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1. Introduction 

The Cognition and Neuroergonomics (CaN) Collaborative Technology 
Alliance (CTA) has been the US Army’s flagship basic science research and 
technology transition program in the neurosciences. Over the past few decades, 
progress in the neurosciences has greatly advanced our knowledge of how brain 
function underlies behavior, providing the modern foundations for understanding 
how we sense, perceive, and interact with the world. These understandings have 
provided and continue to provide revolutionary advances, fostering technological 
solutions to address Army needs. 

Launched in May 2010, the CaN CTA brought together world-class researchers, 
experienced industry partners, and some of the US Army Combat Capabilities 
Development Command Army Research Laboratory’s brightest scientists to 
harness the vast, worldwide investment in neuroscience research and development. 
The CaN CTA’s program of scientific research and development has been aimed at 
advancing and accelerating the maturation of neuroscience-based approaches to 
understanding Soldier performance in operational environments and enhancing 
next-generation adaptive Soldier systems. 

This report summarizes and highlights the achievements across the alliance during 
the past 10 years. Additional information, including video demonstrations and 
software tools can be found on the DEVCOM Army Research Laboratory CaN 
CTA website: https://www.arl.army.mil/cast/CaNCTA. Likewise, Section 13 of 
this report contains a representative list of 50 high-impact publications that have 
resulted from collaborative research under the CaN CTA.  

1.1 Organization 

Modern neuroscience research is a truly multidisciplinary endeavor. Across the 
world’s leading research institutions, neuroscience research is conducted by 
scientists from diverse fields, including, but not limited to, neuroscience and 
neurobiology, genetics, psychology, kinesiology, statistics, applied mathematics, 
physics, computer science, and engineering. These research efforts depend upon 
the collaborative relationships that are at the heart of ARL’s CTAs. With partner 
institutions from Taiwan to Germany, the CaN CTA truly embodied the CTA 
concept, bringing together leading academics from world-class research 
organizations from around the globe.  

Led by its industry partner, DCS Corporation (DCS), the CaN CTA Consortium 
has included institutions that are widely recognized as leaders in the academic 

https://www.arl.army.mil/cast/CaNCTA
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research world.  In the course of its 10-year execution, the CaN CTA Consortium 
and its partners have included the following: Columbia University, Carnegie 
Mellon University (CMU), University of California, San Diego (UCSD), 
University of California, Santa Barbara (UCSB), University of Texas at San 
Antonio (UTSA), University of Florida (UFL), University of Michigan (UMI), 
University of Maryland Baltimore County (UMBC), University of Pennsylvania 
(UPenn), Johns Hopkins University (JHU), National Chiao Tung University 
(Taiwan) (NCTU), University of Technology Sydney (Australia) (UTS), University 
of Osnabruck (Germany) (UOs), University of Pompeu Fabra (Spain) (UPF), and 
Syntrogi (now Intheon). 

1.2 Technology Transfer 

Even into the final year of the program, the CaN CTA continues to overcome a 
variety of challenges to real-world neuroimaging and modeling human 
performance in natural environments that can be applied to facilitate a broad range 
of neurotechnologies. Some of these efforts have resulted in tools and concepts 
transitioning to academic, government, and industry partners within and outside the 
CTA. Following are some examples: 

• CTA partners have developed novel machine learning (ML) approaches to 
explore and exploit neurophysiology data as never before. CTA partners 
have demonstrated a proof of concept of artificial intelligence that detects 
the perception of mission-relevant objects in unstructured environments 
using classification models trained across multiple disparate data 
collections and no user-specific calibration.  

• CTA partners have transitioned innovative solutions for dry-electrode 
electroencephalography (EEG) with prototypes to ARL, other academic 
labs, as well as industry. ARL has tested and integrated the wireless dry-
electrode systems into the instrumentation for multiple applied research 
projects. In addition, several commercial dry-electrode EEG products have 
leveraged this research and are being used by multiple educational 
institutions. These institutions include UCSD, University of Malaysia, 
University of British Columbia, and Korea Advanced Institute of Science 
and Technology. Moreover, some of the dry-electrode products and 
evaluation methodologies have been transitioned to the laboratories of large 
and small industry stakeholders such as Nissan Motor Co. (Japan), 
NeuroRex Inc. (US), Alchemy (Taiwan), Neurocare (Singapore), Google X 
(US), and Intel (US). 
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• Lab streaming layer (LSL), a multi-aspect data acquisition (DAQ) and 
synchronization software backbone, is being adopted by Neurobehavioral 
Systems for integration into the commercial stimulus presentation tool, 
Presentation. Additionally, LSL has become a key integration and 
synchronization technology for a number of ARL projects, including large-
scale research efforts supported by the Next Generation Combat Vehicle 
and Soldier Lethality Cross-Functional Teams. Importantly, LSL is now 
being used by a growing number of academic and industry labs around the 
world to create a unified ecosystem for human sensing.  

• CTA partners have developed a wide array of other software tools useful 
for noninvasive investigations of brain function (using EEG and other 
modalities). Many of these tools are incorporated into larger tool suites such 
as BCILAB (i.e., a platform for brain–computer interface [BCI]) and 
EEGLAB, which are made available to the research community and utilized 
by many institutions.  

• The CaN CTA has also pursued technology transfer and integration targets 
both within and outside government laboratories. In particular, we have 
conducted translational research toward enabling future advances in human 
autonomy integration in automotive environments. We have progressed our 
driving research by moving the investigation into real cars on real roads 
while also adding real-world social effects. In parallel, we have coordinated 
with an applied research project that is investigating the brain processes as 
a driver interacts with modern driving aid technologies.  

• CaN CTA efforts have resulted in a new applied research program, utilizing 
several of the above technologies, that will refine and validate a novel 
concept for enhancing tactical situational awareness of mounted and 
dismounted Soldiers through opportunistic sensing of signals related to 
visual perception, across multiple individuals. This program leverages deep 
learning approaches trained on prior data sets to enable calibration-free 
operation, in addition to other computational techniques, to synergistically 
improve computer vision algorithms given human-labeled data. The goal of 
this technology is to improve unit effectiveness through seamless human–
autonomy integration without added cognitive burden on the Soldier. 

1.3 Vision 

Recent progress in the cognitive neurosciences has greatly advanced our knowledge 
of how brain function underlies behavioral performance. However, there are 
inherent limitations in the methodological and analytical approaches utilized in the 
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vast majority of research efforts to date in the human sciences, including those in 
cognitive neuroscience. These limitations, which are encapsulated in the technical 
barriers identified by the CaN CTA (Fig. 1.1), have resulted in an understanding of 
how the human brain works in highly constrained tasks performed in highly 
controlled laboratory settings. In turn, this has meant that previous systems-
development approaches and methods for technological advancement cannot 
adequately account for the capabilities and limitations of the neurocognitive 
abilities of Soldier operators. 

 

Fig. 1.1 CaN CTA technical barriers 

The skilled cognitive and sensorimotor performance that underlies effective 
mission utilization of advanced technological capabilities is clearly organized at the 
level of the nervous system. In particular, technological advances in sensor 
deployment, automation, and communications bandwidth will intensify the 
information processing demands placed on the Soldier. Mission success will 
depend on how well Soldiers can recognize the significance of accumulating 
information in relation to unfolding events and on their ability to integrate relevant 
information into a situational awareness that can support effective decisions and 
actions. Conversely, Soldier cognitive failures in comprehension and decision-
making in the face of an ever more complex information stream will be a critical 
bottleneck in the effective utilization of advanced battlefield technologies. These 
challenges will only intensify as Soldiers interact with more adaptive and 
“intelligent” systems on the battlefield. 

Technical Barriers 

The restriction of experimental designs to highly controlled and impoverished stimulus–
response paradigms and environments. 

The lack of portable, user-acceptable, minimally invasive, and robust systems for monitoring 
brain and body dynamics. 

The failure to record the whole of the behavior that the brain controls, and the physical and 
socio-cultural effects of the environment that impact brain function, in sufficient detail and 
across a sufficient breadth of circumstances. 

The lack of mathematical modeling methods and software to find statistical relationships 
between moment-to-moment variations in environmental, behavioral, and functional brain. 

The lack of sufficient data archives and resources to systematically study relationships between 
individualized models derived for cognitive monitoring and individual differences in 
performance across diversity of tasks. 

Lack of principles and approaches to utilize real-time measures of physiological signals to 
influence operator cognitive state or inform adaptive technologies to improve human–system 
performance over time and across individuals. 
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In this context, the scientific vision of the CaN CTA, therefore, asserted that to 
address critical Soldier needs, Army neuroscience efforts must be able to provide 
and leverage a clear working understanding of how the human brain functions when 
faced with real-world tasks in real-world operational settings. This vision was 
derived from well-established theoretical foundations in ecological psychology and 
concepts of embodied or situated cognition, which argue that it is literally 
impossible to understand natural, motivated behavior in artificial scenarios that 
divorce the individual from their context. 

To fulfill this vision, new approaches to neuroscientific inquiry and new 
capabilities to enable neuroscience research in operationally relevant environments 
were needed. The CaN CTA addressed these six technical barriers directly through 
the following: 

• Development of experimental paradigms that capture the unfolding nature 
of multisensory stimulus streams experienced in real-world environments 

• Development and employment of novel, wearable sensor suites for 
monitoring brain and body dynamics during naturalistic behavior, as well 
as software systems to enable integrated monitoring capabilities 

• Acquisition and processing of high-dimensional data sets that characterize 
physical, mental, and physiological behavior, as well as its environmental 
context, in sufficient detail and across a sufficient breadth of circumstances 

• Discovery of models and novel methods for the identification and 
interpretation of statistical relationships among high-dimensional data sets 
characterizing the dynamics of environment, behavior, and brain function 
during complex task performance 

• Acquisition and analysis of data from a large participant sample allowing 
characterization of inter- and intra-individual variation to systematically 
study relationships between individualized models derived for cognitive 
monitoring and for individual differences in performance, cognitive ability, 
and personality 

• A conceptual framework and functional architecture enabling the 
acquisition and interpretation of multi-aspect data for real-time integration 
into human–agent systems 

Successes since the launch within this approach, in turn, have led to the 
establishment of principles on which to base advances in neuroscience in terms of 
the translation of fundamental research to military-relevant domains, that is, to 
establish and articulate fundamental translational principles. These principles have 
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guided the development of technology solutions that work in harmony with the 
capabilities and limitations of the human nervous system as situated within its 
dynamic, complex environment.  

1.4 Journey toward the Vision 

Since the beginning of the program, the CaN CTA has been mindful of the vision 
described previously and strove to lower the barriers. In the course of the program, 
the CaN CTA has lowered the barriers through the following: 

• Unique developments in advanced computational approaches to extract 
neuro signal correlates of real-world behavior, and a resultant set of diverse 
software tools to enable research and application 

• Unprecedented multimodal data collection of minimally constrained or 
unconstrained subjects in diverse realistic simulation, or in real-world 
environments 

• Advancements in nonintrusive and mobile sensors for EEG, and the 
development of methodologies to facilitate sensor performance assessment 

• Formulation and testing of concepts to leverage all of the above to augment 
Soldier-system capabilities 

These achievements can be seen as series of research stages that built upon the 
previous stage throughout the duration of the program. Here, we highlight these 
stages of the program. 

Program Year 1: The CTA worked to lay out a collaborative program vision and 
research projects to seed many of the research ideas, and lay a foundation for a 
more ambitious exploration in future years. This is the stage where the program 
defined the vision and the scientific barriers articulated previously. As depicted in 
Fig. 1.2, research was categorized into three groups: neurocognitive performance, 
advanced computational approaches, and neurotechnologies. Noninvasive 
neuroimaging in realistic and progressively more complex settings, paired with 
advances in computational methods to explore the data, were the underlying 
themes. 
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Fig. 1.2 Program years 1 and 2 

Program Year 2: The research plans and progress were reevaluated and adjusted to 
achieve better efficiencies, and enable more effective transitions. Further, the CTA 
started to detail plans for a CTA-wide collaborated neurophysiological data 
collection in less-constrained experimental paradigms. In the move toward more 
realistic environments that address Army contexts, some experiments were 
designed to represent mounted (in vehicle) environments, and others were designed 
for dismount, ambulatory environments. Concurrently, smaller experiments and 
analyses requiring less preparation for the methods continued across the CTA. 

Program Year 3: Research in computational methods coalesced into tools made 
available to the community, and experimental apparatus for the CTA-wide 
neurophysiological data collections were implemented (Fig. 1.3). The CTA 
developed multi-subject and single-subject vehicle operation crew stations, each 
with multimodal data collection (including high-channel EEG) and one with motion 
simulation. Further, the CTA implemented a single-subject ambulatory apparatus 
for collecting data in the lab as well as outdoors. In addition, the CTA continued to 
refine methods of collecting, organizing, and managing the data and approaches to 
facilitate exploration of large and diverse set of multimodal neurophysiology data. 

 
Fig. 1.3 Program years 3 and 4 
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Program Year 4: The unique experimental systems and data collection tools were 
put to use across multiple CTA sites to collect multimodal data in real or realistic 
environments (see Fig. 1.3). In conjunction, advances continued in computational 
methods, real-world sensors, and acquisition methods to facilitate exploration of 
the data. 

Program Years 5‒6: The cumulative research of the first four years to advance 
holistic sensing and exploration of real-world brain–body data was refocused to 
more directly address transitional goals. In particular, research was reorganized as 
depicted in Fig. 1.4, to close the gaps in enabling more robust brain–computer 
interaction technologies (BCITs). As remaining large-scale data collections 
finished, the program realigned its projects into three new science areas: advanced 
computational approaches (ACAs), BCIT, and real-world neuroimaging (RWN). 
As more and more multimodal, realistic behavior neurophysiology data became 
available, more emphasis was placed on methods to organize, manage, explore, and 
exploit the data sets. Thus, the ACA area remained, but with a more direct linkage 
to the other two science areas. Also, recognizing that significant research efforts 
take at least two years from start to finish, the program planning cycle was 
lengthened to a biennial cycle, and some significant projects were planned for three-
year execution. 

 
Fig. 1.4 Program years 5 and 6 

The driving questions behind the three new science areas were the following: 

• ACAs: What is the optimal way to decode, track, and fuse neural and non-
neural sources of information to infer state? 

• RWN: How does the brain function in the real world, outside the constraints 
of the lab? 

• BCI: How do we use neural signals to improve human interactions with 
computers, autonomous agents, their environment, and even other humans? 
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In turn, the three areas were interconnected by an overarching goal: 

• Continuous and robust estimate of cognitive state in complex tasks and real-
world environments 

Program Years 7‒8: This stage focused attention on robust BCIT (Fig. 1.5). This 
effort produced promising research in closed-loop BCI systems, which laid the 
groundwork for the exploitation of real-time neural activity to optimize joint 
human–system performance. In parallel, as the collaborators continued to wrestle 
with large volumes of disparate RWN data (consisting largely of EEG and other 
surface sensor data), approaches to tag and preprocess were standardized for the 
benefit of the broader research community. 

 
Fig. 1.5 Program years 7 and 8 

Program Years 9‒10: The alliance focused research efforts in real-world 
experimentation (such as freeway driving), while earlier methods for exploring and 
exploiting neuroimaging data reach the maturity levels required for real-world 
applications. In particular, ML approaches for interpreting multimodal human 
neuro and physiological data were refined and tested in the context of passive, 
closed-loop technologies to enhance Soldier situational awareness (mounted or 
dismount) and operational safety (Fig. 1.6). Further, the DAQ and synchronization 
middleware, LSL, gained widespread acceptance across industry and academia; 
and was integrated into the Army’s applied and advanced research projects 
investigating manned–unmanned teaming in future mounted operations.  
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Fig. 1.6 Program years 9 and 10 
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2. Progression of Research Achievements 

This section details the progression and accomplishments of key research by major 
consortium members and partners. For each project, effort is made to articulate how 
the project addressed the barriers to advancement of the scientific vision. To re-
iterate, the barriers are the following: 

B1. The restriction of experimental designs to highly controlled and 
impoverished stimulus/response paradigms and environments.  

B2. The lack of portable, user-acceptable (e.g., comfortably wearable), 
and robust systems for routinely monitoring brain and body dynamics.  

B3. The failure to record the whole of physical, mental, and 
physiological behavior that the brain controls, and the physical and 
socio-cultural effects of the environment that impact brain function, in 
sufficient detail and across a sufficient breadth of circumstances.  

B4. The lack of mathematical modeling methods to find statistical 
relationships among the moment-to-moment variations in 
environmental, behavioral, and functional brain dynamics.  

B5. The lack of sufficient data archives and resources to systematically 
study relationships between individualized models derived for cognitive 
monitoring and individual differences in performance, cognitive ability, 
and personality, relationships that could optimize performance of 
cognitive monitoring systems while lowering requirements for 
collecting individual-subject training data.  

B6. Lack of principles and approaches to utilize real-time measures of 
physiological signals to influence operator cognitive state or inform 
adaptive technologies to improve human–system performance over time 
and across individuals. 
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3. Columbia University 

The CaN CTA was established with the goal of leveraging neuroscience approaches 
to understand and improve human behavioral performance, particularly in realistic, 
complex environments.  

Columbia University’s work has focused on addressing technical barriers B1, B3, 
and B4, specifically through the following three thrust areas:  

• Developing methods for analysis and integration of multi-model neural, 
physiological, and behavioral data. (B3 and B4) 

• Using virtual reality (VR) as an experimental platform. (B1 and B3) 

• Understanding the neural basis of decision-making and expertise (B1, B3, 
and B4) 

Columbia has had very successful cross-collaborations with many CTA partners 
and ARL researchers. Over the course of the project, Columbia has had a number 
of joint appointments and embedded personnel with ARL including the following: 

• Jason Sherwin, PhD: embedded postdoc at ARL 

• Nick Waytowich, PhD: joint Columbia–ARL postdoc embedded at ARL 
and who transitioned to an ARL civilian. 

• Kanika Bansal, PhD: joint ARL–Columbia postdoc embedded at Columbia 

• Josef Faller PhD: ARL postdoc at Columbia 

The remainder of this section is organized as follows. We first summarize the most 
important accomplishments in each thrust area. This summary is then followed by 
list of publications and other products, including open-source tools (Table 3.1). 
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Table 3.1 Open-source tools developed by the Sajda Lab under CTA funding 

Tool Description Link 
NEDE A scripting suite designed to leverage the 

capabilities of the Unity3D game engine into 
the neuroscientific study of realistic 
scenarios.  

http://www.nede-neuro.org 

SigViewer Application for visualizing multimodal 
signals stored in Extensible Data Format 
(XDF). 

https://github.com/cbrnr/sigviewer 

BrainFlight 
Data 

Data and code for reproducing results in 
J.13.  

https://ieee-dataport.org/open-
access/regulation-arousal-online-
neurofeedback-improves-human-
performance-demanding-sensory 

py_eegepe Python code base to test ML approaches for 
EEG rhythm phase prediction.  

https://github.com/jrmxn/py_eegepe 

Malleable 
SSM  

A MATLAB toolbox that allows for rapid 
prototyping of sequential sampling models 
(SSMs) for analysis of decision-making data. 

https://github.com/jrmxn/malleable-
ssm 

State-space 
modeling for 
simultaneous 
EEG/fMRI 

MATLAB code and data for reproducing 
C.10. 

https://github.com/taotu/VBLDS_Co
nnectivity_EEG_fMRI 

Note: fMRI = functional magnetic resonance imaging. 

3.1 Methods for Analysis and Integration of Neural, 
Physiological, and Behavioral Data  

3.1.1 Latent Neural Source Recovery via Transcoding of Simultaneous 
EEG-fMRI 

Simultaneous EEG–fMRI is a multimodal neuroimaging technique that provides 
complementary spatial and temporal resolution for inferring a latent source space 
of neural activity. We addressed this inference problem within the framework of 
transcoding—mapping from a specific encoding (modality) to a decoding (the 
latent source space) and then encoding the latent source space to the other modality. 
Specifically, we develop a symmetric method consisting of a cyclic convolutional 
transcoder that transcodes EEG to fMRI and vice versa. Without any prior 
knowledge of either the hemodynamic response function or lead field matrix, the 
method exploits the temporal and spatial relationships between the modalities and 
latent source spaces to learn these mappings. We have shown, for real EEG–fMRI 
data, how well the modalities can be transcoded from one to another (Fig. 3.1.) as 
well as the source spaces that are recovered, all on unseen data. In addition to 
enabling a new way to symmetrically infer a latent source space, the method can 

http://www.nede-neuro.org/
https://github.com/cbrnr/sigviewer
https://ieee-dataport.org/open-access/regulation-arousal-online-neurofeedback-improves-human-performance-demanding-sensory
https://ieee-dataport.org/open-access/regulation-arousal-online-neurofeedback-improves-human-performance-demanding-sensory
https://ieee-dataport.org/open-access/regulation-arousal-online-neurofeedback-improves-human-performance-demanding-sensory
https://ieee-dataport.org/open-access/regulation-arousal-online-neurofeedback-improves-human-performance-demanding-sensory
https://github.com/jrmxn/py_eegepe
https://github.com/jrmxn/malleable-ssm
https://github.com/jrmxn/malleable-ssm
https://github.com/taotu/VBLDS_Connectivity_EEG_fMRI
https://github.com/taotu/VBLDS_Connectivity_EEG_fMRI
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also be seen as low-cost computational neuroimaging (i.e., generating an 
“expensive” fMRI blood oxygen level-dependent [BOLD] image from “low cost” 
EEG data). This work was submitted to NeurIPS 2020 and a preliminary version 
published in the Institute of Electrical and Electronics Engineers (IEEE) NER’19. 

 

Fig. 3.1 Comparing fMRI transcoded from EEG and real fMRI data: fMRI transcoded from 
EEG has a spatial resolution of 12 mm × 12 mm × 12 mm, while real fMRI data has a spatial 
resolution of 2 mm × 2 mm × 2 mm 

3.1.2 A State-Space Model for Inferring Effective Connectivity of Latent 
Neural Dynamics 

Inferring effective connectivity between spatially segregated brain regions is 
important for understanding human brain dynamics in health and disease. 
Noninvasive neuroimaging modalities, such as EEG and fMRI, are often used to 
make measurements and infer connectivity. However, most studies do not consider 
integrating the two modalities, even though each is an indirect measure of the latent 
neural dynamics and each has its own spatial and/or temporal limitations. We 
developed a linear state-space model to infer the effective connectivity in a 
distributed brain network based on simultaneously recorded EEG and fMRI data. 
Our method first identifies task-dependent and subject-dependent regions of 
interest (ROIs) based on the analysis of fMRI data. Directed influences between the 
latent neural states at these ROIs are then modeled as a multivariate autogressive 
(MVAR) process driven by various exogenous inputs. The latent neural dynamics 
give rise to the observed scalp EEG measurements via a biophysically informed 
linear EEG forward model. We use a mean-field variational Bayesian approach to 
infer the posterior distribution of latent states and model parameters. The 
performance of the model has been evaluated on two sets of simulations. Our results 
emphasize the importance of obtaining accurate spatial localization of ROIs from 
fMRI. Finally, we applied the model to simultaneously recorded EEG–fMRI data 
from 10 subjects during a face-car-house visual categorization task and compared 
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the change in connectivity induced by different stimulus categories. Our results 
show an increase in effective connectivity when a house is presented relative to 
when the stimulus is a face. This work was published in NeurIPS 2019. 

3.1.3 Estimation of Phase in EEG Rhythms for Real-Time Applications 

We identified two linked problems related to estimating the phase of the alpha 
rhythm when the signal after a specific event is unknown (real-time case) or 
corrupted (offline analysis). We propose and develop methods to estimate the phase 
prior to such events. Using an ML approach to mimic a non-causal signal-
processing chain with a purely causal one, we demonstrate the ability of these 
methods to estimate the instantaneous phase from an EEG signal subjected to very 
minor preprocessing with higher accuracy than more standard signal-processing 
methods. Phase estimation of EEG rhythms is a challenge due to nonstationarity 
and a low signal-to-noise ratio (SNR). The methods presented and developed by 
our group enable scientists and engineers to achieve relatively low error by 
optimizing causal phase estimation on a non-causally processed signal for a real-
time experiments and offline analysis. This work was published in The Journal of 
Neural Engineering. 

3.1.4 Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI 
Using Deep Learning 

The concurrent recording of EEG and fMRI is a technique that has received much 
attention due to its potential for combined high temporal and spatial resolution. 
However, the ballistocardiogram (BCG), a large-amplitude artifact caused by 
cardiac-induced movement, contaminates the EEG during EEG-fMRI recordings. 
Removal of BCG in software has generally made use of linear decompositions of 
the corrupted EEG. This is not ideal as the BCG signal is nonstationary and 
propagates in a manner that is nonlinearly dependent on the electrocardiogram 
(ECG). We developed a novel method for BCG artifact suppression using recurrent 
neural networks (RNNs). Specifically, EEG signals were recovered by training 
RNNs on the nonlinear mappings between the ECG and BCG-corrupted EEG. We 
evaluated our model's performance against the commonly used optimal basis set 
(OBS) method at the level of individual subjects, and investigated generalization 
across subjects. Results show that our algorithm can generate larger average power 
reduction of the BCG at critical frequencies, while simultaneously improving task-
relevant EEG-based classification. The presented deep learning architecture can be 
used to reduce BCG-related artifacts in EEG–fMRI recordings. This work was 
published in IEEE Transactions in Biomedical Engineering. 
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3.2 Using VR as an Experimental Platform for Cognitive 
Neuroscience 

3.2.1 Regulation of Arousal via Online Neurofeedback Improves Human 
Performance in a Demanding Sensory-Motor Task 

Our state of arousal can significantly affect our ability to make optimal decisions, 
judgments, and actions in real-world dynamic environments. The Yerkes–Dodson 
law, which posits an inverse-U relationship between arousal and task performance, 
suggests that there is a state of arousal that is optimal for behavioral performance 
in a given task. We showed that we can use online neurofeedback to shift an 
individual’s arousal from the right side of the Yerkes–Dodson curve to the left, 
toward a state of improved performance. Specifically, we use a BCI that uses 
information in the EEG to generate a neurofeedback signal that dynamically adjusts 
an individual’s arousal state when they are engaged in a boundary-avoidance task 
(BAT) that is presented in VR (Fig. 3.2). The BAT is a demanding sensory-motor 
task paradigm that we implement as an aerial navigation task in VR and that creates 
cognitive conditions that escalate arousal and quickly result in task failure (e.g., 
missing or crashing into the boundary). We demonstrate that task performance, 
measured as time and distance over which the subject can navigate before failure, 
is significantly increased when veridical neurofeedback is provided. Simultaneous 
measurements of pupil dilation and heart-rate variability (HRV) show that the 
neurofeedback indeed reduces arousal. Our work demonstrates a BCI system that 
uses online neurofeedback to shift arousal state and increase task performance in 
accordance with the Yerkes–Dodson law. This work was published in the 
Proceedings of the National Academy of Sciences (PNAS). 
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Fig. 3.2 Setup of experiment and study protocol. Study participants alternately guided a 
virtual aircraft through an easy or hard course of red rectangular boundaries (rings). Both 
courses were a maximum of 90 s long and increased in difficulty over time as ring sizes 
decreased. Missing a ring ended the flight trial immediately. Every new flight attempt was 
randomly assigned one of three feedback conditions. In the main condition, a) BCI, audio 
feedback from an EEG-based decoder was presented to the participant (closed-loop 
experiment). During the two control conditions b) sham and c) silence, partly random or no 
audio signal was presented, respectively. Participants were instructed to down-regulate their 
arousal as outlined at the bottom left of the panel.  

3.2.2 Neurally and Ocularly Informed Graph-Based Models for Searching 
3-D Environments 

As we move through an environment, we are constantly making assessments, 
judgments, and decisions about the things we encounter. Some are acted upon 
immediately, but many more become mental notes or fleeting impressions—our 
implicit “labeling” of the world. In this section, we use physiological correlates of 
this labeling to construct a hybrid brain–computer interface (hBCI) system for 
efficient navigation of a 3-D environment. First, we recorded EEG, saccadic, and 
pupillary data from subjects as they move through a small part of a 3-D virtual city 
under free-viewing conditions. Using ML, we integrated the neural and ocular 
signals evoked by the objects they encounter to infer which ones are of subjective 
interest to them. These inferred labels are propagated through a large computer 
vision graph of objects in the city, using semi-supervised learning to identify other, 
unseen objects that are visually similar to the labeled ones. Finally, the system plots 
an efficient route to help the subjects visit the “similar” objects it identifies.  

We showed that by exploiting the subjects’ implicit labeling to find objects of 
interest instead of exploring naively, the median search precision is increased from 
25% to 97%, and the median subject need only travel 40% of the distance to see 
84% of the objects of interest. We also find that the neural and ocular signals 
contribute in a complementary fashion to the classifiers’ inference of subjects’ 
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implicit labeling. In summary, we showed that neural and ocular signals reflecting 
subjective assessment of objects in a 3-D environment can be used to inform a 
graph-based learning model of that environment, resulting in an hBCI system that 
improves navigation and information delivery specific to the user’s interests. This 
work was published in the Journal of Neural Engineering. 

3.2.3 NEDE, an Open-Source Scripting Suite for Developing Experiments 
in 3-D Virtual Environments 

As neuroscientists endeavor to understand the brain’s response to ecologically valid 
scenarios, many are leaving behind hyper-controlled paradigms in favor of more 
realistic ones. This movement has made the use of 3-D rendering software an 
increasingly compelling option. However, mastering such software and scripting 
rigorous experiments requires a daunting amount of time and effort. To reduce these 
startup costs and make virtual environment studies more accessible to researchers, 
we demonstrate a naturalistic experimental design environment (NEDE) that allows 
experimenters to present realistic virtual stimuli while still providing tight control 
over the subject’s experience. NEDE is a suite of open-source scripts built on the 
widely used Unity3D game development software, giving experimenters access to 
powerful rendering tools while interfacing with eye tracking and EEG, randomizing 
stimuli, and providing custom task prompts (Fig. 3.3).  

 

Fig. 3.3 Overview of NEDE 

Researchers using NEDE can present a dynamic 3-D virtual environment in which 
randomized stimulus objects can be placed, allowing subjects to explore in search 
of these objects. NEDE interfaces with a research-grade eye tracker in real time to 
maintain precise timing records and sync with EEG or other recording modalities. 
In comparison with existing methods, Python offers an alternative for experienced 
programmers who feel comfortable mastering and integrating the various toolboxes 
available. NEDE combines many of these capabilities with an easy-to-use interface 
and, through Unity’s extensive user base, a much more substantial body of assets 
and tutorials. Our flexible, open-source experimental design system lowers the 
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barrier to entry for neuroscientists interested in developing experiments in realistic 
virtual environments. This work was published in the Journal of Neuroscience 
Methods. 

3.3 Understanding the Neural Basis of Decision-Making and 
Expertise 

3.3.1 A Multimodal Encoding Model Applied to Imaging Decision-
Related Neural Cascades in the Human Brain 

Perception and cognition in the brain are naturally characterized as spatiotemporal 
processes. Decision-making, for example, depends on coordinated patterns of 
neural activity cascading across the brain, running in time from stimulus to response 
and in space from primary sensory regions to the frontal lobe. Measuring this 
cascade is key to developing an understanding of brain function. We demonstrated 
a novel methodology that employs multimodal imaging for inferring this cascade 
in humans at unprecedented spatiotemporal resolution. Specifically, we developed 
an encoding model to link simultaneously measured EEG and fMRI signals to infer 
high-resolution spatiotemporal brain dynamics during a perceptual decision.  

After demonstrating replication of results from the literature, we report previously 
unobserved sequential reactivation of a substantial fraction of the pre-response 
network whose magnitude correlates with a proxy for decision confidence  
(Fig. 3.4). Our encoding model, which temporally tags BOLD activations using 
time-localized EEG variability, identifies a coordinated and spatially distributed 
neural cascade that is associated with a perceptual decision. In general, the 
methodology illuminates complex brain dynamics that would otherwise be 
unobservable using fMRI or EEG acquired separately. This work was published in 
Neuroimage. 

  

https://www-sciencedirect-com.ezproxy.cul.columbia.edu/topics/medicine-and-dentistry/frontal-lobe
https://www-sciencedirect-com.ezproxy.cul.columbia.edu/topics/medicine-and-dentistry/multimodal-imaging
https://www-sciencedirect-com.ezproxy.cul.columbia.edu/topics/medicine-and-dentistry/electroencephalogram
https://www-sciencedirect-com.ezproxy.cul.columbia.edu/topics/neuroscience/functional-magnetic-resonance-imaging
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Fig. 3.4 Group-level encoding model weights results show a cascade of neural activation. 
Subset of thresholded (false discovery rate-corrected, k = 10) group-level statistical 
parametric maps created by the spatiotemporal threshold-free cluster enhancement (stTFCE) 
randomization procedure on the encoding model weight matrices. Shown is the progression of 
spatial activity across the trial. Activation can be seen early in the trial in the occipital regions 
while progressing more anteriorly later in the trial to executive control areas. Activations in 
red indicate areas where high stimulus evidence trials had larger activations than low stimulus 
evidence trials, with blue the inverse relationship. 

3.3.2 Perceptual Salience and Reward Both Influence Feedback-Related 
Neural Activity Arising from Choice 

For day-to-day decisions, multiple factors influence our choice between 
alternatives. Two dimensions of decision-making that substantially affect choice 
are the objective perceptual properties of the stimulus (e.g., salience) and its 
subjective value. Here we measure EEGs in human subjects to relate their feedback-
evoked EEG responses to estimates of prediction error given a neurally derived 
expected value for each trial. Unlike in traditional reinforcement learning (RL) 
paradigms, in our experiment, the reward itself is not probabilistic; rather, it is a 
fixed value, which, when combined with the variable stimulus salience, yields 
uncertainty in the choice. We find that feedback-evoked event-related potentials 
(ERPs), specifically those classically termed feedback-related negativity, are 
modulated by both the reward level and stimulus salience. Using single-trial 
analysis of the EEG, we show stimulus-locked EEG components reflecting 
perceived stimulus salience can be combined with the level of reward to create an 
estimate of expected reward. This expected reward is used to form a prediction error 
that correlates with the trial-by-trial variability of the feedback ERPs for negative, 
but not positive, feedback. This suggests that the valence of prediction error is more 
important than the valence of the actual feedback, since only positive rewards were 
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delivered in the experiment (no penalty or loss). Finally, we show that these 
subjectively defined prediction errors are informative of the riskiness of the 
subject’s choice on the subsequent trial. In summary, our work shows that neural 
correlates of stimulus salience interact with value information to yield neural 
representations of subjective expected reward. This work was published in The 
Journal of Neuroscience. 

3.3.3 Knowing When Not to Swing: EEG Evidence that Enhanced 
Perception–Action Coupling Underlies Baseball Batter Expertise 

Given a decision that requires less than half a second, like evaluating the 
characteristics of the incoming pitch and generating a motor response, hitting a 
baseball potentially requires unique perception–action coupling to achieve high 
performance. We designed a rapid perceptual decision-making experiment 
modeled as a go/no-go task yet tailored to reflect a real scenario confronted by a 
baseball hitter. For groups of experts (Division I baseball players) and novices (non-
players), we recorded EEG while they performed the task. We analyzed evoked 
EEG single-trial variability, contingent negative variation (CNV), and pre-stimulus 
alpha power with respect to the expert versus novice groups.  

We found strong evidence for differences in inhibitory processes between the two 
groups, specifically differential activity in supplementary motor areas (SMAs), 
indicative of enhanced inhibitory control in the expert (baseball player) group. We 
also found selective activity in the fusiform gyrus (FG) and orbital gyrus in the 
expert group, suggesting an enhanced perception–action coupling in baseball 
players that differentiates them from matched controls. In sum, our results show 
that EEG correlates of decision formation can be used to identify neural markers of 
high-performance athletes. This work was published in Neuroimage.  

3.4 Network Configurations in the Human Brain Reflect Choice 
Bias during Rapid Face 

3.4.1 Brain Networks for Perceptual Processing 

Network interactions are likely to be instrumental in processes underlying rapid 
perception and cognition. Specifically, high-level and perceptual regions must 
interact to balance preexisting models of the environment with new incoming 
stimuli. Simultaneous EEG and fMRI (EEG–fMRI) enables temporal 
characterization of brain–network interactions combined with improved anatomical 
localization of regional activity. In this section, we use simultaneous EEG–fMRI 
and multivariate dynamical systems (MDS) analysis to characterize network 
relationships between constitute brain areas that reflect a subject’s choice for a face 



 

22 

versus non-face categorization task. Our simultaneous EEG and fMRI analysis on 
21 human subjects (12 males, 9 females) identifies early perceptual and late frontal 
subsystems that are selective to the categorical choice of faces versus non-faces. 
We analyze the interactions between these subsystems using an MDS in the space 
of the BOLD signal.  

Our main findings show that differences between face-choice and house-choice 
networks are seen in the network interactions between the early and late 
subsystems, and that the magnitude of the difference in network interaction 
positively correlates with the behavioral false-positive rate of face choices. We 
interpret this to reflect the role of saliency and expectations likely encoded in frontal 
“late” regions on perceptual processes occurring in “early” perceptual regions. This 
work was published in The Journal of Neuroscience. 

3.4.2 Decomposing Simon Task BOLD Activation Using a Drift-Diffusion 
Model Framework 

The Simon effect is observed in spatial conflict tasks where the response time (RT) 
of subjects is increased if stimuli are presented in a lateralized manner so that they 
are incongruous with the response information that they symbolically represent. 
Previous studies have used fMRI to investigate this phenomenon, and while some 
have been driven by considerations of an underlying model, none have attempted 
to directly tie model and BOLD response together. It is likely that this is due to 
Simon models having been predominantly descriptive of the phenomenon rather 
than capturing the full spectrum of behavior at the level of individual subjects. 
SSMs, which capture full response distributions for correct and incorrect responses, 
have recently been extended to capture conflict tasks.  

In this study, we use our freely available framework for fitting and comparing non-
standard SSMs to fit the Simon effect SSM (SE-SSM) to behavioral data. This 
model extension includes specific estimates of automatic response bias and a 
conflict counteraction parameter to individual subject behavioral data. We apply 
this approach in order to investigate whether our task-specific model parameters 
have a correlate in BOLD response. Under the assumption that the SE-SSM reflects 
aspects of neural processing in this task, we go on to examine the BOLD correlates 
with the within trial expected decision-variable.  

We find that the SE-SSM captures the behavioral data and that our two conflict-
specific model parameters have clear across-subject BOLD correlates, while other 
model parameters, as well as more standard behavioral measures, do not. We also 
find that examining BOLD in terms of the expected decision-variable leads to a 
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specific pattern of activation that would not be otherwise possible to extract. This 
work was published in Scientific Reports. 
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4. DCS Corporation 

DCS’ work focused on addressing barriers B1, B2, B3, B4, and B5 through a 
diversity of projects and development efforts over the past 10 years. Figure 4.1 
highlights a selection of projects and development efforts that were performed. 
Also shown is the conceptual linkage needed to understand 1) how these projects 
intertwined, 2) the barriers addressed by each, and 3) the logical flow from project 
to major CaN CTA transition. The projects highlighted in light green are described 
in more detail in this report.  

 

Fig. 4.1 DCS research progression 

4.1 Operator Dynamics of Event (ODE) Appraisal 

Barriers B1, B3 

4.1.1 Purpose of ODE Study 

The overarching goal of the ODE study was to develop and validate methods 
analyzing operator event appraisal processes as reflected in changes observed in 
cognitive and emotional state variables during the execution of tasks in operational 
environments. The study was intended to address barriers B1 (i.e., limitation of 
current study designs to impoverished stimuli) and B3 (i.e., failure to record the 
whole physical, mental, and physiological behavior). To this end, three specific 
aims were identified: 

• Aim #1. To develop and experimentally validate an integrated system 
capable of recording and synchronizing high-density, multimodal data on 
human physiology and behavior. To enable system validation, we will 
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record and explore the patterns of correlation and co-variance among a 
variety of psycho-physiological and behavioral response variables. 
Measures will be derived from EEG, electrooculography (EOG), 
electromyography (EMG), ECG, and electrodermal activity (EDA); limb, 
head, and gaze position tracking; facial expressions; verbalizations; salivary 
samples; and subject responses to the tasks using the mouse, keyboard, 
and/or response pad. 

• Aim #2. To develop computational strategies that will facilitate sensor 
management to enhance the acquisition and processing of multimodal data 
for studies of human neurocognitive performance in operational 
environments. Our approach will involve applying an intentionally selected 
set of algorithms to human physiologic and behavioral data, which, when 
performing reliably, will enhance the online acquisition of complex data 
sets as well as their later offline processing. We will also apply several ML 
algorithms to characterize individual data streams with respect to various 
data quality measures in order to establish their reliability and robustness. 

• Aim #3 (Barrier B4). To develop an understanding of the factors that 
influence event appraisal processes, which are expected to be revealed by 
subjective changes in affect and task-specific motivation and satisfaction, 
and their relationship to performance. To achieve this, we will leverage our 
multimodal recording and analysis techniques to enable the classification of 
changes in human appraisal processes using cognitive and affective state 
variables derived from physiological and behavioral measures during the 
performance of simple and complex tasks in operationally relevant 
environments.  

4.1.2 Accomplishments 

4.1.2.1 Aim #1 

For this study we successfully integrated a wide range of sensors and devices 
including 1) BioSemi DAQ system to measure EEG, EOG, EMG, ECG, and 
galvanic skin response (GSR), 2) a Trigno DAQ system to measure EMG and 
accelerometry, 3) a faceLAB eye-tracking system to record eye gaze and head 
movements, 4) a networked video camera to record facial movements, 5) USB 
audio to record sounds, and 6) an experiment control system including video 
display, experimental events, and user responses. Integration and synchronization 
was achieved using both network communications as well as traditional transistor-
transistor logic (TTL) systems (i.e., parallel port). Figure 4.2 shows an example of 
the physiological integration performed. In addition, we developed in-house 
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strategies to integrate 1) the Trigno system, which had no native capability for 
traditional parallel port integration, and 2) the network camera, which also did not 
provide an interface for standard parallel port integration.  

 

Fig. 4.2 Integration of all data streams for one representative subject 

To integrate the Trigno, we built a custom printed-circuit board (PCB). We 
connected this board to the parallel port’s least significant bit through a 1/100 
voltage divider. We then placed on of the Trigno sensors directly on this board, 
which enabled the system to catch the rising edge and falling edge of the parallel 
port’s least significant bit. In a similar fashion, we sent the same least significant 
bit to a red LED, which was strategically positioned in view of the network camera. 
We then wrote image processing software to extract the LED state changes from 
the raw video feed. 

The only system that could not be integrated directly with the parallel port was the 
faceLAB eye-tracking system. This system provided no means to interface with 
standard TTL, and it was determined that obscuring the faceLAB cameras with an 
LED would pose too much of a risk to the integrity of the eye-tracking data. This 
system was integrated through a local area network, and the data was sent over this 
network to another computer that was connected to the parallel port.  

Note: This development was performed before the emergence of online 
synchronization tools, such as LSL.  
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4.1.2.2 Aim # 2  

Using the multimodal data that we obtained from this experiment, we worked on 
developing methods to improve integration of multimodal physiological data. This 
is described in detail in Section 4.2.  

4.1.2.3 Aim # 3 

The final aim was to develop an understanding of factors that influence task-
specific motivation and the relationship between these factors and performance. 
The two versions of the game used in this experiment were designed to have similar 
dynamics, but in one version, the virtual competitor was set to “easy”, while in the 
other condition the virtual competitor was set to “hard”. Through the appearance of 
competition, we hoped to be able to modulate perceived task difficulty as well as 
performance on the task.  

We assessed performance on the task by analyzing accuracy and RT for each of the 
different types of targets (threat humans, nonthreat humans, threat tables, nonthreat 
tables) in each of the two conditions (easy: Game 1 and hard: Game 2). We also 
included Fog and No-Fog since it was expected that this would have an effect on 
performance. Figure 4.3 shows average accuracy per target type across the four 
conditions. With the exception of nonthreat tables, there was very little difference 
in performance across Game 1 No-Fog and Game 2 No-Fog. Interestingly, 
however, if one considers target accuracy to be an indicator of difficulty, then there 
is a general trend of increasing difficulty along the curve: Game 1 No-Fog  Game 
2 No-Fog  Game 1 Fog  Game 2 Fog, which suggests that Game 1 is less 
difficult than Game 2 and that No-Fog is less difficult than Fog.  

 

Fig. 4.3 Accuracy per target type for Game 1 No-Fog, Game 2 No-Fog, Game 1 Fog, and 
Game 2 Fog sorted by target type (top) and game condition (bottom).  

Next, we performed comparisons of different modality-specific features to 
performance. We started by looking at eye behavior using the Nearest Neighbor 
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Index (NNI)—a measure of the randomness of an individual’s search pattern—and 
blink rate. We compared NNI and blink rate to RT for combined Game 1 and Game 
2, combined Game 1 Fog and Game 2 Fog, and combined Game 1 No-Fog and 
Game 2 No-Fog. We baseline corrected the RT for each target by subtracting the 
average RT for that target across all subjects. We did this in an effort to account for 
effects related to target type and location. We then computed NNI, blink rate, and 
RT values for each subject-game session.  

Finally, we attempted to integrate the information contained in multiple different 
streams of data to predict alertness (as measured by high/low RT). To do this, we 
used the baseline corrected RT values for each subject. We constructed a feature 
vector utilizing the eye features NNI and blink rate, EEG features such as average 
alpha and beta power, and heart rate. We computed each of these features over the 
following windows time-locked to each target response: [‒60, 0], [‒45, 0], [‒30, 0], 
[‒15, 0], [‒5, 0]. We combined the data from Game 1 and Game 2 and performed 
fourfold cross-validation. Within each fold, we used forward feature selection to 
determine the optimal feature set (by performing another round of cross-validation 
within the training set only). We then built a model using this feature set and tested 
the performance of that model on the remaining data. Table 4.1 shows the 
performance using 13 subjects (3 subjects had incomplete data). In this table, 
performance is measured using area under the curve (AUC).  

Table 4.1 AUC values for each subject using multimodal models 

Subject Fold 1 Fold 2 Fold 3 Fold 4 Average (subject) 
S1 0.650749 0.619656 0.682771 0.677955 0.657782611 
S2 0.709596 0.636878 0.712704 0.658541 0.679429808 
S3 0.733276 0.681074 0.686494 0.646852 0.686923863 
S4 0.604513 0.617316 0.685165 0.634026 0.635254912 
S5 0.697824 0.600152 0.583679 0.645022 0.631669032 
S6 0.74 0.629528 0.612794 0.670168 0.663122561 
S7 0.609141 0.672429 0.582863 0.615152 0.619896088 
S8 0.628889 0.614545 0.617059 0.67982 0.635078357 
S9 0.587108 0.555647 0.652144 0.571042 0.591485222 
S10 0.691012 0.771479 0.729853 0.727015 0.729839551 
S11 0.610859 0.605455 0.600932 0.590083 0.601832044 
S12 0.625185 0.607727 0.623542 0.58987 0.611581064 
S13 0.650427 0.647633 0.69907 0.618889 0.654004884 
Average 
(folds) 0.656814 0.635348 0.651467 0.640341 0.645992308 
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4.2 Informed Multidimensional Independent Components 
Analysis (IMICA)  

Barrier B4 

One of the lessons learned from our initial ODE analysis was that integrating 
disparate streams of data into a cohesive whole was a non-trivial issue for a 
multitude of reasons including, but not limited to, different sampling rates, different 
temporal trajectories, different underlying cognitive influences, different SNRs, 
and different dimensionalities. Therefore, we began to focus efforts on integrating 
specific aspects of the multimodal picture. In other words, we pivoted toward 
improving our mathematical modeling tools (Barrier B4). Following the initial 
ODE multimodal analysis, we pursued the development of an improved method for 
EEG decomposition. This method, termed Informed Multidimensional Independent 
Components Analysis (IMICA), was developed using data from the ODE-
PRACTB and allows incorporation of external information into the EEG 
decomposition process. Using this method, we were able to show that better EOG-
like components could be extracted from the original EEG by incorporating 
information from the eye-tracking system. In addition, we showed that similar 
performance could be achieved by incorporating visual target position from the 
screen. The results that we obtained showed less residual blink after EOG 
component removal and greater correlation between the EOG-like components and 
the actual EOG channels than the best projections obtained using more traditional 
independent components analysis (ICA) decomposition algorithms (e.g., Infomax, 
FastICA, Joint Approximation Diagonalization of Eigenmatrices [JADE], Second 
Order Blind Identification [SOBI]). These results were accepted for publication to 
the Journal of Neuroscience Methods. A representative example is included in  
Fig. 4.4 and Table 4.2. 
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Fig. 4.4 Reference pairs used to capture EOG artifacts. (Top-left) Horizontal reference 
based on the position of a bouncing ball the subjects were instructed to visually track. (Top-
right) Vertical reference based on the position of a bouncing ball the subjects were instructed 
to visually track. (Middle-left) Horizontal reference based on eye-tracker recordings during 
the bouncing ball task. (Middle-right) Vertical reference based on eye-tracker recordings 
during the bouncing ball task. (Bottom-left) Horizontal EOG during the bouncing ball task. 
(Bottom-right) Vertical EOG during both the bouncing ball task. 

  



 

34 

Table 4.2 Performance of the IMICA algorithm using different reference signals vs. other 
common EEG decomposition approaches (Infomax, FastICA, JADE, SOBI, principal 
component analysis [PCA]) 

Projection  
method 

(1) Residual 
blink amplitude 
remaining after 
removal (%) 

(2)  
R2 using 
modeled 
blink activity 

(3) 
Correlation 
with HEOG 
channel 

(4) 
Correlation 
with VEOG 
channel 

(5)  
Correlation 
with horizontal 
eye tracker 

(6) 
Correlation 
with vertical 
eye tracker 

IMICA: EOG 0.1567 0.9408 0.9034 0.6660 0.6040 0.2470 
IMICA: EyeTracker 
+ blink 0.1859 0.9529 0.8423 0.5228 0.5916 0.1316 
IMICA: 
SmoothPursuit + 
blink 0.1864 0.9529 0.8754 0.5381 0.6063 0.1345 
Infomax 0.5157 0.5676 0.4466 0.4621 0.2932 0.1483 
FastICA 0.6567 0.4388 0.4532 0.4500 0.3066 0.1527 
JADE 0.6940 0.4128 0.4484 0.4297 0.2758 0.1498 
SOBI 1.3346 –1.0658 0.7966 0.7046 0.5461 0.2125 
PCA 0.7345 0.2534 0.8539 0.6359 0.5864 0.1736 
Note: HEOG = horizontal EOG, VEOG = vertical EOG. 

In the same effort, we also extended the IMICA method to capture spectral 
components, which allowed us to model and remove EMG artifacts. As with the 
EOG artifacts, we saw improved performance using the IMICA method versus 
traditional EEG decomposition methods. IMICA was able to capture more of the 
EMG activity using fewer components. This allows IMICA to retain more of the 
original neural data, when EMG components were removed from the entire 
experiment. A representative result is shown in Fig. 4.5.  

 

Fig. 4.5 Reduction in visual ERP as more components are used to isolate and remove the jaw 
clench artifact. Performance is measured as correlation values between the original ERP and 
the ERP obtained after removal of the artifact subspace. For all visual-evoked potentials 
(VEPs), there was no artifact present during the event. These results show that IMICA better 
isolated the jaw clench subspace.  
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As a final test for the IMICA algorithm, we used it to extract alpha-power changes 
in response to the experimental conditions of Fog/No-Fog that occurred in the ODE 
data. In other words, we used the predefined state changes derived from 
experimental conditions as a reference signal to extract independent components 
(ICs) whose alpha power maximally correlated with those changes. This was not 
presented in the paper but was done as a proof of concept. For the majority of 
subjects, these components yielded an increase in correlation between the best IC 
and the Fog/No-Fog state change versus the best channel and the Fog/No-Fog state 
change, when trained and tested on the two different versions of the game. In 
addition, for all subjects, the best alpha IC was identified over the occipital cortex, 
which was consistent with our prior expectations. A representative example is 
shown in Figs. 4.6 and 4.7.  

 
Fig. 4.6 Identified component projections for alpha-fog correlation. The first three 
components (top row) all have strong projections from the occipital cortex, as expected. 

 
Fig. 4.7 Plot of normalized alpha (black line) and fog (red line) using components extracted 
from Fig. 4.6.  
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4.2.1 IMICA BCI 

Given that the IMICA algorithm was shown to produce more optimal 
decompositions, thus improving overall SNR, and that it could trained using 
multimodal data, we investigated the use of such preprocessing for BCI purposes. 
In order to use IMICA for BCI, we needed a template of the event-related and band-
specific neural dynamics. For this, we used each subject’s labeled training data. 
After learning the IMICA weights, we then used Wfinal to keep only those subspaces 
that capture the neural dynamics, where zfinal = [z1, z2, …, zK], K = Σ Nj, and j 
indexes the target subspaces: 

 zfinal = Wfinal × y. (1) 

For this work, we used the correlation between the projected components, z, and 
reference signals derived from the available training data for the different frequency 
bands of interest to implement, g(z). Thus, the prior knowledge encoded with our 
approach is the time course and frequency band of neural features related to the 
event of interest. For example, for motor control activity, there are often alpha  
(~8‒13 Hz) and beta (~14‒30 Hz) desynchronizations prior to and re-
synchronizations immediately following the motor event (Pfurtscheller and 
Aranibar 1977). These occur primarily in the contralateral motor cortex and are 
accompanied by low-frequency (0.5‒3 Hz) readiness and somatosensory response 
potentials.  

4.2.2 Comparison 

4.2.2.1 Information Gain and Genetic Algorithm Feature Selection 

Filter feature selection methods evaluate features prior to learning, whereas 
wrapper methods rely on the classification approach. Filters are thus faster to 
compute, but wrappers have the potential to better fit the problem space (O’Keefe 
and Koprinska 2009).  

For our filter method, we implemented information gain (IG): IG(f) of feature f is 
the expected reduction in entropy, H, caused by observing feature f given a set of 
classes C={ci,…,ck} (Cover 1999). The continuous-valued EEG features are 
properly discretized using the standard Minimum Description Length (MDL) 
approach. IG of each feature f is then calculated using Eqs. 2‒4. 

We compute IG values for each time point of each component and select only those 
components whose summed IG values are greater than 0:  

 𝐼𝐼𝐼𝐼(𝑓𝑓) = 𝐻𝐻(𝐶𝐶) − 𝐻𝐻(𝐶𝐶|𝑓𝑓),  (2) 
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 𝐻𝐻(𝐶𝐶) = −∑ 𝑃𝑃(𝑐𝑐𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑐𝑐𝑖𝑖)2
𝑖𝑖=1 , (3) 

and  

 𝐻𝐻(𝐶𝐶|𝑓𝑓) = −𝑃𝑃(𝑓𝑓)∑ 𝑃𝑃(𝑐𝑐𝑖𝑖|𝑓𝑓)𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃(𝑐𝑐𝑖𝑖|𝑓𝑓)2
𝑖𝑖=1 . (4) 

The wrapper method we implemented was a genetic algorithm (GA) with a 0.0001 
mutation probability, a 1 crossover probability, and clamping. From the available 
training data, split into two continuous halves, we performed a twofold cross-
validation (CV) for each classifier and decomposition method. The fitness of each 
subset of components in the population (n = 30) was the average AUC across CV 
folds. The GA ran for 100 generations or until the fitness function plateaued.  

4.2.2.2 IMICA for Feature Extraction 

We analyzed the effects of using 1) minimally processed data in which only 
bandpass filtering and channel selection were performed (minimal preprocessing 
[MINP]), 2) PCA and Infomax ICA using IG to select components (PCA-IG and 
ICA-IG), 3) the same PCA and ICA decompositions but performing component 
selection via GA (PCA-GA and ICA-GA), and 4) IMICA preprocessing. For each 
decomposition method, the selected components were backprojected to the scalp so 
the same channel set could be used for all tests.  

To further evaluate the different preprocessing methods, we also analyzed BCI 
performance when the selected components were removed from the data rather than 
kept. This additional step allows us to determine the amount of classification-
related information carried by the selected components. 

4.2.3 Data Sets 

4.2.3.1 Movement-Related Cortical Potential (MRCP) 

The first data set we analyzed was from a motor tapping study. In this study, 13 
subjects performed self-paced finger movements using the left index, left middle, 
right index, or right middle fingers. The subjects performed eight sessions of four 
blocks. Each block contained a single 2-min run of self-paced finger movements. 
This produced the well-known alpha and beta synchronizations (i.e., increases in 
power) and desynchronizations (i.e., decreases in power), most clearly observed 
over the contralateral motor cortex (Pfurtscheller and Aranibar 1977). The data 
were originally recorded using a 256-channel BioSemi Active II at 1024 Hz. The 
data were referenced to average mastoids, bandpass filtered between 0.3 and 50 Hz, 
and then down-sampled to 128 Hz. We further down-sampled the channel space to 
the standard 64-channel BioSemi montage. For this data set, the classification task 
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that was used was left-hand movements (left index or left middle finger) versus 
right-hand movements (right index or right middle finger).  

4.2.3.2 Rapid Serial Visual Presentation (RSVP) 

The second data set that we analyzed was from an RSVP task, which has been 
described in a previous study (Marathe et al. 2015). In this study, 13 subjects 
observed a sequence of images presented at 2 Hz. The images depicted an urban 
landscape. Approximately 10% of images contained a target stimulus, in this case, 
a person with a weapon. Subjects were instructed to mentally count the number of 
targets observed. The data were recorded using a 64-channel BioSemi Active II at 
1024 Hz. The data were referenced to average mastoids, bandpass filtered between 
0.1 and 50 Hz, and then down-sampled to 128 Hz.  

4.2.4 BCI Approaches Used 

We analyzed the impact of our different preprocessing routines using multiple 
feature extraction (FE) and classification (CL) pairs. For both the MRCP and RSVP 
data sets, we used 1) hierarchical discriminant components analysis (HDCA) (Sajda 
et al. 2010), 2) xDAWN with Bayesian linear discriminant analysis (Rivet et al. 
2009), and 3) Riemannian geometry (minimum distance to Riemannian mean 
[MDRM]) (Barachant et al. 2013). In addition, for the MRCP data set, we also 
included the Common Spatial Patterns (CSPs) (Blankertz et al. 2008) with linear 
discriminant analysis (LDA) FE/CL pair, which is common for motor 
imagery/execution BCI.  

For both data sets, we downselected the channel space after decomposition, 
component selection, and backprojection but prior to FE/CL. We found that this 
produced better classification results for all tasks and FE/CL pairs.  

The final channels used for BCI classification were 1) for MRCP, {FC3, FC1, C3, 
CP3, CP1, Cz, Pz, CP2, CP4, C4, FC2, FC4} and 2) for RSVP, {C1, C2, CPz, Pz, 
POz, Oz, O1, P1, P5, O2, P2, P6}. These channels were selected due to their 
proximity to the cortical regions of interest (i.e., for MRCP, over the motor strip, 
and for RSVP, over the occipital/parietal regions).  

4.2.4.1 IMICA Subspace Design 

We preset the size of each IMICA subspace, rather than use the likelihood curve 
approach of Gordon et al. (2015). For the MRCP data set, we used three subspaces 
to capture 1) the delta/theta [0.1‒7] Hz response, 2) alpha [8‒13] Hz response, and 
3) the beta [14‒30] Hz response. We preset the subspace sizes to be 2, 6, and 6 
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components, respectively. This is based on our prior analysis of this data described 
in full in Gordon et al. (2015). 

For the RSVP data, we designed three subspaces to capture 1) delta/theta  
[0.1‒7] Hz response for targets, 2) delta/theta response for non-targets, and 3) alpha 
[8‒13] Hz response for targets. We used four components for each of these 
subspaces.  

4.2.4.2 Statistical Analysis 

We model the data using repeated measures analysis of variance (RM-ANOVA) 
with two factors, one for algorithm type (HDCA, xDAWN, MDRM, and CSP) and 
one for preprocessing type (MINP, PCA-IG, PCA-GA, ICA-IG, ICA-GA, and 
IMICA), and the interaction between these two factors. When the assumption of 
sphericity is violated, we use the Huynh–Feldt (HF) correction. If the interaction 
term was not significant, we refitted the model without the interaction. The p-values 
reported for the remainder the manuscript are the HF-corrected p-values when 
necessary. 

4.2.4.3 Results 

We first demonstrate the effects of component selection on the neural response for 
one sample subject. Figure 4.8 shows the time-locked evoked-response in the time-
frequency domain for one subject from the MRCP data set for the downward 
motion of the finger. The top row shows the projection to the contralateral 
hemisphere from the components created and selected using three of our chosen 
preprocessing methods. The bottom row shows the projection to the contralateral 
hemisphere using only the residual components from those same preprocessing 
methods. The data is shown for the right-hand movements over the contralateral 
hemisphere, electrode C3 in the standard 10-10 montage.  
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Fig. 4.8 Comparing IMICA, ICA, and PCA decomposition/component selection for one 
subject of the MRCP data set. The time-frequency data is plotted for right-hand movements 
at electrode C3 (i.e., contralateral hemisphere). Top left: Backprojection of selected 14 IMICA 
components. Top middle: backprojection of 27 components from Infomax ICA-IG. Top right: 
Backprojection of 47 components selected from PCA-IG. Bottom left: Backprojection of 50 
nonselected IMICA components. Bottom middle: Backprojection of 37 nonselected ICA 
components. Bottom right: Backprojection of 17 nonselected PCA components 

Figure 4.9 shows the performance of each preprocessing method for the MRCP 
data set for each FE/CL pair. Within each group, the bars on the far left (solid color) 
indicate MINP. For the remaining bars, dark-gray values show the BCI 
performance using only the selected components. Light-gray values show the BCI 
performance when those same components are removed rather than kept. 

 

Fig. 4.9 BCI performance results for the MRCP data set. In each group, the bar on the left 
(solid color) indicates the MINP condition. The remaining bars indicate performance using 
the selected components (dark gray) and removing the selected components (light gray).  

For the MRCP data set, the RM-ANOVA revealed a significant effect for 
preprocessing type (p < 0.0001) and interaction between algorithm and 
preprocessing type (p < 0.0001), with IMICA preprocessing providing the most 
gains in performance (dark-gray values) over the MINP condition (Fig. 4.9, left). 
Furthermore, removal of the 14 IMICA components (light-gray values) negatively 
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impacts the performance as much, if not more, than removal of those components 
computed using PCA or ICA. This is despite the selected PCA and ICA subsets 
consisting of substantially more components. The only MRCP conditions in which 
IMICA is not the clear top performer is the MINP condition for CSP and PCA-GA 
for xDAWN. 

Figure 4.10 shows the results for the RSVP data set. The RM-ANOVA showed a 
non-significant interaction between algorithm type and preprocessing type. Upon 
refitting the model without the interaction, only the preprocessing factor was 
significant (p < 0.0001). Like the MRCP data set, IMICA is consistently a top 
performer; however, the other preprocessing methods, especially PCA-GA, also 
perform well. IMICA performed better when compared to the ICA preprocessing 
methods (ICA-IG and ICA-GA), but did not perform better than the PCA 
preprocessing methods (PCA-IG and PCA-GA).  

 

Fig. 4.10 BCI performance results for the RSVP data set. In each group, the bar on the left 
(solid color) indicates the MINP condition. The remaining bars indicate performance using 
the selected components (dark gray) and removing the selected components (light gray). 

4.3 CaN CTA Consortium Data Server (C3DS)  

Barrier B5 

In parallel to our efforts to develop advanced signal-processing tools for the 
analysis of multimodal, multidimensional data, DCS began work on the C3DS. This 
work was in partnership with other CTA members, most notably UTSA and 
Syntrogi (now Intheon), and was intended to address Barrier B5 (i.e., lack of 
sufficient data archives). C3DS is an ARL data server located at DCS and 
maintained by DCS engineers. Data sets representing different studies are 
searchable based on description, principal investigator (PI), modalities, and so on. 
A web user-interface (Data Catalog) has been developed to allow users to query 
datasets stored in C3DS by hierarchical event descriptors (HED) tags in addition to 
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the other attributes. The back-end search service was intended to be accessible 
directly through a web application programming interface (API) for others to build 
applications on. As programmatic decisions are made regarding data-use policies 
and authorship rights, user access will be adjusted accordingly. C3DS was 
originally developed as part of the Standardized Annotated Neurophysiological 
Data Repository (SANDR) project.  

One of the main goals of the SANDR project was to produce a large collection of 
well-annotated, synchronized data for shared analysis efforts. Moreover, given the 
complexity of real-world research, SANDR was intended to be a resource for 
supporting complex, large-scale analyses. C3DS and SANDR produced advanced 
capabilities for members of the CaN CTA to perform cutting-edge cross-
experiment analysis and model building.  

C3DS has been a key component to the development of large-scale deep learning-
based analyses within ARL, DCS, and the broader CaN CTA.  

4.4 Deep Learning for EEG Feature Extraction and 
Classification 

Barrier B4 

Following our initial success with the IMICA algorithm, in particular the 
application to BCI, we attempted to develop transfer learning approaches using 
IMICA-defined subspaces. However, all of our attempts to do so failed to produce 
statistically meaningful improvements in BCI performance on transfer tasks. We 
realized that one failure of IMICA was that it was still tailored to the individual and 
unable to learn invariant representations of the data. Therefore, we shifted focus, 
again (in partnership with collaborators from ARL), to investigating deep 
convolutional networks for data mining. This collaborative work produced EEGNet 
(Lawhern et al. 2018), arguably the first compact, convolutional network for EEG 
analysis.  

We fined-tuned this model using the well-known P300 response in EEG studies of 
visual-evoked processing (Fig. 4.11). 

 
Fig. 4.11 Sample P300 evoked response to targets (red line) and non-targets (blue line) 
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Using the C3DS system, we performed a comprehensive leave-one-experiment-out 
analysis with the EEGNet architecture to study P300 variability (Fig. 4.12) and 
found that the convolutional model could faithfully capture the underlying 
variability in the signal while exhibiting invariance to both subjects and 
experiments. To the best of our knowledge, this type of large-scale model building 
and analysis effort had not been done. Our results were published in Solon et al. 
(2019) and have fed multiple follow-on studies.  

 

Fig. 4.12 Application of EEGNet to leave-one-experiment-out study of P300 variability 

This convolutional approach to neural decoding provided a new approach for EEG 
analysis, specifically, we could now build models from prior data that use those 
models to interrogate new, unseen data. This interrogation was based on the 
compression of the multidimensional EEG data into a probability estimate that 
evolved over time and described a specific latent aspect of the subject’s internal 
state.  

4.5 BCI Test Bed 

Barriers B1 and B2 

In parallel to our development efforts on C3DS and EEGNet, we began working on 
general tools for BCI algorithm development and validation. Chief among these 
tools was a “test bed” to enable real-time application and assessment of BCITs. The 
BCI Test Bed project, which addresses Barriers B1 and B2, grew out of our prior 
work with ODE. In the ODE project, we used an intricate implementation of 



 

44 

parallel ports and signal converter technology to facilitate millisecond-level 
synchronization between disparate data streams. This approach was unwieldy and 
impractical. Building on efforts initiated by scientists at UCSD, we refined the LSL 
tool for providing real-time multimodal physiological integration.  

In collaboration with ARL scientists we developed software tools for DAQ, 
streaming, and synchronization; a software architecture to support the integration 
of novel signal-processing and ML algorithms (developed by other parties); and 
software components for reintegrating the output of the classification system with 
different experimental paradigms.  

The system was designed for event-based reactive BCIT in a naturalistic setting 
and supported plug-and-play functionality with different physiological sensors for 
recording EEG and eye tracking. An overview of the BCI Test Bed system is given 
in Fig. 4.13.  

 

Fig. 4.13 BCI Test Bed architecture developed by DCS in collaboration with ARL 
(iconography from Syntrogi Inc.) 

For the development of the test bed system, we first evaluated currently available 
solutions to identify those components that could be immediately leveraged for 
system development. This initial analysis also helped to identify gaps in current 
approaches. Alternative systems, and/or components, that we were investigated 
include, BCI2000, OpenEEG, BCILAB, and NeuroPype.  

Our first test of the BCI Test Bed involved neural decoding from individuals 
participating in the ODE paradigm. This test leveraged multiple components that 
had been developed through the CaN CTA, including the following: 

1) ODE paradigm and software tools 

2) BCI Test Bed, including the LSL backend 

3) Fully trained EEGNet model for analysis of fixation-locked potentials 

a. EEGNet was trained using data from SANDR 
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4) Implementation of various real-time signal-processing approaches for 
detecting eye movements and saccades 

The test was successful and led to the development of the first human interest 
detector (HID) for mapping an external environment, which was subsequently 
published in IEEE Conference for Systems, Man, and Cybernetics in 2018 (Solon 
et al. 2018). Figures 4.14 and 4.15 provide an overview of the HID concept, along 
with collaborative BCI performance.  

 

Fig. 4.14 Operational concept of using a HID to map an external environment 

 
Fig. 4.15 BCI scores using a collaborative approach across 16 individuals for target detection 
in the ODE environment 

4.6 BCI-Fixation-Related Potential (FRP) 

Barriers B1 and B3 

The success of the BCI Test Bed, EEGNet (trained using C3DS), and the initial 
HID led to the development of our final project under the CaN CTA: BCI-FRP.  

There were several goals for this research project. First, we investigated the neural 
responses to naturalistic stimuli in a naturalistic environment using integrated eye 
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tracking, known object locations, and deep models to measure the data. Second, we 
investigated the contribution of task relevance versus visual salience when 
participants fixated upon, and presumably visually processed, specific stimuli. 
Third, based on these results, we showed that we can exploit the common task 
structure of a team of individuals in an environment in order to reconstruct, as we 
did in the HID test, the location of task-relevant stimuli in that environment without 
any prior knowledge of the task or location of specific objects. A high-level 
overview of this concept is shown in Fig. 4.16. 

 
Fig. 4.16 Proposed concept: Fixations from different individuals are co-registered using eye 
tracking and position/orientation at the time of each fixation. Fixations are classified using the 
deep learner. As objects are tagged by individuals, the location of those objects are placed in 
a world map as either “group” or “individual” tagged. Periods of high workload are identified 
for each individual as they traverse the environment. 

Our scenario was developed in the Unity3D game engine (Fig. 4.17). We used 
software libraries from Tobii eye tracking for integration with the environment to 
map fixations to specific stimuli.  

The scenario that we developed involved the following:  

1) Baseline data collection using a standard RSVP go/no-go task. This was 
limited to approximately 10 min, or two sessions of 5 min, and was used 
primarily to evaluate the accuracy of the deep model for each participant. 
In one session, the participants performed just the visual go/no-go task. In 
the second session, participants performed the go/no-go task while also 
performing a simultaneous auditory task. We are not planning to use this 
data to train our deep models, but we will perform a comparison of our 
generalized models to subject-specific models trained on this task as part of 
our final analysis.  
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2) VR environment exploration. Participants were divided into two groups. 
Each group had a specific task. Each task required that the participants 
identify/locate certain objects in the environment. The objects needed by 
each group were different. The participants were allowed to freely explore 
the environment while generally moving between two waypoints. We 
recorded each participant’s location in the environment as well as their eye-
tracking data. At one point during the experiment, participants were given 
the same simultaneous auditory task that occurred in the baseline session. 

The data were synchronized using LSL implemented via our approach in the BCI 
Test Bed. We used two groups of participants. Each group was given a specific 
target object. The first group was told to search for “MOTORCYCLES”. The 
second group was told to search for “HUMVEES”. Each group searched the same 
environment and, thus, were exposed to the same stimuli. The only difference in 
the groups was the target object of interest.  

 
Fig. 4.17 Implementation of our HID task in Unity3D 

We used EEGNet, previously trained on data from C3DS, to decode the fixations 
from each individual. We used raycasts from the Tobii eye tracker to assign 
fixations to specific stimuli. We then aggregated the neural responses from each 
group for each stimulus in the environment. Finally, we sorted per group the stimuli 
based on the aggregate neural response.  

The results from our primary analysis on group detection of target objects and their 
locations are shown in the Fig. 4.18. 
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Fig. 4.18 Object types ranked by aggregate neural score (e.g., EEGNet output) for both the 
MOTORCYCLES and HUMVEE groups. In both cases, the aggregate scoring correctly 
uncovers the target object for that group with a predominance of those objects occurring high 
in the rankings. Mean and standard errors are shown for each object group.  
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5. University of Michigan (UMI)/University of Florida (UFL) 

The UMI/UFL team focused our efforts on developing the use of EEG in dynamic, 
mobile environments to better understand cognition during human locomotion. In 
doing so, we were able to address technical barriers B1‒B4 with the following areas 
of research: 

• Brain and body dynamics of healthy individuals under conditions of 
cognitive and physical stress (B1‒B3) 

• Assessment of signal-processing methods and approaches for removing 
motion artifacts in RWN technologies (B1, B4) 

5.1 Brain and Body Dynamics of Healthy Individuals under 
Conditions of Cognitive and Physical Stress 

5.1.1 Cognitive Loading during Walking at Different Speeds 

When humans walk in everyday life, they typically perform a range of cognitive 
tasks while they are on the move. We used high-density EEG to determine if 
electrocortical activity mirrored changes in cognitive performance across speeds. 
Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without 
performing a Brooks spatial working memory task. Across speeds, the spatial 
working memory task caused subjects to step more widely compared with walking 
without the task. This is typically a sign that humans are adapting their gait 
dynamics to increase gait stability. Several cortical areas exhibited power 
fluctuations time-locked to memory encoding during the cognitive task. In the 
somatosensory association cortex, alpha power increased prior to stimulus 
presentation and decreased during memory encoding (Fig. 5.1). There were small 
significant reductions in theta power in the right superior parietal lobule and the 
posterior cingulate cortex (PCC) around memory encoding. However, the subjects 
did not show a significant change in cognitive task performance or electrocortical 
activity with walking speed. These findings indicate that in young, healthy subjects 
walking speed does not affect performance of a spatial working memory task. The 
subjects devoted adequate cortical resources to spatial cognition when needed, 
regardless of walking speed. 
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Fig. 5.1 Event-related spectral perturbation plots showing power change around the 
presentation of a stimulus in the central somatosensory association cortex 

5.1.2 Locomotion on Uneven Terrain 
Walking on uneven terrain is more energetically costly than walking on smooth 
ground, but the biomechanical factors that contribute to this increase are unknown. 
To identify possible factors, we constructed an uneven terrain treadmill (Fig. 5.2) 
that allowed us to record biomechanical, EMG, and metabolic energetics data from 
human subjects during walking and running (Voloshina et. al 2013; Voloshina and 
Ferris 2019). We tested healthy subjects (N = 11) walking at 1.0 m s‒1, and found 
that, when walking on uneven terrain with up to 2.5-cm variation, subjects 
decreased their step length by 4% and did not significantly change their step width, 
while both step length and width variability increased significantly (22% and 36%, 
respectively; p < 0.05). Uneven terrain walking caused a 28% and 62% increase in 
positive knee and hip work, respectively, and a 26% greater magnitude of negative 
knee work (0.0106, 0.1078, and 0.0425 J kg‒1, respectively; p < 0.05). Mean muscle 
activity increased in seven muscles in the lower leg and thigh (p < 0.05). These 
changes caused overall net metabolic energy expenditure to increase by  
0.73 W kg‒1 (28%; p < 0.0001). Much of that increase could be explained by the 
increased mechanical work observed at the knee and hip. Greater muscle co-
activation could also contribute to increased energetic cost but to an unknown 
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degree. The findings provide insight into how lower-limb muscles are used 
differently for natural terrain compared with laboratory conditions. 

 

Fig. 5.2 a) Treadmill with the uneven terrain surface attached. b) Schematic of the uneven 
surface layout, consisting of three alternating heights (arrows indicate the treadmill’s long 
axis). c) Close-up representation of the individual blocks composing each stepping area. 

To build on these results, we then quantified the biomechanical and energetic 
effects of running on uneven terrain (Voloshina and Ferris 2015). We tested healthy 
subjects (N = 12) running at 2.3 m/s on both uneven and even surfaces. Subjects 
showed an energetic increase of 5% (0.68 W/kg; p < 0.05) when running on uneven 
terrain compared to smooth terrain (Fig. 5.3). Step width and length variability 
increased by 27% and 26%, respectively (p < 0.05). Positive and negative ankle 
work decreased by 22% (0.413 J/kg) and 18% (0.147 J/kg), respectively (p = 0.0001 
and p = 0.0008). Mean muscle activity increased for only three muscles in the thigh 
(p < 0.05). All but three muscles showed a minimum of 15% increase in muscle 
activity variability (p < 0.05). About half of the increase in energetic cost can be 
explained by changes in mechanical work due to up- and down-steps on the uneven 
surface. These results provide insight into the changes in lower-limb biomechanics 
on more natural surfaces and their effects on energetic cost. 

 

Fig. 5.3 Net metabolic rate for walking and running on the even and uneven surfaces. 
Percentages indicate the increases in energetic cost caused by uneven terrain when compared 
with even walking or running. Asterisks signify a statistically significant difference between 
the even and uneven walking and running conditions. 
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5.1.3 Large-Scale Integrative Experiment (LSIE) 

The goal of the ambulatory LSIE was to push brain and body mobile imaging into 
settings that are close to operational environments and compare/contrast useful 
information from these measurements. We recruited 51 young, healthy subjects and 
obtained electrocortical dynamics and whole-body kinematics via limb-mounted 
inertial measurement units (IMUs) during active locomotion in two different 
environmental settings: a VR laboratory setting and a natural outdoor setting. While 
the subjects walked in each setting, they completed a visual search task where they 
had to identify dark green flags placed in the environment (or VR display). Light-
green flags were also present, albeit less numerous (about one-third the number of 
dark-green flags), and registered as a visual oddball with a concomitant P300 EEG 
ERP. For each dark-green flag they successfully identified, subjects received an 
additional $0.50. During the stressor period (a 10-min window within each 
environment), subjects were told that they lost $3.00 for each dark-green flag they 
missed. There was an audio cue when they missed a dark-green flag during the 
experiment, signaling the subject just lost the $3.00 of extra financial payment. 
Unbeknown to the subject, the experimenter signaled a missed dark-green flag on 
average 1 per minute regardless of whether the subject missed a dark-green flag or 
not. The continued signaling of losing money was intended to induce a stressful 
condition. We collected salivary cortisol levels at intervals throughout the 
experiment to verify that the stressor condition produced measurable changes in 
physiological stress (i.e., salivary cortisol). 

5.1.4 Comparison of Stress Responses in Real-World Environments 

The goal of this project was to determine the possibility of using EEG signals to 
monitor stress responses in real-world environments. A noninvasive method to 
measure stress with good temporal resolution and few side effects would enhance 
our ability to study human physiology, especially in realistic settings. While other 
approaches to measure acute and/or chronic stress are either relatively invasive 
(blood or urine cortisol levels) or have poor temporal resolution (salivary cortisol), 
electrocortical signals may have the potential to bridge these gaps. To explore this 
potential, we recorded 128-channel EEG data from 11 subjects while they 
performed a stationary shooting task with an airsoft rifle in our laboratory (Schlink 
et al. 2017). In the Control condition, subjects aimed the rifle at a target 12 m away 
and fired one shot (repeating this process 50 times). In the Stress condition, subjects 
performed the same protocol while a second experimenter randomly fired shots in 
the subject’s direction. We observed significantly higher skin conductance 
responses and salivary cortisol levels (p < 0.05 for both) during the stressful 
conditions, indicating that we had successfully induced an adequate level of acute 
stress. We located ICs in five regions throughout the cortex, most notably in the 
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dorsolateral prefrontal cortex, a region previously shown to be affected by 
increased levels of stress. This area showed a significant decrease in spectral power 
in the theta and alpha bands less than a second after the subjects pulled the trigger. 
Overall, our results suggest that EEG with ICA and source localization has the 
potential of monitoring acute stress in real-world environments. 

5.1.5 Electrocortical Effects of Virtual Reality Use during Balance Beam 
Walking 

In a series of related experiments, we examined how VR affects motor behavior 
compared to real-world conditions. In the first experiment, we recorded  
128-channel EEG, heart rate, skin conductance, and RT from 19 subjects walking 
on an over-ground balance beam to assess the effects of high height exposure in 
VR on physical and cognitive performance (Peterson et al. 2018a). We found that 
virtual high heights exposure increased stress compared to virtual low heights as 
measured by HRV (Fig. 5.4). VR use also impaired balance performance and 
increased cognitive loading compared to unaltered viewing. 

 

Fig. 5.4 Percent change in failures per minute, heart rate, and RT. Being in VR increased 
overall stress metrics and being in the simulated beam walking at a high height increased 
variability in measures considerably. 

In our next experiment, we tested the effects of half-second field-of-view rotations 
during pass-through VR on balance performance (Peterson et al. 2018b). Thirty 
subjects walked on a treadmill-mounted balance beam. Using 128-channel source-
localized EEG, we found that subjects exposed to visual rotations showed 
decreased alpha (8‒13 Hz) power in parietal/occipital regions and had a fourfold 
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improvement in balance performance when compared to subjects who were not 
exposed to the rotations in VR. These transient visual perturbations in VR can 
improve motor learning via cognitive change, potentially minimizing the balance 
impairments caused by VR. 

We further explored how sensorimotor perturbations affect electrocortical activity 
during walking and standing on a treadmill-mounted balance beam (Peterson and 
Ferris 2018b). We recorded 128-channel EEG, motion capture, lower-leg EMG, 
and neck EMG from 30 subjects exposed to brief 20° field-of-view rotations and 
mediolateral pulls at the waist. Using source localization via ICA, we found that 
these two perturbation types induced transient spectral power increases in theta  
(4‒8 Hz) and decreases alpha-beta (8‒30 Hz) bands across multiple cortical 
regions. The spectral pattern was strongest in sensorimotor regions during physical 
pulls and in occipito-parietal regions during visual rotations. This suggests similar 
time-frequency electrocortical patterns when responding to sensorimotor conflict, 
but different cortical region involvement depending on the perturbation type.  

In addition to analyzing cortical regions separately with spectral power, we wanted 
to quantify the connectivity among regions during sensorimotor perturbations 
(Peterson and Ferris 2018a). First, we tested potential connectivity measures using 
ground-truth signals from antennae embedded inside a phantom head. We mounted 
the phantom head to a motion platform that mimicked recorded human head motion 
while walking at speeds up to 2.0 m/s. We assessed how well ICA recovered the 
ground-truth signals during head motion. ICA reconstructed the original signals 
well, with cross-correlations above 0.8 and SNRs close to 10 dB across all walking 
speeds. Connectivity measures using these ICs were typically able to identify 
ground-truth interconnections, but many measures were susceptible to spurious 
high-frequency connections. Based on these results, we quantified multi-subject 
electrocortical connectivity during our human EEG recordings using direct directed 
transfer function (dDTF), a connectivity measure that performed consistently well 
during our phantom experiment (Peterson and Ferris 2019). We found increased 
connectivity during physical pull perturbations in central regions and decreased 
occipito-parietal connectivity during visual rotations. We also found evidence for 
connectivity from the cortex to lower-leg muscles during physical balance 
perturbations.  

5.1.6 Measurement of Spatial Myoelectric Patterns during Human 
Locomotion Using High-Density Electromyography 

Our success in advancing EEG as a viable technology for recording brain dynamics 
during locomotion suggested we branch out to other biosignal recording systems. 
Electrical muscle activity is typically measured via bipolar surface sensors, which 
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have poor spatial resolution for measuring intramuscular variations in myoelectric 
activity. High-density EMG improves upon this by using a grid of electrodes to 
measure both the temporal and spatial properties of a muscle, but it has been 
primarily used in stationary conditions. We first developed an electrical lower-limb 
phantom to quantify the effects of crosstalk and motion artifacts (Schlink and Ferris 
2019). We found that motion artifacts do not affect all areas of the EMG array 
uniformly, and traditional filtering measures may not fully remove these artifacts. 
To address this issue, we compared the effectiveness of standard EMG signal 
processing and alternative signal-processing methods at removing motion artifacts 
from high-density EMG data during locomotion (Schlink et al. 2020a). Canonical 
correlation analysis (CCA) decomposition provided the greatest reduction in signal 
content associated with artifacts. We then applied this signal-processing approach 
to EMG signals recorded from five lower-limb muscles across a range of walking 
and running speeds (Schlink et al. 2020b). We found heterogeneous spatial EMG 
activation patterns, evidenced by contrasting spatial entropy and EMG barycenter 
locations among the muscles. Finally, we assessed how localized muscle fatigue 
affected spatial myoelectric patterns in the medial gastrocnemius during 
locomotion (Schlink et al. 2020b). Peak EMG activity during locomotion 
significantly decreased when the subjects’ gastrocnemius was fatigued, and the 
barycenter of EMG activity shifted from its pre-fatigue location, suggesting an 
altered neuromuscular recruitment pattern in response to fatigue. Together, these 
studies establish high-density EMG as an effective tool for studying muscle activity 
in dynamic environments. 

5.2 Assessment of Signal-Processing Methods and Approaches 
for Removing Motion Artifact in Real-World Neuroimaging 
Technologies 

5.2.1 Isolation of Gait-Related Motion Artifacts Recorded Using EEG 

The relative contributions of movement artifact and electrocortical activity in scalp 
EEG data are difficult to quantify. To better characterize the movement artifact 
recorded by EEG electrodes, we used a novel experimental method to isolate the 
motion artifact by blocking electrophysiological signals using a silicone swim cap 
(Kline et al. 2015). We then simulated an electrically conductive scalp on the top 
of the swim cap using a wig coated with conductive gel. We recorded motion 
artifact EEG data from nine young adults walking at a range of speeds  
(0.4‒1.6 m/s). Movement artifacts varied considerably across speed, subject, and 
electrode location (Fig. 5.5). The artifacts recorded with EEG electrodes did not 
correlate well with head acceleration. Standard artifact removal methods attenuated 
low-frequency noise but did not completely remove the movement artifact. We also 
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observed spectral power fluctuations in the movement artifact data that resembled 
data from previously published studies of normal EEG during walking, suggesting 
that EEG data recorded during walking likely contains substantial movement 
artifacts. Further analysis using ICA and dipole fitting was able to accurately 
localize 99% of the ICs as non-neural (Snyder et al. 2015), though ICs in cortical 
locations were still identified despite no actual cortical dipolar sources being 
present.  

 
Fig. 5.5 Time courses of movement artifact and accelerometer data. Time courses of the 
ground reaction forces for the right and left legs, head accelerations (vertical, mediolateral, 
and anterior–posterior), and movement artifacts recorded in five electrodes (A1, A19, C18, 
E12, and G11) for the four walking speeds (0.4, 0.8, 1.2, and 1.6 m s−1) for a single subject. 
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5.2.2 Development of Benchmarks for Data Quality of Real-World 
Neuroimaging Technologies 

A major roadblock to more widespread acceptance of new neurotechnology 
systems is that we often do not have a clear understanding of how well these 
systems work. The large variety of commercially available EEG systems contrasts 
with the lack of established methods for objectively describing their performance 
during whole-body motion. Our goal was to develop repeatable and reliable 
benchmarks for assessing EEG technology. Subjects performed an auditory oddball 
task seated and while walking using three different EEG systems (Oliveira et al. 
2016). We calculated EEG epoch rejection rate, pre-stimulus noise (PSN), SNR, 
and EEG amplitude variance across the P300 event window (CVERP) from a subset 
of 12 channels common to all systems. We also calculated test-retest reliability and 
the subject’s level of comfort while using each system. All three systems performed 
similarly during the seated condition, but we found differences among the three 
EEG systems in rejection rates, PSN, and SNR during the mobile conditions. 
Subjects also reported less discomfort and were motivated for longer recording 
periods when wearing wet EEG systems compared to the dry system we evaluated. 
Our method was successful in identifying differences across systems that are mostly 
caused by motion-related artifacts and usability issues. We concluded that the 
extraction of the selected metrics from an auditory oddball paradigm may be used 
as a benchmark method for testing the performance of different EEG systems in 
mobile conditions. 

5.2.3 Electrical Head Phantom with User-Defined, Ground-Truth Sources 

The efficacy of using ICA to separate motion artifacts from EEG recordings is 
difficult to judge given that there is no ground truth for human EEG recordings. To 
investigate the effects of motion artifacts on an invariant EEG source, we 
constructed a phantom head composed of dental plaster and sodium propionate 
(Oliveira et al. 2016). Eight electrical dipoles were embedded within the plaster, 
and we broadcasted artificial neural signals from three antennae to simulate varying 
sources of brain activity (Fig. 5.6). We used a custom-built platform to induce 
sinusoidal vertical motions of the phantom and recorded EEG signals with three 
different acquisition systems. ICA was able to successfully isolate the three dipolar 
sources across all conditions and systems. The SNR was significantly higher for 
the IC activation in comparison to the channel data, thereby attenuating the effects 
of motion on the SNR.  
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Fig. 5.6 a) Computerized tomography (CT) scan of the plaster phantom head showing the 
distribution of antennae. b) We broadcast artificial “neural” signals from three antennae at 
varying frequencies. c) We recorded high-density EEG data using three different systems for 
comparison. 

To build upon these results, we purchased a 6 degree-of-freedom robotic hexapod 
(Notus). We also began using a new version of the head phantom developed by Dr 
Hairston’s group at ARL (Oliveira et al. 2016a) composed mainly of ballistics 
gelatin.  

5.2.4 Effects of Cable Sway, Electrode Surface Area, and Electrode Mass 
on EEG Signal Quality 

To quantify the causes of mobile EEG motion artifacts, we conducted basic science 
experiments to isolate the effects of electrode mass, electrical surface area, and 
cable sway on EEG signal quality during motion (Symeonidou et al. 2018). Pilot 
testing suggested cable movements were a major contributor to motion artifacts in 
mobile EEG recordings, particularly when using the most commonly used 
commercially available mobile EEG system, BioSemi ActiveTwo. We modified 
BioSemi ActiveTwo electrodes by doubling and tripling the mass of standard 
BioSemi electrodes and by altering electrode surface area using larger-diameter 
silver (Ag)/silver chloride (AgCl) pellets. Recordings from the ARL ballistics gel 
head phantom showed that increasing electrode surface area marginally improved 
signal quality during motion on the Notus hexapod. Altering electrode mass had no 
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effect on signal quality. Cable motions, however, were a large contributor to motion 
artifacts, justifying the use of dual-electrode EEG configurations for noise 
cancellation, which relies on matched noise-only electrode pairs and bundled cables 
that experience equivalent cable artifacts. 

5.2.5 Dual-Electrode EEG Design for Motion Artifact Removal 

Novel EEG electrode designs are needed to improve upon current limitations in 
real-world mobile brain and body imaging. We proposed to design and fabricate 
novel EEG electrode prototypes that could facilitate studies of motion artifact 
contamination during real-world EEG recording. Our first iteration of the dual-
electrode array consisted of eight scalp electrodes recording normal EEG and eight 
mechanically coupled and inverted secondary electrodes that were electrically 
isolated from the scalp EEG sensors, recording only motion artifacts and electrical 
noise, without artificial neural signals (Fig. 5.7; Nordin et al. 2018). We recorded 
artificial neural signals broadcast from antennae in the phantom head during 
continuous vertical sinusoidal movements (stationary, and 1.00-, 1.25-, 1.50-,  
1.75-, and 2.00-Hz movement frequencies). Signal quality was restored following 
noise cancellation when compared to single-electrode EEG measurements collected 
with no phantom head motion. We achieved substantial motion artifact attenuation 
using secondary electrodes for noise cancellation. 

 

Fig. 5.7 a) BioSemi active pin type electrode, b) custom dual-electrode pair (BioSemi active 
pin type electrode and inverted flat type electrode) 

5.2.6 Integration of Neck Muscle Sources for Muscle Artifact Removal 
Because muscle artifacts can also corrupt dynamic mobile EEG recordings, we 
developed an electrical head phantom with artificial brain and neck muscle sources 
to test approaches for muscle artifact removal during motion. Similar to our 
approach for motion artifact removal, we included isolated neck muscle recordings 
with scalp EEG corrupted by muscle activity in an ICA decomposition and were 
able to improve artificial brain signal source separation (Richer et al. 2020). We 
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recorded 128-channel dual-layer EEG and 8-channel neck EMG from the head 
phantom during motion. We evaluated ground-truth electrocortical source signal 
recovery from artifact-contaminated data using ICA. By including isolated noise 
and EMG recordings in the ICA decomposition, we more effectively recovered 
ground-truth artificial brain signals. A reduced subset of 32-noise and 6-EMG 
channels showed equivalent performance compared to including the complete 
arrays. Artifact Subspace Reconstruction (ASR) improved source separation, but 
this was contingent on muscle activity amplitude. CCA also improved source 
separation. Merging noise and EMG recordings into the ICA decomposition, with 
ASR and CCA preprocessing, improved source signal recovery. 

5.2.7 Brain Dynamics during Obstacle Navigation 

Using the knowledge gained from the dual-electrode design and phantom 
experiments, we applied these data-processing procedures to human EEG 
recordings during an obstacle avoidance task (Nordin et al. 2019a, 2019b, 2019c). 
We dropped unexpected obstacles on a treadmill belt while subjects walked and ran 
at a range of speeds (0.5‒2.5 m/s). We merged 128-scalp EEG channels, 40-
matched noise pairs, and 8-single channel neck EMG signals into ICA to recover 
brain sources involved in overcoming unexpected obstacles. Electrocortical activity 
in supplementary motor area and premotor cortex showed spectral power increases 
soon after obstacles appeared on the treadmill belt (Fig. 5.8). Posterior parietal 
cortex activity showed later spectral power increases that maintained similar 
distance to contact with the approaching obstacle. 
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Fig. 5.8 Cortical clusters and event-related spectral perturbation plots by speed in the  
a) supplementary motor area, b) premotor cortex, and c) posterior parietal cortex. 
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6. University of California, San Diego  

The CaN CTA consortium founding member UCSD has performed a large volume 
of research projects covering diverse topics addressing scientific barriers, and has 
produced tools that have been used by the alliance and the global research 
community. In the interest of brevity, two of their research projects are highlighted 
in this section based on compilation of research plan objectives and progress 
reports. 

6.1 Advanced Computational Approaches: Neurocomputation  

The activity supported to overcome barriers was the following:  

• Discovery of models and novel methods for the identification and 
interpretation of statistical relationships among high-dimensional data sets 
characterizing the dynamics of environment, behavior, and brain function 
during complex task performance. 

6.1.1 First-Year Objectives 

The primary goal of the first two years was to develop algorithms that can extract 
information-bearing constellations of cortical activity patches from noisy mobile 
brain/body imaging (MoBI) data that is robust to a lack of idealized models and 
sensor calibrations. We wanted the ability to further process these patterns of 
activity into features that are informative for discerning and prediction human 
cognitive performance across subjects and tasks in complex environments. Years 1 
and 2 were focused on the development and testing of such algorithms, and 
toolboxes that allow the algorithms to be tested in a variety of real-world settings. 
In subsequent years, these algorithms were applied in the laboratory and in the field 
and used to develop theories of human cognitive performance in extreme situations. 

6.1.2 First-Year Accomplishments 

Measure Projection. In Year 1 of the CaN CTA, we enhanced the Measure 
Projection method and implemented its core features in a toolbox as an open-source 
plugin for EEGLAB. Measure Projection Toolbox (MPT) is currently in beta 
version and available for download at http://sccn.ucsd.edu/wiki/MPT.  

Exploiting Anatomical Priors. We have developed an automated framework for 
the use of human subject-specific anatomical priors as part of (real-time) predictive 
models. The current implementation relies on ICA to obtain biologically distinct 
signal components from EEG measurements (Palmer et al. 2008), the use of 
DIPFIT software (Delorme and Oostenveld 2019) to obtain each derived signal 

http://sccn.ucsd.edu/wiki/MPT
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component’s equivalent dipole coordinates in a standardized brain space, as well as 
on an anatomical structure atlas to derive the probability of a component being 
localized in some anatomical brain structure. Support for both Talairach (Lancaster 
et al. 2000) and LONI LBPA40 brain atlases has been implemented and integrated 
with BCILAB.  

Enhancement of the Neuroelectromagnetic Forward Head Modeling Toolbox 
(NFT). NFT is a toolbox running under MATLAB for generating realistic head 
models and computing numerical solutions for the forward problem of EEG source 
imaging. NFT runs either as a plugin to EEGLAB or as a standalone toolbox and 
includes electrical modeling of human head, segmentation, mesh generation, and 
electrode co-registration, and warping of a template head model (MNI head model), 
forward problem solution using boundary element method (BEM). The first version 
was released in 2009 (Acar and Makeig 2010). In Year 1 of the project, we released 
version 2.0 of the NFT toolbox in which enhancements have been added, which 
will be useful for facilitating the use of subject-specific anatomical priors in the 
development of source location algorithms. Among others, extensions of the 
inverse estimation method by Zhilin Zhang (Zhang and Rao 2011) and Cheng Chao 
(publication planned), respectively, were added in Year 2.  

BCI in the Spectral Domain. We have developed a natural extension of a current 
state-of-the-art framework for EEG-based BCI (Tomioka and Mueller 2010) into 
the spectral domain (Spectral Dual-Augmented Lagrangian method [Spec-DAL]; 
paper in revision), using spatial filters learned via ICA (while the approach 
generalizes to beamforming, as well) and per-component derived discrete Fourier-
transform (DFT) features (also applicable to wavelet features). We have 
successfully applied a further refined lineage of the method under other funding on 
a workload task (Kothe and Makeig 2011).  

Mixture-of-Learner ICA. Using Spec-DAL as a building block, we have 
demonstrated a construction in which any ICA-based learner with support for 
weighted data can be used as a mixture of learners in a multiple-mixture ICA model 
(AMICA), allowing it to capture a richer structure in the data (Makeig et al. 2012a, 
2012b). The idea is to simultaneously use multiple alternative decompositions that 
explain different aspects of the recorded data. This approach has been tested 
successfully on a workload task under other funding (Kothe and Makeig 2011), and 
more recently, also on the attention-shifting data of the dynamic attention-shifting 
(DAS) project. 

Regularized Spatio-Spectral Dynamics (RSSD)-based ICA. In follow-up 
research to Spec-DAL, we have developed a generalized linear model capturing the 
joint spatial, spectral, and temporal structure of IC-decomposed EEG signals 
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(RSSD). The key component, which allows one to capture the spatio-spectral 
dynamics of the data in full extent while avoiding severe model overfitting, is a 
structured sparse matrix norm, which has become efficiently implementable with 
recent advances in convex optimization (in particular dual-augmented Lagrangian 
methods and related proximal/accelerated-gradient methods [Tomioka et al. 2011]). 
Separately from the captured structure and employed regularization, the method 
has been designed from the outset with support for rich anatomical, spectral, and 
temporal priors, using the anatomical-priors framework. The method has been 
implemented as a component in BCILAB and supports its parallel computation 
infrastructure to scale to compute clusters. The implementation is available to 
collaborators. 

Other. Dr Jason Palmer released a new version of his AMICA algorithm software 
for computing multiple ICA models with the possibility of shared components. The 
integration of the parallel AMICA solver into BCILAB and the related cluster 
management, as well as testing, have been done as part of neurocomputation (NCP) 
research. Tim Mullen released his Source Information Flow Toolbox (SIFT) 
toolbox for source-level information flow network analysis of EEG data. 

Combining Soldier, Task, and Environmental Event data in Unstructured 
Environments. A critical bottleneck to the development of effective data-driven 
human cognitive state identification and prediction algorithms is the practical 
problem of not having enough data collection trials for every possible fixed 
experimental condition. This indicates the need for a method to simultaneously 
detect and associate statistically relevant variables and simultaneously occurring, 
nonorthogonal experimental conditions with many possible cognitive factors and 
event types so they can be further analyzed by various computational approaches 
being developed under ACA. 

To address this challenge, in Year 1, we have initiated exploration of a promising 
approach, based on the “representational similarity analysis (RSA)” statistical 
method introduced in Kriegeskorte et al. (2008). 

6.1.3 NCP Third-Year Objectives 

In Year 3, we investigated ways to improve BCI performance by using priors obtain 
from measure projection of other subject classifiers: we explored multiple ways in 
which information from other subjects, associated with their ICs and dipoles, can 
be exploited to increase the performance and robustness of BCI classification on 
new subjects. This was a joint project between BCILAB and MPT developers. We 
utilized data from the MBF1 task for this investigation.  



 

69 

A major focus in the second half of Year 3 was multimodal inference methods as 
the data necessary for analysis became available. This includes hierarchical 
Bayesian methods, as well as extensions of the dictionary learning and other 
unsupervised learning frameworks (such as various types of auto-encoders).  

In Year 3, we began to investigate the use of graph-theoretic tools to attempt to 
discover features associated with the directed graphs provided by the SIFT toolbox 
that are (ideally) invariant to or, at least, robust to variations in calibration, subject, 
environment, and so on. This task was originally planned for Year 2 but was 
deferred due to delays in the availability of robust real-time connectivity estimates.  

In Year 3, we carried out qualitative assessments of different variants of the 
independent component sparse decomposition (ICSD) algorithm by feeding 
existing BCI algorithms with the component activations recovered by ICSD. A goal 
here was to improve the classification performance of the whole RSSD pipeline, 
which handles the derivation of component activations from multi-model AMICA 
decomposition with a relatively simple approach compared to the ICSD algorithms. 
Of particular interest was data where AMICA model changes play a crucial role, in 
which case we hoped ICSD would capture those model (component) changes. On 
the theoretical side, we integrated model likelihoods into the ICSD framework and 
performed component selection using this prior information.  

6.1.4 Third-Year Accomplishments 

In Year 3, we developed methods, software tools, file formats, and schemas to 
analyze currently recorded CTA data and in preparation for the analysis of data to 
soon be produced by the LSIE: 

• HED tags and associated MATLAB and Java tools have been developed to 
enable describing events and paradigms using combination of user-friendly 
tags. A compatible Java user interface and associated set of MATLAB tools 
have been developed by Dr Kay Robbins and her group at UTSA to 
facilitate associating event codes with HED tags. (Nima Bigdely-Shamlo, 
Kay Robins, Christian Kothe, and Jessica Hsi) 

A first demonstration of the use of HED-tagged EEG data mining to retrieve 
similarities between brain source-level, event-related EEG responses in 
different task paradigms has been offered by Mr Bigdely-Shamlo (Makeig 
and Bigdely-Shamlo). 

• The EEG Study Schema (ESS) was developed to encapsulate study-level 
(metadata) information (e.g., subject-group associations, event descriptions, 
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subject-file associations, and so on) in a standard manner. (Nima Bigdely-
Shamlo and Jessica Hsi) 

• Several robust ICA preprocessing (artifact cleaning) methods were 
designed and their performance compared to each other and to data hand-
cleaning (12 methods compared on 51 data sets from two studies). In at least 
95% of cases, one of the automatic methods outperformed hand-cleaning 
(robust estimation of the amount of mutual information removed from the 
channel data by ICA decomposition). (Christian Kothe and Nima Bigdely-
Shamlo) 

• An internally robust Infomax-ICA calculation method (“Robust Extica”) 
using the geometric median was implemented and its performance 
evaluated on more than 20 data sets. Remarkably, the method can often 
produce high-quality ICA decompositions even without any artifact data 
cleaning. (Christian Kothe and Nima Bigdely-Shamlo) 

• A robust method for calculating EEG dynamic measures such as ERP and 
event-related spectrum perturbation (ERSP) from outlier-contaminated 
trials was developed and performance of these methods investigated. These 
geometric median-based methods automatically down-weight outlier trials 
and produce virtually identical results even when, for example, 10% of the 
trials are replaced by outlier (noise) trials with 100× the amplitude of the 
true trial signals. (Nima Bigdely-Shamlo and Christian Kothe) 

• Multiple regression algorithms based on a 2011 UCSD PhD dissertation by 
Matthew Smith were implemented for separating event-locked EEG 
dynamics in dense experimental paradigms in which there is a significant 
temporal overlap among event responses. Our initial results using L2 
regression suggest that more variance in the data can be explained by 
regression-based ERPs compared to average-based ERPs. A paper on this 
method and results was submitted to the IEEE Engineering in Medicine and 
Biology Conference (EMBC) in June 2013. (Nima Bigdely-Shamlo and 
Mathew Burns) 

• Multi-subject inference using measure projection analysis (for ERP, ERSP, 
inter-trial coherence (ITC), and mean power spectral measures) and 
network projection analysis (for pairwise network connectivity features 
calculated in SIFT and similar software tools) were devised and 
implemented to enable investigation of commonalities as well as individual 
differences in EEG dynamics associated with different experimental 
conditions. A paper on the measure projection approach was published in 
NeuroImage. (Nima Bigdely-Shamlo) 
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• An automatic eye IC detector based solely on scalp map information was 
created. This uses an algorithm similar to the semi-automated CORRMAP 
method but does not require user involvement. Instead, EyeCatch uses a 
database of 3400+ exemplar eye scalp maps learned by analyzing over half-
a million IC scalp maps drawn from all the EEG data sets on Swartz Center 
for Computational Neuroscience (SCCN) servers. The performance of the 
method is comparable to CORRMAP. A paper on this algorithm was 
submitted to the 2013 IEEE EMBC conference. (Nima Bigdely-Shamlo) 

• A method for joint EEG/body motion capture analysis using N-way partial 
least squares was developed. The method is a generalization of PCA to 
multiple dimensions. It allows finding latent factors in EEG spectral 
perturbations correlated with kinematic profiles obtained by motion 
capture. The method has been applied successfully in finding common 
patterns of movement and brain dynamics involved in the expression of 
musical feelings. The results of this work were submitted in an abstract to 
Society for Music Perception and Cognition Conference (SMPC) 2013. 
(Alejandro Ojeda) 

• A method for EEG source localization in real time was developed and 
demonstrated. The method estimates the current source density constrained 
to the cortical surface, spatial smoothness among neighboring patches of 
cortex, is used as prior constrain. It uses maximum a posteriori (MAP) 
updating rules for hyperparameters controlling the amount of regularization 
needed at each time point. The method was used in a pipeline for online 
information flow analysis and visualization. The results of this work were 
submitted to the International BCI Meeting, June 2013. An extension of this 
work is being submitted to the IEEE EMBC 2013. (Alejandro Ojeda, 
Christian Kothe, and Tim Mullen) 

• A new online motion artifact correction method for EEG (first demonstrated 
live at the IEEE EMBC meeting in 2012 using dry/wireless headsets from 
MINDO and Cogionics) has been further developed. Also, real-time 
Granger-causal connectivity estimation using SIFT and BCILAB has been 
demonstrated at the 2013 BMBI satellite workshop, also using dry/wireless 
EEG hardware. (Christian Kothe) 

• A wavelet-based method for robust ERP estimation has been implemented. 
This method is a further improvement of the work of Quiroga and Garcia 
(2003), which is an elegant adaptive filter technique suitable for application 
to epoched data at the single trial level. (Alejandro Ojeda) 



 

72 

• Two methods for performing ICSD have been developed. One method uses 
a robust version of multi-step sparse Bayesian learning; the other performs 
a large number of mutual information reduction calculations to choose 
between alternative sparse patterns. In ICSD, first a dictionary of IC scalp 
maps is constructed by concatenating scalp maps from different models 
learned by multi-model ICA (AMICA). Then a sparse subset of these ICs 
(with a scarcity level equal to the rank of the recorded EEG data) is selected 
for each approximately 4-s (overlapping) window. Our simulations show 
that the resulting decomposition can capture the true dynamic scarcity 
pattern with low error rate at various noise levels. (Nima Bigdely-Shamlo 
and Ozgur Balkan) 

6.2 Neurocognitive Performance: Large-Scale Experiment (LSE)  

Activities supported to overcome barriers include the following: 

• Development of experimental paradigms that capture the unfolding nature 
of multisensory stimulus streams experienced in real-world environments 

• Development and employment of novel, wearable sensor suites for 
monitoring brain and body dynamics during naturalistic behavior, as well 
as software systems to enable integrated monitoring capabilities 

• Acquisition and processing of high-dimensional data sets that characterize 
physical, mental, and physiological behavior, as well as its environmental 
context, in sufficient detail and across a sufficient breadth of circumstances 

6.2.1 Research Goals 

The goal was to develop a two-subject, high-information, crewstation-like 
experimental apparatus in the Command Environment Simulator (CES) at UCSD 
and collect high-dimensional data that characterize physical, mental, and 
physiological behavior, as well as its environmental context. The LSE experiment 
was used to acquire a rich set of neurophysiological and behavioral data from 
subjects performing two-person team and individual tasks in high-information, 
multitasking environments. The LSE team’s goal in the experiment design was to 
establish a paradigm that would test the viability of multiple cognitive state 
assessment (CSA) factors in realistic multisensory input, multitasking environment. 
The CSA factors of interest were in monitoring of alertness and attention shifts in 
target stimulus recognition, stimulus stream comprehension, multiscale spatial 
situational awareness, decision-making and self-error detection, and teammate 
comprehension.  
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6.2.2 Third-Year Accomplishments 

As of the end of Year 3, the LSE team had completed the development of the 
experiment apparatus and the experiment design, had conducted pilot tests, and was 
training subjects for data collection. The experiment apparatus involved 
programming of a new simulation game within the SCCN Experimental Recording, 
Interactive Control and Analysis (ERICA) framework to run on the CES multi-
screen crewstation environment. This simulation game, the Small Team 
Reconnaissance and Urban Surveillance Missions (STRUM), was developed with 
features to exercise the operator’s multi-screen and multimodal attention shifts, 
vigilance, sensorimotor decision-making, navigational reference frame switching, 
text and audio comprehension, and inter-subject communication, all within the 
context of 3-D VR multiple robotic vehicle operation (both ground and air). During 
Year 3, the team has utilized the pilot testing, analysis, as well as feedback from 
subjects and researchers to refine, debug, and validate the STRUM simulation game 
and the DAQ system.  

Figure 6.1 shows a summary of the STRUM game design. 

 

Fig. 6.1 STRUM apparatus 

Participants are told that in this game they are a member of a two-person 
reconnaissance and surveillance team stationed at a central command post in a 
coastal city. Each team member must navigate a robotic surveillance vehicle 
through the city in order to accomplish a series of primary missions, often in parallel 
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with one or more side tasks. Three to five primary missions, each lasting between 
8‒15 min, are combined within a single game “block” lasting approximately  
45 min. Blocks are separated by “rest” periods during which participants are 
instructed to sit quietly and simply monitor their consoles so as to respond when 
needed to Danger/Alert signals. Total game time is 3 h (four game blocks). The 
different types of tasks are described here. 

Primary Mission 

Primary missions require constant attention and continuous user input/ 
performance; in addition, some missions are cooperative in that partners must 
coordinate their actions to complete mission tasks: 

1) Checkpoints Mission: Players must navigate their robot vehicle through 
the city streets to reach checkpoints. Both players have access to a satellite 
map that shows the location of the current checkpoint. In the cooperative 
version, players must communicate with their partner in order to keep their 
robots close together while traveling; in the individual version, one player 
navigates through the city while the other performs side tasks only. 

2) Perimeter Defense: Players defend a command post from close inspection 
by drones. Players navigate a limited area around the command post and 
“warn off” the drones by pushing a button on the video game controller to 
activate an alarm. Both players have access to a satellite map that shows 
drone locations. Player coordination is needed to ensure maximum coverage 
and prevent repeat warnings to the same drone (which incurs a penalty). 

3) Aerial Guidance: In this cooperative mission, one player operates an aerial 
robot, relaying directions to their grounded partner below as that player 
navigates the city looking for checkpoints. Information about checkpoint 
locations is only available to the player controlling the aerial robot. 

4) Panning Surveillance: In this individual mission, the player’s robot 
remains in a fixed location. This player detects incoming alien drones by 
panning the 360° environment, then warning them off by sounding an 
alarm. The other player performs side tasks only. 

Side Tasks 

Participants’ ability to divide/distribute attention across multiple stimulus streams 
will be gauged by the periodic addition of one or more side tasks concurrent with 
the primary task. Along with distributed attention, these side tasks increase working 
memory load (visual, auditory, spatial, and verbal) and assess speech 
comprehension:  
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1) Curbside Objects: Various objects are positioned near the street in the 
central Primary Mission screen (e.g., trash can, suitcase, and so on). 
Periodically, players are queried (via the text box on the Primary Mission 
screen) about the location of the object after it has disappeared from the 
display. Players respond by touching the “left”, “center”, “right”, or “skip” 
buttons.  

2) Satellite Map Icons: Different icons are displayed, one at a time, on the 
satellite map shown on the right touch screen. Periodically, players are 
queried (the relevant response buttons beneath the satellite map will flash 
red to indicate a response is needed) about the icon’s direction (NSEW) in 
respect to their robot, or icon color (red, green, blue, yellow). Players may 
indicate uncertainty by choosing “skip” (earning a smaller point penalty 
than a miss). 

3) Symbolic Sounds: Players listen for several types of environmental sounds 
presented in a left front, left rear, center front, right front, or right rear 
auditory location. Periodically, players are queried (via an appropriate 
auditory cue) about the location of the most recent sound. Players may again 
indicate uncertainty by choosing “skip”. 

4) Spoken Sentences: Periodically, players are asked (via another spoken 
sentence beginning with their code name, “Delta” or “Echo”, respectively) 
a yes/no comprehension question about the most recently presented 
sentence. Players respond by touching either the “yes”, “no”, or “skip” 
button. 

5) Written Sentences: Players read written sentences displayed in a text box 
on the left touch screen, attending to the sentences beginning with their code 
name. Periodically, players are asked (via a written sentence beginning with 
their code name) a yes/no comprehension question about the most recently 
presented sentence. Players respond by touching the “yes”, “no”, or “skip” 
button. 

Alerting Task 

This task, meant to monitor vigilance, requires only that participants respond to the 
illumination of a large red warning screen “button” by touching the button as 
quickly as possible. Players are informed that the warning light may be illuminated 
at any time during the game, including during the rest periods. 
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Rest Periods 

Rather than operate using discrete (recorded) task blocks separated by (not 
recorded) rest periods, the high-demand task blocks in STRUM game are 
interrupted by low-demand (near-rest) periods. During these “rest” periods, players 
are permitted to stretch their arms and legs within a restricted range (so as not to 
dislodge the recording equipment), but are instructed to continue to monitor and 
respond as needed to the warning light. 

6.2.3 LSE Year 4 

In Year 4, data was collected from 38 participants in the STRUM experiment. 
Structural brain imaging data (T1, T2, and diffuse tensor imaging [DTI] structural 
magnetic resonance) have been collected from 16 of these participants. Individual 
electrical finite-element method (FEM) forward head models for these subjects are 
under construction. 

SCCN collected 17 sessions (on 34 participants) with dual EEG, eye gaze, and 
ground force tracking. In an additional 12 sessions (24 participants), for technical 
reasons, eye tracking was performed only on one of the participants. In an 
additional five sessions (10 participants), eye-tracking data was available for 
neither participant. A further three sessions (six participants) gave data that was not 
acceptable for various technical reasons. This gives a total of 37 sessions recorded 
from 74 participants. 

6.3 STRUM Data Analysis (UCSD) 

Beginning Year 5 (PY5), consortium members started collaborative research in 
exploring the rich data that was acquired in the STRUM experiments (described in 
Section 2.4.2). This section summarizes some of the analysis and exploration 
conducted at UCSD. 

6.3.1 ACA LSIE EEG-Focused Analysis (LSIE-EEG)  

During PY5 of the project, we have curated the LSIE STRUM data set previously 
collected under the LSE project (PY4) and defined five cognitive variables based 
on event markers present in the data sets (“response errors”, “target perception”, 
“attention focus”, “alertness”, and “task load” as defined in the Annual Program 
Plan [APP]), including some with several subtypes (such as perception of different 
kinds of stimuli and discretized and continuous subject performance measures). We 
have then implemented data analysis scripts for a large-scale batch analysis 
covering all cognitive variables and a total of 20 methods plus infrastructure for 
running these analyses efficiently on a cluster. The data set, curation scripts, and 
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data analysis scripts have been shared with any interested parties within the CaN 
CTA (DCS, Columbia, Syntrogi) for use in the other projects.  

Throughout the first half of the program year, we have completed the batch analyses 
proposed under Tasks 1 and 3, namely, a within-subject 5x cross-validation for each 
subject and cognitive variable, using all originally proposed methods for these 
respective variables, with the exception of Disciplined Cross-Spectral Regression 
(which we found to be prohibitively slow to compute). Two mid-course 
adjustments were to replace the multi-window Common Spatio-Spectral Patterns 
(mwCSSP; Lemm et al. 2005) method with the multi-window Filter-Bank Common 
Spatial Patterns (mwFBCSP; Ang et al. 2008) method, which we have found to 
perform better, and second, to replace an originally planned gaze-dependent visual 
spatial attention variable with a newly introduced task load variable since only 35 
subjects had a working eye tracker and preprocessing these data to the required 
quality level proved to be challenging.  

We have computed AUC/standardized mean square error (SMSE) performance 
measures, performed statistical tests to compare method performances in line with 
the project plan, and performed a first triage of the (many) results. All result files 
have also been transferred to DCS. The outcomes of computations from Tasks 1 
and 3 have been assessed and were reported at the PY5 all-hands meeting and 
midpoint review meeting. Among others, it was found that response errors could 
be predicted at rather good accuracies (AUC = 0.79) across all side tasks, which 
was rather unexpected due to the complexity and variability of errors across all 
these tasks. Other cognitive variables, such as the alertness variable, were found to 
be harder to predict accurately using the chosen methods (with AUCs around 0.6). 
In the case of the “target perception” cognitive variable specifically, we observed a 
strong dependence between achievable accuracy and stimulus type for reasons yet 
to be investigated.  

Following the completion of these tasks, we have implemented and ramped up the 
data analysis for Tasks 2 and 4, in which cross-subject transfer learning methods 
were applied to the LSIE STRUM corpus for subsequent continuation by Syntrogi 
after Mr Kothe had transitioned to that institution.  

Based on the Task 1 and 3 results, we have performed a number of in-depth follow-
up analyses of some of the cognitive variables (Task 6) in order to find fruitful 
directions for further study in PY6 research and beyond; notably, we have found on 
a preliminary subset of the data that it was possible to predict response errors ahead 
of time at above-chance accuracy based on cortical idle oscillations preceding the 
response. These early results became the basis for the PY6 direction of the project.  
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6.3.2 ACA Integrating Multi-Aspect Information (IMAI)  

Tasks 1 and 2: In PY5, we curated the LSIE STRUM data set for analysis with 
multimodal fusion methods, with a focus on EEG and EMG, gaze parameters, and 
motion capture parameters, and preprocessed the data of all 35 subjects who had all 
measures. We worked closely with the Columbia team in the areas of preprocessing 
and cognitive variable definition, and exchanged marker extraction and data 
cleaning scripts. We investigated the various cognitive variables that have 
previously been studied in the LSIE-EEG project with respect to their potential use 
in a multimodal fusion context. For this, we tested a number of simple baseline 
methods on all five cognitive variables to identify promising areas for further 
research. 

Task 3.1: We investigated commission of user errors across all experimental side 
tasks in response to potentially misperceived target stimuli as the most promising 
first direction, and implemented a three-level HDCA-based multimodal fusion 
approach that integrates information from both EEG and gaze parameters 
(including gaze coordinates and pupil parameters) relative to the stimulus 
presentation. Using this HDCA method, we found that incorrect responses can be 
predicted ahead of time at above-chance level when fusing EEG and gaze 
parameters, and that the fusion using this method yields a (modest but significant) 
empirical performance advantage over the EEG-only model measures across all 
subjects in the corpus (29 subjects analyzed, 6 with bad/missing data not included). 
Other methods in the generalized linear model (GLZ) framework were also tested, 
including logistic regression with various types of sparsity, but were found to be 
less performant. 

Toward the end of PY5, we have begun work on a paper with the Columbia team 
and Syntrogi, which has independently analyzed a related scientific question, 
although a somewhat different cognitive variable and subset of side tasks. We have 
also exchanged analysis approaches with DCS with the intent of transferring some 
analyses between the ODE data set and the STRUM data set. 

Generation of 4-layer head models and high-resolution source space: At the 
UCSD fMRI center, we acquired whole-head T1-weighted MR images with 1-mm3 
voxel resolution for 15 of the LSIE STRUM subjects using a 3-T GE MRI system. 
For these subjects, we generated four-layer realistic head tissue models via the NFT 
toolbox (Acar 2010) that models scalp, skull, CSF, and brain tissues. We generated 
both BEM and FEM head models. We also generated high-resolution cortical 
surface source spaces containing 80,000 sources for each subject using Freesurfer 
(Dale et al. 1999). The median surface area of the face of the elements on the source 
space mesh was 0.8 mm2. The tissue surface and cortical source space meshes for 
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one subject, as well as the locations of the 128 scalp electrodes, are shown in  
Fig. 6.2. 

 

Fig. 6.2 IMAI source space modeling. (Left) Scalp, skull, CSF, and brain surfaces for one 
subject including the measured 128 scalp electrode locations. (Right) High-resolution 
Freesurfer cortical source space for the same subject. 
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7. National Chiao Tung University (with UCSD Collaboration) 

The CaN CTA consortium founding members NCTU and UCSD have performed 
many research projects in tight collaboration. Two of their research projects are 
highlighted in this section with compilation of research plan objectives and progress 
reports. 

7.1 Neurotechnologies: Effects of Vehicle Motion and 
Cognitive Fatigue (VMF) 

Activity supported to overcome barriers included the following:  

• Development of experimental paradigms that capture the unfolding nature 
of multisensory stimulus streams experienced in real-world environments.  

• Discovery of models and novel methods for the identification and 
interpretation of statistical relationships among high-dimensional data sets 
characterizing the dynamics of environment, behavior, and brain function 
during complex task performance 

• The acquisition and analysis of data from a large participant sample 
allowing characterization of inter- and intra-individual variation to 
systematically study relationships between individualized models derived 
for cognitive monitoring and for individual differences in performance, 
cognitive ability, and personality 

7.1.1 VMF Year 1‒2 

VMF1: Drowsiness Assessment and Management (Y1-Y2).  

We planned to use the lane-keeping driving experiments developed in our previous 
work (Huang et al. 2005, 2007) to develop and test a drowsiness assessment and 
management (DAM) system, based on the wearable and wireless dry-electrode 
(WWD) EEG system developed under Wearable EEG Development and Testing 
(WDT)1, for continuously and accurately estimating shifts in an individual's level 
of alertness, as indexed by changes in their level of task performance. 

7.1.2 VMF Program Year 1 and 2 Accomplishments 

In Year 1, we extended our previous work on developing an individualized alertness 
monitoring model to estimate the level of alertness, as indexed by changes in their 
level of task performance, to study inter-subject variability in the relationship 
between the EEG power spectrum and task performance. We recruited 10 right-
handed, healthy volunteers (nine males, 18–28 years old) to participate the lane-
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keeping driving experiments developed in our previous work (Huang et al. 2005, 
2007). Each subject performed the experiment in the simulated realistic-driving 
environment. The four-lane road was separated by a median strip and the distance 
between the left and right sides of the road was equally divided into 250 points 
(digitized into values 0–250), where the width of each lane and the car was 60 and 
32 units, respectively. The refresh rate of highway scene was set at 60 Hz, which 
can properly emulate a car driving at a fixed speed of 100 kph on the highway. All 
scenes were updated according to the displacement of the car and the subject’s 
wheel handling. The car was randomly drifted away from the center of the cruising 
lane, which was controlled and triggered from the program, to mimic the 
consequences of a non-ideal road surface. The inter-deviation intervals were varied 
from 5 to 10 s and the car was deviated to either left or right side with the equal 
chance. This task required subjects to compensate the drifting by manipulating the 
steering to keep the car on the center of the third cruising lane (counted from left to 
right). EEG and behavioral data were simultaneously recorded during the 
experiments. Multi-channel EEG data were first decomposed into temporally 
independent brain processes using ICA. ICs were grouped based on similar scalp 
weight maps, dipole source locations, and power spectra across subjects. 

Major Results  

1) Behavioral results: Fluctuations in task performance. All subjects showed 
several periods of the fluctuated driving performances from small to large 
local driving errors (LDEs), sometime even abandoning control of the 
steering during the 100-min driving task. LDE values were distributed from 
0 to 70 and the majority of the LDE values ranged between 0 and 30. Since 
only limited trials were with LDE values over 30 across 10 subjects, only 
trials with LDE values below 30 were selected for further analyzing. The 
responses to the drifting event were ranged from 500 to 6000 ms, which 
corresponded to the values of the LDE between 0 and 30. Thus, the LDE 
values lower than 3 indirectly indicated the subject was alert. 

2) EEG peak frequency shifting: After the ICA of the EEG data, we found the 
detail changes at the alpha- and theta-band spectra in occipital component. 
The dominant frequency band is shifted from alpha to high theta band along 
with increases of the LDE indexes.  

3) Occipital component cluster: For characterizing the temporal changes of the 
LDE-related power spectra at the alpha and theta band in detail, the 
temporal profile of the power changes at alpha and theta band are distributed 
against the LDE indexes. The changes of the alpha-band power showed a 
non-monotonic profile along with the decreases of the alertness. 
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Specifically, the alpha-band power is linearly increased for the LDE index 
lower than 20 and then the power is slightly decreased for the LDE indexes 
between 20 and 30. The theta-band power shows a monotonic increase from 
low LDEs to high LDEs.  

4) Parietal component cluster: Similar changes on the LDE-sorted spectra are 
also observed at the parietal component, but the variations of the EEG 
activities are weaker than that observed at the occipital component. The 
peak intensities of the alpha- and theta-band power were significantly  
(P < 0.05) lower than those observed at the occipital component (alpha: 1.2 
vs. 2.1; theta: 0.8 vs. 1.5). Additionally, the rate of the spectral power 
increases at the alpha- and theta-band power is lower than those at the 
occipital cluster (alpha: 5 vs. 8; theta: 10 vs. 13). 

5) Frontal component cluster: As for the frontal cluster, a significant power 
increase is shown around 5 Hz at higher LDE values in the LDE-sorted 
spectra. Similar to the occipital and parietal clusters, the theta-band power 
is monotonically increased with the increases of the LDEs. The alpha-band 
power is only increasing slightly along with the decreases of alertness at the 
frontal cluster. 

6) Arousing feedback rectified lapse in performance and corresponding EEG 
power spectrum: We have also explored EEG dynamics and behavioral 
changes in response to arousing auditory signals presented to individuals 
experiencing momentary cognitive lapses. In this study, arousing auditory 
feedback was delivered to the subjects in half of the non-responded lane-
deviation events during a sustained-attention driving task, which 
immediately agitated the subject’s responses to the events. The improved 
behavioral performance was accompanied by concurrent power suppression 
in the theta and alpha bands in the lateral occipital cortices. This study also 
demonstrated the feasibility of estimating the efficacy of arousing feedback 
presented to the drowsy subjects by monitoring the changes in EEG power 
spectra (Jung et al. 2010; Lin et al. 2010). 

7.1.3 VMF Year 3  

VMF1: The Effects of Vehicle Motion and Fatigue on Brain Effective 
Connectivity During Driving (Y3‒Y5). 

As mentioned above, we have made a lot of progress on assessing inter-subject 
EEG correlates of fatigue in Years 1 and 2. In Year 3, Dr Lin of NCTU will 
investigate the complex brain networking within multiple ICs to verify the effects 
of vehicle motion and neurocognitive fatigue on the driver’s task performance in a 



 

90 

sustained-attention driving task. The causal relationship between ICs will be 
assessed by the multivariate vector autoregressive-based Granger causality model 
(GCM). Both time- and frequency-domain effective connectivity will be analyzed 
to explore dynamic information flows between different brain networks under 
different motions and cognitive states.  

VMF2: Vehicle Motion Simulator for LSIE Experiments (Y3‒Y4).  

The VMF team will finish the installation and testing of a one-person version of the 
CES laboratory interface to allow parallel experiments at NCTU and UCSD. The 
major stimulus resource unique to the NCTU laboratory is the moving vehicle 
platform, which will pose additional stress on subjects not possible in the stationary 
CES at UCSD. Furthermore, we will adapt the UCSD Simulation Neuroscience and 
Application Platform (SNAP) experimental protocols programming environment 
to test the effects of vehicle motion and human fatigue on attention, decision-
making, and situational awareness (see below). The goal of this task is to collect a 
large corpus of EEG and behavioral data that allow more robust training and testing 
of computational approaches to estimate the cognitive and behavioral states. 

VMF 3: To Develop an Online Cognitive Monitoring System based on the WWD 
EEG (Y3‒Y5). 

Based on the results of the studies on cognitive-state assessment and management 
conducted in Years 1 and 2, we plan to develop an online cognitive monitoring 
system based on the WWD EEG. The system will be capable of automatically 
removing EEG artifacts, extracting performance-related EEG features, and 
continuously monitoring the neurocognitive states of the wearers. The envisioned 
system will be systematically validated in the LSIE experiments. 

VMF 4: The Effects of Vehicle Motion and Fatigue on Attention, Decision-
Making, and Situational Awareness (Y3‒Y5). 

Attention switching refers to the ability to shift the focus of attention quickly 
between different tasks. It is highly correlated to decision-making. Situation 
awareness is the perception of environmental elements with respect to time and/or 
space, the comprehension of their meaning, and the projection of their status after 
some variable has changed, such as time. Attention, decision-making, and 
situational awareness will be the main focus of LSIE. Under VMF, we plan to adapt 
the LSIE protocols developed at UCSD to explore the effects of vehicle motion and 
fatigue on attention, decision-making, and situational awareness. To this end, we 
will first explore brain dynamics associated with shift attention. In particular, we 
plan to explore the feasibility of continuously detecting the focus of attention of 
individuals performing multiple tasks. We will then investigate the effects of 
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vehicle motion and fatigue on the human performance and the accompanied EEG 
dynamics. Note that the vehicle motion might pose additional stress on subjects, 
which tends to have negative impacts on human performance, but also provides 
motion cues that might assist subjects in developing their spatial awareness or 
navigation. This study will assess both positive and negative impacts of vehicle 
motion on human performance in the LSIE experiments. 

7.1.4 VMF Program Year 3 Accomplishments 

Neural Correlates of Kinesthetic Stimuli Introduced by the Motion Platform. 

We have studied the effect of the kinesthetic stimuli on the subject task performance 
and brain networks in a lane-keeping driving experiment on the NCTU motion 
vehicle simulator (MVS). Results of effective connectivity under the driving 
condition without kinesthetic inputs reveals the causal source of the brain network 
centered at the anterior and middle parts of the cingulate cortex (anterior cingulate 
cortex [ACC] and midcingulate cortex [MCC]) that connect with the contralateral 
sensorimotor cortex (SMC), PCC, and bilateral extrastriate cortex (ESC) by either 
unidirectional or bidirectional ways. Both regions co-modulate the activity of rest 
of the brain areas in deducing an extensive causality within the brain network 
responsible for the need on monitoring unexpected events during a pre-stimulus 
period. This finding can be explained by existing knowledge that the ACC is an 
interface of the motor control, performance monitoring, and attention response; the 
cingulated motor area in the MCC, one of the high-order motor areas, directly 
projects to the motor cortex and spinal cord and takes part in the processing of 
motor systems. Their underlying interaction with the prefrontal cortex forms a 
crucial communication between cognitive and motor systems to perform a given 
task, which supports the present causality toward the SMC.  

When the driving task involved kinesthetic feedback, the effective connectivity has 
an apparent shift of the causal center from the anterior to the posterior region. This 
K+ network shows a dominant causality at the PCC that receives causal information 
from the ACC and MCC and meanwhile sends causal information to the MCC, 
SMC, and ESC. This shift might be caused by the PCC taking charge of the 
evaluative function of monitoring sensory event and the processing of spatial 
information, thus to avoid perceptual ambiguity when the upcoming deviation 
event is present with both visual and kinesthetic forms. Sensory weighting 
interaction leads to increased activities in related regions processing attended 
information in one sensory modality and also deactivates the cortical regions 
associating with other sensory modalities when multiple stimuli are present 
simultaneously.  
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Vehicle Motion Simulator for LSIE Experiment. 

The motivation of this study is to understand human behavioral decision-making 
and evaluate statistical and computational methods for assessing brain dynamics 
under stress, cognitive fatigue, and attention shift in complex operational 
environments. Thus, the goal of this study is to explore the principles and methods 
to enhance operator situational awareness and decision-making under several forms 
of stress, cognitive fatigue, and attention shift, and thereby, improve total human–
system performance. During the third year, NCTU and UCSD collaborated to 
design the experiment to incorporate lane keeping and dynamic attention shifting 
tasks. The main simulation task was also modified from “navigation” to “deviation” 
to facilitate easier development within the short time and limited resources. In 
keeping with the UCSD LSIE design, audiovisual stimuli of spoken words, written 
words, icons, and tones were integrated in (with words in Taiwanese) with signals 
to subjects to shift attention differently at different points during the driving task. 
Piloting in this paradigm has been conducted. 

Online cognitive monitoring system was based on the WWD EEG: 

• We had proposed a new framework, the IC ensemble, to leverage 
neuroscience principles acquired from laboratory-oriented research into a 
truly automatic and online EEG-based BCI. The BCI includes  
1) independent source separation using ICA, 2) automatic selection of the 
independent components of interest (ICis) associated with human 
behaviors, 3) multiple classifiers with a parallel constructing and processing 
structure, and 4) a simple fusion scheme to combine the decisions from 
multiple classifiers. Its implications in BCI are demonstrated through a 
sample application: cognitive-state monitoring of participants performing a 
realistic sustained-attention driving task. Empirical results showed that the 
proposed ensemble design could provide an improvement of 7%~15% in 
overall accuracy for monitoring the arousal state and the driving 
performance of the participants. In summary, constructing ICi-ensemble 
classifiers and fusing their outputs suggest a practical option for ICA-based 
BCIs to eliminate the need to manually select ICi and reduce the risk of not 
obtaining any desired independent source or selecting an inadequate 
component. Most importantly, the ICi-ensemble design for integrating 
neural information across multiple brain areas creates a potential for 
developing more sophisticated yet practical BCIs for real-world 
applications. 

In the last year, our team completed the following works: 1) introduced the  
4-channel Mindo4 EEG device to record EEG signals from the forehead regions 
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(AF8, FP2, FP1, and AF7), 2) proposed an effective system for analyzing EEG 
data and mapping them onto the arousal level, and 3) implement the proposed 
algorithm on a Java-based graphical user interface (GUI) for online analysis. 
To validate the performance of the proposed system, we recruited eight subjects 
to participate in a 90-min sustained-attention driving task in a VR-driving 
environment. The preliminary result of using the proposed system demonstrated 
the feasibility of predicting the arousal level of the driver. We won the best live 
demo award at the 2012 IEEE EMB/CAS/SMC Workshop on Brain-Machine-
Body Interface (Mobile and Wireless EEG System for Predicting Lapse in 
Driving Performance). Next, the artifact removal technique will be 
implemented into this system to improve the performance of cognitive-state 
monitoring 

The effects of vehicle motion and fatigue on attention, decision-making, and 
situational awareness were the following: 

• Since distracted driving poses a serious threat to traffic safety, this study 
proposes an EEG-based BCI model to detect distraction/inattention. We 
designed five cases with different stimulus onset asynchrony (SOA) to 
investigate the distraction effects between the deviations and equations, and 
the experiment was based on a simulated driving experiment within an 
immersive the VR environment. The five different cases were math task  
400 ms before lane deviation, math and deviation onset simultaneous, math 
task 400 ms after deviation, math task only, and finally deviation only. 
Fifteen healthy participants (all male), between 20 and 28 years of age, were 
recruited from the university population. Power increases in the theta and 
beta bands were observed in relation with distraction effects in the frontal 
cortex. In the motor area, alpha and beta power suppressions were also 
observed. All distracted and concentrated EEG epochs were recognized 
with a self-organizing map (SOM). The accuracy of the proposed system 
approached approximately 90% for the recognition of EEG epochs of 
distracted and concentrated driving according to the frontal and left motor 
components. 

We also conducted a study to investigate the EEG correlates of attention shifts 
while driving and test the feasibility of monitoring drivers’ focus of attention 
based on the EEG activities. The features were extracted from the selected six 
components include the frontal, central, parietal, occipital, left motor, and right 
motor to monitor drivers’ attention. The samples extracted from pure lane-
deviation and math conditions were selected to build a ML classifier, which was 
based on a support vector machine (SVM), to recognize the brain activities when 
subjects focused on solely on math or lane deviation. The performance of 
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classification on the testing data was 84.74 ± 6.47% and 85.59 ± 5.23% for the 
math and lane deviation, respectively. In the case of the math problem before 
deviation, the subjects were mainly focused on the math (blue patches) for the first 
400 ms. After the onsets of the lane deviation, the outputs of the classifier 
remained low (blue) for the trials with short RT (the top portion of the plot), 
indicating the subjects focused on solving the math problems even as the lane 
deviation started. 

7.1.5 VMF Year 4 

VMF1: The Effects of Vehicle Motion and Fatigue on Brain Effective 
Connectivity during Driving.  

Summary of Project Objectives 

In Year 4, we applied Granger causality analysis on independent EEG sources using 
SIFT (developed by Tim Mullen, SCCN, UCSD) to construct the cortical effective 
connectivity. To study the effects of vehicle motion on brain effective connectivity 
during driving, each participant completed two driving sessions on separate days. 
One was denoted as the K+ session, in which as real-road driving experience 
participants received visual information combined with the kinesthetic and 
vestibular sense commensurate with every lane departure. The other was denoted 
as the K− session, in which the motion platform was deactivated and the participant 
had to take the initiative in visually detecting lane departures.  

Achievements 

1. Effect of vehicle motion on brain effective connectivity 

o Figure 7.1 shows the comparison of causal magnitudes under K− and 
K+ conditions when subjects exhibited optimal, suboptimal and poor 
performance. Edges indicate significant difference: either K− > K+ 
(bluish-dashed arrows) or K− < K+ (reddish arrows), and width of 
edges represents differential magnitude.  

o When subjects exhibited an optimal task performance, the causation 
in ACC→lSMC, MCC→PCC, ESC→lSMC, and ESC→ACC was 
stronger under the K+ condition. When the task performance was 
suboptimal, magnitude of connectivity was greater in MCC→SMCs 
under the K− condition and in ACC→PCC, PCC→SMCs, 
PCC→ESC, and ESC→lSMC under the K+ condition. When the 
task performance was poor, most of links did not differ between the 
two conditions, and only the PCC→rSMC coupling exhibited a 
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greater magnitude of connectivity when driving with a kinesthetic 
feedback than driving without such feedback. 

 

Fig. 7.1 Magnitude of connectivity observed in every pair of brain regions 

2. Effect of fatigue on brain effective connectivity 

o We applied ICA and partial directed coherence analysis to show the 
change of effective connectivity between distributed brain regions 
under different vigilance levels, including alertness, transition, 
drowsiness, and abrupt-awake, during the simulated driving. 

o The results of alpha coupling (Fig. 7.2) showed that the ESC sent a 
causal outflow to the anterior region and received a causal inflow 
from the posterior region while being alert, compared to being 
drowsy. Regarding the transition state, the anterior region played a 
major source to affect the rest of the brain region with a cross-
frequency coupling, and the connectivity magnitude had a relatively 
large causality, compared to other vigilance levels.  

o Additionally, most of causal magnitudes declined as subjects 
progressed into a drowsy state. Interestingly, the subjects enabled a 
short RT in response to traffic events when they abruptly awakening 
from the drowsy state, however, the causal magnitude climbed to 
the level as the transition state, rather than the alert state. 
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Fig. 7.2 Significant information flow of alpha band (8‒12 Hz) in four different arousal levels 

VMF2: Vehicle Motion Simulator for LSIE Experiments. 

Summary of Project Objectives 

The VMF team will finish the installation and testing of a one-person version of the 
CES laboratory interface to allow parallel experiments at NCTU and UCSD. The 
major stimulus resource unique to the NCTU laboratory is the moving vehicle 
platform will be able to pose additional stress on subjects not possible in the 
stationary CES at UCSD. Furthermore, we will adapt the UCSD DAS experimental 
protocols programming environment to test the effects of vehicle motion and 
human fatigue on attention, decision-making, and situational awareness. The goal 
of this task is to collect a large corpus of EEG and behavioral data that allow more 
robust training and testing of computational approaches to estimate the cognitive 
and behavioral states. 

Achievements 

• We have tested and modified the LSIE experiment and add the pure DAS 
task in each experimental session. 

• We have collected 103 subjects in the revised LSIE experiment. Then there 
were 103 EEG and behavioral data and 61 eye-tracker data of LSIE.  
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• All EEG data will be denoised and decomposed into independent sources in 
the brain by ICA using EEGLAB. After applying ICA to total 103 EEG 
data, we will separate these independent sources to several clusters for 
future group analysis.  

• In the preliminary analysis, the 31 behavioral data were separated into RT 
of DAS and Drive with auditory or visual shift attention task (Fig. 7.3). The 
results showed that the response times of DAS were no difference among 
all conditions of DAS with auditory task. The Drive task might increase the 
RTs for the DAS task, while the Drive task appeared after the DAS task 
with visual target. RTs of the Drive task would be the shortest in the pure 
condition and be the longest in the dual condition. 

• The same subject were used to explore the dynamic of brain activation. 
Twenty-six EEG data (five were excluded for larger noise) were 
decomposed into independent sources in the brain by ICA using EEGLAB. 
These components (Fig. 7.4) were grouped to seven clusters by k-means 
from the information of scalp maps, dipoles, and power spectra. These data 
of clusters were applied ERSP analysis for observing the time-frequency 
phenomenon. The results shown that there was delta-band power increase 
to prepare response in the motor cluster. There were also delta and alpha 
suppression in the frontal cluster, and alpha and beta decrease in the motor 
and occipital clusters. To compare DAS task with visual and auditory target, 
the alpha and beta power suppression were more negative in the pure and 
mixed DAS task with a visual target. 



 

98 

 

Fig. 7.3 The summary reaction time of 31 preliminary behavioral data. (Upper panel) 
Average RT for DAS and (lower panel) average RT for driving; (right) visual condition and 
(left) auditory condition.  

Note: pureD: Pure DAS experiment; pure dr: Pure driving deviation (lane-keeping driving) 
experiment; mixD: DAS task appeared between two driving deviation experiments; mix_dr: 
Driving deviation experiments appeared between two DAS tasks; dual: DAS task and driving 
deviation experiment appeared at the same time; D>dr: DAS task appeared before driving 
deviation experiment; dr>D: DAS task appeared after driving deviation experiment; (v): 
visual DAS target; (s): auditory DAS target. 
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Fig. 7.4 EEG data were decomposed and grouped to some frontal, motor, parietal, and 
occipital clusters 

VMF3: To Develop an Online Cognitive Monitoring System based on the WWD 
EEG.  

Summary of Project Objectives 

In Year 4, we have remodeled the framework of real-time drowsiness monitoring 
system (Fig. 7.5). After applying bandpass filter (0.5-50 Hz) and fast Fourier 
transformation (FFT), the pre-stimulus EEG spectra of all experimental trials were 
segmented and formed as a training data set of N samples. Each training sample 
was accompanying with the behavioral performance in response to the given task 
indicating the presumable vigilance of the driver.  
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Fig. 7.5 Design of EEG signal acquisition, processing, and analysis system 

Achievements 

1) Build a real-time drowsiness monitoring system 

o Regarding the core of the prediction system, the linear regression model 
was replaced by the SVR to model the relationship between EEG and 
behavior. Finally, the predicted outputs were converted to eight levels 
of vigilance. To obtain an accurate estimation, we proposed a weighted 
algorithm for online time-frequency analysis. The EEG signal was 
successively feed into weighted time-frequency analysis before 
applying SVR. As shown in Fig. 7.6, power spectral density (PSD) of 
the t-th EEG trial (a 2-s EEG signal) was the weighted average of 
spectral powers, which was calculated from {t-p+1}-th, …, {t-k-1}-th, 
…, t-th EEG trials, where k ≤ p. Windowed 128-point epochs were 
extended to 256 points by zero-padding. The obtained EEG power 
spectra were further converted to a logarithmic scale prior to further 
analysis. Then, a weighted-averaging filter was used on all the PSDs to 
further obtain a smoothing a PSD estimation. 
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Fig. 7.6 Weighted spectral power estimation 

2) Performance validation of online drowsiness monitoring system  

o An attempt was also made in Year 4 to verify the feasibility of the 
proposed system by further implementing this new SVR model in Java 
language as an Android application. The parameters of the implemented 
model (including slack parameter of SVR, gamma value of radial basis 
function [RBF] kernel, and support vectors of the obtained model) were 
trained using MATLAB software. Figure 7.7 shows a temporal 
relationship between the vigilance levels predicted by the proposed 
system and driver’s behavior in response to regular traffic events or 
emergencies when the participant performed the lane-departure driving 
task for approximately 70 min. The result showed that these two time-
series data were highly correlated. Additionally, vigilance changes 
could be detected by the system, and the trend of the declining vigilance 
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could be considered as a useful index to alert drivers to the danger before 
server behavior lapses occurred. 

 

Fig. 7.7 Temporal changes in a) the vigilance level predicted by the proposed system, b) the 
vehicle trajectory, and c) the RT observed during a 70-min experiment. 

VMF4: The Effects of Vehicle Motion and Fatigue on Attention, Decision-
Making, and Situational Awareness. 

Summary of Project Objectives 

We reported differences in task performance and EEG spectra while participants 
performing two cognitive tasks separately and simultaneously: lane-keeping 
driving task and mathematical problem-solving tasks. The tonic changes associated 
with behavioral performance were highly related with the brain dynamics in the 
central area. The phasic brain dynamics related to driving and math tasks were 
clearly different, and can be accurately and continuously detected by ML classifiers 
(with the performance reached 84.80 ± 2.71% and 85.79 ± 1.34%, respectively). 
Finally, the relevance between the behavior performance and brain activity showed 
that the participants shifted their attention dynamically to achieve optimal 
performance in the dual-task conditions with two visual stimuli. We envision a 
practical, real-time attention detecting/tracking system to improve road safety.  
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Achievements 

• Table 7.1 details the average behavioral performances of the math and 
driving tasks in the single- and dual-task conditions. Comparison of the STs 
for the math problems in the pure condition, the participants responded to 
the lane deviations faster and with less variation.  

Table 7.1 Behavioral performances in the math and driving task 

 Case 1 (D) Case 2 (M) Case 3 (M/D) Case 4 (D&M) Case 5 (D/M) 
Math X 1850.2(495.2) 2095.2(656.4) 1985.3(549.1) 1963.6(557.5) 

Drive 708.4(97.4) X 741.7(165.1) 746.5(119.7) 756.3(167.9) 

 

• Figure 7.8 shows the (onset) RTs to the lane-deviation events (black line), 
(offset) RTs to the lane deviations (red line), and the solution times (STs) 
for the math problems (blue line). The behavioral performance of both tasks 
decreased in the dual-task conditions. Across all epochs in the three dual-
task conditions, the participants achieved better performance in responding 
to lane deviations in Case 3 (M/D) and achieved shorter STs for the math 
problems in Case 5 (D/M). In Cases 3 (M/D) and 4 (D&M), the response 
offsets to lane deviations slowly declined as the STs for the math problems 
increased. In Case 5 (D/M), the RTs of the lane deviation were less sensitive 
to the STs for the math problems (i.e., the RTs were relatively flat across 
the variation in STs). The longest mean STs for the math problems were 
observed in Case 3 (M/D) in which the math equations were presented in 
the first 400 ms; during this time, the participants presumably concentrated 
only on the math problems.  
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Fig. 7.8 The behavioral relationships between participants’ responses to the lane-deviation 
and math problems in the distracted driving 

• The lane deviation subsequently appeared on the screen and forced the 
participants to shift their attention to the driving events. In Cases 4 (D&M) 
and 5 (D/M), the average STs for the math problems and RTs to the lane 
deviations were also longer than those in the single-task conditions. In  
Case 5 (D/M), the response offsets to lane deviations were not noticeably 
different between the epochs with longer and shorter STs. In this condition, 
the lane deviation was displayed first, so the participants presumably 
concentrated on the driving task. The RTs to the lane deviations is averagely 
756.3 ms. So, the participants could almost allocate more attention on math 
problems when the equation appeared. 

• The performance-related tonic (pre-stimuli) changes the ICs located in 
frontal, central, parietal, and occipital while performing the driving or math 
tasks.  
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• The decreased wide bands in the central, alpha band in the parietal, alpha 
band in the occipital, and beta band in the occipital were significantly 
explored as the decreasing driving performance (RTs). The decreased wide 
bands in the central were significantly related to the increased STs of the 
math problem. 

• The mainly significant differences of performance-related tonic spectral 
changes are plotted in Fig. 7.9. Here the central delta, central alpha, central 
beta, parietal alpha, occipital alpha, and occipital beta were selected. The 
mainly brain activity related to the behavioral performance was found in the 
central area. The curve in each figure reveals the oscillation in specific 
frequency bands.  

 
Fig. 7.9 The specific frequency bands in the lane-deviation driving and problem-solving 
mathematic tasks 
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The figures in left (right) panel were related to driving (math) task. The red 
lines indicate the significant difference compared with the epochs 
distributed in the Top 20%. When the behavioral performance of driving 
and math tasks decreased, the decreased power of the wide bands was 
explored in the central area. Especially, the occipital beta was also 
significantly decreased when the RT of the lane deviation was increased. 
The alpha band in the parietal and occipital was also found in those epochs 
with slower RTs of the driving task. When the STs of the math task was 
increased, the significantly decreased power of the wide bands was 
explored. In the other areas, there was no clear phenomenon related to the 
changes of STs. The dimension of features is 120 from six brain areas, and 
we apply LDA to select important features. Figure 7.10 shows the selected 
features and the significant different in the power spectrum while reacting 
to two types of tasks. The + represents selected bands and the * means 
significant different. 

 
Fig. 7.10 The significant difference and selected frequency bands were marked in the PSD 
from six brain areas 

• Relevance vector machines (RVMs) can improve the performance by fewer 
features than the previous study. We compare the performance by SVM 
with radio basis function kernel (SVMRBF) in Table 7.2 and RVM with 
linear kernel in Table 7.3. The classification performance decreased about 
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5% averagely by RVM. By SVM, the classification performance was 84.8 
and 85.79 for recognizing math and driving, respectively. 

Table 7.2 The classification performance by SVMRBF 

 Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Average 
Math 81.02(6.97) 86.58(6.47) 87.77(4.66) 82.25(7.34) 86.79(5.54) 84.43(6.97) 84.80(2.71) 
Drive 87.27(4.79) 87.51(5.84) 85.16(6.12) 85.21(4.21) 85.56(5.96) 84.04(5.90) 85.79(1.34) 

Table 7.3 The classification performance by RVM 

 Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Average 
Math 79.74(8.37) 77.93(8.93) 82.84(5.05) 78.45(7.56) 82.56(6.89) 76.75(8.04) 79.66(7.15) 
Drive 83.12(5.8) 82.43(7.71) 78.10(6.79) 83.93(6.71) 82.02(7.06) 79.80(6.86) 81.56(6.32) 

 

• One focus of attention (FOA) classifier based on SVMRBF was 
investigated to track the attentional states. Figure 7.11 (a‒c) plots the 
estimated FOA. In each subplot, the first black vertical line represents the 
time point of the first event onset, and the second one represents the ST of 
arithmetic problem. Epochs were sorted by the ST of the math equations in 
each of the figures, so the longer ST epochs with longer ST were plotted at 
the lower part of the figures. The binary outputs of the FOA detection model 
were 1 (colored-coded with a warm color) (vs. ‒1) if the brain activity 
indicated that the subject was focusing on the driving task (vs. the math 
problem). 

• To quantitatively investigate the relationship between the ST of math 
problems and duration of FOA on driving, Fig. 7.11 (d‒f) plots the total 
numbers of 400-ms windows during which the FOA was on driving when 
the participants were supposed to solve the math problem for Case 3 (M/D), 
Case 4 (D&M), and Case 5 (D/M), respectively. Each point represented a 
single EEG epoch. As shown in Fig. 7.11 (d‒f), the number of driving 
windows increased as the STs of the math task increased.  
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Fig. 7.11 The estimated FOA by the SVMRBF during the driving-math dual tasks and the 
relationship between the ST and the estimated FOA on driving 

• The overall correlation coefficients between the numbers of the 400-ms 
window during which the FOA was on driving and the STs of the math 
problem were 0.68 and 0.64 in Case 3 (M/D) and Case 5 (D/M), 
respectively. The correlation coefficient was lower (0.54) in Case 4 (D&M) 
in which the lane-deviation events and math problems were presented 
simultaneously. 
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7.2 Neurotechnologies: Wearable EEG Development and 
Testing (WDT) 

Activity supported to overcome barriers included the following: 

• Development and employment of novel, wearable sensor suites for 
monitoring brain and body dynamics during naturalistic behavior, as well 
as software systems to enable integrated monitoring capabilities 

7.2.1 WDT Research Goals 

EEG is the only brain imaging modality with high temporal and fine (potentially 
cm2-scale) spatial resolution that is lightweight enough to be worn in operational 
settings. Because of current limitations in size, weight, and cost of available EEG 
systems, early BCI systems have been designed to use a minimal number of 
recording channels. Our alliance includes collaborators from NCTU, Taiwan, who 
are designing, building, and testing ultra-lightweight, wearable, wireless, low-cost, 
whole-head, microelectronic EEG systems with successively higher sensor 
densities (Lin et al. 2008a; 2008b). The NCTU multi-channel dry-electrode 
wireless EEG system will be tested in parallel with standard EEG recording. 
Portable systems are already available and are in use by us to study the EEG 
dynamics accompanying motivated actions in normal 3-D environments (Makeig 
et al. 2009). The research we propose tests and demonstrates the value of wearable 
EEG system and other psychophysiological recording in neuroergonomic systems 
designed for operational use and its applications.  

The goal of this research thrust is to design, develop, and test a wearable and WWD 
EEG human–machine interface that can allow assessment of brain activities of 
participants actively performing ordinary tasks in natural body positions and 
situations within a real operational environment. Monitoring the 
neurophysiological activities of Soldiers in an operational environment poses a 
severe measurement challenge using current laboratory-oriented biosensor 
technology. We recently demonstrated the feasibility of using dry EEG sensors and 
miniaturized supporting hardware/software to continuously collect EEG data 
recorded from four non-hairy forehead sites in a realistic VR-based dynamic 
driving simulator (Lin et al. 2008). Here, we further develop and test new methods 
of performing higher-density dry-electrode EEG acquisition and online/onboard 
signal processing for assessing cognitive performance of participants in operational 
environments. 
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7.2.2 WDT Year 1‒2 

We investigated and developed methods for assessing individual cognitive status 
and performance in military environments using the WWD EEG systems. Online 
neuroergonomic systems capable of measuring and processing concurrent neural, 
behavioral, psychophysiological, environmental, and system operational data could 
allow continuous estimation of subjects’ cognitive state to design and operate 
systems that maximize operator cognitive capacity as well as overall human/system 
performance. Our overall research goal in this area was to develop and test a user-
acceptable and wireless EEG-based cognitive state monitoring and management 
system capable of high-definition recording, online artifact cancellation and signal 
processing, and cognitive-performance detection without use of conductive gels 
applied to the scalp, in military environments. 

WDT1: Developing Successively Higher-Density WWD EEG System (Y1‒Y4). 

During the first two years (Y1+Y2), Dr Lin’s team at NCTU designed and 
fabricated a multi-channel WWD EEG system. During the following years, they 
designed and fabricated successively higher-density systems for acquiring EEG 
signals without requiring conductive paste or scalp preparation. Features of the 
target EEG system include 1) lightweight dry EEG sensors to measure EEG signals 
from the whole head; 2) a miniaturized, lightweight DAQ circuit board featuring 
bio-amp, analog-to-digital converter (ADC), filters, and wireless telemetry to 
maximize portability and wearability of the system; and 3) integration of the dry 
sensors and DAQ board into a quickly and easily donned and doffed electrode cap. 

7.2.3 WDT Year 1–2 Accomplishments 

Dry foam-based electrode: A novel dry foam-based electrode was developed for 
long-term EEG measurement at both non-hair and hair-covered sites. The dry foam 
electrode was fabricated by electrically conductive polymer foam covered with 
conductive fabric. 

Impedance variation for long-term measurement: We conducted a series of 
experiments to test the skin–electrode impedance of the new foam-based sensor. 
The results of this study showed that the impedance between the skin and the dry 
foam electrode is similar to that of conventional wet electrodes with conductive gel. 

Comparison of signals quality measured by using different electrodes: The linear 
correlation coefficient function in MATLAB (R2007a, The MathWorks) was used 
to evaluate the difference of EEG signals measured by different electrodes. The 
results showed the averaged correlation between conventional wet and new dry 
foam-based electrodes was very high. 
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Wireless DAQ circuit board: Electrical activity generated by large populations of 
active neurons has to penetrate through skin, skull, and several other layers before 
electrodes placed on the scalp can measure it. The measured signals need to be 
massively amplified before they can be analyzed and interpreted. Because the EEG 
signals are very feeble and the impedance between electrode and skin is quite high, 
the measurement system should have high impedance to reduce the loading effect. 
For this reason, we developed a wireless 16-channel EEG signal acquisition module 
consists of front-end amplifier (FEA) circuit, ADC, microprocessor, and wireless 
communication circuit in Year 1. 

EEG cap (helmet) with 16 electrodes: We developed an easy-to-use EEG 
cap/helmet with the novel sensors. The EEG cap features 16 dry electrodes; a 
miniature, battery-powered DAQ; and wireless telemetry.  

Collaboration: NCTU team provided a 16-channel spring-loaded dry electrode 
EEG cap (MINDO-16) along with software to ARL for testing in the US Army 
Tank Automotive Command (TARDEC) Experiment 17. 

7.2.4 WDT Year 3 Accomplishments 

WDT1: Developing New and Novel Dry Sensors (Y3‒Y4)  

During Year 3, in order to verify the biocompatibility of dry EEG sensors to avoid 
allergies or hypersensitivity from the users, we conducted a cytotoxicity test 
(Guidance: ISO 10993-5) and a skin irritation test (Guidance: ISO 10993-10) on 
the NCTU spring-loaded and Ag-silicon-based sensors.  

WDT1.1: Searching for Better Conductive Materials for Dry Sensors.  

In Year 3 we further designed and fabricated a new silicon-based dry sensor to 
alleviate the problems. This conductive poly rubber mixed with Ag particle 
materials does not cause any skin irritation and is also non-cytotoxic in vitro. The 
new sensors can be applied to different areas or devices for long-term recording. In 
addition, we also collected some data and compared the frequency responses and 
ERPs of the new dry sensors against that of wet sensors (Neuroscan). 

WDT1.2: Integrating Active Sensor with Miniature Circuit Board Development 
of an Active Circuit with an Onboard Amplifier (WDT1.2 in Year 3). 

To further reduce the noise level of EEG recording, we have developed an active 
sensor integrating a dry sensor and an active sensor circuit (diameter: 11.9 mm) 
consisting of a) a high gain (9752X) amplifier, and b) a low-noise design with a 
band-pass filter of 0.103~125 Hz. A bus circuit board for data transmission among 
all sensors has also been designed and fabricated. The bus circuit board reduces the 
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number of wires and, more importantly, the sensing noise. To test the effectiveness 
of the active sensor, a comparison between ERPs collected by an active-sensor 
system and Neuroscan system during a visual oddball task was conducted to 
evaluate the performance of active sensor. The result shows a high correlation 
(>90% in the time domain) between the signals measured by different 
sensors/systems. 

WDT2: Developing Successively Higher-Density WWD EEG Systems (Y4).  

WDT2.1: The Multi-Channel Mobile and Wireless EEG Systems 
(WDT2 in Year 3). 

In Year 3, we developed several mobile and wireless EEG systems comprising a 
miniature battery, amplifiers, high-pass filters, ADCs, and a wireless controller. It 
is lightweight, miniature, and wireless. Currently, there are five form factors: 2-, 
4-, 16-, 32-, and 64-channel EEG systems. The dimensions of circuits of 2/4- and 
16-channel EEG system are 45 × 30 and 50 × 35 mm, respectively. The dimensions 
of circuit boards of the 32- and 64-channel EEG systems are 66 × 35 and  
2 × 66 × 35 mm, respectively (for 64-channel EEG system, two circuits of  
32-channel EEG system are integrated). The system can acquire high-quality EEG 
signals with a maximum sampling rate of 1,024 Hz and a maximum resolution of 
24 bits. The EEG systems are stable and safe, and have passed CE and FCC 
certifications. Due to the bandwidth limitation of Bluetooth transmission, we have 
to make a compromise between sampling rate and resolution in a high-density 
wireless EEG. For the 32-channel systems, the two combinations of sampling rates 
and resolutions are 512 Hz/16 bits and 254 Hz/24 bits. For the 64-channel one, the 
best combination of the sampling rate and resolution is 128 Hz and 16 bits. 

Several dry and wireless EEG/BCI devices have been developed and used to 
acquire user’s EEG signals continuously. The active dry sensors amplify measured 
signals at a very early stage to improve SNRs. The novel head circumference 
adapted mechanical design reduces user setup time and extends the duration of 
system wearability. Wireless telemetry allows ubiquitous brain monitoring and 
increases user mobility. The systems can easily be used by technicians with limited 
experience and naïve participants. 

Evaluating the EEG Signals Acquired by the WWD EEG Systems 
(WDT2 in Year 3). 

We have conducted an experiment to evaluate the quality of EEG signals acquired 
by MINDO-32. In the experiment, participants were asked to blink, clinch their 
teeth, and close their eyes to verify the quality of EEG signals.  
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Evaluating the EEG Signals Acquired from Non-Hair-Bearing Sites 
(WDT2 in Year 3). 

Even with the advances in spring-loaded dry EEG sensors, acquiring good-quality 
EEG signals from the hair-covered occipital sites is inevitably more difficult than 
from non-hair-bearing sites. We have systematically and quantitatively investigated 
the feasibility of measuring SSVEPs from non-hair-bearing regions, compared to 
those measured from the occipital areas. Empirical results showed that the signal 
quality of the SSVEPs from non-hair-bearing areas was comparable with, if not 
better than, those measured from hair-covered occipital areas. These results might 
significantly improve the practicality of a BCI system in real-life applications, 
especially when used in conjunction with dry foam-based EEG sensors. The results 
have been published in the Proceedings of the IEEE EBMC 2012. 

WDT2.2: The Multi-Channel Mobile and Wireless EEG Recording Software 
(WDT2 in Year 3). 

In Year 3, NCTU group developed EEG acquisition software for different platforms 
including Windows XP/7/8 and Android 2.1 or higher. The Windows platform 
software supports notch filter (50 and 60 Hz), data saving in different formats (txt/ 
edf/bdf), and event synchronization through RS232. Recording software for the 
Android platform incorporates all the functions on the Windows platform and an 
additional function to select channel and/or brain area of interest. We also 
incorporate an online ERP analysis package into the acquisition software. The 
software automatically averages and plots the ERPs time-locked to stimulus onsets. 

WDT3: Applied the WWD EEG System to Study Human Cognition (Y3‒Y5). 

Since working memory is one of the important cognitive processes in human 
cognition and has been widely studied, in the past year, we modified a classic 
working memory paradigm—Sternberg working memory task—to verify the 
feasibility of using MINDO-32 for studying human cognition. Participants see 
black or green letters in uppercase appear in succession, and have to remember the 
letters that are presented in black and ignore green ones. Then, they have to make 
response by pressing the corresponding button to indicate whether a red letter, 
which is in lowercase, appears in the previous trial or not. Feedback will be given 
after each response. Thirteen subjects have participated in this working-memory 
experiment as of today, and seven of them wore MINDO-32 and the rest of them 
wore traditional wet electrodes (Neuroscan, Inc).  
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WDT3.1: Testing the WWD EEG System in Driving Experiments in MVS (Y3) 
Real-Time Dry-Sensor Based Cognitive-State Monitoring.  

In Year 3, our team completed the following works: 1) use the MINDO4 EEG 
device to record EEG signals from the forehead regions (AF8, FP2, FP1, and AF7),  
2) propose an effective system for processing EEG recordings and converting them 
into the arousal level, and 3) implement the proposed algorithm on a Java-based 
GUI for online analysis. To validate the performance of the proposed system, we 
had recruited eight voluntary subjects to participate a 90-min sustained-attention 
driving task in a virtual-realistic driving environment. The preliminary result of 
using the proposed system was able to predict the arousal level of the driver. We 
won the best live demo award at the 2012 IEEE EMB/CAS/SMC workshop on 
brain–machine–body interface (Mobile and Wireless EEG System for Predicting 
Lapse in Driving Performance). Next, the artifact removal technique will be 
implemented into this system to improve the performance of cognitive-state 
monitoring. 

WDT4: Developing and Evaluating Online Signal-Processing Methods for 
Artifact Removal of the EEG Data Acquired by the WWD EEG System.  

EEG recorded outside the laboratory using the new dry EEG must take into account 
and handle possible large increases in the magnitude and nonstationary character 
of EEG artifacts and/or system noise relative to laboratory recordings. Thus, for 
robust and maximally efficient EEG monitoring, explicit or implicit identification 
and separation of brain source signals of interest from non-brain and other less-
relevant brain source signals are essential (Makeig et al. 2012). During the past 12 
months, UCSD WDT team has developed and tested a new method, ASR, for online 
and real-time rejection of EEG artifacts that are localized to low-dimensional 
spatial subspaces on a short timescale (<1 s). ASR is a highly effective and robust 
spatial artifact rejection that intuitively can be thought of as projecting high-
amplitude artifact subspaces out of the data.  

WDT5: Developing and Evaluating a Wearable and wireless MoBI (WWMoBI) 
Apparatus for Motion-Artifact Removal of the EEG data.  

UCSD WDT team has been working with NCTU collaborator Dr John Zao 
(currently not funded by CTA) to develop and test BodyDyn, a battery-powered, 
wearable and wireless motion and posture capture system based on 10- degree-of-
freedom (DOF) microelectromechanical system (MEMS) sensors. The first 
prototype has been developed. The system consists of a single (2 inches × 1.4 inches 
× 0.5 inch) master device and up to four (0.75 inch × 0.5 inch × 0.15 inch) slave 
devices, each of which can be attached easily to user’s body or clothing. Each slave 
device can capture a stream of 9-DOF motion data including the 3-D linear 
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accelerations, the 3-D angular accelerations, and the 3-D magnetic flux 
measurements up to a hundred samples per second while the master device can 
capture an additional 24-bit barometric pressure reading that can be used to detect 
altitude changes as little as 20 cm. Each of these devices is actually a miniature 
implementation of the attitude heading reference system (AHRS) that was used for 
inertial navigation in aviation. The master device is equipped with a powerful 
ARM-9 (cell phone) CPU and a Java virtual machine. Hence, it can run 
sophisticated signal-processing and application programs written in Java. The 
entire system can communicate with a smart phone via the Bluetooth 2.1 EDR+ 
Radio and integrate seamlessly with the Android mobile platform through the MIT 
FUNF Open Sensing Framework. Currently, we are integrating BodyDyn with 
NCTU MINDO EEG systems for motion-artifact removal. 

7.2.5 WDT Year 4 

WDT 1: Developing New and Novel Dry Sensor.  

• We developed a novel dry sensor: Ag-silicon-based sensors and we have 
also performed auditory ERP test with Ag-silicon-based sensor to evaluate 
that MINDO system is able to catch P300 feature.  

WDT 2: Developing Successively Higher-Density WWD EEG Systems. 

• 4-channel headband 

o The new MINDO 4S jellyfish (Fig. 7.12) has replaceable electrode 
band mechanism that can be used on the frontal or occipital area 
with dry sensors (flat Ag-silicon or spring-loaded). In this updated 
version, we also integrated SD card into the system, allowing for 
over one day of data saving. Removable SD card slot provides the 
usability of data retrieving and management. 

 
Fig. 7.12 4-channel MINDO headband 
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• 32-channel design 

o We modified MINDO-32 Trilobite form-factor design (Fig. 7.13) to 
make it more feasible and degrees of freedom to fit the 
many variations in head shape and size. The electrodes are now 
fitting the scalp better with easy-to-operate knobs and the net weight 
has reduced about 100 g. With metal electrode clips on earlobe, the 
headset used totally dry electrodes for EEG recording. 

 

Fig. 7.13 MINDO 32 

• 64-channel design 

o The MINDO 64 Coral (Wi-Fi) (Fig. 7.14) consists of a) an 
integrated circuit with PGA/filter/ADC, b) a low-power design: 
dynamic amplifier and ADC, and c) a low-noise design. Wi-Fi 
transmission provides a high-quality EEG signal and stable 
connection. User can adjust the size and structure of MINDO-64 
EEG cap by correcting the angle of rubber mechanism with a good 
fit, and making the circumference of the movable mechanism wider 
to get better contact. With the detachable circuit box, the user can 
replace or recharge the system in an easy way. In addition, by 
replacing the inner soft cap, this EEG system can fit from children 
to adults regarding the several of head shape and sizes. 
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Fig. 7.14 64-channel MINDO-64 

7.3 Publications and Transitions (UCSD, NCTU) 

Throughout the life of the CaN CTA program, teams of collaborators at UCSD and 
NCTU, led by Drs Scott Makeig (UCSD), Tzzy-Ping Jung (UCSD), and Chen-Ting 
Lin (NCTU), have been extremely productive in all types of publications, tools 
transition, and talent transition. Some of the publications and transitions are 
mentioned in this section, but many are not. Some of the publications are 
highlighted in the publications compendium, and further search can be made 
through the Google scholar search: "W911NF-10-2-0022" - Google Scholar. 

Chiu T-C, Gramann K, Ko L-W, Duann J-R, Jung T-P, Lin C-T. Alpha modulation 
in parietal and retrosplenial cortex correlates with navigation performance. 
Psychophysiology. 2012;1: 43–55. 

Chuang CH, Huang CS, Ko LW, Lin CT. An EEG-based perceptual function 
integration network for application to drowsy driving. Knowledge-Based 
Systems. 2015;80:143–152. 

Chuang CH, Ko LW, Jung TP, Lin CT. Kinesthesia in a sustained-attention driving 
task. NeuroImage. 2014;91:187–202. 

Chuang CH, Ko LW, Lin YP, Lin CT, Jung TP. Independent component ensemble 
for brain-computer interface. IEEE Trans Neural Syst Rehabilitation Eng. 
2014;22(2):230–238. 

  

https://scholar.google.com/scholar?hl=en&q=%22W911NF-10-2-0022%22&btnG=&as_sdt=1%2C21&as_sdtp
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Chuang C-H, Huang C-S, Lin C-T, Ko L-W, Chang J-Y, Yang J-M. Mapping 
information flow of independent source to predict conscious level: a Granger 
causality based brain-computer interface. IEEE. 2012. 
https://doi.org/10.1109/IS3C.2012.209. 

Chuang C-H, Liu Y-T, Wang J-M, Lin C-T. Changes in alertness and the EEG 
effective connectivity in a sustained-attention driving task. J Neurosciand 
Neuroeng. 2016. 

Chuang S-W, Ko L-W, Lin Y-P, Huang R-S, Jung T-P, Lin C-T. Co-modulatory 
spectral changes in independent brain processes are correlated with task 
performance. NeuroImage. 2012;62(3):1469–1477. 

Huang C-S, Pal NR, Chuang C-H, Lin C-T. Identifying changes in EEG 
information transfer during drowsy driving by transfer entropy. Front 
Neurosci. 2015. 

Ko LW, Komarov O, Hairston WD, Jung TP, Lin CT. Sustained attention in real 
classroom settings: an EEG study. Front Hum Neurosci. 2017;11:388. 

Ko LW, Wei CS, Chen SA, Lin CT. EEG-based motion sickness estimation using 
principal component regression. 2011. 

Ko L-W, Kalyan S, Lin SC. Development of single channel hybrid BCI system 
using motor imagery and SSVEP. J Healthc Eng. 2017. 

Lee H-E, Wang W-C, Lu S-W, Wu B-Y, Ko L-W. Home-based mobile cardio-
pulmonary rehabilitation consultant system. IEEE; 2011. 
https://doi.org/10.1109/IEMBS.2011.6090229. 

Li S-Y, Yang C-H, Ko L-W, Lin C-T, Ge Z-M. Implementation on electronic 
circuits and RTR pragmatical adaptive synchronization: time-reversed 
uncertain dynamical systems’ analysis and applications. Abstr Appl Anal. 
2013;1–10. https://doi.org/10.1155/2013/909721. 

Li S-Y, Yang C-H, Lin C-T, Ko L-W, Chiu T-T. Chaotic motions in the real fuzzy 
electronic circuits. Abstr Appl Anal. 2013;1–8. 
https://doi.org/10.1155/2013/875965. 

Liao LD, Chen BW, Tseng KC, Ko LW, Wang IJ, Chang JY, Lin CT. Design and 
implementation of a wearable and wireless multi-channel 
electroencephalography (EEG)-based brain-computer interface device with 
the novel dry sensors. Accepted by Sensor Letters. 2012. 
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Liao LD, Lai HY, Lin CT, Chen YY. Design and experimental verification of a 
novel light-addressable multi-electrode arrays chip for multi-channel neural 
signal recording. Accepted by Journal of Neuroscience and Neuroengineering. 
2012. 

Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT. Design, fabrication and 
experimental validation of a novel dry contact sensor for measuring 
electroencephalography signals without skin preparation. Sensors. 
2011;11(6):5819–5834. 

Liao LD, Wu SL, Liou CH, Lu SW, Chen SA, Chen SF, Ko LW, L CT. A novel 
16-channel wireless system for electroencephalography measurements with 
dry spring-loaded sensors. IEEE Trans Instrum Measure. 2014;63(6):1545–
1555. 

Liao L-D, Chang Y-J, Lai H-Y, Lin C-T, Tsang Z-M, Chen Y-Y. A novel light-
addressable multi-electrode array chip for neural signal recording based on 
VCSEL diode arrays. J Neurosci Neuroeng. 2012;1(1):4–12. 

Liao L-D, Chen C-Y, Wang I-J, Chen S-F, Li S-Y, Chen B-W, Chang J-Y, Lin C-
T. Gaming control using a wearable and wireless EEG-based brain-computer 
interface device with novel dry foam sensors. J Neuroeng Rehabilitation. 
2012;9(5). 

Liao L-D, Lin C-T. Novel trends in biosensors used for electroencephalography 
measurements in neurocognitive engineering applications. J Neurosci 
Neuroeng. 2012;1(1):32–41. 

Liao L-D, Lin C-T, McDowell K, Gramann K, Jung T-P, Ko L-W, Chang J-Y. 
Biosensor technologies for augmented brain–computer interfaces in the next 
decades. Proceedings of the IEEE. 2012;100:1553–1556. 

Lin CTC, Huang CH, Tsai CS, Lu S-F, Chen SW, YH, Ko LW. Wireless and 
wearable EEG system for evaluating driver vigilance. IEEE Trans Biomedical 
Circuits Syst. 2014;8(2):165–176. 

Lin CT, Huang KC, Chuang CH, Ko LW, Jung TP. Can arousing feedback rectify 
lapses in driving? Prediction from EEG power spectra. Accepted by Journal of 
Neural Engineering. 2013. 

Lin CT, Pal NR, Wu SL, Liu YT, Lin YY. An interval type-2 neural fuzzy system 
for online system identification and feature elimination. IEEE Trans Neural 
Netw Learn Syst. 2014;26(7):1422–1455. 
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Lin CT, Wang YK, Fang CN, You YS, King JT. Extracting patterns of single-trial 
EEG using an adaptive learning algorithm. In accepted by IEEE EMBC 2015.  

Lin C-T, Chuang C-H, Wang Y-K, Tsai S-F, Chiu T-C, Ko L-W. Neurocognitive 
characteristics of the driver: a review on drowsiness, distraction, navigation, 
and motion sickness. J Neurosci Neuroeng. 2012;1(1):61–81. 
https://doi.org/10.1166/jnsne.2012.1010. 

Lin C-L, Shaw F-Z, Young K-Y, Lin C-T, Jung T-P. EEG correlates of haptic 
feedback in a visuomotor tracking task. NeuroImage. 2012;60(4):2258–2273. 
https://doi.org/10.1016/j.neuroimage.2012.02.008. 

Lin C-L, Jung T-P, Chuang S-W, Duann J-R, Lin C-T, Chiu T-W. Self-adjustments 
may account for the contradictory correlations between HRV and Motion-
Sickness Severity. Int J Psychophysiol. 2013;87(1):70–80. 

Lin C-T, Chen S-A, Chiu T-T, Lin H-Z, Ko L-W. Spatial and temporal EEG 
dynamics of dual-task driving performance. J Neuroeng Rehabilitation. 
2011;8(11). https://doi.org/10.1186/1743-0003-8-11. 

Lin C-T, Chuang C-H, Kerick S, Mullen T, Jung T-P, Chen K, L-W, C, S-A, K, J-
T, McDowell K. Mind-wandering tends to occur under low perceptual 
demands during driving. Sci Rep. 2016;6(213253). 

Lin C-T, Chuang C-H, Wang Y-K, Liu Y-T, Huang S-H, King J-T, Chen S-A, Lu 
S-W. Novel neurotechnology and computational intelligence method applied 
to EEG-based brain-computer interfaces. Submitted to IEEE Systems, Man, 
and Cybernetics Magazine. 2015. 

Lin C-T, Huang K-C, Chao C-F, Chen J-A, Chiu T-W, Ko L-W, Jung T-P. Tonic 
and phasic EEG and behavioral changes induced by arousing feedback. 
NeuroImage. 2010;52(2):633–42. 

Lin C-T, Liao L-D, Liu Y-H, Wang I-J, Lin B-S, Chang J-Y. (2011). Novel dry 
polymer foam electrodes for long-term EEG measurement. IEEE Transactions 
on Biomedical Engineering, 58(5), 1200–1207. 

Lin, C-T, McDowell K. Prolog to the section on neurotechnological systems: the 
brain-computer interface. Proceedings of the IEEE. 2012;100:1551–1552. 

Lin C-T, Tsai S-F, Ko L-W. EEG-based learning system for online motion sickness 
level estimation in a dynamic vehicle environment. IEEE Trans Neural Netw 
Learning Syst. 2013;24(10):1689–1700. 
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Lin F-C, Ko L-W, Chuang C-H, Lin C-T. Generalized EEG-based drowsiness 
prediction system by using a self-organizing neural fuzzy system. IEEE Trans 
Circuits Syst I. 2012;59(9). 

Liu Y-T, Lin Y-Y, Wu S-L, Chuang C-H, Lin C-T. Brain dynamics in predicting 
driving fatigue using a recurrent self-evolving fuzzy neural network. IEEE 
Trans Neural Netw Learn Syst. 2016;27(2):347–360. 

Nascimben M, Wang YK, King JT, Jung TP, Touryan J, Lance BJ, Lin CT. Alpha 
correlates of practice during mental preparation for motor imagery. IEEE 
Trans Cogn Devel Syst. 2020. 

Singh AK, Chen HT, Cheng YF, King JT, Ko LW, Gramann K, Lin CT. Visual 
appearance modulates prediction error in virtual reality. IEEE Access. 
2018;6:24617–24624. 

Wang YK, Chen SA, Lin CT. An EEG-based brain-computer interface for dual task 
driving detection. Neurocomputing. 2014;129:85–93. 

Wang YK, Jung TP, Lin CT. EEG-based attention tracking during distracted 
driving. Accepted by IEEE trans. on Neural Systems and Rehabilitation 
Engineering. 2015 
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Developing an EEG-based online closed-loop lapse detection and mitigation 
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performance and brain oscillations under stress. Accepted by Communications 
in Computer and Information Science (CCIS). 2013. Springer. 

Yu YH, Lu SW, Liao LD, Lin CT. Design, fabrication, and experimental validation 
of novel flexible silicon-based dry sensors for EEG signal measurements. 
IEEE J Transl Eng Health and Med. 2014. 

  



 

122 

8. Three-Year Collaborative Research  

Beginning in program Year 5, some of the major research themes in the refocused 
plan included three-year research projects that would span across two biennial 
program plans and integrated collaborative efforts across significant part of the 
consortium. Two such projects are highlighted in this section by compiling 
elements of the research plans and the progress reports from UCSD and NCTU. 
Some of contributions from other participating members, DCS, UTSA, Syntrogi, 
and Columbia are also discussed in the respective sections of these members. 

8.1 Real-World Neuroimaging: Understanding Real-World 
Fatigue in Vehicle Driving Experiments RWN-VDE  

DCS, UCSD, NCTU, UTSA, Syntrogi 

Activities supported to overcome barriers included the following:  

• Development of experimental paradigms that capture the unfolding nature 
of multisensory stimulus streams experienced in real-world environments 

• Acquisition and processing of high-dimensional data sets that characterize 
physical, mental, and physiological behavior, as well as its environmental 
context, in sufficient detail and across a sufficient breadth of circumstances 

8.1.1 RWN VDE Background  

Soldiers performing sustained military operations often function for extended 
periods in stressful environments with fractionated or no sleep. It is well established 
that fatigue, whether due to acute or chronic sleep deprivation, extended time-on-
task, or the interaction between sleep- and task-related factors, is associated with 
neurocognitive performance decrements across a broad range of perceptual, 
cognitive, and motor functions. Motor vehicle crashes account for nearly one-third 
of US military fatalities annually and are the leading cause of US military fatalities. 
Further, one of the leading causes of vehicle accidents is driver fatigue. Fatigue, as 
well as stress, has been shown to dysregulate executive attentional control 
mechanisms underlying performance.  

Although much research has been devoted to understanding relations between brain 
activity and fatigue states of drivers, the vast majority of this research has been 
conducted in driving simulators (SIMs) under highly controlled laboratory 
conditions, so it is not known how well findings generalize to complex real-world 
(RW) driving. One issue with investigating fatigue in the laboratory is the artificial 
manipulation of sleep deprivation. Most researchers have employed full or partial 
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sleep deprivation paradigms. In full sleep deprivation paradigms, subjects are 
denied sleep continuously over a 24-h period or longer, whereas in partial sleep 
deprivation paradigms subjects are restricted to just a few hours of sleep (e.g.,  
2‒6 h) over a period of 3‒4 days. In the real world, full sleep deprivation is much 
less common than partial sleep deprivation. However, even partial sleep deprivation 
paradigms require control over the sleep restricted periods in a regimented manner, 
which do not accurately reflect sleep patterns of individuals in the real world. 
Therefore, we propose an alternative paradigm for investigating the effects of RW 
fatigue on performance in both SIM and RW driving experiments. Specifically, we 
will leverage a Daily Sampling System (DSS) developed in Program Year 4 to 
monitor and track subjects’ daily variations in sleep patterns and perceived levels 
of stress and fatigue as experienced by subjects naturalistically on an everyday 
basis. The DSS will automatically evaluate each subject’s daily levels of fatigue 
based on actigraphy, sleep diaries, and subjective reports and schedule subjects for 
experiments along a continuum of levels of fatigue. For the purposes of this 
research, note that while sleepiness may be considered an important component of 
fatigue, the terms are not synonymous. 

Another issue with investigating fatigue in the laboratory is the artificial driving 
environment inherent in driving simulators. Realistic driving conditions are 
difficult to simulate because there’s no element of danger or real consequences for 
degraded driving performance in SIM driving, as is evident in RW driving. To 
overcome this issue, we planned a series of SIM experiments designed to simulate 
increasingly more complex, realistic driving environments in a ride motion 
simulator, but under experimental control. We also planned an observational study 
in which we will examine data from subjects driving in the real world.  

By addressing these two issues, we will be able to better understand how the brain 
functions during real driving under the demands of real fatigue. EEG, eye tracking, 
driving performance, and subjective report data will be recorded, integrated, and 
analyzed from a large number of subjects in both SIM and RW driving 
environments over repeated sessions across different driving conditions. 
Experiments composing this three-year effort will generate extensively large and 
complex data that will also be leveraged to generate a unique and unprecedented 
database in terms of the number and diversity of experiments, subjects, measures, 
and metadata (i.e., “Big Data”). The database will facilitate hypothesis-driven 
research focusing on brain–behavior relations in RW environments as well as data 
mining and exploratory research. The goals of this research is analysis of within- 
and between-subjects differences, analysis of SIM versus RW differences, 
comparisons of approaches in signal processing, statistics and multifactorial 
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analyses, data integration/fusion, feature extraction, data reduction, collaborative 
filtering and clustering, and modeling and prediction algorithms. 

The RWN VDE research plan was for the program to be accomplished via two 
complementary approaches, executed in parallel: 

• Approach 1: Image and interpret RW fatigue using a within-subjects 
longitudinal approach in a real vehicle and a motion simulated vehicle 
simulator. 

• Approach 2: Utilize existing experimental driving data to interpret RW 
fatigue using a Big Data approach. 

8.1.2 Real-World Driving Experiment Longitudinal Study  

DCS/ARL/UPenn 

DCS worked with ARL to determine the requirements for analyzing RW driving 
performance to provide context for the corresponding physiological data collected 
from the subject. In particular, we tried to identify, and account for, the key 
measures used in the analysis of driving simulation studies, to provide a consistent 
basis for comparison across environments. This set of data included vehicle control 
and status data, navigational data, near traffic data, road data, and driver/passenger 
physiological, neurophysiological, behavioral data, as well as subjective survey 
data. Based on this set of requirements, DCS integrated a sensor suite and DAQ 
system including custom software with a test vehicle. Figure 8.1 provides an 
overview of this effort.  

 

Fig. 8.1 RW vehicle driving DAQ 



 

125 

After the completion of the experiment apparatus, a RW driving experiment with 
driver/passenger dyad was designed in collaboration among ARL, DCS, and UPenn 
beginning in Year 7. Data collection was conducted through mid-2018, and analysis 
continues across different collaborators of the CaN CTA. Details of the experiment 
design and analysis results and publications are mentioned in the final report section 
of UPenn. 

DCS engineers also provided significant assistance in the re-engineering and 
development of the DSS that was used to collect and assess fatigue data from the 
subjects recruited for the DF-DSS and MD-DSS experiments conducted at NCTU, 
Taiwan. 

Using ARL’s Multi-Aspect Real-world Integrated Neuroimaging (MARIN) system 
as the prototype, DCS worked with NCTU to refine the DSS user interfaces and 
provided MARIN source code to aid system development and align data formats. 
DCS also procured 100 Readiband devices for use with the DSS and assisted with 
the system implementation and validation process. 

Analysis of the data collected in the driver/passenger dyad study has been 
conducted largely by UPenn team in collaboration with ARL. The results and 
publications are detailed in the final report section of UPenn. 

8.1.3 Simulated Driving Experiment Longitudinal Study  

NCTU 

The “Simulated driving under conditions of real-world fatigue/stress” experimental 
was conducted at NCTU using the MVS (Fig. 8.2). A total of 15 participants were 
recruited to support data collection efforts over a five-month interval using two 
variations of experimental trials designed to study subjects performing a driving 
task under specific conditions of RW stress and fatigue, as determined by the DSS. 
All participants registered their stress and fatigue through a smartphone daily, and 
received notifications to report for experimental trials when the DSS deems their 
conditions to fit the experimental requirement. 

 

Fig. 8.2 NCTU MVS 
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Previous studies have systematically established the brain–behavior relationship 
through the EEG signals recorded from human subjects when they performed a 
lane-keeping task in a simulated driving environment. However, it is unclear 
whether models derived under these conditions actually can translate into RW 
applications. Thus, in this project, we developed a DSS integrated with actigraphy 
and questionnaires to longitudinally assess and track objective and subjective 
fatigue level. When the fatigue met the criterion levels, subjects would be asked to 
participate in the driving experiment. Seventeen NCTU students were recruited for 
a longitudinal study over the NCTU 2014 fall semester. Averaged daily data  
(103‒151 days) and session data (5‒9 experiments) were collected for each subject. 
The relationships between subjective questionnaires and objective sleep 
measurements have been discussed and reported in PY5 part. The biomarker 
findings with RW fatigue were summarized in this report. Figure 8.3 shows the 
experimental design for the NCTU VDE. 

 

 

Fig. 8.3 NCTU VDE experiment design 

In this part, we report the results of DF-DSS first. In this condition, subjects were 
required to perform NCTU lane-keeping task on the MVS. Throughout the 
experimental session, the vehicle randomly drifts from the center of the cruising 
lane, mimicking the consequences of driving on a non-ideal road surface. 
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Participants are required to maintain their attention, detect any lane-departure, and 
promptly steer the vehicle back to the center of the cruising lane. The RT and EEG 
features to the lane-departure event can be reflected the participant’s task 
performance and vigilance state.  

The tonic EEG change of different brain regions in three fatigue state groups is 
shown in the Fig. 8.4. Figures 8.5 and 8.6 display the trends of the parietal and 
occipital channels. The decrease of the high-risk group in the frontal low beta band 
(12‒21 Hz) shifts to the occipital higher frequencies when normalized RTs are 
longer than 5.5 times the fastest 10% RT. The tonic EEG power of high-risk group 
shows increase in both the delta band (1~3 Hz) and theta band (4~7 Hz) when 
normalized RTs are longer than 5 times the fastest 10% RT. The increase of four 
brain regions in the alpha band (8~12 Hz) can be found in the reduced group when 
normalized RTs are longer than 4.5 times the fastest 10% RT. In addition, the same 
result can also be observed in the normal group, but it appears when normalized RT 
is longer than 3.5 times the fastest 10% RT. 

 

Fig. 8.4 The tonic EEG dynamics images with respect to normalized RT depicted for four 
brain components under three different fatigue groups, respectively (vertical axis, frequency, 
Hz; horizontal axis, RT-sorted index, and the corresponding normalized RT) 
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Fig. 8.5 The trends of parietal channels (P1, P2, and Pz) pre-stimulus EEG log power mean 
depicted for four frequency bands, respectively, and results of the correlation spectrum in 
parietal channels (vertical axis, Pearson’s R-value; horizontal axis, frequency, Hz) 

 

Fig. 8.6 The trends of occipital channels (O1, O2, and Oz) pre-stimulus EEG log power mean 
depicted in four frequency bands, respectively, and results of the correlation spectrum in 
occipital channels (vertical axis, Pearson’s R-value; horizontal axis, frequency, Hz) 

Regarding the effect of fatigue on brain–behavior relationship, the pre-stimulus 
brain activity showed that EEG theta and alpha powers of most of the brain regions 
observed in normal and reduced groups increased as the RT increased. In the high-
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risk group, the theta power of posterior brain regions dramatically increased with 
the increased RT as compared with those in normal and reduced groups. 
Additionally, the alpha power of the occipital regions showed an inverted U-shaped 
change, which was observed only in the high-risk group. Taken together, fatigue 
significantly affects the brain–behavior relationship. Such findings could have 
major implication for understanding RW fatigue on drowsy driving and its model. 

Re-defining and measuring alertness. The UCSD team developed a method to 
redefine and measure alertness for RW use. We define that alertness can be 
estimated by the prospective lapse rate (PLR), the probability of having slow 
responses (or no response) within an upcoming period. The PLR at a given time is 
estimated by the ratio of the number of slow-RT trials to the total number of trials 
within a certain time window in the near future (e.g., 90 s) using the entire data set 
of 79 lane-keeping-task (LKT) sessions. The non-causal PLR, as the ground truth 
of alertness, was found associated with two types of causal alertness indices (AIs), 
behavioral AI and EEG-based AI. Both behavioral and EEG-based AIs are 
assessable in near real time. However, the caveat of the behavioral AI is that it 
requires behavioral responses to frequent driving events, which is not practical in 
RW use. We thus model the association between the behavioral AI and EEG 
features to enable the estimation of the EEG-based AI with high temporal resolution 
in near real time. Our preliminary results suggest that the EEG-based AI effectively 
relates to the PLR, and thus validates this novel methodology of alertness 
estimation. The preliminary findings have been presented in BCI Meeting 2018.  

Exploring nonlinear brain connectivity under different fatigue levels. UCSD 
and NCTU explored the use of nonlinear causality to model interactions among 
different brain networks. To be more specific, we use the causality concept, the 
convergent cross mapping 73 (CCM), a measure of the underlying deterministic 
causation of the system, to analyze the brain network outflows under high and low 
fatigue levels in an attempt to understand the changes in default mode network 
under different drowsiness and fatigue levels. CCM detects the causal relation 
strength and information exchanged between signals, assessing the synchronization 
features in the state space. CCM has provided new insight into physiological states, 
considering the brain as a complex network system. We analyzed the brain network 
changes of drivers by the shifts in the effective connectivity expressed in the CCM 
oscillations. For the LKT driving task, we analyzed the nonlinear causality in 1-s 
epochs before the lane-departure events. Study results showed distinct trends of 
nonlinear causality of alpha-band activity between the frontal and parietal areas in 
short- versus long-RT trials under different fatigue levels.  
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8.1.4 Big Data Approach  

Syntrogi first laid the foundation of the CTA Data Repository by creating new 
versions of HED and ESS, suitable for RW neuroimaging. Syntrogi also defined 
the minimum necessary preprocessing steps that maximize the usability of data 
across diverse BCI and analysis workflows (ESS Standard Level 2 pipeline, 
preprocessing [PREP]). We then created tools (ESS tools and PREP toolbox, HED 
validation, CTAGGER), implementing and facilitating the use of these 
technologies. We placed legacy driving data (NCTU lane-keeping and eight BCIT 
studies) in ESS Levels 1 and 2 and trained CTA partners (DCS, UMI, and NCTU) 
to put the rest of RWN-related data in a standardized form in the CTA Repository. 
We also defined schemas for extending metadata encapsulation and provenance to 
custom pipelines (ESS level-derived data and derived-measure schema and file 
format), to be (further) implemented in PY6. Our research on EEG PREP was 
published in Frontiers in Neuroinformatics and we are currently working on a 
journal paper (ESS) and a conference paper (new version of CTAGGER).  

DCS developed a central repository, the C3DS, to host all relevant vehicle driving 
data from within the alliance. DCS also developed a web-facing interface to 
facilitate access by alliance members. Additional detail of continued efforts and 
expansions of the Big Data approach are reported in the Syntrogi and UTSA final 
report sections. 

Brain dynamics of task-positive and -negative networks during simulated 
driving: NCTU/UCSD VDE teams worked with Scott Kerick and Kaleb 
McDowell of ARL on the manuscript entitled “Brain network dynamics of mind-
wandering during driving”. This study examined whether changing the perceptual 
demand by manipulating amount of sensory inputs as the driver detected the lane-
departure would promote a shift of brain activity between different modes of 
processing, reflected by brain network dynamics on EEG sources. Removing 
motion feedback during simulated driving deprives the driver of salient sensory 
information, and therefore imposes a relatively more perceptually demanding task, 
which activates the task-positive network. When the motion feedback is available, 
the drivers may rely on vehicle motion to perceive the perturbations, which reduce 
attentional load and result in higher activity of default mode network. We have 
published the study results in a high-impact journal Scientific Reports (Lin et al. 
2016). 

This paper demonstrates that brain network dynamics could have major 
implications for understanding fluctuations in driver attention and designing 
advance driver-assistance systems (Fig. 8.7). The present results further showed 
that participants are more likely to decouple their attention to sensory information 
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during the pre-stimulus time period in the environment under relatively lower task 
demand conditions, apparently even when sensory information is highly salient. 
The participants exhibited significantly more causal outflow from the MCC (node 
of task-positive network) versus PCC (node of default mode network) node during 
driving while deprived of salient sensory information (K− condition in this study). 
Removing vehicle motion feedback during simulated driving deprives the driver of 
salient sensory information and, therefore, should impose relatively greater 
perceptual and executive demands on the driver to maintain vehicle control. 
Conversely, drivers succumbed to greater levels of inattention when the task is less 
demanding (K+ condition), as evidenced by more causal outflow from the PCC 
versus MCC node when vehicle motion feedback was provided. 

 

 

Fig. 8.7 MVS vehicle driver brain network dynamics 

Effective connectivity between EEG independent processes estimated under a) K+ 
and b) K− conditions. A 3-D plot is formed with three anatomical MRI slices (left: 
sagittal view; right: coronal view; bottom: horizontal view) as background. Node 
represents the anatomical location of each independent process, localized using a 
single or dual-symmetric equivalent-current dipole model based on a four-shell 
spherical head model. Color of nodes represents the degree of outflow. Edges 
represent causality directions. A P(edge) ≥  0.9 indicates that over 90% of 
participants have a significantly nonzero connectivity magnitude in that edge. Out-
degree indicates the number of outgoing edges. 

Compare EEG- and non-EEG-based fatigue monitoring systems: 
UCSD/NCTU teams have conducted a study to test the efficacy of arousing 
feedback triggered by EEG-based fatigue detection and mitigation system, 
compared to that of non-EEG-based counterpart. The study results were published 
in an article in International Journal of Neural Systems (Huang et al. 2016). 
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Another study demonstrates the feasibility of an online closed-loop EEG-based 
fatigue prediction and mitigation system that detects physiological change and can 
thereby prevent fatigue-related cognitive lapses. Figure 8.8 shows the flowchart of 
the experimental protocol (left panel) and the criteria for delivering warning 
feedback to drivers during driving tasks (right panel). In the first session, we 
determined a rational warning threshold for each subject. In the second session, a 
warning was delivered if the average alpha-band power exceeded the warning 
threshold. 

 

 

Fig. 8.8 The flowchart of the experimental protocol (left panel) and the criteria for delivering 
warning feedback to drivers during driving tasks (right panel) 
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8.2 Brain–Computer Interface: Effects of State Changes on BCI 
Technologies over Long Time Periods (BCI-GEM)  

Columbia, DCS, NCTU, UCSD 

Activities supported to overcome barriers included the following:  

• Acquisition and processing of high-dimensional data sets that characterize 
physical, mental, and physiological behavior, as well as its environmental 
context, in sufficient detail and across a sufficient breadth of circumstances 

• Discovery of models and novel methods for the identification and 
interpretation of statistical relationships among high-dimensional data sets 
characterizing the dynamics of environment, behavior, and brain function 
during complex task performance 

8.2.1 BCI-GEM Goals 

The goal of this project was to utilize a game scenario to investigate, longitudinally, 
how changes in user state affect a set of EEG signals that have been traditionally 
employed in BCI systems. We hypothesized that these signals will cause BCI 
performance to change over time but that much of this change is systematic and can 
be dealt with if appropriately characterized, modeled, and/or accounted for. If 
identifying and understanding these changes in neural signals and BCI performance 
over time proves feasible, we hypothesize that developing an adaptive approach 
that accounts for these changes during BCI usage over multiple timescales will 
enhance overall BCI performance. The specific aims of this three-year project are 
the following:  

1) Explore the effect of fatigue on the neural signals underlying several 
standard BCI implementations and the resulting effect on BCI performance 
during long-term BCI use.  

2) Gain insight into the neural correlates of the process of BCI skill acquisition 
and the effects of long-term BCI usage on human neural signals.  

3) Develop an adaptive approach to BCI based on a characterization of neural 
state changes associated with long-term BCI use over multiple timescales.  

To address these aims, this project collected a large amount of data from subjects 
using standard BCIs over a long period of time. To encourage subjects to use the 
BCIs, we embedded the BCIs into a game. This game design emphasized several 
key concepts, including entertainment, engagingness, replayability, and ease of 
development. We based the design of the game on a known genre that is 
entertaining, engaging, and highly popular, and then integrate BCIs into it. This 
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will result in a game that can be fun for hours, making the long-term data collection 
less onerous for the subjects, and thereby reducing subject attrition. 

8.2.2 BCI-GEM Accomplishment 

8.2.2.1 Game Development (NCTU) 

The NCTU team developed the BCI-GEM game in which there were five designed 
BCI applications including attention, motor imagery, SSVEP, ERN, and RSVP. 
Figure 8.9 shows the layout of BCI-GEM. Behavior, eye movements, EEG, and 
other physiological information were acquired simultaneously. 

 

Fig. 8.9 Structure of the developed BCI-GEM and the acquired relative data 
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To acquire the EEG data, MINDO-32 was tested in NCTU. One classical RSVP 
paradigm was utilized in this testing as shown in Fig. 8.10a. The measured EEG 
data in Pz channel were shown in Fig. 8.10c. The red (blue) line represents the ERP 
induced by targets (non-target) as performing RSVP. One nonlinear algorithm 
called data-reused radial basis function network (DR-RBFN) was applied to the 
acquired EEG data for estimating the potentials. Figure 8.10d shows the estimated 
ERPs through different number of trials/epochs. To efficiently analyze the 
measured EEG data induced by RSVP, an automated pipeline was modeled for 
preprocessing, removing noise, and estimating the potentials. 

 

Fig. 8.10 Rapid ERP detection. a) Radial basis function network applied to ERP-based BCI. 
b) RSVP paradigm. The uppercase letters randomly present to subjects who are instructed to 
respond to the target (i.e., the letter “G”). Performance comparison of the ERP was estimated 
by evolutionary algorithm (EA) and DR-RBFN algorithm. c) ERP estimated by applying EA 
on 80 epochs. Red and blue traces represent the target- and non-target-evoked ERPs, 
respectively. d) Target-evoked ERP estimated by applying DR-RBFN on 20 (green), 40 
(black), 60 (blue), and 80 (red) epochs. 

Algorithm development: We have successfully developed a SSVEP algorithm based 
on CCA and implemented it into the BCI-GEM. Basically, the test performance of 
this algorithm can reach 90% accuracy in the low frequency band and different 
presentation durations (Table 8.1). 
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Table 8.1 Classified performances of SSVEP developed by NCTU 

 
 

For longitudinal experiment, we set two identical platforms for acquiring 
physiologic and behavioral data during executing BCI-GEM. EyeTribe and EEG 
recording systems (cf. Figs. 8.11 and 8.12) were established in our platforms. In 
particular, all data were synchronized through LSL, which is an open-protocol 
proposed by SCCN of UCSD for synchronizing data collection. 

 

Fig. 8.11 Two platforms were set for acquiring physiological data as executing BCI-GEM 

 

 

Fig. 8.12 EyeTribe tracker was tested for monitoring the eye movement 
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Four data sets were acquired through MINDO-32 and Neuroscan for pilot tests, and 
each participant performed one pilot session with 1 h. According to the results of 
pilot test, some issues included integrating the ABMx10 were addressed. For 
general purposes, the event can be outputted through the parallel port in the current 
version. The time issue was also tested. The event can be recorded with correct time 
information in the text file. All information during playing the GEM game was also 
recorded as one text file in the current file for further analysis. 

One preliminary questionnaire was created. Each subject needed to fill it out prior 
to game playing and also made the feedbacks and comments about the BCI-GEM 
after finish the experimental session. According to the feedbacks and comments, 
the bugs in the BCI-GEM were fixed. 

8.2.2.2 Analysis: Motor Imagery (UCSD, NCTU) 

Analysis by Nascimben et al. (2016b) was focused on calibrations sessions before 
and after playing the game (untrained session) for 90 min. According to previous 
findings event-related desynchronization (ERD) seems unaffected by movement 
durations and brief movement imagery has a larger impact on pre-movement mu 
ERD rather than continuous movement. For this reason, the analysis window was 
extended from ‒1 s before arrow onset to 1 s after its appearance. EEG was 
preprocessed to extract epochs (‒3 to +5 s from arrow appearance marker) and filter 
data (7‒30 Hz) with a two-way least-squares finite impulse response (FIR). A 
preliminary screening on calibration data running a combination of CSP spatial 
filter for feature extraction and LDA as classifier was performed to include only 
participants able to perform a motor imagery (MI) task. During this offline 
procedure, only those who scored at least 70% of accuracy were included in the 
study (four subjects were excluded). To analyze EEG features, only the mu band 
(8‒13 Hz) was isolated from data and only the C3 or C4 contralateral to movement 
was taken in consideration. Time interval between ‒3 to ‒1 s before onset of 
movement (i.e., time 0 s) of each epoch was considered as baseline and average 
power spectrum across subjects was calculated for each second.  

While before playing BCI-GEM, the MI-related mu-band power decrease is 
sustained along all the interval from ‒1 to +1 s (‒1 to 0 s 45% of ERD, 55% in 0 to 
+1 s), after 90 min of BCI-GEM playing, the MI ERD is concentrated in interval 
from 0 to 1 s (‒1 to 0 s 10% of ERD, 90% of ERD in 0 to +1 s). In both situations 
at +2 s, EEG returned at the level reached in baseline. Focusing on 10‒12 Hz mu-
band same phenomenon is described with an ERD ending at +2 s in calibration data 
after playing BCI-GEM.  
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A study on baseline power composition was performed: in the 8‒14 Hz band on the 
Cc electrode after playing the game, a relative decrease of lower mu representation 
(8‒10 Hz) was found after playing BCI-GEM (L: ‒22%, R: ‒13%). If frequencies 
include an upper theta (6‒8 Hz), the upper theta and lower mu decrease  
(T L: ‒15%, R: ‒11% lower mu L: ‒7.5%, R: ‒4%) in comparison to the upper mu 
bands (10‒12 and 12‒14 Hz) after playing BCI-GEM. In fact, dividing ERD in two 
subbands (8‒11 and 11‒14 Hz), the ERD is still less evident after playing BCI-
GEM in the 8‒11 Hz (L: ‒30% R: ‒76%) band, but an inverse behavior in the  
11‒14 Hz band is present compared to results before playing BCI-GEM. In the  
11‒14 Hz band, a power decrease is more evident after playing the game (L: +28%, 
R: +14%), reflecting higher frequency representation found in the baseline. 

According to previous literature findings (Nascimben et al. 2016a), alpha 
oscillations can be related to cognitive performance both as tonic or phasic changes. 
Alpha band recorded during an eyes open resting EEG from C3 and C4 electrodes 
has already been applied as predictor of MI BCI feedback. Considering these two 
discoveries, we tried to verify if MI outcome can be predicted by alpha variations 
in a larger scalp area. To achieve this result, we extended data collection to 15 
electrodes surrounding primary motor cortex.  

Upper alpha (10‒12 Hz) is the frequency range mainly involved in MI mechanism 
of primary motor cortex EEG desynchronization. We decided to verify if variations 
over time of the resting upper alpha derived from 15 electrodes have a correlation 
with intra-day changes of MI accuracy (Fig. 8.13). The non-parametric Spearman’s 
correlation coefficient (r = 0.675, n = 10) between MI accuracy and upper alpha 
tonic changes is significant (p = 0.032) at the level α = 0.05 (two tailed test).  

 
Fig. 8.13 Polynomial model (r2 = 0.41 incl. all subjects) of resting upper alpha–MI accuracy 
relationship. On y-axis, MI Accuracy changes; on x-axis, resting upper alpha variations 
between sessions.  
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Training is fundamental in BCI systems to achieve a stable performance over time 
(Nascimben et al. in preparation). Mental preparation before MI can reveal some 
features able to characterize a trained BCI user. In areas surrounding primary motor 
cortex, neurophysiological correlates of training are found in alpha subbands as a 
decrease in electrical-field strengths (measured by global field power [GFP]), 
increase in signals similarity (with dynamic time warping [TW]), and decrease in 
their dependency (from mutual information [MutInf]). In addition, GFP values in 
lower alpha describe also a time-on-task effect.  

To evaluate BCI-GEM state changes during mental preparation recordings have 
been divided in four preprocessed files, each one representing an experimental 
condition: “Untrained data set at the beginning of videogame”, “Untrained data set 
at the end of videogame”, “Trained data set at the beginning of videogame”, and 
“Trained data set at the end of videogame” (Table 8.2). During mental preparation 
for MI, modifications in lower alpha/mu was discovered with GFP trends while 
alterations in upper alpha/mu arose from dynamic TW and MutInf analysis. 
Following table collects GFP values and results of statistical tests ran on GFP single 
scalar along mental preparation epoch (1 s). 

Table 8.2 GFP during mental preparation recordings 

GFP lower 
alpha / mu 

Untrained data set 
at the beginning of 

videogame 

Untrained data set 
at the end of 
videogame 

Trained data set at 
the beginning of 

videogame 

Trained data set 
at the end of 
videogame 

F 101.6048 100.7976 107.012 80.9468 
FC 111.5283 83.489 112.7795 80.3506 
C 156.4035 92.1248 95.4633 81.4104 

CP 193.7202 154.1129 145.1939 103.104 
P 179.4251 175.3764 133.2048 88.6792 

Mean±STD 148.5364±40.7116 121.1801±40.9331 118.7307±20.1489 86.8982±9.6722 
Median 156.4035 100.7976 112.7795 81.4104 

 
Creating a subset of central electrodes involved in motor task with values extracted 
every 200 ms during mental preparation epoch there is a joint inverse relationship 
between MutInf and dynamic TW in upper alpha (Fig 8.14). 
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Fig. 8.14 Dynamic TW and MutInf relationship in upper alpha between untrained data set 
(blue) and trained (orange) 

Findings are suggestive for a jointly influence of training in similarity and 
dependence over motor-related areas signals in upper alpha band. To summarize 
how training increases similarity and decreases dependency in this frequency range, 
descriptive statistics are collected in Table 8.3. We can conclude that training 
produces two effects: in lower alpha, GFP decays over time over the course of the 
experiment while, in upper alpha, there is a TW–MutInf inverse proportionality 
relationship.  

Table 8.3 MutInf and dynamic TW in upper alpha 

Upper alpha TW (mean ± st dev) MutInf (mean ± st dev) 
Untrained data set 0.034618±0.015643 4.236691±0.267269 
Trained data set 0.022302±0.017028 4.063707±0.269594 

8.2.2.3 Analysis : Attention (UCSD, NCTU) 

During BCI-GEM, EEG data from 1 s prior and 10 s following the onset attentional 
stimulus were segmented and epoched (Singh et al. 2016). A power spectrum time 
series was calculated using FFT, which was squared and average for individually 
frequency band to obtain a measure of the PSD from frontal channel (Fz) for each 
subject. ERD was also calculated on obtained PSD based on Pfurtscheller method. 
It is important to note that a positive value of ERD indicates power suppression, 
while a negative ERD means a decrease in power. Previous studies suggested that 
visual or other sensory task demand and visual attention in particular were main 
factors that lead to suppression of lower and upper alpha band power as well as an 
increase in theta band power. But our results in ERSP and ERD revealed much 
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more complex picture, where during the attentional processing theta, lower alpha, 
and upper alpha band power desynchronize simultaneously (Fig. 8.15). 

 

 

Fig. 8.15 (top) ERD and (bottom) ERSP 

In the current study (Singh et al. in preparation), mental fatigue and effect of 
learning have been evaluated to see how it affect the performance of the subject. 
Ten subjects have been recruited to record EEG data during performing BCI-GEM 
experiment in two consecutive months with the gap of four weeks, during this 
period, subjects were playing BCI-GEM 3 h every week without recording. 

Data collected from the subject were epoched for the attentional task and divided 
into two parts: the first half part and the remaining half part for analysis. Initially, 
ERP has been compared with the performance of the attentional task. 

Figure 8.16 shows ERP changes in topography from the first half and remaining 
data from two months with the gap of four weeks. It was clearly seen that for the 
same subject, when they performed the experiment after four weeks of game 
playing, the training difference between the topography changed significantly  
(p < 0.1), which indicates that the subjects were showing some learning or 
adaptation effect. On the other hand, there was less evidence found in support of 
mental fatigue during the task based on the topography of the subjects. We also 
calculated the score obtained by the subjects (Fig. 8.17) in the first half and second 
half of game playing. It was found that 70% of subjects showed a 33.3% decline in 
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score, excluding one subject with a 90% decline in score. This suggests the decline 
in performance is not only due to mental fatigue, but possibly also due to motivation 
during the task. 

 
Fig. 8.16 ERP maps for learning and fatigue, where FH = first half data of session,  
SH = second half data of session; ERP – O (Oct) and ERP – N (Nov) are data from two 
continuous months with a gap of four weeks 

 
Fig. 8.17 Scores earned by subjects in the attention task 

8.2.2.4 Analysis Training Effect 

UCSD, NCTU 

We studied the training effect on neural activity in the time interval of mental 
preparation right before MI. In areas close to the primary motor cortex, the 
neurophysiological correlates of training are observed in the alpha subbands as the 
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electrical-field strength/GFP declines, as presented in Fig. 8.18. In the low and high 
alpha band, the similarity of the signals increases with dynamic TW (Fig. 8.19) and 
their dependency from MutInf decreases (Fig. 8.20). In addition, GFP values in the 
lower alpha band exhibit a time-on-task effect. These statistical quantities derived 
from neural activity provide a measurable evaluation of the task-learning effect that 
can integrate the information theory performance indexes of EEG-based BCIs. 
These statistical quantities, derived from neural activity, measure the task-learning 
effect and can integrate the performance indexes of EEG-based BCIs from 
information theory. Moreover, instantaneous phase shifts between “at the 
beginning” and “at the end” inside the upper alpha band were calculated in support 
of this idea by applying a Hilbert transform on the signals of both data sets. From 
the output of the Hilbert transform, the phase angle difference was extracted. The 
results are shown in Fig. 8.21. To facilitate the understanding of the graph, a 
smoothing filter was applied to the data. Phase differences are more constant in the 
trained data set. This finding are being revised by ARL, UCSD, and NCTU, and a 
paper entitled “Alpha statistical correlates of learning and time-on-task during 
mental preparation for motor imagery”.  

 
Fig. 8.18 Boxplot of maximal GFP values (y-axis) over experimental time course in lower 
alpha. Boxplot of maximal GFP values (y-axis) over experimental time course in lower alpha. 
The x-axis represents four experimental conditions: (from left to right) 1: untrained data set 
at beginning of gameplay, 2: untrained data set at end of gameplay, 3: trained data set at 
beginning of gameplay, and 4: trained data set at end of gameplay. 
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Fig. 8.19 Lower alpha: dynamic TW and MutInf. Lower alpha: dynamic TW and MutInf 
mean values across time (mean ± std from 15 scalp derivations). Untrained data set in blue, 
trained data set in violet. 

 

Fig. 8.20 Upper alpha: dynamic TW and MutInf. Upper alpha: dynamic TW and MutInf 
mean values across time (mean ± std from 15 scalp derivations). Untrained data set in blue, 
trained data set in violet. 
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Fig. 8.21 Upper alpha mean of instantaneous phase shifts over FC3, FCz, FC4, C3, Cz, C4, 
CP3, CP4, and CPz. Upper alpha mean of instantaneous phase shifts over FC3, FCz, FC4, C3, 
Cz, C4, CP3, CP4, and CPz (same electrodes as Fig. 8.9). Phase differences seem to be more 
sustained in the intra-session variables of the trained data set (71% of epoch points in the 
trained data set have a higher instantaneous phase difference). 

Developing new algorithms for SSVEP-based BCI: The UCSD BCI team 
developed a novel data-driven spatial filtering approach for enhancing SSVEP 
detection based on the task-related component analysis (TRCA), which can 
enhance reproducibility of SSVEPs across multiple trials. Furthermore, an 
ensemble method has been developed to combine TRCA filters that correspond to 
multiple stimulation frequencies. This study also compared BCI performance 
between the proposed TRCA-based method and the extended CCA-based method 
using a 40-class SSVEP data set recorded from 12 subjects. The results suggested 
the proposed TRCA-based approach could significantly improve the classification 
accuracy compared with the extended CCA-based method. Furthermore, an online 
BCI speller using the proposed approach achieved an averaged information transfer 
rate (ITR) of 325.33 ± 38.17 bits/min, a new world record in ITRs, from 20 subjects 
in a cue-guided target-selection task.  

We submitted a manuscript for journal publication early this year. Reviewers 
requested an online validation of the proposed TRCA. During this reporting cycle, 
we have conducted online SSVEP BCI experiments across 10 subjects and 
incorporated the new results into the revision. The results have been published in 
IEEE Transactions on Biomedical Engineering (Nakanishi et al. 2018). 

Inter- and intra-subject variability in SSVEP data: UCSD team has investigated 
the inter- and intra-subject variability in SSVEP data as a fundamental study to 
elucidate the EEG properties that are crucial for developing transfer-learning 
approaches. We conducted the first study that systematically and quantitatively 
assesses the variability in SSVEP data, where the sources of inter- and intra-subject 
variability were identified using Fisher’s discriminant ratios (FDRs). We believe 
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that the inter-subject variability in the SSVEPs is mostly attributed to the low-
frequency components, where we observed ERPs such as N1 at 200 ms after 
stimulus onset in most subjects. The low-frequency components exhibit different 
waveforms across subjects, but, intriguingly, they have small within-subject 
variability. In contrast, the high-frequency components seem to indicate a universal 
oscillatory pattern across subjects. The insights gained from this work could drive 
the future developments of transfer-learning approaches to minimize the calibration 
efforts in high-speed SSVEP BCIs. The results have been submitted to the IEEE 
SMC 2018 (Wei et al. 2018). 
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9. University of Texas, San Antonio 

9.1 ACA-NSST: ACA Improving EEG-Based Detection of 
Nonstationary Short-Term Spectral Features with 
Application to Attention and Fatigue (Robbins) 

This work began with ARL-UTSA postdoctoral fellow Kenneth Ball in a previous 
funding cycle and continued with ARL-UTSA postdoctoral fellow John LaRocco. 
It is currently be pursued by Kay Robbins. The project has the following 
goals/hypotheses: 

• Show matching pursuit can detect nonstationary features such as alpha 
spindles in driving data. 

• Determine whether short-term attention lapses correlate with changes in 
spectral features such as alpha spindles and microsleeps in BCIT and NCTU 
data collections 

• Detect gamma bursts in EEG using matching pursuit and relate to attention 
and shifts in cognitive state. 

LaRocco and Robbins worked with ARL scientists Piotr Franaszczuk and Scott 
Kerick to develop spindle detection algorithms based on matching pursuit. A key 
contribution of this work was the development of methods to set the algorithm 
parameters based on the geometry of the spindle length and spindle rate curves. A 
major paper on this work was published in the Journal of Neural Engineering 
(LaRocco et al. 2018). 

An open-source spindle toolbox was also released and can be found on GitHub at 
https://github.com/VisLab/EEG-Spindles. Aim 1 of this project has been 
completed. Some progress has been made on Aims 2 and 3. We have done some 
preliminary spindle detection and analysis on RWN VDE as part of Aim 2. In a 
previous funding cycle, we addressed removal of nonstationary line noise using 
matching pursuit by developing Band Limited Atomic Sampling With Spectral 
Tuning (BLASST) (Ball et al. 2017). 

This open-source toolbox is available on GitHub at https://github.com/VisLab/ 
blasst. A preliminary version of BLASST has also been incorporated in the PREP 
pipeline as an alternative to cleanline for line noise removal (https://github.com/ 
VisLab/EEG-Clean-Tools). Removal of line noise without removing signal is an 
important step in improving the SNR of EEG in the gamma range. Work is ongoing 
on evaluating gamma bursts and relating bursts to other signal features. This work 
will continue after the end of the project. 

https://github.com/VisLab/%20blasst
https://github.com/VisLab/%20blasst
https://github.com/%20VisLab/EEG-Clean-Tools
https://github.com/%20VisLab/EEG-Clean-Tools
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9.2. ACA-SANDR: Standardized Annotated Neurophysiology 
Data Repository (Robbins) 

This project had the following goals: 

• Development of software tools for ARL and NCTU legacy data sets. 

• Generate learning materials and other resources. 

• Process and validate the remaining ARL and NCTU legacy data. 

• Preserve, manage, review, and deliver data. 

Over the course of the CTA, we have had many collaborative meetings and have 
done much work on curating the data for errors. We continue to develop many tools 
to support HED and event annotation. Our original data standard for organizing 
EEG, ESS, has been supplanted by the Brain Imaging Data Structure (BIDS), which 
recently incorporated EEG into its data standard. BIDS (https://github.com/bids-
standard) has a large community working group. To support the evolution of 
standards, Joe Lambeth and Jonathan Balraj from our laboratory developed an 
ess2bids converter, which is now available at https://github.com/bids-
standard/ess2bids. Robbins has produced a preliminary version of the BCIT data 
repository in BIDS format and is working to upload this data to openNeuro 
(https://openneuro.org). 

BIDS has adopted HED as the event annotation standard for BIDS. Alexander Jones 
from our laboratory has developed both syntactic and semantic validators for HED 
written in JavaScript that have been incorporated into the bids-validator 
(https://github.com/bids-standard/bids-validator). We also have continued work 
and clean-up on the base HED validator, which is written in Python. Dung Truong 
of UCSD has taken over the development of the CTAGGER tools for MATLAB 
and has adapted them to now use the Python validator so that we only have to 
maintain one code base for validator. We also maintain an online web validator 
(https://visual.cs.utsa.edu/hed) and planned to transfer this online validator to a 
permanent home at the San Diego Supercomputer Center at UCSD during the 
summer of 2020. Figure 9.1 shows a screenshot of the online HED validator. 

 

https://github.com/bids-standard
https://github.com/bids-standard
https://github.com/bids-standard/ess2bids
https://github.com/bids-standard/ess2bids
https://openneuro.org/
https://github.com/bids-standard/bids-validator
https://visual.cs.utsa.edu/hed
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Fig. 9.1 Composite screenshots of the new online HED validator 

For the last few months, Robbins has been meeting with a working group that 
includes Scott Makeig and Arno Delorme of UCSD about creating a community 
standardization group for HED and incorporating HED more integrally into 
EEGLAB and related efforts. Robbins has created https://github.com/hed-standard, 
which parallels the structure of https://github.com/bids-standard to host the HED 
community development. The repositories https://github.com/hed-standard/hed-
specification, https://github.com/hed-standard/hed-javascript, https://github.com/ 
hed-standard/hed-python, and https://github.com/hed-standard/hed-matlab are 
under active development. 

https://github.com/hed-standard
https://github.com/bids-standard
https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-javascript
https://github.com/%20hed-standard/hed-python
https://github.com/%20hed-standard/hed-python
https://github.com/hed-standard/hed-matlab
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9.3 ACA/BCI/RWN-LARG: Large-Scale EEG Analysis and 
Validation of Event Tags (Robbins) 

The first phase of the LARG project was begun in the previous funding cycle. The 
original project aims were the following:  

• Understand how event properties are related to EEG dynamics. 

• Quantify the effect size. 

• Develop and validate optimal methods for aggregating large-scale multi-
study data. 

The three main hypotheses associated these aims were verified on 18 studies from 
the CAN_CTA data repository:  

• ARL_AdvancedGuard,  

• ARL_AuditoryCue,  

• ARL_BaselineDrive,  

• ARL_BasicGuard,  

• ARL_CalibrationDrive,  

• ARL_MindWandering,  

• ARL_RSVPBaseline,  

• ARL_RSVPExpertise,  

• ARL_SpeedControl,  

• ARL_VEP,  

• ARL_TrafficComplexity,  

• NCTU_DAS,  

• NCTU_DD,  

• NCTU_LKwAF,  

• TNO_ACC, and  

• UCSD_RSVP.  

This work resulted in the processing of more than 1000 EEG recordings with 
millions of event epochs. The work relied on being able to effectively automate the 
preprocessing pipeline, which strongly relies on our PREP for preprocessing and 
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our BLINKER tool for automatically identifying eye blinks in EEG signals. Papers 
describing these tools were published in the previous funding cycle and open-
source tools were released and are currently being maintained on GitHub. 

We published two major papers in Neuroimage describing this work during this 
funding cycle (Bigdely-Shamlo 2019a, 2019b).  

Much of the revisions and editing of these papers occurred during the current 
funding cycle. These papers represent a collaboration of Robbins of UTSA with 
Jonathan Touryan of ARL, and Nima Bigdely-Shamlo, Tim Mullen, and Christian 
Kothe of Intheon. 

In the LARG project, the Robbins lab also began working on automatic EEG 
annotation. Traditional time-locked EEG analysis tries to determine the neural 
response given a stimulus. Annotation looks at the inverse problem—trying to 
determine where in the signal particular neural responses occur. Using domain 
adaptation transfer learning techniques, we showed that automated EEG annotation 
is possible. This work was done in collaboration of W Dave Hairston of ARL and 
resulted in several publications (Su et al. 2016, 2018; Robbins et al. 2020). 

In addition, we released an open-source annotation tool implementing these 
algorithms, available at https://github.com/VisLab/EEG-Annotate. This work has 
continued in the LARG II project as described in Section 9.4. 

9.4 ACA Large-Scale Electroencephalography (EEG) Analysis 
and Exploration of Cognitive Aspects (LARG-II) (Robbins 
and Huang) 

The LARG-II project is a continuation of LARG from the previous funding cycle, 
but has three additional aims: 

1) Examine and quantify variability across studies. Included in this analysis is 
quantifying inter-subject and intra-subject variability. 

2) Expanding the ERP and ERSP analysis of LARG to distributed source ROIs 
to systematically relate activations of canonical networks to cognitive 
aspects, as represented by HED tags and to behavior. 

3) Capture discriminative features associated with behavior and cognitive 
aspects as represented by HED tags using large-scale semi-supervised and 
multitask learning based on generative adversarial networks (GANs) and 
other methods. 

https://github.com/VisLab/EEG-Annotate
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An important step in characterizing variability is to understand how the selection 
of processing methods and other factors influence variability across studies. The 
group working on this included Robbins of UTSA, Touryan of ARL, and Bigdely-
Shamlo, Mullen, and Kothe of Intheon. 

For each study-specific event code, we compare the correlation and the fraction 
variance explained of individual recording ERPs and ERSPs with the 
corresponding study-wide averages. We found that that z-scoring the event-related 
features before computing study-wide averages greatly improved the amount of 
variance explained by the study-wide averages. We also found that the Multiple 
Artifact Rejection Algorithm (MARA) had better correlation and variance 
explained than LARG when all event-codes were considered. However, when only 
event-codes corresponding to experimental stimuli were considered, there was no 
significant difference.  

We expanded our analysis of how much difference the selection of processing 
methods made on downstream results and published an extensive analysis in 
Robbins et al. (2020). 

Included with this analysis is an open-source repository with code implementing 
various pipelines (https://github.com/VisLab/EEG-Pipelines). An important 
conclusion of this work is that often 70% to 80% of the variability in ERPs and 
ERSPs can be attributed to often fairly minor differences in processing. We 
propose, as a general methodology, that researchers should select several automated 
processing methods to process their EEG and compare downstream results to 
understand how much differences in processing affect their results. 

Robbins and her lab have also begun a more detailed characterization of variability 
due to subject using the NCTU RWN VDE corpus because the corpus includes up 
to 9 repeats on different days of 6 different tasks for 17 subjects. We have extracted 
blink indicators using our BLINKER tool and have done some preliminary analysis 
on alpha spindles and other signal characteristics. This data set also includes a 
signal recorded from an EEG sensor recorded on the chest. HRV, differences in the 
time between heartbeats, has shown to be a strong physiological measure of subject 
state. We decided to include HRV in our analysis of inter-/intra-subject variability. 
However, we found that existing tools could not adequately extract heart beats from 
EEG sensors without extensive manual intervention. We have developed an 
automated tool to extract this information on an entire study. We are in the final 
stages of validating the tool and developing the GUI for inclusion as an EEGLAB 
plug-in. We have a draft paper entitled “Automated extraction of physiological 
indicators based on heart rate variability (HVR) measures using EEG/ECG”. 

https://github.com/VisLab/EEG-Pipelines
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Intheon has primary responsibility for Goal 2, which involves a large-scale study 
of connectivity and canonical networks. Robbins has provided processed data for 
this analysis and has participated in the writing of two extended abstracts and 
posters on this work presented at NER’19. She also participated in the writing of a 
short paper that was submitted to SMC’19 on this subject. 

For Goal 3, Yufei Huang and his lab have been investigating the GAN models for 
generating the EEG signals. This work is a continuation of the development of deep 
learning approaches begun in previously funded projects to facilitate transfer 
learning across subjects and develop reliable biomarkers for stress and fatigue. We 
proposed a new up-sampling module for the generator, which combines the 
advantage of interpolation and deconvolution. This module preserves the advantage 
of bilinear interpolation by avoiding artifacts and at the same time provides a 
trainable deconvolutional kernel, which helps to match the amplitude of generated 
samples with real samples. We also adopted the conditional GAN architecture to 
address the mode collapsing. We have trained such a filter using BCIT X2 RSVP 
data and the results show that the proposed filter can generate samples mimicking 
the EEG signals for target and non-target events. Three papers were presented at 
SMC’19 Workshop on Deep Learning and Transfer Learning for BCI (Nayak et al. 
2019; Panwar et al. 2019a, 2019b). 

The GAN work was expanded and has been accepted to the special issue in IEEE 
TNSRE (Panwar et al. 2019c).  

Robbins and her lab have also been continuing work related to goal 3 by 
incorporating self-supervised learning using contrastive predictive coding and deep 
networks to improve automated EEG annotation.  
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10. University of Pennsylvania 

10.1 Overall Contribution to the CaN CTA 

The Falk Lab team joined the CaN CTA in 2015, contributing to the alliance’s 
overall goal of applying neuroscience-based research and theory to complex 
operational settings by providing insight into the influence of social context on 
human decision-making and performance. Social influence is one of the most 
powerful determinants of human behavior, and understanding human performance 
in the real world must therefore account for the fact that social context shapes brain 
dynamics that account for human variability in learning and behavior. 
Understanding the performance of individuals in dyads, networks, and other social 
contexts is essential for predicting and improving performance in the naturalistic, 
operational contexts targeted by research at ARL. 

In work under the CaN CTA, the Falk Lab team has integrated tools from 
neuroscience, network science, and social science to understand the interplay 
between social context and brain–behavior relationships. We collaborated with 
teams at ARL and DCS on the Real World Driving Project, and found effects of 
information framing (humor) on communication success and brain synchrony 
within dyads during retelling of the information (see Section 10.2).  

Methodologically, we studied differences between metrics of neural synchrony 
between dyads in this realistic context. Our collaborations on this project also found 
that risk preferences are communicated within dyads, affecting real driving 
behavior as well as brain synchrony within dyads. Selected supported work on other 
data sets provided additional support for the ways that social context relates to brain 
function. For example, we found relationships between brain dynamics and social 
behaviors (Wasylyshyn et al. 2018; Lauharatanahirun et al. 2020; Tompson et al. 
2018, 2019a, 2019b; Baek et al. in prep), such as opinion change in response to 
feedback from others; effects of social network structure on the brain and behavior 
(Schmälzle et al. 2017; Pei et al. in prep); and effects of information context on 
neural prediction of health behaviors (Cooper et al. 2018, 2019; Doré et al. 2019; 
Schmälzle et al. under review). This work has contributed to the development of 
ongoing programs at ARL, particularly the Strengthening Teamwork for Robust 
Operations in Novel Groups (STRONG) initiative. Together, these advances aid 
our ability to predict and improve performance in social contexts. 
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10.2 Real-World Neuroimaging Vehicle Driving Experiment 

The Falk Lab team worked with the teams at ARL and DCS to design, develop, and 
conduct analysis of the Real World Driving Project. Our research objectives were 
to understand human variability during interaction with a vehicle traveling on 
roadways during regular traffic, as well as to understand inter- and intra-personal 
brain and behavioral dynamics during both laboratory tasks and real-world driving. 
Results for each specific aim are as follows. 

10.2.1 Aim 1 

Given that many key tasks require coordination between team members, one of 
whom may be operating a vehicle, it is critical to understand how successful 
communication is accomplished in this environment. In Aim 1, we have examined 
factors that facilitate successful communication (including information valence), 
and tested whether neural synchrony between driver and passenger during the drive 
predicts successful communication, as indexed by the driver’s recall of task-related 
information communicated by passenger. Analysis for Aim 1 was led by former 
graduate student/now postdoc Dr Elisa Baek and current graduate student 
Prateekshit Pandey, in collaboration with Drs Jean Vettel, Javier Garcia, and Nina 
Lauharatanahirun. 

H1a: Memory for information in the humorous framing condition would be 
greater than in the neutral condition. 

We found behavioral evidence to support the hypothesis that humor is more 
memorable than neutral information; passengers (communicators) and drivers 
(receivers) performed with better accuracy on the recognition memory task for 
humorous compared to neutral information (B = 0.197, z = 2.19, p = 0.028,  
n observations = 2756, n pairs = 43). 

H1b: Greater levels of synchrony in language and neural activity (as 
indexed by inter-subject correlation in EEG signals) within a dyad would 
be associated with higher accuracy on the post-drive memory tasks. 

We explored trial-by-trial EEG activity as well as neural synchrony between 
passengers and drivers (indexed by phase locking value [PLV]) to test whether 
humorous information is encoded differently in the brain during initial exposure as 
well as during passenger (communicator) recall of the content to the driver 
(receiver). We found greater alpha PLVs, an indicator of neural synchrony, in 
anterior brain nodes between passengers and drivers during passenger recall of 
humorous versus neutral information (B = 0.004; t (538) = 3.269, p = 0.003). We 
further explored trial-by-trial EEG activity as well as neural synchrony to test 
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whether information that will be recognized with higher accuracy is encoded 
differently in the brain during initial exposure and recall. We found results that 
suggest that increased beta power within posterior brain nodes of passengers is 
associated with increased accuracy in the recognition memory task (B = 10.398,  
z = 2.081, p = 0.038). We also found that higher accuracy on the recognition 
memory task was related to increased alpha power within anterior brain nodes  
(B = 1.225, z = 1.810; p = 0.070), within posterior brain nodes (B = 1.073,  
z = 2.131, p = 0.033), within temporal brain nodes (B = 1.030, z = 2.012, p = 0.044), 
and globally throughout the brain (B = 1.165, z = 2.094, p = 0.036) while passengers 
were actively recalling news clips. We did not find support for the hypothesis that 
greater neural synchrony between the driver and passenger predicted accuracy on 
the memory tasks.  

10.2.2 Aim 2 

Aim 2 focused on linking language and neural synchrony measures collected during 
the driving dyad sessions to individual variability in real-world outcomes. 
Specifically, we focused on links between neural and linguistic synchrony during 
the drive, and later, real-world experiences related to objectively logged health 
behavior (specifically sleep and physical activity as measured by wrist-worn 
accelerometers), as well as daily social interactions. 

H2a: Individuals who show stronger neural and linguistic synchrony with 
their dyad partner during the interaction portion of the drive will report 
more enjoyable and supportive social interactions in the weeks following 
the experiment. 

Data analysis for Aim 2a was led by Drs Bruce Doré and Matt O’Donnell. Drs Doré 
and O’Donnell completed automated language transcription and electromagnetic 
articulography (EMA) data cleaning, and developed a collaborative system for 
manual correction of transcripts by human coders in collaboration with Danny 
Forster, Steve Tompson, and Dr Vettel’s team at ARL. Although there is 
considerable variation in the audio quality of the interaction portion of the drive 
and the resulting quality of automated transcripts, we were able to carry out some 
quantitative linguistic analyses of these transcripts. We experimented with a range 
of different text similarity measures using the whole transcript segmented by 
speaker (e.g., mean phrase and segment similarity using fuzzy string matching, and 
using categorical lexicon Linguistic Inquiry and Word Count [LIWC] proportions, 
bag-of-words/phrases and cosine similarity, proportion of shared contiguous 
words) and also taking conversation turn pairs as units of comparison. These 
measures operationalized as markers of interactional synchrony did not yield any 
notable patterns of association with the neural measures of synchrony. Because we 
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were not able to validate a measure of linguistic synchrony on these data, we did 
not test the predictive capacity of linguistic synchrony measures against social 
interactions (H2a) or physical activity and sleep behaviors (H2b). 

H2b: Participants with neural and linguistic synchrony during sleep and 
physical activity messages will show similar trajectories in longitudinal, 
objectively logged changes in physical activity, sedentary behavior, and 
sleep patterns. 

Data analysis for Aim 2b was led by Dr Nicole Cooper. We have tested whether 
individuals who show more correlated neural responses to the health message 
podcasts delivered during the experimental session also show more similar levels 
of average sleep and physical activity during the longitudinal follow up period 
(based on Readiband data). We cleaned and created aggregate measures from 
Readiband data, in collaboration with Nick Wasylyshyn (formerly at ARL) and Dr 
O’Donnell. Self-report measures show increases in several positive beliefs toward 
sleep and exercise following the podcasts, and in perceived norms about sleep and 
exercise. Across participants, total activity levels and sleep durations before and 
after exposure to the podcasts did not significantly change. Explorations of whether 
individual differences in these changes over time relate to neural responses while 
listening to health podcasts have yielded null results. We examined the alpha and 
beta frequencies in each node in the frontal and parietal lobes, as well as aggregate 
measures across nodes. None of these measures relate significantly to changes in 
physical activity or sleep time. 

We further examined PLVs to test whether the similarity of neural responses across 
individuals relates to similarity in behavior change. We examined mean PLVs in 
alpha, beta, and gamma frequency bands, within and between anterior, central, and 
posterior nodes. We related these dyad-wise PLVs to the dyad-wise difference 
between behavior change scores (% changes in average activity counts and total 
sleep time). Analyses have not found relationships between mean PLVs between 
the driver and passenger and changes in physical activity and sleep. Finally, we 
collaborated with UCLA-ARL trainee Nuttida Rungratsameetaweemana, who 
developed a measure of speech decoding accuracy from EEG signals during the 
podcasts. Across individuals, this decoding accuracy measure was not related to 
later changes in physical activity or sleep. 

10.2.3 Further Exploration 

We collaborated on work led by Dr Lauharatanahirun  on analysis of the extent to 
which individual differences in social and non-social risk preferences can be 
explained by 1) previous social experiences and 2) similarity in resting state EEG 
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brain activity. Risk preferences were calculated for social and non-social conditions 
of an economic lottery choice task for 38 subjects using a constant relative risk 
aversion utility function, in which choices were fit to a logistic function using 
maximum likelihood estimation. A social risk sensitivity (SRS) index  
(SRS = RP social – RP non-social) has identified different risk preferences across 
subjects between social and non-social conditions. To account for this variability, 
we have computed 1) the density of participants’ real-life social networks derived 
from a web-based application and 2) inter-brain similarity indexed by average PLV 
across pairwise EEG electrodes. Preliminary analyses indicate subjects with higher-
density social networks showed lower SRS and those with lower-density social 
networks displayed higher SRS, with inter-brain similarity as a potential marker of 
this effect. Our results suggest real-world social experiences and global similarity 
in neural function may shape decision-making behavior in social exchange. 

Graduate student Pandey is working with ARL scientist Drs Lauharatanahirun (now 
at Pennsylvania State University) and Garcia on implementing a variety of 
synchrony measures for evaluating dyad EEG synchrony. Synchrony measures 
include but are not limited to PLV, partial direct coherence (PDC), circular 
correlation coefficient, Kraskov MutInf, windowed cross-correlation, and CCA. 
This team is currently preparing a manuscript presenting similarities and 
differences between these measures using data from the real-world driving 
experiment (described further later). 

10.3 Papers Submitted and Under Review 

We have continued to work collaboratively with the team at ARL to co-mentor 
post-docs and conduct secondary analyses on multiple data sets, which has resulted 
in several paper drafts and submissions: 

1. Schmälzle R, Cooper N, O’Donnell MB, Tompson S, Lee S, Cantrell J, Vettel 
JM, Falk EB. The effectiveness of online messages for promoting smoking 
cessation resources: predicting nationwide campaign effects from neural 
responses in the EX campaign. Frontiers in Human Neuroscience. 2020;14. 

We have submitted a paper titled The effectiveness of online messages for 
promoting smoking cessation resources: Predicting nationwide campaign 
effects from neural responses in the EX campaign. (with research director 
Nicole Cooper, former postdoc/new faculty Dr Ralf Schmälzle, and Drs Vettel 
and Falk) as an invited submission to a special issue of Frontiers in Human 
Neuroscience. We examined neural activity while a group of smokers watched 
anti-smoking video ads from the American Legacy Foundation’s EX 
campaign. The same video ads were viewed online as banner ads, averaging 
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nearly 6 million impressions per ad. We related activation patterns for each ad 
to the click-through-rates resulting from ad impressions online, and found that 
banners whose brain response bears resemblance to an established negative 
emotion signature and to a vividness signature have lower population-level 
click-through-rates (Fig. 10.1). This multivariate “signature” pattern of 
negative emotion was more strongly predictive of click-through-rates than 
average univariate activity in a set of negative emotion ROIs. 

 

Fig. 10.1 The degree to which the pattern of brain activity for each individual banner matches 
predefined maps for negative and positive emotion, as well as vividness, is linked to the 
population-level click-through rate generated by the same banners. Banners that prompt 
brain activity patterns that better match negative emotion and vividness signatures tend to 
have lower population-level click-through-rates. All analyses are based on ranked similarity 
and click-through-rate scores, respectively. 

2. Baek EC, Scholz C, O’Donnell MB, Garcia JO, Vettel JM, Falk EB. 
Mentalizing supports opinion change in response to negative social 
recommendations. In submission. 

This paper is in the process of being resubmitted to a peer-reviewed journal 
after additional analyses. This paper focuses on message propagation and 
successful social influence (with Drs Baek, O’Donnell, Vettel, and Garcia). 
Our findings show that mean activity within the brain’s reward and 
mentalizing systems is engaged during opinion change in response to social 
recommendations. In a novel contribution to the field, we show that these 
effects depend on the valence of the recommendation and are stronger when 
the social recommendations are higher in negativity (i.e., “this mobile game 
app is really boring”). Further, negativity of recommendations is associated 
with mean activation in the brain’s mentalizing system. We have also found 
that decreased functional connectivity between the brain’s mentalizing and 
reward systems is associated with opinion change in response to social 
recommendations. These results provide important insights into how certain 
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contextual factors may moderate the processes that have previously been 
associated with successful social influence. 

3. Pei R, Lauharatanahirun N, O’Donnell MB, Vettel JM, Falk EB. Neural risk 
sensitivity and the number of communities in adolescent’s online social 
network. In preparation. 

We are in the process of preparing a paper (with graduate student Rui Pei, Dr 
Lauharatanahirun, and Drs O’Donnell and Vettel) in which we examined how 
adolescents’ neural activity during a laboratory risk taking task may be related 
to their online social network structure (Fig. 10.2). We find that adolescents 
with higher mean reward-related neural activation during risk taking tend to 
have more clusters in their social network, and that this association is stronger 
for smaller clusters in a social network. We also find that greater functional 
connectivity between ventral striatum (VS) and ACC is associated with fewer 
social network clusters. These results highlight how contextual factors such as 
social network position can influence neural activation during decision-
making, and that individual differences in neural reward sensitivity may shape 
their social network structure. This work was accepted for a poster presentation 
at the Biennial Meeting of the Society for Research on Adolescents (originally 
scheduled for March 2020 in San Diego, CA; however, the meeting was 
rescheduled to 2021 due to COVID-19). 

 

Fig. 10.2 Neural activation during Balloon Analogue Risk Task (BART) balloon inflation in 
the VS and the ventromedial prefrontal cortex (VMPFC) is associated with the number of 
social network clusters. 
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4. Pei R, Lauharatanahirun N, Andrews M, Waldzinska AN, Falk EB. Shared 
neural responses to health messages underlie similar message evaluation 
among adolescents. In preparation. 

In this work, led by graduate student Pei and supported by Dr 
Lauharatanahirun, we examine the association between individuals’ evaluation 
of health messages and inter-subject correlation (ISC) in neural responses 
when viewing the health messages (Fig. 10.3). Health message evaluations 
were measured using self-report as well as participants’ linguistic feedback. 
Our data demonstrated that higher ISC in multiple cortical and subcortical 
regions (i.e., posterior parietal cortex) was associated with higher similarity in 
message evaluation among participants, indicating that message evaluation is 
driven by high-level processing of health messages during message exposure. 
We are conducting further analyses to examine how these regions might work 
in conjunction with one another during health message processing, and how 
this relationship might be moderated by social network variables such as social 
network density and modularity. 

  
Fig. 10.3 Relationship between ISC in participants’ neural activity during ad watching and 
similarity between participants’ a) ad effectiveness ratings and b) verbal ad evaluation.  
a) Regions in which ISC was significantly associated with similarities in participants’ ad 
effectiveness ratings. Significant clusters include regions associated with higher-order visual 
processing such as the occipital-temporal cortex and socio-semantic processing regions such 
as the temporoparietal junction. b) Regions in which ISC was significantly associated with 
similarities in participants’ verbal ad evaluation. Significant clusters include regions 
associated with higher-order visual processing, as well as midline structures associated with 
self-related and valuation (e.g., VMPFC). 
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5. Pandey P, Garcia JO, Falk EB, Lauharatanahirun N. A comparison of neural 
synchrony measures in an EEG hyperscanning paradigm. In preparation. 

Social interaction and communication are foundational to the human 
experience, but the underlying neurophysiological processes that give rise to 
this interaction still remain elusive. Social neuroscience efforts have 
investigated the neural events from simultaneously monitored brains of 
interacting individuals, asking whether the underlying neurophysiological 
coordination between individuals may be at the core of social coordination, as 
well. Researchers have found that unique neural coordination, assessed via 
hyperscanning, between individuals is associated with a variety of social 
behaviors. 

Extant literature that employ hyperscanning techniques, however, use a range 
of measures to estimate inter-brain similarity and can very often give highly 
inconsistent results and lead to divergent conclusions. Using data from the Real 
World Driving experiment, graduate student Pandey compares many popular 
methods that include time-independent measures (e.g., correlation, Euclidean 
distance, cosine distance), frequency-based measures (e.g., coherence, directed 
partial coherence), and phase-based measures (e.g., PLVs, Kraskov’s MutInf 
and circular correlation). Our results indicate that intercorrelations among 
metrics were highly variable with a large number of metrics being 
uncorrelated. These findings suggest that different metrics of synchrony may 
reflect unique features of interpersonal synchrony, and that caution must be 
taken when interpreting such metrics. Figure 10.4 shows the correlation 
between different synchrony measures between driver and passenger during 
free-conversation phase of driving. 
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Fig. 10.4 ROIs and how their neural activation in the BART related to changes in risky 
driving in the simulated driving task. No relationship was found between stake-modulated VS 
activation and changes in risky driving: a) passenger type marginally moderated the 
relationship between stake-modulated neural activation and changes in risky driving;  
b) additional analyses that investigated each subcluster of stake-modulated separately 
showing a significant interaction between the ACC cluster of stake-modulated and passenger 
type, with a significant simple effect for the risky peer condition in that stake-modulated ACC 
activation is associated with more risky driving with a risky peer passenger; and c) *: simple 
effect p <  0.05. 
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6. Pei R, Lauharatanahirun N, Cascio C, O’Donnell MB, Shope J, Simons-
Morton B, Vettel JM, Falk EB. Safety versus risk endorsing peer attitudes 
influence adolescent risk taking through distinct neural mechanisms. 
Developmental Cogn Neurosci. In press. 

Adolescents demonstrate both heightened sensitivity to peer influence and 
increased risk-taking. This study, led by graduate student Pei in collaboration 
with Drs. Lauharatanahirun and Vettel, provides a novel test of how these two 
phenomena are related at behavioral and neural levels. Our data shows that 
adolescents’ neural responses to risky decision-making may modulate their 
behavioral conformity to different types of peer influence. In particular, neural 
activity in the ACC predicted conformity to risk-preferring peers while 
driving. We also found that connectivity between VS and risk-processing 
regions (including insula and ACC) predicted safer driving under risky 
influence. Together, these results suggest that adolescents’ neural responses to 
risky decision-making may modulate their behavioral conformity to different 
types of peer influence on risk-taking. 

7. Lauharatanahirun N, Pei R, Falk E, Vettel J. Intra-individual variability at the 
neural and behavioral levels predicts adolescents’ risky behavior. Submitted. 

In this study, male adolescents (N = 88) between the ages of 16 and 17 
completed the BART while undergoing functional neuroimaging. Our results 
show that intra-individual inflation variability in the BART captures strategic 
performance such that adolescents with higher variability were less likely to 
maximize rewards through risk-taking, while simultaneously banking a high 
number of balloons for monetary rewards. Combined, these findings suggest 
that higher behavioral variability is consistent with a risk-averse response 
strategy resulting in lower risk-taking. We also examined the extent to which 
neural variability in both anterior insular cortex (AIC) and ACC was dependent 
upon behavioral variability to predict risky driving behavior. Our findings 
show that for adolescents who show a relatively more risk-seeking strategy, 
lower AIC neural variability is associated with greater risk-taking, while the 
opposite was true for ACC. These novel findings are the first to show that AIC 
and ACC may serve distinct roles in responding to risk within adolescents who 
exhibit greater risky exploratory strategies. These results also highlight the 
different roles that behavioral and neural variability may play in contributing 
to adolescent risk taking behavior. 
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8. Tompson SH, Falk EB, O’Donnell MB, Cascio CN, Bayer JB, Vettel, JM, 
Bassett DS. Response inhibition in adolescents is moderated by brain 
connectivity and social network structure. Under revision. 

This manuscript, led by former ARL postdoc and Falk Lab member Tompson, 
in collaboration with several Falk Lab, ARL, and CaN CTA participants, is 
under revision with the journal Social Cognitive and Affective Neuroscience. 
The social environment an individual is embedded in influences their ability 
and motivation to engage self-control processes, but little is known about the 
neural mechanisms underlying this effect. Many individuals successfully 
regulate their behavior even when they do not show strong activation in 
canonical self-control brain regions. Thus, individuals may rely on other 
resources to compensate, including daily experiences navigating and managing 
complex social relationships that likely bolster self-control processes. Here, 
we employed a network neuroscience approach to investigate the role of social 
context and social brain systems in facilitating self-control in adolescents. We 
measured brain activation using fMRI as 62 adolescents completed a go/no-go 
response inhibition task. We found that social brain systems compensate for 
weaker activation in executive function brain systems, especially for 
adolescents with more friends and more communities in their social networks. 
Collectively, our results indicate a critical role for social brain systems during 
the developmental trajectory of self-control throughout adolescence. 

9. Cascio CN, Lauharatanahirun N, Larson G, Farah M, Falk EB. Is 
socioeconomic status associated with differential engagement of neural 
pathways to cognitive control? In preparation.  

In this investigation, we examine how social variables relate to brain and 
behavioral performance during a response inhibition task. Response inhibition 
and socioeconomic status (SES) are critical predictors of many important 
outcomes in life, ranging from educational attainment to health behaviors and 
outcomes. The current study extends our understanding of SES and cognition 
by examining brain activity associated with response inhibition, during the key 
developmental period of adolescence. Adolescent males (N = 81), aged 16‒17, 
completed a response inhibition task while undergoing fMRI brain imaging 
and reported on their SES. A brain ROI analysis showed that SES was 
associated with activation differences in the classic response inhibition 
network (rIFG+STN+BG) despite the absence of an SES-performance effect. 
A whole-brain analysis revealed effects of SES in several regions outside the 
classic response inhibition network, including the MTG and angular gyrus, 
which were, in turn, marginally associated with performance differences. 
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Taken together, these results suggest that high and low SES individuals engage 
key brain regions involved in response inhibition to differing degrees. 

10.4 Development of Algorithms for Reading Real-World Brain 
States 

In collaboration with Drs Vettel and Garcia, the Falk Lab team has begun 
developing predictive algorithms for reading out visual information from EEG 
signals. Graduate student Pandey worked with Alex Cohen, a professional artist, to 
develop an EEG-based ML model to predict the visuals being imagined by the 
artist. 

Cohen participated in data collection using a 128-channel BioSemi EEG setup. We 
developed several tasks: 1) color imagination task: random colors were shown in 
blocks on a screen and Cohen was asked to imagine the colors in a given timeframe; 
2) color picking task: same as the previous task, with the only difference being that 
Cohen chose the colors he will be imagining, instead of random assignment; 3) face 
task: Cohen viewed a rapid array of face images; and 4) movie task: viewing of a 
short movie clip. In addition to brain data, we also collected behavioral data 
including measures for mood (modified Differential Emotions Scale [mDES], 
Positive and Negative Affect Scale [PANAS], etc.), sleep (to also be measured by 
accelerometer), and his painting/sculpting activity. 

The study team presented this work at the Society for Neuroscience annual 
conference, at San Diego, November 2018. The alpha and beta frequency bands 
were identified to be the most distinguishing bands for both hue and lightness color 
space (Fig. 10.5). 
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Fig. 10.5 Visualization of the strength of EEG signal responses to the hue and value/luminance 
of the color being shown on screen (Panel A) or being imagined (Panel B). Brain signals are 
divided into four frequency bands: delta (blue), theta (red), alpha (yellow), beta (purple), and 
gamma (green). Here, offset refers to a data manipulation technique to ensure that 0 value 
represents the target value to achieve and any deviation from 0 represents noise. Panel A 
represents the viewing task, where we showed solid colors on a screen to the participant.  
Panel B represents the imagination task, where the participant imagined a color of their own 
choice and then indicated the color on a color palette. 

10.5 Conference Presentations (from 2018‒2020 Supported by 
ARL Funding) 

Cascio CN, Pei R, Falk EB. Are neural mechanisms associated with social feedback 
and conformity different among teens and young adults? Presented at the 
annual meeting of the International Communication Association; 2019, May 
Washington, D.C. 

Lauharatanahirun N, Ball S, Kim-Spoon J, King-Casas B. Longitudinal changes in 
neurobehavioral risk sensitivity and associations with future health risk 
behaviors. Accepted for presentation at the Biennial Meeting of the Society for 
Research on Adolescence; 2020, Mar. (Conference canceled due to COVID-
19). 
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Lauharatanahirun N, Garcia JO, Roy H, Bansal K, Metcalfe J, Falk EB, Vettel JM. 
Real world driving as a function of inter-individual similarity in 
neurobehavioral metrics of risk. Accepted for presentation at the annual 
meeting of the Social and Affective Neuroscience Society; 2020, May; Santa 
Barbara, CA. (Conference canceled due to COVID-19). 

Lauharatanahirun N, Pei R, Cascio C, O’Donnell M, Shope J, Falk EB, Vettel JM. 
Intra-individual variability at the neural and behavioral levels predicts 
adolescents’ risky behavior. Accepted for presentation at the Biennial Meeting 
of the Society for Research on Adolescence; 2020, Mar. (Conference canceled 
due to COVID-19). 

Pandey P, Garcia JO, Lauharatanahirun N. A comparison of neural synchrony 
measures in EEG hyperscanning paradigm. Accepted for presentation at the 
annual meeting of the Social and Affective Neuroscience Society; 2020, May; 
Santa Barbara, CA. (Conference canceled due to COVID-19) 

Pei R, Bayer J, Cascio CN, O’Donnell MB, Falk EB, Meshi D. Habitual social 
media use is associated with increased neural activity in the mentalizing 
network during social exclusion. Accepted for presentation at the annual 
meeting of the Social and Affective Neuroscience Society; 2020, May; Santa 
Barbara, CA. (Conference canceled due to COVID-19). 

Pei R, Lauharatanahirun N, Cascio C, O’Donnell M, Falk EB. Neural activity 
during risky decision making reflects adolescents’ online social network 
clustering structure. Accepted for presentation at the Biennial Meeting of the 
Society for Research on Adolescence; 2020, Mar. (Conference canceled due 
to COVID-19). 

Pei R, Lauharatanahirun N, Cascio CN, O’Donnell MB, Vettel J, Falk EB. Neural 
activity during risky decision making reflects online social network clustering 
structure. Annual meeting of the Social and Affective Neuroscience Society; 
2019, May; Miami, FL. 

Pei R, Lauharatanahirun N, Falk EB. Adolescent's neural and self- report responses 
to fear vs. humor appeals in tobacco-prevention messages. International 
conference of Medicine, Humanity and Media: Health China & Health 
Communication; 2019, Nov; Beijing, China. 

Pei R, Meshi D, Bayer J, Cascio CN, O’Donnell MB, Falk, EB. Habitual social 
media use is associated with increased neural activity in the mentalizing 
network during social exclusion. Annual meeting of the International 
Communication Association (virtual); 2020, May. 



 

172 

10.6 Top Paper Award 

Cascio CN, Baek EC, O’Donnell MB, Falk EB. Social influence: a functional 
connectivity approach to conformity. Annual meeting of the International 
Communication Association; 2018, May; Prague, Czech Republic. 

Cascio CN, Pei R, Falk EB. Neural correlates of social influence across 
development. Annual meeting of the Social and Affective Neuroscience 
Society; 2018, May; Brooklyn, NY. 

Cascio CN, Wang X, O’Donnell MB, Falk EB. Neural correlates of social norms. 
Annual meeting of the International Communication Association; 2019, May; 
Washington, D.C. 

Cooper N, Garcia JO, Tompson S, O’Donnell MB, Falk EB, Vettel JM. Time-
evolving dynamics in brain networks forecast responses to health messaging. 
Annual meeting of the International Communication Association; 2018, May; 
Prague, Czech Republic. 

Doré BP, Cooper N, Tompson S, Scholz CS, Baek EC, Falk EB. Population-level 
stimulus effects are reflected in distributed neural representations of affect and 
value. Presented at the annual meeting of the Social and Affective 
Neuroscience Society; 2019, May; Miami, FL. **Top Poster Award** 

Doré BP, Scholz CS, Baek EC, Falk EB. Information virality is reflected in a 
distributed neural representation of value. Presented at the annual meeting of 
the International Communication Association; 2019, May; Washington, D.C. 
**Top Paper Award** 

Garcia JO, Bansal K, Rungratsameetaweemana N, Wasylyshyn N, Roy H, 
Lauharatanahirun N, Johnson T, Fernandez R, O’Donnell MB, Falk EB, et al. 
Brain network communities between driver-passenger dyads capture 
successful communication while driving. Annual International IEEE EMBS 
Conference on Neural Engineering; 2019, Mar; San Francisco, CA. 

Kang Y, Strecher VJ, Falk EB. Purpose in life and neural responses to health 
messages. Presented at the annual meeting of the Social and Affective 
Neuroscience Society; 2018, May; Brooklyn, NY. 

Kranzler EC, Schmælzle R, Pei R, Hornik RC, Falk EB. Message-elicited brain 
response moderates relationship between opportunities for exposure to anti-
smoking messages and message recall. Annual meeting of the International 
Communication Association; 2019, May; Washington, D.C. 
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Lauharatanahirun N, Garcia J, Wasylyshyn N, Roy H, Metcalfe J, Vettel J, 
Fernandez R, Johnson T, O'Donnell M, Falk EB. Social influence shapes 
neurobehavioral correlates of risky driving performance. Annual meeting of 
the International Communication Association; 2019, May; Washington, D.C. 

Lauharatanahirun N, Garcia JO, Thurman S, Wasylyshyn N, Tompson SH, Cieslak 
M, Okafor G, Giesbrecht B, Grafton S, Flynn-Evans E, et al. Longitudinal 
examination of naturalistic sleep, global brain dynamics, and visual working 
memory performance in healthy adults. Presented at the annual meeting of the 
Society for Neuroscience; 2018, Nov; San Diego, CA. 

Lauharatanahirun N, Garcia JO, Wasylyshyn N, Roy H, O'Donnell MB, Cooper N, 
Paul A, Fernandez R, Johnson T, Metcalfe J, Falk EB, Vettel JM. Social risk 
sensitivity in decision-making is linked to social network structure and inter-
brain similarity. Annual meeting of the Society for Psychophysiological 
Research, Quebec City; 2018, October; Quebec, Canada. 

Metcalfe J, Lauharatanahirun N, Wasylyshyn N, Garcia JO, Fernandez R, Roy H, 
O'Donnell MB, Johnson T, Falk EB, Vettel JM. Trust and communication in 
driver-passenger dyads during open interstate driving. International 
Conference on Applied Human Factors and Ergonomics; 2018, July; Orlando, 
FL. 

Pandey P, Vettel JM, Cohen AJ, Paul A, Falk EB, Garcia JO. The precision and 
stability of imagination: reconstructing colors from oscillatory neural activity. 
Human Cognition and Behavior: Perception and Imagery session of the annual 
meeting of the Society for Neuroscience; 2018, November; San Diego, CA. 

Pei R, Cascio C, Simons-Morton B, Falk EB. Safety versus risk endorsing peer 
attitudes influence adolescent risk taking through distinct neural mechanisms. 
Annual meeting of the International Communication Association; 2018, May; 
Prague, Czech Republic. **Top Paper Award** 

Pei R, Lauharatanahirun N, Cascio CN, O’Donnell MB, Vettel J, Falk EB. Neural 
activity during risky decision making reflects adolescents’ online social 
network clustering structure. Annual meeting of the International 
Communication Association; 2019, May; Washington, D.C. 

Rungratsameetaweemana N, Schmaelzle R, Cooper N, Bansal K, Wasylyshyn N, 
Roy H, Lauharatanahirun N, Johnson T, Fernandez R, O’Donnell MB. 
Capturing communication success of driver-passenger dyads during real-world 
driving. Presented at the annual International IEEE EMBS Conference on 
Neural Engineering; 2019, Mar; San Francisco, CA. 
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Tompson S, Vettel J, Falk EB, O'Donnell MB, Cascio CN, Bayer J, Bassett DS. 
Response Inhibition in Adolescents is Moderated by Brain Connectivity and 
Social Network Structure. Presented at the annual meeting of the International 
Communication Association; 2019, May; Washington, D.C. **Top Paper 
Award** 
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11. Syntrogi Inc. 

11.1 ACA Large-Scale Electroencephalography (EEG) Analysis 
and Exploration of Cognitive Aspects (LARG-II) 

Activity supported to overcome barriers included the following: 

• Discovery of models and novel methods for the identification and 
interpretation of statistical relationships among high-dimensional data sets 
characterizing the dynamics of environment, behavior, and brain function 
during complex task performance 

The LARG-II project focuses on addressing the following three hypotheses: 

• H1 (LARG-II). When the LARG methodology is expanded to encompass 
repeated sessions for individual subjects, then subject, task, and behavioral 
effects can be quantified and modeled in new ways that take advantage of 
data from other studies to provide insights into inter-subject and intra-
subject variability. 

• H2 (LARG-II). ERP and ERSP analysis can be expanded to distributed-
source ROI connectivity analysis to show that activations of canonical 
networks can be systematically related to cognitive aspects as represented 
by HED tags and to different behavioral characterizations. 

• H3 (LARG-II). Large-scale, automated, semi-supervised, and multitask 
learning using GANs can capture discriminative features associated with 
different behavioral characterizations and with cognitive aspects as 
represented by HED tags. 

Key achievements during the final years of the program included the following:  

• We published a series of two NeuroImage papers detailing key efforts under 
the LARG project (automated EEG mega-analysis I and II; Bigdely-Shamlo 
et al. [2019a, 2019b]). We worked closely with co-authors at UTSA and ARL 
to bring both papers through revisions, acceptance, and final publication. 
These papers bring together a number of CTA technologies developed over 
the lifetime of the CaN CTA including standardized preprocessing; data 
curation, containerization, and HED tagging; and temporal regression and 
multilevel hierarchical modeling to account for and characterize individual 
variability across individuals, recording hardware, experimental events, and 
experimental paradigms. Together they represent a significant milestone in 
CTA efforts toward enabling large-scale processing and generalizable 
analysis of heterogeneous EEG data.  
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• We extended the LARG methodology to encompass distributed-source ROI 
connectivity analysis to show that activations of canonical networks can be 
systematically related to cognitive aspects as represented by HED tags and 
to different behavioral characterizations. We presented these results in 
posters and short conference paper (Hanada et al. 2019) and are preparing a 
journal publication.  

• We conducted a systematic investigation and validation of our connectivity 
pipeline in preparation for generating the final catalog of connectivity 
results applied to the full LARG corpus. In particular, using data from the 
LARG corpus, we studied the effect of the vector autoregressive model 
order and regularization parameter (used for estimating connectivity) on 
goodness-of-fit metrics such as residual variance, percent whiteness, and 
average whiteness. Results showed that both percent and average whiteness 
could achieve good model validation greater than 95% depending on the 
model versus lambda values selected. We further explored this relationship 
across a wide range of both model orders and lambda values, characterizing 
the surface shape to determine optimal model parameters. We additionally 
examined the residual autocorrelation and cross-correlation coefficient 
sequences for subsets of models and determined that the models appear to 
be adequately fitting to the data with rapidly decaying correlation over time, 
as would be expected for weakly correlated residuals. As a result of these 
experiments, we established a standard modeling procedure for LARG, 
which uses an autoregressive model order of 10 and applies a grid search 
across many values of the regularization parameter to select the one that 
produces the highest value of percent whiteness of the residuals. This 
procedure has been used to produce the LARG corpus connectivity data 
catalogue for archiving. 

• It was brought to our attention that some of the channel mappings we had 
been provided for seven LARG studies were inaccurate. We conducted a 
thorough investigation into this issue and, after appropriate fixes were 
made, reran the source analysis and computed derived source-level features 
(ERPs, regressed ERPs, ERPSs, regressed ERSPs) and connectivity for 
affected subjects for the final data catalogue and archiving. 

• We completed estimation of distributed source activity, ROI activations, 
and connectivity within canonical brain networks, including averaged and 
regressed source ERP, ERSP, and connectivity event-related responses 
(using the temporal hierarchical overlap regression [THOR] and general 
regression of aspects and details [GRAND] models) for the LARG corpus 



 

180 

(17 studies), and placing of data and results into standardized Baryon 
format.  

• We presented a short conference paper on “Large-scale analysis of 
canonical cortical network dynamics across five visual target detection 
tasks” (Bigdely-Shamlo et al. 2019b) at IEEE SMC 2019 in Bari, Italy. The 
poster presentation is shown in Fig. 11.1. 

• In addressing H1, we worked with UTSA and ARL to publish a 
Transactions on Neural Systems and Rehabilitation Engineering special 
issue journal paper titled “How sensitive are EEG results to preprocessing 
methods: a benchmarking study” (Robbins et al. 2020). This study 
examined data from 1000 EEG recordings from the LARG corpus, 
presenting an investigation into the effects of several preprocessing 
methods (LARG, MARA, and ASR) on ERP, ERSP, and spectral 
variability, topographical distributions, and blink characteristics. Based on 
our findings, we offer several recommendations and observation for 
researchers working with EEG data including the following:  

o Scaling by a recording-specific constant reduces inter-recording 
variability by approximately 40%. 

o Even with aggressive blink removal, careful consideration of 
residual blink artifacts is necessary, as well as consideration of 
potential neural origins of blink-locked EEG responses. Blink-
locked signal analysis with temporal overlap regression methods can 
help to address this.  

o A “federation” of well-documented automated processing 
approaches may be better than a single “gold standard”. 

o Small differences in preprocessing methods can change the 
distribution of neural features, with significant differences in outlier 
characteristics.  

o Using a diverse set of events (with an appropriate tagging ontology) 
and separating temporally adjacent events with temporal overlap 
regression can help to improve generalization power when 
evaluating and comparing preprocessing methods.  
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Fig. 11.1 LARG-II poster presented at IEEE SMC 2019 

Our tasks included a significant contribution of data analyses, code, and 
manuscript text for the draft and revisions, engaging in discussions with 
UTSA and ARL co-authors regarding content, and conducting of a 
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systematic evaluation of the preprocessing methods used, particularly ASR, 
and processing of the LARG corpus data using Intheon’s recommended 
ASR parameters and pre-filters. 

We conducted a detailed investigation into HED tag distributions among 
the LARG corpus to better understand how they are grouped and which key 
tags are used the most as well as which are shared the most across studies 
of different types. 

Figure 11.1 showed the most prevalent HED tags using a criteria of at least 
20 subjects from a given study, with at least 30 trials of the given tag, 
present across at least 7 of the 18 LARG corpus studies. Table 11.1 shows 
the breakdown of each of these HED tags that met all criteria.  

Table 11.1 HED tags meeting minimum criteria 

HED tag No. of 
studies 

No. of 
total 

subjects 

No. of 
subjects with 

at least 30 
trial instances 

Median 
number of 
trials per 
subject 

Event/category/incidental 18 1166 1160 501 
Action/button press 8 245 215 93 
Attribute/direction/left 8 806 540 41 
Attribute/direction/right 8 809 542 41 
Attribute/object control/perturb 9 828 694 78 
Event/category/experimental stimulus 18 1168 1130 270 
Event/category/incidental 18 1166 1160 501 
Event/category/participant response 18 1130 1092 177 
Item/object 18 1168 1168 407 
Item/object/vehicle 11 886 886 352 
Item/object/vehicle/car 10 872 846 350 
Item/symbolic 10 621 444 67 
Participant ~ action/control 
vehicle/drive ~ item/object/vehicle/car 

9 827 827 284 

Participant ~ action/control 
vehicle/drive/correct ~ 
item/object/vehicle/car 

9 827 827 186 

Participant/effect/cognitive/non-target 9 461 461 694 
Participant/effect/cognitive/target 9 460 369 51 
Participant/effect/visual 10 557 556 371 
Sensory presentation/visual 16 858 699 344 
Sensory presentation/visual/rendering 
type/screen/2-D 

10 557 556 421 

 
We observed that while the number of total HED tags used in the LARG 
corpus is large and varied, there is only a small subset that is used across 
multiple studies. This gives us insight into which HED tags to focus on for 
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future analyses as well as understand better which studies might have 
contributed the most toward previous findings reported in the LARG 
manuscripts. Importantly, only the most high-level, generalized HED tags 
such as participant response, visual presentations, and stimulus descriptions 
are common across a majority of the LARG corpus. Most of the LARG 
Corpus tasks fall into either using a simulated driving paradigm or a RSVP 
paradigm, and similarly many of the HED tags with the most usage are split 
between those two groups.  

• Investigation of alternative ASR variants: We additionally worked on 
improving the ASR automated adaptive artifact removal technique 
originally developed under CTA. This method is used extensively 
throughout the CTA and in the scientific community, as well as in the 
LARG project. In recent years, improvements have been proposed by other 
groups (e.g., Blum et al. 2019) with the Riemannian ASR (rASR) method 
(Bigdely-Shamlo et al. 2019a) emerging as a method that is claimed to be 
more robust to outliers and enjoys improved performance under small-
sample situations. We sought to further validate the rASR method and 
determine conditions under which it outperforms ASR. In doing so, we 
identified several serious issues with the published description of the rASR 
method and major differences between the paper and the available reference 
rASR MATLAB implementation. We conducted a side-band analysis to 
investigate these issues using data from several studies, and we 
implemented a more general and more efficient update for the Riemannian 
exponential moving average in order to be able to perform more fine-
grained and larger-scale comparisons efficiently. We also implemented and 
tested a robust Riemannian average for covariance matrices (including a 
recursive variant), which allows us to perform also ASR’s calibration 
algorithm in a Riemannian-correct fashion (something that the rASR 
method did not attempt to do). We determined that our modifications led to 
improved artifact removal performance. However, as this was a side project, 
this benchmark evaluation is not yet complete and will be continued in a 
subsequent quarter. We have notified the EEGLAB maintainers of our 
findings with respect to the rASR implementation by Blum et al. (2019), 
and we are planning to summarize the results of our forthcoming benchmark 
in a short paper. 
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11.2 Lab Streaming Layer Development and Maintenance (LSL-
DM) 

Activity supported to overcome barriers included the following: 

• Development and employment of novel, wearable sensor suites for 
monitoring brain and body dynamics during naturalistic behavior, as well 
as software systems to enable integrated monitoring capabilities 

• Acquisition and processing of high-dimensional data sets that characterize 
physical, mental, and physiological behavior, as well as its environmental 
context, in sufficient detail and across a sufficient breadth of circumstances 

This one-year project focused on the establishment of much-needed core library 
improvements and extensions, and long-term support and maintenance 
infrastructure for the LSL software, including the core technology (the LSL library, 
core tools, and programming language bindings), its surrounding applications (e.g., 
device integrations), as well as community resources such as the website and forum 
as well as examples and documentation. Some effort is also allocated to maintaining 
the closely related XDF data storage format and associated tools.  

11.2.1 Development and Maintenance 

We developed some initial tools to aid management of files in the XDF format: 

• xdf-tagger: a command-line (CLI) tagging tool for XDF files that allow for 
adding, removing, replacing, and listing of metadata tags in XDF files (this 
tool is initially hosted on Intheon’s GitHub during initial development, but 
will be migrated to the XDF repository). This tool has been designed for 
either direct use via the CLI or use with automation scripts or other 
programmatic means, and can process multiple groups of files in a batched 
fashion. Note: Not to be confused with the CTAGGER tool, which is for 
manual event annotation, this program is for per-file XDF metadata tags 
(e.g., subject age, name, device manufacturer, and so on). 

• A diagnostic toolkit for XDF files (implemented in Python) that includes 
the following capabilities:  

o Robust or least-squares linearization of timestamps and moving-
window quality-of-fit diagnostics that include the mean and 
standard deviation of the sampling rate over time (to quantify 
sampling rate drift or wobble); mean, standard deviation, and mean 
absolute deviation of the per-sample jitter (in seconds and samples); 
the maximum timestamp error versus the optimal fit across the 
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whole data; maximum gap length; and maximum sampling rate 
error. 

o Warnings in case certain prespecified limits are exceeded 

o Optional processing of sample or frame counter information with 
support for wrap-around counters and detection of data gaps (e.g., 
packet loss) based on sample counters, as well as gap-aware 
timestamp linearization, and warnings in case sample counters being 
inconsistent with observed timestamp gaps 

o Warnings for excessive packet loss 

o Optional detection of subsample shifts in DAQ timing without 
packet loss (requires a sufficiently regular sampling interval) 

o This toolkit will be made available in the form of a CLI for XDF 
diagnostic inspection. 

• An implementation of the CCA method for automatic post-hoc time 
alignment of multi-channel data streams based on their contained correlated 
activity, which we have initially tested on EEG and eye-tracking data, 
although applications to other modalities, such as EMG, EOG, and fNIRS 
(based on movement artifacts), are envisioned. The method supports pairs 
of regularly and irregularly sampled time series, with matching or non-
matching sampling rates, and is fully automatic within certain default limits 
without requiring channels to be specified. Traditionally, time-alignment 
via cross-correlation requires candidate channels to be manually selected by 
the user, requiring a fair amount of judgement or trial-and-error; CCA 
solves this problem, but would be prohibitively expensive (on the order of 
hours) if run in a brute-force fashion (due to the need to perform a full sweep 
over possible shifts). We solved this by using Bayesian optimization, which 
is known for its use of very few iterative updates until the optimum is 
reached compared to other optimizers. This algorithm will be packaged up 
into a library of post-editing tools for XDF files. 

• We have begun work on a refactoring of the XDF Python importer that 
allows it to efficiently extract only the header information without parsing 
or loading into memory the bulk time-series data, in a single pass. This is to 
support workflows in which folders of XDF files are efficiently scanned for 
certain metadata tags before the desired subset of files is loaded in full. 

• We have also updated the official MATLAB XDF importer repository, 
which was temporarily broken by a new MATLAB version that dropped 
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some mex-file backward compatibility, and have tested the current importer 
on Windows, Linux, and Mac OSs against several recent MATLAB 
versions. 

11.2.2 Application Development  

• We have started implementation of an LSL integration for Empatica E4 
devices in C++, using the current application template. In the process, we 
anticipate to make improvements to and add documentation for this 
template to improve the experience for first-time developers of LSL device 
integration applications (specifically GUI applications). 

• We have cleaned up, retested, documented, and rereleased the Wearable 
Sensing LSL integration (currently on Intheon’s GitHub, but slated for 
publishing on the labstreaminglayer GitHub organization).  

• We have begun drafting an LSL multi-stream, time-series viewer, and in the 
process, have reviewed several candidate starting points (including 
SigViewer, OpenEphys, and several others).  

11.2.3 Journal Paper 

• We worked on the LSL journal paper, including organizing meetings with 
lead authors, and established key task assignments. We have produced an 
initial draft, but we are currently awaiting some additional validation data 
in order to proceed with the final paper drafts. 

11.2.4 Community and Standardization Efforts 

• We organized, chaired, and taught a half-day workshop titled “Introduction 
to LSL” at the IEEE Systems, Man, and Cybernetics Conference 2019. The 
workshop presented the history, philosophy, and architecture of the LSL 
project; technical overviews; a hands-on practicum; and insights into 
practical considerations and use cases presented by key LSL developers and 
“power users” followed by open Q&A and round-table discussions. 

• We organized and prepared educational and demonstrative materials for a 
full-day 2nd International Hands-On LSL Workshop scheduled to follow 
the EEGLAB 2020 workshop in San Diego and immediately preceding the 
MoBI Workshop. The workshop has, however, been postponed due to 
COVID-19.  

• We have continued to work closely with the core LSL developers and 
SCCN to coordinate the organization of GitHub repositories, continuous 
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integration system, and improvement of documentation. We have also 
engaged engineers at ARL and held a roundtable videoconference 
discussion with ARL and DCS engineers and scientists who are using LSL 
to better understand their use cases and to address their needs. 

• We have engaged IEEE and community members regarding establishing a 
working group to create an IEEE Standard for LSL. We have initiated work 
on an IEEE Project Authorization Request to create the working group. 

• We have begun work on designing the new LSL website and forum systems. 

11.2.5 Transition Opportunities/Standards Initiatives  

We have engaged IEEE and community members regarding establishing a working 
group to create an IEEE Standard for LSL. We have initiated work on an IEEE 
Project Authorization Request to create the working group. 

11.2.6 Synergistic Projects 

NeuroPype Suite Academic Edition 

Throughout PY10, we completed two major version releases of NeuroPype 
Academic Edition and a number of minor point releases. These releases include a 
number of new modules for processing multimodal biosensor data, including data 
from EMG, PPG, and ECG sensors, and eye trackers, as well as a new suite of 
statistics modules. Support for implanted electrodes and executing deep neural 
network models within workflows is forthcoming in a new release. Throughout 
PY10, NeuroPype Academic Edition usage grew to over 320 academic and 
scientific institutions in over 45 countries.  

NeuroScale Insights Beta Release 

Intheon has opened up its beta program for the NeuroScale (NS) Insights platform, 
representing a major step forward in standardized automated processing and 
analytics and report generation for neural and other biosignal data. NS Insights 
enables turnkey, cloud-based, or local processing of data recorded using various 
file formats and organized using various containerization schemes (including 
BIDS, but also simple folder-based organizational schema). Individual or group 
data is processed using standardized (albeit configurable) NeuroPype pipelines, 
including data cleaning and quality analysis; continuous or event-related spectral, 
temporal, and spatial feature extraction at the channel or cortical region of interest 
level; statistical modeling using GLM/(M)AN(C)OVA, paired statistics, or 
hierarchical/mixed-effects models; and ML. Insights supports various statistical 
designs (N-way, N x M, repeated measures, individual vs. group comparisons, etc.). 
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Results are presented in interactive graphical reports as well as standardized Baryon 
data structures in HDF5 and MATLAB formats. Insights is currently being used to 
support CTA/DCS/ARL projects, as well as a number of other industry, academic, 
and government partners. 

Real-time Tracking of Brain Networks and Task Performance Prediction during 
Driving  

We published and presented a paper entitled “Online tracking of canonical brain 
network activation and behavioral prediction using Bayesian filtering” (Fazel-
Rezai and Mullen 2019) at the IEEE SMC 2019 conference in Bari, Italy. In this 
paper, we extended previous CaN CTA work and applied the two-stage block 
sparse Bayesian learning (BSBL-2S) method developed and refined under previous 
CaN CTA projects to both simulated and real EEG data for online tracking of the 
relative evidence of activation of groups of cortical ROIs comprising the nodes of 
two brain networks, the task-positive network (TPN) and default-mode network 
(DMN). This was used to predict RT to unexpected lane departure events in 
simulated lane-keeping driving data from eight subjects (data from NCTU; 
collected under the CTA RWN VDE project). The estimated Bayes factors (BFs) 
showed significant linear and quadratic predictive relationships with RT, with the 
poorest task performance associated with decreasing BF (increased DMN 
activation, relative to TPN) (Fig. 11.2). These results confirm prior results showing 
that online estimation of a BF for cortical network activation could be useful in the 
development of neuroscientifically grounded adaptive BMI systems for tracking 
and predicting task performance. 
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Fig. 11.2 Scatter plots of estimated BFs (red traces) vs. RT for each of eight subjects. Dotted 
lines show linear and quadratic polynomial functions fit to the (BF, RT) data. Larger values 
of the BF indicate greater evidence for TPN activation relative to that of the DMN. 

Real-time Neuroimaging and Task Performance Prediction in Aircraft Pilots 
during Real Flight 

We conducted research with ISAE-SUPAERO (the most prestigious aerospace 
engineering school in France) using NeuroPype and several methods we developed 
under the CTA for artifact removal and real-time error prediction during real 
aircraft operation. We co-authored a paper titled “A pBCI to predict attentional 
error before it happens in real flight conditions” (Frederic Dehais, Rida Imad, 
Raphaelle Roy, Iversen John, Tim Mullen, and Daniel Callan), which we presented 
at IEEE SMC 2019 where it was awarded the IEEE Brain Best Paper Award 
(Dehais et al. 2019).  

11.2.7 Community Outreach 

• Intheon members co-organized and/or participated in a number of 
workshops, summits, research topics, and think-tanks throughout PY10.  

• T Mullen and C Kothe served as Special Session Co-chairs and Associate 
Editors for the 9th Workshop on Brain-Machine Interface Systems (BMI) 
at the IEEE Systems, Man and Cybernetics Conference in October 2019. 
We co-organized and taught a half-day workshop on LSL, a Brain 
Hackathon, a neurotech/industry panel, as well as served as chairs for the 
following special sessions on neurotechnology:  
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o Brain Connectivity and Neuronal System Identification: Theory and 
Applications to Brain State Decoding 

o Neuroadaptive Technologies and Passive BCI. 

o Deep Learning and Transfer Learning for Brain–Machine Interface 

o Mobile Brain/Body Imaging and Multi-Modal BMI 
http://musaelab.ca/bmi19/smc2019_bmi.html 

• Mullen and Kothe worked on tasks related to their roles as Special Session 
Co-chairs and Associate Editors for the 10th Workshop on Brain-Machine 
Interface Systems (BMI) at the IEEE Systems, Man and Cybernetics 
Conference (scheduled for October 2020). We submitted several (accepted) 
special session proposals:  

o Deep Learning and Transfer Learning for Brain–Machine 
Interfacing 

o Mobile Brain/Body Imaging and BMI 

o Advances in Neurotechnology for Human Performance 
Optimization 

• Intheon participated as invited members of the highly curated BrainMind 
Summit at Stanford, October 12‒13 (https://brainmind.org/). We 
demonstrated NeuroPype and NeuroScale platforms as well as various real-
world neuroimaging and BCI technologies.  

• Intheon participated in the IEEE EMBS Symposium on Brain, Mind and 
Body – Cognitive Neuroengineering for Health and Wellness (Dec 19‒20, 
2019). Intheon was presented with an IEEE EMBS Demonstration Award. 
Mullen participated in an industry-academic panel “Towards more effective 
and sustainable healthcare through synergy between unobtrusive 
neurotechnology and holistic medicine”. 

• Mullen worked on tasks related to his role as an Associate Editor for the 
Frontiers in Human Neuroscience Research Topic titled “Brain-Computer 
Interfaces and Augmented/Virtual Reality.” The Research Topic was 
finalized and closed this quarter. 

• Mullen served as a member of the BrainMind National Neuroethics 
Advisory Board and participated in a summit meeting of the neuroethics 
advisory board at Duke University (https://brainmind.org/neuroethics). 

http://musaelab.ca/bmi19/smc2019_bmi.html
https://brainmind.org/
https://www.frontiersin.org/research-topics/8454/brain-computer-interfaces-and-augmentedvirtual-reality
https://www.frontiersin.org/research-topics/8454/brain-computer-interfaces-and-augmentedvirtual-reality
https://brainmind.org/neuroethics
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• Mullen worked on finalizing a draft of a journal paper titled “Multiview 
hierarchical Bayesian learning for multi-subject M/EEG source 
connectivity” detailing and validating a novel method previously developed 
under the CaN CTA.  

• Our team worked on poster and demonstration preparations for the CTA 
Capstone Meeting.  

11.3 Publication Summary for PY10 

Papers: 

1. Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K. 
Automated EEG mega-analysis I: spectral and amplitude characteristics across 
studies. NeuroImage. 2019;207(15). https://doi.org/10.1016/ 
j.neuroimage.2019.116361. 

2. Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K. 
Automated EEG mega- analysis II: cognitive aspects of event related features. 
NeuroImage. 2019;207. https://doi.org/10.1016/j.neuroimage.2019.116054. 

3. Robbins K, Touryan J, Mullen T, Kothe C, Bigdely-Shamlo N. How sensitive 
are EEG results to preprocessing methods: a benchmarking study. IEEE Trans 
Neural Syst Rehabil Eng. 2020 Mar;28(5):1081–1090. 

4. Hanada G, Wong C-K, Robbins K, Bigdely-Shamlo N, Touryan J, Mullen T. 
Large-scale analysis of canonical cortical network dynamics across five visual 
target detection tasks. IEEE Conference on Systems, Man, and Cybernetics; 
2019. 

5. Fazel-Rezai R, Mullen T. Online Bayesian state space filtering for tracking 
canonical cortical network activity from EEG. IEEE Conference on Systems, 
Man, and Cybernetics; 2019. 

6. Dehais F, Imad R, Roy R, Iversen J, Mullen T, Callan D. A pBCI to predict 
attentional error before it happens in real flight conditions. IEEE Conference 
on Systems, Man, and Cybernetics; 2019. IEEE Brain Best Paper Award. 

Selected Invited Talks: 

1. Mullen T. Using the NeuroScale & NeuroPype platforms for multi-modal 
neuroscience and BCI. Invited presentation. National Chiao Tung University / 
Brain Research Center; 2019. 
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2. Mullen T. Tools for multi-modal neuroscience data analysis and brain 
computer interfacing. 1st mbt workshop on Mobile EEG; 2019; Belgrade, 
Serbia.  

3. Mullen T. Online Bayesian state space filtering for tracking canonical cortical 
network activity from EEG. IEEE Conference on Systems, Man, and 
Cybernetics; 2019. 

4. Kothe C. The Lab Streaming Layer. 9th International Workshop on Brain-
Machine Interface Systems. IEEE SMC; 2019.  

5. Mullen T. Accelerating multi-modal neuroscience data analysis and brain 
computer interfacing. UCLA Brain Research Institute Affinity Speaker Series; 
2019 Dec 9. 

6. Mullen T. Towards more effective and sustainable healthcare through synergy 
between unobtrusive neurotechnology and holistic medicine. IEEE EMBS 
Symposium on Brain, Mind and Body -- Cognitive Neuroengineering for 
Health and Wellness; 2019 Dec 20. Panelist. 

7. Mullen T. Keynote. Past, present, and future of brain-computer interface 
technologies. IPI Winter Forum; 2020 Feb 4; San Francisco, CA. 

8. Mullen T. Neural interface technologies: promises, pitfalls, and possibilities 
for transforming human potential. Katapult Future Fest 2020 Virtual Summit; 
2020 May 19. Keynote. 

11.4 References 

Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K. 
Automated EEG mega-analysis I: spectral and amplitude characteristics across 
studies. NeuroImage. 2019a;207. https://doi.org/10.1016/ 
j.neuroimage.2019.116361. 

Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K. 
Automated EEG mega- analysis II: cognitive aspects of event related features. 
NeuroImage. 2019b;207. https://doi.org/10.1016/j.neuroimage.2019.116054. 

Blum S, Jacobsen NSJ, Bleichner MG, Debener S. A Riemannian modification of 
artifact subspace reconstruction for EEG artifact handling. Front Hum 
Neurosci. 2019 Apr 26. https://doi.org/10.3389/fnhum.2019.00141.  

Dehais F, Imad R, Roy R, Iversen J, Mullen T, Callan D. A pBCI to predict 
attentional error before it happens in real flight conditions. IEEE Conference 
on Systems, Man, and Cybernetics; 2019. IEEE Brain Best Paper Award. 
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12. University of Maryland, Baltimore County 

12.1 Human-in-the-Loop Model Refinement for Efficient Deep 
Reinforcement Learning 

The objective of this project was to develop novel techniques to integrate human 
intervention in deep reinforcement learning (DRL) to improve learning sample 
efficiency and implemented the proposed techniques in embedded low-power 
environments. DRL methods have seen recent success in difficult tasks as different 
as learning to play video games at superhuman levels from raw images and learning 
to beat the best human Go players. But like all RL methods, DRL is hungry for 
data. Atari video games can be “played” much faster than real time, but interactions 
with the physical world cannot. Therefore, tasks such as learning to control robots 
or drones can benefit substantially from human intervention. Humans can help 
reduce RL sample complexity by injecting knowledge, typically directed at the 
emerging policy. In the past few years, we made a significant progress toward 
implementing techniques for improving DRL in complex and realistic 
environments. We also worked closely with ARL researcher Dr Nicholas 
Waytowich to develop new environments and co-author several papers during past 
two years. The details of our accomplishments are highlighted here. 

The major outcome of this project was the development and enhancement of at least 
five real-world environments and hardware implementation using our proposed 
techniques (Fig. 12.1). We demonstrated the efficiency of learning and low-power 
embedded implementation of the proposed techniques using the majority of these 
environments in six peer-review conferences.  

 

Fig. 12.1 Demonstration of five real-world environments with our proposed techniques in RL 

12.2 Publications 

• Manjunath NK, Shiri A, Hosseini M, Prakash B, Waytowich NR, Mohsenin 
T. An energy efficient EdgeAI autoencoder accelerator for reinforcement 
learning. IEEE Journal of Circuits and Systems. In review. 
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In this work, we developed very-low-power autoencoder hardware to be 
used in autonomous systems. The key novelty is that we represented the 
trained model in ternarized (2-bit) and binarized (1-bit) instead of the 32-bit 
floating point that existing work uses. We evaluated the energy efficiency, 
accuracy, and training of the proposed work using three different 
environments: Donkey Car autonomous car, Mini World Side Walk, and 
Object Pickup. We implemented the proposed ternarized autoencoder 
hardware on an field-programmable gate array (FPGA) that consumes only 
370 mW and 0.28 mJ to classify one image. 

• Gandhi S, Oates T, Mohsenin T, Waytowich N. Learning behaviors from a 
single video demonstration using human feedback. International 
Conference on Autonomous Agents and Multiagent Systems (AAMAS); 
2019. Extended abstract. 

In this work, we proposed a method for learning from video demonstrations 
by using human feedback to construct a mapping between the standard 
representation of the agent and the visual representation of the demonstration. 
In this way, we leverage the advantages of both (i.e., we learn the policy using 
standard state representations, but are able to specify the expected behavior 
using video demonstration). We train an autonomous agent using a single 
video demonstration and use human feedback (using a numerical similarity 
rating) to map the standard representation to the visual representation with a 
neural network. We show the effectiveness of our method by teaching a 
hopper agent in the Multi-Joint Dynamics with Contact (MuJoCo) to perform 
a backflip using a single video demonstration generated in MuJoCo as well 
as from a real-world YouTube video of a person performing a backflip  
(Fig. 12.2). Additionally, we show that our method can transfer to new tasks, 
such as hopping, with very little human feedback. 

 
Fig. 12.2 Autonomous agent training with video input and human feedback. Comparison of 
the backflip in the real-world video demonstration and by our agent. a) Frames of YouTube 
video of person performing backflip, b) backflip performed by our agent (AAMAS 2019). 
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• Prakash B, Khatwani M, Waytowich N, Mohsenin T. Improving safety in 
reinforcement learning using model-based architectures and human 
intervention. 32nd International FLAIRS conference (AAAI); 2019. 

In this paper, we present a hybrid method for reducing the human 
intervention time by combining model-based approaches and training a 
supervised learner to improve sample efficiency while also ensuring safety. 
We evaluate these methods on various grid-world environments using both 
standard and visual representations, and show that our approach achieves 
better performance in terms of sample efficiency, number of catastrophic 
states reached, as well as overall task performance compared to traditional 
model-free approaches. 

• Prakash B, Horton M, Waytowich N, Hairston WD, Oates T, Mohsenin T. 
On the use of deep autoencoders for efficient embedded reinforcement 
learning. 29th Edition of the Great Lakes Symposium on VLSI (GLSVLSI); 
2019. 

Training RL agents from high-dimensional image representations can be 
very expensive and time consuming. We use autoencoders to efficiently 
learn policies, especially when learning on embedded systems. We have 
implemented this model on the NVidia Jetson TX2 embedded GPU, and 
evaluated the power consumption, throughput, and energy consumption of 
the autoencoders for various CPU/GPU core combinations, frequencies, and 
model parameters. 

• Prakash B, Waytowich N, Ganesan A, Oates T, Mohsenin T. Guiding 
safe reinforcement learning policies using structured language constraints. 
SafeAI Workshop in the 34th AAAI conference; 2020. 

We propose a framework to train RL agents conditioned on constraints that 
are in the form of structured language, thus reducing effort to design and 
integrate specialized rewards into the environment. In our experiments, we 
show that this method can be used to ground the language to behaviors and 
enable the agent to solve tasks while following the constraints. We also 
show how the agent can transfer these skills to other tasks. 

• Shiri A, Mazumder AN, Prakash B, Manjunath NK, Homayoun H, Sasan 
A, Waytowich NR, Mohsenin R. Energy-efficient hardware for language 
guided reinforcement learning. 30th Edition of the Great Lakes Symposium 
on VLSI (GLSVLSI); 2020. 

In this paper, we propose an energy-efficient architecture that is designed 
to receive both images and text inputs as a step toward designing RL agents 
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that can understand human language and act in real-world environments. 
Different configurations are proposed to illustrate the tradeoff between the 
number of parameters and the model accuracy, and a custom low-power 
hardware is designed and implemented on an FPGA based on the best 
configuration. Compared to the similar works using FPGAs for hardware 
implementation, our design is more energy efficient and needs less energy 
for generating each output. 
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13. Bibliography of Representative Publications 

The following is a listing of a sample of publications produced by the CaN CTA. 
The list is in chronological order with earliest publications on top. Links to these 
publications can found on the ARL CaN CTA website: 
https://www.arl.army.mil/cast/CaNCTA_PP/#Bibliography. 

1. Delorme A, Kothe C, Vankov A, Bigdely-Shamlo N, Oostenveld R, Zander 
TO, Makeig S. MATLAB-based tools for BCI research. brain-computer 
interfaces: applying our minds to human-computer interaction. In: Tan DS, 
Nijholt A; Editors. London: Springer; 2010. p. 241–259. 
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Makeig S. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for 
advanced EEG processing. Intell Neurosci. 2011 Jan;2011:10:10. doi: 
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3. Lau TM, Gwin JT, McDowell KG, Ferris DP. Weighted phase lag index 
stability as an artifact resistant measure to detect cognitive EEG activity during 
locomotion. J Neuro Eng Rehabil. 2012 Jul;9(1):47. doi: 10.1186/1743-0003-
9-47. 

4. Lawhern V, Hairston WD, McDowell K, Westerfield M, Robbins K. Detection 
and classification of subject-generated artifacts in EEG signals using 
autoregressive models. J Neurosci Meth. 2012 Jul;208(2):181–189. doi: 
10.1016/j.jneumeth.2012.05.017. 

5. Liao L-D, Lin C-T, MacDowell K, Wickenden AE, Gramann K, Jung T-P, Ko 
L-W, Chang J-Y. Biosensor technologies for augmented brain–computer 
interfaces in the next decades. Proceedings of the IEEE. 2012 
May;100(Special Centennial Issue):1553–1566. doi: 10.1109/ 
JPROC.2012.2184829. 

6. Makeig S, Kothe C, Mullen T, Bigdely-Shamlo N, Zhang Z, Kreutz-Delgado 
K. Evolving signal processing for brain–computer interfaces. Proceedings of 
the IEEE. 2012 May;100(Special Centennial Issue):1567–1584. doi: 10.1109/ 
JPROC.2012.2185009. 

7. Plöchl M, Ossandón JP, König P. Combining EEG and eye tracking: 
identification, characterization, and correction of eye movement artifacts in 
electroencephalographic data. Front Hum Neurosci. 2012;6. doi: 10.3389/ 
fnhum.2012.00278. 

https://www.arl.army.mil/cast/CaNCTA_PP/#Bibliography
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