
1
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

SEI Software Architecture
Principles and Practices
Overview Training

Andrew Kotov and John Klein

2
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-

0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an

official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF

FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE

MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO

FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

This material is distributed by the Software Engineering Institute (SEI) only to course attendees for their own individual

study.

Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced or used in any other

manner without requesting formal permission from the Software Engineering Institute at permission@sei.cmu.edu.

Although the rights granted by contract do not require course attendance to use this material for U.S. Government

purposes, the SEI recommends attendance to ensure proper understanding.

Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office by Carnegie

Mellon University.

TSPSM is a service mark of Carnegie Mellon University.

DM21-0242

3
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Rules of Engagement

We will be very busy over the next three days. To complete

everything and get the most from the course, we will need to follow

some rules of engagement:

• Your participation is essential.

• Feel free to ask questions at any time.

• Discussion is good, but we may need to cut some discussions

short in the interest of time.

• Please try to limit side discussions during the lectures.

• Please turn off your cell phone ringers and computers.

• Let’s start on time.

• Participants must be present for all sessions to earn a course

completion certificate.

4
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Agenda

Day 1:

• Definition and importance of architecture

• Architectural drivers, quality attribute scenarios

Day 2:

• Architecture Documentation: Views – Structure and Behavior,
Principles of Sound Documentation, Architecture Decision
Records

• Architecture-centric Engineering

Day 3:

• Architecture analysis

- Evaluation approaches, lightweight evaluation

• Architecture design

- Design process, Attribute-Driven Design

5
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Logistics

Tuesday 16 Mar. 2021 → Thursday 18 Mar. 2021

• Start each day at 11:30 a.m. EDT

• End each day by 3:00 p.m. EDT

• Break every hour for 10 minutes

Zoom teleconference:
• https://sei.zoomgov.com/j/1605424743?pwd=QXAwdytsd0NUck9ieDREb2RYR3lYUT09&from=addon

Meeting ID: 160 542 4743
Passcode: 099303 One tap mobile

+16692545252,,1605424743#,,,,*099303# US (San Jose)
+16468287666,,1605424743#,,,,*099303# US (New York)

6
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

What is software architecture?

7
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Architecture

What is software architecture? The software architecture of a

system is the set of structures needed to reason about the

system, which comprises software elements, relations among

them, and properties of both.

• Every system has an architecture!

• Architecture is an abstraction of a system

• Architecture defines the system elements and how they interact

via interface

• Architecture doesn’t include implementation details of the

elements

• Properties of components are assumptions that one component

can make about another (provided/required services,

performance, how it handles faults or consumes resources, etc.)

8
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Some Implications of Our Definition

Every system has an architecture.

• Every system is composed of elements, and there are
relationships among them.

• In the simplest case, a system is composed of a single element,
related only
to itself.

Just having an architecture is different from having an architecture
that is known
to everyone:

• Is the “real” architecture the same as the specification?

• What is the rationale for architectural decisions?

If you don’t explicitly develop an architecture, you will get one
anyway—and you might not like what you get!

9
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

More Implications of Our Definition

Box-and-line drawings alone are not architectures: they are just a

starting point.

• You might imagine the behavior of a box or element labeled

“database”

or “executive.”

• You need to add specifications and properties to the elements

and relationships.

Finally, the definition of architecture is indifferent as to whether the

architecture of a system is a good one or a bad one.

• A good architecture is one that allows a system to meet its

functional, quality attribute, and lifecycle requirements.

10
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Role of Software Architecture

If the only criterion for software was to get the right answer, we

would not need architectures―unstructured, monolithic systems

would suffice.

But other things also matter, such as

• modifiability

• time of development

• performance

• coordination of work teams

Quality attributes such as these are largely dependent on

architectural decisions.

• All design involves tradeoffs among quality attributes.

• The earlier we reason about tradeoffs, the better.

11
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Why Is Software Architecture Important?

Architecture is important for three primary reasons:

1.It provides a vehicle for communication among stakeholders.

2.It is the manifestation of the most important design decisions

about a system.

3.It is a transferable, reusable abstraction of a system.

12
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Vehicle for Communication

Architecture provides a common frame of reference in which

competing interests can be exposed and negotiated. These

interests include

• negotiating requirements with users

• keeping the customer informed of progress and cost

• implementing management decisions and allocations

Architects and implementers use the architecture to guide

development.

• Doing so supports architectural analysis.

13
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Most Important Design Decisions – 1

Architecture defines constraints on implementation:

• The implementation must conform to prescribed design

decisions such as those regarding

- elements

- interactions

- behaviors

- responsibilities

• The implementation must conform to resource allocation

decisions such as those regarding

- scheduling priorities and time budgets

- shared data and repositories

- queuing strategies

Architectures are both prescriptive and descriptive.

14
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Most Important Design Decisions – 2

Architecture dictates the structure of the organization.

• Architecture represents the highest level decomposition of a

system and is used as a basis for

- partitioning and assigning the work to be performed

- formulating plans, schedules, and budgets

- establishing communication channels among teams

- establishing plans, procedures, and artifacts for configuration

management, testing, integration, deployment, and maintenance

For managerial and business reasons, once established, an

architecture becomes very difficult to change.

15
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Most Important Design Decisions – 3

Architecture permits/precludes the achievement of a system’s

desired quality attributes. The strategies for achieving them are

architectural.

If you desire… you need to pay attention to…

high performance minimizing the frequency and volume of inter-element communication

modifiability limiting interactions between elements

security managing and protecting inter-element communication

reusability minimizing inter-element dependencies

subsetability controlling the dependencies between subsets and, in particular,

avoiding circular dependencies

availability the properties and behaviors that elements must have and the

mechanisms you will employ to address fault detection, fault prevention,

and fault recovery

and so forth …

16
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Most Important Design Decisions – 4

Architecture allows us to predict system quality attributes without

waiting until the system is developed or deployed.

• Since architecture influences quality attributes in known ways, it

follows that we can use architecture to predict how quality

attributes may be achieved.

• We can analyze an architecture to evaluate how well it meets its

quality attributes requirements.

- These analysis techniques may be heuristic (e.g., back-of-the-

envelope calculations, experience-based analogy) and inexpensive.

- They may be precise (e.g., prototypes, simulations, instrumentation)

and expensive.

- Or they may fall in between (e.g., scenario-based evaluation).

17
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Most Important Design Decisions – 5

Architecture helps us reason about and manage changes to a

system during its lifetime.

All systems accumulate technical debt over their lifetimes. When

this debt is attributable to architectural degradation, we call it

architecture debt.

Fortunately, by analyzing an architecture we can monitor and

manage architectural debt.

Typically, refactoring is used to pay down architecture debt. When

to refactor is a decision that includes both technical and business

considerations.

18
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Most Important Design Decisions – 6

Once an architecture has been defined, it can be analyzed and

prototyped as a skeletal system. Doing so aids the development

process in three ways:

1. The architecture can be implemented as a skeletal framework

into which elements can be “plugged.”

2. Risky elements of the system can be identified via the

architecture and mitigated with targeted prototypes.

3. The system is executable early in the product’s lifecycle. The

fidelity

of the system increases as prototyped parts are replaced by

completed elements.

19
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Most Important Design Decisions – 7

Architecture enables more accurate cost and schedule estimates,

project planning, and tracking:

• The more knowledge we have about the scope and structure of

a system, the better our estimates will be.

• Teams assigned to individual architectural elements can provide

more accurate estimates.

• Project managers can roll up estimates and resolve

dependencies and conflicts.

20
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Transferable, Reusable Abstraction – 1

Software architecture constitutes a model that is transferable

across similar systems.

Software architecture can serve as the basis of a strategic reuse

agenda that includes the reuse of

• requirements

• development-support artifacts (templates, tools, etc.)

• code

• components

• experience

• standards

21
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Transferable, Reusable Abstraction – 2

Architecture supports building systems using large, independently

developed components.

• Architecture-based development focuses on composing

elements rather than programming them.

• Composition is possible because the architecture defines which

elements can be incorporated into the system and how they are

constrained.

• The focus on composition provides for component

interchangeability.

• Interchangeability is key to allowing third-party software

elements, subsystems, and communication interfaces to be

used as architectural elements.

22
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Architecturally Significant
Requirements

23
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Where Do Architectures Come From?

Software architecture is based on much more than requirements

specifications.

It is the result of many different technical, business, and social

influences.

Its existence, in turn, influences the technical, business, and social

environments that subsequently affect future architectures.

Architects need to know and understand the nature, source, and

priority of these influences as early in the process as possible.

24
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Factors Influencing Architectures

Architectures are influenced by

• system stakeholders

• the development organization’s business environment

• the technical environment

• the architect’s professional background and experience

25
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Concerns of System Stakeholders

26
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture Influence Cycle (AIC)

Source: Bass et al. Software Architecture in Practice. Addison-Wesley, 2012.

27
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Drivers

Architectural drivers are the combination of

• design purpose,

• quality attribute requirements,

• primary functional requirements,

• architectural concerns, and

• constraints

that shape an architecture.

And these are driven, in turn, by business goals.

28
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Purpose

Before you can begin you need to be clear about why you are

designing.

Your objectives will change what and how you design; some

examples include

• part of a project proposal (e.g., pre-sales)

• part of creating an exploratory prototype

• during development: greenfield, refactoring, refresh, …

29
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attributes or Non-Functional
Requirements (NFRs)

Quality attributes are properties of work products or goods by

which stakeholders judge their quality.

Some examples of quality attributes by which stakeholders judge

the quality of software systems are

• availability

• adaptability

• throughput

• configurability

• subsetability

• reusability

• performance

• security

• modifiability

• reliability

• usability

• calibratability

30
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attribute Requirements

Quality attribute (QA) requirements have the most profound effect

on shaping the architecture.

Why is this?

31
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attribute Requirements

If a functional requirement is “When the user presses the green

button, the Options dialog appears”…

• a performance QA annotation might describe how quickly the

dialog will appear;

• an availability QA annotation might describe how often this

function will fail, and how quickly it will be repaired;

• a usability QA annotation might describe how easy it is to learn

this function.

32
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Functional Requirements

The way the system is structured normally does not inhibit the

satisfaction of functional requirements.

• Functionality and quality are orthogonal concerns.

When designing the architecture, it is obviously important to ensure

that the chosen design elements can satisfy the functional

requirements.

Functional requirements are often documented as use cases or

user stories.

33
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Primary Functional Requirements

Primary use cases

• are critical to the achievement of business goals

• are associated with an important QA scenario

• may imply a high level of technical difficulty

• exercise many architectural elements

• represent a “family” of use cases

Usually only 10-20% of the use cases are primary.

34
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Functionality and Architecture

Functionality is the ability of a system to do the work it was

intended

to do.

• Functionality often has associated quality attribute requirements

(e.g., a function is required to have a certain level of availability,

reliability, and performance).

• We can achieve functional requirements and yet fail to meet

their associated quality attribute requirements.

• Functionality can be achieved using many different

architectures.

• Achieving quality attribute requirements can be achieved only

through judicious choice of architectures.

35
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Concerns - 1

Architectural concerns are design decisions that should be made

whether they are expressed as requirements or not.

We divide them into four categories:

• general concerns

• specific concerns

• internal requirements

• issues

36
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Concerns - 2

General concerns: “broad” issues that every architect deals with in

creating an architecture.

Specific concerns: system-internal issues that an architect must

address

Internal requirements: These are derived requirements that are

typically not specified in requirement documents.

Issues: These result from analysis activities, such as a design

review, so they may not be present initially.

37
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Constraints

Constraints limit the range of possibilities when making design

decisions.

• In some cases they are decisions about which you have zero

choice.

Before commencing design, identify and justify constraints.

• Technical constraints

- Use of a legacy database

- Compliance with a vendor's interface

- Corporate or industry technical standards

• Other constraints

- Development team only familiar with Java

- Obey Sarbanes-Oxley

- Ready in time for April 15th

38
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Capturing System Requirements

Question: What do we need to define the software architecture?

• Functional requirements. They define what the application

must do to behave properly.

• Quality attributes or NFRs. Quality attributes serve as

qualifications of functional requirements or the overall

application. They are also called non-functional requirements

(NFRs). The can qualify how fast an application operation

should be performed or define its service-level agreement.

• Constraints. These reflect design decisions that have already

been made and cannot be changed. A choice of a specific

migration platform, such as ACS, is an example.

39
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Capturing Architecturally Significant
Requirements

Not all requirements are created equal for architectural purposes.

Architecturally significant requirement (ASR):

• A profound impact on the architecture – this requirement will

likely result in a different architecture than if it were not included

• A high business value – if the architecture is going to satisfy this

requirement, it must be of high value to important stakeholders

40
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture and Design Decisions

The architecture of a system is the result of design decisions.

Design decisions influence achievement of desired qualities.

If you desire… you need to pay attention to…
High performance minimizing the frequency and volume of inter-

element communication

Modifiability/Flexibility limiting interactions between elements

Security managing and protecting inter-element

communication

Reusability minimizing inter-element dependencies

Subsetability controlling the dependencies between subsets

and, in particular, avoiding circular dependencies

Availability the properties and behaviors that elements must

have and the mechanisms you will employ to

address fault detection, fault prevention, and fault

recovery

And so forth …

41
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Eliciting the Target System Qualities

Requirements elicitation methods elicit quality attribute

requirements.

For more information, see Bass, L., Bergey, J., Clements, P., Merson, P., Ozkaya, I., Sangw an, R. A Comparison of Requirements Specification Methods from a Software

Architecture Perspective (CMU/SEI-2006-TR-013). Softw are Engineering Institute, Carnegie Mellon University, 2006.

42
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Stakeholders and Quality Attributes

43
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attribute Data from SEI Architecture
Evaluations:
Top 20 QA Concerns1

1. Modifiability: Reduce coupling

2. Performance: Latency

3. Interoperability: Upgrade and integrate with other
system components

4. Modifiability: Designing for portability

5. Usability: Ease of operation

6. Availability: Detect faults

7. Interoperability: Ease of interfacing with other
systems

8. Modifiability: Designing for extensibility

9. Availability: Recover from faults

10.Performance: Resource management

11.Deployability: Minimize build, test, release duration

12.Modifiability: Reusability

13.Availability: Prevent faults

14.Scalability: Increased processing demands

15.Security: Authorization

16.Interoperability: Resource and data sharing

17.Security: Resist attack

18.Deployability: Configuration and/or dependency
management

19.Modifiability: Configurability/composability

20.Deployability: Backward compatibility and/or

rollback strategy

1 Bellomo, S.; Gorton, I.; & Kazman, R. “Insights from 15 Years of ATAM Data: Tow ards Agile Architecture”, IEEE Software, September/October, 2015, 32:5, 38-45.

44
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attribute Data from SEI Architecture
Evaluations:
QA Concerns Grouped by QA1

Modifiability

•Designing for
portability

•Designing for
extensibility

•Reusability

•Configurability/compo
sability

• Increase cohesion

•Add or modify
functionality

Performance

• Latency

• Resource

management

• Throughput

• Performance
monitoring

• Initialization

• Accuracy

Interoperability

• Upgrade and

integrate with other
system components

• Ease of interfacing
with other systems or

components

• Resource and data
sharing

• Data integrity

• Compliance with

standards/protocols

Availability

•Detect faults

•Recover from faults

•Prevent faults

•Transaction auditing

and logging

•Graceful degradation

1 Bellomo, S.; Gorton, I.; & Kazman, R. “Insights from 15 Years of ATAM Data: Tow ards Agile Architecture”, IEEE Software, September/October, 2015, 32:5, 38-45.

45
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Describing Quality Attributes

Quality attribute names by themselves are not enough.

• Quality attribute requirements are often non-operational.

- For example, it is meaningless to say that the system shall be

“modifiable.” Every system is modifiable with respect to some set of

changes and not modifiable with respect to some other set of

changes.

• Heated debates often revolve around the quality attribute to

which a particular system behavior belongs.

- For example, system failure is an aspect of availability, security, and

usability.

• The vocabulary describing quality attributes varies widely.

46
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Parts of a Quality Attribute Scenario

We specify the most important quality attribute requirements as

quality attribute scenarios, using a 6-part structure:

47
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attribute Example Scenario

An unanticipated external message is received by a process during

normal operation. The process informs the operator of the message’s

receipt, and the system continues to operate with no downtime.

Source External to the system

Stimulus Unanticipated message

Artifact(s) Process

Environment Normal operation

Response Inform operator; continue to operate

Response

Measure

No downtime

48
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Prioritizing QA Scenarios

Before commencing design, prioritize quality attribute scenarios.

• Typically only the most important scenarios can be considered

early in architectural design.

• Choose the top 5-7 scenarios in the initial design round.

If a Quality Attribute Workshop was performed, the scenarios will

already be prioritized.

Or you could create a utility tree, where scenarios are prioritized

across two dimensions:

• importance to the success of the system, ranked by the

customer (H, M, L)

• degree of technical risk, ranked by the architect (H, M, L)

49
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

What Are Quality Attribute Utility Trees?

You can identify, prioritize, and refine the most important quality

attribute goals by building a utility tree.

• A utility tree is a top-down vehicle for characterizing the “driving”

attribute-specific requirements.

• The highest level nodes are typically quality attributes such as

performance, modifiability, security, availability, and so forth.

• Scenarios are the leaves of the utility tree.

The utility tree is a characterization and a prioritization of specific

quality attribute requirements.

50
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Example of Quality Attribute Utility Tree

Replace middleware in

< 20 person-months

51
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

How Scenarios Are Used

Scenarios are used to

• represent stakeholders’ interests

• understand quality attribute requirements

Scenarios should cover a range of

• anticipated uses of the system (use case scenarios)

• anticipated changes to the system (growth scenarios)

• unanticipated stresses on the system (exploratory scenarios)

Scenarios are linked to business goals, for traceability.

A good scenario clearly states the stimulus and the responses of

interest.

52
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Examples of Scenarios

Use case scenario

• A remote user requests a database report via the Web during a
peak period and receives it within 5 seconds.

Growth scenario

• During maintenance, add an additional data server within 1
person-week.

Exploratory scenario

• Half of the servers go down during normal operation without
affecting the overall system availability.

Scenarios should be as specific as possible.

53
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Stimulus, Environment, Response

Use case scenario

• The remote user requests a database report via the Web during

a peak period and receives it within 5 seconds.

Growth scenario

• During maintenance, add an additional new data server within

1 person-week.

Exploratory scenario

• Half of the servers go down during normal operation without

affecting the overall system availability.

54
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attribute Requirements –
Elicitation Approaches

Goal: Broad coverage through stakeholder engagement and

representation

Approaches:

• Quality Attribute Workshop – Original method, synchronous in-

person collaborative working meeting

• Virtual QAW – Synchronous working telemeeting

• Interviews – Variation to avoid holding a single event, can by in-

person and/or telemeeting

• Seeded Crowdsourcing – Create initial set of scenarios based

on experience or interviews, open to broader asynchronous

contributions

55
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Quality Attribute Workshop (QAW)

The QAW is a facilitated method that engages system stakeholders

early in the lifecycle to discover the driving quality attribute

requirements of a software-reliant system.

Key points about the QAW are that it is

• system-centric

• stakeholder focused

• held before a major software architecture design exercise

• scenario based

56
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Exercise –
Quality Attribute Scenarios for DIP System

Stimulus, Environment, Response

57
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Start of Day 2

58
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Agenda

Day 1:

• Definition and importance of architecture

• Architectural drivers, quality attribute scenarios

Day 2:

• Architecture Documentation: Views – Structure and Behavior,
Principles of Sound Documentation, Architecture Decision
Records

• Architecture-centric Engineering

Day 3:

• Architecture analysis

- Evaluation approaches, lightweight evaluation

• Architecture design

- Design process, Attribute-Driven Design

59
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Structures, Views, Documentation

60
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Why Document an Architecture?

Architecture documentation has three

fundamental uses.

• Education, introducing people to the

system: new members of the team,

external analysts, the customer, or even a

new architect.

• Communication vehicle among

stakeholders and to/from the architect.

• Analysis, especially for the quality

attributes that the architecture is

designed to provide.

61
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Stakeholders for Documentation

Who are the stakeholders for

architecture documentation?

What do they need to know?

Module 3

62
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

1. Project activities will be less costly with high-

quality, up-to-date documentation than they would

otherwise.

A Business Case for
Architecture Documentation

Benefit of documentation =

(–)

Benefit > Cost to produce/maintain the documentation.

over all

activities A

2. The effort saved from architecture documentation should outweigh

the cost to create it.

Cost of performing A with

architecture documentation

Cost of performing A without

architecture documentation

63
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

What is Software

Architecture?

Modern software systems are too complex

to grasp all at once. At any moment, we

restrict our attention to a small number of a

software system’s structures.

To communicate meaningfully about an

architecture, we must make clear which

structure or structures we are discussing.

Architectural Structures

64
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Structure Types

Architectural structures for software systems can be divided into

three types:

1. Module structures – consisting of elements that are units of

implementation

called modules and the relationships among them

2. Component-and-connector structures – consisting of runtime

components

(units of computation) and the connectors (communication paths)

between them

3. Allocation structures – consisting of software elements and

their relationships to elements in external environments in which

the software is created and executed

65
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Documenting Software Architecture Using
Views

• Software architecture needs to be communicated to the team and

key stakeholders. It must be documented!

• A single diagram that showed the entire architecture would

contain too much information to present all at once.

• To break an architecture into digestible chunks, we create

diagrams that we refer to as views.

• These views illustrate

structures in the architecture.

<<session bean>>

Account

ControllerEJB

<<entity bean>>

AccountEJB
<<session bean>>

Customer

ControllerEJB

<<entity bean>>

CustomerEJB
<<session bean>>

TxControllerEJB

<<entity bean>>

TxEJB

<<servlet>>

Dispatcher
<<J2EE app.client>>

BankAdmin

<<artifact>>

DukesBankApp.ear

<<artifact>>

account-ejb.jar
<<artifact>>

customer-ejb.jar
<<artifact>>

tx-ejb.jar

<<artifact>>

web-client.war
<<artifact>>

app-client.jar

<<manifest>>

<<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<manifest>> <<manifest>> <<manifest>><<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<artifact>>

AdminMessages

.properties

<<manifest>>

<<artifact>>

WebMessages.

properties

<<artifact>>

struts.jar

<<artifact>>

*.tld, *.gif,

*.html

<<manifest>>

<<manifest>>

<<manifest>>

Notation:

UML 2.0

<<JSP>>

*.jsp

<<manifest>>

Shorthand for

all JSP files

Catalog

ItemEntry

Authorized

User

Search

Online

Services[1..5]

Admin

Services[1]

SearchEngine

DataAccess

Data

Cache

CatalogMgr

Dava

Validation

<<session bean>>

Account

ControllerEJB

<<entity bean>>

AccountEJB
<<session bean>>

Customer

ControllerEJB

<<entity bean>>

CustomerEJB
<<session bean>>

TxControllerEJB

<<entity bean>>

TxEJB

<<servlet>>

Dispatcher
<<J2EE app.client>>

BankAdmin

<<artifact>>

DukesBankApp.ear

<<artifact>>

account-ejb.jar
<<artifact>>

customer-ejb.jar
<<artifact>>

tx-ejb.jar

<<artifact>>

web-client.war
<<artifact>>

app-client.jar

<<manifest>>

<<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<manifest>> <<manifest>> <<manifest>><<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<artifact>>

AdminMessages

.properties

<<manifest>>

<<artifact>>

WebMessages.

properties

<<artifact>>

struts.jar

<<artifact>>

*.tld, *.gif,

*.html

<<manifest>>

<<manifest>>

<<manifest>>

Notation:

UML 2.0

<<JSP>>

*.jsp

<<manifest>>

Shorthand for

all JSP files

<<session bean>>

Account

ControllerEJB

<<entity bean>>

AccountEJB
<<session bean>>

Customer

ControllerEJB

<<entity bean>>

CustomerEJB
<<session bean>>

TxControllerEJB

<<entity bean>>

TxEJB

<<servlet>>

Dispatcher
<<J2EE app.client>>

BankAdmin

<<artifact>>

DukesBankApp.ear

<<artifact>>

account-ejb.jar
<<artifact>>

customer-ejb.jar
<<artifact>>

tx-ejb.jar

<<artifact>>

web-client.war
<<artifact>>

app-client.jar

<<manifest>>

<<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<manifest>> <<manifest>> <<manifest>><<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<artifact>>

AdminMessages

.properties

<<manifest>>

<<artifact>>

WebMessages.

properties

<<artifact>>

struts.jar

<<artifact>>

*.tld, *.gif,

*.html

<<manifest>>

<<manifest>>

<<manifest>>

Notation:

UML 2.0

<<JSP>>

*.jsp

<<manifest>>

Shorthand for

all JSP files

<<session bean>>

Account

ControllerEJB

<<entity bean>>

AccountEJB
<<session bean>>

Customer

ControllerEJB

<<entity bean>>

CustomerEJB
<<session bean>>

TxControllerEJB

<<entity bean>>

TxEJB

<<servlet>>

Dispatcher
<<J2EE app.client>>

BankAdmin

<<artifact>>

DukesBankApp.ear

<<artifact>>

account-ejb.jar
<<artifact>>

customer-ejb.jar
<<artifact>>

tx-ejb.jar

<<artifact>>

web-client.war
<<artifact>>

app-client.jar

<<manifest>>

<<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<manifest>> <<manifest>> <<manifest>><<manifest>> <<manifest>> <<manifest>>

<<manifest>>

<<artifact>>

AdminMessages

.properties

<<manifest>>

<<artifact>>

WebMessages.

properties

<<artifact>>

struts.jar

<<artifact>>

*.tld, *.gif,

*.html

<<manifest>>

<<manifest>>

<<manifest>>

Notation:

UML 2.0

<<JSP>>

*.jsp

<<manifest>>

Shorthand for

all JSP files

66
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

View-Based Documentation

Views give us our basic principle of architecture documentation:

Documenting a software architecture is a matter

of documenting the relevant views and then adding

information that applies to more than one view.

67
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recognizing Types of Views - 1

An architect must consider the system in

three ways:

1. How is it structured as a set of

implementation units?

2. How is it structured as a set of

elements having runtime

behaviors and interactions?

3. How does it relate to non-software

structures in its environment?

Module 3

68
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recognizing Types of Views - 2

Different types of views show different types

of information:

• Module views show how the

system is structured as a set of

implementation units.

• Component-and-connector views

show how the system is structured

as a set of elements with runtime

behaviors and interactions.

• Allocation views show how the

system relates to non-software

structures in its environment.

Every view contains information from at

least one of these categories.

Module 3

69
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Modules vs. Components: A simple example

This client-server system has 3 modules and 11 components.

Module uses view

Module

Client

Key:

Server

Common

uses

C9

C8

S1

C10

C7 C3

C2

C5
C6 C4

C1

Key: Component

Request-reply

Client-server view

70
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Standard View Types for Documenting
Architecture

With a clear understanding of requirements, architects then select

structures that promote those qualities. There are many to choose

from!

Component-and-Connector

Client-Server

Concurrency

Process

Shared-Data

…

Module

Decomposition Class/Generalization

Uses

Layered

…

Allocation

Work Assignment

Deployment Implementation

…

71
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Module View Example
Uses Style: UML

72
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Module View Example – Extract from Fuser
Uses Style: Outline

fuser-parent

+ com.codahale.metrics

+ com.google.gson

+ com.matm.actypelib

+ com.mosaicatm.adaptation

+ com.mosaicatm.adsb.data

+ com.mosaicatm.adsbplugin

+ com.mosaicatm.aircraftmanagement

+ com.mosaicatm.aodbplugin.matm

+ com.mosaicatm.aptcode

+ com.mosaicatm.container.io

+ com.mosaicatm.data.flightstate

+ com.mosaicatm.faa.util

+ com.mosaicatm.flighthubplugin.matm

+ com.mosaicatm.flightmanagement

+ com.mosaicatm.fmccommon

+ com.mosaicatm.fmcplugin

+ com.mosaicatm.guficlient

+ com.mosaicatm.lib.camel

+ com.mosaicatm.lib.coord

+ com.mosaicatm.lib.database

+ com.mosaicatm.lib.jaxb

+ com.mosaicatm.lib.messaging

+ com.mosaicatm.lib.playback

+ com.mosaicatm.lib.spring

+ com.mosaicatm.lib.text

+ com.mosaicatm.lib.time

+ com.mosaicatm.lib.util

+ com.mosaicatm.matmdata.aircraft

+ com.mosaicatm.matmdata.aircraftcomposite

+ com.mosaicatm.matmdata.airline

+ com.mosaicatm.matmdata.common

+ com.mosaicatm.matmdata.envelope

+ com.mosaicatm.matmdata.flight

+ com.mosaicatm.matmdata.fusersurveillance

+ com.mosaicatm.matmdata.heartbeat

+ com.mosaicatm.matmdata.position

+ com.mosaicatm.matmdata.positionenvelope

+ com.mosaicatm.matmdata.sector

+ com.mosaicatm.matmdata.util

+ com.mosaicatm.matmplugin.matm

+ com.mosaicatm.performancemonitor.common

+ com.mosaicatm.rmasplugin.matm

+ com.mosaicatm.rollingfile

+ com.mosaicatm.sector.geometry

+ com.mosaicatm.sfdps.data.transfer;

+ com.mosaicatm.sfdps.data.transfer

+ com.mosaicatm.sfdpsplugin.matm

+ com.mosaicatm.smes.transfer

+ com.mosaicatm.smesplugin.matm

+ com.mosaicatm.surveillanceplugin.matm

+ com.mosaicatm.tfm.thick.flight.mtfms.data

+ com.mosaicatm.tfmplugin.matm

+ com.mosaicatm.tfmplugin

+ com.mosaicatm.tfmtfdmplugin

+ com.mosaicatm.tma.common

+ com.mosaicatm.tmaplugin

+ com.mosaicatm.ttp.util

+ com.mosaicatm.ttpplugin

+ com.mosiacatm.ifile

+ org.apache.commons.logging

asdex-parent

+ com.mosaicatm.aptcode
+ com.mosaicatm.gufi.plugin

+ com.mosaicatm.guficlient

+ com.mosaicatm.gufiservice
+ com.mosaicatm.lib.bulk2

+ com.mosaicatm.lib.camel.jms
+ com.mosaicatm.lib.fitnesse

+ com.mosaicatm.lib.playback

+ com.mosaicatm.lib.text
+ com.mosaicatm.lib.wrap

+ com.mosaicatm.lib.xml
+ com.mosaicatm.rollingfile

73
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Component-and-Connector View:
Pipe-and-Filter Style

74
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Deployment
View

1. Internet Gateway: Allows
communication between Virtual Private
Cloud (VPC) and the internet.

2.Application Load Balancer
(ALB): ALB manages traffic within the
implementation and from external
connections.

3.Front-end Server (EC2): Is placed in
an auto-scaling group where the front-
end web server is deployed on EC2
instances and serves as an application
user interface (UI).

4.Back-end Server: Back-end web
services are placed in a private subnet,
deployed on EC2 instances.

5.Amazon RDS (Database): Application
database is kept in a restricted subnet
that interacts with back-end services.

6.AWS CloudTrail: Provides
compliance, governance, operational
and risk auditing of the AWS accounts.

• • •https://notsosecure.com/security-architecture-review-of-a-cloud-native-environment/

75
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Certain principles apply

to all documentation,

not just that for

software architectures.

Seven Principles of Sound Documentation

76
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Avoid Ambiguity - 1

Documentation is for communicating information and ideas.
If the reader misunderstands because of ambiguities,
the documentation has failed.

Even “simple” concepts can confuse. Here, what does the arrow mean?

• C1 calls C2

• Data flows from C1 to C2

• C1 instantiates C2

• C1 sends a message to C2

• C1 is a subtype of C2

• C2 is a data repository and C1 is writing data to C2

• C1 is a repository and C2 is reading data from C1

77
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Avoid Ambiguity - 2

Precisely defined notations/languages help avoid ambiguity.

If your documentation uses a graphical language, always include a

key!

• It can point to the language’s formal definition

• It can give the meaning of each symbol. (Don’t forget the lines!)

If color or position is significant, indicate how.

Be sure to make the key

meaningful: don’t just say

“element” and “relation.”

Different element and

relation types should have

different symbols.

78
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Key:

EJB Tier Backend TierClient Tier

Façade

SLSB

Web Tier

Oracle

Database

HTML and

JavaScript

web com-

ponent

Data

repository

HTTP-based

communication
File I/O

Portal

web

page

CMP or

BMP entity

bean

Front

Controller

(servlet)

EJB

Java method

call (local)

http

response

logical tier

(not a

component)

http

request

Result

Page

(JSP or HTML)

forward or

sendRedirect Product

Files

JDBC

Thick

client

MS.NET Windows

application

Axis + ATIA

services

(servlet)

SOAP request
(web services URL)

SOAP

response

Web

browser
Web

browser

Web

browser

NIPRNET
HTTPS

in
te

rs
e

rv
e

r
 c

o
o

rd
in

a
tio

n
 o

ve
r

IP

LDAP

using

SSL

F5 Networks

BIG-IP 540 with

SSL accelerator
Load balancing

(sticky connections);

automatic failover

Windows 2000

IBM x235

WebLogic

6.1

WebLogic

6.1

Windows 2000

IBM x345

WebLogic 6.1
admin. server

Windows 2000 - IBM x235

Helix Server

ASAT multimedia
Real Media, Windows Media,

Flash, QuickTime, MPEG

IBM AIX 4.3.3

IBM H80

Oracle 9i

DB Server

ATIA-M

Enterprise

Database

Windows 2000

IBM x345

RDL-M

documents
html, self-

extracting zip,

pdf, jpeg, etc.

JD
B

C
 o

ve
r

T
C

P

HTTP, RTSP,

MMS
ports 80, 554,

1755

HTTP(S)
ports 80, 443

AKO repository

LDAP

HTTPS SOAP

Key:
Server

machine

Web

browser
TDDT
.NET

Data repository

residing on a

machine

Server software

running on a

machine

User

machine

Communi-

cation

protocol

HTTPS

Firewall

File

I/O

Oracle RAC

synch.

HTTP(S)
ports 80, 443

HTTP(S)
ports 80, 443

Windows 2000

IBM x235

WebLogic

6.1

WebLogic

6.1

Windows 2000

IBM x235

WebLogic

6.1

WebLogic

6.1

IBM AIX 4.3.3

IBM H80

Oracle 9i

DB Server

ATIA-M

Enterprise

Database

Examples of keys

Avoid Ambiguity - 3

M - module

- uses

Key

79
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Avoid Ambiguity - 4

Box-and-line diagrams
are a common form of
architectural notation.

But what do they mean?

If you use a box-and-line
diagram, always define
precisely what the boxes
and lines mean.

If you see an ambiguous box-and-line diagram, ask the owner what
it means. (The result is often entertaining!)

80
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Use a Standard Organization

Establish it, make sure that your
documents follow it, and make sure that
readers know what it is.

A standard organization

• helps the reader navigate and find
information

• tells the writer what to document,
where it belongs,

• helps plan the work, and
measure the work left to be done

• lets the writer record information as
soon as it is known, in whatever order it is
discovered

• embodies completeness rules and helps with
validation

Examples:

• SEI Views and Beyond

• ISO-42010

• Others, e.g., arc42.org, Simon Brown’s
Visualizebook, …

81
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

What Is the “Right” Set of Views?

Unlike approaches that prescribe a fixed set of views, Views and

Beyond is a more general approach:

Choose the best views for each situation.

ISO/IEC 420101 concurs – It prescribes creating your own views to

serve specific stakeholder concerns.

Which views are “right” depends on

• the structures that are inherent in the software

• who the stakeholders are and how they will use the

documentation

82
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Standard View Types for Documenting
Architecture

With a clear understanding of requirements, architects then select

structures that promote those qualities. There are many to choose

from!

Component-and-Connector

Client-Server

Concurrency

Process

Shared-Data

…

Module

Decomposition Class/Generalization

Uses

Layered

…

Allocation

Work Assignment

Deployment Implementation

…

83
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Behavior: Beyond Structure

Structural diagrams

show all the potential

interactions among

software elements.

Behavioral diagrams

describe specific patterns

of interaction—the system’s

response to stimuli.

84
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Two Classes of Languages

Both can show the behavior of the whole system, parts of the

system, or individual elements.

Traces can correspond to use cases, so behavioral documentation

can show satisfaction of requirements.

Comprehensive
languages
• show the complete behavior of

a system

• are usually state based (e.g.,
statecharts)

• can be used to express all
traces

• support the documentation of
alternatives

Trace-oriented
languages
• describe how the system

reacts when a specific stimulus

arrives and the system is in a
specific state

• are easy to use because of
their narrow focus

• do not completely capture
behavior unless you collect all
possible traces

85
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Which Is Which?

Trace-Oriented

• use cases*

• communication diagrams*

• sequence diagrams*

• message sequence charts

• activity diagrams*

• timing diagrams*

• Business Process Execution

Language (BPEL) and

Business Process Modeling

Notation (BPMN)

• …

Comprehensive

• State machine diagrams*

• SDL diagrams

• Z specifications

• some ADLs

• CSP (communicating

sequential processes)

• …

* available in UML

86
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Documenting Rationale:
Architectural Decisions

Developing a complex software architecture involves making

hundreds or thousands of big and small decisions.

The results of these decisions are reflected in

the views that document the architecture—the

structures with their elements and relations

and properties, and the interfaces and

behavior of those elements.

Rationale is the explanation of the reasoning

that lies behind an architectural decision.

87
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture Decision Record (ADR)
Template - 1
1. Issue. State the architectural design issue being addressed.

2. Decision. State the solution chosen among the alternatives that the
architect evaluated.

3. Status. State the status of the decision, such as pending, decided, or
approved. (This is not the status of implementing the decision.)

4. Group. Name a containing group. Grouping allows for filtering based
on the technical stakeholder interests. Examples: “integration,”
“presentation,” “data,” etc.

5. Assumptions. Describe the key assumptions under which a decision
was made:

- About the environment. Examples: accepted technology standards, an
enterprise architecture, commonly employed patterns, team size and
skill set available, cost and schedule, etc.

- About need. Example: “The system will only be used in the USA”
(justifies why the design has no support for internationalization)

88
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture Decision Record (ADR)
Template - 2

6. Alternatives. List alternatives (that is, options or positions)

considered. Explain with sufficient detail to judge their

suitability. Listing alternatives espoused by others helps them

know that their opinions were heard.

7. Argument. Outline why a position was selected. This can

include items such as implementation cost, total cost of

ownership, time to market, and availability of required

development resources.

8. Implications. Describe the decision’s implications. E.g., it may

- Introduce a need to make other decisions

- Create new requirements or modify existing requirements

- Pose additional constraints to the environment

- Require renegotiation of scope or schedule

89
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture Decision Record (ADR)
Template - 3
9. Related Decisions. List decisions related to this one. Useful relations

among decisions include causality (which decisions caused other
ones), structure (showing decisions’ parents or children), or
temporality (which decisions came before or after others).

10. Related Requirements. Map decisions to objectives or requirements,
to show accountability.

11. Affected Artifacts. List the architecture elements and/or relations
affected by this decision. You might also include external artifacts
upstream and downstream of the architecture, as well as
management artifacts such as budgets and schedules.

12. Notes. Capture notes and issues that are discussed during the
decision process.

As in all cases, choose the parts of this template appropriate for your
situation.

90
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Exercise – View selection for DIP

Who is going to use the architecture documentation? For what

purpose? What types of views would be beneficial?

91
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Architecture design and
analysis

92
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture-Centric Approach

The SEI architecture-centric approach can add value, building on

the fundamental concepts of

• business goals: Systems are built to satisfy business goals.

Business goals determine requirements.

• quality attributes: Quality attribute requirements exert the

strongest influence on architectural design.

• architectural design primitives: Architectural tactics and patterns

are the basic building blocks of design used by practitioners.

93
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

What Is Design and Analysis?

Design is making the decisions that lead to the creation of

architecture.

• Which design decisions will lead to a software architecture that

successfully addresses the desired system qualities?

Analysis ensures that the architecture used is the right one.

• How do you know if a given software architecture is deficient or

at risk relative to its target system qualities?

94
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Implications for Software Architecture Design
and Analysis

The degree to which a system meets its quality attribute

requirements is dependent on architectural decisions.

• A change in structure improving one quality often affects the

other qualities.

• Architecture is critical to the realization of quality attributes.

These quality attributes should be designed into the

architecture.

• Architecture can only permit, not guarantee, any quality

attribute.

95
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Use of Analysis in Design Methods

For More Information: Hofmeister, C.; Kruchten, P.; Nord, R.L.; Obbink, H.; Ran, A.; America, P. “A General Model of Softw are
Architecture Design Derived from Five Industrial Approaches.” Journal of Systems and Software, 2007.

- Concerns
- Design Purpose

96
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Analysis and Design

Architectural analysis and design are tightly coupled.

The word analysis is defined by Merriam-Webster

as

• the careful study of something to learn about its

parts, what they do, and how they are related to

each other

• an explanation of the nature and meaning of

something

Both of these definitions apply to architecture

analysis.

97
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Analysis and Documentation
as a Portion of Design

1: Focus on

architectural
drivers to create

design concept.

2: Focus on functional

requirements to create
instantiated design.

3: Verify requirements

and complete architecture
description.

98
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Analysis and Documentation
as a Portion of Design – Iterative Process

1: Focus on

architectural
drivers to create

design concept.

2: Focus on functional

requirements to create
instantiated design.

3: Verify requirements

and complete architecture
description.

99
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture Centric Engineering

BUSINESS
AND MISSION

GOALS
ACE/TSP ACE/TSPARCHITECTURE SYSTEM

100
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architecture Centric Engineering - Methods

BUSINESS
AND MISSION

GOALS
ACE/TSP ACE/TSPARCHITECTURE SYSTEM

Attribute Driven
DesignQuality Attribute

Workshop
Business Thread
Workshop

Architecture Trade-off
Analysis Method

Views and
Beyond

Active Design
Review

Conformance
Review

TSP launch, release
planning, checkpoints

101
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

QAW, ADD, V&B, and ATAM Together

Prioritized

QA scenarios

Client
Teller 1

Account
Server-Main

Account
Server-Backup

Account
AdministrativeDatabase

Connector Types:

Publish-Suscribe

Client-Server
Request/Reply

Database Access

AttachmentKEY Component Types:

Client

Server

Database

Database
Application

ASTER
Gateway

V0

Gateway

Maintenance

Tool

DSSYBASE

KEY
Repository Component

RPC

SQL

Exposed RPC
Interface

Exposed SQL
Interface

Patterns and

tactics

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> C

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<layer>> A

<<allowed to use>><<allowed to use>>

<<allowed to use>>

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> C

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<layer>> A

<<allowed to use>><<allowed to use>>

<<allowed to use>>

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> C

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<layer>> A

<<allowed to use>><<allowed to use>>

<<allowed to use>>

Lightweight view
packets; views
determined by
patterns

Requirements,

constraints

QAW

ADD

Views &

Beyond
ATAM

Chosen, combined
views plus
documentation
beyond views

Stakeholders

102
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Start of Day 3

103
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Agenda

Day 1:

• Definition and importance of architecture

• Architectural drivers, quality attribute scenarios

Day 2:

• Architecture Documentation: Views – Structure and Behavior,
Principles of Sound Documentation, Architecture Decision
Records

• Architecture-centric Engineering

Day 3:

• Architecture analysis

- Evaluation approaches, lightweight evaluation

• Architecture design

- Design process, Attribute-Driven Design

104
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Architecture Analysis

105
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

What Is Analysis?

Architectural analysis is the separation of a software architecture

into its constituent parts for individual study.

Analysis ensures that the architecture used is the right one.

• How do you know if a given software architecture is deficient or

at risk relative to its target system qualities?

106
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Why Analyze?

We analyze because we can.

We analyze because it is a prudent way of informing decisions and

managing risk.

Analysis is the key to evaluation.

107
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Analyze Early and Often

The decisions that you make when designing an architecture are

critical to achieve your quality attribute goals.

And the cost associated with correcting them at a later time can be

significant.

Thus, it is important to perform analysis during the design process,

so problems can be identified and corrected quickly.

If you have followed the ADD process, you should be able to

perform analysis (by yourself or with peers) using the sketches and

views that you produced.

108
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Analysis Techniques: Cost and Confidence

In general there is a correlation between the cost of the technique

and our resulting confidence in its analysis results.

Lifecycle Stage Form of Analysis Cost Confidence

Requirements Experience-based analogy Low Low-High

Requirements Back-of-the-envelope analysis Low Low-Medium

Architecture Thought experiment/reflective questions Low Low-Medium

Architecture Checklist-based analysis Low Medium

Architecture Tactics-based analysis Low Medium

Architecture Scenario-based analysis Low-Medium Medium

Architecture Analytic model Low-Medium Medium

Architecture Simulation Medium Medium

Architecture Prototype Medium Medium-High

Implementation Experiment Medium-High Medium-High

Fielded System Instrumentation Medium-High High

109
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Techniques for Analysis

• Experience-based analogy

• Back-of-the-envelope analysis

• Thought experiments

• Reflective questions

• Tactics-based questionnaires

• Checklists

•Scenario-based analysis

•Analytic models

•Simulations

•Prototypes

•Instrumentation of fielded

systems

110
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Lightweight Analysis Techniques

Early in the lifecycle, some lightweight techniques have proven to
be useful and relatively low-cost:

• Reflective question-based analysis

• Tactics-based analysis

• Checklist-based analysis

• Scenario-based analysis

Examples:

• Maintainability: https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=650480

• Integrability: https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=637375

• Software Architecture in Practice, 3rd. Edition

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=650480
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=637375

111
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Reflective Questions

The practice of asking (and answering) reflective questions can

augment analysis and design processes.

We think differently when we are problem-solving and when we are

reflecting.

For this reason, researchers have advocated a distinct “reflection”

activity that challenges the decisions made, and that challenges us

to examine our biases.

112
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Reflective Question Examples

• What assumptions are made? Do the assumptions affect the design
problem? Do the assumptions affect the solution option? Is an
assumption acceptable in a decision?

• What are the risks that certain events would happen? How do the risks
cause design problems? How do the risks affect the viability of a
solution? Is the risk of a decision acceptable? What can be done to
mitigate the risks?

• What are the constraints imposed by the contexts? How do the
constraints cause design problems? How do the constraints limit the
solution options? Can any constraints be relaxed when making a
decision?

• What are the contexts and the requirements of this system? What does
this context mean? What are the design problems? Which are the
important problems that need to be solved? What does this problem
mean? What potential solutions can solve this problem? Are there other
problems to follow up in this decision?

113
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Tactics-Based Questionnaires
We can employ tactics as an a guide to analysis. By turning every tactic

into a question, we create a set of QA-specific questionnaires. These are

employed as follows:

1. The reviewers determine a number of quality attributes to drive the

review. These quality attributes will determine the selection of tactics-

based questionnaires to use.

2. The architect presents the portion of the architecture to be evaluated.

The reviewers individually ensure that they understand the

architecture. Questions at this point are just for understanding.

3. For each question from the questionnaire, the designer walks through

the architecture and explains whether and how the tactic is addressed.

The reviewers ask questions to determine how the tactic is employed,

the extent to which it is employed, and how it is realized.

4. Potential problems are captured. Real problems must be fixed, or a

decision must be explicitly made to accept the risks.

114
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Example: Availability

115
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Tactics-Based Questions for Availability

• Does the system use ping/echo to detect a failure of a

component or connection, or network congestion?

• Does the system use a component to monitor the state of health

of other parts of the system? A system monitor can detect failure

or congestion in the network or other shared resources, such as

from a denial-of-service attack.

• Does the system use a heartbeat—a periodic message

exchange between a system monitor and a process—to detect a

failure of a component or connection, or network congestion?

• Does the system use a timestamp to detect incorrect sequences

of events in distributed systems?

• Does the system employ rollback, so that it can revert to a

previously saved good state (the “rollback line”) in the event of a

fault?

116
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Checklists

Architecture design is a systematic approach to making design

decisions.

We categorize the design decisions that an architect needs to

make as follows:

1. Allocation of responsibilities

2. Coordination model

3. Data model

4. Management of resources

5. Mapping among architectural elements

6. Binding time decisions

7. Choice of technology

Each of these categories applies to every quality attribute.

117
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Example Design Checklist for Availability:
Allocation of Responsibilities

Determine the system responsibilities that need to be highly

available.

Ensure that additional responsibilities have been allocated to

detect an omission, a crash, incorrect timing, or an incorrect

response.

Ensure that there are responsibilities to

• log the fault

• notify appropriate entities (people or systems)

• disable source of events causing the fault

• be temporarily unavailable

• fix of mask the fault/failure

• operate in a degraded mode

118
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Example Design Checklist for Availability:
Coordination Model
Determine the system responsibilities that need to be highly available.
With respect to those responsibilities,

• ensure that coordination mechanisms can detect an omission, a crash,
incorrect timing, or an incorrect response. Consider, for example,
whether guaranteed delivery is necessary. Will the coordination work
under degraded communication?

• ensure that coordination mechanisms enable the logging of the fault,
notification of appropriate entities, disabling of the source of the events
causing the fault, fixing or masking the fault, or operating in a degraded
mode

• ensure that the coordination model supports the replacement of the
artifacts (processors, communications channels, persistent storage,
and processes). For example, does replacement of a server allow the
system to continue to operate?

• determine if the coordination will work under conditions of degraded
communication, at startup/shutdown, in repair mode, or under
overloaded operation. For example, how much lost information can the
coordination model withstand and with what consequences?

119
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Scenario-Based Analysis

In scenario-based analysis, QA scenarios drive the analysis by

guiding the analysts to examine whether and how the scenario’s

response goal can be satisfied.

The ATAM is the best known scenario-based analysis method.

The ATAM can be run as a "milestone" evaluation, or lightweight

versions of the ATAM can be employed during the design process.

In the ATAM we

• precisely capture architectural requirements as 6-part scenarios

• prioritize those scenarios

• map the highest-priority scenarios onto representations of the

architecture to understand their consequences

120
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

The Architecture Tradeoff Analysis Method
(ATAM)

The purpose of the ATAM is to assess the consequences of

architectural decisions in light of quality attribute requirements and

business goals.

The ATAM helps stakeholders ask the right questions to discover

potentially problematic architectural decisions.

121
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Conceptual Flow of the ATAM

122
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Example Scenario Walkthrough

An external client queries the travel database during normal

operations and receives a result in < 2 seconds.

123
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Continuous Architecture Evaluation

ATAM (Architecture Tradeoff Analysis Method) evaluations are

substantial undertakings

• 20 to 30 person-days of effort from evaluation team

• Only makes sense for large/expensive projects where

architecture mistakes are unacceptable

For small, less risky projects, use Lightweight Architecture

Evaluation (1/2 to 1 day meeting or less)

• Participants are fewer and internal to organization, so process &

technologies are familiar to all

124
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Lightweight Architecture Evaluation

1: Present Business
Drivers

0.25 hrs Expected to understand, quick refresher

2: Present Architecture 0.5 hrs Brief overview with 1 to 2 scenarios

3: Identify Architectural
Approaches

0.25 hrs Create architecture approaches for specific
quality attribute concerns

4: Generate Quality
Attribute Utility Tree

0.5-1.5 hrs Create or update scenarios

5: Analyze Architectural
Approaches

2-3 hrs Map scenarios to architecture

6: Present Results 0.5 hrs Review and update risks & tradeoffs

Steps 1 – 5 are done offline ahead of time by the development

team. Evaluators review ahead of design review meeting, and the

2 - 3 hour period is used for discussion of architectural

approaches and Step 6.

125
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Summary

Functional requirements are important, but quality attributes define how

your system is measured by stakeholders (e.g., fast, secure, reliable)

Architectures have significant impact on achievement of quality attribute

requirements

ATAM is an established architectural evaluation method that uses quality

attribute scenarios as measuring sticks against which to evaluate design

decisions

ATAM is a foundation for incremental design reviews

The main output of design reviews is a set of design risks

Design risks with long-term negative consequences that accumulate are

referred to as technical debt

Technical debt with non-local or enterprise impact is particularly important

to watch and pay down

126
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Exercise

Fuser Architecture Analysis

127
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Fuser Deployment Views
(Primary Presentation)

Alternative #1 Alternative #1

128
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Tradeoffs

Concern Alt.
#1

Alt.
#2 Scenario

Fuser rule
maintainability

Fuser core message
processing throughput

Client connection
workload impact on
Fuser

Operations complexity

Data uniformity to
clients

Feed customizability
for clients

Cloud data egress
costs

+ Alternative helps address this concern
- Alternative is less helpful is addressing this concern

130
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

Architecture Design

131
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

What Is Design?

Design is making the decisions that lead to the creation of

architecture.

We make decisions to achieve goals and satisfy requirements and

constraints.

Why does a yurt look like a yurt, which is different from an igloo or

a chalet or a longhouse?

The architectures of these styles of houses have evolved, over the

centuries, to reflect their unique sets of goals, requirements and

constraints.

132
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Is Design Hard?

Yes and no.

Novel design is hard.

But the vast majority of design is not novel.

There are ample proven designs and design fragments, that we

call design concepts, that can be reused and combined to reliably

achieve your goals for most designs.

Traditional American House Frank Lloyd Wright’s Fallingwater

133
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Design

In architectural design, we make decisions to transform our design

purpose, quality attributes, functionality, constraints, and

concerns—the drivers—into structures.

Architectural Drivers

Structures

Design Concepts

<<uses>> <<produces>>

<<selects and

instantiates>>

Component-and-Connector

Client-Server

Concurrency

Process
Shared-Data

…

Allocation

Work Assignment

Deployment Implementation

…

Module

Decomposition Class/Generalization

Uses

Layered

…
Des ign Purpose

Primary Functionality

Qual ity Attributes

Constraints

Architectural Concerns

The Architect

134
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

What Makes a Decision “Architectural”?

A decision is architectural if it has non-local consequences and

those consequences matter to the achievement of an architectural

driver.

No decision is, therefore, inherently architectural or non-

architectural.

Consider the choice of a buffering strategy.

Is this architectural or not?

135
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Drivers

As mentioned earlier, architectural drivers consist of

• design purpose

• quality attributes

• primary functionality

• architectural concerns

• constraints

These are critical to the success of the system and, as such, they

drive the architecture.

Architectural drivers need to be baselined and managed

throughout the architecture influence cycle.

136
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Concepts

We have identified six broad, reusable categories of design

concepts that aid an architect:

• design principles

• reference architectures

• externally developed components

• deployment patterns

• architectural design patterns

• tactics

137
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

The Output of the Design Process

The output of the design process is a set of architectural structures

resulting from design decisions.

These structures will guide

• analysis and construction

• the education of a new project

member

• cost and schedule estimation

• team formation

• risk analysis and mitigation

• (and of course) implementation

138
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Principles

Design principles are basic tenets that guide us toward good

designs.

There are general design principles, e.g.:

• Information hiding—hide data structures, hide details, hide

variations

• Low coupling, high cohesion

There are more specific design principles. For example, the SOLID

principles aid in designing modifiable, extensible OO-based

architectures.

139
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Principles

SOLID principles:

• Single Responsibility Principle: There should be only one reason

for a class to change.

• Open/Closed Principle: Classes and methods should be open

for extension but closed for modification.

• Liskov Substitution Principle: Every function or method that

expects an object parameter of class A must be able to accept a

subclass of A as well, without knowing it.

• Interface Segregation Principle: Classes should not be forced to

depend on interfaces that they do not use.

• Dependency Inversion Principle: High-level classes should not

depend on low-level classes. Both should depend on

abstractions.

140
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Reference Architectures

Reference architectures are
archetypes that provide an
overall logical structure for
specific
types of applications, e.g.,

• Web application

• mobile application

• lambda architecture

They typically employ and
combine patterns.

They aid in planning and
reasoning.

Source: Microsoft Patterns and Practices Team. Microsoft
Application Architecture Guide, 2nd ed. Microsoft Press. 2009.
https://msdn.microsoft.com/en-us/library/ff650706.aspx

Used with permission from Microsoft.

141
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Reference Architecture for
Big Data Systems

J. Klein, R. Buglak, D. Blockow, et al., “A Reference Architecture for Big Data Systems in the National Security Domain,” in Proc. 2nd Int. Workshop on BIG

Data Software Eng. (BIGDSE'16), Austin, TX, USA, 2016, pp. 51-57. URL: https://resources.sei.cmu.edu/library/asset- view.cfm?assetid=454876

142
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Externally Developed Components

Products: A product (or software package) refers to a self-contained
functional piece of software that can be integrated into the system that is
being designed and that requires only minor configuration or coding.
Example: MySQL

Application frameworks: An application framework (or just framework) is a
reusable software element, constructed out of patterns and tactics, that
provides generic functionality addressing recurring domain and quality
attribute concerns across a broad range of applications. Example:
Hibernate

Technology families: A technology family represents a group of specific
technologies with common functional purposes. Example: ORM

Platforms: A platform provides a complete infrastructure upon which to
build and execute applications. Example: Google Cloud

143
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural Design Decisions

In the early stages of design, decisions are focused on the biggest,

most critical choices that will have substantial downstream

consequences: reference architectures, major technologies (such

as frameworks), and patterns.

Once a design decision has been made, you should think about

how you will document that decision.

144
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Documenting During Design

As you instantiate design concepts you will typically create

sketches. These are initial documentation for your architecture.

• Capture them and flesh them out later.

• If you use an informal notation, be consistent.

• Develop a discipline of writing down the responsibilities that you

allocate to elements.

• Writing it down ensures you won’t have to remember it later.

145
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Tracking Progress

When designing there are three key questions to answer:

• How much design do we need to do?

• How much design has been done so far?

• Are we finished?

Agile practices such as the use of backlogs and kanban boards

can help you track design progress and answer these questions.

146
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Backlog

You should create a list of the actions that still need to be

performed as part of the architecture design process.

Initially, populate the design backlog with your drivers, but other

activities such as the following can be included:

• Creation of a prototype to test a particular technology or to

address a specific quality attribute risk

• Exploration and understanding of existing assets (possibly

requiring reverse engineering)

• Issues uncovered in a review of the design (recall that we

analyze as we are designing)

• Review of a partial design that was performed on a previous

iteration

147
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Using a Design Kanban Board

One possible tool for

tracking progress

is a Kanban board.

148
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Termination Criteria

The design process continues across several iterations:

• until the most important technical risks have been mitigated; or

• until design decisions have been made for all of the driving

architectural requirements; or

• until the time allotted for architecture design is consumed (not

very desirable!).

149
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Attribute-Driven Design (ADD) Method

The ADD method is an approach to defining software architectures

by basing the design process on the architecture’s quality attribute

requirements.

It follows a recursive decomposition process where, at each stage

in the decomposition, tactics, patterns, and technologies are

chosen to satisfy a set of architectural drivers.

150
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recall: The Architecture Influence Cycle
(AIC)

151
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Is a Transformation

In architectural design, we make decisions to transform our design

purpose, quality attributes, functionality, constraints, and

concerns—the drivers—into structures.

Architectural Drivers

Structures

Design Concepts

<<uses>> <<produces>>

<<selects and

instantiates>>

Component-and-Connector

Client-Server

Concurrency

Process
Shared-Data

…

Allocation

Work Assignment

Deployment Implementation

…

Module

Decomposition Class/Generalization

Uses

Layered

…
Des ign Purpose

Primary Functionality

Qual ity Attributes

Constraints

Architectural Concerns

The Architect

152
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

On the Need for an Architecture Design Method

Architecture design is notoriously difficult to master

• Design can (and should) be performed in a systematic way.

• Design decisions should be justified.

The architect is accountable for design decisions

• Design decisions should be recorded.

Otherwise, architecture design may end up being a mystic activity

performed by gurus.

To make any activity more predictable and repeatable, we need

methods.

ADD 3.0 (henceforth just ADD) is the result of more than a decade

of evolution and practice.

Let’s look at its steps in detail…

153
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

ADD

Design purpose
Primary functional

requirements
Quality attribute

scenarios
Constraints

Architectural

Concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the selected drivers

Step 5: Instantiate architectural elements, allocate responsibilities and define

interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration goal and

achievement of design purpose

(Refined) Software

architecture design

It
e

ra
te

 if
 n

e
c
e
s
sa

ry

F
ro

m
 p

re
v

io
u

s
 r
o

u
n

d
 o

f
it
e

ra
tio

n
s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture
design

Precedence

Artifact flow

154
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

ADD Step 1

Design purpose
Primary functional

requirements
Quality attribute

scenarios
Constraints

Architectural

Concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration

goal and achievement of design purpose

(Refined) Software

architecture design

It
e

ra
te

 if
 n

e
c
e

s
sa

ry

F
ro

m
 p

re
v

io
u
s
 r
o
u
n
d
 o

f
it
e
ra

tio
n
s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Before starting with
design, ensure that

there is clarity on the
overall design problem

that needs to be solved. Driver

Process step

Architecture
design

Precedence

Artifact
flow

155
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recall: Prioritizing QA Scenarios

Before commencing design, prioritize quality attribute scenarios.

• Typically only the most important scenarios can be considered in

architectural design.

• Choose the top 5-7 scenarios.

If a QAW was performed, the scenarios will already be prioritized.

One could also use the ATAM technique where scenarios are

prioritized across two dimensions.

• Importance (high, medium, or low) to the success of the system,

ranked by the customer.

• Degree of technical risk (high, medium, or low), ranked by the

architect.

156
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recall: Functional Requirements

The way the system is structured normally does not inhibit the

satisfaction of functional requirements. Functionality and quality

are orthogonal concerns.

When designing the architecture, however, it is important to ensure

that the structure contains the necessary elements to satisfy

functional requirements.

157
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recall: Prioritizing Functional Requirements

Primary use cases

• are critical to achieve business goals

• are associated with an important quality attribute scenario.

• may imply a high level of technical difficulty

• exercise many architectural elements

• represent a “family” of use cases

Usually only 10-20% of the use cases are primary.

158
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recall: Constraints

Constraints limit the range of possibilities when making design

decisions.

• In some cases they are decisions about which you have zero

choice.

Before commencing design, identify, justify, and (ideally) prioritize

constraints.

• Technical constraints

- Use of a legacy database

- Use of Eclipse IDE

• Other constraints

- Development team only familiar with Java

- Obey Sarbanes-Oxley

- Ready in time for April 15th

159
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

ADD Step 2

Design purpose
Primary functional

requirements
Quality attribute

scenarios
Constraints

Architectural

Concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration

goal and achievement of design purpose

(Refined) Software

architecture design

It
e

ra
te

 if
 n

e
c
e

s
sa

ry

F
ro

m
 p

re
v

io
u
s
 r
o
u
n
d
 o

f
it
e
ra

tio
n
s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

The design problem is
divided into several

sub-problems.

An iteration starts with

deciding which sub-
problem to address.

Driver

Process step

Architecture
design

Precedence

Artifact
flow

160
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Recall: Scenario Prioritization
If the quality attribute scenarios haven’t been prioritized, a

technique can be borrowed from the ATAM.

Scenarios are prioritized across two dimensions:

• importance to the success

of the system

• degree of technical risk

Scenario ID Importance Technical Risk Prioritized?

QA-001 H H Yes

QA-002 H M Yes

QA-003 H L Maybe

QA-004 M H Yes

QA-005 M M Yes

QA-006 M L No

QA-007 L H No

QA-008 L M No

QA-009 L L No

161
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

ADD Steps 3-5

Design purpose
Primary functional

requirements
Quality attribute

scenarios
Constraints

Architectural

Concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration

goal and achievement of design purpose

(Refined) Software

architecture design

It
e

ra
te

 if
 n

e
c
e

s
sa

ry

F
ro

m
 p

re
v

io
u
s
 r
o
u
n
d
 o

f
it
e
ra

tio
n
s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m
3 types of decisions
are made to address
the sub-problem:

1. Select the parts that
need to be
decomposed

2. Identify and select
existing solutions
that support the
decomposition

3. Create elements
from the existing
solution and
establish their
responsibilities and
interfaces

Driver

Process step

Architecture
design

Precedence

Artifact
flow

162
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

ADD Step 6

Design purpose
Primary functional

requirements
Quality attribute

scenarios
Constraints

Architectural

Concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration

goal and achievement of design purpose

(Refined) Software

architecture design

It
e

ra
te

 if
 n

e
c
e

s
sa

ry

F
ro

m
 p

re
v

io
u
s
 r
o
u
n
d
 o

f
it
e
ra

tio
n
s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

The “blueprint” is
refined. This may be

done in parallel with
Step 5.

Note: This is not full
documentation but

rather sketches. Driver

Process step

Architecture
design

Precedence

Artifact
flow

163
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

ADD Step 7

Design purpose
Primary functional

requirements
Quality attribute

scenarios
Constraints

Architectural

Concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration

goal and achievement of design purpose

(Refined) Software

architecture design

It
e

ra
te

 if
 n

e
c
e

s
sa

ry

F
ro

m
 p

re
v

io
u
s
 r
o
u
n
d
 o

f
it
e
ra

tio
n
s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

mDecisions made at this
point are analyzed,
along with the advances
in the overall design
process, to decide if
more iterations are
necessary.

Driver

Process step

Architecture
design

Precedence

Artifact
flow

164
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

ADD Output/Iteration

Design purpose
Primary functional

requirements
Quality attribute

scenarios
Constraints

Architectural

Concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design and review iteration

goal and achievement of design purpose

(Refined) Software

architecture design

It
e

ra
te

 if
 n

e
c
e

s
sa

ry

F
ro

m
 p

re
v

io
u
s
 r
o
u
n
d
 o

f
it
e
ra

tio
n
s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

The design is produced.

Note: This may be only

a partial architecture
design and is not Big

Design Up Front!

Driver

Process step

Architecture
design

Precedence

Artifact
flow

165
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Decisions

The design process involves making different design decisions

• Step 3: Selecting elements to refine

• Step 4: Choosing one or more design

concepts that satisfy the selected drivers

• Step 5: Instantiating architectural elements,

allocating responsibilities and defining interfaces

Step 4 (selecting design concepts) can be particularly

challenging…

166
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Concepts

Most sub-problems that are addressed during an iteration can be solved
using existing solutions (i.e., design concepts)

• We want to avoid re-inventing the wheel.

• It is better (and faster) to use a proven solution to a problem for which we
may not be experts.

• Creativity in design involves identifying, adapting, and combining
solutions.

There are several categories of design concepts, some abstract and some
more concrete.
Here we consider

• reference architectures

• deployment patterns

• architectural/design patterns

• tactics

• externally developed
components (e.g., frameworks)

vs.

167
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Reference Architectures

Reference architectures provide a blueprint for structuring an

application. Examples for the enterprise application domain include

• mobile applications

• rich client applications

• rich internet applications

• service applications

• web applications

Source: Microsoft Patterns and Practices Team. Microsoft Application
Architecture Guide, 2nd ed. Microsoft Press. 2009.
https://msdn.microsoft.com/en-us/library/ff650706.aspx

Used with permission from Microsoft.

168
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Deployment Patterns

Deployment patterns provide guidance on how to structure the

system from a physical standpoint. Good decisions with respect to

the deployment of the software system are essential to achieve

quality attributes such as availability.

Examples

• 2, 3, 4 and n-tier deployment

• Load-balanced cluster

• failover cluster

• private/public cloud

Source: Microsoft Patterns and Practices Team. Microsoft
Application Architecture Guide, 2nd ed. Microsoft Press.
2009. https://msdn.microsoft.com/en-us/library/ff650706.aspx

Used with permission from Microsoft.

169
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Tactics - 1

What are tactics?

• Design decisions that influence the control

of a quality attribute response.

There are tactics categorizations for

the quality attributes of

• availability

• interoperability

• modifiability

• performance

• security

• testability

• usability

170
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Tactics - 2

What if there are no tactics for my QA?

• You can create your own,

based on your experience.

• This is a useful organizational

knowledge base.

• Consider this categorization of

DevOps tactics1.

Chen, H-M, Kazman, R., Haziyev, S., Kropov, V., Chtchourov, D. “Architectural Support for DevOps in a Neo-Metropolis BDaaS
Platform”, IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW), (Montreal, Canada), Sept. 2015

171
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Architectural / Design Patterns

Patterns are proven (conceptual)

solutions to recurring design problems.

Patterns originated in building architecture.

Many patterns exist (thousands), and they are

documented across several pattern catalogs.

It is difficult to draw a clear boundary between

“design” and “architectural” patterns.

Cover art for SOA Design Patterns used w ith permission from Thomas Erl.

Cover art used w ith permission of John Wiley & Sons, Inc., from Security

Patterns in Practice, Eduardo Fernandez-Buglioni, 1st edition, 2013, and

Pattern-Oriented Software Architecture, Douglas Schmidt et al., volume 2, 1st

edition, 2000; permission conveyed through Copyright Clearance Center, Inc..

172
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Externally Developed Components

These are reusable code solutions

• Examples include middleware and frameworks.

A framework is a reusable software element that provides generic

functionality, addressing recurring concerns across a range of

applications.

• Examples for Java:

Concern Framework Usage

Local user interface Swing Inheritance

Web UI Java Server Faces (JSF) XML, Annotations

Component connection Spring XML, Annotations

Security (authentication, auth) Spring-Security XML, Annotations

OO–Relational Mapping Hibernate XML, annotations

173
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Selecting Design Concepts (Step 4)

Iteration goal Design concept

SelectionGeneration of candidates

Design concept

Design concept

Design concept

Design concept

Design concept

Design concept

Design concept

Design concept

174
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Continuous Architecture Evaluation

ATAMs are substantial undertakings

• 20 to 30 person-days of effort from evaluation team

• Only makes sense for large/expensive projects where

architecture mistakes are unacceptable

For small, less risky projects, use Lightweight Architecture

Evaluation (1/2 to 1 day meeting or less)

• Participants are fewer and internal to organization, so process &

technologies are familiar to all

175
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Design Decisions and Technical Debt

• We refer to design decisions

with long-term negative

consequences, such as

increased cost of change or

reduced customer

responsiveness, as technical

debt

• Technical debt, if not paid

down, can increase over time

176
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Summary

Architecture design transforms drivers into structures.

Architectural drivers include functional requirements, quality

attributes, and constraints but also design purpose and

architectural concerns.

ADD is a method that structures architecture design so it may be

performed systematically.

Design concepts are building blocks from which the design is

created. There are several important types: reference

architectures, deployment patterns, architectural patterns, tactics,

and externally developed components such as frameworks.

ADD can be performed in an agile way by using initial

documentation (sketches) and a design Kanban board to track

design advancement.

177
NSAS DIP Architecture Training
© 2021 Carnegie Mellon University

[Distribution Statement A] Approv ed f or public release and unlimited distribution.

Final Discussion and Questions

