

NRL/5540/MR—2021/1

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Logical Analysis of Multiple Clock Domains

DR. GERARD ALLWEIN

Center for High Assurance Computer Systems Branch
Information Technology Division

August 26, 2021

i

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
	 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
	 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Logical Analysis of Multiple Clock Domains

Dr. Gerard Allwein

	
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/5540/MR--2021/1

ONR

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

UU UU UU
27

Dr. Gerard Allwein

(202) 404-3748

 This is a report on how to manage multiple clock domains from a logical perspective starting from some basic hardware. The hardware is
a chain of flip-flops used to synchronize signals from one clock domain to another. The analyses is done in Channel Theory and Distributed
Logic. Channel Theory was the precursor to Distributed Logic and both are viable for the analyses. The logical analyses takes the form of a
pertinent example showing how to represent the key facts necessary for the logic. At the end, the synchronizing primitives of the languages
Esterel, Lustre, and Signal are briefly explained. These languages are early attempts at defining computation by corralling asynchrony to be
synchrony. None of the languages has been applied (to the author’s knowledge) to FPGA applications. Yet, the synchrony primitives capture the
essential features used in the chain of flip-flops that are used in FPGA applications. Many FPGA applications use message queues to enforce
synchronous behavior, the analyses here could have used those. However, the flip-flop use is more basic and presents the key features adequately
yet has minimal footprint in hardware.

26-08-2021 NRL Memorandum Report

6B23

Office of Naval Research
875 N. Randolph Street
Arlington VA 22217-1995

062235N

1 Oct 2020 – 30 Sept 2021

UU

This page intentionally left blank.

ii

CONTENTS

EXECUTIVE SUMMARY... E-1

1. INTRODUCTION ... 1

2. MULTIPLE CLOCK DOMAINS.. 2

3. LOGIC SYSTEMS .. 3
3.1 Primer on Channel Theory ... 3
3.2 Classifications and Infomorphisms... 4
3.3 Primer on Distributed Logic ... 7

4. SIMPLE SYNCHRONIZER .. 10
4.1 Channel Theory Version .. 10
4.2 Distributed Logic Version .. 12
4.3 Testing: Distributed Logic Version .. 13

5. CLOCK DOMAINS AS MODAL EFFECTS .. 15
5.1 Clock Domains and Modal Operators ... 16
5.2 An Aura of Localities.. 18

6. ESTEREL, LUSTRE, AND SIGNAL .. 19
6.1 Clocks ... 19
6.2 Esterel ... 20
6.3 Lustre .. 20
6.4 Signal.. 21

REFERENCES .. 23

iii

This page intentionally left blank.

iv

EXECUTIVE SUMMARY

This is a report on connecting hardware synchronization of clock domains with logical analyses. The
hardware synchronization takes the form of a chain of flip-flops from two domains that require synchroniza-
tion. To synchronize a signal from one clock domain to another means to generate the signal in the first
domain and feed it to a circuit that latches the signal. The latch in turn is connected to series of flip-flops (a
circuit) from the second domain. Since the clock domains are different, each circuit is clocked at a different
rate. There are two problems this set up addresses: (1) the clock on the first domain runs faster than the
clock on the second, and the clock on the second runs faster than the clock on the first. The second problem
could be handled by polling the signal from the first domain from the second. The first problem requires
the signal gets latched until such time as the second can catch the rising edge of the signal. The chain of
flip-flops pushes the probabilistic behavior to an acceptable range due to possible metastable signals in the
flip-flop chain. Many FPGA applications use message queues to enforce synchronous behavior, the analyses
here could have used those. However, the flip-flop use is more basic and presents the key features adequately
yet has minimal footprint in hardware.

The logic analyses is via two logical theories, Channel Theory and Distributed Logic. The former is a
precursor to the latter. It is easier to set up the Channel Theory since every piece of the chain of flip-flops is
represented. The latter is a bit more abstract but easier to implement in hardware monitors (called spiders).
The setup takes the form of using a flip-flop for a latch connected to a chain of flip-flops. The relevant
information is then extracted and represented in the logics. One thing to notice in the logic presentation is
that there is no concept of time. The synchronizer use has the effect of removing time as measure in the
sense of the real numbers. Rather, only clock ticks are used and there is no time associated with those ticks.
A clock domain has all its components performing in unison at each clock tick. The only notion of time
remaining is one tick occurring before another. This has the effect of allowing clock ticks to be pushed into
the background in favor of state changes since those state changes can only occur on clock ticks. Similarly,
the logic need only abstract over before and after, i.e., previous clock tick, current clock tick, and next clock
tick. The fact that more than one clock domain can appear in an FPGA application means that once signals
are adequately synchronized between the clock domains, logical formulas associated with each domain can
be kept separated and not collide in the logical reasoning.

Carrying the logic analyses further, we associate a modality with each clock domain. In an application
language that supports strong typing, this could be reified as an effect type. An effect type is more like a
type modifier than an actual type. Using effect types, all signals can have the effect type as well as any other
typing information derivable from the application code. The languages VHDL and Verilog do not support
strong typing and never will. However, the language ReWire could be extended with effect types and thus
enforce adherence to clock domain rules at compilation time.

At the end, the synchronizing primitives of the languages Esterel, Lustre, and Signal are briefly explained.
These languages are early attempts at defining computation by corralling asynchrony to be synchrony. None
of the languages has been applied (to the author’s knowledge) to FPGA applications. Yet, the synchrony
primitives capture the essential features used in the chain of flip-flops that are used in FPGA applications.

E-1

This page intentionally left blank.

E-2

LOGICAL ANALYSIS OF MULTIPLE CLOCK DOMAINS

1. INTRODUCTION

We show how to manage multiple clock domains from a logical perspective starting from some basic
hardware. The hardware is a chain of flip-flops us ed to sy nchronize si gnals fr om on e cl ock domain to
another. Asynchronous queues are used in many applications. We do not address them here because they
would not affect the analyses. The analyses is done in Channel Theory [1–3] and Distributed Logic [4, 5].
Channel Theory was the precursor to Distributed Logic and both are viable for the analyses.

We first d efine th e overall ch aracteristics of a cl ock do main. Th e key fe ature is tr ansfer of signals
between clock domains. Since the clocks of two domains are not synchronized, they require some sort of
synchronizing hardware component that will accomplish the transfer. Many applications use message queues
to transfer information between domains. These are high-level components and are somewhat overkill for
many basic FPGA applications. As such, we will describe the simplest of flip-flop synchronizers. There are
many forms of flip-flop synchronizers that have better properties than what we de scribe. However, they are
variations of this basic synchronizer. The hardware queues can be seen as fancy flip-flop synchronizers.

Assume we want to transfer signals on Clock Domain 1 (CD1) to Clock Domain 2 (CD2). There are two
basic problems to be overcome: (1) signals generated in CD1 faster than they can be recognized in CD2,
and (2) signals generated in CD1 slower than they are being capable of being recognized in CD2. In the
first instance, the generated signals must be latched in CD2 until such time as CD2 can recognize t hem. In
the second instance, a mere polling will suffice. The polling still requires that signals be guarded against
becoming metastable due to the different clock rates..The chain of flip-flops wi ll so lve bo th problems to
within a probability of failure. The flip-flop chain can be increased in size to lower the failure probability.

The logic analyses is via two logical theories, Channel Theory and Distributed Logic. The former is a
precursor to the latter. It is easier to set up the Channel Theory since every piece of the chain of flip-flops is
represented. The latter is a bit more abstract but easier to implement in hardware monitors (called spiders).
The setup takes the form of using a flip-flop fo r a la tch connected to a chain of fli p-flops. The relevant
information is then extracted and represented in the logics. One thing to notice in the logic presentation is
that there is no concept of time. The synchronizer use has the effect of removing time as measure in the
sense of the real numbers. Rather, only clock ticks are used and there is no time associated with those ticks.

A clock domain has all its components performing in unison at each clock tick. The only notion of time
remaining is one tick occurring before another. This has the effect of allowing clock ticks to be pushed into
the background in favor of state changes since those state changes can only occur on clock ticks. Similarly,
the logic need only abstract over before and after, i.e., previous clock tick, current clock tick, and next clock
tick. The fact that more than one clock domain can appear in an FPGA application means that once signals
are adequately synchronized between the clock domains, logical formulas associated with each domain can
be kept separated and not collide in the logical reasoning.

Manuscript approved August 24, 2021.

1

2 Gerard Allwein

Carrying the logic analyses further, we associate a modality with each clock domain. In an application
language that supports strong typing, this could be reified as an effect type. An effect type is more like a
type modifier than an actual type. Using effect types, all signals within a domain can have the effect type as
well as any other typing information derivable from the application code. The languages VHDL and Verilog
do not support strong typing and never will. However, the language ReWire [6, 7] could be extended with
effect types and thus enforce adherence to clock domain rules at compilation time.

At the end are some short analyses on the languages Esterel, Lustre, and Signal. These are early
generations of synchronous languages relying upon message passing. They were not developed for FPGA
applications and have not been applied to FPGA applications except (possibly) sparsely in academic settings.
None of these languages has the notion of a clock domain as a feature but rather use a partial order of clock
frequencies. As such, they never really define properties of a clock domain. The domains could possibly be
constructed from the partial order and expressions in a language but that is fraught with error to do manually
and we are not aware of any automatic tools. Seeing as these languages were developed without FPGA
applications in mind, this is not so much a defect as it simply was not in their field of view for applications
of these languages. Generally, the languages are academic efforts at coming to grips with synchronized
message transfer and they have succeeded at that.

2. MULTIPLE CLOCK DOMAINS

The following diagram shows the basic layout of a flip-flop synchronizer from [8]. The reset line for the
flip-flop of Bit 0must not be activated until sufficient time has passed for CD2 to activate Bit 1 flip-flop. This
allows the signal output at Q of Bit 0 to be recognized at D of the Bit 1 flip-flop. From now on we will use
the locution Bit 0.D, say, to reference the � input of flip-flop Bit 0 and similarly for the other signals.

Clock Domain 1

Clock Domain 2

D

CE

Q

Q

R

S

Bit 0

D

CE

Q

Q

R

S

Bit 1

D

CE

Q

Q

R

S

Bit 2

input output

reset reset

set set
clock clock

clock enable clock enable

Time0 Time1 Time2 Time3

Figure 2.1: Simple Synchronizer

The sampling of sampling Bit 0.D by flip-flop Bit 1 of Clock Domain 2 may cause the output Bit 1.Q to
go metastable. The rate of the clock in CD2 should allow the output to settle down in time for Bit 2.D to

Logical Analysis of Multiple Clock Domains 3

accurately record the signal from Bit 1.Q. The probability for Bit 2.Q becoming metastable can be calculated.
If the probability is greater than the circuit requirements, flip-flops can be added after Bit 2 to lower the
probability to an acceptable range.

One thing to notice is that if we are just concerned with representing signals and not clock rates, then
all we need consider is that signals from CD1 get transferred to CD2. While any signal from CD1 can be
transferred to CD2, most usually are not. The result is that CD1 has only a small (and very finite) number
of synchronizers connecting it to CD2. At this point, we need only be concerned with what signals get
transferred and what signals cannot be transferred. Now we have abstracted our clock domains into regions
of like-clocked signals and a few transfer portals (synchronizers).

With the previous abstraction in mind, we can look at the situation from a language perspective. This
perspective will support either FPGA languages or logical languages. For VHDL and Verilog, since they
cannot support effect types, the use of effect types in the analyses is merely to label parts of the design. In
this report, we are concentrating on logical languages and not these application languages.

We let the clock domains be represented by application language effect types and match themwith logical
modalities for logical languages. Let the language types be Time0, Time1, and Time2. The type Time1,
can generally be suppressed in CD2 since it is only required in one place, whereas Time0 and Time2 are
representative of all the other signals in CD1 and CD2 respectively.

Chaining together two flip-flops requires we have two equations on types,

Time1 = Time0 + 1 and Time3 = Time2 + 1.

and we are allowed to make the type inference

Time1 = Time0 + 1 and Time2 = Time1 + 1
Time2 = Time0 + 2

3. LOGIC SYSTEMS

We use two logic systems, Channel Theory and Distributed Logic. The former is a bit easier to match up
with the chain of flip-flops used for synchronization. The latter is more abstract but easier to manage from
logical perspective.

3.1 Primer on Channel Theory

In [9] it is pointed out that the notion of communication channel capacity fails to capture salient features
of covert and steganographic channels. In image steganography, information is hidden in a cover image. The
Shannon analysis of this situation can put measures on the amount of hidden information the communication
channel will support. The problem is that the amounts calculated may have little to do with the transfer of
actual information because the information has a qualitative nature to it that is not amenable to the baseline
Shannon analysis. A more sophisticated framework is required upon which to base the Shannon analysis.
Channel Theory is an answer to the qualitative aspect of information. It is logic based.

4 Gerard Allwein

3.2 Classifications and Infomorphisms

The basic unit of information in Channel Theory is a tuple of a binary relation. The relationship is
between a token (a piece of data, say, as in Shannon theory) and a type (what kind of thing is this data of).
This is represented as

G |= %

where G is the piece of data, |= is the relation, and % is the type. The symbol, |=, is the usual semantic symbol
of logic and is usually interpreted in logic as “G satisfies %”. This paper will treat |= as the relation “G is
of type %”. There is to be no metaphysical or epistomological baggage to be associated with “G is of type
%” even though we sometimes use the verb “satisfy” when talking about |=. Also, one cannot express any
property about a single token unless the property is reified as a type and the expression is via the |= relation.
Hence, for a number G as a token, one can only express its value + by an expression of the form G |= + . In
this sense, Channel Theory enforces a discipline that is sometimes lacking in analysis of information.

To help orient a reader versed in Shannon’s theory, we offer here this description. The basic unit of
information in Shannon’s theory is also a tuple of a binary relation. The relation is restricted to be of the
form G |= + where |= is a function and + is value of the token G. The resulting structure is typically called a
state space where + is a state and the tokens are forgotten. Channel theory also has state spaces except the
tokens are not forgotten and types are values. States are sometimes further collected together to form events.
Channel Theory allows this also by first keeping the tokens and then replacing the states as types with events
as types. For some event � , G |= � just when G |= B for some state B ∈ � . Hence, Shannon’s basic ontology is
neatly embedded in Channel Theory’s ontology with Channel Theory being somewhat more rigorous about
the specification of the entities involved.

A collection of types and tokens with their relation is known as a classification. A more telling term
might be universe of discourse and one can freely interchange the two terms. A classification is just what
you thought it was, it is a collection of things which have the form of “G is a %”, or in our parlance, “G is
of type %”, i.e., G |= %. Information can flow between two classifications via an infomorphism which is
a special pair of contravariant maps between classifications, one for tokens and one for types. When the
information flow between two classifications is of such complexity that it cannot be adequately expressed
using a single infomorphism, the flow can be re-expressed as a channel. A channel is another classification
which is connected to the original two classifications via infomorphisms.

3.2.1 Classifications

The basic structures of Channel Theory are deceptively simple. The things that are distributed in a
distributive system are contexts called classifications. The classifications are connected by infomorphisms.

Definition 3.2.1.1 (Barwise–Seligman) A classification, X, is a pair of sets and a relation. The sets are
called, respectively, the tokens, Tok(X), and the types, Typ(X). The binary relation, usually symbolized
by |=X, is between the two sets, i.e., |=X ⊆ Tok(X) ×Typ(X). The term G |=X � means 〈G, �〉 ∈ |=X with
G ∈ Tok(X) and � ∈ Typ(X).

Logical Analysis of Multiple Clock Domains 5

A good mental picture to remember the definition of a classification is the following:

• �

• G

|=X

Typ(X)

Classification X

Tok(X)

The diagram only
indicates that
� ∈ Typ(X), and
G ∈ Tok(X), not
that G |=X �

It is convenient to talk about all of the tokens satisfying a single type or all of the types satisfying a particular
token. The following definition relativizes Typ(−) and Tok(−) within a particular classification.

Definition 3.2.1.2 Let X = (Tok(X), Typ(X), |=X) be a classification, then for any � ∈ Typ(X), Tok(�) =
{H | H |=X �} and, for any G ∈ Tok(X), Typ(G) = {� | G |=X �}.

3.2.2 Infomorphisms

The “flow” of information flow is rarely qualified in many theories of information flow although it is
frequently quantified as data flow. Since the currency of information is the tuple “G is of type %”, to translate
information (where here we are using “translate" in its sense as a preservation mapping), one first thinks to
translate the G to a H and the % to a &. This turns out not to be in accord with most uses of classifications
within mathematics and logic. More to the point, the morphisms of classifications must relate tokens and
types of two classifications in a special way, not simply translate token-type tuples to token-type tuples. The
reason for this is that the way set mappings work is similar to the way logical morphism work. In particular

G ∈ 5 −1� iff 5 G ∈ �.

where we elide the parens wherever possible.

Definition 3.2.2.1 An Infomorphism requires a source and targeta that are classifications. Assume classifi-
cations A = (Tok(A) Typ(A), |=A) and B = (Tok(B), Typ(B), |=B). An infomorphism ℎ : A B is a pair of
contravariant maps,

−
ℎ and

−
ℎ such that

−
ℎ : Typ(A) Typ(B) and −ℎ : Tok(B) Tok(A), and for all ? and

&, the following condition is satisfied:

ℎG |=A & iff G |=B ℎ&,

where for ease of presentation,
−
ℎ (G) is displayed as ℎG and

−
ℎ (&) as ℎ& where the type of the argument

disambiguates the context. We declare by fiat the direction of the infomorphism to be the direction of its
map on types.

6 Gerard Allwein

•& • ℎ&

• ℎG • G

|=A |=B

ℎ

ℎ

ℎG |=A & iff G |=B ℎ&
A B

3.2.3 Channels

Definition 3.2.3.1 An information channel is consists of an indexed family C = { 58 : Ai C} of
infomorphisms with a common codomain C called the core of the channel. Diagrammatically,

C

A1 A2 • • • A= • • •

51

52
5=

where each 58 is an infomorphism. Frequently in the sequel, the term channel will be (mis)used to refer to
the core of the channel. This is for mere expediency and the reader is asked to be forgiving. There is never
any question as to which morphisms are involved.

We will only have need for binary channels (binary refers to two legs, not binary circuits), pictured thusly:

C

A1 A2

c

1

c

2

Figure 1: Binrary Channel

where c

8 refers to an injection on types and and a projection c8 on tokens.

Every channel has a theory which is a collection sequents of the form:

Γ
C Δ

where Γ and Δ are sets of logical formulas. Γ is thought of conjunctively and Δ disjunctively. The tokens in
the channel C constitute a binary relation. We will only need a simplified notion of sequent where the right
and left hand sides are single formulas:

c

1�1
C

c

2�2.

Logical Analysis of Multiple Clock Domains 7

The sense of this is that any tokens that make c

1�1 true must make c

2�2 true. The general reasoning
pattern is

c1< |=A1 21 iff < |=C

c

121 infomorphism condition
implies < |=C

c

222 ?
iff c2< |=A2 22 infomorphism condition

The question mark must be mediated by a sequent of the form

c

121
C

c

222.

Our channels will have the form

Propositions of
Bit Values

Propositions of
Bit Values

Propositions of
Bit Values

Pairs of Bit
Values of Signals

Bit Values
of Signals

Bit Values
of Signals

|= |=|=

c

c

c

c

3.3 Primer on Distributed Logic

The basic logic is detailed in [5]. We use the term Distributed Logic in a general sense such as modal
logic; each has several logics that can fall under the term. Distributed Logic also includes modal logic as
simple case. A particular distributed logic is actually a collection of local modal logics that are connected
in a formal way via distributed operators. The local modal logic has a classical base that admits the usual
necessity and possibility operators that abstract over next-state relations.

Distributed Logic lends itself well to FPGA applications. Each local logic is seen as being the local logic
of a single component. The components are connected via their behavior; that behavior is expressed using
distributed relations. The distributed operators abstract over those relations. The abstraction takes the form
of the evaluation conditions on the operator as shown in the sequel. The use of the term distributed relation

8 Gerard Allwein

reflects that a relation is relating two distinct collections of states in different components. This is in contrast
to the local endo-relations (such as next-state relations); these latter are limited to a single locality

We use the term locality to denote a local logic and its underlying component structure as expressed in
its states and relations. Thus, the distributed relations connect localities. A common distributed relation
is a parallelism relation, called concurrence, that represents when states in two different localities can
simultaneously occur. Another distributed relation is one that relates all components that share the same
clock domain.

We will not go into the logic of Distributed Logic but instead concentrate on interpretations. The logical
apparatus can be slightly overwhelming. The frames used in interpreting logic formulas are a bit simpler
and is all we will need to evaluate the synchronizers.

3.3.1 The Interpretations

The technical term frame in logic can represent many different situations. We use it primarily to represent
a component in an FPGA application. Each frame consists of a collection of states, a Boolean algebra of sets
(where the sets are sets of states), the ∈ relation between states and elements of the Boolean algebra of sets,
and at least one local relation. In other words, it is a particular type of classification where the |= relation is
the set theoretic membership relation ∈. The local relation can represent the next state relation when viewing
the component as a finite automaton. However, local relations (not the ∈ relation, the ∈ relation is not a local
relation) can also represent other notions as the need arises. An example of a non-next-state relation is where
some states are considered security critical and related to states that are not security critical and required to
not contain information on any of the security critical states.

We assume a graph of localities usually denoted with sans serif, i.e., nodes are denoted h, k, etc. At each
node is a classification consisting of a local logic, a frame, a satisfaction relations h|=, k|=, and at least one local
relation. The local relation can be the identity relation if no feature of a component needs to be represented
using a local relation.

Definition 3.3.1.1 A local frame is a structure� = (�,H ,H) such that� is a collection of states. H : h h
is a local relation connecting some states of �. We use the same symbol for the frame and its collection
of states, and let use disambiguate meaning. H is a collection of neighborhoods or sets of states that are
subsets of � and the entire collection is closed under the Boolean operations and under the operations
[ℎ 〉 , [ℎ�〉 : H H. Hence H is a modal set algebra. These operators are used to define special collections
of states. They have valuation conditions in the sequel given by distributed operators, just set the distribution
to a single component. The ∈ relation between states and elements of the Boolean algebra is left implicit.

Definition 3.3.1.2 A distributed frame consists of a graph of nodes where each node is a classification,
distributed relations linking the states (tokens) and distributed modal operators linking the set algebras
(types).

Propositions in the logic are modeled by elements of the set algebras. A distributed frame with two
localities can be pictured as

Logical Analysis of Multiple Clock Domains 9

Props of h Props of k

States of h States of k

|= |=

F

[5 〉

[5 〉·

Component h Component k

Diagram 3.1: Generic Distribution with Two Components as Localities

where the arrows [5 〉 , [5 〉· can be [5 〉 , [5 〉· and [5 �〉 , [5 � 〉· interpreted by the distributed relation F , i.e.,
the lower case 5 in the modalities is linked with the script F relation. [5 〉 and [5 〉· are necessity operators,
and [5 �〉 and [5 � 〉· are possibility operators.

The relation F : h k used in the evaluation of the operators above uses two localities, h and k. These
are variables in that any actual FPGA application will fill those localities in by components using as many
as are needed.

The distributed relation F (see diagram) is denoted with an arrow but this is mere convention; F is a
two-place relation that, by fiat, is a morphism from elements of its first position to elements of its second
position. The distributed modalities, on the other hand, really are functions although they have special
properties required for us to treat them as modalities.

• h|= % if and only if for all G ∈h �, it is the case that G h|= %. Equivalently, h|= % if and only if for all
G ∈h >H (where >H is the top of the Boolean set algebra H), it is the case that G h|= %.

• 6 h|= % if and only if there is some G ∈h � and G 6 h|= %.

• A local logic at h is consistent just when for all G ∈h �, it is the case that for all propositions %, not
both G h|= % and G 6 h|= %.

Modal formulas [5 〉 and [5 �〉 for necessity and possibility are evaluated in the usual way except we
must respect the distributed nature now of these modalities:

G
h|= [5 〉& iff for all H, F GH implies H k|= & G

h|= [5 �〉& iff there exists H, F GH and H k|= &.

The other versions [5 〉· and [5 � 〉· run in the other direction:

H
k|= [5 〉· % iff for all G, F GH implies G h|= % H

k|= [5 � 〉· & iff there exists G, F GH and G h|= &.

Hence the distributed modalities are evaluated similar to the local modalities except notice the changes
between h|= and k|= on the two sides of the evaluations.

10 Gerard Allwein

4. SIMPLE SYNCHRONIZER

We will first analyze the simple synchronizer of Figure 2.1 using Channel Theory and then using
Distributed Logic. The Channel Theory version is a bit easier to understand and shows the distributed nature
of the synchronizer. This version could be made to support probabilities directly. The Distributed Logic
version is a bit more abstract since the intervening channel core is not used. It too could be made to support
probabilities but in a more abstract way.

4.1 Channel Theory Version

In [8] there are several techniques for synchronizing signals between two different clock domains. The
simple synchronizer in Figure 2.1 is the basis for many of them. There is typically more circuitry devoted to
making sure the signals are not corrupted, but that circuity is not going to change the underlying understanding
of synchronization. We will use the following Channel Theory diagram

AB BB

A B1 B2

8=(A) >DC (A) 8=(B1) >DC (B1) 8=(B2) >DC (B2)

c c

c c

c c

c c

c c

where the cmorphisms represent a pair (c, c) where the first is an injection tagging elements of its domain
and c projects elements of pair out with the first element if the cis on the left and the second element of the

cis on the right.

The top row of channels represents the connections between the flip-flops. The middle row of channels
represents the flip-flops themselves, and the bottom row represents input and outputs. The clock strikes only
for the middle row of channels. Every clock strike causes the input to move to the output. This is represented
by the theories in those channels. The top row of channels is merely representing the connections between
flip-flops. The A flip-flop is in one clock domain, the B8 flip-flops are in a second clock domain. As can be
seen in the diagram, each flip-flop is represented by a channel. The operation of each flip-flop is simple and
a channel might not be needed except for the fact that the output of the B1 flip-flop can go metastable. It is
also convenient to capture the rising edges of the clocks in terms of channels. If the falling edges needed to
be represented, two flavors of channels would be required, one for rising edges and one for falling edges.

In the table below, the propositions 3 = G refer to the input of a flip-flop with the label D in the previous
flip-flop diagrams. Similarly, the propositions @ = G refer to the output of a flip-flop with the label Q. We
have the following sets where 1/2 stands for the metastable “value” and c

8 applies a tag to all the elements
of the set to which it is applied. An index of 1 in c

1 represents a con the left of the channel and an index of
2 represents a con the right of the channel:

Logical Analysis of Multiple Clock Domains 11

Classification Tokens Types
8=(A) 0, 1 3 = 0, 3 = 1
>DC (A) 0, 1 @ = 0, @ = 1
8=(B1) 0, 1 3 = 0, 3 = 1/2, 3 = 1
>DC (B1) 0, 1/2, 1 @ = 0, @ = 1/2, @ = 1
8=(B2) 0, 1 3 = 0, 3 = 1
>DC (B2) 0, 1 @ = 0, @ = 1

A 〈0, 0〉, 〈1, 1〉 c

1(Typ(8=(A))) ∪ c

2(Typ(>DC (A)))
B1 〈0, 0〉, 〈1/2, 1/2〉, 〈1, 1〉 c

1(Typ(8=(B1))) ∪ c

2(Typ(>DC (B1)))
B2 〈0, 0〉, 〈1, 1〉 c

1(Typ(8=(B2))) ∪ c

2(Typ(>DC (B2)))
AB 〈0, 0〉, 〈1, 1/2〉, 〈1, 1〉 c

1(Typ(>DC (A))) ∪ c

2(Typ(8=(B1)))
BB 〈0, 0〉, 〈1/2, 0〉, 〈1/2, 1〉, 〈1, 1〉 c

1(Typ(>DC (B1))) ∪ c

2(Typ(8=(B2)))

We note that the outputs of A are the inputs to B1. Similarly, the outputs of B1 are (except for one instance)
the inputs of B2. There is a convention that the output of a flip-flop is only read by the input of the next
flip-flop when the clock strikes. The assumption is that the metastable state of the output of B1 settles down
to a logical 0 or 1 before the input to B2 is read.

It is possible to view AB and BB either as a continuum of channels that span the time between timing
cycles in the two domains or as single channels that have a timer property associated with them. This is
reflected in the tables by >DC (B1) containing the token 1/2 yet 8=(B2) does not contain the 1/2 token as it
never appears in the second position of any of the tokens in the BB channel.

This is still not a complete representation of the situation as there is only a probability that the metastable
state will settle down to a 1 within a clock slice of the second domain. One can add more flip-flops in the
second domain to lower the probability that the metastable state will persist past the synchronizing circuit.
This could be represented by putting probabilities on the theory in BB. However, doing this means carrying
those probabilities throughout the rest of the synchronizing circuit. This would give us a Shannon-style
communications channel built from the flip-flops of the second domain. We do not do this as our analyses is
qualitative. Further down below, we restate the situation using Distributed Logic. That seems like a perfect
driver for a paper on Probabilistic Distributed Logic.

The theories in the channels are

12 Gerard Allwein

Classification Theory
A c

1(0)
A

c

2(0)

c

1(1)
A

c

2(1)
B1

c

1(0)
B1

c

2(0)

c

1(1/2)
B1

c

2(0), c2(1/2), c2(1)

c

1(1)
B1

c

2(1)
B2

c

1(0)
B2

c

2(0)

c

1(1)
B2

c

2(1)
AB c

1(0)
AB

c

2(0)

c

1(1)
AB

c

2(1/2)

c

1(1)
AB

c

2(1)
BB c

1(0)
BB

c

2(0)

c

1(1/2)
BB

c

2(0), c2(1)

c

1(1)
BB

c

2(1)

4.2 Distributed Logic Version

This amounts to flattening the Channel Theory diagram. The reason it is possible is that the channels
have binary relations as their token sets. We will assume the following localities:

8=(A) a1
>DC (A) a2
8=(B1) b11
>DC (B1) b12
8=(B2) b21
>DC (B2) b22

The locality graph is then

a1 a2 b11 b12 b21 b22
A AB B1 BB B2

There are the following theories in the localities, truth functionally valid formulas not involvingmodalities
have been suppressed:

Logical Analysis of Multiple Clock Domains 13

locality theory locality theory
a1 (3 = 0) ⊃ [0 〉 (@ = 0) b22 (@ = 0) ⊃ [12 〉· (3 = 0)

(3 = 1) ⊃ [0 〉 (@ = 1) (@ = 1) ⊃ [12 〉· (3 = 1)
a2 (@ = 0) ⊃ [0 〉· (3 = 0) b21 (3 = 0) ⊃ [12 〉 (@ = 0)

(@ = 1) ⊃ [0 〉· (3 = 1) (3 = 1) ⊃ [12 〉 (@ = 1)
(@ = 0) ⊃ [01 〉 (3 = 0) (3 = 0) ⊃ [11 〉· (@ = 0)
(@ = 1) ⊃ [01 〉 (3 = 1) (3 = 1) ⊃ [11 〉· (@ = 1)

(3 = 1/2) ⊃ [11 〉· ((@ = 0) ∨ (@ = 1))
b11 (3 = 0) ⊃ [11 〉 (@ = 0) b12 (@ = 0) ⊃ [11 〉· (3 = 0)

(3 = 1/2) ⊃ [11 〉 (@ = 1/2) (@ = 1/2) ⊃ [11 〉· (3 = 1/2)
(3 = 1) ⊃ [11 〉 (@ = 1) (@ = 1) ⊃ [11 〉· (3 = 1)
(3 = 0) ⊃ [01 〉· (@ = 0) (@ = 0) ⊃ [11 〉 (3 = 0)
(3 = 1/2) ⊃ [01 〉· (@ = 1) (@ = 1) ⊃ [11 〉 (3 = 1)
(3 = 1) ⊃ [01 〉· (@ = 1) (3 = 1/2) ⊃ [11 〉 ((@ = 0) ∨ (@ = 1/2) ∨ (@ = 1))

(3 = 1) ⊃ [11 〉 (@ = 1)

4.3 Testing: Distributed Logic Version

This amounts to flattening the Channel Theory diagram. The reason it is possible is that the channels
have binary relations as their token sets. We will assume the following localities:

Flip-Flop locality appellation states of the form 〈D,Q〉
Bit 0 a {〈0, 0〉, 〈0, 1〉〈1, 0〉, 〈1, 1〉}
Bit 1 b1 {〈0, 0〉, 〈0, 1〉〈1, 0〉, 〈1, 1〉}∪

{〈0, 1/2〉, 〈1, 1/2〉, 〈1/2, 0〉, 〈1/2, 1〉}
Bit 2 b2 {〈0, 0〉, 〈0, 1〉〈1, 0〉, 〈1, 1〉}

The locality graph is then

a b1 b2
F G

The following table is the local relation specifications:

14 Gerard Allwein

relation type relation tuple
A : a a 〈〈0, 0〉, 〈0, 0〉〉

〈〈0, 1〉, 〈0, 0〉〉
〈〈0, 0〉, 〈1, 0〉〉
〈〈0, 1〉, 〈1, 0〉〉
〈〈1, 0〉, 〈0, 1〉〉
〈〈1, 1〉, 〈0, 1〉〉
〈〈1, 0〉, 〈1, 1〉〉
〈〈1, 1〉, 〈1, 1〉〉

B1 : b1 b1 〈〈0, 0〉, 〈0, 0〉〉
〈〈0, 1〉, 〈0, 0〉〉
〈〈0, 0〉, 〈1, 0〉〉
〈〈0, 1〉, 〈1, 0〉〉
〈〈1, 0〉, 〈0, 1〉〉
〈〈1, 1〉, 〈0, 1〉〉
〈〈1, 0〉, 〈1, 1〉〉
〈〈1, 1〉, 〈1, 1〉〉
〈〈0, 0〉, 〈1/2, 0〉〉
〈〈0, 1〉, 〈1/2, 0〉〉
〈〈1, 0〉, 〈1/2, 1〉〉
〈〈1, 1〉, 〈1/2, 1〉〉
〈〈1/2, 0〉, 〈0, 1/2〉〉
〈〈1/2, 1〉, 〈1, 1/2〉〉
〈〈1/2, 0〉, 〈0, 0〉〉
〈〈1/2, 1〉, 〈1, 1〉〉
〈〈0, 1/2〉, 〈0, 0〉〉
〈〈0, 1/2〉, 〈1, 0〉〉
〈〈1, 1/2〉, 〈0, 1〉〉
〈〈1, 1/2〉, 〈1, 1〉〉

B2 : b2 b2 〈〈0, 0〉, 〈0, 0〉〉
〈〈0, 1〉, 〈0, 0〉〉
〈〈0, 0〉, 〈1, 0〉〉
〈〈0, 1〉, 〈1, 0〉〉
〈〈1, 0〉, 〈0, 1〉〉
〈〈1, 1〉, 〈0, 1〉〉
〈〈1, 0〉, 〈1, 1〉〉
〈〈1, 1〉, 〈1, 1〉〉

For X ∈ {A,B2},

X = {〈G, H〉 | G1 = H2 and G, H ∈ Tok(x)}.

That is, in one time step, the input at D of state G at x is G1 and G1 is transferred to the output Q and hence G1
becomes the second component H2 of the state H.

Logical Analysis of Multiple Clock Domains 15

The rest of the relations are

B1 = {〈G, H〉 | (G1 = H2) ∨ (G1 = 1/2) and G, H ∈ Tok(x)}.
AB = {〈G, H〉 | (G1 = H2 or (G1 = 1 and H2 = 1/2)) and G ∈ Tok(a) and H ∈ Tok(b1)}
BB = {〈G, H〉 | G1 = H2 or (G1 = 1/2 and (H2 = 0 or H2 = 1)) and G ∈ Tok(b1) and H ∈ Tok(b2)}

There are the following theories in the localities, truth functionally valid formulas not involvingmodalities
have been suppressed:

locality theory locality theory
a (3 = 0) ⊃ [0 〉 (@ = 0) b2 (@ = 0) ⊃ [12 〉· (3 = 0)

(3 = 1) ⊃ [0 〉 (@ = 1) (@ = 1) ⊃ [12 〉· (3 = 1)
a (@ = 0) ⊃ [0 〉· (3 = 0) b2 (3 = 0) ⊃ [12 〉 (@ = 0)

(@ = 1) ⊃ [0 〉· (3 = 1) (3 = 1) ⊃ [12 〉 (@ = 1)
(@ = 0) ⊃ [01 〉 (3 = 0) (3 = 0) ⊃ [11 〉· (@ = 0)
(@ = 1) ⊃ [01 〉 ((3 = 0) ∨ (3 = 1) ⊃ [11 〉· (@ = 1)
(3 = 1/2) ∨ (3 = 1))

b1 (3 = 0) ⊃ [11 〉 (@ = 0) b1 (@ = 0) ⊃ [11 〉· (3 = 0)
(3 = 1/2) ⊃ [11 〉 (@ = 0) ∨ (@ = 1/2) ⊃ [11 〉· (3 = 1/2)
(@ = 1/2) ∨ (@ = 1))

(3 = 1) ⊃ [11 〉 (@ = 1) (@ = 1) ⊃ [11 〉· (3 = 1)
(3 = 0) ⊃ [01 〉· (@ = 0) (@ = 0) ⊃ [11 〉 (3 = 0)
(3 = 1/2) ⊃ [01 〉· (@ = 1) (@ = 1) ⊃ [11 〉 (3 = 1)

(@ = 1/2) ⊃ [11 〉 ((3 = 0) ∨ (3 = 1))

The theories reflect the fact that while 1/2 might be output by the flip-flop at b1, that 1/2 is not received
by the flip-flop at b2. The reasoning is that while the output of the flip-flop at b1 is metastable, the underlying
assumptionwas that the flip-flop at b2would not see it owing to the probability of that recognition is below the
threshold for the modeling. Of course one could change the tables to reflect this non-deterministic behavior
all the way through the flip-flop chain and then arrange any receiving circuits to handle this behavior.

This points up an underlying problem with digital circuity. There is always a probability of failure,
however much of our analysis is devoted to correctly functioning circuits so we can be sure their correct
behavior is as designed. There are strategies for fail-safe however these are not foolproof and will require a
probability or a possibilistic based analysis.

5. CLOCK DOMAINS AS MODAL EFFECTS

An effect type for a clock domain is somewhat like an aura or color for all the elements (signals and
components) in that clock domain.

16 Gerard Allwein

5.1 Clock Domains and Modal Operators

The clock domain or aura modal operators are interpreted by relations which are reflexive, symmetric,
and transitive. Assume a clock domain A interpreted by the relation R. It must have the following properties

R1: reflexivity: R ⊆ I (I is the identity relation),

R2: symmetry: R = R̆, (R̆ is the relational converse of R),

R3: transitivity: R · R ⊆ R (− · − is relational composition).

These properties validate the following axioms in modal logic (the appellations are from Chellas [10]):

T: reflexivity: [A 〉% ⊃ %,

B: symmetry: % ⊃ [A 〉 [A�〉%,

4: transitivity: [A 〉% ⊃ [A 〉 [A 〉%.

The reason for the reflexivity axiom [A 〉% ⊃ % stems from the modeling condition:

G
h|= [A 〉% h⊃ % iff (∀H(RGH implies H h|= %)) implies G h|= %.

The rest of the conditions are similar and determine that R is an equivalence relation. If we think of tuple of
the equivalence relation as an arc in a graph, then the equivalence classes determine what are known in graph
theory as cliques. Hence, the clique that G finds itself within according to R is the proposition % simply
because G must be related to every H in its clique. So there can only be a single % for which these axioms are
true given any G. Different G may find themselves in different cliques.

A common mathematical systems concept is that of residuation. If 5 : - . and 6 : . - where -
and . are partial orders, then 5 and 6 are residuated if

5 0 ≤ 1 iff 0 ≤ 61.

In Chellas [10], a system with symmetry is at least a KB. The system KB has the following pleasing property
(see pp. 136 for more ways of axiomatizing KB) where the classical logic ⊃ functions as the ≤:

[A�〉% ⊃ &
% ⊃ [A 〉&

This makes sense as the symmetry condition removes any distinction between forward and backward possi-
bility and necessity. Hence this is stating a residuation property.

Logical Analysis of Multiple Clock Domains 17

Let % be a formal logic condition we wish to have hold after a piece of computer code is executed. A
weakest precondition for that piece of computer code is the least powerful statement if the statement holds
before the computer code is executed, then % will hold after. The computer code can be associated with a
relation between its inputs and its outputs. This situation reified in distributed logic (or modal logic) local
necessity modal operator.

Let [ℎ 〉% be the weakest precondition with respect to the bit of computation to which [ℎ 〉 refers, i.e, the
computation associated with ℎ is the relation H , with the computation representing H in intensional form
(i.e., a formula as opposed to a table). The following axioms should hold for any clock domains A, B, and
localities h, k with 5 : h k a clock synchronizer, and % is a proposition at h and & a proposition at k:

Q1: [A 〉% h⊃ [A 〉 [ℎ 〉%,

Q2: [A 〉% h⊃ [ℎ 〉 [A 〉%,

Q3: [5 �〉 [: 〉& h⊃ [ℎ 〉 [5 �〉&,

Q4: [5 � 〉· [ℎ 〉% k⊃ [: 〉 [5 � 〉· %,

Q5: [A�〉 [5 �〉& h⊃ [5 �〉 [B�〉&,

Q6: [B� 〉· [5 � 〉· % k⊃ [5 � 〉· [A� 〉· %.

These were stated with necessity because that corresponds to the weakest precondition. However, it
seems easier to read them with possibility:

[A�〉 [ℎ�〉% h⊃ [A�〉% [ℎ�〉 [A�〉% h⊃ [A�〉%.

Axiom Q1 says that if some G is in some domain formalized as R, then going through a local component
transition leaves us within the same domain. Axiom Q2 says that if G transists locally to a state in a domain,
then G must have already started in that domain. Both of these assume that H , used to interpret [ℎ 〉 and
[ℎ�〉 , is not the transition relation implementing a synchronizer but is merely the next state relation at h.

The Axioms Q3 and Q4 say that the synchronizer forces a forward and backwards simulation condition
between the localities on either side of the synchronizer. The forward simulation says that transitions on h
drive those on k, the backward simulation says that transitions on k were driven by those on h. Simulations
relations and axioms are listed below.

AxiomsQ5 andQ6 says the clock domains are related by a proverse and converse simulations respectively.
It must be noted that the synchronizer requires state changes or it could not function as a synchronizer; it
would be as though the clocks were turned off if this were not the case.

The simulation relations are summarized in the follow:

18 Gerard Allwein

Name Frame Condition Axiom

Forward Simulation F GH and HGG ′ implies ∃H′(KHH′ and F G ′H′) [5 �〉 [: 〉& h⊃ [ℎ 〉 [5 �〉&
Backward Simulation F G ′H′ and KHH′ implies ∃G(HGG ′ and F GH) [5 � 〉· [ℎ 〉· % k⊃ [: 〉· [5 � 〉· %
Proverse Simulation F G ′H′ and RGG ′ implies ∃H(SHH′ and F GH) [A�〉 [5 �〉& h⊃ [5 �〉 [B�〉&
Converse Simulation F GH and SHH′ implies ∃G ′(RGG ′ and F G ′H′) [B� 〉· [5 � 〉· % k⊃ [5 � 〉· [A� 〉· %

Diagrammatically (but not in the diagrams of category theory, the arrows are merely tuples in the relation
indicated by the arrow’s label),

∀ ∃
H′

G ′ H G ′ H

G G
FH FH

F K

Forward

∀ ∃ H

G H′ G H′

G ′ G ′
FR̆ FR̆

F S̆

Proverse

∀ ∃
H′ H′

G ′ H G ′ H

G

KF

FH

F K

Backward

∀ ∃
G ′

H′ G H′ G

H H
S F̆ F̆S

F̆ R

Converse

The intermediate localities of the example can be made to recede into the background by taking the
relational composition of the relations representing the flip-flops and using the result as R where the input
the first flip-flop comes from a locality h in the r domain and the output of the last modality is in the locality
k in the s domain.

5.2 An Aura of Localities

To step back a bit, the structure appears to be an iteration of Distributed Logic where there are localities
of localities. The second level are the aurae and correspond, in this particular instance, to clock domains.
The synchronizers are represented by simulation relations between the auras.

It might make sense to think of clock domains as consisting of a collection of propositions of localities.
Think of the synchronizers as pairing localities as the elements of a relation, F . So 〈h, k〉 ∈ F iff there is a

Logical Analysis of Multiple Clock Domains 19

synchronizer from h to k. This relation F is not an equivalence relation because there is no guaranteed that
〈k, h〉 ∈ F . However, I do not know if anything interesting follows from this.

An alternate view without jumping set theoretical type levels is to consider an equivalence relation � ′
8

on all localities 8 within a single clock domain �. The clock domain itself is another relation

�� =
⋃
8∈�

� ′8 .

In this case, �� is an equivalence relation and each clique corresponds to a locality.

6. ESTEREL, LUSTRE, AND SIGNAL

Most previous work, e.g., Esterel [11], Lustre [12], Signal [13], etc. use synchronous signals. Asyn-
chronous hardware circuits are not widely used, so these languages might lend themselves to FPGA applica-
tions. We are not aware of this happening at the moment.

In Esterel, programs are interpreted as state machines. Programs in Lustre [12] are interpreted as
dataflows. Programs in Signal [13] are interpreted as logical specifications. Lustre is closest to ReWire in
the sense that dataflow languages are similar to functional languages.

6.1 Clocks

Each of the languages uses an implicit notion of clocking and provide primitives to capture two senses
of “signals in time”: simultaneity and rising edges. Implicitly, a design is composed of several clock
zones, each zone has its own notion of clock. To route signals between zones, one must use some form of
synchronization. Simultaneity is useful for polling a signal to catch its rising edge. Rising edges are used
with latches to catch the first time a signal goes true. The latter can be derived from the former but only
when the polling is happening at faster rate than the clock of the region from which the signal was sent.

In none of these languages are the actual rates of the clocks used. They would be unknown at compile
time. Rather, the facilities of the languages are used to place a partial order on when signals are “present”.
So one must get used to the separation of real clock times and an ordering on events that is imposed by the
program structure. It is this latter that the languages express. In that sense, one might never need an actual
variable representing a clock signal in the languages.

There are at least two difficulties that must be overcome:

• Clock � runs slower than clock � ′, and

• Clock � runs faster than clock � ′.

Signals in each of the clock domains � and � ′ are considered to remain set throughout an entire clock
slice and can only change on the rising edge of each clock waveform.

20 Gerard Allwein

Consider a computation i running on clock � and a computation i′ running on clock � ′ and they wish
to communicate. Assume is one signal B with which they wish to communicate. i sends signal B to i′
which receives it as B′. In order to force synchronization between i and i′, the signal must be coerced into
a synchronous signal in the sense that i can send it and i′ can receive it where the transaction is considered
atomic. To implement the atomic action, there are two primitives notions: sampling and latching.

If clock � runs slower than � ′, then i′ can sample the signal B′ at each clock tick. If � runs faster than
clock � ′, then the signal B must be latched so that its value is retained until i′ can get around to reading it.

6.2 Esterel

Esterel allows one to sample a signal every clock cycle with the signal being generated on a different
clock than the sampler. A sampler is a busy wait. The sampler triggers for every tick of its clock, runs to
completion, and then awaits its next clock tick. This captures the rising edge of a signal. The current state
of the signal is saved for every clock tick. When the next clock tick arrives, the current value of the signal
can be compared to the previous value and if the signal goes from low to high, then the rising edge has been
recognized.

To catch rising edges below the level of coding the above in Esterel, there is the “await” operation. This
sets up what is essentially a latch. When run in parallel with code polling the effect of the wait, the rising
edge of a signal is recognized.

6.3 Lustre

From [12],

In LUSTRE any variable and expression denotes a flow, i.e., a pair made of a possibly infinite
sequence of values of a given type; a clock, representing a sequence of times. A flow takes the
nth value of its sequence of values at the nth time of its clock. Any program, or piece of program
has a cyclic behavior, and that cycle defines a sequence of times which is called the basic clock of
the program: a flow whose clock is the basic clock takes its nth value at the nth execution cycle
of the program. Other, slower, clocks can be defined, thanks to boolean-valued flows: the clock
defined by a boolean flow is the sequence of times at which the flow takes the value true.

Lustre has primitive called pre that allows one to capture the previous value of a signal. Also, it has an
operator −> that says what is on the left is the initial value for when the code is run and what is right will be
succeeding values. As an example,

node COUNTER(va1_init, Val_incr: int; reset: bool) returns (n: int);
let

n = Val_init −> if reset then
Val_init else pre(n) + Val_incr;

tel.

Logical Analysis of Multiple Clock Domains 21

which implements a counter. The “tel.” is the end of the module indicator. These modules are nodes in
a flow graph.

Similarly to Esterel, has an operator currentwhich picks up the current value of a signal. It has an another
operator when for picking up the rising edge of signal.

6.4 Signal

Signal works with three-values for signals, C, 5 , and ⊥. A signal . can thus be C or 5 when “present” and
is undefined, ⊥, when not present. Signal has a when operator which samples an input:

. := - when �

where - , . , and � are Boolean. This statement sets . to - if � is present and undefined otherwise. The
statement

. := * default +

“merges” * and . ; when * is present, then . = *. Else, if + is present, then . = + . If neither * or + is
present, then . is ⊥.

All signals have clocks associated with them. The clocks for variables on the left of := are assigned
clocks depending upon the clocks of variables on the right of :=. This has the effect of the clocks being
locally synchronized or determined in a retail fashion by the compiler.

The operator $ is the control theory equivalent of the I−1 transform in that it allows one to peek at the
:-th value of a signal before the present time:

/ := . $ 4

peeks at the value of . four time clicks back from the current tick at which the code is being executed.
Related to this is a window operator:

+/ := . window 3

assigns the vector +/ the current and two previous values of the signal . .

There is a prioritized merge:

. := * default +

which sets the value of . to* if* is present. Otherwise it sets the value of . to + if + is present. If neither
are present, . gets ⊥.

The locution

) := event -

22 Gerard Allwein

defines the event type signal) and its occurrences are simultaneous with those of - . In short, it represents
the clock of - .

The locution

) := when �

defines the event type signal) which is present whenever � is present and true, and is undefined otherwise.

Clocks are normally left implicit. However, it is possible to reify a clock to be an actual signal. The
locution

) := event �

defines the event type tignal) whenever � is present and � is true, and delivers nothing otherwise.

In addition, there are some constraints on clocks that can be specified:

- =̂ .

and

- ˆ< .

The first specifies that . has the same clock as - and the second specifies that - is no more frequent than . .
Signal contains a delay operator that references the value of a signal at the previous tick as opposed to the
current tick.

These operators can be put together to form a cell:

. := - cell �

for � a Boolean signal. This delivers at the output of . either the value - if present or the previous value of
- when � is currently presented and true. The cell can be implemented with

. := - default . $ 1
. =̂ (event -) default (when �)

. is set to - if present, or the previous value of . if - is not present. In addition (second line), . is specified
to have a clock rate not greater than that of the event of - if present or defaults to that of � whenever � is
present and true.

There is a caveat to the above, the actual clock rate of any signal is not known at compile time. Rather, the
instructions allow one to place a partial order on the implicit clocks associated with signals. Thus the code
can implicitly work with clocks yet need not ever know their rate. Their rate is supplied by the underlying
hardware when the code is executed.

Logical Analysis of Multiple Clock Domains 23

REFERENCES

1. G. Allwein, “A Qualitative Framework for Shannon Information Theories,” Proceedings of the
Proceedings of the New Security Paradigms Workshop, 2004 (ACM Press), 2005, pp. 23 – 31.

2. G. Allwein, Y. Yang, and W. L. Harrison, “Decision Theory via Channel Theory,” Proceedings of
the Proceedings of the Logic in Cognitive Science Conference, 2010, Logic and Logical Philosophy
Journal (The Nicolaus Copernicus University Press), 2011, pp. 81–110.

3. J. Barwise and J. Seligman, Information Flow: The Logic of Distributed Systems (CUP, 1997).
Cambridge Tracts in Theoretical Computer Science 44.

4. G. Allwein, W. L. Harrison, and D. Andrews, “Simulation logic,” Logic and Logical Philosophy 23(3),
277–299 (2014).

5. G. Allwein and W. L. Harrison, “Distributed Modal Logic,” in K. Bimbó, ed., J. Michael Dunn on
Information Based Logic: Outstanding Contributions to Logic, pp. 331–362 (Springer-Verlag, 2016).

6. A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein, “A Principled Approach to Se-
cure Multi-Core Processor Design with ReWire,” Proceedings of the Proceedings of the ACM SIG-
PLAN/SIGBEDConference on Languages, Compilers, Tools and Theory for Embedded Systems (ACM
Digital Library), 2016.

7. W. L. Harrison, A. Procter, I. Graves, M. Becchi, and G. Allwein, “A Programming Model for
Reconfigurable Computing Based in Functional Concurrency,” Proceedings of the Proceedings of the
11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC
2016) (IEEE), 2016, pp. 1–8.

8. T. Dave, A. Jain, and D. Jain, “Synchronizer techniques for multi-clock domain SoCs & FPGAs,”
https://www.edn.com/electronics-blogs/day-in-the-life-of-a-chip-designer/4435339/Synchronizer-
techniques-for-multi-clock-domain-SoCs, 2014.

9. I. S. Moskowitz, L. Chang, and R. E. Newman, “Capacity is the Wrong Paradigm,” Proceedings of the
Proc. New Security Paradigms Workshop, Sept. 23-26 (ACM Press), 2002, pp. 114–126.

10. B. F. Chellas, Modal Logic: an introduction (Cambridge University Press, 1980).

11. G. Berry and E. Sentovich, “Multiclock Esterel,” Proceedings of the Correct Hardware Design
and Verification Methods, CHARME 2001, volume Lecture Notes in Computer Science, vol 2144
(Springer), 2001.

12. N. Halbwachs, P. Caspi, P. Raymond, andD. Pilaud, “The synchronous data flow programming language
LUSTRE,” Proceedings of the IEEE 79(9), 1305–1320 (1991).

13. P. LeGuernic, T. Gautier, M. L. Borgne, and C. L. Maire, “Programming real-time applications with
SIGNAL,” Proceedings of the IEEE 79(9), 1321–1336 (1991).

	EXECUTIVE SUMMARY
	Introduction
	Multiple Clock Domains
	Logic Systems
	Primer on Channel Theory
	Classifications and Infomorphisms
	Classifications
	Infomorphisms
	Channels

	Primer on Distributed Logic
	The Interpretations

	Simple Synchronizer
	Channel Theory Version
	Distributed Logic Version
	Testing: Distributed Logic Version

	Clock Domains as Modal Effects
	Clock Domains and Modal Operators
	An Aura of Localities

	Esterel, Lustre, and Signal
	Clocks
	Esterel
	Lustre
	Signal

	REFERENCES

