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Machine-learning of long-range sound 
propagation through simulated 

atmospheric turbulence

ABSTRACT:
Conventional numerical methods can capture the inherent variability of long-range outdoor sound propagation.
However, computational memory and time requirements are high. In contrast, machine-learning models provide
very fast predictions. This comes by learning from experimental observations or surrogate data. Yet, it is unknown
what type of surrogate data is most suitable for machine-learning. This study used a Crank-Nicholson parabolic
equation (CNPE) for generating the surrogate data. The CNPE input data were sampled by the Latin hypercube tech-
nique. Two separate datasets comprised 5000 samples of model input. The first dataset consisted of transmission loss
(TL) fields for single realizations of turbulence. The second dataset consisted of average TL fields for 64 realizations
of turbulence. Three machine-learning algorithms were applied to each dataset, namely, ensemble decision trees,
neural networks, and cluster-weighted models. Observational data come from a long-range (out to 8 km) sound prop-
agation experiment. In comparison to the experimental observations, regression predictions have 5–7 dB in median

absolute error. Surrogate data quality depends on an accurate characterization of refractive and scattering conditions.
Predictions obtained through a single realization of turbulence agree better with the experimental observations.
https://doi.org/10.1121/10.0005280

I. INTRODUCTION

Long-range outdoor sound propagation is characterized

by a large variation in sound pressure levels (SPLs) over

space and time (Valente et al., 2012; Wilson et al., 2015).
The large variance is mainly attributed to meteorological

effects (Embleton, 1996), which translate into sound speed

variations in the atmosphere. Gradients of temperature and

wind speed affect the refractive state of the atmospheric

boundary layer (Bass, 2003) and atmospheric turbulence,

resulting from wind velocity and temperature fluctuations,

scatters the sound (Wilson et al., 1999).
Whereas conventional numerical methods for outdoor

sound propagation (Salomons, 2001) simulate a large varia-

tion in SPLs at long ranges, they may be costly in computa-

tional memory and time. Generating statistically consistent

turbulence models (Wilson, 2000) for inclusion in such pre-

dictions is a time-consuming and memory intensive process.

For example, in this study, several days are required to gen-

erate 5000 propagation simulations through single

realizations of turbulence. Therefore, alternative prediction

approaches are desirable.

Machine-learning models in acoustics (Bianco et al.,
2019) are a promising approach to efficiently predict out-

door sound propagation (Hart et al., 2016). Earlier studies
used a variety of statistical learning methods, including an

artificial neural network (NN) model (Mungiole and Wilson,

2006), a cluster-weighted (CW) model (Pettit and Wilson,

2007), and a geostatistical model (Baume et al., 2009).

Although not a fundamental restriction, common to all of

these studies is a maximum range of one kilometer and the

omission of atmospheric turbulence.

The aim of this study is to quantify the accuracy of

three machine-learning models for long-range (beyond

1 km) sound propagation while simultaneously considering

atmospheric turbulence. A synthetic dataset is generated by

a narrow-angle Crank-Nicholson parabolic equation (CNPE)

model, which is described in Sec. II. The synthetic dataset

serves as training and testing data for three machine-

learning algorithms, which are described in Sec. III. The

errors of these models with respect to an experimental long-

range sound propagation dataset are discussed in Sec. IV.

Finally, the viability of the machine-learning models, shown

herein, for long-range outdoor sound propagation is summa-

rized in Sec. V.
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II. SYNTHETIC DATASET

A. Parameter sampling

The challenge of developing a synthetic dataset for out-

door sound propagation is to sufficiently sample the relevant

parameter space, which includes a multiplicity of propaga-

tion geometries, boundary conditions, and meteorological

conditions. A practical approach for exploring the available

parameter space is to use a sampling strategy. In this study,

Latin hypercube sampling (LHS) is used because it facili-

tates even coverage of the parameter space (McKay et al.,
1979). Comprising this space are physically independent

parameters that specify the conditions for an ensemble of

propagation simulations.

Table I lists the parameters and their units for the pre-

sent outdoor sound propagation simulations. Frequency and

source height specify the continuous wave emitted by a

point source and its position, respectively. Wind direction,

friction velocity, roughness height, and sensible heat flux

specify the mean profiles of the wind speed, temperature,

and humidity (Bowen ratio is 0.5, a value characteristic of

grasslands and forests) along the propagation path by

Monin-Obukhov similarity theory (MOST; Ostashev and

Wilson, 2016, pp. 35–38). Friction velocity, sensible heat

flux, and boundary-layer height determine the length scales

and variances for the von K�arm�an spectra of the temperature

fluctuations, shear-induced velocity fluctuations, and

buoyancy-induced velocity fluctuations (Ostashev and

Wilson, 2016, pp. 202–204). These variances and length

scales are input to a generalized random-phase model for

synthetic turbulence with statistics that are constant in the

range direction but vary in the vertical direction (Ostashev

and Wilson, 2016, pp. 321–325). The variances and length

scales for temperature and shear-driven velocity fluctuations

vary throughout the height of the computational domain, but

it may be more appropriate to set a constant value above the

nominal height of the atmospheric surface layer. This is a

topic for future research. Last, static flow resistivity and

porosity establish properties for the acoustic impedance of

the boundary. A relaxation impedance model (Wilson,

1993) provides the acoustic impedance and wavenumber of

the flat ground by assuming a pore shape factor of one, and

tortousity equal to the quartic root of porosity

(Attenborough et al., 2011).
Considering each parameter as an independent random

variable, samples are drawn from the assumed distributions

by LHS. Statistical parameters of each distribution and the

type of distribution are given in Table II. Limits, means, and

variances are assumed for each physical parameter with the

exception of the frequency, source height, and wind direc-

tion. Instead, the limits and sampling distribution are

assumed, which dictate the mean and variance. In particular,

let frequency be considered a continuous random variable,

xf 2 ½af ; bf �, and yf ¼ log10xf . The log-uniform distribution

is

pðyf jaf ; bf Þ ¼
1

log10ðbf=af Þ
; (1)

for yf 2 ½ log10ðaf Þ; log10ðbf Þ�, zero otherwise. Random

samples are drawn from this log-uniform distribution and

transformed back to xf. The mean and variance of the source

frequency are, respectively,

lf ¼
bf � af

ðln 10Þ log10ðbf =af Þ
; (2)

r2f ¼
b2f � a2f

ð2 ln 10Þ log10ðbf=af Þ
� bf � af

ðln 10Þ log10ðbf =af Þ

� �2
: (3)

Uniform distributions are sampled for the source height and

wind direction. For example, the mean and variance of

the wind direction a 2 ½aa; ba� are la ¼ ðba þ aaÞ=2 and

TABLE I. Parameters of synthetic dataset.

Variable Symbol Units

Frequency f Hz

Source height zs m

Wind direction a deg

Friction velocity u� m/s

Roughness height z0 m

Boundary-layer depth zi m

Static flow resistivity r N s/m4

Porosity fraction X m3/m3

Sensible heat flux Hs W/m2

TABLE II. Assumed distributions randomly sampled for parameters of Table I. The means and variances of the frequency, source height, and wind direction

are set by minimum and maximum values.

Variable Minimum Maximum Mean Variance Distribution

Frequency 20 200 78.2 2488 Log-uniform

Source height 0 20 10 33.3 Uniform

Wind direction 0 180 90 2700 Uniform

Friction velocity 0.05 1 0.3 0.01 Beta

Roughness height 0.001 0.1 0.015 1� 10�4 Beta

Boundary-layer depth 200 2000 800 9� 104 Beta

Static flow resistivity 3� 104 3� 107 1� 106 5.625� 1011 Beta

Porosity fraction 0.2 0.7 0.45 0.01 Beta

Sensible heat flux �20 1200 300 4� 104 Beta
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r2a ¼ ðba � aaÞ2=12 (Bishop, 2006, p. 692). The limits,

mean l, and variance r2 are assumed for each of the remain-

ing physical parameters. Each is considered as a continuous

random variable x 2 ½a; b�, which undergoes a change of

variable y ¼ ðx� aÞ=ðb� aÞ. The samples are drawn from a

beta distribution (Bishop, 2006, p. 686)

pðyja0; b0Þ ¼ Cða0 þ b0Þ
Cða0ÞCðb0Þ y

a0�1ð1� yÞb
0�1; (4)

where a0 ¼ �0l0; b0 ¼ ð1� l0Þ�0; l0 ¼ ðl� aÞ=ðb� aÞ; �0

¼ l0ð1� l0Þ=r02 � 1, and r02 ¼ r2=ðb� aÞ.

B. Simulation

The transmission loss (TL) for a harmonic point source

over flat homogeneous terrain is predicted here using a

CNPE model (West et al., 1992). Simulations described

here follow the modeling procedures of Hart et al. (2016)
and Ostashev and Wilson (2016, pp. 404–410). The atmo-

spheric domain spans 10 km in range and 2 km in height,

which is resolved by the CNPE to one-tenth of a wavelength

in both the height and range. Above the atmospheric domain

is a 40 wavelength absorbing boundary. In addition to the

computational grid, a coarser grid discretizes the mean and

turbulent atmospheric fields. The resolution of this grid is

one-half wavelength in height and ten wavelengths in range,

which is sufficient for accurate computations (Wilson et al.,
2009). The TL is interpolated from the computational grid

to this coarser grid. The TL is defined as

TLðf ; rÞ ¼ 20 log10
p0ðf Þ
pðf ; rÞ

� �
; (5)

where p0 is the root mean square (RMS) acoustic pressure

observed at a distance of 1m in the free space, p is the RMS

acoustic pressure at the receiver, f is the frequency of the

source, and r ¼ ðr; zÞ are the coordinates of the receiver in

terms of the range and height. The TL is converted to excess

attenuation (EA),

EAðf ; rÞ ¼ TLðf ; rÞ � 20 log10
jr� rsj
jr0j

� �
; (6)

where rs ¼ ð0; zsÞ are the coordinates of the source,

jr0j ¼ 1m, and jr� rsj is the distance from the source to

receiver in meters,

jr� rsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� zsÞ2 þ r2

q
: (7)

Input to the CNPE model is based on the set of sampled

parameters that are shown in Table I. Propagation through a

single realization of synthetic turbulence under a very strong

upward refracting condition and strong downward refracting

condition are shown for 2 of the 5000 realizations in Fig. 1.

C. Derived parameters

In addition to the sampled parameters (see Table I), sev-

eral predictors for machine-learning are derived from propa-

gation physics and atmospheric variables. The derived

parameters are summarized in Table III. Variables implicit

in Table III include q0 for the density of air, cp for the spe-

cific heat of air at a constant pressure, Qs¼Hs/q0cp for the
kinematic heat flux, g for gravitational acceleration, Prt ¼
0:95 for the turbulent Prandtl number, T0 for the surface

temperature, c0 for the sound speed in an ideal gas, c� ¼

FIG. 1. (Color online) Transmission

loss (TL) fields predicted by a CNPE

model for (a) very strong upward

refraction, where the source frequency

is 104Hz and effective sound speed

scale is �3.09m/s; (b) strong down-

ward refraction, where the source fre-

quency is 120Hz and effective sound

speed scale is 0.367m/s. Other model

parameters were sampled from distri-

butions given by Table II.
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ðc0=2T0ÞT� for the sound speed scale, and j ¼ 0:4 for the

von K�arm�an constant. The normalized characteristic imped-

ance magnitude is determined by the relaxation impedance

model (Wilson, 1993). The projected friction velocity enters

the definition for effective sound speed scale, which quanti-

fies the strength of the effective sound speed gradient

(Ostashev and Wilson, 2016, p. 95). The surface-layer tem-

perature scale and Obukhov length are fundamental parame-

ters for surface-layer similarity (MOST; Wyngaard, 2010,

pp. 217–221). Correspondingly, the mixed-layer velocity

scale is a fundamental parameter in mixed-layer similarity

(Wyngaard, 2010, pp. 241–242). The inverse Obukhov

length is an indicator of the mean meteorological profile

shape (Ostashev and Wilson, 2016, p. 95). The velocity and

temperature variances, dissipation rate, and length scales are

all related to the von K�arm�an spectra of turbulence (Wilson,

2000). In particular, the bouyancy-driven velocity fluctua-

tion variance is r2b ¼ 0:35w2
�. The shear-driven velocity fluc-

tuation variance, dissipation rate, and length scale are

r2s ¼ 3:0u2�; �s ¼ u3�=zj, and ls ¼ 1:8z, respectively. The

variance of the temperature fluctuations is

r2T ¼ 4:0T2
� 1þ 10 �z=Loð Þ½ ��2=3

if Qs > 0;

4:0T2
� if Qs < 0;

(
(8)

and the temperature fluctuation length scale is

lT ¼ 2:0z
1þ 7 �z=Loð Þ
1þ 10 �z=Loð Þ if Qs > 0;

2:0z if Qs < 0:

8><
>: (9)

the sensible heat flux, these variables are omitted from the

model training. All of the derived parameters serve as addi-

tional training variables for each machine-learning model.

D. Dataset generation and filtering

It is unknown whether the surrogate data generated

from propagation through single realizations of turbulence

or an ensemble average of propagation through multiple

realizations of atmospheric turbulence is most suitable for

the machine-learning models. To explore this question, two

datasets are generated, 1 for a single realization and another

for ensemble averages from 64 realizations. The synthetic

dataset is based on the EA sampled 1.5m above the ground

every 50m in range between the source and 10 km for each

simulation. For 5000 samples of parameters and 200 spatial

points, each synthetic dataset, initially, is comprised of 1� 106

values of the EA (TL).

Close to the source and for frequencies below 40Hz, the

EA values are incorrectly computed. This is potentially the

result of spurious reflections from the top of the domain and

narrow-angle approximation (Ostashev et al., 2020).

Therefore, only simulated observations from the 100m range

and further, along with frequencies of 40Hz and greater,

serve as the basis for the training and testing of each statisti-

cal learning model. A total of 695 505 and 697 296 values of

the EA are retained for the single realization of turbulence

and 64 realizations of turbulence datasets, respectively.

Differences in the number of values retained result from ran-

dom sampling of the model parameters.

III. MACHINE-LEARNING MODELS

Nonlinear regression of EA is developed by training three

machine-learning models on each synthetic dataset. The three

machine-learning models considered here are random forest

(RF) regression, NN regression, and CWmodeling. An earlier

study showed that RF and NN models have high prediction

skills for outdoor sound propagation (Hart et al., 2016). Each
of the three models contains two or more adjustable parame-

ters, which are tuned by cross-validation, particularly by the

validation set approach (James et al., 2013). The dataset is

split into a training dataset (75% of the observations chosen at

random) and a test dataset (25% of the observations).

A. RF

RF regression is a type of ensemble decision tree

model, which randomizes the sampled variables at each

decision branch (Breiman, 2001). Decision trees are trained

on bootstrapped datasets and the predictions are aggregated,

which is otherwise known as bagging. One strategy for RF

regression is to generate extensively grown decision trees,

which have a high variance and low bias with respect to the

out-of-bag error. An extensively grown decision tree parti-

tions the parameter space finely, which results in many deci-

sion tree levels. Aggregating predictions of each decision

tree then reduces the variance of the ensemble model (James

et al., 2013). The tuning parameters common to RF models

TABLE III. Parameters derived from atmospheric variables and propaga-

tion physics.

Variable Equation/symbol Units

Normalized characteristic impedance

magnitude

jZnj rayl/rayl

Projected friction velocity ðu�Þa ¼ u� cos ðaÞ m/s

Surface-layer temperature scale T� ¼ �Qs=u� K

Mixed-layer velocity scale w� ¼ ðgQszi=T0Þ1=3 m/s

Effective sound speed scale c�eff ¼ c� þ ðu�Þa=Prt m/s

Obukhov length Lo ¼ T0u
2
�=jgT� m

Inverse Obukhov length L�1
o 1/m

Shear-driven velocity fluctuation variance r2s ¼ 3:0u2� m2/s2

Buoyancy-driven velocity fluctuation

variance

r2b ¼ 0:35w2
� m2/s2

Temperature fluctuation variance r2T ; see Eq. (8) K2

Shear-driven velocity fluctuation

dissipation rate

�s ¼ u3�=zj m2/s3

Shear-driven velocity fluctuation length

scale

ls ¼ 1:8z m

Temperature fluctuation length scale lT; see Eq. (9) m

Because the buoyancy-driven velocity fluctuation length
scale is directly proportional to the boundary-layer depth
and both the buoyancy-driven velocity fluctuation dissipa-
tion rate and kinematic heat flux are directly proportional to
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are the number of variables to select, number of variables to

sample at each decision branch, minimum terminal node

size, and number of decision trees in the ensemble. In this

order, the tuning parameters are adjusted. The initial settings

for the variable selection step include: 200 decision trees,

the number of variables to sample is the least integer for the

square root in the number of variables, and a minimal termi-

nal node size of 12.

Figure 2 shows the out-of-bag root mean square error

(RMSE) as variables are eliminated by backward variable

selection. Similar to backward stepwise regression, backward

variable selection initially trains a RF model with all of the

available training parameters and sequentially trains another

model with one less variable until one variable remains. The

variable eliminated at each stage is the one with the lowest

variable importance, which is the increase in the mean square

error when averaged over all trees in the ensemble and

divided by the standard deviation taken over the trees, for

each variable. The results of backward variable selection

indicate that reducing the number of training parameters

decreases the overall RMSE as variables are eliminated and

then increases for four or fewer variables. In the case of RF

models trained on the dataset corresponding to a single reali-

zation of turbulence, the minimum RMSE is for five varia-

bles. For training on the dataset with 64 realizations of

turbulence, 8 variables result in the lowest RMSE, which is

only 2/10 of a dB lower than the case for 23 variables (not

shown). By backward variable selection, sets of five or fewer

variables do not retain the source height. Because this param-

eter is an important physical characteristic, six variables cor-

responding to Fig. 2 are selected for the model training.

The variable importance for each of the six variables

(predictors) from the backward selection is shown in Fig. 3.

The variable importance is greatest for range. The variable

importance for surface-layer temperature scale, projected

friction velocity, normalized characteristic impedance mag-

nitude, and frequency are comparable, and approximately

double in magnitude compared to source height.

Tuning the number of decision trees in the ensemble

shows a convergence (less than 0.1% change) in the out-of-

bag RMSE for 800 decision trees. For six variables, the min-

imum RMSE corresponds to five variables to sample at each

decision branch. A minimum terminal node size of three

data points results in the lowest RMSE. In consideration of

the cross-validation results, a tuned RF model consists of 6

variables, 800 decision trees, 5 variables to sample at each

decision branch, and 3 data points for the minimum terminal

node size.

B. NN

NN models are suitable for nonlinear regression and

may approximate the vast majority of functions when

trained with a single hidden layer (Hornik et al., 1989).
Considered to be universal approximators, a network with

one hidden layer and linear outputs is able to approximate

any continuous function to arbitrary accuracy given enough

hidden layer nodes (Bishop, 2006, pp. 230–231).

Cross-validation of NNs focused on one tuning parame-

ter: the number of nodes in a single hidden layer of a net-

work. Models were trained with the scaled conjugate

gradient algorithm. A maximum of 5000 training iterations

was allowed (in nearly every case, the training converged

below this limit). The same six input variables as in the RF

model were used. The number of hidden layer nodes leading

to a minimum or near-minimum test RMSE is 55 nodes. A

tuned NN contains 6 input nodes, 55 nodes in 1 hidden

layer, and a single output node.

C. CW model

CW models infer the functional dependence between

the observed input and output variables by joint density

FIG. 2. The out-of-bag root mean square error (RMSE) of a random forest

(RF) model trained with a decreasing number of input variables, according

to the backward variable selection. The model was trained on a dataset cor-

responding to one realization of simulated turbulence. The solid marker cor-

responds to a model with the minimum RMSE.

FIG. 3. The variable importance of a RF model trained with six input

parameters. The model was trained on a dataset corresponding to one reali-

zation of simulated turbulence.
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estimation using a flexible form of mixture modeling

(Gershenfeld, 1999). This is accomplished by a process of

updating forward and posterior probabilities according to

the expectation maximization algorithm. The resulting

regression model is similar to a moving least squares model.

The modeling choices for CW models include the form

of the local model and number of clusters. Studies to date

have used local models that were constant, linear, or qua-

dratic. This study examined the use of the linear and qua-

dratic models. Because CW models using the quadratic

local model have a lower test RMSE than models trained

with a linear local model, the quadratic local model without

cross terms was selected here. The number of training

parameters was set to the same six as used in the RF models.

One complication of increasing the number of clusters

indefinitely is the ill-conditioned nature of the least squares

problem within the CW model estimation problem. For a

quadratic local model, 6 training parameters and 13 clusters

resulted in the lowest test RMSE without the least squares

solution becoming ill-conditioned.

D. Test errors of machine-learning models

Figure 4 shows the distribution of absolute test errors

for each machine-learned model trained on the dataset with

a single realization of turbulence and another dataset with

64 realizations of turbulence. The median absolute error for

models trained on the dataset with a single realization of tur-

bulence is 3.8, 3.7, and 2.0 dB for the CW, NN, and RF

models, respectively. The median absolute error for models

trained on the dataset with 64 realizations of turbulence is

2.2, 2.0, and 1.2 dB for the CW, NN, and RF models, respec-

tively. The median errors for the CW and NN models are

similar. The RF models have the lowest median absolute

errors and smallest range of outliers. The test RMSEs for the

RF models are 3.6 dB and 2.2 dB when trained on datasets

with a single realization of turbulence and 64 realizations of

turbulence, respectively.

IV. EXPERIMENTAL ERRORS OF MACHINE-
LEARNING MODELS

A. Long-range sound propagation experiment

Next, consider the application of machine-learning

techniques to a long-range sound propagation experiment

conducted at the White Sands Missile Range in 2007

(Valente et al., 2012). Over the course of ten days, testing

uniformly sampled all 24 h of the day (dawn, day, dusk, and

night). The experiment was conducted in the northwestern

region of the range, which is characterized as a high desert

plain with sandy soil and desert brush. Because the ground

impedance was not measured during the course of the exper-

iment, reasonable values must be estimated. Table III of

Attenborough et al. (2011) enumerates several different

ground types with grassland being the most pertinent. The

porosity of grasslands ranges from 0.3 to 0.7m3/m3, whereas

the static flow resistivity ranges from 100 to 240 kPa s/m2.

Given a specific pair of porosity and static flow resistivity,

the ground impedance is derived from the relaxation imped-

ance model as described in Sec. II A. The geometry of the

long-range sound propagation experiment was fixed

throughout the test. The blast source was detonated at a

height of 3m. A distributed array of microphones, all at a

height of 1.5m, surrounded ground zero in a “Y”-like con-

figuration. Microphones were spaced along the lines of the

“Y” from 125m to 16 km. Blast pencil gauges, at a height of

3m were placed 4m away from ground zero. This study will

focus on measurements obtained on the east-north-east line

of the “Y.”

Because machine-learning models are trained on linear

propagation data, it is important to evaluate the experimen-

tal range in which linear propagation prevails. During this

experiment, a total of 218 detonations were initiated with

composition C4. The blast wave propagates nonlinearly in

the near field. Assuming that the source waveform follows a

Friedlander pulse, it is possible to evaluate the peak SPL

and positive phase duration under free-field conditions or

consider the height of burst effect (Ford et al., 1993).

Particular attention is given to the range of 125m as this

was the range of the nearest microphone to ground zero.

Figure 5 shows that for a 1.25 lb charge of C4 detonated 3m

above ground, the positive phase duration does not change

at or beyond 125m under free-field conditions. When

considering the height of burst effect, the positive phase

duration changes only slightly beyond 125m. Figure 6

shows the measured peak SPLs at the 125m site for 161 det-

onations passing quality assurance tests (Valente et al.,
2012). The majority of records indicate that peak SPLs were

below the expected level due to the height of burst effect.

Taken together, these observations indicate that linear prop-

agation prevails from about 125m and further in range.

FIG. 4. The absolute test error aggregated over all cases for CW models,

NN models, and RF models. The lower, middle, and upper lines of each
box are the first, second, and third quantiles, respectively. The length of the
upper whisker is 1.5 times the interquartile range. The dashed lines indicate
the range of outliers. The maximum outliers are indicated by open circles.
The RMSE for each model in the overall grouping is shown as solid circles.
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As experimental observations are in terms of

unweighted sound exposure level (SEL), and machine-

learning model predictions are in terms of EA, an indirect

comparison is required. SEL is converted to SPL according

to the integration time period associated with the SEL

metric,

Lpðf ; rÞ ¼ LEðf ; rÞ � 10 log10
T

Tr

� �
; (10)

where LE is unweighted SEL, T is the integration time

period (3 s; Valente et al., 2012), Tr is the reference integra-
tion time period (1 s), and Lp is unweighted SPL. The differ-

ence between the SPLs at two separate receivers is

equivalent to the negative difference between the TL values,

DTL ¼ TLðf ; r2Þ � TLðf ; r1Þ
¼ Lpðf ; r1Þ � Lpðf ; r2Þ: (11)

Equivalently, the difference in the TL is the difference in

the EA with a range correction factor,

DTL¼ EAðf ; r2Þ �EAðf ;r1Þ þ 20 log10
jr2 � rsj
jr1 � rsj

� �
: (12)

The machine-learned models predict the EA, which is con-

verted to differences in the TL between receivers at 1, 2, 4,

and 8 km, and the 125m range by Eq. (12). In each case, the

height of the receiver is 1.5m. The experimental observa-

tions are converted from the SEL to SPL and, then, the dif-

ference in the SPL at a range of r1 ¼ 125m and the SPL of

the r2 ¼ 1, 2, 4, and 8 km ranges is equated to the difference

in the TL by Eq. (11).

A meteorological mast between the 1 and 2 km

receiver ranges collected data that were used to determine

the 30-min averages of the wind direction, friction veloc-

ity, and surface-layer temperature scale. The estimates

for the friction velocity and temperature scale were itera-

tively estimated according to the procedure in Hart et al.
(2018).

B. Comparisons between surrogate data
and machine-learning models to experimental
observations

Figure 7 shows the probability density function (PDF)

estimates of the differences in the TL for both of the CNPE

predictions, for one turbulence realization, and the experi-

mental data. The PDF estimates are generated by normal

kernel density estimation with a bandwidth optimal for esti-

mating the normal densities (Bowman and Azzalini, 1997).

The differences in the TL between 1 km and 125m (150m

for the CNPE predictions due to the range interpolation

intervals) are fairly similar with the mode of surrogate data

being slightly less than experimentally observed and both

characteristically skewed positively. At 2 km, the mode and

variance of both are almost identical, taking on a nearly nor-

mal distribution. At 4 and 8 km, the variance and modes are

underpredicted by the CNPE simulations and have little

skew in comparison to the experimental data. Differences in

the skew are a result of the relative amount of acoustic scat-

tering in the real-world data. The positive skew can be

attributed to a combination of direct and reflected sound

propagation along with weak acoustic scattering (Bass et al.,
1991). When the distribution is skewed negatively, there is

strong acoustic scattering (Dyer, 1970). The bias in DTL
may be due to additional attenuation from nonlinear effects

beyond 125m. The underprediction of the variance in DTL
at ranges of 4 and 8 km may be attributed to variations in

real-world refractive conditions and excessive attenuation of

simulated turbulence at increasing altitudes. By assuming

Monin-Obukhov temperature and wind speed profiles

throughout the simulation domain, the refractive state is not

accurately characterized for stable nighttime conditions.

This well-known shortcoming with MOST leads to gradients

and downward refraction that are much too strong, and for

ranges beyond 1 to 2 km, sound propagates above the

FIG. 6. The peak SPLs measured at a range of 125m east-north-east of the

blast site. The horizontal dotted lines are estimates for the peak SPL consid-

ering free-field propagation (FF) and the height of burst (HOB) effect.

FIG. 5. The peak SPL (solid lines) and positive phase duration (dashed

lines) as a function of the range for a 1.25 lb charge of C4. Differences in

the peak SPL and positive phase duration are due to considering free-field

propagation (FF) and the height of burst (HOB) effect. The vertical dotted

line indicates a range of 125m.
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atmospheric surface layer where turning of the wind

direction, nocturnal jets, and cloud layers affect sound prop-

agation. The immediate consequence is that machine-

learning models will inherit this characteristic underpredic-

tion as they are trained on the surrogate data.

Figure 8 shows the distribution of absolute errors

between the machine-learning model predictions of DTL
(Sec. III) given experimental conditions and experimental

observations. The RMSEs are 9.7, 9.2, and 9.5 dB for the

CW, NN, and RF models trained on the surrogate data with

one realization of turbulence, respectively. The medians in

error are 6.8, 6.1, and 5.5 dB for the CW, NN, and RF mod-

els (one realization of turbulence), respectively. For models

trained on surrogate data with 64 realizations of turbulence,

there is little difference in the median errors, although the

range of outliers is greater. This is a consequence of a

greater disagreement between the experimental data and

simulations of propagation through 64 realizations of turbu-

lence as opposed to propagation through a single realization

of turbulence (not shown). Therefore, no substantial gains in

the predictive accuracy result from increasing the number of

turbulence realizations in generating the surrogate data.

The distribution of model errors, relative to experimental

observations, is more easily understood by examining the distri-

bution of the predicted versus experimental DTL. Figures 9–11
show the differences among the machine-learning model pre-

dictions when trained on surrogate data with one realization of

turbulence. The distribution of predictions by the CW model

and NN are fairly similar with a slightly greater bias in the CW

model. Although, in comparing Figs. 7 and 9, it is evident that

the modes of the CW model predictions are similar to the

modes of the CNPE predictions. The approximately discrete

distributions at the 1 and 2km ranges for the NN and CWmod-

els is indicative of a strongly linear relationship between the

EA and range between these ranges and 125m (not shown).

The predictive distribution for the RF model most closely

matches that of the surrogate data distributions in Fig. 7. The

errors of the RF model will be discussed in further detail.

C. RF model errors relative to experimental
observations

Figure 12 gives the RMSEs for the RF model predic-

tions binned according to range. At a range of 1 km, the

FIG. 7. (Color online) Kernel density

estimates of the probability density

function (PDF) for the experimental

data and CNPE predictions of the TL

differences (DTL) between the (a)

1 km, (b) 2 km, (c) 4 km, and (d) 8 km

and 125m (150m for CNPE) ranges.

FIG. 8. The absolute error of the TL differences (DTL), aggregated over all 
cases, for the CW model, NN model, and RF model predictions versus the
experimental observations. The lower, middle, and upper lines of each box
are the first, second, and third quantiles, respectively. The length of the
upper whisker is 1.5 times the interquartile range. The dashed lines indicate
the range of outliers. The maximum outliers are indicated by open circles.
The RMSE for each model in the overall grouping is shown as solid circles.
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RMSE is 7.2 dB and at 8 km, it is 12.6 dB. This reflects the

prediction error between surrogate data and experimental

observations at greater ranges, i.e., an underprediction of

DTL by CNPE simulation as described above and shown in

Fig. 7.

RMSEs binned by one-third octave band are shown in

Fig. 13. No apparent trend is present in the errors. The mini-

mum error is 7.1 dB for the 40Hz band, and the maximum

error is 12.7 dB for the 200Hz band. Earlier work showed

that typical prediction errors spanned 8–10 dB for near-

ground, short duration, sound propagation due to inherent

uncertainties in characterizing the environment (Wilson

et al., 2007). The RMSE from the RF model is consistent

with the inherent random variability of the blast noise.

Errors binned by effective sound speed scale are shown

in Fig. 14. The minimum error is 6.3 dB in the range of

�1.0 to �0.3m/s. The maximum error, 14.9 dB, is in the

range of 0.3–1.0m/s. By being a linear combination of the

FIG. 9. (Color online) Kernel density

estimates of the PDF for the experi-

mental data and CW model predictions

of the TL differences (DTL) between

the (a) 1 km, (b) 2 km, (c) 4 km, and

(d) 8 km and 125m ranges.

FIG. 10. (Color online) Kernel density

estimates of the PDF for the experi-

mental data and NN predictions of the

TL differences (DTL) between the (a)

1 km, (b) 2 km, (c) 4 km, and (d) 8 km

and 125m ranges.
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projected friction velocity and surface-layer temperature scale,

the effective sound speed scale encapsulates the impacts of

atmospheric stability as well as the directionally dependent

impacts of the wind (Ostashev and Wilson, 2016, p. 95). For

values below �0.3m/s, propagation conditions can be charac-

terized as strong to very strong upward refraction as during

unstable meteorological conditions. Effective sound speed

values spanning �0.3 to �0.1m/s characterize moderate

upward refraction. From �0.1 to 0.1m/s, weak refraction

prevails. Values spanning 0.1–0.3m/s characterize moderate

downward refraction. Above 0.3m/s, propagation conditions

range from strong to very strong downward refraction.

Strongly downward refracting conditions tend to include

those cases in which stable atmospheric stratification is pre-

sent. This potentially indicates the inherent drawbacks of

assuming a Monin-Obukhov profile under stable stratifica-

tion in the near-ground atmosphere, which generally occurs

during the nighttime. Low level jets, gravity waves, and low

turbulence levels may be important environmental charac-

teristics to capture when generating a surrogate dataset. On

the other hand, unstable meteorological conditions, which

typically occur during the daytime, are more accurately rep-

resented by the underlying meteorological profiles and syn-

thetic turbulence.

FIG. 11. (Color online) Kernel density

estimates of the PDF for the experi-

mental data and RF predictions of the

TL differences (DTL) between the (a)

1 km, (b) 2 km, (c) 4 km, and (d) 8 km

and 125m ranges.

FIG. 13. The RMSE of the TL differences (DTL) binned by one-third octave

bands for the RF model predictions versus experimental observations. The RF

model was trained on surrogate data for a single realization of turbulence.

FIG. 12. The RMSE of the TL differences (DTL) binned by range for the 
RF model predictions versus experimental observations. The RF model was
trained on surrogate data for a single realization of turbulence.
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V. CONCLUSION

A total of 5000 different sound propagation scenarios

were simulated with a high-fidelity sound propagation

model over a domain of 10 km in range. Of the 1 � 106 data

points collected from these simulations, approximately 70%

were used to train and test machine-learning models for

long-range sound propagation. Furthermore, two strategies

were employed to generate the surrogate data: simulating

propagation through a single realization of turbulence and

simulatinnng ensemble averaged propagation through 64

realizations of turbulence.

Examination of the prediction errors and experimental

errors aggregated over all of the cases and propagation con-

ditions showed, indirectly, a greater disagreement between

the experimental observations and ensemble averaged prop-

agation simulations. Therefore, it can be concluded that it is

sufficient to generate surrogate data with a single realization

of turbulence. Furthermore, the quality of surrogate data is

critical to generating reliably realistic machine-learning

models. Underlying assumptions regarding meteorological

profiles and simulated turbulence characteristics are crucial

to capturing the large variance of SPLs, which is a ubiqui-

tous feature of long-range sound propagation.

It would, of course, be preferable to train the machine-

learning algorithms with experimental data if sufficiently large

datasets were available. A potentially promising approach lies

in physics-informed NNs, which use physics-based constraints

to alleviate the need for large training datasets. Our initial

efforts to employ physics-informed NNs have been moderately

successful at the TL spatial features while they are less success-

ful for the spatial details of the complex pressure field (Pettit

and Wilson, 2021), apparently due to the spatial complexity of

the sound field and weak dependency on the imposed physics-

based loss function for the ground boundary condition.

In this study, RF models capture the variation in the sur-

rogate data to a greater degree than CW models or NN

models. A characteristic of RF models is prediction of
hyper-surfaces that are not smooth. This suggests that reduc-
ing or eliminating smoothness constraints may lead to model

improvements.
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