05K 862.07 3.24K 10.37K 1.75K 5.87K 19.66K
Q1_4 184.24 574.28 2.2K 888.35 2.98K 10.08K 1.69K 5.96K 20.45K
Q1_5 149.96 527.38 520.85 744.5 2.69K 2.86K 1.48K 5.46K 5.86K
Q2_1 19.68 45.3 144.78 134.21 294.14 1.04K 289.53 563.79 2.25K
Q2_2 29.04 49.37 165.62 158.94 273.06 1.28K 288.18 632.38 2.49K
Q3 111.92 117.41 391.47 544.22 623.87 2.19K 349.06 521.31 1.2K
Q4 131.52 379.05 778.47 799.9 2.63K 5.16K 1.56K 5.05K 10.69K
Q5 6.66K 204.08 2.18K 696.38 685.59 3.61K 1.51K 2.2K 9.71K
Q6 118.31 3.12K 13.21K 687.4 16.09K 67.29K 1.26K 31.73K 123.64K
Q7 238.74 137.21 713.28 1.19K 861.55 3.9K 2.42K 1.67K 8.34K
Q8 308.08 117.53 782.37 1.3K 1.73K 5.89K 4.08K 1.45K 8.38K
Q9 133.34 128.58 3.82K 1.79K 728.07 4.21K 1.59K 1.42K 9.17K
Q10 131.97 137.03 483.38 882.12 719.65 2.46K 202.05 1.48K 4.88K
Q11 10.74 10.16 42.12 62.0 62.02 254.81 126.47 128.67 529.29
Q12_1 215.13 736.64 1.27K 879.2 3.65K 7.5K 1.95K 7.34K 14.04K
Q12_2 148.5 473.72 877.42 846.66 3.26K 6.19K 2.44K 4.8K 10.84K
Q16 22.14 174.35 303.68 127.95 711.93 1.63K 264.52 1.66K 3.66K
Q17 111.7 88.31 276.69 486.16 455.85 1.38K 938.62 1.12K 2.96K
Q19 139.16 296.41 1.42K 737.53 1.47K 6.67K 1.39K 2.86K 13.56K

for a COUNT query (as in Q1_5), as the sum of all these changes is still 1, but we get GS=∞ for
the query Q1_1, which has the same form as Q1_5, except that it is a SUM query.

Global sensitivity w.r.t. standard metric. In the second case, we compute global sensitivity w.r.t. row
difference metric. That is, d(x, x′) = 1 iff there is exactly one sensitive table in databases x and x′

such that the respective instances t and t′ of that table differ in one row. To make the comparison
more fair, we consider an input table sensitive iff the query uses at least one of its attributes that were
considered sensitive by the `p-metric. For SUM, MIN, MAX queries, the effect of adding/removing a
row is unbounded, and global sensitivity is∞, as it covers the worst case. For COUNT queries, we may
lose advantage as well if we consider a JOIN of tables, where adding/removing a row in an input table
may result in adding/removing an unbounded number of rows in the cross product of input tables, as it
happens in Q4. Row difference metric gives smaller sensitivity in the COUNT-queries Q12_1, Q12_2,
Q16. In general, if we filter by a sensitive attribute over a single input table, then row difference metric
contributes 1 to the COUNT, while defining the distance as `1-norm of rows allows to split the unit
change among several rows, which may result in higher sensitivity.

4.3.3.2 Database Schema. The TPC-H testset [71] puts forth the following database schema, as given
below. The tables are (randomly) filled with a number of rows, generated by a program that accompanies
the schema. The number of rows depends on the scaling factor SF. The tables, and the numbers of rows
in them are given in Fig. 54.

4.3.3.3 Sensitive Components. In all tables except Lineitem, we consider the change that is the scaled
sum of changes in all sensitive attributes. All attributes that are not a part of the norm are considered
insensitive. We assumed that textual fields as well as the keys (ordinal data) are not sensitive. The
columns of type date (e.g. o_orderdate) have been converted to a floating-point number, which is the
number of months passed from the date 1980-01-01.
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Part: SF · 200, 000 rows. Customer: SF · 150, 000 rows.
column type
P_PARTKEY identifier
P_NAME text
P_MFGR text
P_BRAND text
P_TYPE text
P_SIZE integer
P_CONTAINER text
P_RETAILPRICE decimal
P_COMMENT text

column type
C_CUSTKEY identifier
C_NAME text
C_ADDRESS text
C_NATIONKEY identifier
C_PHONE text
C_ACCTBAL decimal
C_MKTSEGMENT text
C_COMMENT text

Partsupp: SF · 800, 000 rows. Supplier: SF · 10, 000 rows.

column type
PS_PARTKEY identifier
PS_SUPPKEY identifier
PS_AVAILQTY integer
PS_SUPPLYCOST decimal
PS_COMMENT text

column type
S_SUPPKEY identifier
S_NAME text
S_ADDRESS text
S_NATIONKEY identifier
S_PHONE text
S_ACCTBAL decimal
S_COMMENT text

Orders: SF · 1, 500, 000 rows Lineitem: SF · 6, 000, 000 rows

column type
O_ORDERKEY identifier
O_CUSTKEY identifier
O_ORDERSTATUS text
O_TOTALPRICE decimal
O_ORDERDATE date
O_ORDERPRIORITY text
O_CLERK text
O_SHIPPRIORITY integer
O_COMMENT text

column type
L_ORDERKEY identifier
L_PARTKEY identifier
L_SUPPKEY identifier
L_LINENUMBER integer
L_QUANTITY decimal
L_EXTENDEDPRICE decimal
L_DISCOUNT decimal
L_TAX decimal
L_RETURNFLAG text
L_LINESTATUS text
L_SHIPDATE date
L_COMMITDATE date
L_RECEIPTDATE date
L_SHIPINSTRUCT text
L_SHIPMODE text
L_COMMENT text

Nation: 25 rows Region: 5 rows
column type
N_NATIONKEY identifier
N_NAME text
N_REGIONKEY identifier
N_COMMENT text

column type
R_REGIONKEY identifier
R_NAME text
R_COMMENT text

Figure 54: Schema and Size of TPC-H Database
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Table 17: Precision Benchmarks for ε = 1, β = 0.1, Sigmoid α = 5, where qi(x) is the Initial Query
Result, qm(x) the Modified Query Result (if Different from qi(x)), qs(x) is the Sensitivity Query
Result, and %noise =

|(qm(x)±10·qs(x))−qi(x)|
qi(x) · 100. The Last Two Columns Show Global Sensitivity

w.r.t. the Same Non-Standard `p-Induced Metric as Derivative Sensitivity (non-std.) and the
Standard “Row Difference” Metric (std.). K Denotes ·103, M Denotes ·106, and G Denotes ·109

SF = 0.10 SF = 0.50 SF = 1.00 global sens.
qi(x) qs(x) %noise qi(x) qs(x) %noise qi(x) qs(x) %noise non- std.
(qm(x)) (qm(x)) (qm(x)) std.

Q1_1 3.79M 50.0 0.01 18.87M 50.0 0.0026 37.72M 50.0 0.0013 ∞ ∞

Q1_2 5.34G 95.89K 0.02 27.35G 99.65K 0.0036 56.57G 104.9K 0.0019 ∞ ∞

Q1_3 5.07G 107.36K 0.02 25.98G 111.18K 0.0043 53.74G 117.34K 0.0022 ∞ ∞

Q1_4 5.27G 114.87K 0.02 27.02G 119.06K 0.0044 55.89G 124.38K 0.0022 ∞ ∞

Q1_5 148.3K 1.0 0.0067 739.56K 1.0 0.0014 1.48M 1.0 0.0007 1 1
Q2_1 1.07 100.0 93.46K 1.0 100.0 100.0K 1.0 100.0 100.0K 100 ∞

Q2_2 999.98 100.0 100.0 1.0K 100.0 100.0 1.0K 100.0 100.0 100 ∞

Q3 3.62K 41.28K 11.4K 3.21K 41.1K 12.8K 0.0 0.0 0.0 ∞ ∞

Q4 2.92K 7.0 2.4 14.17K 7.0 0.49 28.07K 7.0 0.25 7 ∞

Q5 5.37M 260.44K 48.53 25.23M 359.6K 14.25 47.6M 484.12K 10.17 ∞ ∞

Q6 17.45M 125.0K 7.14 88.13M 127.0K 1.44 181.93M 130.0K 0.71 ∞ ∞

(17.13K) (86.86M) (179.15)
Q7 22.07M 106.13K 4.81 95.63M 111.24K 1.16 212.11M 115.33K 0.54 ∞ ∞

Q8 470.8K 145.15K 308.31 2.74M 172.5K 63.04 3.29M 178.96K 54.4 ∞ ∞

Q9 30.32M 40.0K 1.32 137.73M 49.2K 0.36 283.82M 49.2K 0.17 ∞ ∞

Q10 100.31K 357.71K 3.57K 149.6K 398.13K 2.66K 0.0 312.54K ∞ ∞ ∞

Q11 1.63G 199.98K 0.12 7.73G 199.98K 0.03 15.18G 199.98K 0.01 ∞ ∞

Q12_1 3.12K 3.0 0.96 15.4K 3.0 0.19 30.83K 3.0 0.1 3 1
Q12_2 1.29K 3.0 2.33 6.2K 3.0 0.48 12.37K 3.0 0.24 3 1
Q16 9.95K 4.0 0.4 49.35K 4.0 0.08 98.97K 4.0 0.04 4 1
Q17 31.54K 16.8K 533 256.24K 17.8K 69.3 531.93K 18.0K 33.9 ∞ ∞

(31.17K) (250.83K) (520.87K)
Q19 155.25K 651.72K 4.2K 1.1M 813.52K 738.04 1.73M 827.69K 479.67 ∞ ∞

• Part: ||p_size, 0.01 · p_retailprice||1. The values of p_retailprice are measured in hundreds, so
we consider larger changes (i.e. make such change causing a change of 1 in the output correspond
to unit sensitivity).

• Partsupp: ||ps_availqty, 0.01 · ps_supplycost||1.

• Orders: ||30 · o_orderdate, 0.01 · o_totalprice||1.

• Customer: ||0.01 · c_acctbal||1.

• Supplier: ||0.01 · s_acctbal||1.

• Nation: no sensitive columns.

• Region: no sensitive columns.

In table Lineitem, several different norms would make sense and it is up to the data owner to choose the
“right” one. We could again add up the sensitive attributes of a row, after suitably scaling them. But we
could also think that the three different dates would probably move rather synchronously, and it is the
maximum change among them that really matters. Hence we performed the tests with the row norm

‖l_quantity, 0.0001 · l_extendedprice, 50 · l_discount,

30 · ‖l_shipdate, l_commitdate, l_receiptdate‖∞‖1 .

Here the values of l_discount are very small (all around 0.1), so we aim to protect the change in 0.02
units. On the other hand, l_extendedprice can be tens of thousands, and we want to capture larger
changes for it. The dates are measured in months, so we capture a change of one day. which we treat as
1/30 of a month. Alternatively, we may use the number of days, and get the same result removing the
scaling by 30.0.
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4.3.3.4 Benchmarked Queries. We list the rewritten queries of TPC-H dataset that were used in
benchmarking, to give an impression of what we actually feed to the analyzer. The constant 0.142857
in Q_17 comes from translating an AVG query to a S UM query, and 7 = 1/0.142857 is the number of
rows to sum, which is public, as the filter does not use sensitive attributes.

1 --Q1_1
2 SELECT SUM(lineitem.l_quantity)
3 FROM lineitem
4 WHERE
5 lineitem.l_shipdate <= 230.3 - 30
6 AND lineitem.l_returnflag = ’R’
7 AND lineitem.l_linestatus = ’F’
8 ;
9 --Q1_2

10 SELECT SUM(lineitem.l_extendedprice)
11 FROM lineitem
12 WHERE
13 lineitem.l_shipdate <= 230.3 - 30
14 AND lineitem.l_returnflag = ’R’
15 AND lineitem.l_linestatus = ’F’
16 ;
17 --Q1_3
18 SELECT SUM(lineitem.l_extendedprice
19 *(1-lineitem.l_discount))
20 FROM lineitem
21 WHERE
22 lineitem.l_shipdate <= 230.3 - 30
23 AND lineitem.l_returnflag = ’R’
24 AND lineitem.l_linestatus = ’F’
25 ;
26 --Q1_4
27 SELECT SUM(lineitem.l_extendedprice
28 *(1-lineitem.l_discount)
29 *(1+lineitem.l_tax))
30 FROM lineitem
31 WHERE
32 lineitem.l_shipdate <= 230.3 - 30
33 AND lineitem.l_returnflag = ’R’
34 AND lineitem.l_linestatus = ’F’
35 ;
36 --Q1_5
37 SELECT COUNT(*)
38 FROM lineitem
39 WHERE
40 lineitem.l_shipdate <= 230.3 - 30
41 AND lineitem.l_returnflag = ’R’
42 AND lineitem.l_linestatus = ’F’
43 ;
44 --Q2_1
45 SELECT MIN(partsupp.ps_supplycost)
46 FROM partsupp , supplier ,
47 nation, region, part
48 WHERE
49 part.p_partkey = partsupp.ps_partkey
50 AND supplier.s_suppkey = partsupp.ps_suppkey
51 AND supplier.s_nationkey = nation.n_nationkey
52 AND nation.n_regionkey = region.r_regionkey
53 AND region.r_name = ’ASIA’
54 ;
55 --Q2_2
56 SELECT MAX(partsupp.ps_supplycost)
57 FROM partsupp , supplier ,
58 nation, region, part
59 WHERE
60 part.p_partkey = partsupp.ps_partkey
61 AND supplier.s_suppkey = partsupp.ps_suppkey
62 AND supplier.s_nationkey = nation.n_nationkey
63 AND nation.n_regionkey = region.r_regionkey
64 AND region.r_name = ’ASIA’
65 ;
66 --Q3
67 SELECT SUM(lineitem.l_extendedprice
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68 *(1-lineitem.l_discount))
69 FROM customer , orders, lineitem
70 WHERE
71 customer.c_mktsegment = ’BUILDING’
72 AND customer.c_custkey = orders.o_custkey
73 AND lineitem.l_orderkey = orders.o_orderkey
74 AND orders.o_orderdate < 190
75 AND lineitem.l_shipdate > 190
76 AND lineitem.l_orderkey = ’162’
77 AND orders.o_shippriority = ’0’
78 ;
79 --Q4
80 SELECT COUNT(*)
81 FROM orders, lineitem
82 WHERE
83 orders.o_orderdate >= 180
84 AND orders.o_orderdate < 180 + 3
85 AND lineitem.l_orderkey = orders.o_orderkey
86 AND lineitem.l_commitdate < lineitem.l_receiptdate
87 AND orders.o_orderpriority = ’1-URGENT’
88 ;
89 --Q5
90 SELECT SUM(lineitem.l_extendedprice
91 *(1-lineitem.l_discount))
92 FROM customer , orders,
93 lineitem , supplier ,
94 nation, region
95 WHERE
96 customer.c_custkey = orders.o_custkey
97 AND lineitem.l_orderkey = orders.o_orderkey
98 AND lineitem.l_suppkey = supplier.s_suppkey
99 AND customer.c_nationkey = supplier.s_nationkey

100 AND supplier.s_nationkey = nation.n_nationkey
101 AND nation.n_regionkey = region.r_regionkey
102 AND region.r_name = ’ASIA’
103 AND orders.o_orderdate >= 213.3
104 AND orders.o_orderdate < 213.3 + 12
105 AND nation.n_name = ’JAPAN’
106 ;
107 --Q6
108 SELECT SUM(lineitem.l_extendedprice
109 *lineitem.l_discount)
110 FROM lineitem
111 WHERE
112 lineitem.l_shipdate >= 170.5
113 AND lineitem.l_shipdate < 170.5 + 12
114 AND lineitem.l_discount BETWEEN 0.09 - 0.01
115 AND 0.09 + 0.01
116 AND lineitem.l_quantity < 24
117 ;
118 --Q7
119 SELECT SUM(lineitem.l_extendedprice
120 *(1 - lineitem.l_discount))
121 FROM supplier , lineitem , orders, customer ,
122 nation as n1,
123 nation as n2
124 WHERE
125 supplier.s_suppkey = lineitem.l_suppkey
126 AND orders.o_orderkey = lineitem.l_orderkey
127 AND customer.c_custkey = orders.o_custkey
128 AND supplier.s_nationkey = n1.n_nationkey
129 AND customer.c_nationkey = n2.n_nationkey
130 AND (
131 (n1.n_name = ’JAPAN’ and n2.n_name = ’INDONESIA’)
132 OR
133 (n1.n_name = ’INDONESIA’ and n2.n_name = ’JAPAN’)
134 )
135 AND lineitem.l_shipdate between 182.6 and 207
136 ;
137 --Q8
138 SELECT SUM(lineitem.l_extendedprice
139 *(1 - lineitem.l_discount))
140 FROM
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141 part, supplier , lineitem ,
142 orders, customer,
143 nation AS n1, nation AS n2, region
144 WHERE
145 part.p_partkey = lineitem.l_partkey
146 AND supplier.s_suppkey = lineitem.l_suppkey
147 AND lineitem.l_orderkey = orders.o_orderkey
148 AND orders.o_custkey = customer.c_custkey
149 AND customer.c_nationkey = n1.n_nationkey
150 AND n1.n_regionkey = region.r_regionkey
151 AND region.r_name = ’ASIA’
152 AND supplier.s_nationkey = n2.n_nationkey
153 AND orders.o_orderdate >= 5478
154 AND orders.o_orderdate <= 6210
155 AND part.p_type = ’MEDIUM BRUSHED COPPER’
156 AND n2.n_name = ’JAPAN’
157 ;
158 --Q9
159 SELECT SUM(lineitem.l_extendedprice
160 *(1-lineitem.l_discount)
161 - partsupp.ps_supplycost*lineitem.l_quantity)
162 FROM
163 part, supplier ,
164 lineitem , partsupp ,
165 orders, nation
166 WHERE
167 supplier.s_suppkey = lineitem.l_suppkey
168 AND partsupp.ps_suppkey = lineitem.l_suppkey
169 AND partsupp.ps_partkey = lineitem.l_partkey
170 AND part.p_partkey = lineitem.l_partkey
171 AND orders.o_orderkey = lineitem.l_orderkey
172 AND supplier.s_nationkey = nation.n_nationkey
173 AND part.p_name LIKE ’%violet%’
174 AND nation.n_name = ’UNITED KINGDOM’
175 ;
176 --Q10
177 SELECT SUM(lineitem.l_extendedprice
178 *(1 - lineitem.l_discount))
179 FROM
180 customer , orders,
181 lineitem , nation
182 WHERE
183 customer.c_custkey = orders.o_custkey
184 AND lineitem.l_orderkey = orders.o_orderkey
185 AND orders.o_orderdate >= 183.3
186 AND orders.o_orderdate < 183.3 + 3
187 AND lineitem.l_returnflag = ’R’
188 AND customer.c_nationkey = nation.n_nationkey
189 AND customer.c_custkey = ’64’
190 AND nation.n_name = ’CANADA’
191 ;
192 --Q11
193 SELECT SUM(partsupp.ps_supplycost
194 * partsupp.ps_availqty * 0.2)
195 FROM partsupp , supplier , nation
196 WHERE
197 partsupp.ps_suppkey = supplier.s_suppkey
198 AND supplier.s_nationkey = nation.n_nationkey
199 AND nation.n_name = ’JAPAN’
200 ;
201 --Q12_1
202 SELECT COUNT(*)
203 FROM orders, lineitem
204 WHERE
205 orders.o_orderkey = lineitem.l_orderkey
206 AND (orders.o_orderpriority <> ’1-URGENT’
207 OR orders.o_orderpriority <> ’2-HIGH’)
208 AND lineitem.l_shipmode in (’TRUCK’, ’SHIP’)
209 AND lineitem.l_commitdate < lineitem.l_receiptdate
210 AND lineitem.l_shipdate < lineitem.l_commitdate
211 AND lineitem.l_receiptdate >= 183.3
212 AND lineitem.l_receiptdate < 183.3 + 12
213 ;
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214 --Q12_2
215 SELECT COUNT(*)
216 FROM orders, lineitem
217 WHERE
218 orders.o_orderkey = lineitem.l_orderkey
219 AND (orders.o_orderpriority = ’1-URGENT’
220 OR orders.o_orderpriority = ’2-HIGH’)
221 AND lineitem.l_shipmode in (’TRUCK’, ’SHIP’)
222 AND lineitem.l_commitdate < lineitem.l_receiptdate
223 AND lineitem.l_shipdate < lineitem.l_commitdate
224 AND lineitem.l_receiptdate >= 183.3
225 AND lineitem.l_receiptdate < 183.3 + 12
226 ;
227 --Q16
228 SELECT COUNT(partsupp.ps_suppkey)
229 FROM partsupp , part, supplier
230 WHERE
231 part.p_partkey = partsupp.ps_partkey
232 AND partsupp.ps_suppkey = supplier.s_suppkey
233 AND part.p_brand <> ’Brand#34’
234 AND NOT (part.p_type LIKE ’%COPPER%’)
235 AND part.p_size in (5, 10, 15, 20, 25, 30, 35, 40)
236 AND NOT (supplier.s_comment LIKE
237 ’%Customer%Complaints%’)
238 AND part.p_brand = ’Brand#14’
239 AND part.p_type = ’LARGE ANODIZED TIN’
240 ;
241 --Q17
242 SELECT SUM(lineitem.l_extendedprice * 0.142857)
243 FROM lineitem , part
244 WHERE
245 part.p_partkey = lineitem.l_partkey
246 AND part.p_brand = ’Brand#34’
247 AND part.p_container = ’JUMBO PKG’
248 AND lineitem.l_quantity < 0.2 * 32
249 ;
250 --Q19
251 SELECT SUM(lineitem.l_extendedprice
252 *(1-lineitem.l_discount))
253 FROM lineitem , part
254 WHERE
255 part.p_partkey = lineitem.l_partkey
256 AND lineitem.l_shipmode IN (’AIR’, ’AIR REG’)
257 AND lineitem.l_shipinstruct = ’DELIVER IN PERSON’
258 AND part.p_size >= 1
259 AND
260 ((
261 part.p_brand = ’Brand#34’
262 AND part.p_container IN (’SM CASE’, ’SM BOX’,
263 ’SM PACK’, ’SM PKG’)
264 AND lineitem.l_quantity >= 35
265 AND lineitem.l_quantity <= 35 + 10
266 AND part.p_size <= 5
267 )
268 OR
269 (
270 part.p_brand = ’Brand#22’
271 AND part.p_container IN (’MED BAG’, ’MED BOX’,
272 ’MED PKG’, ’MED PACK’)
273 AND lineitem.l_quantity >= 12
274 AND lineitem.l_quantity <= 12 + 10
275 AND part.p_size <= 10
276 )
277 OR
278 (
279 part.p_brand = ’Brand#14’
280 AND part.p_container IN (’LG CASE’, ’LG BOX’,
281 ’LG PACK’, ’LG PKG’)
282 AND lineitem.l_quantity >= 90
283 AND lineitem.l_quantity <= 90 + 10
284 AND part.p_size <= 15
285 ));
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Table 18: Time Benchmarks (ms) for the Initial Query (ti), Modified Query (tm), and the Sensitivity
Query (ts). K Denotes ·103, and M Denotes ·106

SF = 0.1 SF = 0.5 SF = 1.0
ti tm ts ti tm ts ti tm ts

Q1_1 144.36 11.43K 1.74K 761.36 157.38K 9.49K 1.47K 535.97K 18.51K
Q1_2 141.57 11.43K 1.74K 742.35 163.8K 9.57K 1.46K 518.45K 19.08K
Q1_3 154.66 11.75K 1.89K 886.02 157.73K 9.93K 1.67K 538.28K 21.61K
Q1_4 165.84 11.64K 2.81K 851.84 154.48K 15.4K 1.97K 558.75K 29.17K
Q1_5 149.43 6.6K 1.06K 769.5 65.65K 6.16K 1.43K 189.94K 11.0K
Q2_1 19.08 36.87 139.14 141.1 268.5 1.28K 269.94 524.61 2.24K
Q2_2 19.11 42.29 135.36 146.93 278.97 1.07K 265.5 724.23 2.07K
Q3 96.29 110.48 376.65 567.6 645.44 2.15K 288.72 451.16 1.03K
Q4 127.72 59.0K 2.37K 653.65 1.8M 12.67K – – –
Q5 6.25K 242.1 2.13K 715.05 877.75 3.37K 1.32K 2.49K 7.96K
Q6 115.36 284.1K 9.37K 586.04 6.34M 46.5K – – –
Q7 218.87 329.15 623.63 1.16K 2.93K 3.74K 2.45K 9.05K 7.13K
Q8 238.62 113.11 637.68 1.15K 719.8 3.9K 3.43K 1.22K 6.54K
Q9 127.56 121.25 3.23K 746.92 719.1 4.22K 1.29K 1.3K 7.83K
Q10 129.26 134.37 445.86 676.09 790.71 2.4K 205.47 1.45K 4.92K
Q11 10.49 9.87 38.92 62.34 61.11 244.71 125.13 126.73 524.31
Q12_1 157.39 110.13K 4.62K 849.04 2.49M 26.3K – – –
Q12_2 146.71 44.21K 2.12K 727.03 961.28K 10.6K – – –
Q16 21.45 130.13 216.23 155.18 735.92 1.65K 237.25 1.42K 3.38K
Q17 86.52 83.86 269.3 481.85 463.56 1.43K 872.76 861.25 2.55K
Q19 130.1 264.35 1.21K 718.78 1.48K 7.74K 1.3K 2.72K 12.73K

4.3.3.5 Integer vs Float Type Filtering. Since the date datatype of SQL is measured within day
precision, it makes sense to treat is as an integer. However, we could as well represent it as a floating-
point number. This allows us to use sigmoids, as shown in Table 9. For sigmoids, we have to choose
precision in such a way that the noise would be smaller. Since precision itself cannot depend on the
data, we have empirically evaluated appropriate precision level on an independently generated TPC-
H instance with scale factor SF=0.05. As described in Sec. 3.3.8.5, the precision has to be increased
proportionally with

√
n, where n is the number of analyzed rows. Hence, the sigmoid precisions for the

cases of SF 0.1, 0.5, 1.0 had to be multiplied with
√

2,
√

10 and
√

20 respectively.
While Table 16 and Table 17 use integer approximation for date filtering, the tables Table 18 and

Table 19 show the results for sigmoid approach. The results have been computed for different β and
α values, where β ≈ 0 means that the sensitivity could be computed for an arbitrarily small β, and the
third column shows the base α that has been computed for SF=0.05. The computing time for a modified
query is much higher for floating points, since the SQL engine now needs to compute exponentiation for
each row and each private filter, so for the most complicated queries we present the results up to SF=0.5.
We see that, except the queries Q12_1 and Q12_2, the error gets smaller compared to integer datatype
approach. The problem of Q12_1 and Q12_2 seems to be that the sigmoid precision that we found for
SF=0.05 is not the best for SF=0.1, which indeed may happen as the final result depends not only on the
number of rows, but also on the actual data, so even though the sensitivity of these queries is smaller,
they suffer from precision error. The disadvantages of sigmoid approach are that it takes more time to
execute the modified query, and that exponentiations tend to cause overflow errors in PostgreSQL engine
when the exponents get large. The time overheads are more significant for the cases with many private
filters, where sigmoid error gets larger due to multiplication, so it seems more reasonable to use integer
datatype there.

4.3.3.6 Discussion. Let us summarize the limits and advantages of the framework proposed in this
work. We compare `p-metric vs row distance metric, and local sensitivity vs global sensitivity. In the
following, we mark with + the clear advantages, and with − some caveats.
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Table 19: Precision Benchmarks for ε = 1, where qi(x) is the Initial Query Result, qm(x) the
Modified Query Result (if Different from qi(x)), qs(x) is the Sensitivity Query Result, and %noise =
|(qm(x)±10·qs(x))−qi(x)|

qi(x) · 100. K Denotes ·103, M Denotes ·106, and G Denotes ·109

SF = 0.1 SF = 0.5 SF = 1.0
β sigmoid qi(x) qs(x) %noise qi(x) qs(x) %noise qi(x) qs(x) %noise

prec. α (qm(x)) (qm(x)) (qm(x))
Q1_1 ≈ 0 0.1 3.79M 1.8 0.0002 18.87M 4.03 0.0001 37.72M 5.7 7.6e-05
Q1_2 ≈ 0 0.1 5.34G 10.0K 0.0009 27.35G 10.0K 0.0002 56.57G 11.18K 9.9e-05
Q1_3 ≈ 0 0.1 5.07G 19.0K 0.0019 25.98G 19.0K 0.0004 53.74G 21.24K 0.0002
Q1_4 0.1 0.1 5.27G 12.11K 0.0023 27.02G 12.11K 0.0004 55.89G 13.91K 0.0002
Q1_5 ≈ 0 0.05 148.3K 0.02 6e-05 739.56K 0.04 2.7e-05 1.48M 0.06 1.9e-05
Q2_1 0.1 0.1 1.07 100.0 93.46K 1.0 100.0 100.0K 1.0 100.0 100.0K
Q2_2 0.1 0.1 999.98 100.0 100.0 1.0K 100.0 100.0 1.0K 100.0 100.0
Q3 ≈ 0 0.01 3.62K 19.0K 2.58K 3.21K 19.0K 2.93K 0.0 0.0 0.0

(2.1K) (2.17K)
Q4 ≈ 0 0.5 2.92K 1.24 1.73 14.17K 3.32 0.76 – – –

(2.96K)
Q5 0.1 0.01 5.37M 11.21K 8.1 25.23M 11.21K 1.5 47.6M 11.21K 1.27

(4.82M) (24.74M) (46.88M)
Q6 ≈ 0 0.4 17.45M 105.0K 5.67 88.13M 105.0K 1.81 – – –

(17.91M) (89.71M)
Q7 ≈ 0 0.1 22.07M 19.0K 0.06 95.63M 19.0K 0.1 212.11M 21.24K 0.0078

(21.99M) (95.44M) (212.02M)
Q8 0.1 0.1 470.8K 11.21K 23.83 2.74M 13.64K 5.31 3.29M 20.01K 6.44

(470.86K) (2.75M) (3.3M) 6.44
Q9 0.1 0.1 30.32M 40.0K 1.32 137.73M 49.2K 0.36 283.82M 49.2K 0.17
Q10 0.1 0.1 100.31K 12.65K 125.84 149.6K 31.48K 206.34 0.0 34.94K ∞

(100.06K) (143.52K)
Q11 0.1 0.1 1.63G 199.98K 0.12 7.73G 199.98K 0.03 15.18G 199.98K 0.01
Q12_1 ≈ 0 0.5 3.12K 0.53 8.43 15.4K 1.19 7.32 – – –

(3.38K) (16.52K)
Q12_2 ≈ 0 0.5 1.29K 0.53 8.88 6.2K 1.19 7.61 – – –

(1.4K) (6.67K)
Q16 0.1 0.1 9.95K 4.0 0.4 49.35K 4.0 0.08 98.97K 4.0 0.04
Q17 ≈ 0 0.5 31.54K 2.53K 68.66 256.24K 5.65K 9.83 531.93K 7.99K 5.21

(40.57K) (253.19K) (519.68K)
Q19 0.1 0.1 155.25K 651.72K 4.2K 1.1M 813.52K 738.04 1.73M 827.69K 479.67

Applicability.
+ Metrics induced by `p-norms allow to state different privacy goals, and can be useful in cases

where the standard row distance metric is not applicable.

– Computation of derivative sensitivity requires a particular data instance. This is similar to local
sensitivity. Since execution of the sensitivity-computing query can be deferred, and the data will
anyway be needed at the point where a noisy output is released, we do not treat it as an applicability
issue.

– Derivative sensitivity is limited to continuous functions. This is not a problem as far as there exist
efficiently computable approximations. We can still cover a wide range of SQL queries.

Complexity.
+ In the first phase of the analysis, the initial query it transformed to sensitivity-computing query.

The execution time of this transformation is negligible and does not depend on the data.

– In the second phase of the analysis, when the output is ready to be released, we need to execute the
sensitivity-computing query to estimate amount of noise. Compared to the initial query, additional
time overhead comes from filtering, as we cannot ignore the rows that have been discarded by the
filter.

Amount of noise
+ Changing a numeric attribute of a row in general has smaller effect on the query result than

adding/removing an entire row.
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+ As global sensitivity always covers the worst-case data instance, it is in general larger than local
and derivative sensitivity.

– Compared to global sensitivity w.r.t. standard metric, there are more parameters to be tuned in
order to optimize the amount of noise, such as smoothness and sigmoid precision.

– While `p-norms allow to define a variety of metrics over databases, they are not a superset of
standard metrics, and for some privacy goals we can get less noise using standard metric.

Adding noise before filtering is the path towards solving the issue of complexity and noise overhead
that comes from filtering over sensitive attributes.

4.3.4 Derivative Sensitivity w.r.t. Row Multiplicities. The analysis of Sec. 3.3.7 has been imple-
mented in Haskell and is available on GitHub17. As an input, it takes a SQL query and a database
schema (given as files), and the concrete database (in PostgreSQL) for which to compute local sensitiv-
ity.

It first generates another SQL query that for each use of a table, computes the patterns (corresponding
to the potential added/removed rows) together with the derivatives w.r.t. each pattern. It also computes
some intermediate data needed for smoothing the derivatives (the smoothing is completed in Haskell).
This query is executed in the database engine. If some table is used more than once then the unification
(described in Sec. 3.3.7.3) of the patterns of the different uses will be done in Haskell because it would
be difficult to implement in SQL. We chose to compute the initial patterns for each table use in SQL to
leverage the optimizations and support for more SQL expressions built into the PostgreSQL database
engine.

For each input table, the analyzer computes the noise level to add to the query result to obtain
differential privacy w.r.t. adding/removing a row in that table. Then the maximum of those levels is
taken to obtain DP w.r.t. adding/removing a row in any input table. The noise level can be computed for
a generalized Cauchy distribution (obtaining ε-DP) or Laplace distribution (obtaining (ε, δ)-DP).

We have run our analyzer on TPC-H [71] datasets and queries (counting the number of rows they
return), where the queries have been in the form (31), using a computer with four-core Intel i7-8550U
CPU with 1.8 GHz clock speed, 16 GB RAM, running Ubuntu 18.04.4 and PostgreSQL 10.12. We gen-
erated database instances with different scale factors (SF; defined by TPC-H), ran our analyser, invoked
the SQL queries it generated, and compiled the results. The database schema of TPC-H dataset is the
same as in Section 4.3.3.2. Differently from Sec. 4.3.3, we did not have to adjust any queries manually.

Many queries of TPC-H aggregate using the SUM operation. We treat them as COUNT-s; as we do
not know a priori the upper limit of the values being summed, we just assume one (1000). Some queries
of TPC-H involve a single table (Q1, Q6), and hence always have their sensitivity equal to 1. On the
other hand, the smooth sensitivity of the queries joining n ≥ 3 tables is huge; the hugeness is caused
by the smoothing, because the quantity added to local sensitivity in order to smoothen it is basically the
product of the numbers of rows in the largest (n − 2) tables.

Queries involving exactly two tables. The queries Q12, Q14, Q17, and Q19 join exactly two tables.
For these queries, the smooth sensitivity does not strongly depend on the scale factor. For the smoothness
level β = 0.1, we have found that an upper bound to the smooth sensitivity of both parts of Q12 is ≈ 5,
and to the second part of Q14 is ≈ 4.5 · 105. The “parts” of the query are the different aggregations that
it makes. The difference in the level of smooth sensitivity comes from the fact that Q12 is a counting
query, while Q14 is a summing query.

The query Q17 splits into three parts, once the nested query has been transformed out. The last of
them involves three tables, and hence has large sensitivity. An upper bound to the smooth sensitivity of
the first part (a summing query) is ≈ 1500, and of the second part (a counting query) ≈ 56.

The query Q19 (a sum query) also consists of three parts, once the disjunctive WHERE-clause has
been split. Each of them has the sensitivity of ca. 4.2 · 105.

17https://github.com/pleak-tools/pleak-sql-analysis/tree/master/localsensitivity-cabal
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Table 20: Running Time of the Analyzer (in Seconds)

SF Q5 Q7a Q8a Q10 Q11 Q12a Q12b Q14b Q17a Q17b Q17c Q19a Q19b Q19c
1.0 16 115 117 117
0.1 0.6 405 911 44 68 67 131 2.0 2.0 2.0
0.01 100 0.1 5.3 9.5 1.3 2.0 1.9
0.005 217
0.002 13.9 10.6
0.001 0.3 1.4 45

Efficiency of the analyzer. The running time of the analyzer is obviously strongly dependent on the
size of the database. We have run a selection of the TPC-H queries (those that our analyzer can support)
on various scale factors and measured their running times. The results are given in Table 20. In our
experience, most of the time is spent on smoothening the sensitivity, executing the SQL queries that
compute the counts for the patterns.

Discussion. We have presented a method to compute smooth sensitivity of counting queries specified
in SQL, and evaluated the applicability of the method. We find that the currently the applicability is
limited. We believe that it could be increased by providing some information about the uniqueness of
certain values in the database (e.g. which attributes are the key of a table). Also, the applicability could
perhaps be increased by doing the noise addition elsewhere, not necessarily at the end of executing the
query.

Nevertheless, our method is a novel approach to securing database queries, and it may work well
in conjunction of other techniques for adding the noise, or estimating the magnitude of the query result
on similar databases. Our tool uses results of Sec. 3.3.9 to combine derivative sensitivities w.r.t. row
multiplicities and w.r.t. components, thus covering a larger variety of SQL queries that can be analyzed.

4.3.5 Guessing Advantage. Guessing advantage analysis of Sec. 3.3.10 is integrated directly into the
derivative sensitivity analysis tool described in Sec. 4.3.3. This component converts the desired upper
bound ε′ on guessing advantage to an appropriate ε as well as the database norm for differential privacy.
The derivative sensitivity tool then estimates the noise distribution.

While the particular analysis result depends on the query and the data, there are some general results
that we depict in Figure 55. We are using the method of estimating ε from Sec. 3.3.10.1. The first plot
computes the formula

ε =
− ln

(
p

1−p · (
1
x − 1)

)
R

,

where x is the desired posterior guessing probability (the guessing advantage plus the prior), p is the
prior guessing probability (different priors correspond to different collored lines) and R = 1 (we explain
this choice below). We get ε = 0 for x < p since regardless of how much noise we add, the posterior
guessing probability cannot be smaller than the prior. The worst-case prior is p = 1 since no noise will
help if the attacker already knows everything in advance.

The second plot computes the formula

ε =
− ln

(
p

1−p · (
1

x+p − 1)
)

R

for p ≤ 0.5, and

ε =
− ln

(1−p
p · (

1
x+1−p − 1)

)
R

for p > 0.5, where x is now the desired upper bound on the guessing advantage. We get ε = ∞ for
x > 1 − p, which basically means that the attacker is allowed to guess everything and we do not need
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noise for protection. The worst-case prior is defined as p = 1−x
2 for the particular guessing advantage x,

as explained in Sec. 3.3.10.1. Again, we take R = 1.
Let us now explain how the results can be interpreted.
Discrete norm: the value R = 1 is suitable for the setting where the attacker is guessing whether a

record belongs to the database or not. It is also suitable for guessing a particular discrete attribute. In
this case, p = Pr[X = x] is the probability of an exact guess where x is the actual input.

Continuous norm: taking R = 1 means that we have scaled the underlying Banach space by
1

supx,x′∈X d(x,x′) (assuming that the supremum exists). In this case, p = Pr[X ∈ X′] is the probability of
a “sufficiently close guess”, where the “closeness” in terms of distance depends on the distribution of
inputs. E.g. if the distribution is uniform, then X′ = {x′ | d(x, x′) ≤ p}.

We could actually take any R. We see that, taking R = 1000 would also make the ε values 1000 times
smaller. This, however, does not mean that the corresponding DP mechanism would have to introduce
more noise. In particular, the amount of noise is proportional to 1

ε as well as sensitivity of the query, and
the sensitivity in turn depends on the underlying metric. Scaling the metric by 1000 scales both the ε
and the sensitivity by 1000, so the noise level remains the same.

4.3.6 Model-Checking Sensitivity of SQL Queries.

4.3.6.1 Queries. The analyzer described in Sec. 3.3.13 has been implemented in Haskell. The source
of the analyzer is available at https://github.com/pleak-tools/pleak-sql-analysis.git. We
have tested our analyzer with all of the 22 queries from TPC-H [71]. The front-end of our analyzer does
not support full SQL, hence we have made some non-essential modifications to the queries and schemas
from this dataset. These modifications, described in Sec. 4.3.6.2, do not change the logic of computations
and tests of the queries, nor their sensitivity.

Several of TPC-H queries contain subqueries. It is possible to analyze them using workflows, i.e. the
subquery and the main query are analyzed separately and combined using a workflow. TPC-H queries
without subqueries are Q1, Q3, Q5, Q6, Q10, and Q19.

Now we describe the transformations used to transform the original query to a workflow:

(i) If the subquery is in the FROM-part then the result table of the subquery is an input table of the
main query. An example of this type of subquery is Q7.

(ii) If the subquery is in the WHERE-part and returns a single value then the result table of the subquery
must represent the functional dependence of the result of the subquery on the keys of the free table
variables in the subquery. The tables containing the columns corresponding to the keys are added
to the SELECT- and GROUP BY- part of the subquery. The result table of the subquery is joined
to the input tables of the main query using the columns corresponding to the free variables of the
subquery. An example of this type of subquery is Q2.

(iii) If the subquery is used in the WHERE-part as an argument of the EXISTS-operator (testing whether
the subquery returns at least 1 row) then we can instead take the COUNT of the result of the original
subquery as the single-value result of the modified subquery and check whether this value is
greater than 0. Then we can reduce this query to the case handled in Transformation ii. An
example of this type of subquery is Q4.

(iv) If the subquery is used in the WHERE-part as an argument of the IN-operator (testing whether a
value belongs to the set returned by the subquery) then the result table of the subquery is an input
table of the main query and testing whether a value belongs to this intermediate table is replaced
with testing whether the value is equal to the only attribute of the intermediate table (now joined
to the rest of the input tables). An example is Q18.

(v) If the subquery is used in the WHERE-part as an argument of the NOT IN-operator (testing whether
a value does not belong to the set returned by the subquery) and the value is an attribute with a
foreign key constraint referencing the attribute returned by the subquery then we can negate the
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Figure 55: Relation of Posterior Guessing Probability (Top) and Guessing Advantage (Bottom) vs
ε for Different Priors (Represented by Different Colorful Lines)

249
Approved for Public Release; Distribution Unlimited. 



WHERE-part in the subquery and replace NOT IN with IN, then transform it as in Transformation iv.
An example is Q16.

(vi) If a GROUP BY query has a HAVING-clause (not supported by our analyzer) then this can be re-
placed by the query with the HAVING-clause removed and an extra query that filters the result of
the GROUP BY query using a WHERE-clause. An example is Q18. A simpler alternative that always
produces at least as good upper bounds, is to analyze the query with the HAVING-clause removed,
and take its sensitivity as an upper bound on the sensitivity of the original query. This is correct
because the filtering performed by the HAVING-clause has sensitivity at most 1.

(vii) CASE WHEN expression is not supported by our analyzer but in the TPC-H queries it occurs only
in arguments of aggregating functions (in queries Q8, Q12, and Q14). As seen from Sec. 3.3.13.8,
the analysis of GROUP BY queries does not use the aggregating functions (PA) in the analysis. For
non-GROUP BY aggregating queries (Q14), the analysis can use PA but we have not implemented
this and our actual implementation uses 1 as the upper bound on the sensitivity. Thus in both cases
we can replace the CASE WHEN expression by an arbitrary supported expression (e.g. constant 0)
and this does not change the sensitivity determined by the analyzer.

(viii) Query Q15 uses a temporary VIEW. This can be replaced by an ordinary query in the workflow.

(ix) Query Q13 uses a LEFT OUTER JOIN (not supported by our analyzer). We were not able to
transform it into an equivalent supported query. Thus we instead replaced the LEFT OUTER JOIN
by an ordinary join and proved manually that both the original subquery and the changed one have
global sensitivity 1 w.r.t. each of the tables customer and orders. The proof is omitted due to
lack of space.

The transformations were performed manually, they are not implemented in the analyzer.
Table 21 lists for each TPC-H query the numbers of the transformations that we applied to it, the

number of queries in the workflow obtained after the transformations, and the total running time of the
analyzer on the queries in the workflow. The total running time was 12.206 s.

We tested with our analyzer all of the queries in the workflows obtained from the 22 TPC-H queries.
All of these had sensitivities 1 or ∞ w.r.t. each table, except Q12, which has sensitivity 2 (note that
this query returns at most 2 rows). To get a finite sensitivity greater than 1 for a query with unbounded
result size, we modified Q10 slightly, adding o_orderdate to the SELECT- and GROUP BY-parts and
reducing the interval of o_orderdate in the WHERE-part from 3 months to N days. The resulting query
has sensitivity N and its semantics is not too artificial (it considers a period of N days instead of 3 months
and finds the lost revenue for each day separately instead of for the whole period; this can be reasonable
e.g. in a scenario where the customers are supermarkets making orders from a big warehouse several
times per day). The analyzer terminates in reasonable time (less than 5 seconds) when N ≤ 7.

Thus all 22 TPC-H queries can be analyzed after the transformations described above and the mod-
ifications described in Sec. 4.3.6.2.

4.3.6.2 Modifications to Our Test Queries. The TPC-H queries use a number of different data types
and operations. For our benchmarking, we have reduced the variety, rewriting the schemas and queries
as follows:

• For all numeric attributes, we have used the types INT8 and FLOAT8 for integers and decimals,
respectively.

• Expressions of the form x IN (x1, . . . , xn) are replaced with (x = x1 OR . . . OR x = xn).

• Some more modifications whose descriptions we omit due to lack of space.

The TPC-H queries also contain ORDER BY parts. While the ordering of the result can leak in-
formation, this leakage is not considered by our analyzer, which considers the result table as a set or
multiset of rows where order is not important (we may shuffle the rows of the result table uniformly
randomly). Thus we omit the ORDER BY parts from the queries.
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Table 21: Query Evaluation Summary and Running Times

Query transformations workflow size runtime (s)
Q1 — 1 0.170
Q2 ii 2 1.600
Q3 — 1 0.288
Q4 iii 2 0.247
Q5 — 1 0.403
Q6 — 1 0.098
Q7 i 2 1.119
Q8 i, vii 2 1.632
Q9 i 2 1.331
Q10 — 1 0.357
Q11 ii, vi 3 0.656
Q12 vii 1 0.179
Q13 i, ix 2 0.240
Q14 vii 1 0.131
Q15 ii, viii 3 0.311
Q16 v 2 0.355
Q17 ii 2 0.239
Q18 iv, vi 3 0.461
Q19 — 1 0.153
Q20 ii, iv, iv 4 0.593
Q21 iii, iii 3 1.118
Q22 i, ii, iii 4 0.507

4.3.6.3 Performance. The analyzer can determine whether a query has a sensitivity at most, or greater
than a certain integer value. To determine the exact value of the sensitivity, it does a linear search trying
0, 1, 2, . . . until it finds a value N such that the sensitivity is at most N. If for all values n ∈ {0, . . . ,N−1},
the sensitivity was greater than n, we can conclude that the sensitivity is equal to N.

To find N, we use linear search (instead of binary) because the running time increases very fast as
N increases. For the modified TPC-H query Q10, with different values for the parameter that deter-
mines sensitivity, the running time for checking that the sensitivity is at most N, where N is the actual
sensitivity, was

N 8 7 6 5 4
running time (s) 140.5 2.693 0.377 0.260 0.129

The running time for checking that the sensitivity is more than (N −1), was between 0.1 and 0.2 seconds
in all cases. Thus most of the running time is spent on the final check and the linear search does not
hurt performance much. The timings (both here and in Sec. 4.3.6.1) were taken on a laptop with an Intel
Core i5-2520M CPU running at 2.5 GHz, and with 2GB of RAM. Almost all of this time was spent by
the Z3 solver looking for a model for the formula Φ. The time for generating the formula was negligible.

The highest finite sensitivity of a query for which the analyzer terminated in less than 5 minutes,
was 9. For most queries with sensitivity 9, the analyzer did not terminate in 5 minutes. Thus the highest
finite sensitivity of a simple query that can be practically determined is about 8 or 9. If the solver does
not terminate in 5 minutes for a query, we abort it and return∞ as an upper bound for the sensitivity.

For composite queries (using set operations), the determined sensitivity can be higher, as long as
each simple subquery has sensitivity at most 8 or 9. For queries using a table more than once, we can
also obtain a higher upper bound on sensitivity if we use the method described in Sec. 3.3.13.6.
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We terminate the linear search when we have checked all the values up to 10 and obtained that the
sensitivity is greater than 10. Because we have not seen a simple query with a finite sensitivity greater
than 10, we take∞ as the sensitivity in this case. This makes determining infinite sensitivity reasonably
fast.

Determining uniqueness constraints. Finding if {ai1 , . . . , aik } is a uniqueness constraint on the result
table of a query, uses N = 2 in the formula for the SMT solver, and is therefore similar to determining
whether the sensitivity of a query is at most 1 or more than 1. Thus it should be fast. However, the total
number of possible uniqueness constraints to check, is 2m where m is the number of columns in the result
table, i.e. it is exponentially large in the number of columns. To keep the running time reasonable even
if m is more than 3 or 4, the current implementation only checks single-column uniqueness constraints,
i.e. those of the form {ai1}.

4.3.6.4 Using Tables More Than Once. In Sections 3.3.13.4 and 3.3.13.6, we describe two ways of
computing the sensitivity of a query w.r.t. a table used more than once. We have implemented both of
these. To see the difference, consider the example

SELECT t1.y, t2.y FROM t as t1, t as t2
WHERE t2.x >= t1.x AND t2.x < t1.x + 5

with the schema

CREATE TABLE t (x int4 PRIMARY KEY,
y int4 NOT NULL);

The query in this example has sensitivity 9. The algorithm in Sec. 3.3.13.4 returns the correct sensitivity
in 35 seconds. The algorithm in Sec. 3.3.13.6 takes only 0.3 seconds to run but returns 10 as the
sensitivity. Thus the former is more accurate but much slower, the latter is less accurate but much
faster. For some other queries, the former does not terminate at all in reasonable time but the latter
quickly computes an upper bound on (but not the exact value of) the sensitivity.

4.4 Pleak Tool

Pleak tool contains most of the analysis outlined in this report. They are accessible though different
editors and components of the tool as also illustrated by Pleak architecture in Fig. 47. This section
summarizes the expected usage and restrictions proposed by the current implementation of Pleak. The
source code of Pleak is available in https://github.com/pleak-tools and a live version is running
in https://pleak.io.

4.4.1 Using Pleak. Pleak is an open source tool for analyzing the privacy in business processes and
pointing out possible leakages. Using Pleak starts with modeling the business processes in Business
Process Model and Notation (BPMN) language. BPMN models should be human readable and should
focus on concrete subprocess at a time so that their correctness can be verified by the subject matter
experts. However, analyzing privacy leakages from the process requires a bigger picture of how the
different processes interact with each other. Pleak bridges the gap between human readability and exten-
sive details needed for formal analysis with its composition tool. This tool enables the analyst to easily
combine the human readable models into an analyzable model. It is especially valuable when different
part of the process can be verified by different experts who can focus on their part of the model and we
can bring everything together for the analysis.

The first layer of Pleak’s analysis - the boolean level of who sees what in the process - can already
be carried out on the pure BPMN model. However, very often this means that we see leakages that
are really avoided by some technical means, e.g. secure network channels. Hence, Pleak uses privacy-
enhanced BPMN (PE-BPMN) that allows to specify different data protection means that are applied,
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such as encrypting data for storage or secure network channels. In PE-BPMN some tasks are specified
as tasks of some privacy preserving technology - e.g. a task for encryption and a task for decryption.
PE-BPMN model is a good basis for a more thorough look at the privacy of the system. Our automated
analysis outputs a table that summarizes which data is seen by which party. For everything a party sees
we also analyze which inputs of the process might affect the view of the party. Essentially, this layer of
analysis is for understanding that some things can not leak to some parties. However, for everything that
is in any way accessible to a party we should dig deeper.

We have devised two flavors of leaks-when analysis to get a deeper look on the conditions of potential
leakages. Using them also requires the analyst to specify more about the actual contents of the data
processing. Either the tasks are specified using SQL scripts or our own very simple pseudocode. For
SQL queries the semantics is very clear and therefore the analysis of the process combines and simplifies
the queries to present the user with graphs of the computation. For each field in the data object of interest
we can see exactly which fields of which input data are used to derive it and how (the leaks part of the
analysis). In addition we can also see all the conditions that must hold in order for the specific value to
appear in the output (aka. the when part of the analysis). As a way of simplification you can think of the
output as being the select and where part of a SQL query if the process was represented as one query. On
the other hand our own pseudocode has some dedicated functions but offers more freedom for the user to
specify different flavors of processes. In this analysis the focus is on the branching in the process and on
operations that perform any sort of filtering (as specified by the user). Hence, the output shows for each
output data field the predicates that need to hold for some input data to affect this output and which filters
have been applied to the inputs before they may flow to the output. Hence, leaks-when analysis offers
the user more insight to the structure of the computations than a simple BPMN model could. However,
it is still a further question if the chosen filters are sufficient to limit the potential leakage.

Pleak’s third layer of analysis works on quantifying the leakage either in terms of sensitivity of the
process or the adversary’s advantage of guessing some private input when observing the outputs of the
process. Since we are looking to quantify the variation of the output then these analysis are usually
applicable when we have a workflow that outputs some numeric value. In addition, most analysis in
this category benefit from having access to the actual data in addition to the process and Pleak allows
users to enhance input data objects with the underlying data. Sensitivity tells us how much the output
of the process may change given some small change in the input - either a change in the value or adding
or removing rows in input tables. On the other hand, guessing advantage analysis allows the user to
specify questions about how much does the adversary gain from seeing some of the process outputs
when the goal of the adversary is to guess something about the inputs. Furthermore, we can propose
restrictions about the guesses, e.g. to specify that there is some reasonable interval where the guess has
to be anyway.

We have collected information regarding Pleak’s usage to our wiki in pleak.io/wiki. In addition,
we have recorded a series of screen cast videos that showcase and explain the usage of different Pleak
components.
• Pleak interface, editors and analysers – https://www.youtube.com/watch?v=jr39R3NgSPg

• Introduction to PE-BPMN – https://www.youtube.com/watch?v=ihUdxKRM3fU

• PE-BPMN streotype usage – https://www.youtube.com/watch?v=rNwbOJSl7X8

• Composition modeler – https://www.youtube.com/watch?v=9nzZh8PimHA

• Summary of Pleak’s components and usage ideas – https://www.youtube.com/watch?v=
mk8d4CuobWs

4.4.2 Managing Models. Each of the Pleak components uses BPMN models as a basis. Hence, Pleak
also allows to model BPMN and to share models in order to work on them collaboratively or to dissem-
inate the analysis results.

Overall, the user has the following options for managing their models in the model listing.
• Models can be created and organized in the My Models tab
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– Models can be imported by first creating a new model (with the desired name for the model
to be imported) and then importing the desired file when opening the new model

– Models can be exported as *.bpmn files from the burger menu in the file listing
– Exported models have all the Pleak specific information (e.g. scripts and data specifications)

included

• Clicking on the model name opens the BPMN modeler

• Pleak editors (for adding analyzer specific information and accessing the analyzers) can be opened
from the burger menu in the model line

• Models can be shared with other Pleak users using Share option

– Models shared with the user appear under the Shared models tab

• A public link to the model can be created with the Publish option in the burger menu

– It is possible to run the analysis on the published models but not possible to change the
model when accessing it via the public link

– This option can be used to distribute Pleak analysis results

4.4.3 Usage Restrictions. Pleak offers a range of analysis capabilities that each come with their own
benefits as well as restrictions. Overall, the user can start with the visibility analysis offered by the
disclosure tables that is available also for plain BPMN models. Then depending on the process it can
either be enhanced with PETs (PE-BPMN stereotypes) or the operations of the tasks can be specified
with the computation script. Specifying the computations allows qualitative leakage analysis with the
leaks-when analyzers. Leaks-When analyzers summarize the data processing to highlight dependencies
between generated data objects and the inputs of the process. Finally, if something is also known about
the input data and the workflow computes an aggregation (can be also an intermediate step for guessing
advantage with collaboration models) then sensitivity analyzers can be used to quantify the leakage.
Note that not all analyzers may be applicable to all processes.

Pleak allows to model the BPMN models supporting the most common elements. However, different
components can use different subsets of these elements. In the following we list the main guidelines for
BPMN modelign in Pleak.

• Each task does one action (rule of thumb: if your task description contains the word and then it
may confuse the analyzer). The main actions are as follows:

– Sending or receiving data (receiving is usually done with message catch event not a task)
– Protect or Open step for some privacy technology
– Data processing, either public data or privacy enhanced data processing

• Each task should have its input and output data clearly marked with incoming and outgoing data
associations respectively

– For most analyzers only data processing tasks that have some inputs and output(s) are mean-
ingful, the main exceptions are the sending tasks and for BPMN leaks-when the task before
the exclusive gateway (used to specify the condition of the gateway)

• For message flows sending data we assume that the sending task has as input the data that is sent
over the network and the receiving task or message catch event has the same data as output

– Sending task should have no output data object
– Data processing and sending tasks need to be separated, the data to be sent should be assem-

bled by previous tasks
– All data communication between pools should occur via the message flows as specified

before
– In short, all communication should be represented as generalized in this Pleak model:
https://pleak.io/pe-bpmn-editor/viewer/UF6lS4kSJoVNyY44SMYQ/
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• One pool should have one process (e.g. one start event)

• For analyzers supporting branching the default flow should be marked when branching

• If two data objects have the same name then they are considered to be the same data by the
analyzers

• Each starting parallel gateway should be concluded with an end parallel gateway

• Some analyzers may not support spaces in the model names. Including the (copy) word added
when you copy a model.

• Pools, lanes and data objects should have unique names

• Avoid starting data object names with the word entity since it may cause errors when parsing the
xml of the model file.

Our wiki in pleak.io/wiki documents different restrictions in detail and is updated as the tools
are developed further.

4.5 Collaborations

The Brandeis program was structured in a way that required collaboration between different performers.
Different projects, each targeting one of the four technical areas (TA) of the project (TA1 — privacy-
enhancing technologies; TA2 — human-data interaction; TA3 — integration; TA4 — measurement),
were combined as Collaborative Research Teams (CRT) around the TA3 projects, with other projects
potentially participating in more than one CRT. The collaboration was considered particularly significant
for TA4 projects, one of which was NAPLES. We worked in all three CRTs of Brandeis, using our
tools to describe, characterize, and analyse the technologies of other partners, as well as the integration
platforms and activities. Below, we report the models that we created, and the analyses we ran, where
analysed systems were proposed in the CRTs.

4.5.1 Mobile CRT. In our modeling and analysis we considered the development of the
RapidGather [69] mobile application and its derivatives for meeting scheduling. Some of these sce-
narios are already discussed in Sec. 4.1.1 to discuss the use of PE-BPMN analysis. In this section we
will extend this analysis of the Mobile CRT processes with some more variants of their processes.

In short the goal of the Mobile CRT was to build a privacy preserving mobile application. Over-
all they considered two main scenarios: crisis discovery and meeting scheduling. Both of these were
approached using various privacy preserving technologies like secure multiparty computation, secure
hardware (SGX) and differential privacy.

4.5.1.1 Scheduling Scenario. This section describes the BPMN Leaks-When analysis of the Mo-
bile CRT scheduling model. In this scenario a meeting time is agreed on using the private data from
the participants calendars. The process model can be accessed in https://pleak.io/app/#/view/
SE2R2wr1S49b_rbaHLhp. You can switch between PE-BPMN and BPMN leaks-when view to see the
relevant input data (privacy technologies in PE-BPMN view and computation scripts in BPMN leaks-
when).

This scenario has two roles (meeting initiator and participant). Meeting initiator is a user who creates
a scheduling request in order to find a suitable meeting time, taking into account each participant’s
calendar. Meeting initiator adds other needed participants by using preloaded “friends list” located
on initiator’s device. After meeting invitation is constructed by the initiator, it is sent to the Scheduling
Server. In addition, the initiator sends its availability data as well, which is encrypted with MPC Server’s
public key. Scheduling Coordinator, which is located inside the Scheduling Server splits the meeting
invitation into information (incl. meeting ID) and participant list so that other participants would only
see the meeting description. The server needs the participant list so that it can send the information to
the relevant users and the meeting ID is needed to be sure which meeting scheduling is taking place.
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Participants must decide, whether they accept the scheduling request or not (modeled as a predicate
is_userChoosestoAccept). If they do, they send a separate response to the Scheduling Coordinator and
their encrypted availability data to Data Relay. If they do not accept the request, they send only their
cancellation to the Coordinator. After collecting all answers, Coordinator analyses, whether all of those
were positive (modeled as a predicate is_answer_positive). If they were not, the whole scheduling
process is canceled and a notification is sent to relevant users. If all answers are positive, Coordinator
notifies Data Relay to send the collected data to Stealth Server.

Data Relay, located inside the Scheduling Server is responsible for collecting availability data. Each
received data is stored in schedule blobs. After receiving participants blob, Data Relay will check,
whether all participants have sent their blob (modeled as a predicate is_blob_count_equal). Upon re-
quest from the Scheduling Coordinator, the blob is sent to the Technology-Specific Front End (in this
case, we call it Stealth’s FE and it is using secure multiparty computation). The blob, consisting of
encrypted availability information data objects, is once again encrypted in the Front End and then sent
to the Stealth’s Server. Stealth Server computes the most suitable time for all participants (including the
initiator) (modeled as filter_compute_meeting_time) and sends the output back to Stealth’s FE, where it
is converted into a meeting time object. This is sent to all participants (including the initiator).

All devices (initator’s and participator’s) receive a result and their device will decide how to proceed
with the result, depending on its header (modeled as a predicate is_result). If it is a cancellation notifi-
cation, they receive a cancellation information. If it is a meeting time, then their device’s iCalendar App
will make schedule an appointment in their calendars.

It is important to note, that data is always exchanged by using a Secure Channel, hence, the message
content does not leak to the network observers.

BPMN Leaks-When Analysis. The output of BPMN leaks-when analysis on the scheduling process
is given in Figure 56. Analysis detects 6 input objects and 1 MPC key (public key is used for encrypting
from the user/Scheduling Server side and the private key is located inside the MPC Server). In addition,
7 output objects are defined in the process. In reality this process has only the result as an output but we
have included the things sent over the network as well.

“Never” means that information from input never leaks into this output. “If” means that it leaks
when specific conditions hold (defined, when hovering the cursor on a “if” condition) and explained in
the following paragraphs. “Always” means that information from input is certainly used to compute the
output.

Firstly, look at the cancellation_result, which is delivered when there is at least one user who has
declined the scheduling process. Scheduling Server sends the cancellation result to all users who were
part of the scheduling process. “If” condition there shows that it leaks when “is_userChoosestoAccept
is passed”. Is_userChoosestoAccept is the part, where participant decides, whether to participate in the
scheduling process or not – if it is passed, the process can continue and when the second condition
holds. This means that information from the invitation leaks, if someone has accepted and now someone
decides to decline. Cancellation is sent by using the correct meeting id, which is stated in the invitation.

For positive result, “is_userChoosestoAccept is passed” (for invitation.info) is considered in addi-
tion is_blob_count_equal has to be also passed. What it means for meeting ID data field leakage, is
that when a positive result is issued, it can be known, which meeting this result belongs to. Both user’s
and initiator’s availability is leaked for positive result if “filter_compute_meeting_time has passed and
is_blob_count_equal holds and is_userChoosestoAccept is passed” meaning that their availability in-
formation is used to do such computations as computing meeting time, making sure that all blobs are
received when all user has accepted the scheduling. However, also indicating that only the time that is
suitable for everyone is filtered out and other data about the calendar does not leak.

For meeting invitation, received from the initiator, both participants and information data fields leak
since those are part of the invitation. Invitation.info leaks for received_participant_blob when user has
chosen to continue with the scheduling process.

256
Approved for Public Release; Distribution Unlimited. 



Figure 56: BPMN Leaks-When Analysis Result for the Mobile CRT Scheduling Scenario

Since Secure Channels are used, there are no other public messages that a third-party would be able
to overhear.

From this analysis it can be concluded that this way of scheduling a meeting protects the user’s data.

4.5.1.2 Crisis Movement Heatmap. This section describes the collection of movement data during
an emergency. The goal is to collect movement data from mobile devices to discover if a serious crisis
has occurred. The core idea is that in case of an emergency like an explosion or shooting, a lot of people
will be trying to get out of the danger zone. Hence, the movement data can be used to discover the
occurrence and location of the crisis.

Stakeholders. This section considers all primary stakeholders in the RapidGather scenario. In essence,
these can be divided to two, ones that are natural in emergency response mobile application scenario and
the ones required by the privacy-enhancing technologies used in RapidGather.

• Mobile device is a device belonging to mobile device user that has RapidGather application. The
following sub-sections list the relevant components of the mobile device that are supplied by
different parties and therefore have to be treated as different trust-domains in privacy analysis.

• RapidGather application is a mobile device application for emergency response. It gathers the
capabilities offered by the privacy technologies into one application and allows the user to specify
how their data can be used.

• Privacy-Enhanced Android (PE Android) is a special version of the Android operating system
that provides secure means to process sensitive data. It can use different Privacy abstraction layer
modules (PAL modules) to process various kinds of data. PE Android also provides logging
services to aid auditing.

• Privacy manager module is responsible for handling the permissions of applications. This includes
recording the choices user makes and enforcing them when the application requires some data.
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• DataCapsule PAL module is the PAL module corresponding to Helio technology. It takes input
data and creates an encrypted capsule that contains the data and usage policy for the data. The
information in data capsules can only be accessed using SGX technology.

• SplitLocation PAL module is used to process location data into secret shared location data that
can be given to PULSAR compute servers.

• Mobile Device user is the human that has a mobile phone and is using RapidGather application.
The user can make choices about how his private data can be accessed and used by the application.

• Command Center is the first responder tool used in case of emergencies. This is used by law
enforcement or emergency and crisis responders to collect information about people and potential
suspects in the area.

• Query Interface is the tool that the users of Command Center (Command Center operators) can
use to initiate data collection or allowed analysis. It can also be used to change the alert level.

• Command Center administrators are responsible for maintaining the essential servers of the sys-
tem. These components themselves are supplied by different parties.
Communication Server is responsible for communicating with the mobile device and computing
servers. Acts in a way as a router between the mobile device, computing servers, and Command
Center software.
Query Server is responsible for mapping queries of the query interface into queries of the required
privacy technology and making them understandable for the plugins of the privacy technologies.
PULSAR Plugin is the part of the Command Center that communicates with the PULSAR compute
servers. It translates the queries into secure computation commands and is able to restore the result
given by the compute servers.

PE-BPMN. The process model for this usecase is available in https://pleak.io/app/#/view/
xy9M9QGxehBbPAkoXSQ8. The movement data is collected on the phone and split to two shares by
SplitLocation PAL module. The aggregation of the movement is carried out by the PULSAR com-
pute servers using secure multiparty computation and the result is displayed at the command center for
inspection. The movement data is considered to be private data of the mobile device user.

The simple disclosure report in Table 22 shows that final heatmap is given only to the command
center and that the intermediate results are protected from the PULSAR services. Hence, this process
achieves its privacy goals.

4.5.2 Enterprise CRT. Enterprise CRT works with a number of scenarios related to the management
of fleets and resources in a coalition setting, meaning that there are several parties that are willing to
cooperate with each other, but do not want to share all of their data with each other.

4.5.2.1 Aid Distribution. In the aid distribution scenario, one country has asked another country to
deliver aid to the first country’s ports by a certain deadline. The aid is delivered on ships, which may
or may not have the type of aid that is requested, which may or may not arrive at the ports of the first
country by the given deadline, and which may or may not fit into the ports. Also, the berths in the ports
may already have been scheduled to host other ships, and thus not be available for the ships of the second
country.

In general the scenario consists of three major steps: A to identify reachable ports, B to determine
feasible ports, and C to determine the docking slot in the port for the ship. For a ship the list of reachable
ports is the set of existing ports that it can make in the given deadline. The set of feasible ports is the
set of ports that are reachable by the ship that could accommodate the ship. Finally, the docking berth
is chosen based on the free docks in feasible ports and the size of the ship. The scenario is specified as
SQL workflow and also a simplified PE-BPMN model.
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Table 22: Simple Disclosure Table for Location Heatmap
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Figure 57: PE-BPMN Model for the Aid Distribution Scenario

Simple disclosure. The simplified PE-BPMN model for the aid distribution scenario considers the
case where the ship and the nation use secure multiparty computation to fix details about the ship arrival
to port as seen in https://pleak.io/app/#/view/MjXG_kn9ms9MbZh-M8md and Fig. 57. It stresses
that the ship should learn which ports it can access and the nation learns the intermediate result about
the feasible ports, whereas they both receive the output about where the ship is actually bound to go.
This is also stressed by the simple disclosure table in Table 23. The simple data dependency graph is
represented on Table, but the details of the dependency are discussed in the following sections.
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Table 23: Simple Disclosure Report for the Aid Distribution Scenario
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Table 24: Simple Data Dependency for the Aid Distribution Scenario
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ship - - - - - * - -
ship slot assignment D D I D I D * D

slot - - - - - - - *

Leaks-when. We have modeled the scenario in Pleak, it is available in https://pleak.io/app/#/
view/cP1p11c7Q5_UjaAZS1jE and in Fig. 58. We see that it is a workflow consisting of three steps,
each of them producing a dataset. The first step computes, which ports a ship with a specific name can
reach by the deadline. The second step filters from these ports the ones into which the ship does not fit.
The third, most complex step selects the ports and berths that are free to receive the ship.

The leaks-when result, when applied to the first step of the workflow, is shown in Fig. 59–60. For
each column (of which there are two — the ID of the reachable port, and the arrival time for the ship with
given name) in the resulting dataset, we obtain a separate result, describing what inputs have affected
the values in this column, how, and when.

Looking at Fig. 59, we see that the ID of the port leaks, as this is the 1st argument of the final
FILTER-node. The 2nd argument describes the condition when it leaks. The leaking condition involves
the attributes longitude and latitude of the same row that has the ID of the port that leaks. It also
involves the only row of the parameters-table. Moreover, the condition states that there must exist a
ship, such that

• the name of the ship is equal to the given shipname;

• the location and the maximum speed of the ship must be such, that it can reach the port by the
given deadline. Here the operation ∆ computes the distance between two points, given by their
geographic coordinates.

Fig. 60 tells us that an expression involving the attributes in the rows of the ship- and port-tables does
leak. We have to understand that this is the arrival time of the ship.
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Figure 58: Workflow for the Aid Distribution Scenario
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Figure 59: Leaks From the First Step of the Aid Distribution Scenario (1st Part)
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Figure 60: Leaks From the First Step of the Aid Distribution Scenario (2nd Part)

The leaks-when result, when applied to the second step of the workflow, is given in Fig. 61. As
the resulting dataset only has a single column, there is a single result. We again see that the ID of the
port leaks. The leakage condition is more interesting. We see that there have to be two rows in the
ship-table (which are allowed to coincide), such that one row describes a ship that can reach the port
with the leaking ID by the given deadline, and the second row describes a ship that can fit into this port.
Moreover, both ships must have their name equal to shipname given as a parameter.

There are a total of seven results for the third step of the workflow, corresponding to the four columns
of the dataset resulting from this step. There can be more than one result for each column, because
internally the analyzer distinguishes the existence and non-existence of a matching row when performing
outer joins. All these results are much more complex than the previous ones. Fig. 62 contains one of
these results. Due to such complicated results, we believe that the for larger systems, the leaks-when
analyzer should be used to state, whether some important checks have to be made for the leak to be
possible, or whether the leakage can only occur through certain sanitizing operations. But it makes no
sense to show to the user the entire graph, corresponding to the entire computation that the system does.

Sensitivity. The somewhat simplified example model is available in https://pleak.io/app/#/
view/ROM40oEkPtkE7uQ6pNnk and Fig. 58.

It contains the following SQL statements.

1 CREATE TABLE parameters (
2 param_id INT8 PRIMARY KEY,
3 deadline INT8,
4 shipname TEXT);
5
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Figure 61: Leaks From the Second Step of the Aid Distribution Scenario
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Figure 62: Leaks From the Third Step of the Aid Distribution Scenario (One Out of Seven Parts)

6 create table port (
7 port_id INT8 primary key,
8 name TEXT,
9 latitude INT8,

10 longitude INT8,
11 offloadcapacity INT8,
12 offloadtime INT8,
13 harbordepth INT8,
14 available Bool);
15
16 create table ship (
17 ship_id INT8 primary key,
18 name TEXT,
19 cargo INT8,
20 latitude INT8,
21 longitude INT8,
22 length INT8,
23 draft INT8,
24 max_speed INT8
25 );
26
27 create or replace function reachable_port() returns TABLE (

263
Approved for Public Release; Distribution Unlimited. 



28 port_id INT8,
29 arrival FLOAT8
30 ) as $$
31 SELECT
32 port.port_id AS port_id,
33 ((ship.latitude - port.latitude) ^ 2 +
34 (ship.longitude - port.longitude) ^ 2) ^ 0.5 / ship.max_speed AS arrival
35 FROM port, ship, parameters
36 WHERE
37 ship.name = parameters.shipname
38 $$ language SQL;
39
40 create or replace function feasible_port()
41 returns TABLE (
42 port_id INT8
43 ) as $$
44 SELECT
45 port.port_id AS port_id
46 FROM reachable_port , port, ship, parameters
47 WHERE
48 reachable_port.port_id = port.port_id
49 AND port.available
50 AND port.harbordepth >= ship.draft
51 AND port.offloadcapacity >= ship.cargo
52 AND ship.name = parameters.shipname
53 $$ language SQL;
54
55 create or replace function ship_arrival_to_port()
56 returns TABLE (
57 min_time FLOAT8
58 ) as $$
59 SELECT min(rport.arrival)
60 FROM
61 reachable_port AS rport,
62 feasible_port AS fport,
63 port, slot, berth, ship, parameters
64 WHERE
65 port.port_id = fport.port_id
66 AND port.port_id = rport.port_id
67 AND port.port_id = berth.port_id
68 AND slot.port_id = berth.port_id
69 AND slot.berth_id = berth.berth_id
70 AND ship.name = parameters.shipname
71 AND berth.berthlength >= ship.length
72 AND slot.slotstart <= parameters.deadline
73 AND slot.slotstart + port.offloadtime <= slot.slotend
74 $$ language SQL;

Table 25 gives the global sensitivity analysis results on the aid distribution scenario. It is interesting
to note that the sensitivity of both reachable and feasible port tasks is infinite with respect to each of
their inputs. On the other hand, the final task actually has only sensitivity 1 with respect to each of its
inputs.The given table shows the aggregated sensitivities over the whole workflow. For example, we can
see in Table 25 that the berth and slot values do not affect the reachable or feasible port data, which is
clear because they are indeed not used to compute these values. For example, this is easy to see also
from the simple data dependency result in Table 24. On the other hand, we can see that the workflow
has infinite sensitivity also for some of the data affecting the slot assignment that is derived from the
fact that these were infinitely sensitive for the intermediate results used to compute the slot assignment.
Hence, this adds more knowledge for the cases when there is some dependency between data objects.

4.5.2.2 Pandemic. Pandemic scenario is related to counting how many people have a particular dis-
ease status. The process model for this usecase is available in https://pleak.io/app/#/view/
gYmOt3NhmdzetD7urJJ_ and in Fig. 63. There are four abstract labels ’S’, ’I’, ’R’, ’D’, each denot-
ing some state. The analyst wants to learn a histogram, which shows how the counts are distributed in
different groups (so-called communities). The output needs to be ε-differentially private, protecting a
single person’s disease status. We want to give a meaning to ε, reducing it to the probability of guessing
particular person’s disease status.
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Table 25: Global Sensitivity for the Aid Distribution Scenario

reachable port feasible port slot assignment
parameters Infinity Infinity Infinity

ship Infinity Infinity Infinity
port Infinity Infinity Infinity
berth 0 0 1
slot 0 0 1

Figure 63: Data Processing Workflow for the Pandemic Scenario

To estimate the advantage on guessing probability, we use results of Sec. 3.3.10.1. Initially, the
attacker has no knowledge about any person’s status, and we may assume that the prior probability of
guessing a state is 0.25. The values themselves are discrete and the distance between any two of them is
defined as 1. We want to know how likely the attacker guesses the count precisely.

Let p be the prior probability of attacker guessing the disease state correctly. Using results of
Sec. 3.3.10.1, given the bound on advantage ε′, we compute differential privacy parameter ε as

ε = − ln
(

p
1 − p

· (
1

ε′ + p
− 1)

)
(45)

In the case of counting histogram, we know that each person occurs in at most one of the groups.
Hence, the queries q1(x), . . . , qm(x) that output the histogram bars can be written as q1(x1), . . . , qm(xm),
where xi is the subset of those people who belong to the i-th group. Since we are looking for the
probability of guessing status of a single person, we may use `1-norm to combine x1, . . . , xn, since
the change in person’s status would affect only one of the xi (we assume that different people are not
correlated). This gives differential privacy for the entire output ε = maxi∈[n] εi, where εi is the value
that we would have if only the i-th histogram bar had been output. Hence, after computing ε as in
Equation 45, we can take εi = ε when sampling the additive noise for a single output.

It is easy to estimate the sensitivity c w.r.t. disease state: if the label of some person changes, the
count of a histogram may at most change by 1. In this particular case, the local sensitivity is no different
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Figure 64: Privacy vs Relative Error for Distribution of Counts per Nation

from global sensitivity. We compute the scaling parameter as described in Sec. 3.3.8.2, which is c
b = 1

b
for b = ε

γ+1 −β, where γ is a noise distribution parameter, and β is a smoothness parameter. Since global
sensitivity is no different from local in this case, we have β = 0. In our tool, we use γ = 4. Hence, the
scaling parameter is γ+1

ε = 5
ε for the ε computed as above. The noise magnitude can now be estimated

as in Sec. 3.3.8.5. For Cauchy distribution, the noise magnitude a = 5
ε means “with ≈ 78% probability

the noise is below a”.
We have run the analysis on a smaller dataset with 5000 people, and plotted some graphs demon-

strating privacy vs relative error for several queries. First, let us assume the attacker has no knowledge
about any person’s status, and hence the prior probability of guessing a state is p = 0.25 for each of the
four disease states.

Distribution of counts per nation. The query returns a histogram, showing how many people have a
certain disease status in each of the three nations.

1 SELECT nation.nation_name , person2diseasestate.diseasestate , COUNT(*)
2 FROM person
3 JOIN community ON community.community_id = person.residence
4 JOIN person2diseasestate ON person2diseasestate.person_id = person.person_id
5 JOIN nation ON nation.nation_id = community.nation_id
6 WHERE person2diseasestate.transitionDate <= ’04-10-2017’
7 GROUP BY nation.nation_name , person2diseasestate.diseasestate
8 ORDER BY nation.nation_name;

The analysis results are depicted in Figure 64. We see that we can keep both the relative error and
the advantage below ca. 10%.

Distribution of counts per community. The query returns a histogram, showing how many people
have a certain disease status in each community group. The partitioning is now finer, hence, we need
more noise to conceal the data.

1 SELECT community.community_name , person2diseasestate.diseasestate , COUNT(*)
2 FROM person
3 JOIN community ON community.community_id = person.residence
4 JOIN person2diseasestate ON person2diseasestate.person_id = person.person_id
5 WHERE person2diseasestate.transitionDate <= ’04-10-2017’
6 GROUP BY community.community_name , person2diseasestate.diseasestate
7 ORDER BY community.community_name;

The analysis results are depicted in Figure 65. We see that we can now keep the relative error and
the advantage below 20%.
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Figure 65: Privacy vs Relative Error for Distribution of Counts per Community

Figure 66: Communitywise privacy vs relative error for distribution of counts per community

Policy restricted distribution of counts per community. This set of queries is similar to the previous
one, but it outputs a histogram bar only if the query maker has the right to see it. In our dataset, each
policy authority is allowed to see the count of exactly one community. Here is an example of this query
for authority ’AlcoyAuthority’.

1 SELECT community.community_name , person2diseasestate.diseasestate , COUNT(*)
2 FROM person
3 JOIN community ON community.community_id = person.residence
4 JOIN person2diseasestate ON person2diseasestate.person_id = person.person_id
5 JOIN policyauthority2community ON
6 policyauthority2community.community_id = community.community_id
7 JOIN policyauthority ON
8 policyauthority.authority_id = policyauthority2community.authority_id
9 WHERE policyauthority.authority = ’AlcoyAuthority’

10 AND person2diseasestate.transitionDate <= ’04-10-2017’
11 GROUP BY community.community_name , person2diseasestate.diseasestate
12 ORDER BY community.community_name;

The results for all policy authorities are depicted in Figure 66. We see that the results are very
different for different communities. While ’Cebu City’ enjoys the possibility of error and advantage
below 10%, the situation is awful for ’Alcoy’. The reason is that the population of ’Cebu City’ is
very large(1118 people), but it is very very small for ’Alcoy’ (4 people), so the relative error becomes
naturally huge.
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Figure 67: Privacy vs Relative Error for Distribution of Disease Risk Factor Counts for the Entire
Population

Counting disease risk factor. The set of Pandemic queries contains one query that returns a his-
togram, showing how many people have a certain disease risk factor. The difference from the disease
state counts is that there are now 7 possible values, and the ordering seems important, so we have R = 7
in the estimation of ε. The sensitivity if this query w.r.t. the disease risk factor is 1, similarly to counting
disease states. The counts are now done for the entire population, without partitioning it to nations or
communities. We again assume that the prior distribution is uniform, so p = 1

7 ≈ 0.143.

1 SELECT person2diseaseriskfactor.riskfactor_id , COUNT(*)
2 FROM person2diseaseriskfactor
3 JOIN person ON person.person_id = person2diseaseriskfactor.person_id
4 GROUP BY person2diseaseriskfactor.riskfactor_id
5 ORDER BY person2diseaseriskfactor.riskfactor_id;

The analysis results are depicted in Figure 67. We see that we can keep both the relative error and
the advantage below ca. 8%. The results are better since more people are involved into the count, and
they are not partitioned to nations or communities.

Non-uniform prior. Assuming p = 0.25 for each of the four disease states is a quite rough simplifica-
tion. In reality, the attacker would be able to know e.g. that a person is more likely recovered than dead.
Let us discuss another way of estimating prior distributions.

A stream process of each object can be characterized by a state transition matrix, which defines the
probabilities of moving between the states. This matrix can be known in advance, or it can be computed
from the data itself. For each object u, we can compute the probability of going from the state sa to
the state sb as Na→b

T−1 , where Na→b is the total number of times the object moved from state sa to state sb,
and T is the total number of time units. The computation includes also the cases a = b, so T − 1 is the
correct value for the total number of transitions, even if the object has not changed its state at some time
point. After constructing the transition matrix Bi for each i ∈ [n], we may find the probabilities pt

i j of
the object ui being in the state s j at time t.

In our experiment, we compute the transition between different states of a single person. This actu-
ally does not correspond to real world, as the next state of a person depends not only on his own current
state, but also on the current states of the other people, who may infect him. We would need a more
complicated Markov process that takes into account the state of the entire database, but we would need
more data to compute such a model.

We apply our theory to the 5000 people Pandemic dataset, where the disease states are measured for
10 different timepoints. Our analysis consists of the following steps:

1. Compute prior probabilities using transition matrix method.
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2. Given the number of timepoints T = 10, the initial state distribution, and the desired bound δ on
guessing advantage, we compute the ε1

i , . . . , ε
T
i sufficient after 1, . . . ,T queries are made.

3. For each t, compute the relative error caused by the given choice εt
i , and plot the graphs.

We now describe how the experiment has been performed. First, we collect all possible states and
times that have been recorded.

1 DROP TABLE IF EXISTS times;
2 SELECT DISTINCT transitiondate AS t INTO times FROM person2diseasestate
3 ORDER BY transitiondate ASC;
4
5 DROP TABLE IF EXISTS states;
6 CREATE TABLE states (s dstype);
7 INSERT INTO states VALUES (’S’), (’I’), (’R’), (’D’);

First, we want to have a clear view on the disease state of each person for each day. The table
person2diseasestate contains only transitions, and we want to recover the states of all people from
that. Let us create a new table data for this, where s is the state, u is the object, and t is the timepoint.

1 CREATE TABLE data (s dstype, u bigserial , t date);

Initially, all the people are in state ’S’, so until any transition takes place, the person is still in ’S’. A
person was in recovered state on day d iff his state has changed to ’R’ before (including) the day d.

1 INSERT INTO data
2 SELECT ’R’, person.person_id , dates.transitiondate
3 FROM person, dates, person2diseasestate AS pds
4 WHERE pds.person_id = person.person_id
5 AND pds.diseasestate = ’R’
6 AND pds.transitiondate <= dates.transitiondate;

Similarly, a person was dead on day d if his state has changed to ’D’ before (including) the day d.

1 INSERT INTO data
2 SELECT ’D’, person.person_id , dates.transitiondate
3 FROM person, dates, person2diseasestate AS pds
4 WHERE pds.person_id = person.person_id
5 AND pds.diseasestate = ’D’
6 AND pds.transitiondate <= dates.transitiondate;

A person was sound on day d if his disease state has not changed before (including) the day d.

1 INSERT INTO data
2 SELECT ’S’, person.person_id , dates.transitiondate
3 FROM person, dates
4 WHERE NOT EXISTS (SELECT * FROM person2diseasestate
5 WHERE person_id = person.person_id
6 AND transitiondate <= dates.transitiondate);

Finally, a person was infected on day d if his disease state has changed to ’I’ before (including) the
day d, and has not changed to any other state before (including) the day d.

1 INSERT INTO data
2 SELECT ’I’, person.person_id , dates.transitiondate
3 FROM person, dates, person2diseasestate AS pds
4 WHERE pds.person_id = person.person_id
5 AND pds.diseasestate = ’I’
6 AND pds.transitiondate <= dates.transitiondate
7 AND NOT EXISTS (SELECT * FROM person2diseasestate
8 WHERE person_id = person.person_id
9 AND transitiondate <= dates.transitiondate

10 AND NOT diseasestate = ’I’);

To compute Pr[sa → sb] for each pair of states, we need to compute the following queries:

1 DROP TABLE IF EXISTS transitions;
2 SELECT d1.s AS s1, d2.s AS s2, SUM(1 / totalcount.cnt :: FLOAT) AS pr
3 INTO transitions
4 FROM data AS d1, data AS d2,
5 (SELECT d1.s, COUNT (*) AS cnt
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6 FROM data AS d1, data AS d2
7 WHERE d1.u = d2.u
8 AND d2.t - d1.t = 1
9 GROUP BY d1.s) AS totalcount

10 WHERE d1.u = d2.u
11 AND d1.s = totalcount.s
12 AND d2.t - d1.t = 1
13 GROUP BY d1.s, d2.s;

The table transitions now contains all data describing a transition matrix B. We now set
π0 = [1, 0, 0, 0] (initially, all people are in the state ’S’), and then compute πk = πk−1 · B for all
k ∈ {1, . . . ,T }, where T is the number of timepoints. Let us assume that the results are put into ta-
ble priors(s dstype, t date, pr FLOAT);

We are going to plot the results using a 2D graph, where the x-axis is the guessing advantage, and the
y-axis is the relative error. For each time point, we plot a separate graph line. Since the histogram has
several real outputs, and there is a separate histogram for each timepoint, each having its own relative
error, we plot the `2-norm of all errors as an aggregated error. An important difference from the previous
phase experiments, where only one timepoint was considered, since the prior probabilities of different
timepoints are different, having same guessing advantage δ does not mean that the guessing probability
is the same.

To estimate the error correctly, we need to compute the actual counts.

1 SELECT statetimes.s AS s, statetimes.t AS t, COUNT(data.u) AS cnt
2 INTO occupancy
3 FROM statetimes
4 LEFT JOIN data ON statetimes.s = data.s AND statetimes.t = data.t
5 GROUP BY statetimes.s, statetimes.t;

We take a set of different guessing advantages δ

1 CREATE TABLE deltas (delta FLOAT);
2 INSERT INTO deltas VALUES (0.01), (0.02), (0.03), (0.04), (0.05), (0.07),
3 (0.1), (0.2), (0.3), (0.5), (0.75), (0.9),
4 (0.92), (0.95), (0.96), (0.97), (0.98), (0.99);

From prior probabilities and δ-s, we can now compute the corresponding values for ε. Since Post-
greSQL does not support ε = ∞, we write ε = −1 instead, and treat is as a special case.

1 DROP TABLE IF EXISTS epsilons;
2 SELECT priors.s AS s, priors.t AS t, deltas.delta AS delta,
3 (CASE WHEN priors.pr = 0 OR deltas.delta + priors.pr >= 1 THEN -1
4 ELSE -ln(((1.0 / (deltas.delta + priors.pr)) - 1) *
5 (priors.pr / (1 - priors.pr))) END) AS epsilon
6 INTO epsilons
7 FROM priors, deltas;

We are now ready to estimate the relative error. We know that the sensitivity of the COUNT query
w.r.t. diseasestate is 1. Since this sensitivity is also global, the smoothness parameter is β = 0. In this
experiment, we estimate the amount of noise coming from Laplace distribution 1

2λ · e
−
|x|
λ , where λ = 1

ε .
We want to find an upper bound on the noise achieved with probability ≈ 78%, as we did it with Cauchy
distribution. The noise magnitude can be estimated as in Sec. 3.3.8.5, and a =

− ln(1−0.78)
ε is a fine bound

on noise magnitude. If there are k related DP outputs, we need to divide ε by k to get the same privacy
level, so the noise magnitudes will be of the form − ln(0.22)k

ε . Hence, we compute the error once for each
ε, and then just multiply it by k for the k-th graph.

1 SELECT epsilons.s AS s, epsilons.t AS t, epsilons.delta AS delta,
2 (CASE WHEN epsilon = -1 THEN 0 ELSE (-ln(0.22) / epsilons.epsilon) /
3 occupancy.cnt END) AS error
4 INTO pdps
5 FROM epsilons , occupancy
6 WHERE epsilons.s = occupancy.s
7 AND epsilons.t = occupancy.t;
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Figure 68: Privacy vs Relative Error for Pandemic Scenario with Priors Generated from Markov
Process for 1 . . . , 10 queries

We have performed this experiment on Pandemic scenario with 5000 people and 10 days. We assume
that the counts have been published for each day, and report how much the attacker learns if he observes
1 . . . 10 of these counts. The results are depicted in Fig. 68.

In a real applications, it is likely that it is not known in advance how the prior distribution changes
with time. We may assume an attacker who starts with some prior, which he updates after he sees output
of some query applied to that data. If the policy authority assumes that posterior probability may change
up to δ after seeing T outputs, we may bound advantage of each single step by δ

10 .
1 DROP TABLE IF EXISTS epsilons;
2 SELECT statetimes.s AS s, statetimes.t AS t, deltas.delta AS delta,
3 (CASE WHEN t * delta / 10.0 + priors.pr >= 1 THEN -1
4 ELSE -ln(((1.0 / (t * delta / 10.0 + priors.pr)) - 1) *
5 (((t - 1) * delta / 10.0 + priors.pr) /
6 (1 - ((t - 1) * delta / 10.0 + priors.pr)))) END) AS epsilon
7 INTO epsilons
8 FROM deltas, statetimes , priors
9 WHERE priors.s = statetimes.s;

Since a prior probability 0 never becomes anything different from 0, we started from a distribution
where all states have positive probabilities. For the experiment, we took Pr[′S′] = 0.97, and Pr[′I′] =

Pr[′R′] = Pr[′D′] = 0.01. The results are given in Fig. 69, and we see that the error are around 10 times
higher than for Fig. 68 where we used a Markov process. Indeed, updating priors step by step may lead
to huge overestimations, since an upper bound is not tight.

4.5.3 IoT CRT. The Internet-of-Things CRT is fitting out a major building at the University of Cal-
ifornia, Irvine (UCI) campus with a number of sensors, including various sensors for presence (WiFi
access points, beacons, cameras) and for measuring environmental conditions (in particular, tempera-
ture). The collected data can be used to let the building respond better to the needs and preferences of its
inhabitants, to simplify the navigation in the building, to facilitate interaction between the inhabitants,
etc. While some applications for concrete tasks have currently been built, e.g. a system for locating and
reserving meeting rooms, or an app guiding its user throughout the building, the goal of IoT CRT is not
to build apps for particular tasks, but to support an open API through which the data collected through
the sensors may be used.

TIPPERS system processes the data collected by the sensors, as indicated by the policies of other
stakeholders. It receives the raw data from the installed sensors and turns it to presence data. For this
purpose, it makes use of the registry about the relationships between users and their devices; it maintains
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Figure 69: Privacy vs Relative Error for Pandemic Scenario with Priors Generated Iteratively for
1 . . . , 10 queries

this registry. It stores the presence data of users according to the policies of both the sensors and the
users. It can respond to queries about the locations of users either in present or in the past, again subject
to users’ policies. I.e. the TIPPERS system is trusted in enforcing at least certain parts of the policies of
the users.

TIPPERS system provides an interface to these privacy-enhancing technologies that are available
in the system. Some of the data collected by the building, or given by the users, may be stored and
processed with the help of these technologies, so the TIPPERS system does not necessarily have full
access to all data.

It is possible to recognize a couple of well-defined subsystems of the TIPPERS system. The location
tracking subsystem receives the locations of the mobile devices in the building, associates them with
users, and stores the location data of them. The policy enforcement subsystem releases the location data
subject to policies of the involved users. The data publishing subsystem makes the bulk of location data
available to researchers, applying privacy enhancing technologies before its release.

The IoT scenarios are somewhat different from the ones in other two CRTs. Namely, IoT CRT
“naturally” considers long-running processes, e.g. the tracking of the locations of the inhabitants of the
building. These bring some unique challenges into the modeling and analysis, and have inspired certain
conventions that we have applied during our modeling of the relevant processes.

4.5.3.1 Presence Scenario. In the presence scenario we consider analysis of campus locations and the
number of people in there. The building is the Donald Bren Hall — the computer science building at
UCI campus. It contains several subsystems for sensing, for systematizing collected data, for managing
the users and their privacy expectations, for storing and updating certain (but not all) sensitive data.
Users are the regular and the sporadic inhabitants of the Bren Hall. The building collects their data,
which it uses for their well-being.

The building is outfitted with physical sensors collecting data about users, their mobile devices, and
the environment. There are WiFi access points, which record the MAC addresses of the devices associ-
ating with them, and provide a coarse-grained location sensing. There are Bluetooth proximity sensors,
which associate with nearby mobile devices and provide a more fine-grained sensing of locations. There
are temperature sensors.

IoT Resource Registry keeps track of the sensors present in the building, and any privacy policies
associated with them. These privacy policies describe the extent of control available to the users when
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regulating the movement of data pertaining to them, collected by these sensors, through the entire TIP-
PERS system. The privacy policies of the users have to be aware of the policies associated with sensors.

Formally, there is a set of objects (e.g. people) and a set of possible states of these objects (e.g.
locations). From time to time, an object reports its state to the system. The model consists of one table
with the schema (object_id, startTime, endTime, state, confidence), containing measurements
of an object’s state in certain time periods. From this table, a state occupancy table with the schema
(state, timestamp, count) is computed. The occupancy table tells how many objects have had certain
state at a certain point of time. A histogram of state occupancy is periodically updated and shown to an
observer. Let q be the query computing the occupancy counts. The output has form of a stream, and
some privacy mechanismMq(·) is applied to each timepoint of the stream, to prevent the observer from
learning the states of individual objects. Our goal is to estimate how much the attacker is able to infer
about states of individual objects from the occupancy counts, comparing different privacy mechanisms
with different parameters. Our goal is to answer the following questions:

1. How much the attacker is able to infer from the output without differential privacy?

2. How much the attacker is able to infer from the output with ε-differential privacy?

3. What is the utility loss for the given ε?

We do not provide a Pleak model for this use case. The model itself is very simple, and there are no
Pleak analysis tools that could be applied to it directly since the settings are too specific. In the context
of our privacy study, we are comparing the following privacy mechanisms.

Laplace Mechanism. Standard differential privacy (DP) mechanism, which adds noise sampled from
Laplace distribution Lap(λ)(z) ∼ 1

2λe
−|z|
λ , where λ is a scaling parameter.

PeGaSus Mechanism. PeGaSus [72] is an DP mechanism for stream data. Differently from TTL,
the PeGaSus mechanism is formally well defined. After adding Laplace noise to an output, the results
are smoothed, so that the stream data gets better utility while still satisfying ε-DP as it would with plain
Laplace noise.

Time-to-Live Mechanism. In the TTL (time-to-live) mechanism, the unique identifiers of the objects
change every k minutes for a fixed parameter k. Formally, its goal is to protect data before computing the
counts, so that an observer would not be able to track movement trajectories. It is not a DP mechanism,
and it gives no provable guarantees of privacy w.r.t. released counts, as counting does not depend on the
object identities anyway. The only way in which TTL can affect released counts is that the same user
may be recorded multiple times if his identity has been updated within the 10-minute span for which the
count is computed.

Experiment. The experiments are performed on presence and occupancy records for 3 months (Febru-
ary, March, April, 2018), which comprises N = 89 days. We use the first N − 1 days of presence data
for constructing prior probabilities. We then use the last N-th day of the occupancy table to compute
posterior probabilities, showing how attacker’s guesses improve compared to guessing from prior. Our
analysis consists of the following steps.

1. We split a day into 10-min spans. This gives us T = 144 time units per day.

2. For each 10-min span t of a day, for each location l and each user u, we compute prior probabilities
Pprior(u,t,l) from the first N − 1 days.

3. Based on the prior probabilities Pprior(u,t,l) and the noisy occupancy counts generated by a partic-
ular privacy mechanismM on the N-th day, we compute the posterior probabilities PMnoisyOcc(u,t,l).
Among other mechanisms, we estimate M(x) = x (guessing from true occupancy counts) and
M(x) = ⊥ (guessing just from prior).

4. Let Ptrue(u,t,l) ∈ {0, 1} be the actual user locations, i.e., Ptrue(u,t,l) = 1 iff u was in location l at time
t. Compute the following for each user u and time t:

PMguess(u,t) =
∑
l∈L

PMnoisyOcc(u,t,l) · Ptrue(u,t,l) .
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5. Plot aggregate privacy metric: how many people have been localized correctly from PMguess(u,t)
with a probability within certain range, excluding those who have been localized with similar
confidence purely from prior.

For a fixed timepoint t, the attacker receives a prior distribution of location of an “average user”,
expressed as pt

l ∈ [0..1] for all l ∈ L, where
∑

l∈L pt
l = 1. The values pt

l are computed from the training
period using counting. That is, for each time of day t, we count the total number of users mt

l recorded
in region j at time t, and define pt

l = mt
l/

∑
l∈Lmt

l. Hence, the prior defines an expected distribution over
region counts for different times of the day.

The attacker receives noisy occupancy counts (yt
l)l∈L of all regions at timepoint t. Depending on the

attacker type, certain regions in the buildings are opened. If the opening does not reveal the location of u

immediately, it modifies the priors as pt
ul =

pt
ul∑

`∈Lclosed
pt

u`
for l ∈ Lclosed, where Lclosed is the set of regions

that remained closed.
The posterior distribution is estimated using the results of Sec. 3.3.10.7 as

fX(x|Y = y) =

∑m
z=1 fX(x|Cg = z) · fY (y|z) fC(z)∑m

z=1 fY (y|z) fC(z)
,

where the probabilities are instantiated as follows.
• fX(x|Cg = z) = z

m .

• fC(z) =
(
m
z

)
pz(1 − p)z, where p = fX(x).

• fY (y|z) depends on the particular analyzed privacy mechanism.
The quantity fY (y|z) is approximated from (y, z) points of training data using kernel density esti-

mation (KDE). We use Gaussian kernel of Python scipy library [73]. By default, the Gaussian KDE
bandwidth parameter in scipy library is n−1/(d+4), where n the number of data points and d the num-
ber of dimensions. In our case, n comes from the training data (88 days), and since we are computing
a separate kernel for each true count z (the approximated probability density is conditional), we have
d = 1. We note that attacker’s success may depend on the bandwidth parameter, and choosing one that
approximates the noise distribution most precisely is out of scope of this work.

The posterior confidence of the attacker may be erroneous due to improperly computed noise dis-
tribution, or improperly computed priors. The latter may happen even if we use a well-defined DP
mechanism. Hence, we add an important condition to our privacy metric. We model a particular at-
tacker who actually makes a particular guess about victim’s location. We then check whether that guess
has been correct or not, and nullify the estimated advantage if the guess was incorrect.

Results. The results of our experiments are presented as plots (a sample plot is given in Figure 70). For
each of the T timepoints, we count the total number of people whom the attacker managed to localize
correctly with certain confidence, defined as the posterior probability of being in the room where the user
has actually been according to the presence table. On each plot, the x-axis denotes the timepoint, and
the y-axis is the number of localized people. The colors, ranging from light blue to dark red, correspond
to localization confidence p, where light blue is the lowest confidence class (0.0 < p ≤ 0.1), and dark
red is the largest confidence class (0.9 < p ≤ 1). Notice that the plot shows for each time point the total
amount of people localized in the building broken into different confidence classes. This means that, for
instance, out of the 123 people located in the building at 11:40am of the particular day in Figure 70, 22
are localized with the lowest confidence 0.0 < p ≤ 0.1, 55 with confidence 0.1 < p ≤ 0.25, 26 with
confidence 0.25 < p ≤ 0.5, and 20 with confidence 0.5 < p ≤ 0.75. There are no red and dark red areas
for 11:40am, so there have been no people localized with confidence p > 0.75. The plot format will
be the same for all plots in this work, so we will avoid repeating labels and legends on further plots to
conserve space.

We now compare different privacy techniques w.r.t. the attacker’s success in breaking user privacy
for the same level of utility.
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Figure 70: A Sample Plot: x-Axis is the Timepoint, y-Axis the Total Number of People Localized
Within Each Confidence Class

Setting up Privacy Parameters. To fairly compare privacy loss across diverse PETs, their utility
should be similar as there is an inherent privacy vs. utility tradeoff.

The presence database made available by the IoT CRT included aggregated data — the number of
people present in each room of the Donald Bren Hall, recorded every five minutes. In fact, the same
aggregations were available thrice — once as precise occupancy counts, once sampled as differentially
private counts with ε = 1, and once sampled as differentially private counts with ε = 0.1. The last two
datasets were computed with the help of the PeGaSus tool, representing one sample of its differentially
private information release mechanism.

There was interest in the loss of utility that would occur, if one of the datasets with differential
privacy were used instead of the precise one. To answer this question, one first has to specify the
meaning of utility. It was discussed in the IoT CRT, and the utility was defined as “not missing significant
events”. Moreover, a significant event was defined as a room having an occupancy that is at least two
standard deviations away from its average occupancy. To measure the utility, one thus has to determine
the number of significant events in the dataset with precise counts, and then determine (i) how many of
these events are missed in the differentially private dataset, and (ii) how many time an occupancy count
in the differentially private dataset would count as a significant event, even though it is not significant in
the precise dataset.

This approach makes “loss of utility” a property of a particular sample of the differentially private
mechanism. A better description of the utility loss of the PeGaSus mechanism would consider this
loss as a random variable (where the random choices are those made by the mechanism), and describe
this variable by e.g. its mean, standard deviation, and other characteristics. Generalizing even more,
the underlying presence dataset should also be varied, and a suitable summarization mechanism found.
Still, despite the naïveté of this approach, it presents a clear way forward: it has clearly stated what
“utility” means. This measure of the utility can now be targeted by the designers of differentially private
information release mechanisms.

We have performed the necessary counts and determinations of significant events in the datasets that
were made available. We made the following counts:

• The dataset with precise counts had 2,934,932 data points. Each data point states the occupancy
count of a particular room (or a set of rooms) at a particular moment. The timepoints range from
the beginning till the end of the month of February, 2018.

• The differentially private datasets had the same data points, but only for a subset of rooms. The
number of data points in both datasets was 1,048,575. As all these points also existed in the
precise dataset, we used these points to preform the utility analysis.

• Out of these 1,048,575 data points, 54,177 were determined to be “significant events”. The other
994,398 data points did not represent significant events.

• The differentially private dataset for ε = 1 contained 27,031 of these significant events, mean-
ing that it missed 27,146 of them. Additionally, this dataset falsely characterized 36,979 non-
significant events as significant. The remaining 957,419 data points were correctly characterized
as non-significant.
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• The differentially private dataset for ε = 0.1 contained 14,444 of these significant events, mean-
ing that it missed 39,733 of them. Additionally, this dataset falsely characterized 98,191 non-
significant events as significant. The remaining 896,207 data points were correctly characterized
as non-significant.

TIPPERS team has developed a tool which, given a specific task, obtains the configuration param-
eters per PET (i.e., epsilon and TTL) that will satisfy a given utility requirement. The parameters for
PeGaSus, Laplace, and TTL that give us the utility 75% and 90% are summarized in Table 26. Since
the privacy parameters for the same utility are very different for day and night time, different privacy
parameters are extracted for day and night times. Since the utility is averaged over time and space, we
also show average variance in utility over time and space σu.

Table 26: Parameters Achieving the Same Utility for Different Privacy Mechanisms

utility Laplace PeGaSus TTL
σu ε σu ε σu T

day 75% 23.7 0.1 24.1 0.04 20.4 1sec
90% 14.5 0.66 16.9 15 14.9 2min

night 75% 26.6 0.18 26.6 0.00001 19.5 1sec
90% 19.3 1.675 19.5 4 19.5 1sec

Results per attacker type. We consider certain types of realistic attackers in the context of the dataset.
There are 64 regions in the building, each having typically granting access to different profiles of people
(e.g., students, professors, staff). We will consider three types of attackers based on such information.

1. An external attacker who is not present in the building and thus, does not have access to any region
(i.e., 0 open regions).

2. A student (or a group of students) who coordinate an attack and gain access to all regions where a
student can enter (i.e., 37 open regions). This includes classrooms and public areas.

3. A building administrator who has access to the security camera system and thus has access to all
the regions covered by cameras (i.e., 39 open regions). This set of spaces includes public areas as
well as corridors near offices.

Figures 71-73 compare different privacy techniques in different settings for the three types of at-
tackers. The columns correspond to the four types of experiments (day/night, 75%/90%-utility), and the
rows to different privacy mechanisms, including guessing from true counts (the last row). In each graph,
the X-axis is time (7am-7pm for day and 7pm-7am for night in intervals of 10 minutes) and the Y-axis
is the number of people correctly localized at each confidence level. Note that the scaling of Y-axis for
day and night time are different, as the total number of people in the building is very different for them.
As the noise added by DP techniques will be different in different executions, each experiment has been
repeated n=30 times, and for each posterior probability class we took the average number of people that
has been guessed with that probability. We consider that in the case of these realistic adversaries an open
region implies that the adversary knows exactly who is inside of it. Thus, in the following we consider
such information to be prior. In the plots we focus on how the different privacy mechanisms affect the
guessability of the individuals in closed rooms.

For the weakest adversary (an external attacker), the practical privacy offered by Laplace and Pe-
GaSus is almost the same than the one offered by TTL, which is much easier to set up. Even when
the practical privacy for Laplace and PeGaSus is similar, for higher utility values the formal privacy
guarantee for PeGaSus is less than Laplace during the daytime and nighttime (when ε gets extremely
large to provide the same level of utility), whereas for lower utility values it is the opposite. When the
adversaries become stronger (e.g., the student or administrator attacker), Laplace and PeGaSus offer
more practical privacy than TTL, as it is expected. However, in some specific situations (e.g., in the
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Day Night
75% utility 90% utility 75% utility 90% utility

Laplace, ε = 0.1 Laplace, ε = 0.66 Laplace, ε = 0.18 Laplace, ε = 1.675

PeGaSus, ε = 0.04 PeGaSus, ε = 15 PeGaSus, ε = 0.00001 PeGaSus, ε = 4

TTL, 1 sec TTL, 120 sec TTL, 1 sec TTL, 1 sec

True counts True counts True counts True counts

Figure 71: Comparison of Different Mechanisms for the External Visitor Attacker

afternoon when the building is less occupied) all the techniques behave similarly. Additionally, with
stronger attackers the privacy loss due to the prior and adversarial knowledge at the time of the attack is
high already. This means that effectively, in such situations the privacy of most of the individuals would
be already compromised. Therefore, the difference between the differential privacy based techniques
and TTL in terms of number of people being localized is small.

Experiments with theoretical attackers. We have also performed some more experiments with the-
oretical attackers with quantitatively defined strength. In particular, we assume that the attacker receives
exact locations of some δ ∈ {0%, . . . , 90%} of the users in the system (the victim is not among these).
This is done by opening some rooms at random, so that the number of people in those rooms is ca δ ·m,
where m is the total number of people recorded in the building. Opening the rooms modifies priors,

as pt
i j =

pt
i j∑

k∈J pt
ik

for j ∈ J , where J is the set of rooms that remained closed. The attacker estimates
posterior probability of the victim being in each room. Since the rooms are opened in such a way that
the victim is not among these, the strongest attacker will be the one with largest δ.

The plots of prior probabilities are given in Figure 74. The three columns correspond to the initial
knowledge of the attacker, where he already knows δ ∈ {0%, 50%, 90%} of people locations. We see
that, for larger δ, the attacker learns a lot already from priors. However, we will see that it gives larger
advantage as well.

We demonstrate guessing advantage from known noise distribution on example of Laplace noise.
We compute PY (x, y,A) for a particular instance of noisy counts, PC(x, c,A) for a particular instance
of true counts, and PP(x,A) for the general distribution of counts, assuming that we have the same
number of timepoints, users, and rooms about which corresponding attackers make their guesses. The
quantities PY (x, y,A), PY (x, y,A), PY (x, y,A) are computed as in Sec. 3.3.10.7. The additional knowledge
A depends on δ and just re-scales the priors as described above.
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Day Night
75% utility 90% utility 75% utility 90% utility

Laplace, ε = 0.1 Laplace, ε = 0.66 Laplace, ε = 0.18 Laplace, ε = 1.675

PeGaSus, ε = 0.04 PeGaSus, ε = 15 PeGaSus, ε = 0.00001 PeGaSus, ε = 4

TTL, 1 sec TTL, 120 sec TTL, 1 sec TTL, 1 sec

True counts True counts True counts True counts

Figure 72: Comparison of Different Mechanisms for the Student Attacker

In Figure 75, we present results for PY (x, y,A), where the rows of the plot matrices correspond to
ε ∈ {0.1, 1.0, 5.0, 10.0,∞}, where ∞ is guessing from true outputs, and 0.0 guessing purely from prior,
which we do not plot as it would give an empty graph with zero advantage. We can see how confidence
increases with ε. It is interesting that ε ≥ 5.0 already gives us a plot very similar to guessing from
true outputs, so it does not make sense to consider larger epsilons. For smaller epsilons, we indeed get
smaller confidence, which converges to 0 as ε → 0. While the posterior probability always increases
with δ, we see that the advantage may sometimes be larger for smaller δ, which means that the attacker
guesses so poorly from prior that even a very noisy answer gives some benefits.

The posterior guesses are compared in Figure 76 for particular noisy outputs (left), particular true
counts (middle), and for the general distribution (right). We have generated just one instance of noisy
counts, and indeed with high probability we expect something similar that we would get in average for
the particular true counts. The general distribution also gives us quite similar results. We see that the
instance-based approach, which is the fastest to analyze (see Table 27 for time benchmarks), gives a
reasonable estimate for the general distribution as well.

It is interesting to compare new results with the worst-case upper bound estimate of Sec 3.3.10.1,
which does not depend neither on δ nor the particular counts, and holds for any ε-DP mechanism. The
results are given in Figure 77 for ε ∈ {0.1, 1.0, 5.0, 10.0}. We see that, for larger ε, the upper bound gets
larger than the probabilities of guessing from true counts, so the upper bound is too rough for our type
of attacker. Indeed, if we had the strongest DP attacker, then all guessing probabilities for true counts
would be 1 in the worst case, as knowing everyone’s location except the victim, together with counts,
would leak the exact location of the victim. The bounds seem to be good for very small ε.

Table 27 shows the times of computing the posterior probabilities for δ ∈

{0%, 10%, 25%, 50%, 75%, 90%} (note that there were more δ instances tested, and we only plot-
ted some of them). Since larger ε requires a finer partitioning of the integration over y, we report
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Day Night
75% utility 90% utility 75% utility 90% utility

Laplace, ε = 0.1 Laplace, ε = 0.66 Laplace, ε = 0.18 Laplace, ε = 1.675

PeGaSus, ε = 0.04 PeGaSus, ε = 15 PeGaSus, ε = 0.00001 PeGaSus, ε = 4

TTL, 1 sec TTL, 120 sec TTL, 1 sec TTL, 1 sec

True counts True counts True counts True counts

Figure 73: Comparison of Different Mechanisms for the Administrator Attacker

Table 27: Running Times (in Seconds) of Computing Posterior Probabilities for Laplace Noise

Preprocess ε = 0.1 ε = 0.5 ε = 1.0 ε = 5.0 ε = 10.0 ε = 20.0 total time
worst-case DP 4.8 0.58 0.57 0.57 0.62 0.60 0.62 8.8

PY (x, y,A) 5 5.1 5.1 5.2 5.4 5.5 5.5 38.4
PC(x, c,A) 5.2 756 180 182 231 233 300 1898
PP(x,A) 5.5 930 320 450 760 1020 1340 4840

different times for different ε values separately. We see that, while in general computation time grows
with ε, this is also larger for ε = 0.1 as well. The reason is that the noise of smaller ε has larger variance,
so in the integration we need to cover a larger span of y values for which the noise is non-negligible.

Summary. Differential privacy in general consider very strong attackers that have access to almost
unlimited information. In our set up with more realistic adversaries, we have seen that when the adver-

Figure 74: Prior Guessing Probabilities for δ = 0% (Left), δ = 50% (Middle), δ = 90% (Right)
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Figure 75: Posterior Guesses from Noisy Laplace Counts for δ = 0% (Left), δ = 50% (Middle),
δ = 90% (Right), ε ∈ {0.1, 1.0, 5.0, 10.0,∞} (Top to Bottom)

sary is weaker (e.g., our external attacker). The practical privacy offered by Laplace and PeGaSus is
almost the same than the one offered by TTL. Even when the practical privacy for Laplace and PeGaSus
is similar, for higher utility values the formal privacy guarantee for PeGaSus is less than Laplace during
the daytime and nighttime, whereas for lower utility values it is the opposite. When the adversaries
become stronger (e.g., the student or administrator attacker), Laplace and PeGaSus offer more practical
privacy than TTL, as it is expected. However, in some specific situations (e.g., in the afternoon when
the building is less occupied) all the techniques behave similarly. Additionally, with stronger attackers
the privacy loss due to the prior and adversarial knowledge at the time of the attack is high already.
This means that effectively, in such situations the privacy of most of the individuals would be already
compromised. Therefore, the difference between the differential privacy based techniques and TTL in
terms of number of people being localized is small.

We would like to highlight that even when in terms of practical privacy the techniques behave simi-
larly, TTL lacks of formal privacy guarantees which means that stronger attackers using more sophisti-
cated attack methods could potentially result in higher privacy loss. Additionally, the results for Laplace
and PeGaSus, which are the average over 30 counts, could potentially be worse depending on the noisy
count generated in a single run at publishing time. Comparing the distributions of attacker’s success for
different privacy mechanisms remains out of scope of this work.
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Figure 76: Posterior Guesses for δ = 90% from Noisy Laplace Counts (Left), True Counts (Mid-
dle), and Count Distribution (Right), ε ∈ {0.1, 1.0, 5.0, 10.0,∞} (Top to Bottom)

Figure 77: Posterior Guesses for Worst-Case DP, δ = 90%, ε ∈ {0.1, 1.0, 5.0, 10.0} (Left to Right)
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4.5.3.2 Trident Warrior Scenario. In Trident Warrior scenario, TIPPERS system is used to collect
location data of sailors on a ship. This data can be used to further compute various aggregated statistics
(e.g., occupancy of spaces along time, average time spent by an individual in a particular location,
average number of people an individual interacted with, etc.). Since the underlying data is private
(i.e., location of individuals along time), the idea of an aggregated statistics leak of information about
individual records is a precautionary concern. Well-known mechanisms can be applied like Differential
Privacy (DP) to protect individual records, but knowledge on how to choose the appropriate privacy
parameters is required. In this section, the different values of ε for a DP mechanism are estimated.

Assume a data table is displayed with user-location-time-table consisting of categories such as:
user, day, location, daytime, and time_spent. The categories are used to describe the amount of
time the user has spent on each area per day. Let us consider, for instance, a commanding officer that
observes aggregated averages on the time spent for each recorded location+daytime combination, stated
as the following query:

SELECT day, location, daytime, AVG(time_spent)
FROM user-location-time-table
GROUP BY day, location, daytime;

The goal is to estimate how much a commander (treated here as an adversary), can learn about
the particular time spent by a specific user. A quite strong attacker that may already have knowledge
regarding the exact amount of time spent by other people who have been together with the victim at the
same time in the same location can be assumed. This idea is motivated by the definition of differential
privacy, which is aimed to protect against such attackers.

Experiment. In our experiment, the attacker first fixes a single victim out of n users. It computes the
prior assumption of the victim’s data based on the data of the other n-1 users (or only a certain fraction
of these users). The attacker then tries to guess the victim’s spent times based on the prior it has already
learned, and on the aggregated statistics that depend on the victim’s data. We assume that the attacker
wins even it does not guess the spent time precisely, but with some precision. For example, if the attacker
says that a user has been in a room for 17 minutes, but it actually was 17.5 minutes, the guess is still
considered sufficiently correct.

There are n users that participate in the experiment. For each location+daytime+day combination,
each user ui has spent times distributed according to normal distribution N(µi, σi). The attacker predicts
µi and σi based on the data of the other n − 1 users.

Fixing some posterior probability t, (e.g., t = 0.9), we want to compute the precision r within which
the attacker’s guess stays with probability t. For example, if the actual time is x0, then with probability
t the attacker’s guess will be x ∈ [x0 − r, x0 + r].

It can be assumed that an ε-DP mechanism is applied to the released average. In particular, the
sensitivity of AVG query w.r.t. attribute time_spent is 1/n, so e.g., Laplace mechanism Lap(λ) where
λ = 1/(n · ε) can be used. We note that our results show which ε would be sufficient for any DP
mechanism. Using results from Sec. 3.3.10.1, if pi is the prior guessing probability, then the posterior
p′i is bounded by

p′i ≤
1

1 + e−aiε(1 − pi)/pi
, (46)

where ai is in this case the largest possible time that the user ui might have ever spent in the analyzed
location. Since normal distribution is unbounded, we formally have ai = ∞, which makes the upper
bound trivial. Given that the average is taken over a certain time span (e.g. an hour), we could take ai

equal to the length of that time span. However, we can do better. For a normal distribution N(µi, σi),

we have Pr[x − µi ≤ ai] = erf
(

ai√
2·σi

)
for any ai ∈ R, where erf is the error function. If we take e.g.,

ai = 3
√

2 · σi, we get Pr[x − µi ≤ ai] = erf(3) ≈ 0.9998, which essentially covers the set of possible
inputs. A smaller value of ai can be taken to reduce the size of the exponent, but it also reduces the
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attacker’s search space, so this parameter can be optimized to improve the upper bound on guessing
probability. In our experiments, we have started from a = 2 ·

√
2 > 3, computing ai = a ·

√
2 · σi, and

reducing a by 0.01 until a < r√
2·σi

, i.e. until we start getting ai < r and hence p′i < pi. In the end, we
take ai that results in the smallest p′i .

For a fixed guessing precision r the prior probability is computed as

pi = Pr[x ≤ x0 − r] − Pr[x ≤ x0 + r] =
1
2

erf
(
|x0 + r − µ|

σ
√

2

)
,

and the posterior p′i is computed from pi and ε as in Eq. 46 with ai = a·
√

2·σi for a ∈ [r/(
√

2·σi), 2·
√

2].
We perform experiments for r ∈ {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} and ε ∈ {0.1, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0}.

For each ε, we find the smallest r for which p′i ≥ t.

Results. Since the actual data of the users’ movement on the ship collected during the exercise is
classified and cannot be shared even for the privacy study, the researchers of TIPPERS team simulated
the behavior of 150 users, such that the replicated data has the same statistical moments (means and
standard deviations) as the actual data. This imitated data serves as the “real” data for the privacy study.
Therefore, ε-differential privacy is applied to this dataset and the adversary’s success is computed.

The posterior guessing probabilities for 5 data samples have been estimated. The results are depicted
in Figure 78. The number of spent times guessed is plotted with probability ≥ 0.9 for different precisions,
where the precisions are represented with different colors. The dark green color represents the roughest
guess (±5 minutes), and the dark red color the most precise guess (±0.5 minutes). For ε = 0.1, only few
people are depicted in the bar, and this means that for the others the guessing precision was more than
±5 minutes.

While the datasets are different, similar trends in these five plots are noticed. If ε ≥ 3 is taken, then
very little privacy guarantees are obtained, and each user’s spent time may be guessed within one minute
of precision. On the other hand, for ε ≤ 0.5, the guessing precision ranges between 4 and 5 minutes,
which is much better, considering that the actual spent times are on average 8-9 minutes in the given
datasets. There are always several people for whom the guessing probability is large even for small ε, as
their behavior is more predictable, but there are not too many such people.

Summary. We have performed experiments to check out which values of ε would be sufficient to give
certain privacy guarantees under certain assumptions. Since smaller ε means more noise in aggregated
statistics, data utility also needs to be taken into account, which would be a separate study and depends
on how the statistics are actually going to be applied.

Alternatively, we could study weaker attackers who know time durations of only some of the other
users. In that case, it could be possible to get better privacy for larger values of ε. Modeling a particular
attacker would require knowledge about the context, who the attacker is and what he already knows.
This remains out of scope of this privacy study.

So far, we have estimated the severity of guessing precision equally for all users. E.g. we have con-
sidered guessing precision ±5min safe enough not to consider more coarse predictions. These numbers
have been taken based on the actual (simulated) presence data, where the distributions of different users
have been quite similar to each other. In some other experiments, we would need to consider different
guessing radiuses, if the times are longer or shorter. We propose that a more generic privacy metric
would be to consider a different guessing radius ri for each user, making it dependent on the standard
deviation σi, expressing ri as a certain quantile of the distribution.
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Figure 78: Precisions of Guessing a Particular Spent Time with Confidence t = 0.9 for Different ε
Values and 5 Different Datasets

4.6 Secure Multiparty Computation in NAPLES

4.6.1 Deliverable Outcomes. The main deliverable outcomes of the work carried out under this sub-
task are:

• Solution analysis and design document - provides an overview of any analysis carried out (includ-
ing use case specification) and details the prototype implementation specifics.

• Prototype implementation, including:

– Final easily testable product containing the respective Docker image. When run according
to the usage instructions the respective Docker container should start generation of the syn-
thetic log entries, runs the non-privacy preserving version of the algorithm, then runs the
privacy-preserving version of the algorithm in SecreC using the Sharemind emulator, and
then compares the results.

– Source code of prototype implementation.

– User and install guides for the prototype are included in code delivery as files INSTALL.md
and USAGE.md.

• Final reporting (this document) to provide an overview of work carried out.

Handover of these results to the Cyber PA project will be discussed during Q1 of 2021.
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4.6.2 Analysis and Prototyping Main Outcomes. An important outcome from prototyping (in ad-
dition to a working prototype and associated learnings) is the proposed event correlation approach /

algorithm. In principle, the prototype event correlation algorithm attempts to construct chains of (cor-
related) log events by iterating over the input log entry values in timestamp order. If the value, iterated
over, already matches a value of the last log entry in an existing chain, the log entry will be appended
to the existing chain. Otherwise, a new chain is created. As output from the algorithm, each data owner
receives log entries from detected chains which contain at least one log entry from the respective data
owner. Chains with only one log entry are not considered for output.

In addition to using Pleak to model processes within the Cyber PA project, the event log correlation
process was also modelled in Pleak. The model in Figure 79 visualizes the stakeholder involved in the
exercise, their activities and the data elements that are used and / or generated during the processing. In
addition, the scheme specifies security methods for data flows and an overview of the visibility of data
elements to the stakeholders is provided. Finally, Leakage detection analysis was run on the model to
give a more thorough overview of the process security guarantees).
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4.6.2.1 Stakeholders. Stakeholders are individuals, groups, organizations or machines (hardware and
software) without whose support the project would cease to exist. This section describes only primary
stakeholders directly involved in the exercise. Although, in real project, secondary stakeholders are very
important and should be elicited.

Table 28: Event Log Correlation: Overview of Stakeholders

Name Description
Organization
1 & 2
(ORG1/ORG2
or ORG1/2)

Represent organizations interested in participation of system log contribution and
wishing to learn from mutual event log correlation exercise. In the current model
there are only two organizations (1 & 2) involved, but the number of participat-
ing organizations is not limited and the exercise can be conducted with as many
organizations as needed.

Sharemind
MPC en-
vironment
(MPC)

We are using Sharemind MPC environment as a secure computation environment
which requires at least 3 non-colluding hosts in order to provide the required se-
curity guarantees. This stakeholder consists of 3 separate organizations that are
chosen by Organization 1 & 2 or 1 . . . n to host the Sharemind MPC instances. It
might be that participating organizations themselves are the hosts, but they can also
be external participants as long as Organizations are convinced that there is very
low likelihood for these hosts to collude.

4.6.2.2 Activities. Table 29 lists the activities of the process. For every activity name and description
is used to give an overview what is done during the activity. Additionally, what triggers the activity
(pre-conditions) and what results after the activity (goal) is described in separate fields. Finally, a tool
(computer application most of the time) that is used to perform the activity is also mentioned.

Table 29: Event Log Correlation: Overview of Activities

Name Actor Description Trigger Goal Tool
Create
mes-
sage

ORG1 On the current model ORG1
is an initiator who informs all
the participants about the be-
ginning of the exercise by cre-
ating a message.

On agreed
time.

Create in-
formative
message.

Can be an
email or any
other common
communica-
tion channel.

Send
mes-
sage

ORG1
& MPC

ORG1 sends the message, cre-
ated in the previous task to
MPC participants. MPC par-
ticipants forwards the message
to other contributors when the
environment is set up. NOTE:
The informing part of the pro-
cess is somewhat irrelevant,
but is required for the Pleak
tool used to analyze the pro-
cess.

If ORG1:
message cre-
ated. If MPC:
messages
from initia-
tor received
and all MPC
participants
confirmed
readiness.

Inform
ORGs and
MPC about
the begin-
ning of
exercise.

Can be an
email or any
other common
communica-
tion channel.

Fetch
log

ORG1/2 Organizations choose systems
which logs they wish to use in
the exercise and gather them
for processing.

Start message
arrived, but
can be done in
advance to the
exercise.

Logs gath-
ered.

Dependent on
the systems the
ORGs are us-
ing.

Continued on next page
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Continues from previous page
Name Actor Description Trigger Goal Tool
Parse
to im-
plicit
struc-
ture

ORG1/2 As stated, most event logs are
text messages intended for hu-
mans to read. During this ac-
tivity logs are been parsed us-
ing natural language process-
ing parsing methods.

Logs gathered. Logs con-
verted to
implicit
structure
and saved.

Regular ex-
pressions
can be used
or extracted
manually by
writing respec-
tive grammar
or automat-
ically using
some pattern
recognition
algorithm.

Find
corre-
lations

ORG1/2 Organization finds correlations
between different log entries.
For this task we define corre-
lation as a fact that two parsed
log entries have at least one
pair of equal variables. We de-
fine a log entry set as an or-
dered subset where log entry
time stamps are strictly grow-
ing and sequential log entry
pairs are correlated. Log en-
try set should then indicate
presence of causally connected
sub-events.

Event log en-
tries are parsed
to structured
form.

Event
chains
detected.

Part of event
correlation al-
gorithm logic.

Detect
un-
known
event
chains

ORG1/2 Detected event chains are com-
pared to already known event
chains. In case the event chain
is known it is no interest to
the exercise. In case the event
chain is unknown we record
them for the exercise.

Event chains
detected.

Unknown
event chains
separated
from well-
known
event
chains.

Part of event
correlation al-
gorithm logic.

Merge
un-
known
event
chains
and
uncor-
related
log
events

ORG1/2 During the log correlation ac-
tivity some of the events that
were not recognized as part of
any chain and the events in
the unknown event chains are
merged into mutual data file
for joint correlation exercise.
Also, the transfer to the pre-
agreed format is done during
the activity.

Unknown
event chains
separated from
well-known
event chains
and also events
without chain
connection
detected.

File with
pre-agreed
structure of
unknown
events
created.

Part of event
correlation al-
gorithm logic.

Continued on next page
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Continues from previous page
Name Actor Description Trigger Goal Tool
Protect
un-
known
events

ORG1/2 Unknown events are secret
shared for MPC environment.

File with
pre-agreed
structure of un-
known events
created.

Protected
unknown
event file(s)
created.
NOTE:
Protected
here means
the data
file is split
using secret
sharing
technique
into 3 shares
where none
of the shares
contain any
meaningful
information
separately.

Sharemind
CSV Importer
data upload
tool.

Send
pro-
tected
un-
known
events

ORG1/2 The shares of protected un-
known event files are uploaded
to the MPC instances.

Protected un-
known event
file(s) created.

Protected
unknown
event file
uploaded to
MPC envi-
ronment.

Sharemind
CSV Importer
data upload
tool.

Detect
mutual
chains

MPC The unknown events of all
participating organizations are
gathered and similar correla-
tion activities described in Find
Correlations activity are used
to detect mutual chain events.

Protected un-
known event
file uploaded to
MPC environ-
ment.

Mutual
chain events
dataset
created.

Sharemind
MPC servers
running pre-
agreed SecreC
code.

Send
mutual
chains
to
O1/O2

MPC Extract from the mutual chain
events dataset chains con-
taining events contributed
by ORG1/2 and make them
available to ORG1/2. NOTE:
In case more than 2 organi-
zations participating in the
exercise only the chain events
containing events contributed
by the organization are made
available.

Mutual chain
events dataset
created.

Mutual
chain events
published
to the
ORG1/2.

Custom Share-
mind MPC
client applica-
tion.

Continued on next page
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Continues from previous page
Name Actor Description Trigger Goal Tool
Open
pro-
tected
mutual
chains

ORG1/2 Open the mutual chain event
records for processing. NOTE:
Send and Open mutual chains
to O1/O2 events in real life can
be considered as one as same
client application is most likely
used for making the query. The
method is merely used to fully
benefit the Pleak tool.

Mutual chain
events pub-
lished to the
ORG1/2.

Mutual
chain events
available for
further pro-
cessing for
ORG1/2.

Custom Share-
mind MPC
client applica-
tion.

Take
action
and
update
well-
known
event
chains

ORG1/2 Take appropriate action based
on what is learned from the ex-
ercise and update the known
database accordingly

Mutual chain
events avail-
able for further
processing for
ORG1/2.

Required
actions
taken and
well-known
event chains
database
updated.

Tools de-
pendent on
organization
internal tools.

4.6.2.3 Data Elements. Data elements are information or data artefacts created or used during the
process. They are either needed as inputs for activities or output of activities. In table 30 you find Name
of the element, role that created and holds the element (Owner) and short description. Same data element
can be used in multiple places, data element created during one activity is very often an input for the
other.

Table 30: Event Log Correlation: Overview of Data Elements

Name Owner Description
message ORG1 Simple text message for informing the beginning of the exer-

cise.
log_storage_O1/O2 ORG1/2 Log storage of the system of an organization that the organiza-

tion wished to use in the exercise.
raw_log_1_O1/O2,
raw_log_2_O1/O2

ORG1/2 Log file in its initial form after extracting it form systems log
storage.

structured_log_1_O1/O2,
structured_log_2_O1/O2

ORG1/2 Log file parsed to the implicit structure for the log correlation
activity. Each organization might have different structure and
can convert the file to the mutual structure later, but also it can
be already using the agreed structure.

detected_event_chains
_O1/O2

ORG1/2 Result of correlation detection activity where event entries are
marked with common identifier that represents membership to
a chain. The events are ordered sequentially by time of appear-
ance.

uncorrelated_log_events
_O1/O2

ORG1/2 List of structured log events not belonging to any chain. It is
structured the same way as structured_log_1_O1/O2

well_known_event_chains
_O1/O2

ORG1/2 A database of known event chains of the organization. Struc-
tured the same way as detected_event_chains_O1/O2 so that it
would be easy to query whether the detected chains match to
know chains. Database is updated regularly by the organiza-
tion once it detects new event chains. Also, the update takes
place during the exercise.

Continued on next page
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Continues from previous page
Name Owner Description
unknown_event_chains
_O1/O2

ORG1/2 List of detected chain events that did not match
to any of the known events recorded in the
well_known_event_chains_O1/O2 database. Structured
same way as detected_event_chains_O1/O2.

unknown_events_O1/O2 ORG1/2 List of events that could not be assigned to any chain during the
correlation process. Structure is pre-agreed by stakeholders
and is most likely a CSV file as this is the form required by
Sharemind CSV Importer.

protected_unknown
_events_O1/O2

ORG1/2 A secret-shared copy of unknown_events_O1/O2. Sharemind
CSV Importer tool secret shares the unknown_events file into
3 shares where none of the shares contain any meaning-
ful information separately but is processable as normal un-
known_events file in Sharemind MPC environment. NB! In
case MPC instances collude, the information is likely ex-
tractable from the shares.

mutual_chains_protected MPC The result of Sharemind MPC mutual chain detection activity
where events of all the contributing organizations are corre-
lated into mutual chain events. It is structured in the pre-agreed
format so that the organizations can clearly understand and
process the information. Still the data is in the protected (i.e.,
secret-shared) form and each share is controlled separately by
one of the non-colluding MPC parties.

mutual_chains_O1/O2 ORG1/2 Subset of mutual_chains_protected, where only chains con-
taining events contributed by the organization are present.
Also, the data is now in the open form and fully readable and
processable to the organization. To emphasize the organization
sees only chains that contains events it contributed. In case
there are more than 2 organizations involved in the exercise
the events not containing any events contributed by organiza-
tion X are not included. The data is structured the same way
as mutual_chains_protected.

well_known_event_chains
_new_O1/O2

ORG1/2 The same data element as well_known_event_chains_O1/O2
except containing updates of findings of the exercise.

4.6.2.4 Security Measures. Security methods used in the process, highlighted in blue in the process
model:
• SecureChannel - Data transmission marked with SecureChannel in the PE-BPMN figure means

that an authenticated and encrypted security channel is in use. Technically, we expect the use
of standard solutions (e.g. TLS, Transport Layer Security) with up-to-date technical solutions.
The communication channel set up in this way does not leak data to the communication service
provider or other parties involved in the data transmission.

• PETComputation & ProtectConfidentiality - Data protection mechanisms based on the capa-
bilities of the Sharemind MPC technology.

• OpenConfidentiality - OpenConfidentiality is an opposite action to ProtectConfidentiality and is
also a data protection mechanism based on the capabilities of the Sharemind MPC technology.
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4.6.2.5 Disclosure & Leaks-When Analysis. Using Pleak tools & capabilities on the process model
Fig. 79 allows to generate reports that provide an overview of data elements by stakeholders and help
detect / ensure data is secured.

The Leaks-When analysis result in Figure 80 shows that the unknown events are computed by the
organizations on their own and are only depending on their own input data. However, the new chains
are the ones computed together and are also affected by the logs of the other party.

Figure 80: Leaks-When Analysis Result for the Prototype Model

The disclosure analysis result in Table 31 provides an overview of the visibility of data elements by
stakeholder. Simple disclosure report is a table which lists all stakeholders and shows, whether and how
the stakeholder sees a data element. Each cell is marked either V (visible), H (hidden) or –. Marking
“–“ means that the stakeholder does not see the data element in any way in the process. V means that
contents of the data element are fully visible. H means that the stakeholder has the data element but this
element is protected with security measures. For example, the Sharemind MPC environment has the
data element containing information of mutual chains, but as it is protected, the content is not visible.
In addition, cell can be marked with O, meaning that the stakeholder is the creator/owner of the data
element and it is fully visible to the stakeholder. The table helps to understand what information is
available to which parties.

In general, the reports confirm that neither the events nor the event chains of the contributing orga-
nizations are revealed to any other stakeholder and thus no confidential data is leaked to any unwanted
participants. The Sharemind MPC hosts only see data in hidden form as shares of secret sharing.

4.6.3 Main Results. Joint situational awareness is built up from national situational awareness which
in turn is built up from information gathered from local institutions and private enterprises. Local situ-
ational awareness is the result of the analytical work of the cyber security professionals. Many or even
most private enterprises do not have cyber security specialists available. One way for such enterprises
to participate in creation of the situational awareness is to share system logs from their computer and
networking equipment with institutions with better analyzing capabilities.

As per analysis it was proposed to create an IT system log analysing engine which enables sharing
potentially sensitive information in a privacy-preserving way, so that

• participating organizations would have a clean, easy, meaningful way to decide which information
to share.

• participants would get strong guarantees on how the information is processed and what part in
what aggregation level is published to other participating parties.
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Table 31: Event Log Correlation: Simple Disclosure Report

Data element ORG 1 ORG 2 MPC Shared
Over

detected_event_chains_O1 V - - -
detected_event_chains_O2 - V - -
log_storage_O1 O - - -
log_storage_O2 - O - -
message V V V S
mutual_chains_O1, mutual_chains_O2,
mutual_chains_protected

V V H S

protected_unknown_events_O1, un-
known_events_O1

V - H S

protected_unknown_events_O2, un-
known_events_O2

- V H S

raw_log_1_O1 V - - -
raw_log_1_O2 - V - -
raw_log_2_O1 V - - -
raw_log_2_O2 - V - -
structured_log_1_O1 V - - -
structured_log_1_O2 - V - -
structured_log_2_O1 V - - -
structured_log_2_O2 - V - -
uncorrelated_log_events_O1 V - - -
uncorrelated_log_events_O2 - V - -
unknown_event_chains_O1 V - - -
unknown_event_chains_O2 - V - -
well_known_event_chains_new_O1 V - - -
well_known_event_chains_new_O2 - V - -
well_known_event_chains_O1 O - - -
well_known_event_chains_O2 - O - -

V = visible, H = hidden, O = owner, S = SecureChannel

A system having the above properties was analyzed, modelled and prototyped as a part of the work
task. Main findings from the prototyping activity were:

• The approaches taken give organizations ability to make clear distinction between mundane, possi-
bly confidential every-day events and unusual, possibly harmful events which should be analyzed
further. This methodology should be useful even without following information sharing and joint
analysis. Therefore, it should increase the will and likelihood for enterprises to join the Cyber PA
project information gathering network.

• Guarantees on how shared information is processed and revealed are provided by

– implementing the correlation algorithm in Sharemind MPC.

– carrying out Pleak analysis on modelled processes (Data Leakage analysis)

• Prototype benchmarks show overall asymptotic complexity O(n3) for chains detections algorithm,
where n is the number of input system log records, whilst the non privacy-preserving version of
chains detection has a complexity of O(n log n). This because the privacy preserving version is
much more complex as it hides array access patterns, which when observed, might leak content
or content distribution of the array.
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For the purposes of the Cyber PA project the following prototype enhancement possibilities should
be discussed, analyzed and tested:

• Improve the algorithm in a way that it does not need to look up things from arrays, thus not adding
asymptotic complexity.

• Give up some insignificant amount of the privacy to significantly reduce complexity. This trade-off

should be well thought-through and documented.

• Improve Sharemind MPC so required calculations do not have so much overhead.

• Consider some other privacy preserving technologies wish less computational overhead, taking
into account the requirements which led to preliminary implementation on Sharemind MPC.

In conclusion, results from this task are a valuable additions to the Cyber PA project. Modelling
carried out in Pleak helped to further understand the designed processes in the start of prototype im-
plementation and further helped verify privacy guarantees of the Solution. Actual prototyping of the
solution provided useful feedback on the usability of the prototype in a potential Cyber PA Solution
framework. All this provides an improved starting point of enabling such functionalities as a part of the
Cyber PA in order to improve joint situational awareness. Additionally, the usability of both the Share-
mind MPC and Pleak technologies were verified as a part of work carried out and feedback provided for
both.
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5 CONCLUSIONS

Our work in NAPLES has lead to a wide array of modeling languages and privacy analyses for different
kinds of business processes, and related executable formalisms. Our Privacy-Enhanced BPMN has been
a useful modeling tool for systems with significant and complex privacy implications. Our qualitative
and quantitative privacy definitions have helped to explain the nature of these implications, and our
analyses have been able to precisely state, how much a system may be leaking. Regarding the definitions,
a particularly important contribution has been that of derivative sensitivity, which clearly shows how the
privacy definition is part of the privacy policy of a system, and how the latter always has to state the
combinations of, and trade-offs between the leakages in various components of the data.

Almost all of our analyses have been integrated into the Pleak toolset, giving them a uniform in-
terface for modeling the processes, specifying the privacy policies and other input parameters of the
analysis, and studying the output of the analysis. The business processes can be implemented either in
the PE-BPMN notation, or in plain BPMN with annotations on tasks and message flows. Pleak allows
its users to inspect and analyze privacy leakages at three levels of abstraction. The first level of abstrac-
tion (the so-called “Boolean” level) allows us to see which input data sources are directly or indirectly
disclosed to each party in the process. The second level (the so-called “Leaks-when” level) shows un-
der what conditions each disclosure occurs, and which specific attributes (or functions over the input
attributes) are disclosed. The third level (the ”quantitative” level) allows one to measure the extent to
which the disclosure reveals information about individual items (e.g. individual rows) of the input data
sources. This third level also allows us to quantify to what extent the disclosure of the outputs of the
process increase the probability that an attacker can guess the value of an individual item in the data
source, relative to a prior probability capturing generally available knowledge about these data sources.
This “attacker’s guessing advantage” model also takes into account the effect of noise added to the input
data in order to achieve a given differential privacy level (cf. the ε parameter in differential privacy).

The Pleak toolset has been validated in the DARPA Brandeis program, modeling and analysing the
systems proposed and studied by the three Collaborative Research Teams. This validation provides
initial evidence that the toolset can be used to analyze realistic processes. However, the ecological
validity of this validation effort is limited due to the low number of processes analyzed, and by the
fact that the processes have been modeled and analyzed by the same team that developed the toolset
itself (even though the processes were scoped and designed by other teams in the Brandeis project). A
direction for future work is to supplement this validation with usability evaluations involving business
process analysts, as well as case studies conducted by independent research teams.

In its current implementation, the Pleak toolset supports the quantitative analysis of privacy-
enhanced business processes in which the computations are specified in the SQL query language. In
practice though, computations may be specified in various programming languages. Another avenue for
future work is to extend the set of techniques in the Pleak toolset with program analysis techniques that
would allow it to handle other languages.

The Pleak toolset is also limited in terms of the range of PETs it supports. In particular, the
toolset does not integrate various metrics from the field of statistical disclosure control [74], includ-
ing k-anonymity and l-diversity, as well as data masking techniques such as microaggregation and data
swapping. Extending Pleak in order to support a wider range of PETs is another direction for future
work, which we plan to pursue as a part of technology transfer efforts.
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AddSS additive secret sharing 

AES Advanced Encryption Standard 

AFRL Air Force Research Laboratory 

BDD binary decision diagram 

BP Business Process 

BPMN Business Process Model and Notation 

CDF cumulative density function 

CPU Central Processing Unit 

CRT collaborative research team 

D direct dependency (in disclosure analysis) 

DAG directed acyclic graph 

DARPA Defense Advanced Research Projects Agency 

DG dependency graph 

DP differential privacy 

DP-Workflow data processing workflow 

FHE fully homomorphic encryption 

FunSS function secret sharing 

GA guessing advantage 

GC garbled circuit 

GM the category of generalized metric spaces 

GPS Global Positioning System 

H entropy (in quantitative analysis) 

H hidden (in disclosure analysis) 

I mutual information (in quantitative analysis) 

I indirect dependency (in disclosure analysis) 

ID identity 
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IoT Internet of Things 

IPSec Internet Protocol Security 

IT Information Technology 

KDE kernel density estimation 

MAC Medium Access Control 

MPC Secure multiparty computation 

NAPLES Novel Tools for Analyzing Privacy Leakages 

O owner (in disclosure analysis) 

OT oblivious transfer 

PA project agreement 

PAL privacy abstraction layer 

PDF probability density function 

PE privacy enhanced 

PE-BPMN Privacy Enhanced Business Process Model and Notation 

PET privacy enhancing technology 

PINQ Privacy INtegrated Queries – a platform for privacy-preserving 

data analysis 

PK public key 

PRESNA Privacy Enhanced Social Network Analysis 

PSDG partial summary dependency graph 

PULSAR Private Updateable Lightweight Scalable Active Repository  

RAM Random Access Memory 

REST representational state transfer 

SDG summary dependency graph 

SF scale factor 

SGX Software Guard Extension 

SIMD single instruction multiple data 

SIRD disease states Suspectible, Infected, Recovered, Deceased in 

the Pandemic scenario 

SK secret key 

SMT satisfiablity modulo theories 

SoD the set of distances of the given generalized metric space 

SQL Structured Query Language 

SS secret sharing 

TA technical area 

TIPPERS Testbed for IoT-based Privacy-Preserving PERvasive Spaces 

TTL time-to-live 

UCI University of California, Irvine 

V visible (in disclosure analysis) 

VPN Virtual Private Network
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