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Final report: 6/15/2016-6/14/2020
Complementing dynamical equations with data in adaptive reduced-order subspaces

Project # FA9550-16-1-0231
PI: Themistoklis Sapsis, MIT

1 Objectives

Leveraging the power of the optimally time-dependent (OTD) modes, a set of deformable orthonor-
mal tangent vectors that track directions of instabilities along any trajectory, we wish to:

1. Develop mathematical/computational algorithms for the identification of precursors for rare
extreme events using adaptive reduced order methods. We plan to employ both the governing
equations, if/when available, but also active learning methods specially designed for extreme
transient events.

2. Apply these algorithms to prototype dynamical systems excibiting extreme rare events en-
countered in engineering and nature.

3. Design reduced-order control algorithms capable of predicting and suppressing transient (non-
normal) and asymptotic growth around any fixed point of the governing equations;

4. Demonstrate robustness of the developed control methods with respect to the perturbation
amplitude, and formulate a localized control strategy in which actuation is realized in a
subdomain of the physical domain of interest; and

5. Exploit the versatility of neural networks to learn the “pointwise” mapping from phase space
to OTD space directly from data, resulting in a cartography of directions associated with
strongest instabilities in phase space.
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2 Publications and presentations

This effort resulted in 25 publications in Applied Math and Engineering journals. The following
items were produced through the support of this effort (in chronological order):

Journal publications

• H. Babaee, T. Sapsis, A minimization principle for the description of time-dependent modes
associated with transient instabilities, Proceedings of the Royal Society A, 472 (2016) 20150779.
[Featured in the journal’s cover page].

• M. Farazmand, T. Sapsis, Dynamical indicators for the prediction of bursting phenomena in
high-dimensional systems, Physical Review E, 94 (2016) 032212 (15 pages). [Featured in
the journal’s kaleidoscope].

• Z. Y. Wan, T. Sapsis, Reduced-space Gaussian process regression for data-driven probabilistic
forecast of chaotic dynamical systems, Physica D, 345 (2017) 40-55.

• M. Farazmand, T. Sapsis, Reduced-order prediction of rogue waves in two dimensional water
waves, Journal of Computational Physics, 340 (2017) 418-434.

• H. Babaee, M. Farazmand, G. Haller, T. Sapsis, Reduced-order description of transient in-
stabilities and computation of finite-time Lyapunov exponents, Chaos, 27 (2017) 063103.

• H. -K. Joo, M. Mohamad, T. Sapsis, Extreme events and their optimal mitigation in nonlinear
structural systems excited by stochastic loads: Application to ocean engineering systems,
Ocean Engineering Journal, 142 (2017) 145-160.

• M. Farazmand, T. Sapsis, A variational approach to probing extreme events in turbulent
dynamical systems, Science Advances, 3:e1701533 (2017).

• H. -K. Joo, M. Mohamad, T. Sapsis, Heavy-tailed response of structural systems subjected to
extreme forcing events, ASME Journal of Computational and Nonlinear Dynamics, 13 (2018)
090914 (12 pages).

• M. Farazmand, T. Sapsis, Physics-based probing and prediction of extreme events, SIAM
News, 51 (2018) 1.

• S. Mowlavi, T. Sapsis, Model order reduction for stochastic dynamical systems with continu-
ous symmetries, SIAM Journal on Scientific Computing, 40 (2018) 1669-1695.

• P. Vlachas, W. Byeon, Z. Y. Wan, T. Sapsis, P. Koumoutsakos, Data-driven forecasting of
high-dimensional chaotic systems with long-short term memory networks, Proceedings of
the Royal Society A, 474 (2018) 20170844 (20 pages).

• Z. Y. Wan, P. Vlachas, P. Koumoutsakos, T. Sapsis, Data-assisted reduced-order modeling of
extreme events in complex dynamical systems, PLOS One, 24 May (2018) (22 pages).

• M. Mohamad, T. Sapsis, A sequential sampling strategy for extreme event statistics in nonlin-
ear dynamical systems, Proceedings of the National Academy of Sciences, 115 (2018)
11138-11143.

2

DISTRIBUTION A: Distribution approved for public release.



• A. Blanchard, S. Mowlavi, T. Sapsis, Control of linear instabilities by dynamically consistent
order reduction on optimally time-dependent modes, Nonlinear Dynamics, 95 (2019) 2745-
2764.

• P. Blonigan, M. Farazmand, T. Sapsis, Are extreme dissipation events predictable in turbulent
fluid flows?, Physical Review Fluids, 4 (2019) 044606 (21 pages).

• A. Blanchard, T. Sapsis, Analytical description of optimally time-dependent modes for reduced-
order modeling of transient instabilities, SIAM Journal on Applied Dynamical Systems, 18
(2019) 1143-1162.

• A. Blanchard, T. Sapsis, Stabilization of unsteady flows by reduced-order control with opti-
mally time-dependent modes, Physical Review Fluids, 4 (2019) 053902.

• M. Farazmand, T. Sapsis, Closed-loop adaptive control of extreme events in a turbulent flow,
Physical Review E, 100 (2019) 033110 (7 pages).

• S. Guth, T. Sapsis, Machine learning predictors of extreme events occurring in complex dy-
namical systems, Entropy, 21 (2019) 925 (18 pages).

• A. Blanchard, T. Sapsis, Learning the tangent space of dynamical instabilities from data,
Chaos, 29 (2019) 113120, Focus Issue: When Machine Learning Meets Complex Systems:
Networks, Chaos and Nonlinear Dynamics, (15 pages).

• Z. Vlachas, J. Pathak, B. R. Hunt, T. Sapsis, M. Girvan, E. Ott, P. Koumoutsakos, Forecasting
of Spatio-temporal Chaotic Dynamics with Recurrent Neural Networks: a comparative study
of Reservoir Computing and Backpropagation Algorithms, Neural Networks, 126 (2020) 191-
217.

• T. Sapsis, Output-weighted optimal sampling for Bayesian regression and rare event statistics
using few samples, Proceedings of the Royal Society A, 476 (2020) 20190834 (24 pages).

In addition the following invited review articles were published:

Invited Review Articles

• T. Sapsis, New perspectives for the prediction and statistical quantification of extreme events
in high-dimensional dynamical systems, Philosophical Transactions of the Royal Soci-
ety A, 376 (2018) 20170133 (18 pages).

• M. Farazmand, T. Sapsis, Extreme events: mechanisms and prediction, ASME Applied Me-
chanics Reviews, 71 (2019) 050801. [Lloyd Hamilton Donnell Applied Mechanics Re-
views Paper Award].

• T. Sapsis, Statistics of extreme events in fluid flows and waves, Annual Review of Fluid
Mechanics, 53 (2021) 85-111.

2.1 News Coverage

The results of this work have been featured in numerous media outlets including The Economist,
BBC, Popular Science and others.
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3 Personnel

This project partially supported 3 postdocs and 4 graduate students. Two of the three postdocs,
Hessam Bababe (now in Pittsburg U.) and Mohammad Farazmand (now in NCSU), currently hold
tenured track faculty positions in Mechanical Engineering and Applied Math Departments. All
of the involved graduate students graduated with a PhD and currently hold positions as postdocs
(NYU-Courant) or in industry (Facebook, Mathworks, Goldman Sachs).

4 Methods

Although the project supported several aspects of research related to extreme transient events in
complex systems (see Publications section), here we give an overview of its main focus related to
the analysis of extreme events using adaptive subspaces.

4.1 Review of the OTD modes

We consider a finite-dimensional autonomous system ż = F(z), where z(t) ∈ Rd is the state vector
at time t, F : Rd → Rd is a smooth vector field, and overdot denotes differentiation with respect
to time. We assume that the system admits at least one fixed point ze. Trajectories initiated in
the vicinity of ze are rapidly expelled from it and ultimately settle into a different attractor A .
Infinitesimal perturbations about a given trajectory obey the variational equation

v̇i = L(z)vi, 1 ≤ i ≤ r, (1)

where L(z) = ∇F(z) ∈ Rd×d is the Jacobian matrix of F evaluated at z. We emphasize that
L(z) is a time-dependent operator because it depends on the current state z(t). In principle,
the variational equation could be used to track directions of instabilities around trajectories. In
practice, however, this is impossible, because any collection of perturbations {vi(t)}r

i=1 evolved
with (1) for a sufficiently long time would see the magnitude of its individual members grow or
decay exponentially fast, and the angle between them rapidly vanish.

To compute a set of meaningful directions (or “modes”) from the variational equation, Babaee
& Sapsis [2] proposed to enforce orthonormality of the vi(t)’s at all times. One way to achieve this
is to continuously apply the Gram–Schmidt algorithm to the collection {vi(t)}r

i=1, starting with v1

and moving down. Blanchard & Sapsis [3] showed that the resulting vectors obey

u̇i = L(z)ui − 〈L(z)ui, ui〉ui −
i−1∑

k=1

(〈L(z)ui, uk〉 + 〈L(z)uk, ui〉) uk, i ∈ {1, . . . , r}. (2)

where the angle brackets denote a suitable inner product. In the above, we recognize the varia-
tional equation (the left-hand side and the first term on the right-hand side), appended with terms
enforcing the orthonormality constraint (the last two terms on the right-hand side). The ui’s have
been referred to as the OTD modes, and the collection {ui}r

i=1 as the OTD subspace [2]. We note
that in matrix form, (2) may be written as

U̇ = L(z)U − U(UTL(z)U + Φ) = L(z)U − ULr(z), (3)

where Φ is a skew-symmetric tensor.

4
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A key property of the OTD modes is that they and the vi’s span the same subspace, so the
OTD modes provide a numerically stable way of tracking instabilities. For hyperbolic fixed points,
the OTD subspace aligns with the most unstable eigenspace of the associated linearized operator
[2]. For generic trajectories, the OTD subspace aligns with the left eigenspace of the Cauchy–Green
tensor, which characterizes transient instabilities [1]. It is thus natural to incorporate the OTD
modes in a reduced-order control algorithm.

4.2 Control of instabilities by OTD modes

To formulate an OTD-based control law, we consider the controlled dynamics of an infinitesimal
perturbation z′ ∈ Rd around a fixed point ze, described by ż′ = Lz′ + Bc, where L ≡ L(z) is used
as a proxy for L(ze). Introducing the OTD projection η = UTz′, and defining a reduced control
matrix Br = UTB ∈ Rr×p, we obtain the reduced controlled variational equation

η̇ = Lrη + Brc, (4)

where Lr is the reduced linear operator. If the control vector is sought in the form c = Krη, with
Kr ∈ Rp×r a reduced feedback gain matrix, then (4) reduces to η̇ = Lr,cη, where Lr,c = Lr +BrKr

is the closed-loop reduced linear operator. The latter is time-dependent, so its eigenvalues are
not good indicators for growth or decay of ‖η‖. However, the eigenvalues of its symmetric part
characterize the instantaneous rate of change of the magnitude of the reduced perturbation, since

1
2

d
dt

‖η‖2 =
〈Lr,cη, η〉 + 〈η, Lr,cη〉

2
. (5)

To stabilize the fixed point ze, we require that the magnitude of reduced perturbations always decay
(i.e., d‖η‖2/dt < 0 for all η 6= 0) and, hence, that (Lr,c + LT

r,c)/2 be negative definite. We note,
however, that there is no general framework in control theory addressing the issue of pole placement
for the symmetric part of a linear operator. So we make one additional assumption, namely, that
the controller can act on every state of the system (i.e., B = I) and, invoking dynamical consistency
of the OTD reduction, arrive at a rather simple ad hoc expression for the control force,

fc = UQdiag[−(λi + ζ)H (λi)]Q
TUT(z − ze), (6)

where H is the Heaviside function, ζ ∈ R+ is a damping parameter, Q ∈ Rr×r is a unitary rotation
matrix containing the eigenvectors of (Lr + LT

r )/2, and {λi}r
i=1 are the eigenvalues of (Lr + LT

r )/2
ranked from most (λ1) to least (λr) unstable. The Heaviside function guarantees that the control
acts only on directions associated with positive instantaneous growth (those with λi ≥ 0), and the
parameter ζ governs the intensity with which these directions are damped. The closed-loop rate of
change of ‖η‖ is thus negative for all times, thereby ensuring that z tends to ze asymptotically.

Equation (6) assumes that the controller has knowledge of, and can act on, every state variable
of the system. In practice, however, the number of sensors and actuators is limited by the apparatus,
so we propose a modified OTD control strategy in which the range of the controller is restricted
to a small portion of the physical domain. To this end, we consider a subdomain Ω̄ of the original
domain Ω, and solve the OTD equations in that subdomain with homogeneous Dirichlet boundary
conditions on ∂Ω̄. We denote quantities computed in Ω̄ with an overbar. This allows us to formulate
a new control law,

f̄c,sub = ŪQ̄diag[−(λ̄i + ζ)H (λ̄i)]Q̄
TŪTR(z − ze), (7)

5
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where Q̄ and {λ̄i}r
i=1 are the eigenvectors and eigenvalues of (L̄r + L̄T

r )/2, respectively, and R ∈
Rm×d is a rank-m restriction matrix. Here, m denotes the number of degrees of freedom in Ω̄.
The presence of the restriction operator left-multiplying the deviation z − ze reflects the fact that
only part of the state is accessible. To facilitate application of the control force to the governing
equations (which are defined in Ω), we pre-multiply f̄c,sub by the prolongation matrix RT, which
gives

fc,sub = RTŪQ̄diag[−(λ̄i + ζ)H (λ̄i)]Q̄
TŪTR(z − ze). (8)

The modified control force (8) is defined in Ω, by construction vanishes outside of Ω̄, and is C0-
continuous across ∂Ω̄.

To select the size and location of the control subdomain, we use a criterion based on the long-
time average μ̄j of the jth localized instantaneous OTD eigenvalue ν̄j(t) = 〈L̄ūj , ūj〉. The quantity
μ̄j may be viewed as a measure for how much information associated with instabilities the localized
OTD subspace captures. For example, in flow past a cylinder, we expect μ̄j to greatly differ from
μj if Ω̄ is selected as some region in the far field where the flow is uniform, much more than if Ω̄
includes a substantial fraction of the near field where the wake instability develops and the vortex
shedding appears. For a given subdomain size, we found that the optimal subdomain location is
where μ̄1 is the largest.

4.3 Learning the OTD modes from data

For autonomous, invertible, ergodic, and measure-preserving dynamical systems, the OTD modes
asymptotically converge to a set of vectors defined at every point on the attractor [5, 3]. In other
words, in the post-transient regime, ui only depends on the state z, but not on the history of the
trajectory, or its own initial condition ui(t0). Hence, we may cease to view ui as being parametrized
by t, and instead view it as a graph from phase space to tangent space:

ui : Rd −→ Rd

z 7−→ ui(z). (9)

In this context, the collection {ui(z)}r
i=1 has been referred to as the “stationary Lyapunov basis”

(SLB) at point z [5].
A promising approach is to learn the mapping (9) from data. This requires several ingredients.

First, we assume that we have available a large collection of “snapshots” {zn}d
n=1 for the state.

Each zn must belong to the attractor, but not necessarily to the same trajectory, a consequence
of the use of measure-averaging. Second, we assume that we have a mechanism to compute or
reconstruct the vector field F(zn) and the action of the linearized operator L at zn in any direction
v. Third, we need to eliminate the explicit dependence of the OTD system (2) on time. This is
done by applying the chain rule to the left-hand side of (2), resulting in

∇zui F(z) = L(z)ui − 〈ui, L(z)ui〉 −
i−1∑

k=1

[〈ui, L(z)uk〉 + 〈uk, L(z)ui〉] uk, i ∈ {1, . . . , r}, (10)

where ∇zui is the Jacobian of ui with respect to z. Although not explicitly shown in (10), the
vector ui should be understood as ui(z).

To learn the graphs {ui}r
i=1 from the collection of snapshots, we employ a neural-network ap-

proach. This is appropriate, because each ui is a continuous function of z. This allows us to leverage

6
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the universal approximation theorem [6], which states that any function may be approximated by
a sufficiently large and deep neural network. We will refer to the learned OTD modes as the “deep
OTD modes” (dOTD modes). We assign to each OTD mode its own neural network ui(z; θi), where
θi denotes the parameters (weights and biases) of the ith network. We use the same fully-connected
feed-forward architecture with L hidden layers for all OTD modes. The loss function for the ith
network is specified as

`pde
i (θi) =

1
N

N∑

n=1

∥
∥
∥
∥
∥
∇zui(zn; θi) F(zn) − L(zn)ui(zn; θi) + 〈ui(zn; θi), L(zn)ui(zn; θi)〉

+
i−1∑

k=1

[〈ui(zn; θi), L(zn)uk(zn; θi)〉 + 〈uk(zn; θi), L(zn)ui(zn; θi)〉] uk(zn; θi)

∥
∥
∥
∥
∥

2

, (11)

which is nothing more than the residual of the ith OTD equation in system (10). To ensure that the
optimization algorithm converges to an SLB, and not to some other irrelevant minimum, we explic-
itly enforce orthonormality of the dOTD modes by embedding Gram–Schmidt orthonormalization
immediately after the last layer of the network. To ensure that the learning algorithm returns the
unique SLB associated with directions of strongest instabilities, we append to the loss function (11)
a regularization term, `lyap

i (θi) = −σ(λ̂i(θi)), that penalizes small Lyapunov exponents. Here,

λ̂i(θi) =
1
N

N∑

n=1

〈ui(zn; θi), L(zn)ui(zn; θi)〉 (12)

is the “learned” Lyapunov exponent associated with the ith dOTD mode, and σ is a monotonically
increasing, continuous function that exacerbates differences between λ̂i’s. Equation (12) is the best
approximation of the true exponent λi available, given the constraints related to finiteness of the
dataset and representability of the OTD modes with neural networks.

The last ingredient to make the method fully data-driven is a mechanism to reconstruct the
vector field F(zn) and the action of the Jacobian matrix L(zn) from the collection of snapshots
{zn}N

n=1. Reconstruction of F(z) can be done offline, regardless of the dimensionality of the system.
Here, we assume that the snapshots are sampled along a single long trajectory with a uniform and
sufficiently small sampling time-step Δts, so that we may approximate F(zn) with a standard
Euler-forward finite difference. To compute the action of the Jacobian matrix L(z) from data, we
employ the classical algorithm proposed independently by Eckmann et al. [4] and Sano & Sawada
[7]. First, we scan the dataset to identify the K nearest neighbors of each datapoint zn. The nearest
neighbors of zn are defined as those points zk of the orbit (past or future) that are contained in a
ball of radius γ centered at zn:

‖zn − zk‖ ≤ γ, k ∈ {1, . . . , K}. (13)

If γ is sufficiently small, then each vector vn
k = zn − zk may be viewed as a perturbation vector

from the reference orbit. We therefore have

vn+1
k+1 − vn

k

Δts
= L(zn)vn

k + O(Δts), (14)

which allows us to compute the action of the Jacobian matrix L(zn) on the vectors vn
k . Now,

the critical step is to note that the vectors vn
k belong to the tangent space at point zn, and so

7
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do the OTD modes. So if we stack up the vectors vn
k into a matrix Vn ∈ Rd×K , then the least-

square fit ui(zn; θi) ≈ VnV†
nui(zn; θi) should be a reasonably good approximation for the dOTD

modes. Here, V†
n is the pseudo-inverse of Vn. With this in hand, we can compute the action of

the linearized operator on the dOTD modes as

L(zn)ui(zn; θi) ≈ ΔVnV†
nui(zn; θi), (15)

where ΔVn is a d-by-K matrix with columns (vn+1
k+1 − vn

k )/Δts. Equation (15) requires no informa-
tion other than the snapshot data, and can be used to evaluate the loss function (11).

5 Results

5.1 Stabilization of unsteady flows by OTD control

The great value of the OTD framework has to do with control of instabilities caused by non-
normal behavior. Non-normal growth may have severe repercussions on the long-time dynamics,
even in cases where modal stability theory predicts asymptotic decay of disturbances. Consider for
example plane Poiseuille flow, i.e., pressure-driven flow confined between two rigid, infinitely long,
parallel plates. For spanwise wavenumber β = 2, streamwise wavenumber α = 0.5, and Reynolds
number Re = 7000, linear theory predicts significant non-normal growth of the optimal initial
condition (on the order of 1000), followed by asymptotic decay. However, in the full nonlinear
problem, sufficiently large non-normal growth triggers transition to turbulence (figure 1a). This
outcome cannot be predicted, let along controlled, by classical modal analysis. Yet, figure 1b shows
that OTD control is able to suppress non-normal growth, and in turn, transition to turbulence.
In contrast, modal control based on the most unstable eigenvector of L(we) fails at both. This
result establishes the superiority of OTD control over modal control in situations dominated by
non-normal growth.

(a) (b)

Figure 1: For nonlinear plane Poiseuille flow with α = 0.5, β = 2, and Re = 7000, (a) energy
of uncontrolled perturbation for various disturbance amplitudes, and (b) for ε = 10−3, energy of
perturbation with OTD control (r = 1 and ζ = 0.1), modal control based on the most unstable
eigenvector of the Orr–Sommerfeld/Squire operator, and no control.
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We also found that the OTD control strategy is robust with respect to perturbation amplitude,
even in cases in which the trajectory initially evolves on an attractor that lies far away from
the target fixed point. Consider for example Kolmogorov flow on the torus Ω = [0, 2π]2 with
forcing wavenumber kf = 4 and Reynolds number Re = 40, for which the laminar solution we =
(Re/k2

f ) sin(kf y)ex is linearly unstable, and the long-time solution is chaotic (figure 2a). Here, we
use OTD control to annihilate the chaotic attractor and steer the trajectory towards we. Figure 2b
shows time series for the energy dissipation for the uncontrolled case (r = 0), and three controlled
cases with various values of r. In the absence of control, the trajectory remains on the chaotic
attractor and never approaches the laminar solution we (for which Ed = 1.25). For r = 38, OTD
control is not able to annihilate the chaotic attractor. But for r = 56, OTD control is able to
stabilize we. A bissection search shows that no fewer than 44 OTD modes should be included in
order to destroy the chaotic attractor. Figure 2b shows that w approaches we much more rapidly
than for r = 44, which suggests that including more OTD modes in the controller can prevent
“overshoot” of the solution and accelerate stabilization.

(a) (b)

Figure 2: For Kolmogorov flow with Re = 40 and kf = 4, (a) spanwise vorticity distribution of the
initial condition used in the computations, and (b) energy dissipation for trajectories with OTD
control (with ζ = 0.1), and without control. Control is idle in the interval 0 ≤ t < 50 and active
for t ≥ 50.

Finally, we investigate the ability of OTD control to stabilize flow past a cylinder at Re = 50
when the spatial range of the controller is limited. We apply OTD control to the subdomains
{Ω̄k}4

k=1 shown in figure 3a. We assume that the trajectory initially evolves on the limit cycle,
and activate OTD control at t = 100. For r = 8 and ζ = 0.4, figure 3b shows that the localized
OTD controller is able to stabilize we globally for Ω̄1, Ω̄2 and Ω̄3. These are cases in which the
control domain extends over flow regions that are “relevant” to the overall dynamics. By contrast,
for the poorly selected domain Ω̄4, OTD control fails to stabilize we. For the three subdomains
for which stabilization is achieved, figure 3b shows that the approach to we is faster when the
control subdomain is larger. These results suggest that to achieve stabilization, the OTD control
subdomain should cover a portion of the computational domain that is relevant to the instability
mechanism. Here, “relevance” of a subdomain Ω̄ can be characterized by the leading time-averaged
OTD eigenvalue μ̄1.

9
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(a) (b)

Figure 3: For flow past a cylinder at Re = 50, (a) location of control subdomains Ω̄1 to Ω̄4 with
the spanwise vorticity distribution of we shown in the background, and (b) time series of ‖w − we‖
subject to localized OTD control with r = 8, ζ = 0.4 for the subdomains shown in (a).

5.2 Learning and predicting extreme events from data

To illustrate the power of the deep OTD modes, we consider a six-dimensional truncation of the
classical Charney–DeVore model, with values of the parameters that give rise to significant transi-
tions between “zonal” and “blocked” flow regimes (top panel in figure 4). The intervals of “blocked”
flow are considered as extreme events, so we use the neural network approach to learn the mapping
z 7−→ ui(z) in these intervals. We use a neural network with two hidden layers, each with 256
neurons, and 50 data points uniformly sampled over the interval 1000 ≤ t ≤ 1120. We reconstruct
the Jacobian L(zn) and the velocity field F(zn) from data using the method described earlier.
For the Jacobian, we use 60 nearest neighbors for each snapshot. Figure 4 shows that the dOTD
modes trained in the interval 1000 ≤ t ≤ 1120 can predict subsequent intervals of “blocked” flow.
Agreement is poor in intervals of chaos, as expected (neural networks are not always great at ex-
trapolating). What is truly remarkable is that the neural network only needs to know what one
interval of “blocked” flow looks like to be able to predict all other such intervals in the future.
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