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1. Introduction

In a recent report, ARL-MR-1037,1 the author studied the problem of an axisym-
metric instantaneous line explosion in incompressible fluid media.∗ In such a model,
a line of distributed explosive is situated along the axis of a radially finite, axisym-
metric fluid shell. Because the explosive is taken to be concentrated along a 1-D line,
the explosion of the line has the characteristic of converting 100% of its chemical
energy into kinetic energy at time 𝑡 = 0. Apart from the explosive energy released
(per unit axial length), the physical properties of the explosive material are imma-
terial to the analysis. The explosive serves purely as a source of energy deposition
into the fluid cylindrical shell.

In the line-explosion model, the outer boundary of the cylindrical fluid shell is
subjected to a constant external pressure provided by an idealized reservoir. This
reservoir pressure performs continual work on the expanding fluid shell, until such
time that the kinetic energy in the expanding shell is dissipated and the expanding
motion of the shell is fully arrested.

In this report, the axisymmetric line-explosion solution1 becomes the vehicle for
formulating a crater expansion model for high-velocity penetration. While the line-
explosion problem entails the full axis of explosive detonating instantaneously at
time 𝑡 = 0, the axisymmetric penetration problem is one in which a penetrator,
through the process of erosion (and in the more general case, deceleration), provides
a source of energy deposition into the target that will vary over time in terms of
both magnitude as well as the axial location of the deposition. And yet, if the
time-rate of energy deposition into the target is constant or only slowly varying
in time, it may be reasonable to ignore axial gradients in the crater-expansion
process and directly apply the axisymmetric crater expansion model of the line
explosion to each successive cross-sectional slice of the target, as it interacts with the
eroding penetrator. In this fashion, the line-explosion solution may facilitate a model
associated with the problem of time-dependent penetration and crater expansion.

∗The axisymmetric line-explosion analysis of ARL-MR-10371 was, quite literally, an axisym-
metric reinterpretation of the spherical point-explosion solution developed in ARL-TR-9247.2,3
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2. Penetrator Energy Deposition per Unit Target Depth

For a line explosion, the parameter that wholly governs the energy initially trans-
ferred into the fluid is 𝑑𝐸𝑐/𝑑𝑧, the explosive energy deposited per unit length of
fluid cylinder. If we desire to apply that model to the problem of eroding penetra-
tion, a means to quantify the amount of energy 𝑑𝐸 that gets deposited into a given
cross-sectional slice of target (of thickness 𝑑𝑧) is required.

For simplicity, we consider in this report the case where the impact velocity is large
enough relative to the target’s material strength that the axial penetration occurs
in what can be characterized as a hydrodynamic manner, such as that of a shaped-
charge jet. Note that nothing theoretically precludes a more sophisticated treatment
for lower-velocity impacts, involving the strengths of the jet and the target. In a
cylindrical penetrator such as a jet, the linear energy density (kinetic energy per unit
length 𝐿) of the jet is simply

𝑑𝐸

𝑑𝐿
=

1
2
𝜌 𝑗𝑉

2
𝑗 𝜋𝑟

2
𝑗 , (1)

where 𝑑𝐸/𝑑𝐿 is the jet’s linear energy density, 𝜌 𝑗 is the jet density, 𝑟 𝑗 is the jet
radius, and 𝑉 𝑗 is the jet velocity for the impact of interest.

In the hydrodynamic limit, the interface pressure 𝑝0 is characterized by way of a
Bernoulli balance as

𝑝0 =
1
2
𝜌 𝑗 (𝑉 𝑗 −𝑈)2 =

1
2
𝜌𝑡𝑈

2 , (2)

where 𝑈 is the rate of penetration into the target and 𝜌𝑡 is the target density. From
Eq. 2, we derive the kinematic relationship between 𝑉 𝑗 and 𝑈 that

𝑉 𝑗

𝑈
= (1 + 𝛾) , (3)

where 𝛾 =
√︁
𝜌𝑡/𝜌 𝑗 . Intrinsic to Eq. 2 is the notion that the velocity of the jet relative

to the jet–target interface is 𝑉 𝑗 − 𝑈 and the velocity of the target relative to the
interface is 𝑈. Thus, the ratio of jet-consumption rate∗ to target-penetration rate is

𝑑𝐿

𝑑𝑧
=
𝑉 𝑗 −𝑈

𝑈
= 𝛾 . (4)

∗Here, 𝐿 is taken as jet length consumed rather than the more standard approach of jet length
remaining. In the alternate convention, the signs on Eqs. 1 and 4 would be made negative.
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We may combine Eqs. 1 and 4 to obtain the rate at which jet energy is consumed
(deposited into the target) per unit penetration depth:

𝑑𝐸

𝑑𝑧
=
𝑑𝐸

𝑑𝐿

𝑑𝐿

𝑑𝑧
= 𝛾

𝑑𝐸

𝑑𝐿
=
𝛾

2
𝜌 𝑗𝑉

2
𝑗 𝜋𝑟

2
𝑗 . (5)

The model we adopt is that a fraction of the jet’s energy is required to axially
penetrate into the target, creating an initial crater indentation the same diameter
as the jet, and the remaining jet energy is available for the work of radial crater
expansion. In mathematical terms,

𝑑𝐸

𝑑𝑧
=
𝑑𝐸𝑎

𝑑𝑧
+ 𝑑𝐸𝑐

𝑑𝑧
, (6)

where 𝑑𝐸𝑎/𝑑𝑧 is the linear energy density required for axial penetration and, as in
the line-explosion model, 𝑑𝐸𝑐/𝑑𝑧 is the linear energy density available for crater
expansion. The differential work of axial penetration 𝑑𝐸𝑎 is defined here as the
interface force (pressure × area) moving through a distance of penetration, 𝑑𝑧. Thus,

𝑑𝐸𝑎

𝑑𝑧
= 𝑝0 𝜋𝑟

2
𝑗 =

1
2
𝜌 𝑗 (𝑉 𝑗 −𝑈)2𝜋𝑟2

𝑗 . (7)

We can determine from Eqs. 5 and 7 that

𝑑𝐸𝑎

𝑑𝑧
=

𝛾

(1 + 𝛾)2 · 𝑑𝐸
𝑑𝑧

, (8)

as derived from the following chain that also makes use of Eqs. 3 and 4:

𝑑𝐸𝑎/𝑑𝑧
𝑑𝐸/𝑑𝑧 =

1
2𝜌 𝑗 (𝑉 𝑗 −𝑈)2𝜋𝑟2

𝑗

1
2𝜌 𝑗𝑉

2
𝑗
𝜋𝑟2

𝑗
𝛾

=
(𝑉 𝑗 −𝑈)2

𝑉2
𝑗
𝛾

=

(𝑈
𝑉 𝑗

)2 (𝑉 𝑗 −𝑈

𝑈

)2 1
𝛾

=
1

(1 + 𝛾)2 𝛾2 1
𝛾

=
𝛾

(1 + 𝛾)2 .

We may now use Eqs. 8 and 6 to solve for the linear energy density available for
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radial crater expansion,
𝑑𝐸𝑐

𝑑𝑧
=

1 + 𝛾 + 𝛾2

(1 + 𝛾)2 · 𝑑𝐸
𝑑𝑧

, (9)

as shown in the following chain:

𝑑𝐸𝑐/𝑑𝑧
𝑑𝐸/𝑑𝑧 = 1 − 𝑑𝐸𝑎/𝑑𝑧

𝑑𝐸/𝑑𝑧
= 1 − 𝛾

(1 + 𝛾)2

=
1 + 𝛾 + 𝛾2

(1 + 𝛾)2 .

Examining the fractional term on the right-hand side of Eq. 9, we observe that the
target’s linear energy density available for crater expansion is always greater than or
equal to 75% of the target’s total linear energy density. Its value approaches 100%
for very small as well as very large values of 𝛾 and drops to 75% when 𝛾 = 1.

Relating these results back to the axisymmetric line-explosion model1 of ARL-MR-
1037, for the target cross section under consideration, we start with a crater of initial
radius 𝑅◦

∗ = 𝑟 𝑗 , the jet radius. The linear energy density of the “explosion” to create
radial motion in the target, which in the case of penetration is supplied by the eroding
jet, is obtained by substituting Eq. 5 into Eq. 9:

𝑑𝐸𝑐

𝑑𝑧
=

1 + 𝛾 + 𝛾2

(1 + 𝛾)2 · 𝛾
2
𝜌 𝑗𝑉

2
𝑗 𝜋𝑟

2
𝑗 . (10)

3. Plastic Work Performed by the Target

In the axisymmetric line-explosion model,1 the target material expands radially
subject to an external pressure 𝑝∞ applied to the outer boundary of the target
cylindrical shell. There is no pressure applied to the inner crater wall for 𝑡 > 0,
during the period of crater expansion. The work done by this external pressure,
given as a function of the target’s time-dependent external radius 𝑅out, is

𝑑𝑊ext(𝑅out)
𝑑𝑧

= 𝜋(𝑅2
out − 𝑅◦2

out)𝑝∞ . (11)

In contrast, for the crater-expansion problem in penetration mechanics, there is no
external pressure 𝑝∞ applied. Rather, we understand that plastic work accomplished

4



in the solid target dissipates the kinetic energy of the expansion. The process is often
visualized in terms of a target resistance, 𝐻, having units of strength (i.e., force per
unit area). This resistance 𝐻 is not merely, for example, the uniaxial strength of
the target material. Rather, it is the integrated effect of the stress field throughout
the target’s plastic zone, surrounding the expanding crater, brought about by the
strain being imposed during the expansion. For eroding penetration, the value of 𝐻
typically lies in the range of 3–5 times the ultimate strength of the target material.

This resistance, cumulatively acting through the crater’s plastic zone, is taken to
oppose the crater expansion with a magnitude 𝐻, such that energy dissipated through
plastic work, 𝑊𝑝, is oft characterized as

𝑑𝑊𝑝

𝑑V = 𝐻 , (12)

where V is the crater volume created as a result of target expansion. In the case of
an axisymmetric crater expansion from initial (𝑡 = 0) radius 𝑟 = 𝑅◦

∗ to an expansion
𝑟 = 𝑅∗, we would have

𝑑V(𝑅∗)
𝑑𝑧

= 𝜋(𝑅2
∗ − 𝑅◦2

∗ ) , (13)

so that, combining Eqs. 12 and 13, we obtain

𝑑𝑊𝑝 (𝑅∗)
𝑑𝑧

=
𝑑𝑊𝑝

𝑑V
𝑑V
𝑑𝑧

= 𝜋(𝑅2
∗ − 𝑅◦2

∗ )𝐻 . (14)

While one could (and many have) merely equated the linear energy density deposited
in the target by the jet (for example, Eq. 10) with the linear plastic work density
accomplished in the target (Eq. 14), and taking the initial crater radius 𝑅◦

∗ as 0, such
an approach will provide an estimate of the maximum crater radius 𝑅max

∗ only, but
no information about expansion velocities, pressure field, event duration, or time
history in any form. In contrast, if we can adapt the penetrating crater expansion
problem to the framework of the line explosion, all of these missing pieces will
become available. So, let us proceed to do that.

Comparing the form of Eq. 11 with that of Eq. 14, we note an overpowering similar-
ity. Further, for a line-explosion fluid that is assumed incompressible, axisymmetric
expansion of the target shell is governed by the continuity relation

𝑅2
out − 𝑅◦2

out = 𝑅2
∗ − 𝑅◦2

∗ . (15)
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One may, thus, substitute Eq. 15 into the line explosion’s linear work density, Eq. 11,
to obtain

𝑑𝑊ext(𝑅∗)
𝑑𝑧

= 𝜋(𝑅2
∗ − 𝑅◦2

∗ )𝑝∞ . (16)

Finally, we see a direct correspondence between the work performed by an external
reservoir at a pressure of 𝑝∞ upon a liquid target shell (Eq. 16) and the plastic work
accomplished by a solid target possessing a resistance of 𝐻 (Eq. 14). In particular,
by replacing the exterior boundary pressure applied to the fluid shell (𝑝∞) with the
target resistance of the solid target (𝐻), the full apparatus of line-explosion solution
may be brought to bear on the problem!

4. Outer Radius of Radial Stress Application

The final detail needing attention is the fact that, in the line-explosion model, the
pressure at 𝑟 = 𝑅out is 𝑝∞. In the solid target block, the pressure at the outer
boundary of the target is exactly zero. Therefore, we must reinterpret the meaning
of 𝑅out for the penetration problem. Since the “outer” component of pressure must,
in the current interpretation, equal 𝐻, in accordance with Eq. 14, the meaning we
attach to 𝑅out is not the outer radius of the target block, but (with some hand waving)
the outer radius of the plastic zone in the target. At this radius, the target strain is
presumed such that the deformation has placed the material in an incipient plastic
state with a maximum radial stress equal to 𝐻 (for a solid, the stress making up the
radially directed stress 𝐻 comprises both a pressure and a deviatoric component;
however, to use the line-explosion model, we must abide by the “fluid” formulation
allowing only a pressure).

Let us see if we can provide some analytical guidance on the size of the plastic
zone. In a plane-strain situation such as this, the deviatoric portion∗ of the isotropic
constitutive relation, in the absence of shear strain, is given as[

𝑠𝜃

𝑠𝑟

]
=

𝐸

(1 + 𝜈) (1 − 2𝜈)

[
𝜈

1 − 𝜈

1 − 𝜈

𝜈
] [

𝑒𝜃

𝑒𝑟

]
,

where 𝑟 and 𝜃 denote, respectively, the radial and circumferential directions of
the cylindrical coordinate system; 𝑠 and 𝑒 are the deviatoric stress and strain, re-
spectively; 𝐸 the elastic modulus; and 𝜈 the Poisson ratio of the material. For our

∗For our particular case of an incompressible material, the hydrostatic portion of the constitutive
relation, �̄� = �̄�(𝜖), is indeterminate, resulting in a 𝜖/(1 − 2𝜈) = 0/0 situation.
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special case of incompressible target material, we know further that 𝜈 = 0.5 and that
𝑒𝑟 = −𝑒𝜃 . These substitutions lead to

𝑠𝑟 = −𝑠𝜃 (17)

𝑠𝜃 = 2𝐸/3 · 𝑒𝜃 (18)

(thus, 𝑠𝑧 = 0) .

If we adopt the Tresca yield condition, yield occurs when 𝑠𝜃 reaches a magnitude,
such that

𝑌 = 𝑠𝜃 − 𝑠𝑟 { 𝑌 = 2𝑠𝜃 , (19)

𝑌 being the yield strength of the target. The corresponding hoop strain 𝜖𝜃 , evaluated
at the outer edge of the target’s plastic zone is, for our axisymmetric situation,

𝜖
yield
𝜃

=

∫ 𝑅max
out

𝑅◦
out

𝑑𝑟/𝑟 = ln(𝑅max
out /𝑅◦

out) . (20)

Substituting Eqs. 20 and 18 into Eq. 19 leads to the yield condition in terms of the
strain at the edge of the plastic zone,

𝑌 =
2𝐸
3

ln
(
𝑅max2

out

𝑅◦2
out

)
(21)

by way of the following chain:

𝑌 = 2𝑠𝜃
= 2(2𝐸/3)𝜖yield

𝜃

= (2𝐸/3)2 ln(𝑅max
out /𝑅◦

out)
= (2𝐸/3) ln(𝑅max2

out /𝑅◦2
out) .

Incompressible continuity connects the expansion of the plastic zone radius to the
expansion of the crater itself:

𝑅max2
out − 𝑅◦2

out = 𝑅max2
∗ − 𝑅◦2

∗ . (22)
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Equation 22 can be re-expressed as(
𝑅max2

out

𝑅◦2
out

)
= 1 + 𝑅max2

∗ − 𝑅◦2
∗

𝑅◦2
out

, (23)

which can then be substituted into Eq. 21 to obtain

3𝑌
2𝐸

= ln
(
𝑅max2
∗ − 𝑅◦2

∗
𝑅◦2

out

)
. (24)

At this point, one may solve for the value of 𝑅◦
out as

𝑅◦
out =

√︄
𝑅max2
∗ − 𝑅◦2

∗
𝑒(3𝑌/2𝐸) − 1

(25)

Quantities like𝑌 and 𝐸 are known material properties of the target. The quantity 𝑅◦
∗

is the initial crater radius, which we take as 𝑟 𝑗 , the known radius of the impacting
jet. Lastly, the final crater radius 𝑅max

∗ is known from the line-explosion solution,
given (using the target resistance 𝐻 in lieu of the boundary pressure 𝑝∞) as

𝑅max
∗ =

√︂
𝑅◦2
∗ + 𝑑𝐸𝑐/𝑑𝑧

𝜋𝐻
. (26)

Equation 26 is also expressed in terms of known quantities so that, substituting
Eq. 26 into Eq. 25, we obtain, finally,

𝑅◦
out =

√︄
𝑑𝐸𝑐/𝑑𝑧

𝜋𝐻 (𝑒(3𝑌/2𝐸) − 1)
. (27)

Naturally, when employed in the context of crater expansion during a penetration
event, the value of 𝑑𝐸𝑐/𝑑𝑧 will be evaluated with Eq. 10. Interestingly, the plastic
zone size is not a function of the jet diameter directly, but only indirectly through
the rate at which the jet deposits energy into the target (𝑑𝐸𝑐/𝑑𝑧). For the situation
when 𝑌 ≪ 𝐸 , as is often the case, Eq. 27 may be approximated as

𝑅◦
out ≈

√︂
2𝐸
3𝑌

· 𝑑𝐸𝑐/𝑑𝑧
𝜋𝐻

,

through the use of a first-order Maclaurin-series expansion.

8



5. A Model for Crater Expansion

The purpose of this report is to adapt the axisymmetric, instantaneous line-explosion
model1 to the problem of crater expansion under high-speed penetration. In the latter
case, the energy deposition into the target is not instantaneous, but progressive in
time and space. Nonetheless, because the progression is rapid, we hope that each
successive cross section in the axisymmetric target may be subject to a deformation
that, in most regards, retains the plane strain character of the line-explosion model.

The report’s derivations, to this point, have focused on establishing a direct one-to-
one correspondence between input parameters to the line-explosion model and inputs
to the ballistic-penetration problem. The parameter inputs to the line-explosion
model include 𝜌, 𝑅◦

∗ , 𝑅◦
out, 𝑑𝐸𝑐/𝑑𝑧, and 𝑝∞. In each case, we are able to find a direct

one-to-one correspondence to the ballistic problem—between the following:

1. the density (𝜌) of the fluid subjected to the line explosion and the density of
the solid ballistic target (𝜌𝑡),

2. the initial inner radius of the line-explosion fluid shell (𝑅◦
∗) and the radius of

the jet penetrator (𝑟 𝑗 ),
3. the initial outer radius of the line-explosion fluid shell (𝑅◦

out) and the radius of
the solid target’s plastic zone (Eq. 27),

4. the magnitude of the linear energy density of a line explosion (𝑑𝐸𝑐/𝑑𝑧) and
the linear energy density deposited by an eroding penetrator (Eq. 10), and

5. the work performed by an external reservoir operating at an elevated pressure
(𝑝∞) on a fluid shell and the internal plastic work accomplished by the target
resistance (𝐻) in the plastic zone of a deforming solid target.

Thus, we are able, through direct substitution, to recast the problem of line explosion
to address the problem of penetrating crater expansion (Table 1).

6. Example Problem

Let us set about demonstrating this adaptation of the line-explosion solution to the
problem of jet penetration. Consider the problem of a copper jet segment impact-
ing a monolithic rolled homogeneous armor target (Brinell hardness 321). For the
purposes of demonstration, we consider the jet segment to be traveling at a constant
velocity of 𝑉 𝑗 = 5 km/s. We take the remaining jet parameters as 𝜌 𝑗 = 8900 kg/m3

and 𝑟 𝑗 = 2 mm (4-mm diameter).

9



Table 1 One-to-one correspondence of the line explosion and ballistic penetration parameters

parameter
Line-explosion

parameter
ballistic-penetration

Corresponding

𝜌 𝜌𝑡

𝑅◦
∗ 𝑟 𝑗

𝑅◦
out

√︄
𝑑𝐸𝑐/𝑑𝑧

𝜋𝐻 (𝑒 (3𝑌/2𝐸) − 1)

𝑑𝐸𝑐/𝑑𝑧
1 + 𝛾 + 𝛾2

(1 + 𝛾)2 · 𝛾
2
𝜌 𝑗𝑉

2
𝑗 𝜋𝑟

2
𝑗

𝑝∞ 𝐻

For the target, we take the parameters as 𝜌𝑡 = 7850 kg/m3, 𝑌 = 1.07 GPa, 𝐻 =

5.4 GPa, and 𝐸 = 205 GPa. The density ratio implies that 𝛾 = 0.9392. Following the
tenets of Table 1 (using Eqs. 10 and 27), the equivalent line-explosion parameters
may be calculated (in the mks unit system) as 𝜌 = 7850 kg/m3, 𝑅◦

∗ = 0.002 m,
𝑅◦

out = 0.0859 m, 𝑝∞ = 5.4 × 109 Pa, and 𝑑𝐸𝑐/𝑑𝑧 = 985, 040 J/m.

From these parameters, we may use Eq. 26 to calculate the final crater size as
𝑅max
∗ = 0.0079 m (15.8-mm crater diameter). For further comparison, the normal-

ized plastic-zone extent, (𝑅◦
out − 𝑅max

∗ )/(2𝑅max
∗ ), had been previously estimated4 for

steel targets as 3.5, using a purely empirical approach for lower impact velocities.
For our current problem, we obtain a value of (0.0859−0.0079)/(2 ·0.0079) = 4.9.

Let us proceed to solve the problem. Recall the line-explosion solution1:

𝑑𝑅∗(𝑡)
𝑑𝑡

= 𝐺 (𝑅∗) , (28)

where

𝐺 (𝑅∗) =

√√√√𝑑𝐸𝑐/𝑑𝑧 − 𝑝∞(𝑅2
∗ − 𝑅◦2

∗ )𝜋
𝜋𝜌

· 𝑅−2
∗

ln
(√︃

𝑅2
∗ + 𝑅◦2

out − 𝑅◦2
∗ /𝑅∗

) . (29)

A 1-D discretized integration (i.e., summation) has been devised to solve Eq. 28 for
time 𝑡 as a function of current crater radius 𝑅∗ and the function 𝐺 (𝑅∗), as given in
Eq. 29:

𝑡 (𝑅∗) =
∫ 𝑅∗

𝑅◦
∗

𝑑𝑟

𝐺 (𝑟) =

𝑛∑︁
𝑖=1

Δ𝑟

𝐺 (𝑟𝑖)
,

10



where Δ𝑟 = (𝑅∗ − 𝑅◦
∗)/𝑛 and 𝑟𝑖 = 𝑅◦

∗ +
(
𝑖 − 1

2
)
Δ𝑟. In the present use case, 𝑛 is

arbitrarily chosen as 1000, with 𝑅∗ = 𝑅max
∗ . Because our hypothetical jet is traveling

at constant velocity, the penetration rate is constant and the resulting time 𝑡 can
be directly converted into an axial distance from the jet–target interface, through
Δ𝑧 = 𝑈Δ𝑡. This allows for immediate reconstruction of the crater profile, as depicted
in Fig. 1(a).

In the figure, showing a side view of the axisymmetric impact event, the red-outlined
cylindrical jet travels downward, creating an expanding crater as it axially erodes the
target. The energy for this process is donated by the eroding penetrator. The target
crater grows radially, as a result of the energy deposited at the jet–target interface.
The vertical distance from the interface is a measure of not only the axial position
𝑧 in the target block, but also the time that has elapsed since that particular cross
section suffered impact and began its radial growth. Maximum crater expansion,
for any given cross section, occurs at 14.75 µs after the expansion commences,
corresponding to an axial distance of 3.8 cm from the jet–target interface, as shown
in Fig. 1(a). The radial position of the crater wall indicates the crater growth that has
transpired for the particular duration associated with each successive cross section.

Note, however, that such a solution does not automatically accommodate (i.e., make
room for) the eroded penetrator material, which could otherwise force an adjustment
to the crater profile. Generally, however, such an adjustment would be limited to a
very small region in the vicinity of the interface, shown for the current situation in
Fig. 2, where the jet deposition radius on the crater wall, 𝑅 𝑗 , may deduced from
incompressible continuity as 𝑅 𝑗 =

√︃
𝑅2
∗ − 𝑟2

𝑗
.

As presented in ARL-MR-1037,1 the spatial distribution of pressure and radial
velocity is analytically available as a function of the current crater radius. To reiterate
from that source,

𝑝
(
𝑟, 𝑅∗(𝑡)

)
𝜌

= − ln
( 𝑟
𝑅∗

) 𝑑 (𝑅∗𝐺 (𝑅∗)
)

𝑑𝑅∗
𝐺 (𝑅∗) +

1
2
𝑟2 − 𝑅2

∗
𝑟2 𝐺2(𝑅∗) (30)

𝑣
(
𝑟, 𝑅∗(𝑡)

)
= 𝐺 (𝑅∗) 𝑅∗/𝑟 .

Equation 30 has been evaluated for five values over the range of crater expansion and
the resulting pressure distributions are presented in Fig. 1(b). In this presentation,
the radius 𝑟 is presented on a linear scale. The location on the right where all the
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Fig. 1 Application of the line-explosion model to the problem of a copper jet (𝜌 𝑗 = 8900 kg/m3,
𝑟 𝑗 = 2 mm, 𝑉 𝑗 = 5000 m/s) penetrating rolled homogeneous armor (𝜌𝑡 = 7850 kg/m3, 𝑌 =

1.07 GPa, 𝐻 = 5.4 GPa, 𝐸 = 205 GPa): (a) the crater profile, (b) the pressure distribution
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Fig. 2 An illustration of the unaccommodated overlap of intact and eroded jet near the jet–
target interface

curves converge occurs at the outer extent of the plastic zone, 𝑟 = 𝑅◦
out. According to

the tenets of the model, up until the time when the crater expansion ceases (14.75 µs
after each successive cross section impact), the pressure at this plastic-zone periphery
corresponds to the target resistance 𝐻 (normalized by 𝜌𝑡 in the graph).

The initial growth rate of the crater may be analytically obtained by evaluating Eq. 29
at the initial radius 𝑅◦

∗:

𝑑𝑅∗
𝑑𝑡

����
𝑅∗=𝑅◦

∗

= 𝐺 (𝑅◦
∗) =

√︄
𝑑𝐸𝑐/𝑑𝑧
𝜋𝜌

· 𝑅◦−2
∗

ln
(
𝑅◦

out/𝑅◦
∗
) . (31)

Employing Eq. 31 with our equivalent line-explosion parameters, we compute the
initial rate of crater expansion when 𝑅∗ = 0.002 as 𝑑𝑅∗/𝑑𝑡 = 1630 m/s (cf. the jet
velocity of 5000 m/s). Given that the steady-state penetration velocity of the jet–
target interface, from Eq. 3, is 𝑈 = 2578 m/s, simple trigonometry shows that the
crater’s angle of departure from the rod is arctan(1630/2578) = 32.3◦ where the
crater wall meets the jet–target interface, as seen in Fig. 1(a).
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7. Conclusion

In this report, the recently developed line-explosion model presented in ARL-MR-
10371 was adapted to describe the time-dependent crater growth associated with
high-velocity impact and eroding penetration. The line-explosion model was, itself,
an axisymmetric interpretation of the more commonly understood point-explosion
model.2,3

Whereas an idealized line explosion occurs instantly along an infinite length, this
report explores the notion of treating the line explosion as an axial progression,
rather than an instantaneous event. In so doing, a direct correspondence can be
drawn between the progressive line explosion and the crater expansion associated
with a traditional eroding-penetration event. This report lays out the full one-to-one
correspondence of these two seemingly disparate situations, providing the variables
and/or the equations for how to convert the conditions of an eroding-penetration
event into the equivalent parameters for a line explosion.

An example is solved for a copper jet striking an armor target at 5-km/s velocity.
The resulting crater and its time-dependent growth are part of the solution offered,
as are the time and spatially dependent fields of pressure and radial velocity inside
the target’s plastic zone. The example credibly demonstrates the usefulness of this
approach.

While, for simplicity, this report addresses a case where the rate of penetration
is considered hydrodynamic and the conditions at the penetrator–target interface
remained invariant in time, there is no theoretical hindrance to extending the use of
this approach to handle lower-velocity impacts, where rod and target strengths play a
role. In addition, treating either the deceleration of a finite rod or a velocity gradient
in a jet penetrator may also be addressed, with the addition of more complexity to
the model.
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